STATA DATA MANAGEMENT
REFERENCE MANUAL
RELEASE 19

A Stata Press Publication
StataCorp LLC
College Station, Texas

=~ ® Copyright © 1985-2025 StataCorp LLC
710 \%l All rights reserved
/| Version 19

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845
ISBN-10: 1-59718-422-5
ISBN-13: 978-1-59718-422-9

This manual is protected by copyright. All rights are reserved. No part of this manual may be reproduced, stored in a
retrieval system, or transcribed, in any form or by any means—electronic, mechanical, photocopy, recording, or other-
wise—without the prior written permission of StataCorp LLC unless permitted subject to the terms and conditions of
a license granted to you by StataCorp LLC to use the software and documentation. No license, express or implied, by
estoppel or otherwise, to any intellectual property rights is granted by this document.

StataCorp provides this manual “as is” without warranty of any kind, either expressed or implied, including, but not lim-
ited to, the implied warranties of merchantability and fitness for a particular purpose. StataCorp may make improvements
and/or changes in the product(s) and the program(s) described in this manual at any time and without notice.

The software described in this manual is furnished under a license agreement or nondisclosure agreement. The software
may be copied only in accordance with the terms of the agreement. It is against the law to copy the software onto DVD,
CD, disk, diskette, tape, or any other medium for any purpose other than backup or archival purposes.

The automobile dataset appearing on the accompanying media is Copyright © 1979 by Consumers Union of U.S., Inc.,
Yonkers, NY 10703-1057 and is reproduced by permission from CONSUMER REPORTS, April 1979.

Stata, STATA, Stata Press, Mata, MATA, NetCourse, and NetCourseNow are registered trademarks of StataCorp LLC.
Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations.
StataNow is a trademark of StataCorp LLC.

Other brand and product names are registered trademarks or trademarks of their respective companies.

For copyright information about the software, type help copyright within Stata.

The suggested citation for this software is
StataCorp. 2025. Stata 19. Statistical software. StataCorp LLC.
The suggested citation for this manual is

StataCorp. 2025. Stata 19 Data Management Reference Manual. College Station, TX: Stata Press.

www.stata.com

https://www.stata.com

Contents

Intro Introduction to data management reference manual 1
Datamanagement Introduction to data management commands 2
APPENA L. Append datasets 8
ASSCIT & v vttt e e e e e e e e e Verify truth of claim 16
ASSEItNeSted Verify variables nested 21
beal ... Business calendar file manipulation 25
DY Repeat Stata command on subsets of the data 31
CA Change directory 35
Cf Compare two datasets 39
changeeol i Convert end-of-line characters of text file 42
checksum Calculate checksum of file 44
Clear o Clear memory 47
ClOMEVAT ... Clone existing variable 50
CodeboOK ...t e Describe data contents 53
collapse ..o Make dataset of summary statistics 64
FeT0) 1010 1 Compare two variables 74
COMMIPTESS .+« ¢ v et et et et e e e e e e e e et ettt e e e Compress data in memory 76
eT0) 11 o] A Make dataset of frequencies and percentages 78
COPY + ettt e e e e e Copy file from disk or URL 82
corr2data Create dataset with specified correlation structure 85
COUNE + vttt et e e e Count observations satisfying specified conditions 90
CTOSS & vttt et ettt e Form every pairwise combination of two datasets 92
Data tyPes v vttt Quick reference for data types 94
datasignature Determine whether data have changed 96
Datetimeottt Date and time values and variables 104
Datetime business calendarsoiiiiiiniiiiia., Business calendars 123
Datetime business calendars creation Business calendars creation 130
Datetime CONVErSiOnuvvtvtnee e eeeannnn Converting strings to Stata dates 140
Datetime display formats Display formats for dates and times 151
Datetime durationsc..ciiiiiiiaon.. Obtaining and working with durations 157
Datetime relative dates Obtaining dates and date information from other dates 169
Datetime values from other software Date and time conversion from other software 177
describe Describe data in memory or in a file 183
destring Convert string variables to numeric variables and vice versa 191
AT o Display filenames 200
drawnorm, Draw sample from multivariate normal distribution 203
Arop o Drop variables or observations 208
ds Compactly list variables with specified properties 213
duplicatesiiiiiiiiii, Report, tag, or drop duplicate observations 219
dyngen Dynamically generate new values of variables 226
edit ..o Browse or edit data with Data Editor 230
7o) & Extensions to generate 236
CNCOAC .. vttt Encode string into numeric and vice versa 259

Contents ii

CTASE .« v ettt e et e e e e e e e e e e e e Erase a disk file
CXPANd . . e Duplicate observations
expandcl ... Duplicate clustered observations
CXPOIE ettt e Overview of exporting data from Stata
filefilter Convert ASCII or binary patterns in a file
LN L Rectangularize dataset
format Set variables’ output format
fralias Alias variables from linked frames
frames INtroot e Introduction to frames
TS . o .ot e Data frames
framechange Change identity of current (working) frame
frame COPY .« oottt e Make a copy of a frame
frame Createottt e Create a new frame
frame drop Drop frames from memory
frameprefix The frame prefix command
frameput Copy selected variables or observations to a new frame
framepwf Display name of current (working) frame
frame rename Rename existing frame
frames describe L il Describe frames in memory or in a file
framesdir Display names of all frames in memory
framesmodify Modify a set of frames on disk
frames reset i Drop all frames from memory
frames SaAVEot Save a set of frames on disk
frames USevtti Load a set of frames from disk
rget o Copy variables from linked frame
N . Link frames
frunalias Change storage type of alias variables
GENCTALE ..o e ettt e Create or change contents of variable
L0 4 P Ascending and descending sort
hexdump Display hexadecimal report on file
ICd L Introduction to ICD commands
1CAD o ICD-9-CM diagnosis codes
ICAD oot ICD-9-CM procedure codes
1Cd10 e ICD-10 diagnosis codes
icdl0em ... ICD-10-CM diagnosis codes
ICALOPCS vttt ICD-10-PCS procedure codes
TMPOTE ettt e et e e e e e e Overview of importing data into Stata
IMport dbaset Import and export dBase files
importdelimited Import and export delimited text data
mport eXcel Import and export Excel files
importfred L. Import data from Federal Reserve Economic Data
importhaver Import data from Haver Analytics databases
import haverdirect Import data from Haver Analytics cloud servers
TMPOTE SAS v v v et ettt et e e e e e e e e e e e e Import SAS files
import sasxportS Import and export data in SAS XPORT Version 5 format

import sasxport8 Import and export data in SAS XPORT Version 8 format

267
269
272
275

277
280
282
296
308
320
323
325
327
329
330
332
335
336
337
344
346
349
351
356
361
368
388

390
396

400

406
414
425
432
443
454
463
472
475
487
494
521
533
544
548
559

Contents iii

IMPOTE SPSS « v v ettt e et e e e e e e e Import and export SPSS files
infile (fixed format) Import text data in fixed format with a dictionary
infile (free format) Import unformatted text data
infix (fixed format) Import text data in fixed format
0 010 Enter data from keyboard
ISODS ottt e Add or insert observations
INSPECE .+ttt e e e Display simple summary of data’s attributes
ipolateot Linearly interpolate (extrapolate) values
ISIA o Check for unique identifiers
jdbe oo Load, write, or view data from a database with a Java API
JOINbY . Form all pairwise combinations within groups
label ..o Manipulate labels
label language Labels for variables and values in multiple languages
labelbook ... Label utilities
St List values of variables
lookforo Search for string in variable names and labels
00 1S1 00 1o Memory management
INCIEE . ettt e e Merge datasets
Missing valuescoiiiiiniii Quick reference for missing values
MKAIT o Create directory
mvencodeiiaa... Change missing values to numeric values and vice versa
TIOLES e et ettt e e e e e e e e e Place notes in data
ObS Increase the number of observations in a dataset
odbe ... Load, write, or view data from ODBC sources
T vttt e Reorder variables in dataset
outfile Export dataset in text format
petile ..o Create variable containing percentiles
PUtMAta ..ot e Put Stata variables into Mata and vice versa
TANZE © ot et et e et et e e e e e e e e e Generate numerical range
TECAST v v vt ittt e e Change storage type of variable
TECOUE v ittt e Recode categorical variables
S 1T 10 P Rename variable
TENAME GEOUDP &« e v vt et et ettt e e e et e et e e et e eeeanns Rename groups of variables
reshape, Convert data from wide to long form and vice versa
TIAIT .« e Remove directory
SAMPIE o e Draw random sample
SAVE & vttt et e e e e e e e e e e e Save Stata dataset
SCPATALE & v o v et ettt e e e e e Create separate variables
shell ..o Temporarily invoke operating system
SNAPShOt . ..o Save and restore data snapshots
SOOI ottt e e e e e e e Sort data
SPIIt o Split string variables into parts
splitsample Split data into random samples
SEACK .« Stack data

statsby Collect statistics for a command across a by list

563
568
586
596
604
612
614
618
621

624
636

641
651
657
668
681

683
689
714
715
717

721

726
728
742
746

753
765

777
780
783
792
794
805
824

826
831
837
841
847
850
859
864
873
879

Contents iv

SYSUSE + v v et et et e e e e e e e e e e e e e Use shipped dataset
14 01 PO Display contents of a file
UNICOAC .ttt e e e e e Unicode utilities
unicode collator Language-specific Unicode collators
unicode convertfile Low-level file conversion between encodings
unicode encodingii e Unicode encoding utilities
unicode locale Unicode locale utilities
unicode translate Translate files to Unicode
USE « vttt e ettt e e e e e e e e Load Stata dataset
VArMANAZE .« v vvveee e Manage variable labels, formats, and other properties
Ve Manage variable lists
vlicreate Create and modify user-defined variable lists
vidrop ... Drop variable lists or variables from variable lists
VISt o List contents of variable lists
virebuild Rebuild variable lists
VSOt e Set system-defined variable lists
WEDUSE .ottt e Use dataset from Stata website
XPOSE + vttt e e e e e e Interchange observations and variables
zipfile Compress and uncompress files and directories in zip archive format
GlOSSAIY . vt vttt et e e e

Subject and author INdeXt

888
891

894
895
897
900
902
905
921

925
926
943
947
950
957
961

966
969
972
975

Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals, for example,
[U] 27 Overview of Stata estimation commands; [R] regress; and [D] reshape. The first example
is a reference to chapter 27, Overview of Stata estimation commands, in the User’s Guide; the second
is a reference to the regress entry in the Base Reference Manual; and the third is a reference to the
reshape entry in the Data Management Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM] Getting Started with Stata for Mac
[GSU] Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows
[U] Stata User’s Guide

[R] Stata Base Reference Manual

[ADAPT] Stata Adaptive Designs: Group Sequential Trials Reference Manual
[BAYES] Stata Bayesian Analysis Reference Manual

[BMA] Stata Bayesian Model Averaging Reference Manual

[CAUSAL] Stata Causal Inference and Treatment-Effects Estimation Reference Manual
[CM] Stata Choice Models Reference Manual

