
rename group — Rename groups of variables

Description Quick start
Menu Syntax
Options for renaming variables Options for changing the case of groups of variable names
Remarks and examples Stored results
Also see

Description
rename changes the names of existing variables to the new names specified. See [D] rename for the

base rename syntax. Documented here is the advanced syntax for renaming groups of variables.

Quick start
Change the name of v1 to var1 and v2 to var2

rename (v1 v2) (var1 var2)

Change the name of V1 to v1 and V2 to v2
rename V1 V2, lower

Add suffix old to variables v1, v2, . . . for one or more digits
rename v# =old

Remove suffix old from all variables ending in old
rename *old *

Remove prefix old from all variables beginning with old
rename old* *

Note: A complete list of rules for renaming groups of variables appears below the syntax diagram.

Menu
Data > Data utilities > Rename groups of variables

1

https://www.stata.com/manuals/drename.pdf#drename

rename group — Rename groups of variables 2

Syntax
Rename a single variable

rename old new [, options1]

Rename groups of variables

rename (old1 old2 . . .) (new1 new2 . . .) [, options1]

Change the case of groups of variable names

rename old1 old2 . . ., { upper | lower | proper } [options2]

where old and new specify the existing and the new variable names. The rules for specifying them are

1. rename stat status: Renames stat to status.

Rule 1: This is the same rename command documented in [D] rename, with which you

are familiar.

2. rename (stat inc) (status income): Renames stat to status and inc to income.

Rule 2: Use parentheses to specify multiple variables for old and new.

3. rename (v1 v2) (v2 v1): Swaps v1 and v2.

Rule 3: Variable names may be interchanged.

4. rename (a b c) (b c a): Swaps names. Renames a to b, b to c, and c to a.

Rule 4: There is no limit to how many names may be interchanged.

5. rename (a b c) (c b a): Renames a to c and c to a, but leaves b as is.

Rule 5: Renaming variables to themselves is allowed.

6. rename jan* *1: Renames all variables starting with jan to instead end with 1, for example,
janstat to stat1, janinc to inc1, etc.

Rule 6.1: * in old selects the variables to be renamed. * means that zero or more characters
go here.

Rule 6.2: * in new corresponds with * in old and stands for the text that * in old matched.

* in new or old is called a wildcard character, or just a wildcard.

rename jan* *: Removes prefix jan.

rename *jan *: Removes suffix jan.

7. rename jan? ?1: Renames all variables starting with jan and ending in one character by re-

moving jan and adding 1 to the end; for example, jans is renamed to s1, but janstat remains
unchanged. ? means that exactly one character goes here, just as * means that zero or more

characters go here.

Rule 7: ? means exactly one character, ?? means exactly two characters, etc.

https://www.stata.com/manuals/drenamegroup.pdf#drenamegroupSyntaxoptions1
https://www.stata.com/manuals/drenamegroup.pdf#drenamegroupSyntaxoptions1
https://www.stata.com/manuals/drenamegroup.pdf#drenamegroupSyntaxoptions2
https://www.stata.com/manuals/drename.pdf#drename

rename group — Rename groups of variables 3

8. rename *jan* **: Removes prefix, midfix, and suffix jan, for example, janstat to stat,
injanstat to instat, and subjan to sub.

Rule 8: You may specify more than one wildcard in old and in new. They correspond in

the order given.

rename jan*s* *s*1: Renames all variables that start with jan and contain s to instead end

in 1, dropping the jan, for example, janstat to stat1 and janest to est1, but not janinc
to inc1.

9. rename *jan* *: Removes jan and whatever follows from variable names, thereby renaming

statjan to stat, incjan71 to inc,

Rule 9: You may specify more wildcards in old than in new.

10. rename *jan* .*: Removes jan and whatever precedes it from variable names, thereby re-

naming midjaninc to inc,

Rule 10: Wildcard . (dot) in new skips over the corresponding wildcard in old.

11. rename *pop jan=: Adds prefix jan to all variables ending in pop, for example, age1pop to

janage1pop,

rename (status bp time) admit=: Renames status to admitstatus, bp to admitbp, and
time to admittime.

rename whatever pre=: Adds prefix pre to all variables selected by whatever, however what-

ever is specified.

Rule 11: Wildcard = in new specifies the original variable name.

rename whatever =jan: Adds suffix jan to all variables selected by whatever.

rename whatever pre=fix: Adds prefix pre and suffix fix to all variables selected by what-

ever.

