
jdbc — Load, write, or view data from a database with a Java API

Description Quick start Syntax Options Remarks and examples
Stored results References Also see

Description
jdbc allows you to load data from a database, execute SQL statements on a database, and insert data

into a database using Java Database Connectivity (JDBC). JDBC is an application programming interface

(API) for the programming language Java and defines how a client (Stata) can access a database. jdbc is
oriented toward relational databases or nonrelational database-management systems that have rectangular

data. NoSQL databases will not work with jdbc.

jdbc connect stores all database connection settings for subsequent jdbc commands.

jdbc add stores database connection settings as a data source name for a Stata session.

jdbc remove removes a stored data source name for a Stata session.

jdbc list displays all stored data source names for a Stata session.

jdbc showdbs produces a list of all databases for a given URL.

jdbc showtables retrieves a list of table names available from a specified database.

jdbc describe lists column names and data types associated with a specified table.

jdbc load reads a database table into Stata’s memory. You can load a table specified in the table()
option or load an ODBC table generated by an SQL SELECT statement specified in the exec() option.

jdbc insert writes data from memory to a database table. The data can be appended to an existing

table or replace an existing table.

jdbc exec allows for most SQL statements to be issued directly to any database. Statements that

produce output, such as SELECT, have their output neatly displayed. By using Stata’s ado-language, you

can also generate SQL commands on the fly to do positional updates or whatever the situation requires.

Quick start
Store connection settings to database myDB

jdbc connect, jar(”mysql-connector-java-5.1.49.jar”) ///
driverclass(”com.mysql.jdbc.Driver”) ///
url(”jdbc:mysql://https://www.stata.com/myDB:3306”) ///
user(”stata”) password(”stata”)

List available table names in database myDB
jdbc showtables

Describe the column names and data types in table MyTable from myDB
jdbc describe ”MyTable”

Load MyTable into memory from myDB
jdbc load, table(”MyTable”)

1

jdbc — Load, write, or view data from a database with a Java API 2

Syntax
Store JDBC connection settings for all jdbc commands

jdbc connect {DataSourceName | , connect options }

Add JDBC connection settings as a data source name for the current Stata session

jdbc add DataSourceName, connect options

Remove JDBC connection settings and data source name for the current Stata session

jdbc remove {DataSourceName | all }

List stored data source names and URLs for the current Stata session

jdbc list

List all databases for a given connection

jdbc showdbs

Retrieve available table names from specified data source

jdbc showtables [”SearchString”]

List column names and data types associated with specified table

jdbc describe ”TableName”

Import data from a database

jdbc load, { table(”TableName”) | exec(”SqlStmtList”) } [load options]

Export data to a database

jdbc insert [varlist] [if] [in], table(”TableName”) [insert options]

Allow SQL statements to be issued directly to a database

jdbc exec ”SqlStmtList”

DataSourceName is a name used to store connection settings.

SearchString is a database table name search string; SQL wildcard characters like % and are allowed.

TableName is the name of a table in the database.

SqlStmtList may be one valid SQL statement or a list of SQL statements separated by semicolons.

https://www.stata.com/manuals/djdbc.pdf#djdbcSyntaxconnect_options
https://www.stata.com/manuals/djdbc.pdf#djdbcSyntaxconnect_options
https://www.stata.com/manuals/djdbc.pdf#djdbcSyntaxload_options
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/djdbc.pdf#djdbcSyntaxinsert_options

jdbc — Load, write, or view data from a database with a Java API 3

connect options Description

∗ jar(”JarFileName”) JAR file name of JDBC driver
∗ jarpath(”DirectoryName”) directory where the driver JAR file is stored along with driver

dependencies
∗ driverclass(”ClassName”) Java class name for JDBC driver
∗ url(”URL”) database URL
∗ user(”UserID”) user ID of user establishing connection
∗ password(”Password”) password of user establishing connection

connprop(”ConnectionProperty”) driver-specific connection property

clear clear current connection settings from memory;
available only with jdbc connect

∗Either jar(”JarFileName”) or jarpath(”DirectoryName”) and driverclass(”ClassName”), url(”URL”),
user(”UserID”), and password(”Password”) are required with jdbc add. These options are also required with jdbc
connect when DataSourceName is not specified.

load options Description

∗ table(”TableName”) name of table stored in the database
∗ exec(”SqlStmtList”) SQL SELECT statements to generate a table to be read into Stata

rows(#) fetch # result set rows from database; default is rows(10)
clear replace data in memory

case(lower | upper | preserve) import variable names as lowercase or uppercase; the default
is to preserve the case

∗Either table(”TableName”) or exec(”SqlStmtList”) must be specified.

insert options Description

∗ table(”TableName”) name of table stored in the database

rows(#) build memory result set with # of rows; default is rows(1)
overwrite clear data in table before data in memory are written to the

table

∗table(”TableName”) is required.

