
Intro 1 — Introduction to DSGEs

Description Remarks and examples References Also see

Description
In this entry, we introduce DSGEmodels and the two commands that estimate the parameters of DSGE

models, dsgenl and dsge. For Bayesian estimation, see [BAYES] bayes: dsge and [BAYES] bayes: ds-

genl. We begin with an overview of DSGE models. We then illustrate the process of DSGE modeling by

working an example. In this example, we describe a model in its original nonlinear form and estimate its

parameters using dsgenl. We also write the model in a corresponding linearized form and estimate the

parameters using dsge. We conclude by showing how this example fits into the general DSGE modeling

framework.

Remarks and examples
Remarks are presented under the following headings:

Introduction to DSGE models
An example: A nonlinear DSGE model

Writing down nonlinear DSGEs
Data preparation
Specifying the model to dsgenl
Parameter estimation and interpretation of nonlinear DSGEs

An example: A linear DSGE model
Writing down linearized DSGEs
Specifying the model to dsge
Parameter estimation and interpretation of linear DSGEs

Postestimation
Policy and transition matrices
Impulse responses
Forecasts

Structural and reduced forms of DSGE models

Introduction to DSGE models
DSGEmodels are models for multiple time series used in macroeconomics and finance. These models

are systems of equations that are motivated by economic theory and in which expectations of future

values of variables play an important role. Because these models come from theory, the parameters of

these models can typically be directly interpreted in terms of the motivating theory. DSGE models are

used for macroeconomic policy analysis and forecasting.

In DSGEmodels, individuals’ actions are summarized by decision rules that take the form of nonlinear

systems of dynamic equations. These decision rules often come from dynamic stochastic optimization

problems. A DSGE model consists of these decision rules, plus any aggregation conditions, resource or

budget constraints, and stochastic processes for exogenous variables.

Because the model’s equations are the solution to dynamic optimization problems, model equations

can feature expectations of future variables. These expectations are endogenous. In DSGE models, ex-

pectations of future values of variables correspond to their conditional mean as implied by the model.

In other words, individuals’ expectations of future values are correct, on average. Such expectations are

said to be model-consistent expectations or rational expectations.
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https://www.stata.com/manuals/bayesbayesdsge.pdf#bayesbayesdsge
https://www.stata.com/manuals/bayesbayesdsgenl.pdf#bayesbayesdsgenl
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There are three kinds of variables in DSGE models: control variables, state variables, and shocks.

The terminology is taken from the state-space and optimal control literatures. In DSGE models, the con-

cepts of exogeneity and endogeneity are understood relative to a time period. A state variable is fixed,

or exogenous, in a given time period. The system of equations then determines the value of the state

variable one period in the future. On the other hand, the system of equations determines the value of a

control variable in the current time period. Control variables in a DSGE model can be either observed or

unobserved. State variables are always unobserved.

DSGEmodels can be written in multiple forms. The model may consist of equations that are nonlinear

both in the variables and in the parameters. Such a model is said to be nonlinear. A DSGE model is said

to be linear, or linearized, when the model equations are linear in the variables. Linear models may still

be nonlinear in their parameters.

Nonlinear DSGE models are commonly linearized prior to analysis. In Stata, you have two choices

for handling the linearization of a nonlinear model. You can write your model in its nonlinear form

and use the dsgenl command. dsgenl will take a linear approximation to the nonlinear model for

you. Alternatively, you can derive the linear form of the model and use the dsge command. Although

linearizing the equations yourself requires extra effort, there can be advantages. Linearized DSGEmodels

are easier to manipulate than nonlinear ones. For instance, it is easier to include additional lag terms in

a linearized model than in a nonlinear one.

After linearization, the DSGE model must be solved prior to estimation. In any analysis of simultane-

ous equations systems, to solve a model means to write the model’s endogenous variables as functions of

its exogenous variables. In DSGEmodels, the analogous concept is to write the model’s control variables

in terms of its state variables. The model’s solution consists of a system of equations relating the control

variables to the state variables and a system of equations describing the evolution of the state variables

over time. The solution to a DSGE model thus takes the form of a state-space model. The solution to

a DSGE model is a crucial object for both estimation and analyses after estimation. Both the likelihood

function and the impulse–response functions are formed from the model solution.

dsgenl solves and estimates the parameters of nonlinear DSGEmodels. It linearizes the model by tak-

ing a first-order approximation to the model’s equations at the model’s steady state, solves the linearized

model, and estimates the parameters of the model using the linearized solution.

dsge solves and estimates the parameters of linearized DSGE models.