12. rename v# stat#: Renames v1 to stat1, v2 to stat2, . . . , v10 to stat10,

Rule 12.1: # is like * but for digits. # in old selects one or more digits.

Rule 12.2: # in new copies the digits just as they appear in the corresponding old.

13. rename v(#) stat(#): Renames v1 to stat1, v2 to stat2, . . . , but does not rename v10,

Rule 13.1: (#) in old selects exactly one digit. Similarly, (##) selects exactly two digits,

and so on, up to ten # symbols.

Rule 13.2: (#) in new means reformat to one or more digits. Similarly, (##) reformats to

two or more digits, and so on, up to ten # symbols.

rename v(##) stat(##): Renames v01 to stat01, v02 to stat02, . . . , v10 to stat10, . . . ,
but does not rename v0, v1, v2, . . . , v9, v100,

rename group — Rename groups of variables 4

14. rename v# v(##): Renames v1 to v01, v2 to v02, . . . , v10 to v10, v11 to v11, . . . , v100 to

v100, v101 to v101,

Rule 14: You may combine #, (#), (##), . . . in old with any of #, (#), (##), . . . in new.

rename v(##) v(#): Renames v01 to v1, v02 to v2, . . . , v10 to v10, . . . , but does not rename
v001, etc.

rename stat(##) stat 20(##): Renames stat10 to stat 2010, stat11 to stat 2011,
. . . , but does not rename stat1, stat2,

rename stat(#) to stat 200(#): Renames stat1 to stat 2001, stat2 to stat 2002,
. . . , but does not rename stat10 or stat 2010.

15. rename v# (a b c): Renames v1 to a, v10 to b, and v2 to c if variables v1, v10, v2 appear

in that order in the data. Because three variables were specified in new, v# in old must select

three variables or rename will issue an error.

Rule 15.1: You may mix syntaxes. Note that the explicit and implied numbers of variables

must agree.

rename v# (a b c), sort: Renames (for instance) v1 to a, v2 to b, and v10 to c.

Rule 15.2: The sort option places the variables selected by old in order and does so smartly.

In the case where #, (#), (##), . . . appear in old, sort places the variables in

numeric order.

rename v* (a b c), sort: Renames (for instance) valpha to a, vbeta to b, and vgamma to
c regardless of the order of the variables in the data.

Rule 15.3: In the case where * or ? appears in old, sort places the variables in alphabetical
order.

16. rename v# v#, renumber: Renames (for instance) v9 to v1, v10 to v2, v8 to v3, . . . , assuming
that variables v9, v10, v8, . . . appear in that order in the data.

Rule 16.1: The renumber option resequences the numbers.

rename v# v#, renumber sort: Renames (for instance) v8 to v1, v9 to v2, v10 to v3,
Concerning option sort, see rule 15.2 above.

rename v# v#, renumber(10) sort: Renames (for instance) v8 to v10, v9 to v11, v10 to

v12,

Rule 16.2: The renumber(#) option allows you to specify the starting value.

17. rename v* v#, renumber: Renames (for instance) valpha to v1, vgamma to v2, vbeta to v3,
. . . , assuming variables valpha, vgamma, vbeta, . . . appear in that order in the data.

Rule 17: # in new may correspond to *, ?, #, (#), (##), . . . in old.

rename v* v#, renumber sort: Renames (for instance) valpha to v1, vbeta to v2, vgamma
to v3, Also see rule 15.3 above concerning the sort option.

rename *stat stat#, renumber: Renames, for instance, janstat to stat1, febstat to

stat2, Note that # in new corresponds to * in old, just as in the previous example.

rename *stat stat(##), renumber: Renames, for instance, janstat to stat01, febstat
to stat02,

https://www.stata.com/manuals/drenamegroup.pdf#drenamegroupSyntaxitem15
https://www.stata.com/manuals/drenamegroup.pdf#drenamegroupSyntaxitem15

rename group — Rename groups of variables 5

rename *stat stat#, renumber(0): Renames, for instance, janstat to stat0, febstat to
stat1,

rename *stat stat#, renumber sort: Renames, for instance, aprstat to stat1, augstat
to stat2,

18. rename (a b c) v#, addnumber: Renames a to v1, b to v2, and c to v3.