JarFileName is the name of the JDBC driver JAR file.

ClassName is the Java class name stored in the JDBC driver JAR file.

URL is the database URL.

UserID is the user ID.

Password is the user’s password.

Options
Options are presented under the following headings:

Options for jdbc connect and jdbc add
Options for jdbc load
Options for jdbc insert

jdbc — Load, write, or view data from a database with a Java API 4

Options for jdbc connect and jdbc add
jar(”JarFileName”) specifies the JDBC driver JAR file installed along your ado-path. Either jar() or

jarpath() is required with jdbc add. Also, if DataSourceName is not specified, either jar() or

jarpath() is required with jdbc connect for jdbc showdbs, jdbc showtables, jdbc describe,
jdbc load, jdbc insert, and jdbc exec to work. jar() may not be combined with jarpath().

jarpath(”DirectoryName”) specifies the directory where the JDBC driver JAR files are installed along

your ado-path. Either jarpath() or jar() is required with jdbc add. Also, if DataSourceName is
not specified, either jarpath() or jar() is required with jdbc connect for jdbc showdbs, jdbc
showtables, jdbc describe, jdbc load, jdbc insert, and jdbc exec to work. jarpath() may
not be combined with jar().

driverclass(”ClassName”) specifies the Java class name stored in the JDBC driver JAR file installed

along your ado-path. driverclass() is required with jdbc add. Also, if DataSourceName is not
specified, driverclass() is required with jdbc connect for jdbc showdbs, jdbc showtables,
jdbc describe, jdbc load, jdbc insert, and jdbc exec to work.

url(”URL”) specifies the URL to the database the user is attempting to establish the connection to.

url() is required with jdbc add. Also, if DataSourceName is not specified, url() is required with
jdbc connect for jdbc showdbs, jdbc showtables, jdbc describe, jdbc load, jdbc insert,
and jdbc exec to work. The driver URL syntax is as follows:

jdbc:Database type://Host:Port/Database name?connection properties

user(”UserID”) specifies the user ID of the user attempting to establish the connection to a database.

user() is required with jdbc add. Also, ifDataSourceName is not specified, user() is required with
jdbc connect for jdbc showdbs, jdbc showtables, jdbc describe, jdbc load, jdbc insert,
and jdbc exec to work.

password(”Password”) specifies the password of the user attempting to establish the connection

to a database. password() is required with jdbc add. Also, if DataSourceName is not spec-

ified, password() is required with jdbc connect for jdbc showdbs, jdbc showtables, jdbc
describe, jdbc load, jdbc insert, and jdbc exec to work.

connprop(”ConnectionProperty”) specifies the driver-specific connection properties. A connection

property is a key value pair that is separated by a colon and delimited by a semicolon. For example,

jdbc connect, ... connprop(”characterEncoding:ISO‑8859-1;”)

These properties can also be set in the url() option.

clear clears the current connection settings from memory. This option may only be specified with jdbc
connect and may not be combined with any other connect options.

Options for jdbc load
table(”TableName”) specifies the name of the table stored in a specified database. Either the table()

option or the exec() option—but not both—is required with the jdbc load command.

https://www.stata.com/manuals/psysdir.pdf#psysdir
https://www.stata.com/manuals/psysdir.pdf#psysdir

jdbc — Load, write, or view data from a database with a Java API 5

exec(”SqlStmtList”) allows you to issue an SQL SELECT statement to generate a table to be read into

Stata. Multiple SQL statements can be issued, with the last SQL statement being a SELECT. Each

statement should be delimited by a semicolon. For example,

local sql ///
”CREATE TEMPORARY TABLE t(a INT, b INT); INSERT INTO t VALUES (1,2); ///
SELECT * FROM t;”

jdbc load, exec(”‘sql’”)

An error message is returned if the SQL statements are invalid SQL. Either the table() option or the
exec() option—but not both—is required with the jdbc load command.

rows(#) specifies the number of rows to be fetched from the database result set for each network call.