[D] Stata Data Management Reference Manual

[DSGE] Stata Dynamic Stochastic General Equilibrium Models Reference Manual
[ERM] Stata Extended Regression Models Reference Manual

[FMM] Stata Finite Mixture Models Reference Manual

[FN] Stata Functions Reference Manual

[G] Stata Graphics Reference Manual

[H20OML] Machine Learning in Stata Using H2O: Ensemble Decision Trees Reference Manual
[IRT] Stata Item Response Theory Reference Manual

[LASSO] Stata Lasso Reference Manual

[XT] Stata Longitudinal-Data/Panel-Data Reference Manual

[META] Stata Meta-Analysis Reference Manual

[ME] Stata Multilevel Mixed-Effects Reference Manual

[MI] Stata Multiple-Imputation Reference Manual

[MV] Stata Multivariate Statistics Reference Manual

[PSS] Stata Power, Precision, and Sample-Size Reference Manual

[P] Stata Programming Reference Manual

[RPT] Stata Reporting Reference Manual

[SP] Stata Spatial Autoregressive Models Reference Manual

[SEM] Stata Structural Equation Modeling Reference Manual

[SVY] Stata Survey Data Reference Manual

[ST] Stata Survival Analysis Reference Manual

[TABLES] Stata Customizable Tables and Collected Results Reference Manual

[TS] Stata Time-Series Reference Manual

[1] Stata Index

[M] Mata Reference Manual

Intro — Introduction to data management reference manual

Description

This manual documents most of Stata’s data management features and is referred to as the [D] manual.
Some specialized data management features are documented in such subject-specific reference manuals
as [MI] Stata Multiple-Imputation Reference Manual, [SEM] Stata Structural Equation Modeling Refer-
ence Manual, [TS] Stata Time-Series Reference Manual, [ST] Stata Survival Analysis Reference Manual,
and [XT] Stata Longitudinal-Data/Panel-Data Reference Manual.

Following this entry, [D] Data management provides an overview of data management in Stata and
of Stata’s data management commands. The other parts of this manual are arranged alphabetically. If
you are new to Stata’s data management features, we recommend that you read the following first:

[D] Data management — Introduction to data management commands
[U] 12 Data

[U] 13 Functions and expressions

[U] 11.5 by varlist: construct

[U] 22 Entering and importing data

[U] 23 Combining datasets

[U] 24 Working with strings

[U] 26 Working with categorical data and factor variables

[U] 25 Working with dates and times

[U] 16 Do-files

You can see that most of the suggested reading is in [U]. That is because [U] provides overviews of most
Stata features, whereas this is a reference manual and provides details on the usage of specific commands.
You will get an overview of features for combining data from [U] 23 Combining datasets, but the details
of performing a match-merge (merging the records of two files by matching the records on a common
variable) will be found here, in [D] merge.

Stata is continually being updated, and Stata users are always writing new commands. To ensure that
you have the latest features, you should install the most recent official update; see [R] update.

Also see
[U] 1.3 What’s new

[R] Intro — Introduction to base reference manual

Data management — Introduction to data management commands

Description References Also see

Description

This manual, called [D], documents Stata’s data management features. See Mitchell (2020) for addi-
tional information and examples on data management in Stata.

Data management for statistical applications refers not only to classical data management—sorting,
merging, appending, and the like—but also to data reorganization because the statistical routines you
will use assume that the data are organized in a certain way. For example, statistical commands that
analyze longitudinal data, such as xtreg, generally require that the data be in long rather than wide
form, meaning that repeated values are recorded not as extra variables, but as extra observations.

Here are the basics everyone should know:

D] frames intro

Introduction to frames

[D] use Load Stata dataset

[D] sysuse Use shipped dataset

[D] webuse Use dataset from Stata website

[D] save Save Stata dataset

[D] describe Describe data in memory or in a file

[D] codebook Describe data contents

[D] inspect Display simple summary of data’s attributes

[D] count Count observations satisfying specified conditions
[D] Data types Quick reference for data types

[D] Missing values Quick reference for missing values

[D] Datetime Date and time values and variables

[D] list List values of variables

[D] edit Browse or edit data with Data Editor

[D] varmanage Manage variable labels, formats, and other properties
[D] rename Rename variable

[D] format Set variables’ output format

[D] label Manipulate labels

[D]

Data management — Introduction to data management commands 3

To work with multiple datasets in memory, see

[D] frames intro Introduction to frames

[D] frames Data frames

[D] frame change Change identity of current (working) frame
[D] frame copy Make a copy of a frame

[D] frame create Create a new frame

[D] frame drop Drop frames from memory

[D] frame prefix The frame prefix command

[D] frame put Copy selected variables or observations to a new frame
[D] frame pwf Display name of current (working) frame
[D] frame rename Rename existing frame

[D] frames dir Display names of all frames in memory

[D] frames reset Drop all frames from memory

[D] frames save Save a set of frames on disk

[D] frames modify Modify a set of frames on disk

[D] frames use Load a set of frames from disk

[D] frames describe Describe frames in memory or in a file

[D] frget Copy variables from linked frame

[D] frlink Link frames

You will need to create and drop variables, and here is how:

[D] generate Create or change contents of variable
[D] egen Extensions to generate

[D] drop Drop variables or observations

[D] clear Clear memory

Data management — Introduction to data management commands 4

For inputting or importing data, see

[D] use
[D] sysuse
[D] webuse

]

]

[D] input

[D] import

[D] import dbase

[D] import delimited

[D] import excel

[D] import fred

[D] import haver

[D] import haverdirect

[D] import sas

[D] import sasxportS

[D] import sasxport8

[D] import spss

[D] infile (fixed format)

[D] infile (free format)

[D] infix (fixed format)
]
]
]
]
]
]
]
]

[D] jdbe
[D] odbce

[D] hexdump

[D] icd9
[D] icd9p
[D] icd10
[D] icd10cm
[D] icd10pcs

and for exporting data, see

[D] save

[D] export

[D] outfile

[D] import dbase

[D] import delimited
[D] import excel

[D] import sasxport5
[D] import sasxport8
[D] import spss
[D] jdbe
[D] odbe

Load Stata dataset
Use shipped dataset
Use dataset from Stata website

Enter data from keyboard

Overview of importing data into Stata

Import and export dBase files

Import and export delimited text data

Import and export Excel files

Import data from Federal Reserve Economic Data
Import data from Haver Analytics databases

Import data from Haver Analytics cloud servers
Import SAS files

Import and export data in SAS XPORT Version 5 format
Import and export data in SAS XPORT Version 8 format
Import and export SPSS files

Import text data in fixed format with a dictionary
Import unformatted text data

Import text data in fixed format

Load, write, or view data from a database with a Java API
Load, write, or view data from ODBC sources

Display hexadecimal report on file

ICD-9-CM diagnosis codes
ICD-9-CM procedure codes
ICD-10 diagnosis codes
ICD-10-CM diagnosis codes
ICD-10-PCS procedure codes

Save Stata dataset

Overview of exporting data from Stata

Export dataset in text format

Import and export dBase files

Import and export delimited text data

Import and export Excel files

Import and export data in SAS XPORT Version 5 format
Import and export data in SAS XPORT Version 8 format
Import and export SPSS files

Load, write, or view data from a database with a Java API
Load, write, or view data from ODBC sources

Data management — Introduction to data management commands 5

The ordering of variables and observations (sort order) can be important; see

[D] order
[D] sort
[D] gsort

To reorganize or combine data, see

[D] append
[D] merge
[D] frlink
[D] frget
[D] reshape
[D] collapse
[D] contract
[D] fillin

[D] expand
[D] expandecl
[D] stack

[D] joinby
[D] xpose
[D] cross

Reorder variables in dataset
Sort data
Ascending and descending sort

Append datasets

Merge datasets

Link frames

Copy variables from linked frame

Convert data from wide to long form and vice versa
Make dataset of summary statistics

Make dataset of frequencies and percentages
Rectangularize dataset

Duplicate observations

Duplicate clustered observations

Stack data

Form all pairwise combinations within groups
Interchange observations and variables

Form every pairwise combination of two datasets

In the above list, we particularly want to direct your attention to [D] reshape, a useful command that

beginners often overlook.

For random sampling, see

[D] sample
[D] splitsample
[D] drawnorm

For file manipulation, see

[D] type
[D] erase

]

[D] copy

[D] ed

[D] dir

[D] mkdir

[D] rmdir

[D] ef

[D] changeeol

[D] filefilter

[D] checksum
]

[D] zipfile

Draw random sample
Split data into random samples
Draw sample from multivariate normal distribution

Display contents of a file
Erase a disk file
Copy file from disk or URL

Change directory
Display filenames
Create directory

Remove directory

Compare two datasets

Convert end-of-line characters of text file
Convert ASCII or binary patterns in a file
Calculate checksum of file

Compress and uncompress files and directories in zip archive
format

Data management — Introduction to data management commands 6

For handling Unicode strings, see

[D] unicode Unicode utilities

[D] unicode translate Translate files to Unicode

[D] unicode encoding Unicode encoding utilities

[D] unicode locale Unicode locale utilities

[D] unicode collator Language-specific Unicode collators

[D] unicode convertfile Low-level file conversion between encoding

The entries above are important. The rest are useful when you need them:

[D] datasignature Determine whether data have changed

[D] type Display contents of a file

[D] notes Place notes in data

[D] label language Labels for variables and values in multiple languages

[D] labelbook Label utilities

[D] encode Encode string into numeric and vice versa

[D] recode Recode categorical variables

[D] ipolate Linearly interpolate (extrapolate) values

[D] destring Convert string variables to numeric variables and vice versa

[D] mvencode Change missing values to numeric values and vice versa

[D] pctile Create variable containing percentiles

[D] range Generate numerical range

[D] b Repeat Stata command on subsets of the data

[D] statsby Collect statistics for a command across a by list

[D] dyngen Dynamically generate new values of variables

[D] compress Compress data in memory

[D] recast Change storage type of variable

[D] Datetime display formats Display formats for dates and times

[D] Datetime conversion String to numeric date conversion functions

[D] Datetime durations Obtaining and working with durations

[D] Datetime relative dates Datetime relative dates

[D] Datetime values from other Date and time conversion from other software
software

[D] beal Business calendar file manipulation

[D] Datetime business calendars Business calendars

[D] Datetime business calendars Business calendars creation
creation

Data management — Introduction to data management commands 7

[D] assert

[D] assertnested
[D] clonevar

[D] compare
[D] corr2data

[D] duplicates
[D msobs

1
1
]
]
]
1
1
]
Ji
[D] lookfor
[D] memory
[D] putmata
[D] obs
[D] rename group
[D] separate
[D] shell
[D] snapshot
[D] split
]
]
]
]
1
1

[D] vl create
[D] vl drop
[D] vl list

[D] vl rebuild
[D] vl set

Verify truth of claim

Verify variables nested

Clone existing variable

Compare two variables

Create dataset with specified correlation structure
Compactly list variables with specified properties
Report, tag, or drop duplicate observations

Add or insert observations

Check for unique identifiers

Search for string in variable names and labels
Memory management

Put Stata variables into Mata and vice versa
Increase the number of observations in a dataset
Rename groups of variables

Create separate variables

Temporarily invoke operating system

Save and restore data snapshots

Split string variables into parts

Manage variable lists

Create and modify user-defined variable lists
Drop variable lists or variables from variable lists
List contents of variable lists

Rebuild variable lists

Set system-defined variable lists

There are some real jewels in the above, such as [D] notes, [D] compress, and [D] assert, which you will

find particularly useful.