Rule 18: The addnumber option allows you to add numbering. More formally, if you spec-

ify addnumber, you may specify one more wildcard in new than is specified in

old, and that extra wildcard must be #, (#), (##),

19. rename a(#)(#) a(#)[2](#)[1]: Renames a12 to a21, a13 to a31, a14 to a41, . . . , a21 to

a12,

Rule 19.1: You may specify explicit subscripts with wildcards in new to make explicit its

matching wildcard in old. Subscripts are specified in square brackets after a wild-

card in new. The number refers to the number of the wildcard in old.

rename *stat* *[2]stat*[1]: Swaps prefixes and suffixes; it renames bpstata to

astatbp, rstater to erstatr, etc.

rename *stat* *[2]stat*: Does the same as above; it swaps prefixes and suffixes.

Rule 19.2: After specifying a subscripted wildcard, subsequent unsubscripted wildcards cor-

respond to the same wildcards in old as they would if you had removed the sub-

scripted wildcards altogether.

rename v#a# v# #[1] a#[2]: Renames v1a1 to v1 1 a1, v1a2 to v1 1 a2, . . . , v2a1 to

v2 2 a1,

Rule 19.3: Using subscripts, you may refer to the same wildcard in old more than once.

Subscripts are commonly used to interchange suffixes at the ends of variable names. For in-

stance, you have districts and schools within them, and many of the variable names in your data

match * # #. The first number records district and the second records school within district.
To reverse the ordering, you type rename * # # * #[3] #[2]. When specifying subscripts,

you refer to them by the position number in the original name. For example, our original name

was * # # so [1] refers to *, [2] refers to the first #, and [3] refers to the last #.

Specifier Meaning in old

* 0 or more characters

? 1 character exactly

1 or more digits

(#) 1 digit exactly

(##) 2 digits exactly

(###) 3 digits exactly

. . .

(##########) 10 digits exactly

rename group — Rename groups of variables 6

May correspond

Specifier in old with Meaning in new

* *, ?, #, (#), . . . copies matched text

? ? copies a character

#, (#), . . . copies a number as is

(#) #, (#), . . . reformats to 1 or more digits

(##) #, (#), . . . reformats to 2 or more digits

. . .

(##########) #, (#), . . . reformats to 10 digits

. *, ?, #, (#), . . . skip

= nothing copies entire variable name

Specifier # in any of its guises may also correspond with * or ? if the renumber option is specified.

options1 Description

addnumber add sequential numbering to end

addnumber(#) addnumber, starting at #
renumber renumber sequentially

renumber(#) renumber, starting at #
sort sort before numbering

dryrun do not rename, but instead produce a report

r store variable names in r() for programming use

These options correspond to the first and second syntaxes.

options2 Description

upper uppercase ASCII letters in variable names (UPPERCASE)

lower lowercase ASCII letters in variable names (lowercase)

proper propercase ASCII letters in variable names (Propercase)

dryrun do not rename, but instead produce a report

r store variable names in r() for programming use

These options correspond to the third syntax. One of upper, lower, or proper must be specified.

Options for renaming variables
addnumber and addnumber(#) specify to add a sequence number to the variable names. See item 18 of

Syntax. If # is not specified, the sequence number begins with 1.

renumber and renumber(#) specify to replace existing numbers or text in a set of variable names with
a sequence number. See items 16 and 17 of Syntax. If # is not specified, the sequence number begins

with 1.

sort specifies that the existing names be placed in order before the renaming is performed. See item 15

of Syntax for details. This ordering matters only when addnumber or renumber is also specified or

when specifying a list of variable names for old or new.

dryrun specifies that the requested renaming not be performed but instead that a table be displayed

showing the old and new variable names. It is often a good idea to specify this option before actually

renaming the variables.

https://www.stata.com/manuals/drenamegroup.pdf#drenamegroupSyntaxitem18
https://www.stata.com/manuals/drenamegroup.pdf#drenamegroupSyntaxitem16
https://www.stata.com/manuals/drenamegroup.pdf#drenamegroupSyntaxitem17
https://www.stata.com/manuals/drenamegroup.pdf#drenamegroupSyntaxitem15

rename group — Rename groups of variables 7

r is a programmer’s option that requests that old and new variable names be stored in r(). This option
may be specified with or without dryrun.

Options for changing the case of groups of variable names
upper, lower, and proper specify how the variables are to be renamed. upper specifies that ASCII

letters in variable names be changed to uppercase; lower, to lowercase; and proper, to having the

first ASCII letter capitalized and the remaining ASCII letters in lowercase. One of these three options

must be specified. Note that these options do not handle Unicode characters beyond the plain ASCII

range. To change Unicode characters in the variable names to uppercase, lowercase, or titlecase, use

functions ustrupper(), ustrlower(), and ustrtitle(). See the technical note in Remarks and

examples.

dryrun and r are the same options as documented directly above.