For Bayesian estimation, see [DSGE] Intro 9. bayes: dsge fits Bayesian linear DSGE models, and

bayes: dsgenl fits Bayesian nonlinear DSGE models.

General introductions to DSGE modeling are available in Ljungqvist and Sargent (2018) and Wood-

ford (2003). Canova (2007) and DeJong and Dave (2011) describe parameter estimation using DSGE

models. Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016) provide an overview of solution

and estimation strategies for nonlinear DSGE models.

An example: A nonlinear DSGE model

Writing down nonlinear DSGEs

Consider the following nonlinear model, similar to that in Woodford (2003, chap. 4). The model

consists of equations that describe the behavior of households, firms, and a central bank. Interactions

among these actors produce a model of inflation, output growth, and the interest rate. Models of this type

are popular in academic and policy settings and are used to describe monetary policy.

https://www.stata.com/manuals/dsgeintro9.pdf#dsgeIntro9
https://www.stata.com/manuals/bayesbayesdsge.pdf#bayesbayesdsge
https://www.stata.com/manuals/bayesbayesdsgenl.pdf#bayesbayesdsgenl
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Household optimization generates an equation that relates current output 𝑌𝑡 to the expected value of

a function of tomorrow’s output 𝑌𝑡+1, tomorrow’s inflation Π𝑡+1, and the current nominal interest rate

𝑅𝑡,
1
𝑌𝑡

= 𝛽𝐸𝑡 ( 1
𝑌𝑡+1

𝑅𝑡
Π𝑡+1

) (1)

where 𝛽 is a parameter that captures households’ willingness to delay consumption.

Optimization by firms generates an equation that links the current deviation of inflation from its steady

state, Π𝑡 − Π, to the expected value of the deviation of inflation from its steady state in the future,

𝐸𝑡 (Π𝑡+1 − Π), and to the ratio of actual output, 𝑌𝑡, to the natural level of output, 𝑍𝑡,

(Π𝑡 − Π) + 1
𝜙

= 𝜙 ( 𝑌𝑡
𝑍𝑡

) + 𝛽𝐸𝑡 (Π𝑡+1 − Π) (2)

where 𝜙 is a parameter linked to the pricing decision of firms. Firms are not affected by inflation per se;

they are affected only by deviations of inflation from its steady-state value.

Finally, there is an equation that describes central bank policy. The central bank adjusts the interest

rate in response to inflation and, perhaps, to other factors that we leave unmodeled. The equation for the

central bank policy is

𝑅𝑡
𝑅

= (Π𝑡
Π

)
1/𝛽

𝑈𝑡 (3)

where 𝑅 is the steady-state value of the interest rate and 𝑈𝑡 is a state variable that captures all movements

in the interest rate that are not driven by inflation.

We make a few modifications to the model equations before estimating the parameters. Woodford

(2003) rewrites the model in (1)–(3) by defining 𝑋𝑡 = 𝑌𝑡/𝑍𝑡 as the output gap. We do the same.

Substituting in 𝑋𝑡 gives us the three-equation system

1 = 𝛽𝐸𝑡 ( 𝑋𝑡
𝑋𝑡+1

1
𝐺𝑡

𝑅𝑡
Π𝑡+1

) (4a)

(Π𝑡 − Π) + 1
𝜙

= 𝜙𝑋𝑡 + 𝛽𝐸𝑡 (Π𝑡+1 − Π) (5a)

𝑅𝑡
𝑅

= (Π𝑡
Π

)
1/𝛽

𝑈𝑡 (6a)

where 𝐺𝑡 = 𝑍𝑡+1/𝑍𝑡 is a state variable that captures changes in 𝑍𝑡.

The model is completed by adding equations describing the evolution of the state variables 𝐺𝑡 and

𝑈𝑡. We write them as autoregressive processes in logarithms,

ln(𝐺𝑡+1) = 𝜌𝑔 ln(𝐺𝑡) + 𝜉𝑡+1 (7a)

ln(𝑈𝑡+1) = 𝜌𝑢 ln(𝑈𝑡) + 𝑒𝑡+1 (8a)

The variables 𝜉𝑡+1 and 𝜖𝑡+1 are shocks to the state variables. We now have a complete nonlinear DSGE

model. To estimate its parameters, we need to get some data.

https://www.stata.com/manuals/dsgeintro1.pdf#dsgeIntro1Remarksandexampleseq1
https://www.stata.com/manuals/dsgeintro1.pdf#dsgeIntro1Remarksandexampleseq3
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Data preparation

There are three requirements of the data used with dsgenl and dsge. First, the data must be tsset
so that Stata understands the time structure of your data. Second, the series in your model must have

zero mean. This requirement is actually handled for you. Before solving the models, these commands

first transform variables into differences from their steady state or, with dsgenl, percent deviations from
their steady state. The third requirement is that variables in your data must be weakly stationary.

