
Title stata.com

egen — Extensions to generate

Description Quick start Menu Syntax
Remarks and examples Acknowledgments References Also see

Description
egen creates a new variable of the optionally specified storage type equal to the given function

based on arguments of that function. The functions are specifically written for egen, as documented
below or as written by users.

Quick start
Generate newv1 for distinct groups of v1 and v2, and create and apply value label mylabel

egen newv1 = group(v1 v2), label(mylabel)

Generate newv2 equal to the minimum of v1, v2, and v3 for each observation
egen newv2 = rowmin(v1 v2 v3)

Generate newv3 equal to the overall sum of v1
egen newv3 = total(v1)

Same as above, but calculate total within each level of catvar
egen newv3 = total(v1), by(catvar)

Generate newv4 equal to the number of nonmissing numeric values across v1, v2, and v3 for each
observation

egen newv4 = rownonmiss(v1 v2 v3)

Same as above, but allow string values
egen newv4 = rownonmiss(v1 v2 v3), strok

Generate newv5 as the concatenation of numeric v1 and string v4 separated by a space
egen newv5 = concat(v1 v4), punct(" ")

Menu
Data > Create or change data > Create new variable (extended)

1

http://stata.com


2 egen — Extensions to generate

Syntax

egen
[

type
]

newvar = fcn(arguments)
[

if
] [

in
] [

, options
]

by is allowed with some of the egen functions, as noted below.

Depending on fcn, arguments refers to an expression, varlist, or numlist, and the options are also fcn
dependent. fcn and its dependencies are listed below.

anycount(varlist), values(integer numlist)
may not be combined with by. It returns the number of variables in varlist for which values are
equal to any integer value in a supplied numlist. Values for any observations excluded by either
if or in are set to 0 (not missing). Also see anyvalue(varname) and anymatch(varlist).

anymatch(varlist), values(integer numlist)
may not be combined with by. It is 1 if any variable in varlist is equal to any integer value in
a supplied numlist and 0 otherwise. Values for any observations excluded by either if or in
are set to 0 (not missing). Also see anyvalue(varname) and anycount(varlist).

anyvalue(varname) , values(integer numlist)
may not be combined with by. It takes the value of varname if varname is equal to any
integer value in a supplied numlist and is missing otherwise. Also see anymatch(varlist) and
anycount(varlist).

concat(varlist)
[
, format(% fmt) decode maxlength(#) punct(pchars)

]
may not be combined with by. It concatenates varlist to produce a string variable. Values of
string variables are unchanged. Values of numeric variables are converted to string, as is, or
are converted using a numeric format under the format(%fmt) option or decoded under the
decode option, in which case maxlength() may also be used to control the maximum label
length used. By default, variables are added end to end: punct(pchars) may be used to specify
punctuation, such as a space, punct(" "), or a comma, punct(,).

count(exp) (allows by varlist:)
creates a constant (within varlist) containing the number of nonmissing observations of exp.
Also see rownonmiss() and rowmiss().

cut(varname),
{
at(numlist) | group(#)

} [
icodes label

]
may not be combined with by. Either at() or group() must be specified. When at() is
specified, it creates a new categorical variable coded with the left-hand ends of the grouping
intervals specified in the at() option. When group() is specified, groups of roughly equal
frequencies are created.

at(numlist) with numlist in ascending order supplies the breaks for the groups. newvar is set
to missing for observations with varname less than the first number specified in at() and for
observations with varname greater than or equal to the last number specified in at().

group(#) specifies the number of equal-frequency grouping intervals when breaks are not
specified. Specifying this option automatically invokes icodes.

icodes requests that the codes 0, 1, 2, etc., be used in place of the left-hand ends of the
intervals.

label requests that the integer-coded values of the grouped variable be labeled with the left-hand
ends of the grouping intervals. Specifying this option automatically invokes icodes.

diff(varlist)
may not be combined with by. It creates an indicator variable equal to 1 if the variables in
varlist are not equal and 0 otherwise.

https://www.stata.com/manuals/d.pdf#dDatatypes
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.1.2byvarlist
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists


egen — Extensions to generate 3

ends(strvar)
[
, punct(pchars) trim

[
head | last | tail

] ]
may not be combined with by. It gives the first “word” or head (with the head option), the
last “word” (with the last option), or the remainder or tail (with the tail option) from string
variable strvar.

head, last, and tail are determined by the occurrence of pchars, which is by default one
space (“ ”).

The head is whatever precedes the first occurrence of pchars, or the whole of the string if it
does not occur. For example, the head of “frog toad” is “frog” and that of “frog” is “frog”.
With punct(,), the head of “frog,toad” is “frog”.

The last word is whatever follows the last occurrence of pchars or is the whole of the string
if a space does not occur. The last word of “frog toad newt” is “newt” and that of “frog” is
“frog”. With punct(,), the last word of “frog,toad” is “toad”.

The remainder or tail is whatever follows the first occurrence of pchars, which will be the
empty string "" if pchars does not occur. The tail of “frog toad newt” is “toad newt” and that
of “frog” is "". With punct(,), the tail of “frog,toad” is “toad”.

The trim option trims any leading or trailing spaces.

fill(numlist)
may not be combined with by. It creates a variable of ascending or descending numbers or
complex repeating patterns. numlist must contain at least two numbers and may be specified
using standard numlist notation; see [U] 11.1.8 numlist. if and in are not allowed with fill().

group(varlist)
[
, missing autotype label

[
(lblname

[
, replace truncate(#)

]
)
] ]

may not be combined with by. It creates one variable taking on values 1, 2, . . . for the groups
formed by varlist. varlist may contain numeric variables, string variables, or a combination of
the two. The order of the groups is that of the sort order of varlist.

missing indicates that missing values in varlist (either . or "") are to be treated like any other
value when assigning groups. By default, any observation with a missing value is assigned to
the group with newvar equal to missing (.).

autotype specifies that newvar be the smallest type possible to hold the integers generated.
The resulting type will be byte, int, long, or double.

label or label(lblname) creates a value label for newvar. The integers in newvar are labeled
with the values of varlist or their value labels, if they exist. label(lblname) specifies lblname
as the name of the value label. If label alone is specified, the name of the value label is
newvar. label(. . . , replace) allows an existing value label to be redefined. label(. . . ,
truncate(#)) truncates the values contributed to the label from each variable in varlist to the
length specified by the integer argument #.

iqr(exp)
[
, autotype

]
(allows by varlist:)

creates a constant (within varlist) containing the interquartile range of exp. autotype specifies
that newvar be the smallest type possible to hold the result. The resulting type will be byte,
int, long, or double. Also see pctile().

kurt(exp) (allows by varlist:)
returns the kurtosis (within varlist) of exp.

mad(exp) (allows by varlist:)
returns the median absolute deviation from the median (within varlist) of exp.

