Description

`corr2data` adds new variables with specified covariance (correlation) structure to the existing dataset or creates a new dataset with a specified covariance (correlation) structure. Singular covariance (correlation) structures are permitted. The purpose of this is to allow you to perform analyses from summary statistics (correlations/covariances and maybe the means) when these summary statistics are all you know and summary statistics are sufficient to obtain results. For example, these summary statistics are sufficient for performing analysis of \(t \) tests, variance, principal components, regression, and factor analysis. The recommended process is

```
. clear                \( \text{clear memory} \)
. corr2data ..., n(#) cov(...) \( \text{create artificial data} \)
. regress ...         \( \text{use artificial data appropriately} \)
```

However, for factor analyses and principal components, the commands `factormat` and `pcamat` allow you to skip the step of using `corr2data`; see [MV] `factor` and [MV] `pca`.

The data created by `corr2data` are artificial; they are not the original data, and it is not a sample from an underlying population with the summary statistics specified. See [D] `drawnorm` if you want to generate a random sample. In a sample, the summary statistics will differ from the population values and will differ from one sample to the next.

The dataset `corr2data` creates is suitable for one purpose only: performing analyses when all that is known are summary statistics and those summary statistics are sufficient for the analysis at hand. The artificial data tricks the analysis command into producing the desired result. The analysis command, being by assumption only a function of the summary statistics, extracts from the artificial data the summary statistics, which are the same summary statistics you specified, and then makes its calculation based on those statistics.

If you doubt whether the analysis depends only on the specified summary statistics, you can generate different artificial datasets by using different seeds of the random-number generator (see the `seed()` option below) and compare the results, which should be the same within rounding error.

Quick start

Create dataset with 1,000 observations, \(v_1 \) with mean of 3.4 and std. dev. of 1, \(v_2 \) with mean of 3 and std. dev. of 0.5, and no correlation between \(v_1 \) and \(v_2 \)

```
corr2data v1 v2, n(1000) means(3.4 3) sds(1 .5)
```

As above, but with correlation between \(v_1 \) and \(v_2 \) specified in matrix `mymat`

```
corr2data v1 v2, n(1000) means(3.4 3) sds(1 .5) corr(mymat)
```
Menu

Data > Create or change data > Other variable-creation commands > Create dataset with specified correlation structure

Syntax

\[
corr2data \ newvarlist \ [\ , \ options]\]

<table>
<thead>
<tr>
<th>options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
<td></td>
</tr>
<tr>
<td>clear</td>
<td>replace the current dataset</td>
</tr>
<tr>
<td>double</td>
<td>generate variable type as double; default is float</td>
</tr>
<tr>
<td>n(#)</td>
<td>generate # observations; default is current number</td>
</tr>
<tr>
<td>sds(vector)</td>
<td>standard deviations of generated variables</td>
</tr>
<tr>
<td>corr(matrix</td>
<td>vector)</td>
</tr>
<tr>
<td>cov(matrix</td>
<td>vector)</td>
</tr>
<tr>
<td>cstorage(full)</td>
<td>store correlation/covariance structure as a symmetric (k \times k) matrix</td>
</tr>
<tr>
<td>cstorage(lower)</td>
<td>store correlation/covariance structure as a lower triangular matrix</td>
</tr>
<tr>
<td>cstorage(upper)</td>
<td>store correlation/covariance structure as an upper triangular matrix</td>
</tr>
<tr>
<td>forcepsd</td>
<td>force the covariance/correlation matrix to be positive semidefinite</td>
</tr>
<tr>
<td>means(vector)</td>
<td>means of generated variables; default is means(0)</td>
</tr>
<tr>
<td>Options</td>
<td></td>
</tr>
<tr>
<td>seed(#)</td>
<td>seed for random-number generator</td>
</tr>
</tbody>
</table>

Options

- clear specifies that it is okay to replace the dataset in memory, even though the current dataset has not been saved on disk.
- double specifies that the new variables be stored as Stata doubles, meaning 8-byte reals. If double is not specified, variables are stored as floats, meaning 4-byte reals. See [D] Data types.
- n(#) specifies the number of observations to be generated; the default is the current number of observations. If n(#) is not specified or is the same as the current number of observations, corr2data adds the new variables to the existing dataset; otherwise, corr2data replaces the dataset in memory.
- sds(vector) specifies the standard deviations of the generated variables. sds() may not be specified with cov().
- corr(matrix | vector) specifies the correlation matrix. If neither corr() nor cov() is specified, the default is orthogonal data.
- cov(matrix | vector) specifies the covariance matrix. If neither corr() nor cov() is specified, the default is orthogonal data.
cstorage(full | lower | upper) specifies the storage mode for the correlation or covariance structure in corr() or cov(). The following storage modes are supported:

full specifies that the correlation or covariance structure is stored (recorded) as a symmetric \(k \times k \) matrix.