We have data on the price level and the nominal interest rate in rates.dta. These data were obtained
from the Federal Reserve Economic Database (FRED), which contains many macroeconomic and finan-

cial time series; see [D] import fred. We can type tsset to see that dateq has already been set as the

quarterly time variable in this dataset.

. use https://www.stata-press.com/data/r19/rates2
(Federal Reserve Economic Data - St. Louis Fed, 2017-02-10)
. tsset
Time variable: dateq, 1947q1 to 2017q1

Delta: 1 quarter
. describe
Contains data from https://www.stata-press.com/data/r19/rates2.dta
Observations: 281 Federal Reserve Economic Data -

St. Louis Fed, 2017-02-10
Variables: 5 26 Apr 2024 21:22

Variable Storage Display Value
name type format label Variable label

datestr str10 %-10s Observation date
daten int %td Numeric (daily) date
gdpdef float %9.0g GDP deflator GDPDEF
r float %9.0g Federal funds rate FEDFUNDS
dateq int %tq Quarterly date

Sorted by: dateq

The dataset includes the price-level variable gdpdef. But the model is written in terms of the inflation

rate. For quarterly data, the inflation rate is conventionally obtained as 400 times the difference in log

of the price level. Therefore, we begin by generating an inflation rate variable p by using the L. lag

operator.

. generate p = 400*(ln(gdpdef) - ln(L.gdpdef))
(2 missing values generated)
. label variable p ”Inflation rate”

We now have inflation and interest rates.

Specifying the model to dsgenl

Equations (4a)–(8a) are the nonlinear DSGE model. The command to estimate the parameters of the

system (4a)–(8a) is

. dsgenl (1 = {beta}*(x/F.x)*(1/g)*(r/F.p) ) ///
(1/{phi} + (p-1) = {phi}*x + {beta}*(F.p-1)) ///
({beta}*r = p^(1/{beta})*u) ///
(ln(F.u) = {rhou}*ln(u)) ///
(ln(F.g) = {rhog}*ln(g)), ///
exostate(u g) observed(p r) unobserved(x)

https://www.stata.com/manuals/tstsset.pdf#tstsset
https://www.stata.com/manuals/dimportfred.pdf#dimportfred
https://www.stata.com/manuals/dsgeintro1.pdf#dsgeIntro1Remarksandexampleseq4a
https://www.stata.com/manuals/dsgeintro1.pdf#dsgeIntro1Remarksandexampleseq8a
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Each equation is bound in parentheses. The equations in the command look similar to the equations

we wrote down. The equations can be written in nearly any form that is logically equivalent to the model

equations. In addition to providing the equations, you must specify which variable plays which role in

the model through the options. The option exostate() lists all exogenous state variables, those that are

subject to shocks. The option observed() lists observed control variables. The option unobserved()
lists unobserved (latent) control variables. A fourth option, endostate(), is available for endogenous
state variables, those that are not subject to shocks. Each variable must be listed in one and only one

of the options. The number of exogenous state variables must be the same as the number of observed

control variables.

Parameters are bound in curly braces; this is how Stata distinguishes between parameters and vari-

ables. Parameters can appear nonlinearly, they can appearmore than once, and they can appear inmultiple

equations. A parameter repeated across equations is considered the same parameter; for example, in the

above model, beta appears in each of the first three equations, and it is assumed that there is only one

parameter beta to be estimated. These cross-equation restrictions are common in DSGE models.

The operator F. can be applied to both state and control variables to denote the expected future value

of a variable. For example, we typed F.x to include 𝑥𝑡+1 in the model. However, unlike F. used in other

time-series applications, the value of 𝑥𝑡+1 is not determined from the value of x at time 𝑡 + 1 in your

data. Instead, it is an expectation of the value of x at time 𝑡 + 1 based on your model. In fact, the entire

model can be written in terms of expectations.