References

Hoffmann, J. P. 2017. Principles of Data Management and Presentation. Oakland, CA: University of California Press.
Mitchell, M. N. 2020. Data Management Using Stata: A Practical Handbook. 2nd ed. College Station, TX: Stata Press.

Also see

[D] Intro — Introduction to data management reference manual

[R] Intro — Introduction to base reference manual

https://www.stata.com/bookstore/principles-of-data-management-and-presentation/
https://www.stata-press.com/books/data-management-using-stata/

append — Append datasets

Description Quick start Menu Syntax
Options Remarks and examples Reference Also see

Description

append appends Stata-format datasets stored on disk to the end of the dataset in memory. If any
filename is specified without an extension, .dta is assumed.

Stata can also join observations from two datasets into one; see [D] merge. See [U] 23 Combining
datasets for a comparison of append, merge, and joinby.

Quick start

Append mydata2.dta to mydatal.dta with no data in memory
append using mydatal mydata?2

Same as above, but with mydatal.dta in memory
append using mydataZ2

Same as above, and generate newv to indicate source dataset

append using mydata2, generate (newv)

Same as above, but do not copy value labels or notes from mydata2.dta

append using mydata2, generate(newv) nolabel nonotes

Only keep v1, v2, and v3 from mydata2.dta
append using mydata2, keep(vl v2 v3)

Menu

Data > Combine datasets > Append datasets

append — Append datasets 9

Syntax

append using filename [filename [...]] [, options]

You may enclose filename in double quotes and must do so if filename contains blanks or other special
characters.

options Description

generate(newvar) newvar marks source of resulting observations

keep (varlist) keep specified variables from appending dataset(s)

nolabel do not copy value-label definitions from dataset(s) on disk

nonotes do not copy notes from dataset(s) on disk

force append string to numeric or numeric to string without error
Options

generate (newvar) specifies the name of a variable to be created that will mark the source of observa-
tions. Observations from the master dataset (the data in memory before the append command) will
contain 0 for this variable. Observations from the first using dataset will contain 1 for this variable;
observations from the second using dataset will contain 2 for this variable; and so on.

keep (varlist) specifies the variables to be kept from the using dataset. If keep() is not specified, all
variables are kept.

The varlist in keep (varlist) differs from standard Stata varlists in two ways: variable names in varlist
may not be abbreviated, except by the use of wildcard characters, and you may not refer to a range of
variables, such as price-weight.

nolabel prevents Stata from copying the value-label definitions from the disk dataset into the dataset in
memory. Even if you do not specify this option, label definitions from the disk dataset never replace
definitions already in memory.

nonotes prevents notes in the using dataset from being incorporated into the result. The default is to
incorporate notes from the using dataset that do not already appear in the master data.

force allows string variables to be appended to numeric variables and vice versa, resulting in missing
values from the using dataset. If omitted, append issues an error message; if specified, append issues
a warning message.

Remarks and examples
The disk dataset must be a Stata-format dataset; that is, it must have been created by save (see
[D] save).
b Example 1

We have two datasets stored on disk that we want to combine. The first dataset, called even.dta,
contains the sixth through eighth positive even numbers. The second dataset, called odd.dta, contains
the first five positive odd numbers. The datasets are

append — Append datasets 10

. use even
(6th through 8th even numbers)

. list

number even

1. 6 12
2. 7 14
3. 8 16

. use odd
(First five odd numbers)

. list

number odd

[S2 I =V SR
O WN -
© N O Ww

We will append the even data to the end of the odd data. Because the odd data are already in memory
(we just used them above), we type append using even. The result is

. append using even

. list
number odd even
1 1 1
2 2 3
3 3 5
4 4 7
5 5 9
6. 6 12
7. 7 14
8. 8 . 16

Because the number variable is in both datasets, the variable was extended with the new data from
the file even.dta. Because there is no variable called odd in the new data, the additional observations
on odd were forward-filled with missing (.). Because there is no variable called even in the original
data, the first observations on even were back-filled with missing.

d

append — Append datasets 11

b Example 2

The order of variables in the two datasets is irrelevant. Stata always appends variables by name:
. use https://www.stata-press.com/data/r19/o0dd1
(First five odd numbers)
. describe

Contains data from https://www.stata-press.com/data/r19/o0ddl.dta

Observations: 5 First five odd numbers
Variables: 2 9 Jan 2024 08:41
Variable Storage Display Value
name type format label Variable label
odd float %9.0g 0dd numbers
number float %9.0g

Sorted by: number

. describe using https://www.stata-press.com/data/r19/even

Contains data 6th through 8th even numbers
Observations: 3 9 Jan 2024 08:43
Variables: 2
Variable Storage Display Value
name type format label Variable label
number byte %9.0g
even float %9.0g Even numbers

Sorted by: number
. append using https://www.stata-press.com/data/r19/even

. list
odd number even
1 1 1
2 3 2
3 5 3
4 7 4
5 9 5
6. . 6 12
7. 7 14
8 8 16

The results are the same as those in the first example.
N
When Stata appends two datasets, the definitions of the dataset in memory, called the master dataset,
override the definitions of the dataset on disk, called the using dataset. This extends to value labels,
variable labels, characteristics, and date—time stamps. If there are conflicts in numeric storage types, the
more precise storage type will be used regardless of whether this storage type was in the master dataset
or the using dataset. If a variable is stored as a string in one dataset that is longer than in the other, the
longer str# storage type will prevail. If a variable is stored as a strL in one dataset and a str# in
another dataset, the strL storage type will prevail.

append — Append datasets 12

Q Technical note

If a variable is a string in one dataset and numeric in the other, Stata issues an error message unless the
force option is specified. If force is specified, Stata issues a warning message before appending the
data. If the using dataset contains the string variable, the combined dataset will have numeric missing
values for the appended data on this variable; the contents of the string variable in the using dataset
are ignored. If the using dataset contains the numeric variable, the combined dataset will have empty
strings for the appended data on this variable; the contents of the numeric variable in the using dataset
are ignored.

a

b Example 3

Because Stata has five numeric variable types—byte, int, long, float, and double—you may
attempt to append datasets containing variables with the same name but of different numeric types; see
[U] 12.2.2 Numeric storage types.

Let’s describe the datasets in the example above:

. describe using https://www.stata-press.com/data/r19/odd

Contains data

First five odd numbers

Observations: 5 9 Jan 2024 08:50
Variables: 2
Variable Storage Display Value
name type format label Variable label
number float %9.0g
odd float %9.0g 0dd numbers
Sorted by:

. describe using https://www.stata-press

Contains data

.com/data/r19/even

6th through 8th even numbers

Observations: 3 9 Jan 2024 08:43
Variables: 2
Variable Storage Display Value
name type format label Variable label
number byte %9.0g
even float %9.0g Even numbers

Sorted by: number

. describe using https://www.stata-press

Contains data

.com/data/r19/oddeven

First five odd numbers

Observations: 8 9 Jan 2024 08:53
Variables: 3
Variable Storage Display Value
name type format label Variable label
number float %9.0g
odd float %9.0g 0dd numbers
even float %9.0g Even numbers

Sorted by:

append — Append datasets 13

The number variable was stored as a float in odd.dta but as a byte in even.dta. Because float
is the more precise storage type, the resulting dataset, oddeven.dta, had number stored as a float.
Had we instead appended odd.dta to even.dta, number would still have been stored as a float:

. use https://www.stata-press.com/data/r19/even, clear
(6th through 8th even numbers)

. append using https://www.stata-press.com/data/r19/o0dd
(variable number was byte, now float to accommodate using data’s values)

. describe

Contains data from https://www.stata-press.com/data/r19/even.dta

Observations: 8 6th through 8th even numbers

Variables: 3 9 Jan 2024 08:43

Variable Storage Display Value
name type format label Variable label

number float %9.0g

even float %9.0g Even numbers

odd float %9.0g 0dd numbers

Sorted by:

Note: Dataset has changed since last saved.

b Example 4

Suppose that we have a dataset in memory containing the variable educ, and we have previously given
alabel variable educ "Education Level" command so that the variable label associated with educ
is “Education Level”. We now append a dataset called newdata.dta, which also contains a variable
named educ, except that its variable label is “Ed. Lev”. After appending the two datasets, the educ
variable is still labeled “Education Level”. See [U] 12.6.2 Variable labels.

N

b Example 5

Assume that the values of the educ variable are labeled with a value label named educlbl. Further
assume that in newdata. dta, the values of educ are also labeled by a value label named educlbl. Thus
there is one definition of educlbl in memory and another (although perhaps equivalent) definition in
newdata.dta. When you append the new data, you will see the following:

. append using newdata
label educlbl already defined

If one label in memory and another on disk have the same name, append warns you of the problem and
sticks with the definition currently in memory, ignoring the definition in the disk file.

d

append — Append datasets 14

Q Technical note

When you append two datasets that both contain definitions of the same value label, the codings may
not be equivalent. That is why Stata warns you with a message like “label educlbl already defined”. If
you do not know that the two value labels are equivalent, you should convert the value-labeled variables
into string variables, append the data, and then construct a new coding. decode and encode make this
easy:

. use newdata, clear

. decode educ, gen(edstr)
. drop educ

. save newdata, replace

. use basedata

. decode educ, gen(edstr)
. drop educ

. append using newdata

. encode edstr, gen(educ)

. drop edstr

See [D] encode.

You can specify the nolabel option to force append to ignore all the value-label definitions in the
incoming file, whether or not there is a conflict. In practice, you will probably never want to do this.
a

b Example 6

Suppose that we have several datasets containing the populations of counties in various states. We
can use append to combine these datasets all at once and use the generate () option to create a variable
identifying from which dataset each observation originally came.

. use https://www.stata-press.com/data/r19/capop
. list

county pop

1. Los Angeles 9878554
2. Orange 2997033
3. Ventura 798364

. append using https://www.stata-press.com/data/r19/ilpop
> https://www.stata-press.com/data/r19/txpop, generate(state)

. label define statelab 0 "CA" 1 "IL" 2 "TX"

. label values state statelab

append — Append datasets 15

. list

county pop state
1. Los Angeles 9878554 CA
2. Orange 2997033 CA
3. Ventura 798364 CA
4. Cook 5285107 IL
5. DeKalb 103729 IL
6. Will 673586 IL
7. Brazos 152415 TX
8. Johnson 149797 TX
9. Harris 4011475 TX

Video example

How to append files into a single dataset

Reference
Chatfield, M. D. 2015. precombine: A command to examine n > 2 datasets before combining. Stata Journal 15: 607—-626.

