
Intro 5 — Stability conditions

Description Remarks and examples References Also see

Description
We can estimate only the parameters of models that we can solve, and we can solve only models that

satisfy a stability condition. This entry discusses this condition, how it affects estimation in practice, and

how to find initial values that satisfy it.

Remarks and examples
Remarks are presented under the following headings:

Why we care about stability
What if the initial values are not saddle-path stable?

Why we care about stability
DSGE models are dynamic systems subject to random shocks. DSGE models that do not spiral out of

control or converge to a single point when shocked are said to be “saddle-path stable”. We can solve

only saddle-path stable DSGE models, and we can estimate only the parameters of models we can solve.

The parameter values determine whether a DSGE model is saddle-path stable. Most DSGE models are

saddle-path stable for some parameter values and not for other values. As we discussed in Structural and

reduced forms of DSGE models in [DSGE] Intro 1, the structural form of a linear DSGE model is

A0y𝑡 = A1𝐸𝑡(y𝑡+1) + A2y𝑡 + A3x𝑡 (1)

B0x𝑡+1 = B1𝐸𝑡(y𝑡+1) + B2y𝑡 + B3x𝑡 + Cε𝑡+1 (2)

Given this structural form, the values in the A𝑖 and B𝑗 matrices determine saddle-path stability. For

nonlinear DSGE models, saddle-path stability is assessed on the linear approximation to the nonlinear

model at the steady state.

In the process of solving the structural form in (1) and (2) for the state space, the Klein (2000) solver

computes the generalized eigenvalues of a matrix formed from the values in the A𝑖 and B𝑗 matrices. An

eigenvalue is said to be stable when its absolute value is less than 1. The model is saddle-path stable

when the number of stable eigenvalues equals the number of states in the model.

Once the maximization algorithm gets started, saddle-path stability usually is not an issue. Problems

with saddle-path stability usually occur when trying to get the maximization process started. The initial

values for the maximization algorithm must imply saddle-path stability because we cannot solve a DSGE

model for parameter values that do not imply saddle-path stability.

dsge and dsgenl use a series of small positive numbers as the default initial values for the structural

parameters that appear in the A and B matrices. If you know that your model is not saddle-path stable

when a parameter, say, 𝛽, is set to 0.1, you should use the from() option to specify an initial value that

does imply saddle-path stability. Alternatively, you could reparameterize the model so that 𝛽 = 0.1 does

imply saddle-path stability, but this solution tends to be more work than changing the initial value.

In rare cases, when the true parameters are close to values that are not saddle-path stable, the maxi-

mum likelihood estimator will suffer from convergence problems. Better initial values can help find the

solution in these cases.
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What if the initial values are not saddle-path stable?
If the initial values do not imply a saddle-path stable solution, you will see

. dsge ...
model is not saddle-path stable at current parameter values

The number of stable eigenvalues is greater than the number of state
variables.

(output omitted )

or

. dsge ...
model is not saddle-path stable at current parameter values

The number of stable eigenvalues is less than the number of state
variables.

(output omitted )

In either case, you should specify the solve and noidencheck options and subsequently use estat
stable to find the problem. solve instructs dsge and dsgenl to only solve the model and not proceed

with estimation, and noidencheck suppresses the check of whether the parameters are identified. estat
stable will display the eigenvalues so that you can determine which ones are saddle-path stable and

which ones are not. The trick is to change the starting values so that the number of stable eigenvalues

equals the number of states in the model. Once you have determined which parameters are problematic,

you can use the from() option to change the initial values to ones that do not have this problem.

Textbooks like those by Canova (2007), DeJong and Dave (2011), Ljungqvist and Sargent (2018),

and Woodford (2003) are full of examples in which some structural parameters must be either greater

than 1 or less than 1 for the model to be saddle-path stable. Similarly, some parameters must be either

greater than or less than 0 for the model to be saddle-path stable. Moving one structural parameter over

one of these boundaries and looking at how the change affects the number of stable eigenvalues can help

find a vector of parameters that yields a saddle-path stable solution.

That the model that you are trying to fit is likely related to other models in the literature or in the

textbooks suggests another strategy. Any such references probably contain some discussion of the set of

values that yield saddle-path stable solutions.

In especially difficult cases, you can use the strategy of solving the problem for a smaller model and

building back up. You temporarily remove equations from the model, find a parameter vector that yields

a saddle-path stable solution for the smaller model, and then progressively add back equations as you

find initial values that yield saddle-path stable solutions.

Example 1: Finding saddle-path stable initial values
Equations (3)–(8) model the observed control variable (inflation) 𝑝𝑡, the unobserved control variable

(output gap) 𝑦𝑡, and the observed control variable (interest rate) 𝑟𝑡 as functions of the states 𝑢𝑡 and 𝑧𝑡.