Notice that in (4a) and (5a), the 𝐸𝑡 operator appears. This is the statistical expectation operator. It

refers to expected value of the term in brackets conditional on information known at time 𝑡. In dsgenl,
this expectation operator is assumed in front of each equation. Hence, the dsgenl equation

(1 = {beta}*(x/F.x)*(1/g)*(r/F.p))

is interpreted as

𝐸𝑡 (1 − 𝛽 𝑋𝑡
𝑋𝑡+1

1
𝐺𝑡

𝑅𝑡
Π𝑡+1

) = 0

which is equivalent to what we wrote in (4a).

https://www.stata.com/manuals/dsgeintro1.pdf#dsgeIntro1Remarksandexampleseq4a
https://www.stata.com/manuals/dsgeintro1.pdf#dsgeIntro1Remarksandexampleseq5a
https://www.stata.com/manuals/dsgeintro1.pdf#dsgeIntro1Remarksandexampleseq4a
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Parameter estimation and interpretation of nonlinear DSGEs

The model’s parameters are estimated by taking a linear approximation to the model’s equations,

solving the linearized system for its state-space form, and estimating the parameters of the state-space

model by maximum likelihood.

. dsgenl (1 = {beta}*(x/F.x)*(1/g)*(r/F.p))
> (1/{phi} + (p-1) = {phi}*x + {beta}*(F.p-1))
> ({beta}*r = p^(1/{beta})*u)
> (ln(F.u) = {rhou}*ln(u))
> (ln(F.g) = {rhog}*ln(g)),
> exostate(u g) observed(p r) unobserved(x) nolog
Solving at initial parameter vector ...
Checking identification ...
First-order DSGE model
Sample: 1954q3 thru 2016q4 Number of obs = 250
Log likelihood = -768.09383

Coefficient Std. err. z P>|z| [95% conf. interval]

/structural
beta .5112917 .075773 6.75 0.000 .3627794 .659804
phi 5.895233 1.652618 3.57 0.000 2.656161 9.134304

rhou .6989186 .0449146 15.56 0.000 .6108877 .7869496
rhog .9556408 .0181346 52.70 0.000 .9200975 .991184

sd(e.u) 2.317573 .2987328 1.732068 2.903079
sd(e.g) .6147308 .0973072 .4240122 .8054493

We see header information describing the sample date range, the number of observations, and the log

likelihood.

In the estimation table, we see estimates of model parameters. Some of these parameters have a

structural interpretation. Parameter beta plays two roles in the model: it is the discount factor in the

household and firm equations, and its inverse captures the degree to which the central bank responds

to inflation in the interest rate equation. Its point estimate is about one half, so a point estimate for its

inverse is about 2.

We use nlcom to obtain an estimate of the parameter 1/𝛽 directly.

. nlcom 1/_b[beta]
_nl_1: 1/_b[beta]

Coefficient Std. err. z P>|z| [95% conf. interval]

_nl_1 1.955831 .2898524 6.75 0.000 1.387731 2.523931

Values for this parameter in the literature are typically around 1.5. Our estimated value is about 2, but

the common value of 1.5 lies within the confidence interval.

The phi parameter is a measure of price adjustment. The remaining four parameters describe the

evolution of the model’s exogenous state variables. Both state variables are highly persistent, with per-

sistence parameters of 0.70 and 0.96 on u and g, respectively. The estimated standard deviations of the

shocks are also displayed. The shock to the state variable u is denoted e.u and has standard devia-

tion 2.32. The shock to the state variable g is denoted e.g and has standard deviation 0.61.
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An example: A linear DSGE model

Writing down linearized DSGEs

The model in (4a)–(8a) is nonlinear. To use dsge, we first write the model in its corresponding

linearized form, which we show below. Throughout this manual, we use lowercase letters to denote

deviations of variables from the steady state. The linearized versions of (4a)–(8a) are

𝑥𝑡 = 𝐸𝑡𝑥𝑡+1 − (𝑟𝑡 − 𝐸𝑡𝜋𝑡+1 − 𝑔𝑡) (4b)

𝜋𝑡 = 𝛽𝐸𝑡𝜋𝑡+1 + 𝜅𝑥𝑡 (5b)

𝑟𝑡 = 1
𝛽

𝜋𝑡 + 𝑢𝑡 (6b)

𝑢𝑡+1 = 𝜌𝑢𝑢𝑡 + 𝜖𝑡+1 (7b)

𝑔𝑡+1 = 𝜌𝑔𝑔𝑡 + 𝜉𝑡+1 (8b)

The new parameter 𝜅 is a function of the underlying parameter 𝜙 from (5a).

We have implicitly constrained some of the coefficients; for example, the coefficient on the interest

rate in the output equation is constrained to −1.