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/d.pdf#dDatatypes
https://www.stata.com/manuals/dlabel.pdf#dlabel
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.1.2byvarlist
https://www.stata.com/manuals/d.pdf#dDatatypes
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.1.2byvarlist
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.1.2byvarlist


4 egen — Extensions to generate

max(exp)
[
, missing

]
(allows by varlist:)

creates a constant (within varlist) containing the maximum value of exp. missing indicates
that missing values be treated like other values.

mdev(exp) (allows by varlist:)
returns the mean absolute deviation from the mean (within varlist) of exp.

mean(exp) (allows by varlist:)
creates a constant (within varlist) containing the mean of exp.

median(exp)
[
, autotype

]
(allows by varlist:)

creates a constant (within varlist) containing the median of exp. autotype specifies that newvar
be the smallest type possible to hold the result. The resulting type will be byte, int, long, or
double. Also see pctile().

min(exp)
[
, missing

]
(allows by varlist:)

creates a constant (within varlist) containing the minimum value of exp. missing indicates
that missing values be treated like other values.

mode(varname)
[
, minmode maxmode nummode(integer) missing

]
(allows by varlist:)

produces the mode (within varlist) for varname, which may be numeric or string. The mode
is the value occurring most frequently. If two or more modes exist or if varname contains
all missing values, the mode produced will be a missing value. To avoid this, the minmode,
maxmode, or nummode() option may be used to specify choices for selecting among the multiple
modes. minmode returns the lowest value, and maxmode returns the highest value. nummode(#)
returns the #th mode, counting from the lowest up. missing indicates that missing values be
treated like other values.

pc(exp)
[
, prop

]
(allows by varlist:)

returns exp (within varlist) scaled to be a percentage of the total, between 0 and 100. The prop
option returns exp scaled to be a proportion of the total, between 0 and 1.

pctile(exp)
[
, p(#) autotype

]
(allows by varlist:)

creates a constant (within varlist) containing the #th percentile of exp. If p(#) is not specified,
50 is assumed, meaning medians. autotype specifies that newvar be the smallest type possible
to hold the result. The resulting type will be byte, int, long, or double. Also see median().

rank(exp)
[
, field | track | unique

]
(allows by varlist:)

creates ranks (within varlist) of exp; by default, equal observations are assigned the average
rank. The field option calculates the field rank of exp: the highest value is ranked 1, and there
is no correction for ties. That is, the field rank is 1 + the number of values that are higher.
The track option calculates the track rank of exp: the lowest value is ranked 1, and there is
no correction for ties. That is, the track rank is 1 + the number of values that are lower. The
unique option calculates the unique rank of exp: values are ranked 1, . . . , #, and values and
ties are broken arbitrarily. Two values that are tied for second are ranked 2 and 3.

rowfirst(varlist)
may not be combined with by. It gives the first nonmissing value in varlist for each observation
(row). If all values in varlist are missing for an observation, newvar is set to missing for that
observation.

rowlast(varlist)
may not be combined with by. It gives the last nonmissing value in varlist for each observation
(row). If all values in varlist are missing for an observation, newvar is set to missing for that
observation.

https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.1.2byvarlist
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.1.2byvarlist
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.1.2byvarlist
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.1.2byvarlist
https://www.stata.com/manuals/d.pdf#dDatatypes
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.1.2byvarlist
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.2byvarlist
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.1.2byvarlist
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.1.2byvarlist
https://www.stata.com/manuals/d.pdf#dDatatypes
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.1.2byvarlist
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists


egen — Extensions to generate 5

rowmax(varlist)
may not be combined with by. It gives the maximum value (ignoring missing values) in varlist
for each observation (row). If all values in varlist are missing for an observation, newvar is set
to missing for that observation.

rowmean(varlist)
may not be combined with by. It creates the (row) means of the variables in varlist, ignoring
missing values. For example, if three variables are specified and, in some observations, one
of the variables is missing, in those observations newvar will contain the mean of the two
variables that do exist. Other observations will contain the mean of all three variables. If all
values in varlist are missing for an observation, newvar is set to missing for that observation.

rowmedian(varlist)
may not be combined with by. It gives the (row) median of the variables in varlist, ignoring
missing values. If all values in varlist are missing for an observation, newvar is set to missing
for that observation. Also see rowpctile().

rowmin(varlist)
may not be combined with by. It gives the minimum value in varlist for each observation
(row). If all values in varlist are missing for an observation, newvar is set to missing for that
observation.

rowmiss(varlist)
may not be combined with by. It gives the number of missing values in varlist for each
observation (row).

rownonmiss(varlist)
[
, strok

]
may not be combined with by. It gives the number of nonmissing values in varlist for each
observation (row).