𝐿𝑧𝑡+1 is an auxiliary state that allows 𝑧𝑡 to be a second-order process instead of a first-order process.

𝑝𝑡 = (1/𝛾)𝐸𝑡(𝑝𝑡+1) + 𝜅𝑦𝑡 (3)

𝑦𝑡 = 𝐸𝑡(𝑦𝑡+1) − {𝑟𝑡 − 𝐸𝑡(𝑝𝑡+1) − 𝑧𝑡} (4)

𝑟𝑡 = 𝛾𝑝𝑡 + 𝑢𝑡 (5)

𝑢𝑡+1 = 𝜌𝑢𝑢𝑡 + 𝜉𝑡+1 (6)

𝑧𝑡+1 = 𝜌𝑧1𝑧𝑡 + 𝜌𝑧2𝐿𝑧𝑡 + 𝜖𝑡+1 (7)

𝐿𝑧𝑡+1 = 𝑧𝑡 (8)
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We try to fit this model using default starting values below.

. use https://www.stata-press.com/data/r19/usmacro2
(Federal Reserve Economic Data - St. Louis Fed, 2017-01-15)
. dsge (p = (1/{gamma})*F.p + {kappa}*y)
> (y = F.y - (r - F.p - z), unobserved)
> (r = {gamma}*p + u)
> (F.u = {rho_u}*u, state)
> (F.z = {rho_z1}*z + {rho_z2}*Lz, state)
> (F.Lz = z, state noshock)
model is not saddle-path stable at current parameter values

The number of stable eigenvalues is greater than the number of state
variables.

r(498);

The default initial values specify a model that is not saddle-path stable. We specify options solve and

noidencheck, which cause the command to attempt only to solve the model and to skip the identification
check.

. dsge (p = (1/{gamma})*F.p + {kappa}*y)
> (y = F.y - (r - F.p - z), unobserved)
> (r = {gamma}*p + u)
> (F.u = {rho_u}*u, state)
> (F.z = {rho_z1}*z + {rho_z2}*Lz, state)
> (F.Lz = z, state noshock),
> solve noidencheck
DSGE model
Sample: 1955q1 thru 2015q4 Number of obs = 244
Log likelihood = .

Coefficient Std. err. z P>|z| [95% conf. interval]

/structural
gamma .21 . . . . .
kappa .22 . . . . .
rho_u .23 . . . . .

rho_z1 .24 . . . . .
rho_z2 .25 . . . . .

sd(e.u) 1 . . .
sd(e.z) 1 . . .

Note: Skipped identification check.
Warning: Model cannot be solved at current parameter values. Current values

imply a model that is not saddle-path stable.

dsge displays the initial values used in the attempted solution, and it displays a warning message

indicating that the model cannot be solved at these values because they imply a model that is not saddle-

path stable.
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We use estat stable to look at the eigenvalues implied by the initial values.

. estat stable

Stability results

Eigenvalues

stable -.3942
stable .6342
stable .21
stable .23

unstable 2.605e+16
unstable 1.046

The process is not saddle-path stable.
The process is saddle-path stable when there are 3 stable eigenvalues and 3

unstable eigenvalues.

The model is saddle-path stable when the number of stable eigenvalues equals the number of states in

the model. The initial values yield four stable eigenvalues, but there are only three states in the model.

So the model is not saddle-path stable at these values.

The initial value for gamma in the output from the failed solution attempt was 0.21. From (3), we

see that the coefficient on expected future inflation is greater than one when gamma is less than one. We

suspect that this relationship could be causing the lack of saddle-path stability. Below, we use option

from() to specify 1.2 as an initial value for gamma and attempt to solve the model.

. dsge (p = (1/{gamma})*F.p + {kappa}*y)
> (y = F.y - (r - F.p - z), unobserved)
> (r = {gamma}*p + u)
> (F.u = {rho_u}*u, state)
> (F.z = {rho_z1}*z + {rho_z2}*Lz, state)
> (F.Lz = z, state noshock),
> solve noidencheck from(gamma=1.2)
DSGE model
Sample: 1955q1 thru 2015q4 Number of obs = 244
Log likelihood = -1504.7564

Coefficient Std. err. z P>|z| [95% conf. interval]

/structural
gamma 1.2 . . . . .
kappa .22 . . . . .
rho_u .23 . . . . .

rho_z1 .24 . . . . .
rho_z2 .25 . . . . .

sd(e.u) 1 . . .
sd(e.z) 1 . . .

Note: Skipped identification check.
Note: Model solved at specified parameters.
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There is no warning message, so the parameter values yielded a saddle-path stable solution. As a final

illustration of this point, we display the eigenvalues below.

. estat stable

Stability results

Eigenvalues

stable -.3942
stable .6342
stable .23

unstable 5.380e+16
unstable 1.2
unstable 1.264

The process is saddle-path stable.

We could now proceed with estimation.
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