Also see

D] cross — Form every pairwise combination of two datasets

]
D] joinby — Form all pairwise combinations within groups
D] merge — Merge datasets

]

[
[
[
[D] save — Save Stata dataset
[D] use — Load Stata dataset
[U] 23 Combining datasets

https://www.youtube.com/watch?v=AZGW8tohiqw
https://www.stata-journal.com/article.html?article=dm0081

assert — Verify truth of claim

Description Quick start Syntax Options Remarks and examples
Reference Also see
Description

assert verifies that exp is true. If it is true, the command produces no output. Ifit is not true, assert
informs you that the “assertion is false” and issues a return code of 9; see [U] 8 Error messages and
return codes.

Quick start

Confirm that v1 only takes values 0 or 1

assert vi==0 | vi==

Verify that v2 is between 100 and 200 and never missing
assert inrange(v2,100,200)

Verify that v2 is between 100 and 200 for all nonmissing values
assert inrange(v2,100,200) if !missing(v2)

Verify that v2 is between 100 and 200 and never missing when catvar equals 2 or 3

assert inrange(v2,100,200) if (catvar==2 | catvar==3)

Verify that there are 5 observations per cluster identified by cvar

by cvar: assert _N==b

Same as above, but stop checking after the first cluster has fewer than or more than 5 observations

by cvar: assert _N==5, fast

16

assert — Verify truth of claim 17

Syntax

assert exp [lf] [in] [, rcOnull jast]

by is allowed; see [D] by.

Options
rcO forces a return code of 0, even if the assertion is false.

null forces a return code of 8 on null assertions. A null assertion occurs when an if condition excludes
all observations from being checked by assert. By default, the return code is 0 for null assertions.

fast forces the command to exit at the first occurrence that exp evaluates to false.

Remarks and examples

assert verifies that the expression provided is true. It is useful because it tells Stata not only what to
do but also what you can expect to find. Groups of assertions are often combined in a do-file to certify
data. If the do-file runs all the way through without complaining, every assertion in the file is true.
Otherwise, assert will provide a count of the contradictions when an assertion is false. It will also issue
an error message along with a return code of 9; see [U] 8 Error messages and return codes.

assert is seldom used interactively because it is easier to use inspect, summarize, or tabulate to
look for evidence of errors in the dataset. These commands, however, require you to review the output
to spot the error.

b Example 1: Observation-level assertions

You and a colleague are analyzing union membership among women. Your colleague imported data
from the National Longitudinal Survey of young women for the years 1968 to 1988. You plan to include
the woman’s age, total work experience, and whether or not she graduated from college in your model.

Your colleague tells you that the cleaned dataset is called nlswork and that the following things
are true: that the variables recording union membership, age, total experience, and education level are
not missing for any of the observations; that observations taken before a woman turned 18 have been
removed; that total experience is always greater than or equal to 0; and that all college graduates have
at least 14 years of education. Before you begin your analysis, you should verify the accuracy of these
data. To test that the statements above are true, you create a do-file named check.do:

begin check.do, example 1
assert age>=18 & !missing(age)

assert !missing(union)

assert ttl_exp>=0 & 'missing(ttl_exp)

assert grade>=14 & !'missing(grade) if collgrad==

end check.do, example 1

You save the above file, read in the data, and then issue the do command to check the assertions:

. use https://www.stata-press.com/data/r19/nlswork
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)

. do check

assert — Verify truth of claim 18

The output is as follows:

. assert age>=18 & !missing(age)

159 contradictions in 28,534 observations
assertion is false

r(9);

end of do-file
r(9);

The do-file did not run to completion because it encountered a false assertion—that age is never
missing and always at least 18 years.

You should resolve this and any other discrepancies before analyzing the data. You run the do-file
again, this time with the nostop option, which tells Stata to continue executing the do-file despite any
errors.

. do check, nostop

Once it runs in its entirety, you will have a list of all the data discrepancies to discuss with your colleague.
The output is as follows:

. assert age>=18 & !missing(age)

159 contradictions in 28,534 observations

assertion is false
r(9);

. assert !missing(union)

9,296 contradictions in 28,534 observations
assertion is false

r(9);

. assert ttl_exp>=0 & !'missing(ttl_exp)

. assert grade>=14 & !missing(grade) if collgrad==
42 contradictions in 4,795 observations

assertion is false

r(9);

end of do-file

The output from the false assertions above is helpful. First, the number of contradictions can serve as
a clue; a few contradictions may suggest data entry errors, whereas a large number may motivate further
investigation. Second, you get a straightforward message that the assertion is false. Finally, you get a
return code of 9, which makes it easy to write code based on whether or not an assertion is true.

d

b Example 2: Speeding up assert

In example 1, we obtained a count of the number of observations where each assertion was false.
However, if all you wanted to know was whether or not an assertion was true, you could reduce the
amount of time required to check that assertion by specifying the fast option, as shown below:

. assert age>=18 & !missing(age), fast

assertion is false
r(9);

The fast option tells Stata to stop checking the assertion when it encounters the first case where it is
false, which is why you do not get a count of the contradictions.

d

assert — Verify truth of claim 19

b Example 3: Assertions by groups

Your assertions in the previous examples were tested in each observation. You spoke with your col-
league regarding those assertions, and she has sent you a revised version of the dataset. The next goal is
to make sure that age has been recorded correctly over time. Women in the study were observed once per
year, and in some years, they were not observed at all. Therefore, you know that age must be increasing
with every time period.

Thus, now you want to assess the characteristics of each woman over time, and you can do so with
the by: prefix. You include the sort option with the by prefix because the data have not been sorted
by woman (idcode) and year already; see [U] 11.5 by varlist: construct. Now you can assert that for
each woman, the value of age is greater than it was in the previous year for all years except the first.

You add the following line to check.do:

begin check.do, example 3
by idcode (year), sort: assert age>=agel[_n-1]+1 if _n>1

end check.do, example 3

Upon reissuing the the do check, nostop command, the following output is shown:

. by idcode (year), sort: assert age>=age[_n-1]+1 if _n>1
171 contradictions in 23,823 observations

assertion is false

r(9);

end of do-file

Again, we have found a few errors in the dataset. We might want to check the source of the dataset for
any notes on data discrepancies.

d

Q Technical note

assert is smart in how it evaluates expressions. When you type something like assert _N==522
or assert work [_N] >0, assert knows that the expression needs to be evaluated only once. When you
type assert female==1 | female==0, assert knows that the expression needs to be evaluated once
for each observation in the dataset.

Here are some more examples demonstrating assert’s intelligence.

by female: assert _N==100

asserts that there should be 100 observations for every unique value of female. The expression is eval-
uated once per by-group.

by female: assert work[_N]>0

asserts that the last observation on work in every by-group should be greater than zero. It is evaluated
once per by-group.

by female: assert work>0

is evaluated once for each observation in the dataset and, in that sense, is formally equivalent to assert
work>0.
a

assert — Verify truth of claim 20

Reference
Gould, W. W. 2001. Statistical software certification. Stata Journal 1: 29-50.

Also see

[D] assertnested — Verify variables nested
[P] capture — Capture return code

[P] confirm — Argument verification

[U] 16 Do-files

https://www.stata-journal.com/article.html?article=pr0001

assertnested — Verify variables nested

Description Quick start Syntax Options Remarks and examples Also see

Description

assertnested verifies that the values of variables are nested within the values of other variables. If
they are nested, the command produces no output. If they are not nested, assertnested informs you
that they are not and issues an error return code of 459; see [U] 8 Error messages and return codes.

Quick start

Confirm that the values of psu are nested within stratum

assertnested stratum psu

Confirm that the values of IDs in student are nested within school, which is nested within district

assertnested district school student

For panel data, where panels are individuals with IDs stored in panelid, check that values of age and
income are the same for all observations in each panel

assertnested panelid, within(age income)

Same as above, but treat any missing values the same as nonmissing values

assertnested panelid, within(age income) missing

Syntax
assertnested varlist [if] [in] |, within(withinvars) missing]|

The variables in varlist are given in the order of biggest grouping to smallest grouping.

by is allowed; see [D] by.

Options

within (withinvars) asserts that the values of var/ist are nested within each of the variables in withinvars.
That is, assertnested varlist, within(w/ w2 ...) will issue an error if any of assertnested w/
varlist, assertnested w2 varlist, . . . issue an error.

missing specifies that missing values in varlist and withinvars are to be treated the same as nonmissing
values.

21

assertnested — Verify variables nested 22

Remarks and examples

assertnested is a convenience command for checking whether variables are nested. We say that
v2 is nested within v1 if for all observations that have the same value of v2, the observations also have
the same value of v1.

Here are data that are nested.

. list vl v2, sepby(vl)

vl v2
1 0 1
2 0 1
3 0 2
4 0 2
5. 1 3
6. 1 3
T. 1 4
8. 1 4

. assertnested vl v2

assertnested succeeds.
Here are data that are not nested.

. list v1 v3, sepby(vl)

vl v3
1. 0 1
2. 0 2
3. 0 3
4. 0 4
5. 1 1
6. 1 2
7. 1 3
8. 1 4

. assertnested vl v3
v3 not nested within vi
r(459);

assertnested fails.
Running
assertnested vl v2 v3

is the same as running

assertnested vl v2
assertnested v2 v3

Variables must be specified with the biggest nested grouping first, then the second biggest nested group-
ing, and so on, to the smallest nested grouping.

assertnested — Verify variables nested 23

b Example 1: Nested variables

We have a dataset consisting of two school districts in Texas: the district for the city of College Station
and the district for the city of Richardson. The dataset contains the actual names of all the public schools
in the variable school in these districts, given by variable district. The dataset contains fictitious
student IDs in the variable student.

We want to assert that student is nested within school and that school is nested within district.

. use https://www.stata-press.com/data/r19/schools

. assertnested district school student
school not nested within district
r(459);

Schools are not nested within district! Are some schools in both districts? That is impossible. But it is
possible that both districts have one or more schools with the same name. Let’s find them.

We use egen’s tag() function to tag one observation for each distinct value of district for each
school. Then we sum up the number of tags in each school. If the schools were nested within district,
there would be only one tag per school. We list the districts and schools with more than one tag.

. egen tag_district = tag(school district)
. bysort school: egen ndistrict = sum(tag_district)

. list district school if tag_district == 1 & ndistrict > 1, noobs

district school

Richardson Spring Creek Elementary School
College Station Spring Creek Elementary School

Both College Station and Richardson have schools named Spring Creek Elementary School. If we want
to check that students are nested within schools, we need to do the check separately by district.

. bysort district: assertnested school student

Or else Texans need to get more creative about naming their schools.

b Example 2: Variables constant within panels

Commands that work with panel data in Stata require the data to be in long form. That is, multiple
Stata observations for each panel. Saying a variable is constant within each panel is the same as saying
the panels are nested within that variable. assertnested allows you to assert that variables are constant
within each panel.