This option may help improve command performance. The default is rows(10). Some drivers do
not support this feature. Note that setting rows() to a large number might require you to change the
amount of heap memory allocated for the JVM with the java set heapmax command.

clear permits the data to be loaded, even if there are data already in memory, and even if that data have
changed since the data were last saved.

case(lower | upper | preserve) specifies the case of the variable names after loading. The default is

case(preserve).

Options for jdbc insert
table(”TableName”) specifies the name of the table stored in a specified database.

rows(#) specifies the number of result set rows to be sent to the database for each network call. This

option may help improve command performance. The default result set size is 1. This option does

not work with datasets that contain strLs. Some drivers do not support this feature. Note that setting
the rows(#) to a large number might require you to change the amount of heap memory allocated for
the JVM with the java set heapmax command.

overwrite allows data to be dropped from a database table before the Stata data in memory are written

to the table. All data from the table are erased, not just the data from the variable columns that will

be replaced.

Remarks and examples
jdbc allows you to connect to, load data from, insert data into, and execute queries on a database

using JDBC. First, you specify the connection settings with jdbc connect, including the URL for the

database you are connecting to and your user ID and password. Thereafter, you can use jdbc showdbs,
jdbc showtables, jdbc describe, jdbc load, jdbc insert, and jdbc exec. These commands al-
low you to execute statements on a database and load data to and from Stata; they will use the connection

information you specified with jdbc connect to open a connection and perform the specified task.

If you will be connecting to multiple databases frequently, you can store the connection settings for

each database under a data source name with jdbc add. Then, whenever you wish to connect to a

database, simply use jdbc connect, and specify the data source name. This avoids having to specify all
the connection information every time you wish to connect to a different database.

https://www.stata.com/manuals/pjavautilities.pdf#pJavautilities
https://www.stata.com/manuals/pjavautilities.pdf#pJavautilities

jdbc — Load, write, or view data from a database with a Java API 6

Remarks are presented under the following headings:

JDBC drivers
Connecting to a database
Data source names
Exploring a database
Loading data from a database
Inserting data into a database
Executing SQL on a database

JDBC drivers
To use jdbc, you must first download and install your database vendor JDBC driver JAR file. To see

information on Stata’s current JDBC implementation, click here.

Once you have downloaded the appropriate driver, you must install the driver along Stata’s ado-path.

If the file is compressed, you can use Stata’s unzipfilewith the downloaded file to extract the .jar file.
Once extracted, place the .jar file along your ado-path so Stata can add it to the Java virtual machine

(JVM) class-path. You can use java query to check to see whether Stata has loaded your driver along

the JVM class-path.

Most users should place the .jar files in the PERSONAL directory or the current working directory.

System administrators may wish to place them in the SITE directory if they have a network installation
and want to make them available to all users.

Connecting to a database
jdbc connect stores all database connection settings for commands jdbc showdbs, jdbc showtables,

jdbc describe, jdbc load, jdbc insert, and jdbc exec. Options jar(), driverclass(), url(),
user(), and password() are required, unless you have already saved that information under a data

source name and you are specifying that DataSourceName with jdbc connect.

If you try to use these commands before setting your connection properties, you will receive the

following error message:

. jdbc showtables
Connection failed
JDBC driver class not found
r(681);

Technical note
Storing your database name, user ID, and password in a Stata do-file, ado-file, or log file can be a

security risk. Your database vendor might have software called a wallet that can store this information

securely on your machine.

Example 1: Creating a connection
Below, we create a connection string for the JDBC driver in Stata:

. jdbc connect, jar(”mysql-connector-java-8.0.22.jar”)
> driverclass(”com.mysql.cj.jdbc.Driver”)
> url(”jdbc:mysql://localhost:3306/myDB”)
> user(”stata”) password(”stata_pass”)

https://www.stata.com/support/faqs/data-management/configuring-jdbc/
https://www.stata.com/manuals/psysdir.pdf#psysdir
https://www.stata.com/manuals/dzipfile.pdf#dzipfile
https://www.stata.com/manuals/pjavautilities.pdf#pJavautilities
https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(681)

jdbc — Load, write, or view data from a database with a Java API 7

Going forward, when we issue the jdbc showdbs, jdbc showtables, jdbc describe, jdbc load,
jdbc insert, or jdbc exec command, each will use this information to connect to the database myDB.

