
infile (free format) — Import unformatted text data

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
infile reads into memory from a disk a dataset that is not in Stata format.

Here we discuss using infile to read free-format data, meaning datasets in which Stata does not

need to know the formatting information. Another variation on infile allows reading fixed-format

data; see [D] infile (fixed format). Yet another alternative is import delimited, which is easier to use
if your data are tab- or comma-separated and contain 1 observation per line. Stata has other commands

for reading data, too. If you are not certain that infile will do what you are looking for, see [D] import

and [U] 22 Entering and importing data.

After the data are read into Stata, they can be saved in a Stata-format dataset; see [D] save.

Quick start
Import unformatted text data from mydata1.raw, and name the imported float variables v1, v2, and

v3
infile v1 v2 v3 using mydata1

Same as above, but skip 1 variable in the original file between v1 and v2
infile v1 _skip(1) v2 v3 using mydata1

Same as above, and indicate that v1 is a byte variable, v2 is a string variable of length 30, and v3 is a

double variable

infile byte v1 _skip(1) str30 v2 double v3 using mydata1

Also read v4 as a double
infile byte v1 _skip(1) str30 v2 double(v3 v4) using mydata1

Import unformatted text data from mydata2.raw where 74 observations on v1, v2, and v3 are stored in

rows instead of columns

infile v1 v2 v3 using mydata2, byvariable(74)

Same as above, but import mydata2.csv
infile v1 v2 v3 using mydata2.csv, byvariable(74)

Menu
File > Import > Unformatted text data

1

https://www.stata.com/manuals/dinfilefixedformat.pdf#dinfile(fixedformat)
https://www.stata.com/manuals/dimport.pdf#dimport
https://www.stata.com/manuals/u22.pdf#u22Enteringandimportingdata
https://www.stata.com/manuals/dsave.pdf#dsave

infile (free format) — Import unformatted text data 2

Syntax
infile varlist [skip[(#)] [varlist [skip[(#)] . . .]]] using filename [if] [in]

[, options]

If filename is specified without an extension, .raw is assumed. If filename contains embedded spaces,

remember to enclose it in double quotes.

options Description

Main

clear replace data in memory

Options

automatic create value labels from nonnumeric data

byvariable(#) organize external file by variables; # is number of observations

Options

� � �
Main �

clear specifies that it is okay for the new data to replace the data that are currently in memory. To ensure

that you do not lose something important, infile will refuse to read new data if data are already in

memory. clear allows infile to replace the data in memory. You can also drop the data yourself

by typing drop all before reading new data.

� � �
Options �

automatic causes Stata to create value labels from the nonnumeric data it reads. It also automatically

widens the display format to fit the longest label.

byvariable(#) specifies that the external data file is organized by variables rather than by observa-

tions. All the observations on the first variable appear, followed by all the observations on the second

variable, and so on. Time-series datasets sometimes come in this format.

Remarks and examples
This section describes infile features for reading data in free or comma-separated–value format.

Remarks are presented under the following headings:

Reading free-format data
Reading comma-separated data
Specifying variable types
Reading string variables
Skipping variables
Skipping observations
Reading time-series data

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions

infile (free format) — Import unformatted text data 3

Reading free-format data
In free format, data are separated by one or more white-space characters—blanks, tabs, or new lines

(carriage return, line feed, or carriage-return/line feed combinations). Thus one observation may span

any number of lines.

Numeric missing values are indicated by single periods (“.”).

Example 1
In the file highway.raw, we have information on the accident rate per million vehicle miles along

a stretch of highway, the speed limit on that highway, and the number of access points (on-ramps and

off-ramps) per mile. Our file contains

begin highway.raw, example 1
4.58 55 4.6
2.86 60 4.4
1.61 . 2.2
3.02 60
4.7

end highway.raw, example 1

We can read these data by typing

. infile acc_rate spdlimit acc_pts using highway
(4 observations read)
. list

acc_rate spdlimit acc_pts

1. 4.58 55 4.6
2. 2.86 60 4.4
3. 1.61 . 2.2
4. 3.02 60 4.7

The spacing of the numbers in the original file is irrelevant.

