All the observed variables in a DSGE model must be modeled as endogenous control variables. This requirement implies that there is no reduced form for the endogenous variables as a function of observed exogenous variables. Any variable that is theoretically exogenous must be modeled.

Mechanically, the solution is to define a control variable that is equal to a state variable that models the exogenous process. We clarify this issue by discussing a model in which the exchange rate is theoretically exogenous.

Remarks and examples

Remarks are presented under the following headings:

* The model
* Parameter estimation

The model

We model an economy in which the growth rate of the trade-weighted exchange rate is exogenous and in which it affects inflation. Henceforth, we call the trade-weighted exchange rate just the exchange rate. We begin by adding the growth rate of the exchange rate to the inflation equation in the New Keynesian model of [DSGE Intro 1].

\[
\begin{align*}
 x_t &= E_t(x_{t+1}) - \{r_t - E_t(p_{t+1}) - g_t\} \\
 r_t &= \frac{1}{\beta} p_t + u_t \\
 p_t &= \beta E_t(p_{t+1}) + \kappa x_t + \psi e_t \\
 u_{t+1} &= \rho_u u_t + \epsilon_{t+1} \\
 g_{t+1} &= \rho_g g_t + \xi_{t+1}
\end{align*}
\]

\(x_t\) is the output gap, which is modeled as an unobserved control variable. \(r_t\) is the interest rate, which is modeled as an observed control variable. \(p_t\) is the inflation rate, which is modeled as an observed control variable. \(g_t\) and \(u_t\) are first-order autoregressive state variables. \(e_t\) is the growth rate of the exchange rate, which we want to model as an observed exogenous variable.
The model in (1)–(5) cannot be solved because there is no equation for how the observed \(e_t \) evolves over time. A first-order autoregressive process [AR(1)] is a standard approximation to an exogenous variable, like the growth in exchange rate. We complete the model by adding an AR(1) for the unobserved state variable \(es_t \) and an equation linking the unobserved \(es_t \) to the observed \(e_t \).

\[
x_t = E_t(x_{t+1}) - \{r_t - E_t(p_{t+1}) - g_t\} \quad (6)
\]
\[
r_t = \frac{1}{\beta} p_t + u_t \quad (7)
\]
\[
p_t = \beta E_t(p_{t+1}) + \kappa x_t + \psi es_t \quad (8)
\]
\[
e_t = es_t \quad (8a)
\]
\[
u_{t+1} = \rho_u u_t + \epsilon_{t+1} \quad (9)
\]
\[
g_{t+1} = \rho_g g_t + \xi_{t+1} \quad (10)
\]
\[
es_{t+1} = \rho_e es_t + \eta_{t+1} \quad (11)
\]

New (8a) specifies how the unobserved state \(es_t \) is transformed into the observed control variable \(e_t \). Equation (11) specifies that the unobserved state \(es_t \) is an AR(1) process. Other equations are unchanged.
Parameter estimation

We fit this model using data on the U.S. interest rate \(r \), inflation rate \(p \), and the growth rate of the exchange rate \(e \). The equation \((e = es)\) links the observed variable \(e \) to the unobserved state variable \(es \).

. dsge (x = F.x - (r - F.p - g), unobserved)
> (r = 1/{beta}*p + u)
> (p = {beta}*F.p + {kappa}*x + {psi}*es)
> (e = es)
> (F.u = {rho_u}*u, state)
> (F.g = {rho_g}*g, state)
> (F.es = {rho_e}*es, state)

(setting technique to bfgs)
Iteration 0: log likelihood = -24249.537
Iteration 1: log likelihood = -8517.9588 (backed up)
Iteration 2: log likelihood = -1808.8075 (backed up)
Iteration 3: log likelihood = -1625.0334 (backed up)
Iteration 4: log likelihood = -1600.0843 (backed up)

(switching technique to nr)
Iteration 5: log likelihood = -1557.8925 (not concave)
Iteration 6: log likelihood = -1512.705 (not concave)
Iteration 7: log likelihood = -1481.8476 (not concave)
Iteration 8: log likelihood = -1278.0033 (not concave)
Iteration 9: log likelihood = -1198.5095 (not concave)
Iteration 10: log likelihood = -1186.0134
Iteration 11: log likelihood = -1177.2355 (not concave)
Iteration 12: log likelihood = -1175.3012
Iteration 13: log likelihood = -1174.3886
Iteration 14: log likelihood = -1172.7244
Iteration 15: log likelihood = -1172.3166
Iteration 16: log likelihood = -1172.0638
Iteration 17: log likelihood = -1172.0376
Iteration 18: log likelihood = -1172.0364
Iteration 19: log likelihood = -1172.0364

DSGE model

Sample: 1973q2 - 2015q4
Number of obs = 171
Log likelihood = -1172.0364

| Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------|-----------|-------|------|----------------------|
| /structural | | | | |
| beta | .5106735 | .1022178 | 5.00 | 0.000 | .3103303 .7110167 |
| kappa | .0901563 | .0334284 | 2.70 | 0.007 | .0246378 .1556747 |
| psi | .01373 | .0037684 | 3.64 | 0.000 | .006344 .021116 |
| rho_u | .7789341 | .047395 | 16.43| 0.000 | .6860415 .8718266 |
| rho_g | .9597842 | .0206193 | 46.55| 0.000 | .9193712 1.000197 |
| rho_e | .2372214 | .0742225 | 3.20 | 0.001 | .0917479 .3826948 |

sd(e.u)	2.206087	.3466166	6.39	0.000	1.526731 2.885443
sd(e.g)	.703933	.1545767	4.56	0.000	.4009683 1.006898
sd(e.es)	10.48932	.5671986	18.52	0.000	9.37763 11.60101

From the estimates for \(\psi \), it appears that the growth of the exchange rate impacts inflation.
Also see

[DSGE] Intro 2 — Learning the syntax

[DSGE] Intro 4 — Writing a DSGE in a solvable form