lower specifies that the correlation or covariance structure is recorded as a lower triangular matrix. With \(k \) variables, the matrix should have \(k(k+1)/2 \) elements in the following order:

\[
C_{11} \quad C_{21} \quad C_{22} \quad C_{31} \quad C_{32} \quad C_{33} \quad \ldots \quad C_{k1} \quad C_{k2} \quad \ldots \quad C_{kk}
\]

upper specifies that the correlation or covariance structure is recorded as an upper triangular matrix. With \(k \) variables, the matrix should have \(k(k+1)/2 \) elements in the following order:

\[
C_{11} \quad C_{12} \quad C_{13} \quad \ldots \quad C_{1k} \quad C_{22} \quad C_{23} \quad \ldots \quad C_{2k} \quad \ldots \quad C_{(k-1)k} \quad C_{kk}
\]

Specifying cstorage(full) is optional if the matrix is square. cstorage(lower) or cstorage(upper) is required for the vectorized storage methods. See Storage modes for correlation and covariance matrices in [D] drawnorm for examples.

forcepsd modifies the matrix \(C \) to be positive semidefinite (psd) and to thus be a proper covariance matrix. If \(C \) is not positive semidefinite, it will have negative eigenvalues. By setting the negative eigenvalues to 0 and reconstructing, we obtain the least-squares positive-semidefinite approximation to \(C \). This approximation is a singular covariance matrix.

means(vector) specifies the means of the generated variables. The default is means(0).

Options

| seed(#) specifies the seed of the random-number generator used to generate data. # defaults to 0. The random numbers generated inside corr2data do not affect the seed of the standard random-number generator. |
| Remarks and examples | stata.com |

corr2data is designed to enable analyses of correlation (covariance) matrices by commands that expect variables rather than a correlation (covariance) matrix. corr2data creates variables with exactly the correlation (covariance) that you want to analyze. Apart from means and covariances, all aspects of the data are meaningless. Only analyses that depend on the correlations (covariances) and means produce meaningful results. Thus you may perform a paired \(t \) test ([R] ttest) or an ordinary regression analysis ([R] regress), etc.

If you are not sure that a statistical result depends only on the specified summary statistics and not on other aspects of the data, you can generate different datasets, each having the same summary statistics but other different aspects, by specifying the seed() option. If the statistical results differ beyond what is attributable to roundoff error, then using corr2data is inappropriate.
We first run a regression using the auto dataset.

```
. use https://www.stata-press.com/data/r16/auto
   (1978 Automobile Data)
. regress weight length trunk
```

```
Source |     SS    df   MS           Number of obs =  74
       |        |        |                   F(2, 71) = 303.95
 Model | 39482774.4   2 19741387.2  Prob > F =    0.0000
 Residual | 4611403.95  71 64949.3513  R-squared =   0.8954
       |        |        |                   Adj R-squared = 0.8925
 Total | 44094178.4  73 604029.8411  Root MSE =    254.85

weight   Coef.   Std. Err.     t     P>|t|     [95% Conf. Interval]
length   33.83435   1.949751   17.35    0.000    29.94666    37.72204
trunk   -5.83515   10.14957   -0.57    0.567   -26.07282   14.40252
_cons   -3258.84    283.3547  -11.50    0.000  -3823.833   -2693.846
```

Suppose that, for some reason, we no longer have the auto dataset. Instead, we know the means and covariance matrices of weight, length, and trunk, and we want to do the same regression again. The matrix of means is

```
. matrix list M
M[1,3]           
   weight   length   trunk
    _cons  3019.4595  187.93243  13.756757
```

and the covariance matrix is

```
. matrix list V
symmetric V[3,3]           
   weight   length   trunk
    weight  604029.84
   length  16370.922   495.78989
   trunk   2234.6612   69.202518   18.296187
```

To do the regression analysis in Stata, we need to create a dataset that has the specified correlation structure.

```
. corr2data x y z, n(74) cov(V) means(M)
. regress weight length trunk
```

```
Source |     SS    df   MS           Number of obs =  74
       |        |        |                   F(2, 71) = 303.95
 Model | 39482774.4   2 19741387.2  Prob > F =    0.0000
 Residual | 4611403.95  71 64949.3513  R-squared =   0.8954
       |        |        |                   Adj R-squared = 0.8925
 Total | 44094178.4  73 604029.8411  Root MSE =    254.85

weight   Coef.   Std. Err.     t     P>|t|     [95% Conf. Interval]
length   33.83435   1.949751   17.35    0.000    29.94666    37.72204
trunk   -5.83515   10.14957   -0.57    0.567   -26.07282   14.40252
  _cons  -3258.84    283.3547  -11.50    0.000  -3823.833   -2693.846
```

The results from the regression based on the generated data are the same as those based on the real data.
Methods and formulas

Two steps are involved in generating the desired dataset. The first step is to generate a zero-mean, zero-correlated dataset. The second step is to apply the desired correlation structure and the means to the zero-mean, zero-correlated dataset. In both steps, we take into account that, given any matrix A and any vector of variables X, $\text{Var}(A'X) = A'\text{Var}(X)A$.

Reference

Also see

[D] Data types — Quick reference for data types
[D] drawnorm — Draw sample from multivariate normal distribution