Technical note
Missing values need not be indicated by one period. The third observation on the speed limit is missing

in example 1. The raw data file indicates this by recording one period. Let’s assume, instead, that the

missing value was indicated by the word unknown. Thus the raw data file appears as

begin highway.raw, example 2
4.58 55 4.6
2.86 60 4.4
1.61 unknown 2.2
3.02 60
4.7

end highway.raw, example 2

Here is the result of infiling these data:

. infile acc_rate spdlimit acc_pts using highway
’unknown’ cannot be read as a number for spdlimit[3]
(4 observations read)

infile (free format) — Import unformatted text data 4

infile warned us that it could not read the word unknown, stored a missing, and then continued to read

the rest of the dataset. Thus aside from the warning message, results are unchanged.

Because not all packages indicatemissing data in the sameway, this feature can be useful when reading

data. Whenever infile sees something that it does not understand, it warns you, records a missing, and

continues. If, on the other hand, the missing values were recorded not as unknown but as, say, 99, Stata
would have had no difficulty reading the number, but it would also have stored 99 rather than missing.

To convert such coded missing values to true missing values, see [D] mvencode.

Reading comma-separated data
In comma-separated–value format, data are separated by commas. You may mix comma-

separated–value and free formats. Missing values are indicated either by single periods or by multiple

commas that serve as placeholders, or both. As with free format, 1 observation may span any number of

input lines.

Example 2
We can modify the format of highway.raw used in example 1 without affecting infile’s ability to

read it. The dataset can be read with the same command, and the results would be the same if the file

instead contained

begin highway.raw, example 3
4.58,55 4.6
2.86, 60,4.4
1.61,,2.2
3.02,60
4.7

end highway.raw, example 3

Specifying variable types
The variable names you type after the word infile are new variables. The syntax for a new variable

is

[type] new varname[:label name]

A full discussion of this syntax can be found in [U] 11.4 varname and varlists. As a quick review, new

variables are, by default, of type float. This default can be overridden by preceding the variable name

with a storage type (byte, int, long, float, double, or str#) or by using the set type command. A

list of variables placed in parentheses will be given the same type. For example,

double(first var second var . . . last var)

causes first var second var . . . last var to all be of type double.

There is also a shorthand syntax for variable names with numeric suffixes. The varlist var1-var4 is

equivalent to specifying var1 var2 var3 var4.

https://www.stata.com/manuals/dmvencode.pdf#dmvencode
https://www.stata.com/manuals/d.pdf#dDatatypes
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists

infile (free format) — Import unformatted text data 5

Example 3
In the highway example, we could infile the data acc rate, spdlimit, and acc pts and force

the variable spdlimit to be of type int by typing

. infile acc_rate int spdlimit acc_pts using highway, clear
(4 observations read)

We could force all variables to be of type double by typing

. infile double(acc_rate spdlimit acc_pts) using highway, clear
(4 observations read)

We could call the three variables v1, v2, and v3 and make them all of type double by typing

. infile double(v1-v3) using highway, clear
(4 observations read)

Reading string variables
By explicitly specifying the types, you can read string variables, as well as numeric variables.

Example 4
Typing infile str20 name age sex using myfile would read

begin myfile.raw
”Sherri Holliday” 25 1
Branton 32 1
”Bill Ross” 27,0

end myfile.raw

or even

begin myfile.raw, variation 2
’Sherri Holliday’ 25,1 ”Branton” 32
1,’Bill Ross’, 27,0

end myfile.raw, variation 2

The spacing is irrelevant, and either single or double quotes may be used to delimit strings. The quotes do

not count when calculating the length of strings. Quotes may be omitted altogether if the string contains

no blanks or other special characters (anything other than letters, numbers, or underscores).