String variables may not be specified unless the strok option is also specified. When strok
is specified, varlist may contain a mixture of string and numeric variables.

rowpctile(varlist)
[
, p(#)

]
may not be combined with by. It gives the #th percentile of the variables in varlist, ignoring
missing values. If p() is not specified, p(50) is assumed, meaning medians. If all values in
varlist are missing for an observation, newvar is set to missing for that observation. Also see
rowmedian().

rowsd(varlist)
may not be combined with by. It creates the (row) standard deviations of the variables in varlist,
ignoring missing values. If all values in varlist are missing for an observation, newvar is set
to missing for that observation.

rowtotal(varlist)
[
, missing

]
may not be combined with by. It creates the (row) sum of the variables in varlist, treating missing
values as 0. If missing is specified and all values in varlist are missing for an observation,
newvar is set to missing for that observation.

sd(exp) (allows by varlist:)
creates a constant (within varlist) containing the standard deviation of exp. Also see mean().

seq()
[
, from(#) to(#) block(#)

]
(allows by varlist:)

returns integer sequences. Values start from from() (default 1) and increase to to() (the
default is the maximum number of values) in blocks (default size 1). If to() is less than
the maximum number, sequences restart at from(). Numbering may also be separate within
groups defined by varlist or decreasing if to() is less than from(). Sequences depend on the
sort order of observations, following three rules: 1) observations excluded by if or in are not

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.1.2byvarlist
https://www.stata.com/manuals/u11.pdf#u11.1.2byvarlist


6 egen — Extensions to generate

counted; 2) observations are sorted by varlist, if specified; and 3) otherwise, the order is that
when called. No arguments are specified.

skew(exp) (allows by varlist:)
returns the skewness (within varlist) of exp.

std(exp) [ , mean(#) sd(#) ] (allows by varlist:)
creates the standardized values (within varlist) of exp. The options specify the desired mean
and standard deviation. The default is mean(0) and sd(1), producing a variable with mean 0
and standard deviation 1 (within each group defined by varlist).

tag(varlist)
[
, missing

]
may not be combined with by. It tags just one observation in each distinct group defined by
varlist. When all observations in a group have the same value for a summary variable calculated
for the group, it will be sufficient to use just one value for many purposes. The result will be
1 if the observation is tagged and never missing, and 0 otherwise. Values for any observations
excluded by either if or in are set to 0 (not missing). Hence, if tag is the variable produced
by egen tag = tag(varlist), the idiom if tag is always safe. missing specifies that missing
values of varlist may be included.

total(exp)
[
, missing

]
(allows by varlist:)

creates a constant (within varlist) containing the sum of exp treating missing as 0. If missing
is specified and all values in exp are missing, newvar is set to missing. Also see mean().

Remarks and examples stata.com

Remarks are presented under the following headings:

Summary statistics
Missing values
Generating patterns
Marking differences among variables
Ranks
Standardized variables
Row functions
Categorical and integer variables
String variables

See Mitchell (2020) for numerous examples using egen.

Summary statistics

The functions count(), iqr(), kurt(), mad(), max(), mdev(), mean(), median(), min(),
mode(), pc(), pctile(), sd(), skew(), and total() create variables containing summary statistics.
These functions take a by . . . : prefix and, if specified, calculate the summary statistics within each
by-group.

Example 1: Without the by prefix

Without the by prefix, the result produced by these functions is a constant for every observation
in the data. For instance, we have data on cholesterol levels (chol) and wish to have a variable that,
for each patient, records the deviation from the average across all patients:

https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.1.2byvarlist
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.1.2byvarlist
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.1.2byvarlist
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
http://stata.com


egen — Extensions to generate 7

. use https://www.stata-press.com/data/r18/egenxmpl

. egen avg = mean(chol)

. generate deviation = chol - avg

Example 2: With the by prefix

These functions are most useful when the by prefix is specified. For instance, assume that our
dataset includes dcode, a hospital–patient diagnostic code, and los, the number of days that the
patient remained in the hospital. We wish to obtain the deviation in length of stay from the median
for all patients having the same diagnostic code:

. use https://www.stata-press.com/data/r18/egenxmpl2, clear

. by dcode, sort: egen medstay = median(los)

. generate deltalos = los - medstay

Example 3: sum() function and egen total()

Distinguish carefully between Stata’s sum() function and egen’s total() function. Stata’s sum()
function creates the running sum, whereas egen’s total() function creates a constant equal to the
overall sum, for example,

. clear

. set obs 5
Number of observations (_N) was 0, now 5.

. generate a = _n

. generate sum1 = sum(a)

. egen sum2 = total(a)

. list

a sum1 sum2

1. 1 1 15
2. 2 3 15
3. 3 6 15
4. 4 10 15
5. 5 15 15

Definitions of egen summary functions

The definitions and formulas used by egen summary functions are the same as those used by
summarize; see [R] summarize. For comparison with summarize, mean() and sd() correspond
to the mean and standard deviation. total() is the numerator of the mean, and count() is its
denominator. min() and max() correspond to the minimum and maximum. median()—or, equally
well, pctile() with p(50)—is the median. pctile() with p(5) refers to the 5th percentile, and
so on. iqr() is the difference between the 75th and 25th percentiles.

The mode is the most common value of a dataset, whether it contains numeric or string variables.
It is perhaps most useful for categorical variables (whether defined by integers or strings) or for other
integer-valued values, but mode() can be applied to variables of any type. Nevertheless, the modes
of continuous (or nearly continuous) variables are perhaps better estimated either from inspection of
a graph of a frequency distribution or from the results of some density estimation (see [R] kdensity).

https://www.stata.com/manuals/rsummarize.pdf#rsummarize
https://www.stata.com/manuals/rkdensity.pdf#rkdensity


8 egen — Extensions to generate

Missing values need special attention. egen newvar = mode(varname) calculates the mode of all
nonmissing observations, and the variable newvar containing the mode is filled in for all observations,
even those for which varname is missing (except for observations excluded using an if or in
statement). This allows use of mode() as a simple way to impute categorical variables.