Specifying the model to dsge

The dsge command to estimate the parameters in the system of (4b)–(8b) is

. dsge (p = {beta}*F.p + {kappa}*x) ///
(x = F.x - (r - F.p - g), unobserved) ///
(r = (1/{beta})*p + u) ///
(F.u = {rhou}*u, state) ///
(F.g = {rhog}*g, state)

As with dsgenl, each equation is bound in parentheses. The equations look almost identical to the

system in (4b)–(8b). Because a model has as many variables as it has equations, each variable will

appear on the left-hand side of one and only one equation but can appear on the right-hand side of as

many equations as we like. Equations may be specified in any order.

We identify types of variables differently with dsge than we did with dsgenl. Equation options

that appear within the parentheses indicate which type of variable appears on the left-hand side of the

equation. Equations specified without any options are equations for observed control variables. We add

the unobserved option to specify that a left-hand-side variable is an unobserved control variable. We

use the state option to identify state variables.

In our model, p and r are the observed control variables 𝑝𝑡 and 𝑟𝑡, and their equations are specified

without options. The output gap, 𝑥𝑡, is an unobserved control variable, so we specify the equation for x
using the unobserved option.

u and g are the state variables 𝑢𝑡 and 𝑔𝑡, and option state is included when we type their equations.

Recall that state variables are fixed in the current period, so we specify how they evolve through time

by modeling the one-period lead—hence, the F. on the left-hand side of each state equation. The state

equations specify how the state variable evolves as a function of the current state variables and, possibly,

the control variables.

The shocks 𝜖𝑡 and 𝜉𝑡 enter the system through the state equations of their corresponding variable. By

default, a shock is attached to each state equation. The number of shocks must be the same as the number

of observed control variables in the model.

https://www.stata.com/manuals/dsgeintro1.pdf#dsgeIntro1Remarksandexampleseq4a
https://www.stata.com/manuals/dsgeintro1.pdf#dsgeIntro1Remarksandexampleseq8a
https://www.stata.com/manuals/dsgeintro1.pdf#dsgeIntro1Remarksandexampleseq5a
https://www.stata.com/manuals/dsgeintro1.pdf#dsgeIntro1Remarksandexampleseq4b
https://www.stata.com/manuals/dsgeintro1.pdf#dsgeIntro1Remarksandexampleseq8b
https://www.stata.com/manuals/dsgeintro1.pdf#dsgeIntro1Remarksandexampleseq4b
https://www.stata.com/manuals/dsgeintro1.pdf#dsgeIntro1Remarksandexampleseq8b


Intro 1 — Introduction to DSGEs 8

When we typed

. dsge ... (F.u = {rhou}*u, state) ...

the underlying equation is what we wrote in (7b). If a state variable is treated as deterministic in your

model, then it will not have a shock. For example, capital accumulation is often treated as deterministic.

To include an equation for a state variable without a shock, we would include the noshock option within

the equation.

As with dsgenl, the operator F. can be applied to both state and control variables to denote the

expected future value of a variable. For example, we can type F.x to specify 𝑥𝑡+1. Unlike F. used in

other time-series applications, the value of 𝑥𝑡+1 is not taken from the value of x at time 𝑡 + 1 in your

data. Instead, it is an expectation of the value of x at time 𝑡 + 1 based on your model. dsge interprets

equations with F. operators in the following manner. The equation

. dsge (p = {beta}*F.p + {kappa}*x) ...

is interpreted as

𝐸𝑡 (𝑝𝑡 − 𝛽𝑝𝑡+1 − 𝜅𝑥𝑡) = 0

which is equivalent to (4b) above. In a linear DSGE model, it is immaterial whether the expectation

operator is thought of as applying to a variable, or to an equation, or indeed to the entire system of

equations jointly.

The parameters we want to estimate are bound in curly braces.

For more details on the dsge syntax, see [DSGE] Intro 2.

Parameter estimation and interpretation of linear DSGEs

We estimate the parameters of the model in (4b)–(8b). These equations are much discussed in the

monetary economics literature. Equation (4b) is known as the output-gap Euler equation. Equation (5b)

is known as a New Keynesian Phillips Curve, and the parameter 𝜅 is known as the slope of the Phillips

curve. In NewKeynesian models, prices depend on output, and 𝜅 is a measure of that dependence. Equa-

tion (6a) is known as a Taylor rule, after Taylor (1993). The coefficient on inflation in a Taylor rule is a

commonly discussed parameter. 𝛽 has two roles in the model above. It relates current inflation deviations

to expected future inflation deviations, and it relates interest rate deviations to inflation deviations.