Typing

. infile str20 name age sex using myfile, clear
(3 observations read)

makes name a str20 and age and sex floats. We might have typed

. infile str20 name age int sex using myfile, clear
(3 observations read)

to make sex an int or

. infile str20 name int(age sex) using myfile, clear
(3 observations read)

to make both age and sex ints.

infile (free format) — Import unformatted text data 6

Technical note
infile can also handle nonnumeric data by using value labels. We will briefly review value labels,

but you should see [U] 12.6.3 Value labels for a complete description.

A value label is a mapping from the set of integers to words. For instance, if we had a variable called

sex in our data that represented the sex of the individual, we might code 0 for male and 1 for female. We

could then just remember that every time we see a value of 0 for sex, that observation refers to a male,

whereas 1 refers to a female.

Even better, we could inform Stata that 0 represents males and 1 represents females by typing

. label define sexfmt 0 ”Male” 1 ”Female”

Then we must tell Stata that this coding scheme is to be associated with the variable sex. This is typically
done by typing

. label values sex sexfmt

Thereafter, Stata will print Male rather than 0 and Female rather than 1 for this variable.

Stata has the ability to turn a value label around. It can go not only from numeric codes to words such

as “Male” and “Female” but also from words to numeric codes. We tell infile the value label that goes

with each variable by placing a colon (:) after the variable name and typing the name of the value label.

Before we do that, we use the label define command to inform Stata of the coding.

Let’s assume that we wish to infile a dataset containing the words Male and Female and that we

wish to store numeric codes rather than the strings themselves. This will result in considerable data

compression, especially if we store the numeric code as a byte. We have a dataset named persons.raw
that contains name, sex, and age:

begin persons.raw
”Arthur Doyle” Male 22
”Mary Hope” Female 37
”Guy Fawkes” Male 48
”Carrie House” Female 25

end persons.raw

Here is how we read and encode it at the same time:

. label define sexfmt 0 ”Male” 1 ”Female”

. infile str16 name sex:sexfmt age using persons
(4 observations read)
. list

name sex age

1. Arthur Doyle Male 22
2. Mary Hope Female 37
3. Guy Fawkes Male 48
4. Carrie House Female 25

https://www.stata.com/manuals/u12.pdf#u12.6.3Valuelabels

infile (free format) — Import unformatted text data 7

The str16 in the infile command applies only to the name variable; sex is a numeric variable, which

we can prove by typing

. list, nolabel

name sex age

1. Arthur Doyle 0 22
2. Mary Hope 1 37
3. Guy Fawkes 0 48
4. Carrie House 1 25

Technical note
When infile is directed to use a value label and it finds an entry in the file that does not match any

of the codings recorded in the label, it prints a warning message and stores missing for the observation.

By specifying the automatic option, you can instead have infile automatically add new entries to the

value label.

Say that we have a dataset containing three variables. The first, region of the country, is a character

string; the remaining two variables, which we will just call var1 and var2, contain numbers. We have

stored the data in a file called geog.raw:

begin geog.raw
”NE” 31.23 87.78
’NCntrl’ 29.52 98.92
South 29.62 114.69
West 28.28 218.92
NE 17.50 44.33
NCntrl 22.51 55.21

end geog.raw

The easiest way to read this dataset is to type

. infile str6 region var1 var2 using geog

making region a string variable. We do not want to do this, however, because we are practicing for

reading a dataset like this containing 20,000 observations. If region were numerically encoded and

stored as a byte, there would be a 5-byte saving per observation, reducing the size of the data by 100,000
bytes. We also do not want to bother with first creating the value label. Using the automatic option,

infile creates the value label automatically as it encounters new regions.