Missing values are by default excluded from the determination of modes (whether missing is
defined by the period [.] or extended missing values [.a, .b, . . . , .z] for numeric variables or
the empty string [""] for string variables). However, missing may be the most common value in a
variable, and you want mode() to report this value as the mode. To include missing values as possible
values for the mode, use the missing option. See Missing values below for more on missing values.

mad() and mdev() produce alternative measures of spread. The median absolute deviation from the
median and even the mean deviation will both be more resistant than the standard deviation to heavy
tails or outliers, in particular from distributions with heavier tails than the normal or Gaussian. The
first measure was named the MAD by Andrews et al. (1972) but was already known to K. F. Gauss in
1816, according to Hampel et al. (1986). For more historical and statistical details, see David (1998)
and Wilcox (2003, 72–73).

Missing values

Missing values in the argument to egen functions (typically, varname, an expression, or varlist)
are generally handled in one of three ways. Functions that calculate a single statistic for varname or
an expression (for example, mean() and total()) fill in the result for all observations, including
those for which varname or the expression is missing.

Functions that calculate results that potentially differ observation by observation (for example,
group() and rank()) generally generate missing values for the result for observations where varname
or the expression is missing.

Functions that take varlist (for example, rowmean()) generally generate a missing value for the
result only when every variable in varlist is missing for that observation.

Example 4: How missing values are handled

Here’s an example of how mean() handles missing values.

. use https://www.stata-press.com/data/r18/egenxmpl1, clear

. egen y = mean(x)

. list x y

x y

1. 0 3
2. 5 3
3. 2 3
4. 5 3
5. 3 3

6. . 3
7. .a 3

The result y is filled in for all observations, including the 6th and 7th observations where x is missing.
If you do not want this behavior, you can explicitly exclude missing values using an if statement.



egen — Extensions to generate 9

. egen z = mean(x) if !missing(x)
(2 missing values generated)

. list x z

x z

1. 0 3
2. 5 3
3. 2 3
4. 5 3
5. 3 3

6. . .
7. .a .

Other functions, such as group(), by default exclude missing values. If you want to treat missing
values just like other values and let them be part of the enumerated groups as well, use the missing
option.

. egen g1 = group(x)
(2 missing values generated)

. egen g2 = group(x), missing

. list x g1 g2

x g1 g2

1. 0 1 1
2. 5 4 4
3. 2 2 2
4. 5 4 4
5. 3 3 3

6. . . 5
7. .a . 6

With the missing option, the missing values “.” and “.a” are placed in two distinct groups, the 5th
and 6th groups, in the result g2.

Here’s an example of how rowmean() and rowtotal() handle missing values.

. egen m = rowmean(x1 x2 x3 x4)
(1 missing value generated)

. egen t1 = rowtotal(x1 x2 x3 x4)

. egen t2 = rowtotal(x1 x2 x3 x4), missing
(1 missing value generated)

. list x1 x2 x3 x4 m t1 t2

x1 x2 x3 x4 m t1 t2

1. 2 6 4 8 5 20 20
2. 9 . 0 3 4 12 12
3. . .a .b 2 2 2 2
4. . .a 3 6 4.5 9 9
5. 4 5 5 2 4 16 16

6. 7 8 4 5 6 24 24
7. .b .a . . . 0 .



10 egen — Extensions to generate

rowmean() uses all the nonmissing values to calculate the mean of a row, ignoring any missing
values. In the first row, all four variables are nonmissing, so the result is the mean of these four
values. In the second row, three variables are nonmissing, and the result is the mean of these three
values. In the third row, only one variable is nonmissing, and the result is simply the mean of this
one value, that is, the value itself.

rowtotal() is similar to rowmean(), except that by default the total is 0 when all four variables
are missing. See the 7th observation in this example. The result t1 is 0 in this case. If you want
rowtotal() to behave like rowmean(), use the missing option. The result t2 is produced with
this option, and you can see it is missing for the 7th observation, just like the rowmean() result.

Several egen functions have a missing option. See Syntax for the description of what missing
does with each function that has this option—or better yet create a simple example, and run the
function with and without the missing option.

Generating patterns

To create a sequence of numbers, simply “show” the fill() function how the sequence should
look. It must be a linear progression to produce the expected results. Stata does not understand
geometric progressions. To produce repeating patterns, you present fill() with the pattern twice in
the numlist.

Example 5: Sequences produced by fill( )

Here are some examples of ascending and descending sequences produced by fill():

. clear

. set obs 12
Number of observations (_N) was 0, now 12.

. egen i = fill(1 2)

. egen w = fill(100 99)

. egen x = fill(22 17)

. egen y = fill(1 1 2 2)

. egen z = fill(8 8 8 7 7 7)

. list, sep(4)

i w x y z

1. 1 100 22 1 8
2. 2 99 17 1 8
3. 3 98 12 2 8
4. 4 97 7 2 7

5. 5 96 2 3 7
6. 6 95 -3 3 7
7. 7 94 -8 4 6
8. 8 93 -13 4 6

9. 9 92 -18 5 6
10. 10 91 -23 5 5
11. 11 90 -28 6 5
12. 12 89 -33 6 5



egen — Extensions to generate 11

Example 6: Patterns produced by fill( )

Here are examples of patterns produced by fill():

. clear

. set obs 12
Number of observations (_N) was 0, now 12.

. egen a = fill(0 0 1 0 0 1)

. egen b = fill(1 3 8 1 3 8)

. egen c = fill(-3(3)6 -3(3)6)

. egen d = fill(10 20 to 50 10 20 to 50)

. list, sep(4)

a b c d

1. 0 1 -3 10
2. 0 3 0 20
3. 1 8 3 30
4. 0 1 6 40

5. 0 3 -3 50
6. 1 8 0 10
7. 0 1 3 20
8. 0 3 6 30

9. 1 8 -3 40
10. 0 1 0 50
11. 0 3 3 10
12. 1 8 6 20

Example 7: seq( )

seq() creates a new variable containing one or more sequences of integers. It is useful mainly
for quickly creating observation identifiers or automatically numbering levels of factors or categorical
variables.

. clear

. set obs 12

In the simplest case,

. egen a = seq()

is just equivalent to the common idiom

. generate a = _n

a may also be obtained from

. range a 1 _N

(the actual value of N may also be used).