https://www.stata.com/manuals/dsgeintro1.pdf#dsgeIntro1Remarksandexampleseq7b
https://www.stata.com/manuals/dsgeintro1.pdf#dsgeIntro1Remarksandexampleseq4b
https://www.stata.com/manuals/dsgeintro2.pdf#dsgeIntro2
https://www.stata.com/manuals/dsgeintro1.pdf#dsgeIntro1Remarksandexampleseq4b
https://www.stata.com/manuals/dsgeintro1.pdf#dsgeIntro1Remarksandexampleseq8b
https://www.stata.com/manuals/dsgeintro1.pdf#dsgeIntro1Remarksandexampleseq4b
https://www.stata.com/manuals/dsgeintro1.pdf#dsgeIntro1Remarksandexampleseq5b
https://www.stata.com/manuals/dsgeintro1.pdf#dsgeIntro1Remarksandexampleseq6a
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. dsge (p = {beta}*F.p + {kappa}*x)
> (x = F.x - (r - F.p - g), unobserved)
> (r = (1/{beta})*p + u)
> (F.u = {rhou}*u, state)
> (F.g = {rhog}*g, state)
(setting technique to bfgs)
Iteration 0: Log likelihood = -13931.564
Iteration 1: Log likelihood = -1301.5118 (backed up)
Iteration 2: Log likelihood = -1039.6984 (backed up)
Iteration 3: Log likelihood = -905.70867 (backed up)
Iteration 4: Log likelihood = -842.76867 (backed up)
(switching technique to nr)
Iteration 5: Log likelihood = -812.04209 (backed up)
Iteration 6: Log likelihood = -787.29942
Iteration 7: Log likelihood = -777.50219
Iteration 8: Log likelihood = -768.84849
Iteration 9: Log likelihood = -768.13605
Iteration 10: Log likelihood = -768.0951
Iteration 11: Log likelihood = -768.09383
Iteration 12: Log likelihood = -768.09383
DSGE model
Sample: 1954q3 thru 2016q4 Number of obs = 250
Log likelihood = -768.09383

Coefficient Std. err. z P>|z| [95% conf. interval]

/structural
beta .5112878 .0757909 6.75 0.000 .3627403 .6598353

kappa .1696301 .0475493 3.57 0.000 .0764353 .2628249
rhou .6989185 .0449192 15.56 0.000 .6108785 .7869585
rhog .9556407 .0181342 52.70 0.000 .9200984 .9911831

sd(e.u) 2.31759 .2988025 1.731948 2.903232
sd(e.g) .614735 .0973277 .4239761 .8054938

Two of the parameters have structural interpretations. The parameter kappa is the slope of the Phillips
curve. Theory predicts that this parameter will be positive, and indeed our estimate is positive.

The parameter beta is the inverse of the coefficient on inflation in the interest rate equation. We

can obtain an estimate of 1/𝛽, which is interpreted as the degree to which the central bank responds to

movements in inflation, by using nlcom.

. nlcom 1/_b[beta]
_nl_1: 1/_b[beta]

Coefficient Std. err. z P>|z| [95% conf. interval]

_nl_1 1.955846 .2899255 6.75 0.000 1.387602 2.524089

A typical value for 1/𝛽 in the literature is 1.5. Our point estimate is around 2.

Postestimation
Several tools are available to help you analyze your model after you have estimated its parameters.

These tools are available after using either dsgenl or dsge. Below, we continue with the model we fit

using dsge. The results would be the same if you used these commands after dsgenl.

https://www.stata.com/manuals/rnlcom.pdf#rnlcom
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Policy and transition matrices

Thematrix of parameters in the state-space form that specifies how the state variables affect the control

variables is known as the policy matrix. Each policy matrix parameter is the effect of a one-unit shock

to a state variable on a control variable.

We use estat policy to view these results.

. estat policy
Policy matrix

Delta-method
Coefficient std. err. z P>|z| [95% conf. interval]

p
u -.4170858 .0389324 -10.71 0.000 -.4933918 -.3407798
g .8818832 .2330568 3.78 0.000 .4251002 1.338666

x
u -1.580149 .3926325 -4.02 0.000 -2.349694 -.8106032
g 2.658658 .9045254 2.94 0.003 .8858213 4.431496

r
u .1842446 .0567979 3.24 0.001 .0729228 .2955665
g 1.724827 .2210255 7.80 0.000 1.291625 2.158029

Results are listed equation by equation. The first block is the policy equation for inflation p and writes

it as a function of the state variables alone. A unit shock to the state u reduces inflation by an estimated

0.417, and a unit shock to g raises inflation by an estimated 0.882.