Remarks and examples
Remarks are presented under the following headings:

Advice
Explanation
* matches 0 or more characters; use ?* to match 1 or more
* is greedy
is greedier

Advice
1. Read [D] rename before reading this entry.

2. Read items 1–19 (the Rules) under Syntax above before reading the rest of these remarks.

3. Specify the dryrun option when using complicated patterns. dryrun presents a table of the

old and new variable names rather than actually renaming the variables, so you can check that

the patterns you have specified produce the desired result.

Explanation
The rename command has three syntaxes; see Syntax. See [D] rename for details on the first syntax,

renaming a single variable. The remaining two syntaxes are for renaming groups of variables and for

changing the case of groups of variables. These two syntaxes are the ones we will focus on for the

remainder of this manual entry. Here they are again:

rename (old1 old2 . . .) (new1 new2 . . .)

rename old1 old2 . . ., { upper | lower | proper }

The second syntax shown above merely changes the case of variables, such as MPG or mpg or Mpg. For
instance, to rename all variables to be lowercase, type

rename *, lower

https://www.stata.com/manuals/uglossary.pdf#uGlossaryplainascii
https://www.stata.com/manuals/fnstringfunctions.pdf#fnStringfunctionsustrupper()
https://www.stata.com/manuals/fnstringfunctions.pdf#fnStringfunctionsustrlower()
https://www.stata.com/manuals/fnstringfunctions.pdf#fnStringfunctionsustrtitle()
https://www.stata.com/manuals/drenamegroup.pdf#drenamegroupRemarksandexamplestechnote
https://www.stata.com/manuals/drenamegroup.pdf#drenamegroupOptionsforrenamingvariablesdryrun
https://www.stata.com/manuals/drename.pdf#drename
https://www.stata.com/manuals/drenamegroup.pdf#drenamegroupSyntaxitem1
https://www.stata.com/manuals/drenamegroup.pdf#drenamegroupSyntax
https://www.stata.com/manuals/drename.pdf#drename

rename group — Rename groups of variables 8

The first syntax shown above is more daunting and more powerful. The first syntax has two styles,

with and without parentheses:

rename (bp 0 bp 1) (bp 1 bp 0)

rename pop*80 pop * 1980

You can combine the two styles whenever it is convenient.

rename v* (mpg weight displacement)

rename (mpg weight displacement) v#, addnumber

rename (bp 0 bp 1 pop*80) (bp 1 bp 0 pop * 1980)

We summarize all of this by simply writing the syntax as

rename old new, ...

and referring to old and new.

Wildcards play different but related roles in old and new. When you type

rename pop*80 pop * 1980

the wildcard (* in this case) in old specifies which variables are to be renamed, and in new the wildcard

stands for the text that appears in the variables to be renamed. In this case, there is just one wildcard, but

sometimes there are more.

In old, * means zero or more characters go here. Specifying pop*80 means find all variables that

begin with pop and end in 80. Say that doing so results in three variables being found: poplt2080,
pop204080, and pop41plus80. To understand how * is interpreted in new, it is useful to write the three

found variables like this:

pop*80 = pop + * + 80
poplt2080 = pop + lt20 + 80
pop204080 = pop + 2040 + 80

pop41plus80 = pop + 41plus + 80

* in new refers to what was found by * in old. So the new pattern pop * 1980 will assemble the

following new variable names for each of the old names:

old variable * is → pop * 1980 is
poplt2080 lt20 → pop lt20 1980
pop204080 2040 → pop 2040 1980

pop41plus80 41plus → pop 41plus 1980

Thus typing rename pop*80 pop * 1980 is equivalent to typing

rename poplt2080 pop_lt20_1980

rename pop204080 pop_2040_1980

rename pop41plus80 pop_41plus_1980

rename group — Rename groups of variables 9

There are three basic wildcard characters for specification in old, and they filter the variables to be

renamed:

* 0 or more characters go here

? exactly 1 character goes here

number goes here (this one comes in 11 flavors!)

The generic # listed above collects all the digits. The other 10 flavors are (#), which means exactly
1 digit goes here; (##), which means exactly 2 digits go here; and so on, up to exactly 10 digits go here.

All the above, the 3+ 10 = 13 wildcard characters, can appear in new, where each has a different but

related meaning:

* copy corresponding text from old as is

? copy corresponding character from old

copy corresponding number from old as is

(#) reformat corresponding number from old to 1 or more digits

(##) reformat corresponding number from old to 2 or more digits

. . .