. infile byte region:regfmt var1 var2 using geog, automatic clear
(6 observations read)
. list, sep(0)

region var1 var2

1. NE 31.23 87.78
2. NCntrl 29.52 98.92
3. South 29.62 114.69
4. West 28.28 218.92
5. NE 17.5 44.33
6. NCntrl 22.51 55.21

infile (free format) — Import unformatted text data 8

infile automatically created and defined a new value label called regfmt. We can use the label list
command to view its contents:

. label list regfmt
regfmt:

1 NE
2 NCntrl
3 South
4 West

The value label need not be undefined before we use infile with the automatic option. If the value

label regfmt had been previously defined as

. label define regfmt 2 ”West”

the result of label list after the infile would have been

regfmt:
2 West
3 NE
4 NCntrl
5 South

The automatic option is convenient, but there is one reason for using it. Suppose that we had a

dataset containing, among other things, information about an individual’s sex. We know that the sex

variable is supposed to be coded male and female. If we read the data by using the automatic option

and if one of the records contains fmlae, then infile will blindly create a third sex rather than print a

warning.

Skipping variables
Specifying skip instead of a variable name directs infile to ignore the variable in that location.

This feature makes it possible to extract manageable subsets from large disk datasets. A number of

contiguous variables can be skipped by specifying skip(#), where # is the number of variables to

ignore.

Example 5
In the highway example from example 1, the data file contained three variables: acc rate,

spdlimit, and acc pts. We can read the first two variables by typing

. infile acc_rate spdlimit _skip using highway
(4 observations read)

We can read the first and last variables by typing

. infile acc_rate _skip acc_pts using highway, clear
(4 observations read)

We can read the first variable by typing

. infile acc_rate _skip(2) using highway, clear
(4 observations read)

skip may be specified more than once. If we had a dataset containing four variables—say, a, b, c, and
d—and we wanted to read just a and c, we could type infile a skip c skip using filename.

infile (free format) — Import unformatted text data 9

Skipping observations
Subsets of observations can be extracted by specifying if exp, which also makes it possible to extract

manageable subsets from large disk datasets. Do not, however, use the variable N in exp. Use the in
range qualifier to refer to observation numbers within the disk dataset.

Example 6
Again referring to the highway example, if we type

. infile acc_rate spdlimit acc_pts if acc_rate>3 using highway, clear
(2 observations read)

only observations for which acc rate is greater than 3 will be infiled. We can type

. infile acc_rate spdlimit acc_pts in 2/4 using highway, clear
(eof not at end of obs)
(3 observations read)

to read only the second, third, and fourth observations.

Reading time-series data
If you are dealing with time-series data, you may receive datasets organized by variables rather than

by observations. All the observations on the first variable appear, followed by all the observations on the

second variable, and so on. The byvariable(#) option specifies that the external data file is organized

in this way. You specify the number of observations in the parentheses, because infile needs to know

that number to read the data properly. You can also mark the end of one variable’s data and the beginning

of another’s data by placing a semicolon (“;”) in the raw data file. You may then specify a number larger

than the number of observations in the dataset and leave it to infile to determine the actual number of

observations. This method can also be used to read unbalanced data.

Example 7
We have time-series data on 4 years recorded in the file time.raw. The dataset contains information

on year, amount, and cost, and is organized by variable:

begin time.raw
1980 1981 1982 1983
14 17 25 30
120 135 150
180

end time.raw

We can read these data by typing

. infile year amount cost using time, byvariable(4) clear
(4 observations read)
. list

year amount cost

1. 1980 14 120
2. 1981 17 135
3. 1982 25 150
4. 1983 30 180

https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange

infile (free format) — Import unformatted text data 10

If the data instead contained semicolonsmarking the end of each series and had no information for amount

in 1983, the raw data might appear as

1980 1981 1982 1983 ;
14 17 25 ;
120 135 150
180 ;

We could read these data by typing

. infile year amount cost using time, byvariable(100) clear
(4 observations read)
. list

year amount cost

1. 1980 14 120
2. 1981 17 135
3. 1982 25 150
4. 1983 . 180

Also see
[D] infile (fixed format) — Import text data in fixed format with a dictionary

[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

[U] 22 Entering and importing data

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/dinfilefixedformat.pdf#dinfile(fixedformat)
https://www.stata.com/manuals/dexport.pdf#dexport
https://www.stata.com/manuals/dimport.pdf#dimport
https://www.stata.com/manuals/u22.pdf#u22Enteringandimportingdata
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