We illustrate this with choice model data. Choice model data are stored like panel data in that each
individual has multiple observations, one for each possible choice. Characteristics of the individual
should be constant across observations for an individual.

We load a dataset with consumer choices for purchasing a new car (see [CM] Intro 2 for a description
of these data). Then we check that gender and income are constant for the observations with the same
consumerid by using the within () option.

assertnested — Verify variables nested 24

. use https://www.stata-press.com/data/r19/carchoice, clear
(Car choice data)

. assertnested consumerid, within(gender income)

The within () option is a convenient way to do multiple assertions. The above is the same as running
. assertnested gender consumerid
. assertnested income consumerid

The option missing can be specified to treat missing values the same as any other value.

. assertnested consumerid, within(gender income) missing
consumerid not nested within gender
r(459);

We see that gender is not constant for some consumers when we treat missing values like any other
value. Let’s list one person who has missing values for gender:

. list consumerid gender if consumerid == 142, abbrev(10)

consumerid gender

509. 142 .
510. 142 Male
511. 142 Male
512. 142 Male

This person has a missing value for gender for one observation and nonmissing values for other obser-
vations. For the data to pass assertnested with the option missing, the variable would have to be
either all missing or all nonmissing (and the same value) for each individual.

N
Also see

D] assert — Verify truth of claim
CM] Intro 2 — Data layout

[

[

[P] capture — Capture return code

[SVY] Survey — Introduction to survey commands
[

XT] xt — Introduction to xt commands
[U] 16 Do-files

bcal — Business calendar file manipulation

Description Quick start Menu Syntax
Option for bcal check Options for bcal create Remarks and examples Stored results
Reference Also see

Description

See [D] Datetime business calendars for an introduction to business calendars and dates.
bcal check lists the business calendars used by the data in memory, if any.

beal dir pattern lists filenames and directories of all available business calendars matching pattern,
or all business calendars if pattern is not specified.

bcal describe calname presents a description of the specified business calendar.

bcal load calname loads the specified business calendar. Business calendars load automatically
when needed, and thus use of bcal load is never required. bcal load is used by programmers writing
their own business calendars. bcal load calname forces immediate loading of a business calendar and
displays output, including any error messages due to improper calendar construction.

bcal create filename, from(varname) creates a business calendar file based on dates in varname.
Business holidays are inferred from gaps in varname. The qualifiers if and in, as well as the option
excludemissing(), can also be used to exclude dates from the new business calendar.

Quick start

Create business calendar file mycal.stbcal from date variable tvar in the dataset in memory

bcal create mycal, from(tvar)

Same as above, and generate business date variable newt formatted as %tbmycal

bcal create mycal, from(tvar) generate(newt)

List directories and filenames of available business calendars
bcal dir

Describe range, center date, and number of omitted days in business calendar mycal .stbcal

bcal describe mycal

Report any %tb formats applied to the variables in memory
bcal check

Menu

Data > Other utilities > Create a business calendar
Data > Other utilities > Manage business calendars

Data > Variables Manager

25

bcal — Business calendar file manipulation 26

Syntax
List business calendars used by the data in memory

beal check [varlist] [, rcO|

List filenames and directories of available business calendars

beal dir [pattern |

Describe the specified business calendar

bcal describe calname

Load the specitied business calendar

bcal load calname

Create a business calendar from the current dataset

bcal create filename [if | [in], from(varname) | bcal_create_options |

where

varlist is a list of variable names to be checked for whether they use business calendars. If not speci-
fied, all variables are checked.

pattern is the name of a business calendar possibly containing wildcards * and 7. If pattern is not
specified, all available business calendar names are listed.

calname is the name of a business calendar either as a name or as a datetime format; for example,
calname could be simple or) tbsimple.

filename is the name of the business calendar file created by bcal create.

bcal_create_options Description
Main
* from(varname) specify date variable for calendar
generate (newvar) generate newvar containing business dates
excludemissing(varlist [, any|) exclude observations with missing values in varlist
personal save calendar file in your PERSONAL directory
replace replace file if it already exists
Advanced
purpose (text) describe purpose of calendar
dateformat (ymd | ydm | myd |mdy | dym |dmy) specify date format in calendar file
range (fromdate todate) specify range of calendar
centerdate (date) specify center date of calendar
maxgap (#) specify maximum gap allowed; default is 10 days

*from(varname) is required.

collect is allowed with all bcal commands; see [U] 11.1.10 Prefix commands.

bcal — Business calendar file manipulation 27

Option for bcal check

Main

rcO specifies that bcal check is to exit without error (return 0) even if some calendars do not exist or
have errors. Programmers can then access the results bcal check stores in r() to get even more
details about the problems. If you wish to suppress bcal dir, precede the bcal check command
with capture and specify the rcO option if you wish to access the r () results.

Options for bcal create

Main

r

from(varname) specifies the date variable used to create the business calendar. Gaps between dates in
varname define business holidays. The longest gap allowed can be set with the maxgap() option.
from() is required.

generate (newvar) specifies that newvar be created. newvar is a date variable in %tbcalname format,
where calname is the name of the business calendar derived from filename.

excludemissing(varlist [, any|) specifies that the dates of observations with missing values in varfist
are business holidays. By default, the dates of observations with missing values in all variables in
varlist are holidays. The any suboption specifies that the dates of observations with missing values
in any variable in varlist are holidays.

personal specifies that the calendar file be saved in the PERSONAL directory. This option cannot be used
if filename contains the pathname of the directory where the file is to be saved.

replace specifies that the business calendar file be replaced if it already exists.

Advanced

purpose (text) specifies the purpose of the business calendar being created. fext cannot exceed 63 char-
acters.

dateformat (ymd | ydm | myd |mdy | dym | dmy) specifies the date format in the new business calendar.
The default is dateformat (ymd). dateformat () has nothing to do with how dates will look when
variables are formatted with %tbcalname; it specifies how dates are typed in the calendar file.

range (fromdate todate) defines the date range of the calendar being created. fromdate and todate should
be in the format specified by the dateformat () option; if not specified, the default ymd format is
assumed.

centerdate (date) defines the center date of the new business calendar. If not specified, the earliest
date in the calendar is assumed. date should be in the format specified by the dateformat () option;
if not specified, the default ymd format is assumed.

maxgap (#) specifies the maximum number of consecutive business holidays allowed by bcal create.
The default is maxgap (10).

bcal — Business calendar file manipulation 28

Remarks and examples

bcal check reports on any %tb formats used by the data in memory:

. bcal check

%tbsimple: defined, used by variable
mydate

bcal dir reports on business calendars available:

. bcal dir
1 calendar file found:
simple: C:\Program Files\Statal9\ado\base\s\simple.stbcal

bcal describe reports on an individual calendar.

. bcal describe simple
Business calendar simple (format Ytbsimple):
purpose: Example for manual
range: Olnov2011 30nov2011

18932 18961 in %td units
0 19 in %tbsimple units
center: 0lnov2011
18932 in %td units
0 in %tbsimple units
omitted: 10 days
121.8 approx. days/year
included: 20 days
243.5 approx. days/year

bcal load is used by programmers writing new stbcal-files. See [D] Datetime business calendars
creation.

bcal create creates a business calendar file from the current dataset and describes the new calendar.

For example, sp500.dta is a dataset installed with Stata that has daily records on the S&P 500 stock
market index in 2001. The dataset has observations only for days when trading took place. A business
calendar for stock trading in 2001 can be automatically created from this dataset as follows:

. sysuse sp500

(S&P 500)

. bcal create sp500, from(date) purpose(S&P 500 for 2001) generate(bizdate)

Business calendar sp500 (format 7%tbsp500) :
purpose: S&P 500 for 2001
range: 02jan2001 31dec2001

14977 15340 in %td units
0 247 in Y%tbsp500 units
center: 02jan2001
14977 in %td units
0 in %tbsp500 units
omitted: 116 days
116.4 approx. days/year
included: 248 days
248.9 approx. days/year

Notes:
business calendar file spb500.stbcal saved

variable bizdate created; it contains business dates in %tbsp500 format

bcal — Business calendar file manipulation 29

The business calendar file created:

begin sp500.stbcal
* Business calendar "sp500" created by -bcal create-
* Created/replaced on 02 Apr 2021

version 19
purpose "S&P 500 for 2001"
dateformat ymd

range 2001jan02 2001dec31
centerdate 2001jan02

omit dayofweek (Sa Su)
omit date 2001jani1b
omit date 2001feb19
omit date 200lapril3
omit date 2001may28
omit date 2001jul04
omit date 2001sep03
omit date 2001sepll
omit date 2001sepl2
omit date 2001sepl3
omit date 2001sepl4
omit date 2001nov22
omit date 2001dec25

end sp500.stbcal

bcal create filename, from() can save the calendar file anywhere in your directory system by
specifying a path in filename. It is assumed that the directory where the file is to be saved already exists.
The pattern of filename should be | path |calname| . stbcal |. Here calname should be without the %tb
prefix; calname has to be a valid Stata name but limited to 10 characters. If path is not specified, the file
is saved in the current working directory. If the . stbcal extension is not specified, it is added.

Save the file in a directory where Stata can find it. Stata automatically searches for stbcal-files in the
same way it searches for ado-files. Stata looks for ado-files and stbcal-files in the official Stata directo-
ries, your site’s directory (SITE), your current working directory, your personal directory (PERSONAL),
and your directory for materials written by other users (PLUS). The option personal specifies that the
calendar file be saved in your PERSONAL directory, which ensures that the created calendar can be easily
found in future work.

Stored results

bcal check stores the following in r ():

Macros
r(defined) business calendars used, stbcal-file exists, and file contains no errors
r(undefined) business calendars used, but no stbcal-files exist for them
r (varlist_calname) list of variable names that use business calendar calname

Warning to programmers: Specify the rcO option to access these returned results. By default, bcal
check returns code 459 if a business calendar does not exist or if a business calendar exists but has
errors; in such cases, the results are not stored.

bcal dir stores the following in r):

Macros
r(calendars) business calendars available
r (fn_calname) stbcal-file for business calendar calname

bcal — Business calendar file manipulation 30

bcal describe and becal create store the following in r ():

Scalars

r(min_date_td) calendar’s minimum date in %td units

r (max_date_td) calendar’s maximum date in %td units

r(ctr_date_td) calendar’s zero date in %td units

r(min_date_tb) calendar’s minimum date in %tb units

r(max_date_tb) calendar’s maximum date in %tb units

r(omitted) total number of days omitted from calendar

r(included) total number of days included in calendar

r(omitted_year) approximate number of days omitted per year from calendar

r(included_year) approximate number of days included per year in calendar
Macros

r (name) pure calendar name (for example, nyse)

r (purpose) short description of calendar’s purpose

r(fn) name of stbcal-file

bcal load stores the same results in r() as bcal describe, except it does not store r (omitted),
r(included), r(omitted_year) and r (included_year).