In more complicated cases, seq() with option calls is equivalent to calls to the versatile functions
int and mod.

. egen b = seq(), b(2)



12 egen — Extensions to generate

produces integers in blocks of 2, whereas

. egen c = seq(), t(6)

restarts the sequence after 6 is reached.

. egen d = seq(), f(10) t(12)

shows that sequences may start with integers other than 1, and

. egen e = seq(), f(3) t(1)

shows that they may decrease.

The results of these commands are shown by

. list, sep(4)

a b c d e

1. 1 1 1 10 3
2. 2 1 2 11 2
3. 3 2 3 12 1
4. 4 2 4 10 3

5. 5 3 5 11 2
6. 6 3 6 12 1
7. 7 4 1 10 3
8. 8 4 2 11 2

9. 9 5 3 12 1
10. 10 5 4 10 3
11. 11 6 5 11 2
12. 12 6 6 12 1

All of these sequences could have been generated in one line with generate and with the use of
the int and mod functions. The variables b through e are obtained with

. gen b = 1 + int((_n - 1)/2)

. gen c = 1 + mod(_n - 1, 6)

. gen d = 10 + mod(_n - 1, 3)

. gen e = 3 - mod(_n - 1, 3)

Nevertheless, seq() may save users from puzzling out such solutions or from typing in the needed
values.

In general, the sequences produced depend on the sort order of observations, following three rules:

1. observations excluded by if or in are not counted;

2. observations are sorted by varlist, if specified; and

3. otherwise, the order is that specified when seq() is called.

The fill() and seq() functions are alternatives. In essence, fill() requires a minimal example
that indicates the kind of sequence required, whereas seq() requires that the rule be specified through
options. There are sequences that fill() can produce that seq() cannot, and vice versa. fill()
cannot be combined with if or in, in contrast to seq(), which can.



egen — Extensions to generate 13

Marking differences among variables

Example 8: diff( )

We have three measures of respondents’ income obtained from different sources. We wish to create
the variable differ equal to 1 for disagreements:

. use https://www.stata-press.com/data/r18/egenxmpl3, clear

. egen byte differ = diff(inc*)

. list if differ==1

inc1 inc2 inc3 id differ

10. 42,491 41,491 41,491 110 1
11. 26,075 25,075 25,075 111 1
12. 26,283 25,283 25,283 112 1
78. 41,780 41,780 41,880 178 1

100. 25,687 26,687 25,687 200 1

101. 25,359 26,359 25,359 201 1
102. 25,969 26,969 25,969 202 1
103. 25,339 26,339 25,339 203 1
104. 25,296 26,296 25,296 204 1
105. 41,800 41,000 41,000 205 1

134. 26,233 26,233 26,133 234 1

Rather than typing diff(inc*), we could have typed diff(inc1 inc2 inc3).

Ranks

Example 9: rank( )

Most applications of rank() will be to one variable, but the argument exp can be more gen-
eral, namely, an expression. In particular, rank(-varname) reverses ranks from those obtained by
rank(varname).

The default ranking and those obtained by using one of the track, field, and unique options
differ principally in their treatment of ties. The default is to assign the same rank to tied values
such that the sum of the ranks is preserved. The track option assigns the same rank but resembles
the convention in track events; thus, if one person had the lowest time and three persons tied for
second-lowest time, their ranks would be 1, 2, 2, and 2, and the next person(s) would have rank 5.
The field option acts similarly except that the highest is assigned rank 1, as in field events in which
the greatest distance or height wins. The unique option breaks ties arbitrarily: its most obvious use
is assigning ranks for a graph of ordered values. See also group() for another kind of “ranking”.

. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)

. keep in 1/10
(64 observations deleted)

. egen rank = rank(mpg)

. egen rank_r = rank(-mpg)

. egen rank_f = rank(mpg), field



14 egen — Extensions to generate

. egen rank_t = rank(mpg), track

. egen rank_u = rank(mpg), unique

. egen rank_ur = rank(-mpg), unique

. sort rank_u

. list mpg rank*

mpg rank rank_r rank_f rank_t rank_u rank_ur

1. 15 1 10 10 1 1 10
2. 16 2 9 9 2 2 9
3. 17 3 8 8 3 3 8
4. 18 4 7 7 4 4 7
5. 19 5 6 6 5 5 6

6. 20 6.5 4.5 4 6 6 4
7. 20 6.5 4.5 4 6 7 5
8. 22 8.5 2.5 2 8 8 2
9. 22 8.5 2.5 2 8 9 3

10. 26 10 1 1 10 10 1

Standardized variables

Example 10: std( )

We have a variable called age recording the median age in the 50 states. We wish to create the
standardized value of age and verify the calculation:

. use https://www.stata-press.com/data/r18/states1, clear
(State data)

. egen stdage = std(age)

. summarize age stdage

Variable Obs Mean Std. dev. Min Max

age 50 29.54 1.693445 24.2 34.7
stdage 50 6.41e-09 1 -3.153336 3.047044

. correlate age stdage
(obs=50)

age stdage

age 1.0000
stdage 1.0000 1.0000

summarize shows that the new variable has a mean of approximately zero; 10−9 is the precision of
a float and is close enough to zero for all practical purposes. If we wanted, we could have typed
egen double stdage = std(age), making stdage a double-precision variable, and the mean would
have been 10−16. In any case, summarize also shows that the standard deviation is 1. correlate
shows that the new variable and the original variable are perfectly correlated.



egen — Extensions to generate 15

We may optionally specify the mean and standard deviation for the new variable. For instance,

. egen newage1 = std(age), sd(2)

. egen newage2 = std(age), mean(2) sd(4)

. egen newage3 = std(age), mean(2)

. summarize age newage1-newage3

Variable Obs Mean Std. dev. Min Max

age 50 29.54 1.693445 24.2 34.7
newage1 50 1.28e-08 2 -6.306671 6.094089
newage2 50 2 4 -10.61334 14.18818
newage3 50 2 1 -1.153336 5.047044

. correlate age newage1-newage3
(obs=50)

age newage1 newage2 newage3

age 1.0000
newage1 1.0000 1.0000
newage2 1.0000 1.0000 1.0000
newage3 1.0000 1.0000 1.0000 1.0000

Row functions

Example 11: rowtotal( )

generate’s sum() function creates the vertical, running sum of its argument, whereas egen’s
total() function creates a constant equal to the overall sum. egen’s rowtotal() function, however,
creates the horizontal sum of its arguments. They all treat missing as zero. However, if the missing
option is specified with total() or rowtotal(), then newvar will contain missing values if all
values of exp or varlist are missing.

