
hexdump — Display hexadecimal report on file

Description Syntax Options
Remarks and examples Stored results Also see

Description
hexdump displays a hexadecimal dump of a file or, optionally, a report analyzing the dump.

Syntax
hexdump filename [, options]

options Description

analyze display a report on the dump rather than the dump itself

tabulate display a full tabulation of the ASCII and extended ASCII characters in the
analyze report

noextended do not display printable extended ASCII characters

results store results containing the frequency with which each character code was
observed; programmer’s option

from(#) dump or analyze first byte of the file; default is to start at first byte, from(0)
to(#) dump or analyze last byte of the file; default is to continue to the end of the file

Options
analyze specifies that a report on the dump, rather than the dump itself, be presented.

tabulate specifies in the analyze report that a full tabulation of theASCII and extendedASCII characters
also be presented.

noextended specifies that hexdump not display printable extended ASCII characters, characters in the

range 161–254 or, equivalently, 0xa1–0xfe. (hexdump does not display characters 128–160 and 255.)

results is for programmers. It specifies that, in addition to other stored results, hexdump store r(c0),
r(c1), . . . , r(c255), containing the frequency with which each character code was observed.

from(#) specifies the first byte of the file to be dumped or analyzed. The default is to start at the first

byte of the file, from(0).

to(#) specifies the last byte of the file to be dumped or analyzed. The default is to continue to the end
of the file.

Remarks and examples
hexdump is useful when you are having difficulty reading a file with infile, infix, or import

delimited. Sometimes, the reason for the difficulty is that the file does not contain what you think it
contains, or that it does contain the format you have been told, and looking at the file in text mode is

either not possible or not revealing enough.

1

https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions

hexdump — Display hexadecimal report on file 2

Pretend that we have the file myfile.raw containing

Datsun 210 4589 35 5 1
VW Scirocco 6850 25 4 1
Merc. Bobcat 3829 22 4 0
Buick Regal 5189 20 3 0
VW Diesel 5397 41 5 1
Pont. Phoenix 4424 19 . 0
Merc. Zephyr 3291 20 3 0
Olds Starfire 4195 24 1 0
BMW 320i 9735 25 4 1

We will use myfile.raw with hexdump to produce output that looks like the following:

. hexdump myfile.raw
character

hex representation representation
address 0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef

0 4461 7473 756e 2032 3130 2020 2020 2034 Datsun 210 4
10 3538 3920 2033 3520 2035 2020 310a 5657 589 35 5 1.VW
20 2053 6369 726f 6363 6f20 2020 2036 3835 Scirocco 685
30 3020 2032 3520 2034 2020 310a 4d65 7263 0 25 4 1.Merc

40 2e20 426f 6263 6174 2020 2033 3832 3920 . Bobcat 3829
50 2032 3220 2034 2020 300a 4275 6963 6b20 22 4 0.Buick
60 5265 6761 6c20 2020 2035 3138 3920 2032 Regal 5189 2
70 3020 2033 2020 300a 5657 2044 6965 7365 0 3 0.VW Diese

80 6c20 2020 2020 2035 3339 3720 2034 3120 l 5397 41
90 2035 2020 310a 506f 6e74 2e20 5068 6f65 5 1.Pont. Phoe
a0 6e69 7820 2034 3432 3420 2031 3920 202e nix 4424 19 .
b0 2020 300a 4d65 7263 2e20 5a65 7068 7972 0.Merc. Zephyr

c0 2020 2033 3239 3120 2032 3020 2033 2020 3291 20 3
d0 300a 4f6c 6473 2053 7461 7266 6972 6520 0.Olds Starfire
e0 2034 3139 3520 2032 3420 2031 2020 300a 4195 24 1 0.
f0 424d 5720 3332 3069 2020 2020 2020 2039 BMW 320i 9
100 3733 3520 2032 3520 2034 2020 310a 735 25 4 1.

hexdump — Display hexadecimal report on file 3

hexdump can also produce output that looks like the following:

. hexdump myfile.raw, analyze
Line-end characters Line length (tab=1)
\r\n (Windows) 0 minimum 29
\r by itself (Mac) 0 maximum 29
\n by itself (Unix) 9

Space/separator characters Number of lines 9
[blank] 99 EOL at EOF? yes
[tab] 0
[comma] (,) 0 Length of first 5 lines

Control characters Line 1 29
binary 0 0 Line 2 29
CTL excl. \r, \n, \t 0 Line 3 29
DEL 0 Line 4 29
Extended (128-159,255) 0 Line 5 29

ASCII printable
A-Z 20
a-z 61 File format ASCII
0-9 77
Special (!@#$ etc.) 4
Extended (160-254) 0

Total 270
Observed were:

\n blank . 0 1 2 3 4 5 6 7 8 9 B D M O P R S V W Z a b c d e f g h i k l
n o p r s t u x y

Of the two forms of output, the second is often the more useful because it summarizes the file, and the

length of the summary is not a function of the length of the file. Here is the summary for a file that is

just over 4 MB long:

. hexdump bigfile.raw, analyze
Line-end characters Line length (tab=1)
\r\n (Windows) 147,456 minimum 29
\r by itself (Mac) 0 maximum 30
\n by itself (Unix) 2

Space/separator characters Number of lines 147,458
[blank] 1,622,039 EOL at EOF? yes
[tab] 0
[comma] (,) 0 Length of first 5 lines

Control characters Line 1 30
binary 0 0 Line 2 30
CTL excl. \r, \n, \t 0 Line 3 30
DEL 0 Line 4 30
Extended (128-159,255) 0 Line 5 30

ASCII printable
A-Z 327,684
a-z 999,436 File format ASCII
0-9 1,261,587
Special (!@#$ etc.) 65,536
Extended (160-254) 0