Reference

Rajbhandari, A. 2016. Handling gaps in time series using business calendars. The Stata Blog: Not Elsewhere Classified.
https://blog.stata.com/2016/02/04/handling-gaps-in-time-series-using-business-calendars/.

Also see

[D] Datetime — Date and time values and variables
[D] Datetime business calendars — Business calendars

[D] Datetime business calendars creation — Business calendars creation

https://blog.stata.com/2016/02/04/handling-gaps-in-time-series-using-business-calendars/

by — Repeat Stata command on subsets of the data

Description Quick start Syntax Options
Remarks and examples References Also see

Description

Most Stata commands allow the by prefix, which repeats the command for each group of observations
for which the values of the variables in varlist are the same. by without the sort option requires that the
data be sorted by varlist; see [D] sort.

Stata commands that work with the by prefix indicate this immediately following their syntax dia-
gram by reporting, for example, “by is allowed; see [D] by” or “bootstrap, by, etc., are allowed; see
[U] 11.1.10 Prefix commands”.

by and bysort are really the same command; bysort is just by with the sort option.

The varlist; (varlist,) syntax is of special use to programmers. It verifies that the data are sorted by
varlist; varlist, and then performs a by as if only varlist, were specified. For instance,

by pid (time): generate growth = (bp - bp[_n-1]) /bp

performs the generate by values of pid but first verifies that the data are sorted by pid and time within
pid.

Quick start

Generate newv as an observation number within each level of catvar

by catvar: generate newv=_n

Same as above, but sort data by catvar first

by catvar, sort: generate newv=_n

Same as above

bysort catvar: generate newv=_n

Same as above, but sort by v within values of catvar

bysort catvar (v): generate newv = _n

Generate newv as an observation number for each observation in levels of catvar and v

bysort catvar v: generate newv=_n

Note: Any command that accepts the by prefix may be substituted for generate above.

31

by — Repeat Stata command on subsets of the data 32

Syntax

by varlist : stata_cmd

bysort varlist : stata_cmd

The above diagrams show by and bysort as they are typically used.
The full syntax of the commands is

by varlist; [(varlz’stg)] [, sort rcO} . stata_cmd

bysort varlist, [(varlisty)] [, rc0] : stata_cmd

Options
sort specifies that if the data are not already sorted by var/ist, by should sort them.

rcO specifies that even if the stata_cmd produces an error in one of the by-groups, then by is still to run
the stata_cmd on the remaining by-groups. The default action is to stop when an error occurs. rcO
is especially useful when stata_cmd is an estimation command and some by-groups have insufficient
observations.

Remarks and examples

b Example 1
. use https://www.stata-press.com/data/r19/autornd
(1978 automobile data)

. keep in 1/20
(54 observations deleted)

. by mpg: egen mean_w = mean(weight)
not sorted
r(5);

. sort mpg

. by mpg: egen mean_w = mean(weight)

by — Repeat Stata command on subsets of the data 33

. list
make weight mpg mean_w
1 Cad. Eldorado 4000 15 3916.667
2. AMC Pacer 3500 15 3916.667
3. Chev. Impala 3500 15 3916.667
4 Buick Electra 4000 15 3916.667
5 Buick Riviera 4000 15 3916.667
6 Cad. Deville 4500 15 3916.667
7. AMC Spirit 2500 20 3350
8. Chev. Monte Carlo 3000 20 3350
9 Chev. Malibu 3000 20 3350
10 Buick Skylark 3500 20 3350
11. Buick Regal 3500 20 3350
12. Buick LeSabre 3500 20 3350
13. AMC Concord 3000 20 3350
14. Chev. Nova 3500 20 3350
15. Cad. Seville 4500 20 3350
16. Buick Century 3500 20 3350
17. Buick Opel 2000 25 2500
18. Chev. Monza 3000 25 2500
19. Dodge Colt 2000 30 2000
20. Chev. Chevette 2000 30 2000

by requires that the data be sorted. In the above example, we could have typed by mpg, sort:
egen mean_w = mean(weight) or bysort mpg: egen mean_w = mean(weight) rather than the sepa-
rate sort; all would yield the same results.
N
For more examples, see [U] 11.1.2 by varlist:, [U] 11.5 by varlist: construct, and [U] 13.7 Explicit
subscripting. For extended introductions with detailed examples, see Cox (2002) and Mitchell (2020,
chap. 8).

Q Technical note

by repeats the stata_cmd for each group defined by varlist. 1f stata_cmd stores results, only the
results from the last group on which stata_cmd executes will be stored.
a

References
Cox, N. J. 2002. Speaking Stata: How to move step by: step. Stata Journal 2: 86—102.

. 2020. Speaking Stata: Concatenating values over observations. Stata Journal 20: 236-243.

. 2023. Speaking Stata: Replacing missing values: The easiest problems. Stata Journal 23: 884—-896.

Huber, C. 2014. How to simulate multilevel/longitudinal data. The Stata Blog: Not Elsewhere Classified. https://blog.
stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/.

Mitchell, M. N. 2020. Data Management Using Stata: A Practical Handbook. 2nd ed. College Station, TX: Stata Press.

https://www.stata-journal.com/article.html?article=pr0004
https://doi.org/10.1177/1536867X20909698
https://doi.org/10.1177/1536867X231196519
https://blog.stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/
https://blog.stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/
https://www.stata-press.com/books/data-management-using-stata/

by — Repeat Stata command on subsets of the data 34

Also see

[D] sort — Sort data

[D] statsby — Collect statistics for a command across a by list
[P] byable — Make programs byable

[P] foreach — Loop over items

[P] forvalues — Loop over consecutive values

[P] while — Looping

[U] 11.1.2 by varlist:

[U] 11.1.10 Prefix commands

[U] 11.4 varname and varlists

[U] 11.5 by varlist: construct

cd — Change directory

Description Quick start Syntax Remarks and examples Also see

Description

Stata for Windows: cd changes the current working directory to the specified drive and directory.
pwd is equivalent to typing cd without arguments; both display the name of the current working direc-
tory. Note: You can shell out to a Windows command prompt; see [D] shell. However, typing !cd
directory_name does not change Stata’s current directory; use the cd command to change directories.

Stata for Mac and Stata for Unix: cd (synonym chdir) changes the current working directory to
directory_name or, if directory_name is not specified, the home directory. pwd displays the path of the
current working directory.

Quick start

Change working directory in Stata for Windows to C: \mydir\myfolder
cd c:\mydir\myfolder

Change working directory in Stata for Windows to C: \my dir\my folder
cd "c:\my dir\my folder"

Change working directory in Stata for Mac or Unix to mydir/myfolder
cd mydir/myfolder

Move up one level in the directory structure
cd ..

Move to myfolder from mydir
cd myfolder

View current working directory
pwd

Go to home directory in Stata for Mac or Unix
cd

35

cd — Change directory 36

Syntax
Stata for Windows

cd

cd ["]directory_name|"|

[
["]drive:["]
[

cd
cd ["]drive:directory_name|"]
pwd

Stata for Mac and Stata for Unix

cd
cd ["]directory_name|"|

pwd

If your directory_name contains embedded spaces, remember to enclose it in double quotes.

Remarks and examples

Remarks are presented under the following headings:

Stata for Windows
Stata for Mac
Stata for Unix

Stata for Windows

When you start Stata for Windows, your current working directory is set to the Start in directory
specified in Properties. If you want to change this, see [GSW] B.1 The Windows Properties Sheet.
You can always see what your working directory is by looking at the status bar at the bottom of the Stata
window.

Once you are in Stata, you can change your directory with the cd command.
. cd

c:\data

. cd city

c:\data\city

. cd d:

D:\

. cd kande

D:\kande

. cd "additional detail"
D:\kande\additional detail
. cd c:

C:\

. cd data\city
C:\data\city

cd — Change directory 37

. cd \a\b\c\d\e\f\g
C:\a\b\c\d\e\f\g

.cd ..
C:\a\b\c\d\e\f

.cd ...
C:\a\b\c\d

.cd ...,
C:\a

When we typed cd d:, we changed to the current directory of the D drive. We navigated our
way to d:\kande\additional detail with three commands: cd d:, then cd kande, and then cd
"additional detail". The double quotes around “additional detail” are necessary because of
the space in the directory name. We could have changed to this directory in one command: cd
"d:\kande\additional detail".

Notice the last three cd commands in the example above. You are probably familiar with the cd . .
syntax to move up one directory from where you are. The last two cd commands above let you move
up more than one directory: cd ... is shorthand for “cd ..\..” and cd is shorthand for “cd
..\..\..”. These shorthand cd commands are not limited to Stata; they will work in your Command
window under Windows as well.

You can see the current directory (where Stata saves files and looks for files) by typing pwd. You can
change the current directory by using cd or by selecting File > Change working directory.... Stata’s
cd command understands “~” as an abbreviation for the home directory, so you can type things like cd
~\data.

. pwd
C:\Users\bill\proj

. cd "~\data\city"
C:\Users\bill\data\city

If you now wanted to change to "C:\Users\bill\data\city\ny", you could type cd ny. If you
wanted instead to change to "C:\Users\bill\data", you could type “cd ..”.

Stata for Mac

Read [U] 11.6 Filenaming conventions for a description of how filenames are written in a command
language before reading this entry.

Invoking an application and then changing folders is an action foreign to most Mac users. If it is
foreign to you, you can ignore cd and pwd. However, they can be useful. You can see the current folder
(where Stata saves files and looks for files) by typing pwd. You can change the current folder by using
cd or by selecting File > Change working directory.... Stata’s cd command understands “~” as an
abbreviation for the home directory, so you can type things like cd ~/data.

. pwd
/Users/bill/proj

. cd "~/data/city"
/Users/bill/data/city

If you now wanted to change to " /Users/bill/data/city/ny", you could type cd ny. If you wanted
instead to change to "/Users/bill/data", you could type “cd ..”.

cd — Change directory 38

Stata for Unix

[T

cd and pwd are equivalent to Unix’s cd and pwd commands. Like csh, Stata’s cd understands “~” as
an abbreviation for the home directory $HOME, so you can type things like cd ~/data; see [U] 11.6 File-
naming conventions.

. pwd
/usr/bill/proj

. cd ~/data/city
/usr/bill/data/city

If you now wanted to change to /usr/bill/data/city/ny, you could type cd ny. If you wanted
instead to change to /usr/bill/data, you could type “cd ..”.

Also see

[D] copy — Copy file from disk or URL
[D] dir — Display filenames

[D] erase — Erase a disk file

[D] mkdir — Create directory

[D] rmdir — Remove directory

[D] shell — Temporarily invoke operating system
[D] type — Display contents of a file

[U] 11.6 Filenaming conventions

cf — Compare two datasets

Description Quick start Menu Syntax Options
Remarks and examples Stored results Acknowledgment Also see
Description

cf compares varlist of the dataset in memory (the master dataset) with the corresponding variables
in filename (the using dataset). cf returns nothing (that is, a return code of 0) if the specified variables
are identical and a return code of 9 if there are any differences. Only the variable values are compared.
Variable labels, value labels, notes, characteristics, etc., are not compared.