Example 2: Using macros
You can also use macros to make your do-file more readable and easier to change database settings.

. local jar ”mysql-connector-java-8.0.22.jar”

. local driverclass ”com.mysql.cj.jdbc.Driver”

. local url ”jdbc:mysql://localhost:3306/myDB”

. local user ”stata”

. local pass ”stata_pass”

. jdbc connect, jar(”‘jar’”) driverclass(”‘driverclass’”)
> url(”‘url’”) user(”‘user’”) password(”‘pass’”)

Data source names
If you would like to have database connection settings stored and ready for jdbc to use every time

you start a Stata session, you can place jdbc add in your profile.do to store these settings; see

[GSW] B.3 Executing commands every time Stata is started, [GSM] B.1 Executing commands ev-

ery time Stata is started, or [GSU] B.1 Executing commands every time Stata is started.

Use jdbc list to see the current session’s stored connection settings and jdbc remove to remove

stored settings.

Exploring a database
jdbc showdbs, jdbc showtables, and jdbc describe are used, respectively, to list database

names, table names, and table columns of a connection. Use these commands to search for data to

load from your connection.

Example 3: Listing table names
jdbc showtables is used to list table names available from a specified database. To list all the tables

stored in database myDB, type
. jdbc showtables
Database: myDB

Tables

auto

https://www.stata.com/manuals/gswb.pdf#gswB.3ExecutingcommandseverytimeStataisstarted
https://www.stata.com/manuals/gsmb.pdf#gsmB.1ExecutingcommandseverytimeStataisstarted
https://www.stata.com/manuals/gsmb.pdf#gsmB.1ExecutingcommandseverytimeStataisstarted
https://www.stata.com/manuals/gsub.pdf#gsuB.1ExecutingcommandseverytimeStataisstarted

jdbc — Load, write, or view data from a database with a Java API 8

Example 4: Listing column names and data types
jdbc describe displays the column names and JDBC data types of the table listed. To describe the

auto table, type

. jdbc describe ”auto”
Table: auto

column name column type

make VARCHAR
price INT
mpg INT
rep78 SMALLINT
headroom FLOAT
trunk SMALLINT
weight SMALLINT
length SMALLINT
turn SMALLINT
displacement SMALLINT
gear_ratio FLOAT
domestic VARCHAR

Loading data from a database
jdbc load is used to load a database table into Stata’s memory; this can be an existing table or a

subset of a table created by a series of SQL statements.

Example 5: Loading a table
To load a database table listed in the jdbc showtables output, specify the table name in the table()

option.

. jdbc load, table(”auto”)
74 observations loaded
. describe
Contains data
Observations: 74

Variables: 12

Variable Storage Display Value
name type format label Variable label

make str19 %19s make
price long %12.0g price
mpg long %12.0g mpg
rep78 int %8.0g rep78
headroom float %9.0g headroom
trunk int %8.0g trunk
weight int %8.0g weight
length int %8.0g length
turn int %8.0g turn
displacement int %8.0g displacement
gear_ratio float %9.0g gear_ratio
domestic str18 %18s domestic

Sorted by:
Note: Dataset has changed since last saved.

jdbc — Load, write, or view data from a database with a Java API 9

Example 6: Loading part of a table
If your database table is large and the memory on your computer is limited, it is a good idea to limit the

amount of data loaded from the database using a SELECT statement in the exec() option. For example,
instead of loading the whole table as we did above, we can just load the mpg column:

. jdbc load, exec(”SELECT mpg FROM auto;”)
74 observations loaded
. describe
Contains data
Observations: 74

Variables: 1

Variable Storage Display Value
name type format label Variable label

mpg long %12.0g mpg

Sorted by:
Note: Dataset has changed since last saved.