. use https://www.stata-press.com/data/r18/egenxmpl4, clear

. egen hsum = rowtotal(a b c)

. generate vsum = sum(hsum)

. egen sum = total(hsum)

. list

a b c hsum vsum sum

1. . 2 3 5 5 63
2. 4 . 6 10 15 63
3. 7 8 . 15 30 63
4. 10 11 12 33 63 63



16 egen — Extensions to generate

Example 12: rowmean( ), rowmedian( ), rowpctile( ), rowsd( ), and rownonmiss( )

summarize displays the mean and standard deviation of a variable across observations; program
writers can access the mean in r(mean) and the standard deviation in r(sd) (see [R] summarize).
egen’s rowmean() function creates the means of observations across variables. rowmedian() creates
the medians of observations across variables. rowpctile() returns the #th percentile of the vari-
ables specified in varlist. rowsd() creates the standard deviations of observations across variables.
rownonmiss() creates a count of the number of nonmissing observations, the denominator of the
rowmean() calculation:

. use https://www.stata-press.com/data/r18/egenxmpl4, clear

. egen avg = rowmean(a b c)

. egen median = rowmedian(a b c)

. egen pct25 = rowpctile(a b c), p(25)

. egen std = rowsd(a b c)

. egen n = rownonmiss(a b c)

. list

a b c avg median pct25 std n

1. . 2 3 2.5 2.5 2 .7071068 2
2. 4 . 6 5 5 4 1.414214 2
3. 7 8 . 7.5 7.5 7 .7071068 2
4. 10 11 12 11 11 10 1 3

Example 13: rowmiss( )

rowmiss() returns k−rownonmiss(), where k is the number of variables specified. rowmiss()
can be especially useful for finding casewise-deleted observations caused by missing values.

. use https://www.stata-press.com/data/r18/auto3, clear
(1978 automobile data)

. correlate price weight mpg
(obs=70)

price weight mpg

price 1.0000
weight 0.5309 1.0000

mpg -0.4478 -0.7985 1.0000

. egen excluded = rowmiss(price weight mpg)

. list make price weight mpg if excluded~=0

make price weight mpg

5. Buick Electra . 4,080 15
12. Cad. Eldorado 14,500 3,900 .
40. Olds Starfire 4,195 . 24
51. Pont. Phoenix . 3,420 .

https://www.stata.com/manuals/rsummarize.pdf#rsummarize


egen — Extensions to generate 17

Example 14: rowmin( ), rowmax( ), rowfirst( ), and rowlast( )

rowmin(), rowmax(), rowfirst(), and rowlast() return the minimum, maximum, first, or last
nonmissing value, respectively, for the specified variables within an observation (row).

. use https://www.stata-press.com/data/r18/egenxmpl5, clear

. egen min = rowmin(x y z)
(1 missing value generated)

. egen max = rowmax(x y z)
(1 missing value generated)

. egen first = rowfirst(x y z)
(1 missing value generated)

. egen last = rowlast(x y z)
(1 missing value generated)

. list, sep(4)

x y z min max first last

1. -1 2 3 -1 3 -1 3
2. . -6 . -6 -6 -6 -6
3. 7 . -5 -5 7 7 -5
4. . . . . . . .

5. 4 . . 4 4 4 4
6. . . 8 8 8 8 8
7. . 3 7 3 7 3 7
8. 5 -1 6 -1 6 5 6

Categorical and integer variables

Example 15: anyvalue( ), anymatch( ), and anycount( )

anyvalue(), anymatch(), and anycount() are for categorical or other variables taking integer
values. If we define a subset of values specified by an integer numlist (see [U] 11.1.8 numlist),
anyvalue() extracts the subset, leaving every other value missing; anymatch() defines an indicator
variable (1 if in subset, 0 otherwise); and anycount() counts occurrences of the subset across a set
of variables. Therefore, with just one variable, anymatch(varname) and anycount(varname) are
equivalent.

With the auto dataset, we can generate a variable containing the high values of rep78 and a
variable indicating whether rep78 has a high value:

. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)

. egen hirep = anyvalue(rep78), v(3/5)
(15 missing values generated)

. egen ishirep = anymatch(rep78), v(3/5)

Here it is easy to produce the same results with official Stata commands:

. generate hirep = rep78 if inlist(rep78,3,4,5)

. generate byte ishirep = inlist(rep78,3,4,5)

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist


18 egen — Extensions to generate

However, as the specification becomes more complicated or involves several variables, the egen
functions may be more convenient.

Example 16: group( )

group() maps the distinct groups of a varlist to a categorical variable that takes on integer values
from 1 to the total number of groups. order of the groups is that of the sort order of varlist. The varlist
may be of numeric variables, string variables, or a mixture of the two. The resulting variable can be
useful for many purposes, including stepping through the distinct groups easily and systematically
and cleaning up an untidy ordering. Suppose that the actual (and arbitrary) codes present in the data
are 1, 2, 4, and 7, but we desire equally spaced numbers, as when the codes will be values on one
axis of a graph. group() maps these to 1, 2, 3, and 4.