The matrix of parameters that specifies the dynamic process for the state variables is known as the

state transition matrix. The state transition equation relates the future values of the state variables to their

values in the current period. Each state transition matrix parameter is the effect of a one-unit shock to a

state variable on its one-period-ahead mean.

. estat transition
Transition matrix of state variables

Delta-method
Coefficient std. err. z P>|z| [95% conf. interval]

F.u
u .6989185 .0449192 15.56 0.000 .6108785 .7869585
g 1.11e-16 . . . . .

F.g
u 0 (omitted)
g .9556407 .0181342 52.70 0.000 .9200984 .9911831

Note: Standard errors reported as missing for constrained transition matrix
values.

Both state variables are modeled as autoregressive processes, so the results in estat transition
repeat the estimates of rhou and rhog from the dsge output. In this case, the other entries in the state

transition matrix are 0 or differ from 0 only because of lack of numerical precision. In more complicated

models, such as those in which a state equation depends on a control variable, the state transition matrix

will contain new information about that state variable.
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Impulse responses

The state-space form allows us to trace the path of a control or state in response to a shock to a state.

This path is known as an impulse–response function (IRF). irf after dsge or dsgenl estimates IRFs, and

it puts the named set of estimates into an .irf file, whose results can be displayed using irf graph or

irf table.

To graph the IRF, we first create the nkirf.irf file and set it as the active .irf file using the irf
set command.

. irf set nkirf.irf
(file nkirf.irf created)
(file nkirf.irf now active)

Next, we use irf create to estimate a complete set of impulse responses based on our dsge com-

mand. A complete set of impulse responses is an impulse to each shock and the response of each state

and control variable to that impulse. For the model in this example, irf create generates an impulse

to e.u and e.g, then stores the response to that impulse on p, x, r, g, and u. The results are stored in the
nkirf.irf file.

. irf create model1
(file nkirf.irf updated)

We now use irf graph to plot the impulse responses. The impulse() and response() options

control which impulse and which responses are chosen. To view the response of p, x, r, and u to a shock

to u, we type

. irf graph irf, impulse(u) response(x p r u) byopts(yrescale)
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The state variable u models movements in the interest rate that occur for reasons other than the feed-

back between inflation and the interest rate. A shock to u is effectively a surprise increase in the interest

rate, and the IRF traces out how this shock causes temporary decreases to inflation (top-left graph) and

to the output gap (bottom-right graph).

https://www.stata.com/manuals/tsirfgraph.pdf#tsirfgraph
https://www.stata.com/manuals/tsirftable.pdf#tsirftable
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Forecasts

The forecast suite of commands produces dynamic forecasts from the fitted model.

We first store the dsge estimation results.

. estimates store dsge_est

We use tsappend() to extend the dataset by 3 years, or 12 quarters.

. tsappend, add(12)

To set up a forecast, we perform three steps. First, we type forecast create to initialize a new fore-

casting model, which we name dsgemodel.

. forecast create dsgemodel
Forecast model dsgemodel started.

Next, we add the estimates from dsge to the forecasting model using forecast estimates.

. forecast estimates dsge_est
Added estimation results from dsge.
Forecast model dsgemodel now contains 2 endogenous variables.

This command adds the estimates stored in dsge est to the model dsgemodel. Finally, we produce
dynamic forecasts beginning in the first quarter of 2017 using forecast solve. The prefix(d1 )
option specifies the d1 prefix that will be given to the variables created by forecast. We also request

that dynamic forecasts begin in the first quarter of 2017 with the begin(tq(2017q1)) option.

. forecast solve, prefix(d1_) begin(tq(2017q1))
Computing dynamic forecasts for model dsgemodel.

Starting period: 2017q1
Ending period: 2020q1
Forecast prefix: d1_
2017q1: ..............
2017q2: ..............
2017q3: ..............
2017q4: ..............
2018q1: ..............
2018q2: .............
2018q3: .............
2018q4: .............
2019q1: .............
2019q2: .............
2019q3: .............
2019q4: .............
2020q1: .............
Forecast 2 variables spanning 13 periods.

The dynamic forecast begins in the first quarter of 2017, so all forecasts are out of sample.
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We can graph the forecast for inflation d1 p using tsline.

. tsline d1_p if tin(2010q1, 2021q1), tline(2017q1)
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The model forecasts that inflation will smoothly return to its long-run value, the sample mean.