Quick start

Compare values of v1 and v2 from mydatal.dta in memory to mydata2.dta
cf vl v2 using mydata2

Same as above, but give a detailed listing of the differences

cf vl v2 using mydata2, verbose

Same as above, but for all variables in memory

cf _all using mydata2, verbose

Menu

Data > Data utilities > Compare two datasets

39

cf — Compare two datasets 40

Syntax

cf varlist using filename [,all yerbose]

Options

all displays the result of the comparison for each variable in varlist. Unless all is specified, only the
results of the variables that differ are displayed.

verbose gives a detailed listing, by variable, of each observation that differs.

Remarks and examples
cf produces messages having the following form:

varname: does not exist in using
varname: ___ in master but __ in using
varname: ____ mismatches

varname: match

An example of the second message is “str4 in master but float in using”. Unless all is specified, the
fourth message does not appear—silence indicates matches.

b Example 1

We think the dataset in memory is identical to mydata.dta, but we are unsure. We want to understand
any differences before continuing:

. cf _all using mydata

All the variables in the master dataset are in mydata.dta, and these variables are the same in both
datasets. We might see instead

. cf _all using mydata
mpg: 2 mismatches
headroom: does not exist in using
displacement: does not exist in using
gear_ratio: does not exist in using
r(9);

Two changes were made to the mpg variable, and the headroom, displacement, and gear_ratio vari-
ables do not exist in mydata.dta.

cf — Compare two datasets 41

To see the result of each comparison, we could append the all option to our command:

. cf _all using mydata, all

make: match
price: match
mpg: 2 mismatches

rep78: match
headroom: does not exist in using

trunk: match

weight: match

length: match

turn: match
displacement: does not exist in using
gear_ratio: does not exist in using

foreign: match

r(9);

For more details on the mismatches, we can use the verbose option:

. cf _all using mydata, verbose

mpg: 2 mismatches
obs 1. 22 in master; 33 in using
obs 2. 17 in master; 33 in using
headroom: does not exist in using
displacement: does not exist in using

gear_ratio:

r(9);

does not exist in using

This example shows us exactly which two observations for mpg differ, as well as the value stored in
each dataset.

N

b Example 2

We want to compare a group of variables in the dataset in memory against the same group of variables
inmydata.dta.

. cf mpg headroom using mydata
mpg: 2 mismatches
headroom: does not exist in using
r(9);

Stored results

cf stores the following in r ():

Macros
r (Nsum) number of differences
Acknowledgment

Speed improvements in cf were based on code written by David Kantor.

Also see

[D] compare — Compare two variables

changeeol — Convert end-of-line characters of text file

Description Quick start Syntax Options Remarks and examples Also see

Description

changeeol converts text file filenamel to text file filename2 with the specified Win-
dows/Unix/Mac/classic Mac-style end-of-line characters. changeeol changes the end-of-line characters
from one type of file to another.

Quick start

Create mytext2. txt with Windows end-of-line characters from mytext1.txt
changeeol mytextl.txt mytext2.txt, eol(windows)

Same as above, but convert to Mac-style end-of-line characters
changeeol mytextl.txt mytext2.txt, eol(mac)

Same as above, but convert to Unix-style end-of-line characters
changeeol mytextl.txt mytext2.txt, eol(unix)

Syntax

changeeol filenamel filename2, eol(platform) |options |

filenamel and filename2 must be filenames.

Note: Double quotes may be used to enclose the filenames, and the quotes must be used if the filename
contains embedded blanks.

options Description
*eol(windows) convert to Windows-style end-of-line characters (\r\n)
*eol(dos) synonym for eol (windows)
*eol (unix) convert to Unix-style end-of-line characters (\n)
*eol(mac) convert to Mac-style end-of-line characters (\n)
*eol(classicmac) convert to classic Mac-style end-of-line characters (\r)

replace overwrite filename?2

force force to convert filenamel to filename? if filenamel is a binary file

*e0l() is required.

Options

eol (windows | dos |unix |mac | classicmac) specifies to which platform style filename? is to be con-
verted. eol () is required.
replace specifies that filename?2 be replaced if it already exists.

force specifies that filenamel be converted if it is a binary file.

42

changeeol — Convert end-of-line characters of text file 43

Remarks and examples

changeeol uses hexdump to determine whether filenamel is text or binary. Ifit is binary, changeeol
will refuse to convert it unless the force option is specified.

Examples

Windows:

. changeeol orig.txt newcopy.txt, eol(windows)
Unix:

. changeeol orig.txt newcopy.txt, eol(unix)
Mac:

. changeeol orig.txt newcopy.txt, eol(mac)
Classic Mac:

. changeeol orig.txt newcopy.txt, eol(classicmac)

Also see

[D] filefilter — Convert ASCII or binary patterns in a file

[D] hexdump — Display hexadecimal report on file

checksum — Calculate checksum of file

Description Quick start Syntax Options
Remarks and examples Stored results Also see

Description

checksunm creates filename . sum files for later use by Stata when it reads files over a network. These
optional files are used to reduce the chances of corrupted files going undetected. Whenever Stata reads
file filename . suffix over a network, whether by use, net, update, etc., it also looks for filename . sum.
If Stata finds that file, Stata reads it and uses its contents to verify that the first file was received without
error. If there are errors, Stata informs the user that the file could not be read.

Quick start

Calculate checksum of mydata.dta

checksum mydata.dta

Same as above, and save results to mydata. sum

checksum mydata.dta, save

Same as above, but save results to mycheck. sum

checksum mydata.dta, saving(mycheck.sum)

Same as above, but replace mycheck. sum if it exists

checksum mydata.dta, saving(mycheck.sum, replace)

Syntax
checksun filename [, options |
options Description
save save output to filename . sum; default is to display a report
replace may overwrite filename . sum; use with save
saving(filename2 [, replace]) save output to filename2; alternative to save

44

checksum — Calculate checksum of file 45

Q Technical note

checksum calculates a CRC checksum following the POSIX 1003.2 specification and displays the file
size in bytes. checksum produces the same results as the Unix cksum command. Comparing the check-
sum of the original file with the received file guarantees the integrity of the received file.

When comparing Stata’s checksum results with those of Unix, do not confuse Unix’s sum and cksum
commands. Unix’s cksum and Stata’s checksum use a more robust algorithm than that used by Unix’s
sum. In some Unix operating systems, there is no cksum command, and the more robust algorithm is
obtained by specifying an option with sum.

a

Options
save saves the output of the checksum command to the text file filename . sum. The default is to display
a report but not create a file.
replace is for use with save; it permits Stata to overwrite an existing filename . sum file.

saving(filename2 |, replace]) is an alternative to save. It saves the output in the specified filename.
You must supply a file extension if you want one, because none is assumed.

Remarks and examples

b Example 1

Say that you wish to put a dataset on your homepage so that colleagues can use it over the internet by
typing

. use http://www.myuni.edu/department/~joe/mydata

mydata.dta is important, and even though the chances of the file mydata.dta being corrupted by the
internet are small, you wish to guard against that. The solution is to create the checksum file named
mydata.sum and place that on your homepage. Your colleagues need type nothing different, but now
Stata will verify that all goes well. When they use the file, they will see either

. use http://www.myuni.edu/department/~joe/mydata
(important data from joe)

or

. use http://www.myuni.edu/department/~joe/mydata

file transmission error (checksums do not match)
http://www.myuni.edu/department/~joe/mydata.dta not downloaded
r(639);

To make the checksum file, change to the directory where the file is located and type

. checksum mydata.dta, save
Checksum for mydata.dta = 263508742, size = 4052
file mydata.sum saved

checksum — Calculate checksum of file 46

b Example 2

Let’s use checksum on auto.dta that is shipped with Stata. We will load the dataset and save it to
our current directory.
. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)

. save auto
file auto.dta saved

. checksum auto.dta
Checksum for auto.dta = 108935638, size = 12765

We see the report produced by checksum, but we decide to save this information to a file.

. checksum auto.dta, save

. type auto.sum
1 12765 108935638

The first number is the version number (possibly used for future releases). The second number is the
file’s size in bytes, which can be used with the checksum value to ensure that the file transferred without
corruption. The third number is the checksum value. Although two different files can have the same
checksum value, two files with the same checksum value almost certainly could not have the same file
size.

This example is admittedly artificial. Typically, you would use checksum to verify that no file trans-
mission error occurred during a web download. If you want to verify that your own data are unchanged,
using datasignature is better; see [D] datasignature.

d

Stored results

checksum stores the following in r ():

Scalars
r(version) checksum version number
r(filelen) length of file in bytes
r(checksum) checksum value

Also see
[R] net — Install and manage community-contributed additions from the internet

[D] use — Load Stata dataset

[D] datasignature — Determine whether data have changed

clear — Clear memory

Description Quick start Syntax Remarks and examples Also see
Description
clear, by itself, removes data and value labels from memory and is equivalent to typing
. drop _all (see [D] drop)
. label drop _all (see [D] label)

clear mata removes Mata functions and objects from memory and is equivalent to typing

. mata: mata clear (see [M-3] mata clear)

clear results eliminates stored results from memory and is equivalent to typing

. return clear (see [P] return)
. ereturn clear (see [P] return)
. sreturn clear (see [P] return)
. _return drop _all (see [P] _return)

clear matrix eliminates from memory all matrices created by Stata’s matrix command; it does not
eliminate Mata matrices from memory. clear matrix is equivalent to typing

. return clear (see [P] return)

. ereturn clear (see [P] return)

. sreturn clear (see [P] return)

. _return drop _all (see [P] _return)

. matrix drop _all (see [P] matrix utility)
. estimates drop _all (see [R] estimates)

clear programs eliminates all programs from memory and is equivalent to typing

. program drop _all (see [P] program)

clear ado eliminates all automatically loaded ado-file programs from memory (but not programs
defined interactively or by do-files). It is equivalent to typing

. program drop _allado (see [P] program)

clear rngstream eliminates from memory stored random-number states for all mt64s streams (in-
cluding the current stream). It resets the mt64s generator to the beginning of every stream, based on the
current mt64s seed. clear rngstream does not change the current mt64s seed and stream. The mt64s
seed and stream can be set with set seed and set rngstreamn, respectively.

clear frames eliminates from memory all frames and restores Stata to its initial state of having a
single, empty frame named default.

clear collect removes all collections from memory and is equivalent to typing

. collect clear (see [TABLES] collect clear)

47

clear — Clear memory 48

clear all and clear * are synonyms. They remove all data, value labels, matrices, scalars, con-
straints, clusters, stored results, frames, sersets, and Mata functions and objects from memory. They
also close all open files and postfiles, clear the class system, close any open Graph windows and dialog
boxes, drop all programs from memory, and reset all timers to zero. However, they do not call clear
rngstream. They are equivalent to typing