We have a variable agegrp that takes on the values 24, 40, 50, and 65, corresponding to age
groups 18–24, 25–40, 41–50, and 51 and above. Perhaps we created this coding using the recode()
function (see [U] 13.3 Functions and [U] 26 Working with categorical data and factor variables)
from another age-in-years variable:

. generate agegrp=recode(age,24,40,50,65)

We now want to change the codes to 1, 2, 3, and 4:

. egen agegrp2 = group(agegrp)

Example 17: group( ) with missing values

We have two categorical variables, race and sex, which may be string or numeric. We want to
use ir (see [R] Epitab) to create a Mantel–Haenszel weighted estimate of the incidence rate. ir,
however, allows only one variable to be specified in its by() option. We type

. use https://www.stata-press.com/data/r18/egenxmpl6, clear

. egen racesex = group(race sex)
(2 missing values generated)

. ir deaths smokes pyears, by(racesex)
(output omitted )

The new numeric variable, racesex, will be missing wherever race or sex is missing (meaning .
for numeric variables and "" for string variables), so missing values will be handled correctly. When
we list some of the data, we see

. list race sex racesex in 1/7, sep(0)

race sex racesex

1. White Female 1
2. White Male 2
3. Black Female 3
4. Black Male 4
5. Black Male 4
6. . Female .
7. Black . .

group() began by putting the data in the order of the grouping variables and then assigned the
numeric codes. Observations 6 and 7 were assigned to racesex = . because, in one case, race was
not known, and in the other, sex was not known. (These observations were not used by ir.)

https://www.stata.com/manuals/u13.pdf#u13.3Functions
https://www.stata.com/manuals/u26.pdf#u26Workingwithcategoricaldataandfactorvariables
https://www.stata.com/manuals/repitab.pdf#rEpitab


egen — Extensions to generate 19

If we wanted the unknown groups to be treated just as any other category, we could have typed

. egen rs2 = group(race sex), missing

. list race sex rs2 in 1/7, sep(0)

race sex rs2

1. White Female 1
2. White Male 2
3. Black Female 3
4. Black Male 4
5. Black Male 4
6. . Female 6
7. Black . 5

The resulting variable from group() does not have value labels. Therefore, the values carry no
indication of meaning. Interpretation requires comparison with the original varlist. To get value labels,
we specify the option label.

. egen rs3 = group(race sex), missing label

. list race sex rs3 in 1/7, sep(0)

race sex rs3

1. White Female White Female
2. White Male White Male
3. Black Female Black Female
4. Black Male Black Male
5. Black Male Black Male
6. . Female . Female
7. Black . Black .

The numeric values of the generated variable rs3 are the same as rs2, but rs3 has a value label that
indicates the categories of race and sex that define the groups. The value label created by group()
uses the actual values of the categorical variables or their value labels, if they exist. In this case, the
categorical variables race and sex are numeric variables with value labels, so their value labels were
used to create the value label for rs3.

String variables

Concatenation of string variables is provided in Stata. In context, Stata understands the addition
symbol + as specifying concatenation or adding strings end to end. "soft" + "ware" produces
"software", and given string variables s1 and s2, s1 + s2 indicates their concatenation.

The complications that may arise in practice include wanting 1) to concatenate the string versions
of numeric variables and 2) to concatenate variables, together with some separator such as a space
or a comma. Given numeric variables n1 and n2,

. generate newstr = s1 + string(n1) + string(n2) + s2

shows how numeric values may be converted to their string equivalents before concatenation, and

. generate newstr = s1 + " " + s2 + " " + s3

shows how spaces may be added between variables. Stata will automatically assign the most appropriate
data type for the new string variables.



20 egen — Extensions to generate

Example 18: concat( )

concat() allows us to do everything in one line concisely.
. egen newstr = concat(s1 n1 n2 s2)

carries with it an implicit instruction to convert numeric values to their string equivalents, and the
appropriate string data type is worked out within concat() by Stata’s automatic promotion. Moreover,

. egen newstr = concat(s1 s2 s3), p(" ")

specifies that spaces be used as separators. (The default is to have no separation of concatenated
strings.)

As an example of punctuation other than a space, consider
. egen fullname = concat(surname forename), p(", ")

Noninteger numerical values can cause difficulties, but
. egen newstr = concat(n1 n2), format(%9.3f) p(" ")

specifies the use of format %9.3f. This is equivalent to
. generate str1 newstr = ""

. replace newstr = string(n1,"%9.3f") + " " + string(n2,"%9.3f")

See [FN] String functions for more about string().

As a final flourish, the decode option instructs concat() to use value labels. With that option,
the maxlength() option may also be used. For more details about decode, see [D] encode. Unlike
the decode command, however, concat() uses string(varname), not "", whenever values of
varname are not associated with value labels, and the format() option, whenever specified, applies
to this use of string().

Example 19: ends( )

The ends(strvar) function is used for subdividing strings. The approach is to find specified
separators by using the strpos() string function and then to extract what is desired, which either
precedes or follows the separators, using the substr() string function.

By default, substrings are considered to be separated by individual spaces, so we will give definitions
in those terms and then generalize.

The head of the string is whatever precedes the first space or is the whole of the string if no space
occurs. This could also be called the first “word”. The tail of the string is whatever follows the first
space. This could be nothing or one or more words. The last word in the string is whatever follows
the last space or is the whole of the string if no space occurs.

To clarify, let’s look at some examples. The quotation marks here just mark the limits of each
string and are not part of the strings.

head tail last

"frog" "frog" "" "frog"
"frog toad" "frog" "toad" "toad"

"frog toad newt" "frog" "toad newt" "newt"
"frog toad newt" "frog" " toad newt" "newt"
"frog toad newt" "frog" "toad newt" "newt"

https://www.stata.com/manuals/fnstringfunctions.pdf#fnStringfunctions
https://www.stata.com/manuals/fnstringfunctions.pdf#fnStringfunctionsstring()
https://www.stata.com/manuals/dencode.pdf#dencode


egen — Extensions to generate 21

The main subtlety is that these functions are literal, so the tail of "frog toad newt", in which
two spaces follow "frog", includes the second of those spaces, and is thus " toad newt". Therefore,
you may prefer to use the trim option to trim the result of any leading or trailing spaces, producing
"toad newt" in this instance.