We can also begin the forecast during a time period for which observations are available. Specifying

the begin(tq(2014q1)) option produces dynamic forecasts beginning in the first quarter of 2014, so

we can compare the forecast for 2014–2016 with the actual observations over that period.

. forecast solve, prefix(d2_) begin(tq(2014q1))
Computing dynamic forecasts for model dsgemodel.

Starting period: 2014q1
Ending period: 2020q1
Forecast prefix: d2_
2014q1: ..............
2014q2: ..............
2014q3: ..............
2014q4: ..............
2015q1: ..............
2015q2: ..............
2015q3: ..............
2015q4: .............
2016q1: .............
2016q2: .............
2016q3: .............
2016q4: .............
2017q1: .............
2017q2: .............
2017q3: .............
2017q4: .............
2018q1: .............
2018q2: .............
2018q3: .............
2018q4: .............
2019q1: .............
2019q2: .............
2019q3: .............
2019q4: .............
2020q1: .............
Forecast 2 variables spanning 25 periods.



Intro 1 — Introduction to DSGEs 14

We then plot both the observed inflation and the forecast.

. tsline p d2_p if tin(2010q1, 2021q1), tline(2014q1)
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The forecast captures the general upward trend in inflation from 2014–2016, but it does not predict

the variation in inflation around the upward trend.

Structural and reduced forms of DSGE models
Now that we have worked an example, we show how it fits in the more general formulation of DSGE

models. The model in (4a)–(8a) is an example of a nonlinear DSGE model. In general, a nonlinear DSGE

model can be expressed as

𝐸𝑡 {f(x𝑡+1, y𝑡+1, x𝑡, y𝑡,θ)} = 0 (9)

where f is a vector of equations, x𝑡 is a vector of state variables, y𝑡 is a vector of control variables, and

θ denotes the vector of structural parameters. To solve a DSGE model means to write it in state-space

form. In general, the state-space form of a nonlinear DSGE model is nonlinear. dsgenl takes a linear

approximation to the model equations to solve for a linear approximation to the state-space form.

The model in (4b)–(8b) is an example of a linearized DSGE model. In general, a linearized DSGE

model can be expressed as

A0y𝑡 = A1𝐸𝑡(y𝑡+1) + A2y𝑡 + A3x𝑡 (10)

B0x𝑡+1 = B1𝐸𝑡(y𝑡+1) + B2y𝑡 + B3x𝑡 + Cε𝑡+1 (11)

where as before y𝑡 is a vector of control variables, x𝑡 is a vector of state variables, and ε𝑡 is a vector of

shocks. A0 through A3 and B0 through B3 are matrices of parameters. We require that A0 and B0 be

diagonal matrices. The entries in all of these matrices are functions of the structural parameters, which

we denote by vector θ. Economic theory places restrictions on the entries in the matrices. C is a selection

matrix that determines which state variables are subject to shocks.

https://www.stata.com/manuals/dsgeintro1.pdf#dsgeIntro1Remarksandexampleseq4a
https://www.stata.com/manuals/dsgeintro1.pdf#dsgeIntro1Remarksandexampleseq8a
https://www.stata.com/manuals/dsgeintro1.pdf#dsgeIntro1Remarksandexampleseq4b
https://www.stata.com/manuals/dsgeintro1.pdf#dsgeIntro1Remarksandexampleseq8b
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The reduced form of a DSGE model expresses the control variables as functions of the state variables

alone and specifies how state variables evolve over time. The reduced form is a state-space model. The

state-space form of the model is given by

y𝑡 = Gx𝑡 (12)

x𝑡+1 = Hx𝑡 +Mε𝑡+1 (13)

where y𝑡 is a vector of control variables, x𝑡 is a vector of state variables, and ε𝑡 is a vector of shocks. G is

the policy matrix, andH is the state transition matrix. M is diagonal and contains the standard deviations

of the shocks.

y𝑡 is partitioned into observed and unobserved controls, y𝑡 = (y1,𝑡, y2,𝑡). The observed control

variables are related to the control variables by the equation

y1,𝑡 = Dy𝑡

where D is a selection matrix. Only observed control variables play a role in estimation. The number of

observed control variables must be the same as the number of state equations that include shocks.

You specify a model of the form (9) to dsgenl and a model of the form (10)–(11) to dsge. Many

models require some manipulation to fit into the structure in (9) and (10); see [DSGE] Intro 4 for details.

Postestimation commands estat policy and estat transition will display the policy and transition

matrices in (12) and (13), respectively.
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