Total 4,571,196
Observed were:

\n \r blank . 0 1 2 3 4 5 6 7 8 9 B D M O P R S V W Z a b c d e f g h i
k l n o p r s t u x y

hexdump — Display hexadecimal report on file 4

Here is the same file but with a subtle problem:

. hexdump badfile.raw, analyze
Line-end characters Line length (tab=1)
\r\n (Windows) 147,456 minimum 30
\r by itself (Mac) 0 maximum 90
\n by itself (Unix) 0

Space/separator characters Number of lines 147,456
[blank] 1,622,016 EOL at EOF? yes
[tab] 0
[comma] (,) 0 Length of first 5 lines

Control characters Line 1 30
binary 0 8 Line 2 30
CTL excl. \r, \n, \t 4 Line 3 30
DEL 0 Line 4 30
Extended (128-159,255) 24 Line 5 30

ASCII printable
A-Z 327,683
a-z 999,426 File format BINARY
0-9 1,261,568
Special (!@#$ etc.) 65,539
Extended (160-254) 16

Total 4,571,196
Observed were:

\0 ^C ^D ^G \n \r ^U blank & . 0 1 2 3 4 5 6 7 8 9 B D E M O P R S U V W
Z a b c d e f g h i k l n o p r s t u v x y } ~ E^A E^C E^I E^M E^P
ë é ö 255

In the above, the line length varies between 30 and 90 (we were told that each line would be 30 characters

long). Also the file contains what hexdump, analyze labeled control characters. Finally, hexdump,
analyze declared the file to be BINARY rather than ASCII.

We created the second file by removing two valid lines from bigfile.raw (60 characters) and sub-
stituting 60 characters of binary junk. We would defy you to find the problem without using hexdump,
analyze. You would succeed, but only after much work. Remember, this file has 147,456 lines, and

only two of them are bad. If you print 1,000 lines at random from the file, your chances of listing the bad

part are only 0.013472. To have a 50% chance of finding the bad lines, you would have to list 52,000

lines, which is to say, review about 945 pages of output. On those 945 pages, each line would need to

be drawn at random. More likely, you would list lines in groups, and that would greatly reduce your

chances of encountering the bad lines.

The situation is not as dire as we make it out to be because, were you to read badfile.raw by using
infile, it would complain, and here it would tell you exactly where it was complaining. Still, at that

point you might wonder whether the problem was with how you were using infile or with the data.

Moreover, our 60 bytes of binary junk experiment corresponds to transmission error. If the problem were

instead that the person who constructed the file constructed two of the lines differently, infile might

not complain, but later you would notice some odd values in your data (because obviously you would

review the summary statistics, right?). Here hexdump, analyzemight be the only way you could prove
to yourself and others that the raw data need to be reconstructed.

hexdump — Display hexadecimal report on file 5

Technical note
In the full hexadecimal dump,

. hexdump myfile.raw
character

hex representation representation
address 0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef

0 4461 7473 756e 2032 3130 2020 2020 2034 Datsun 210 4
10 3538 3920 2033 3520 2035 2020 310d 0a56 589 35 5 1..V
20 5720 5363 6972 6f63 636f 2020 2020 3638 W Scirocco 68
30 3530 2020 3235 2020 3420 2031 0d0a 4d65 50 25 4 1..Me

(output omitted)

addresses (listed on the left) are listed in hexadecimal. Above, 10 means decimal 16, 20 means decimal
32, and so on. Sixteen characters are listed across each line.

In some other dump, you might see something like

. hexdump myfile2.raw
character

hex representation representation
address 0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef

0 4461 7473 756e 2032 3130 2020 2020 2034 Datsun 210 4
10 3538 3920 2033 3520 2035 2020 3120 2020 589 35 5 1
20 2020 2020 2020 2020 2020 2020 2020 2020
*

160 2020 2020 2020 0a56 5720 5363 6972 6f63 .VW Sciroc
170 636f 2020 2020 3638 3530 2020 3235 2020 co 6850 25

(output omitted)

The * in the address field indicates that the previous line is repeated until we get to hexadecimal address
160 (decimal 352).

hexdump — Display hexadecimal report on file 6

Stored results
hexdump, analyze and hexdump, results store the following in r():

Scalars

r(Windows) number of \r\n
r(Mac) number of \r by itself
r(Unix) number of \n by itself
r(blank) number of blanks

r(tab) number of tab characters

r(comma) number of comma (,) characters

r(ctl) number of binary 0s; A–Z, excluding \r, \n, \t; DELs; and 128–159, 255
r(uc) number of A–Z

r(lc) number of a–z

r(digit) number of 0–9

r(special) number of printable special characters (!@#, etc.)

r(extended) number of printable extended characters (160–254)

r(filesize) number of characters

r(lmin) minimum line length

r(lmax) maximum line length

r(lnum) number of lines

r(eoleof) 1 if EOL at EOF, 0 otherwise

r(l1) length of 1st line

r(l2) length of 2nd line

r(l3) length of 3rd line

r(l4) length of 4th line

r(l5) length of 5th line

r(c0) number of binary 0s (results only)
r(c1) number of binary 1s (^A) (results only)
r(c2) number of binary 2s (^B) (results only)
.

r(c255) number of binary 255s (results only)

Macros

r(format) ASCII, EXTENDED ASCII, or BINARY

Also see
[D] filefilter — Convert ASCII or binary patterns in a file

[D] type — Display contents of a file

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata
Press are registered trademarks with the World Intellectual Property Organization of the
United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other
brand and product names are registered trademarks or trademarks of their respective com-
panies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights
reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/dfilefilter.pdf#dfilefilter
https://www.stata.com/manuals/dtype.pdf#dtype
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