The punct(pchars) option may be used to specify separators other than spaces. The general
definitions of the head, tail, and last options are therefore interpreted in terms of whatever
separator has been specified; that is, they are relative to the first or last occurrence of the separator
in the string value. Thus, with punct(,) and the string "Darwin, Charles Robert", the head is
"Darwin", and the tail and the last are both " Charles Robert". Note again the leading space in
this example, which may be trimmed with trim. The punctuation (here the comma, “,”) is discarded,
just as it is with one space.

pchars, the argument of punct(), will usually, but not always, be one character. If two or more
characters are specified, these must occur together; for example, punct(:;) would mean that words
are separated by a colon followed by a semicolon (that is, :;). It is not implied, in particular, that the
colon and semicolon are alternatives. To do that, you would have to modify the programs presented
here or resort to first principles by using split; see [D] split.

With personal names, the head or last option might be applied to extract surnames if strings
were similar to "Darwin, Charles Robert" or "Charles Robert Darwin", with the surname
coming first or last. What then happens with surnames like "von Neumann" or "de la Mare"? "von
Neumann, John" is no problem, if the comma is specified as a separator, but the last option is not
intelligent enough to handle "Walter de la Mare" properly.

Acknowledgments
The cut() function was written by David Clayton (retired) of the Cambridge Institute for Medical

Research and Michael Hills (1934–2021) of the London School of Hygiene and Tropical Medicine.

Many of the other egen functions were written by Nicholas J. Cox of the Department of Geography
at Durham University, UK, and coeditor of the Stata Journal and author of Speaking Stata Graphics.

References
Andrews, D. F., P. J. Bickel, F. R. Hampel, P. J. Huber, W. H. Rogers, and J. W. Tukey. 1972. Robust Estimates of

Location: Survey and Advances. Princeton, NJ: Princeton University Press.

Cappellari, L., and S. P. Jenkins. 2006. Calculation of multivariate normal probabilities by simulation, with applications
to maximum simulated likelihood estimation. Stata Journal 6: 156–189.

Cox, N. J. 2009. Speaking Stata: Rowwise. Stata Journal 9: 137–157.

. 2014. Speaking Stata: Self and others. Stata Journal 14: 432–444.

. 2020. Speaking Stata: More ways for rowwise. Stata Journal 20: 481–488.

. 2021. Speaking Stata: Ordering or ranking groups of observations. Stata Journal 21: 818–837.

. 2022. Speaking Stata: The largest five—A tale of tail values. Stata Journal 22: 446–459.

. 2023. Speaking Stata: Replacing missing values: The easiest problems. Stata Journal 23: 884–896.

Cox, N. J., and C. B. Schechter. 2018. Speaking Stata: Seven steps for vexatious string variables. Stata Journal 18:
981–994.

David, H. A. 1998. Early sample measures of variability. Statistical Science 13: 368–377.
https://doi.org/10.1214/ss/1028905831.

https://www.stata.com/manuals/dsplit.pdf#dsplit
http://www.stata-journal.com/
http://www.stata-press.com/books/speaking-stata-graphics/
http://www.stata-journal.com/article.html?article=st0101
http://www.stata-journal.com/article.html?article=st0101
http://www.stata-journal.com/article.html?article=pr0046
http://www.stata-journal.com/article.html?article=dm0075
https://doi.org/10.1177/1536867X20931007
https://doi.org/10.1177/1536867X211045582
https://doi.org/10.1177/1536867X221106436
https://doi.org/10.1177/1536867X231196519
http://www.stata-journal.com/article.html?article=dm0098
https://doi.org/10.1214/ss/1028905831
https://doi.org/10.1214/ss/1028905831


22 egen — Extensions to generate

Gallup, J. L. 2019. Grade functions. Stata Journal 19: 459–476.

Hampel, F. R., E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel. 1986. Robust Statistics: The Approach Based
on Influence Functions. New York: Wiley.

Huber, C. 2014. How to simulate multilevel/longitudinal data. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/.

Kohler, U., and J. Zeh. 2012. Apportionment methods. Stata Journal 12: 375–392.

Mitchell, M. N. 2020. Data Management Using Stata: A Practical Handbook. 2nd ed. College Station, TX: Stata
Press.

Pinzon, E. 2015. Fixed effects or random effects: The Mundlak approach. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2015/10/29/fixed-effects-or-random-effects-the-mundlak-approach/.

Rios-Avila, F. 2020. Recentered influence functions (RIFs) in Stata: RIF regression and RIF decomposition. Stata
Journal 20: 51–94.

Salas Pauliac, C. H. 2013. group2: Generating the finest partition that is coarser than two given partitions. Stata
Journal 13: 867–875.

Weiss, M. 2009. Stata tip 80: Constructing a group variable with specified group sizes. Stata Journal 9: 640–642.

Wilcox, R. R. 2003. Applying Contemporary Statistical Techniques. San Diego, CA: Academic Press.

Also see
[D] collapse — Make dataset of summary statistics

[D] generate — Create or change contents of variable

[U] 13.3 Functions

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. Other brand and product names are registered trademarks or
trademarks of their respective companies. Copyright c© 1985–2023 StataCorp LLC,
College Station, TX, USA. All rights reserved.

®

https://doi.org/10.1177/1536867X19854020
http://blog.stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/
http://blog.stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/
http://www.stata-journal.com/article.html?article=st0265
http://www.stata-press.com/books/data-management-using-stata/
http://blog.stata.com/2015/10/29/fixed-effects-or-random-effects-the-mundlak-approach/
http://blog.stata.com/2015/10/29/fixed-effects-or-random-effects-the-mundlak-approach/
https://doi.org/10.1177/1536867X20909690
http://www.stata-journal.com/article.html?article=dm0073
http://www.stata-journal.com/article.html?article=st0181
https://www.stata.com/manuals/dcollapse.pdf#dcollapse
https://www.stata.com/manuals/dgenerate.pdf#dgenerate
https://www.stata.com/manuals/u13.pdf#u13.3Functions