Technical note
When Stata loads a table, data are converted from JDBC data types to Stata data types. Stata does

not support all JDBC data types. If the column cannot be read because of incompatible data types, Stata

will issue a note and skip a column. The following table lists the supported JDBC data types and their

corresponding Stata data types:

jdbc — Load, write, or view data from a database with a Java API 10

JDBC data type Stata data type

BOOLEAN byte
BIT byte
TINYINT byte
SMALLINT int
INTEGER long
ROWID str
BIGINT str
REAL float
FLOAT float
NUMERIC double
DECIMAL double
DOUBLE double
DATE double
TIME double
TIMESTAMP double
TIME WITH TIMEZONE str
TIMESTAMP WITH TIMEZONE str
BINARY strL
VARBINARY strL
LONGVARBINARY strL
BLOB strL
CHAR str/strL
VARCHAR str/strL
LONGVARCHAR str/strL
NCHAR str/strL
NVARCHAR str/strL
LONGNVARCHAR str/strL
NCLOB str/strL
CLOB str/strL
STRUCT skipped
ARRAY skipped
SQLXML skipped
NULL skipped
OTHER skipped
REF CURSOR skipped
JAVA OBJECT skipped
DISTINCT skipped
REF skipped
DATALINK skipped

Stata is a UTF-8 application, so all string data should be encoded as UTF-8. This can be set using a

driver connection property. Check your database vendor or driver documentation to see how your string

data is encoded by default to see whether this property should be set.

. jdbc connect, ... connprop(”characterEncoding:UTF8;”)

Inserting data into a database
jdbc insert inserts data in memory into a database table. The database table and the Stata varlist

must have the same column and variable names, number of columns, and compatible data types for the

insert to work correctly. By default, observations are appended to the database table. When you insert

data, mapping of the data types are the same as jdbc load, with one exception, Stata bytes. Stata bytes
are mapped to SMALLINTs because some database vendors’ (SQLServer) BYTE data type is unsigned.

jdbc — Load, write, or view data from a database with a Java API 11

Example 7: Inserting data into a table
Below, we insert the data in memory into the table auto.

. jdbc insert, table(auto)
74 rows inserted

To replace the table with the data in memory, use the option overwrite.

. jdbc insert, table(auto) overwrite
74 rows affected
74 rows inserted

Executing SQL on a database
You use jdbc exec to execute SQL commands on the database. If an SQL command returns a result

set, like SELECT, that result set will be displayed in the Stata Results window.

Example 8: Executing SQL commands
To use jdbc insert, you must have a table already created in your database. If you do not, you can

use jdbc exec to create a table in your database. For example, one might create a table in a MySQL

database with the SQL command below:

#delimit ;
local create_table_sql ‘”CREATE TABLE auto (

make varchar(19) NOT NULL,
price int,
mpg int,
rep78 smallint,
headroom float,
trunk smallint,
weight smallint,
length smallint,
turn smallint,
displacement smallint,
gear_ratio float,
domestic varchar(18)

);”’ ;

jdbc exec ”‘create_table_sql’”

If your SQL statement contains double quotes, you must enclose your statement in compound double

quotes, as we did with the statement above.

jdbc — Load, write, or view data from a database with a Java API 12

Stored results
jdbc showdbs stores the following in r():

Scalars

r(n dbs) number of databases displayed

jdbc showtables stores the following in r():

Scalars

r(n tables) number of tables displayed

jdbc describe stores the following in r():

Scalars

r(k) number of columns displayed

jdbc load stores the following in r():

Scalars

r(k) number of variables loaded

r(N) number of observations loaded

jdbc insert stores the following in r():

Scalars

r(k) number of columns inserted

r(N) number of rows inserted

References
Crow, K. 2017. Importing WRDS data into Stata. The Stata Blog: Not Elsewhere Classified. https://blog.stata.com/2017/

09/19/importing-wrds-data-into-stata/.

———. 2022. Wharton Research Data Services, Stata 17, and JDBC. The Stata Blog: Not Elsewhere Classified. https:

//blog.stata.com/2022/01/27/wharton-research-data-services-stata-17-and-jdbc/.

Also see
[D] odbc — Load, write, or view data from ODBC sources

[D] import — Overview of importing data into Stata

[D] export — Overview of exporting data from Stata

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata
Press are registered trademarks with the World Intellectual Property Organization of the
United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other
brand and product names are registered trademarks or trademarks of their respective com-
panies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights
reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://blog.stata.com/2017/09/19/importing-wrds-data-into-stata/
https://blog.stata.com/2017/09/19/importing-wrds-data-into-stata/
https://blog.stata.com/2022/01/27/wharton-research-data-services-stata-17-and-jdbc/
https://blog.stata.com/2022/01/27/wharton-research-data-services-stata-17-and-jdbc/
https://www.stata.com/manuals/dodbc.pdf#dodbc
https://www.stata.com/manuals/dimport.pdf#dimport
https://www.stata.com/manuals/dexport.pdf#dexport
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