In addition, new allows two special wildcard characters of its own:

= copy the entire original variable name

. skip the corresponding text in old

With the above information and the definitions of the options, you can derive on your own the first

eighteen rules given in Syntax. The nineteenth rule concerns subscripting. In new, you can specify

explicitly to which wildcard in old you are referring. You can type

rename pop*80 pop_*_1980

or you can type

rename pop*80 pop_*[1]_1980

thus making it explicit that the * in new is referring to the text matched by the first wildcard in old. That

* corresponds to * is hardly surprising, especially when there is only one * in old, so let’s complicate the

example:

rename v*_* outcome_*_*

You can type that command, or you can type

rename v*_* outcome_*[1]_*[2]

More importantly, you can specify the subscripts in whatever order you wish, so you could type

rename v*_* outcome_*[2]_*[1]

That command would interchange the text in old matched by the two wildcards.

rename group — Rename groups of variables 10

* matches 0 or more characters; use ?* to match 1 or more
l*a in old matches louisiana and it matches la because * means zero or more characters. What if

you want to match louisiana and lymphoma but not la?

For instance, say you have from–to variables named from*to* and from variables named from*.
The problem is that variable fromtoledo would match from*to*. To avoid that, rather than describing
the from–to pattern from*to*, you use from?*to?*. Thus you could type

rename from?*to?* from_?*_to_?*

?* is not a secret wildcard we have yet to tell you about—it is merely the two wildcards ? and * in

sequence. ? means exactly one character goes here, and * means zero or more characters go here, so ?*
means one or more characters go here. In the same way, ??* means two or more characters go here, and
so on.

* is greedy
Consider the existing variable assessment and pattern *s* in old. Clearly, *s* matches

assessment, but how? That is, among these possibilities,

assessment = * s *

a + s + sessment
as + s + essment
asse + s + sment
asses + s + ment

which one is true? We need to know the answer to know what each of the corresponding wildcards in

new will mean. The answer is that * is greedy, and the pattern is matched from left to right. As we move

through the variable name from left to right, at each step * takes the most characters possible, subject to
the pattern working out.

* s *

assessment = asses + s + ment

Thus the first * in new would stand for asses and the second would stand for ment.

The “subject to the pattern working out” part is important. Variable sunglasses would be broken

out by *s* as
* s *

sunglasses = sunglasse + s + nothing

But by *s?*, the breakout would be

* s ? *

sunglasses = sunglas + s + e + s

is greedier
Wildcard # in old is greedier than *, which means that when * and # are up against each other, #wins.

rename group — Rename groups of variables 11

Consider the pattern *# and the variable name v1234. Given that * is greedy and that the # specifies
one or more digits, the possible solutions are

v1234 = * #

v123 + 4
v12 + 34
v1 + 234
v + 1234

The solution chosen by rename is the last one, v + 1234. Thus you can type

rename *# period_#[2]

without concern that some digits might be lost.

Technical note
You cannot directly use functions ustrupper(), ustrlower(), and ustrtitle() in your rename

command. You must first create a local macro with the new variable name and then use that macro in

your rename command. For example,

. local new = ustrlower(Ubicación)

. rename Ubicación ‘new’

You can use multiple local macros in a varlist. For example,

. local new1 = ustrlower(Ubicación1)

. local new2 = ustrlower(Ubicación2)

. rename (Ubicación1 Ubicación2) (‘new1’ ‘new2’)

For more information about local macros, see [U] 18.3.1 Local macros.

Stored results
rename stores nothing in r() by default. If the r option is specified, then rename stores the following

in r():

Scalars

r(n) number of variables to be renamed

Macros

r(oldnames) original variable names

r(newnames) new variable names

Variables that are renamed to themselves are omitted from the recorded lists.

Also see
[D] rename — Rename variable

[D] generate — Create or change contents of variable

[D] varmanage — Manage variable labels, formats, and other properties

https://www.stata.com/manuals/fnstringfunctions.pdf#fnStringfunctionsustrupper()
https://www.stata.com/manuals/fnstringfunctions.pdf#fnStringfunctionsustrlower()
https://www.stata.com/manuals/fnstringfunctions.pdf#fnStringfunctionsustrtitle()
https://www.stata.com/manuals/u18.pdf#u18.3.1Localmacros
https://www.stata.com/manuals/drename.pdf#drename
https://www.stata.com/manuals/dgenerate.pdf#dgenerate
https://www.stata.com/manuals/dvarmanage.pdf#dvarmanage

rename group — Rename groups of variables 12

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