. drop _all (see [D] drop)
. frames reset (see [D] frames reset)
. collect clear (see [TABLES] collect clear)
. label drop _all (see [D] label)
. matrix drop _all (see [P] matrix utility)
. scalar drop _all (see [P] scalar)
. constraint drop _all (see [R] constraint)
. cluster drop _all (see [MV] cluster utility)
. file close _all (see [P] file)
. postutil clear (see [P] postfile)
_return drop _all (see [P] _return)
. discard (see [P] discard)
. program drop _all (see [P] program)
. timer clear (see [P] timer)
. putdocx clear (see [RPT] putdocx begin)
. putpdf clear (see [RPT] putpdf begin)
. mata: mata clear (see [M-3] mata clear)
. python clear (see [P] PyStata integration)
. java clear (see [P] Java integration)

Quick start

Remove data and value labels from memory

clear

Remove Stata matrices from memory

clear matrix

Remove Mata matrices, Mata objects, and Mata functions from memory

clear mata

Remove all programs from memory

clear programs

Same as above, but only programs automatically loaded by ado-files

clear ado

Remove results stored in r (), e(), and s () from memory
clear results
Remove all the above and constraints, clusters, and sersets; reset timers to 0; clear the class system; and
close all open files, graph windows, and dialog boxes

clear all

Same as above

clear *

clear — Clear memory 49

Syntax

clear
clear [mata|results|matrix|programs|ado|rngstream|frames|collect]

clear [all|*]|

Remarks and examples

You can clear the entire dataset without affecting macros and programs by typing clear. You can also
type clear all. This command has the same result as clear by itself but also clears matrices, scalars,
constraints, clusters, stored results, sersets, Mata, the class system, business calendars, and programs;
closes all open files and postfiles; closes all open Graph windows and dialog boxes; and resets all timers
to zero.

b Example 1

We load the bpwide dataset to correct a mistake in the data.

. use https://www.stata-press.com/data/r19/bpwide
(Fictional blood-pressure data)

. list in 1/5

patient sex agegrp bp_bef~e bp_after

1. 1 Male 30-45 143 153
2. 2 Male 30-45 163 170
3. 3 Male 30-45 153 168
4. 4 Male 30-45 153 142
5. 5 Male 30-45 146 141

. replace bp_after = 145 in 3
(1 real change made)

We made another mistake. We meant to change the value of bp_after in observation 4. It is easiest to
begin again.

. clear

. use https://www.stata-press.com/data/r19/bpwide
(Fictional blood-pressure data)

Also see

[D] drop — Drop variables or observations
[P] discard — Drop automatically loaded programs
[U] 11 Language syntax

[U] 13 Functions and expressions

clonevar — Clone existing variable

Description Quick start Menu Syntax
Remarks and examples Acknowledgments Also see
Description

clonevar generates newvar as an exact copy of an existing variable, varname, with the same storage
type, values, and display format as varname. varname’s variable label, value labels, notes, and charac-
teristics will also be copied.

Quick start

Copy contents, label, and value label of v1 to newv1

clonevar newvl = vl

Copy observations from v2 to newv2 where v2 is less than 30

clonevar newv2 =v2 if v2 < 30

Copy the first 20 observations of v3 to newv3

clonevar newv3 =v3 in £/20

Same as above

clonevar newv3 =v3 in 1/20

Menu

Data > Create or change data > Other variable-creation commands > Clone existing variable

Syntax

clonevar newvar = varname [z/} [in]

Remarks and examples

clonevar has various possible uses. Programmers may desire that a temporary variable appear to
the user exactly like an existing variable. Interactively, you might want a slightly modified copy of an
original variable, so the natural starting point is a clone of the original.

50

clonevar — Clone existing variable 51

b Example 1

We have a dataset containing information on modes of travel. These data contain a variable named
mode that identifies each observation as a specific mode of travel: air, train, bus, or car.
. use https://www.stata-press.com/data/r19/travel
(Modes of travel)

. describe mode

Variable Storage Display Value
name type format label Variable label
mode byte %8.0g travel Travel mode alternatives
. label list travel
travel:
1 Air
2 Train
3 Bus
4 Car

To create an identical variable identifying only observations that contain air or train, we could use
clonevar with an if qualifier.

. clonevar airtrain = mode if mode == | mode ==

(420 missing values generated)

. describe mode airtrain

Variable Storage Display Value

name type format label Variable label
mode byte %8.0g travel Travel mode alternatives
airtrain byte %8.0g travel Travel mode alternatives

. list mode airtrain in 1/5

mode airtrain

1. Air Air
2. Train Train
3. Bus

4. Car .
5. Air Air

The new airtrain variable has the same storage type, display format, value label, and variable label
as mode. If mode had any characteristics or notes attached to it, they would have been applied to the new
airtrain variable, too. The only differences in the two variables are their names and values for bus and
car.

N
Q Technical note

The if qualifier used with the clonevar command in example 1 referred to the values of mode as 1
and 2. Had we wanted to refer to the values by their associated value labels, we could have typed

. clonevar airtrain = mode if mode == "air":travel | mode == "train":travel

For more details, see [U] 13.11 Label values.

clonevar — Clone existing variable 52

Acknowledgments

clonevar was written by Nicholas J. Cox of the Department of Geography at Durham University, UK,
who is coeditor of the Stata Journal and author of Speaking Stata Graphics. He in turn thanks Michael
Blasnik of Nest Labs and Ken Higbee of StataCorp for very helpful comments on a precursor of this
command.

Also see

[D] generate — Create or change contents of variable

[D] separate — Create separate variables

https://www.stata-journal.com/
https://www.stata-press.com/books/speaking-stata-graphics/

codebook — Describe data contents

Description Quick start Menu Syntax Options
Remarks and examples Stored results References Also see
Description

codebook examines the variable names, labels, and data to produce a codebook describing the dataset.

Quick start

Codebook of all variables in the dataset

codebook

Codebook of variables v1, v2, and v3
codebook vl v2 v3

Codebook of all variables starting with code

codebook codex*

Include dataset name, last saved date, and variable notes in the codebook

codebook, header notes

Report problems with labels, constant-valued variables, embedded spaces and binary 0 in string variables,
and noninteger date variables

codebook, problems

Codebook for dataset with English and Spanish variable and value labels using label languages en and
es

codebook, languages (en es)

Menu

Data > Describe data > Describe data contents (codebook)

53

codebook — Describe data contents 54

Syntax
codebook [varlist] [if | [in] [, options]
options Description
Options
all print complete report without missing values
header print dataset name and last saved date
notes print any notes attached to variables
mv report pattern of missing values
tabulate (#) set tables/summary statistics threshold; default is tabulate (9)
problems report potential problems in dataset
detail display detailed report on the variables; only with problems
compact display compact report on the variables
dots display a dot for each variable processed; only with compact
Languages

languages|(namelist)] use with multilingual datasets; see [D] label language for details

collect is allowed; see [U] 11.1.10 Prefix commands.
Options

all is equivalent to specifying the header and notes options. It provides a complete report, which
excludes only performing mv.

header adds to the top of the output a header that lists the dataset name, the date that the dataset was last
saved, etc.

notes lists any notes attached to the variables; see [D] notes.

mv specifies that codebook search the data to determine the pattern of missing values. This is a CPU-
intensive task.

tabulate (#) specifies the number of unique values of the variables to use to determine whether a
variable is categorical or continuous. Missing values are not included in this count. The default is
9; when there are more than nine unique values, the variable is classified as continuous. Extended
missing values will be included in the tabulation.

problems specifies that a summary report is produced describing potential problems that have been
diagnosed:

e Variables that are labeled with an undefined value label
e Incompletely value-labeled variables

e Variables that are constant, including always missing

Leading, trailing, and embedded spaces in string variables

Embedded binary 0 (\0) in string variables

Noninteger-valued date variables

See the discussion of these problems and advice on overcoming them following example 5.

codebook — Describe data contents 55

detail may be specified only with the problems option. It specifies that the detailed report on the
variables not be suppressed.

compact specifies that a compact report on the variables be displayed. compact may not be specified
with any options other than dots.

dots specifies that a dot be displayed for every variable processed. dots may be specified only with
compact.

Languages

languages|(namelist)] is for use with multilingual datasets; see [D] label language. It indicates that the
codebook pertains to the languages in namelist or to all defined languages if no such list is specified
as an argument to languages (). The output of codebook lists the data label and variable labels in
these languages and which value labels are attached to variables in these languages.

Problems are diagnosed in all of these languages, as well. The problem report does not provide details
in which language problems occur. We advise you to rerun codebook for problematic variables;
specify detail to produce the problem report again.

If you have a multilingual dataset but do not specify languages (), all output, including the problem
report, is shown in the “active” language.

Remarks and examples

codebook, without arguments, is most usefully combined with 1og to produce a printed listing for
enclosure in a notebook documenting the data; see [U] 15 Saving and printing output—Ilog files.
codebook is, however, also useful interactively, because you can specify one or a few variables.

b Example 1

codebook examines the data in producing its results. For variables that codebook thinks are continu-
ous, it presents the mean; the standard deviation; and the 10th, 25th, 50th, 75th, and 90th percentiles. For
variables that it thinks are categorical, it presents a tabulation. In part, codebook makes this determina-
tion by counting the number of unique values of the variable. If the number is nine or fewer, codebook
reports a tabulation; otherwise, it reports summary statistics.

codebook distinguishes the standard missing values (.) and the extended missing values (. a through
.z, denoted by .*). If extended missing values are found, codebook reports the number of distinct
missing value codes that occurred in that variable. Missing values are ignored with the tabulate option
when determining whether a variable is treated as continuous or categorical.

codebook — Describe data contents 56

. use https://www.stata-press.com/data/r19/educ3

(ccdb46, 52-54)

. codebook fips division, all

Dataset:
Last saved:

Label:

Number of variables:
Number of observations:
Size:

_dta:

https://www.stata-press.com/data/r19/educ3.dta
6 Mar 2024 22:20

ccdb46, 52-54

42

956

145,312 bytes ignoring labels, etc.

1. confirmed data with steve on 7/22

fips

state/place code

Type:
Range:
Unique values:

Mean:
Std. dev.:

Percentiles:

Numeric (long)
[10060,560050] Units: 1
956 Missing .: 0/956
256495
156998
10% 25% 50% 75% 90%
61462 120426 252848 391360 482530

division

Census Division

Type:

Label:

Range:

Unique values:
Unique mv codes:

Tabulation:

Numeric (int)

division

[1,9] Units: 1

9 Missing .: 4/956
2 Missing .*: 2/956

Freq. Numeric Label
69
97
202
78
115
46
89
59
195

4 .

2 .a

©0O~NOOOd WN -

Pacific

Because division has nine unique nonmissing values, codebook reported a tabulation. Ifdivision
had contained one more unique nonmissing value, codebook would have switched to reporting summary
statistics, unless we had included the tabulate (#) option.

d

codebook — Describe data contents 57

b Example 2

The mv option is useful. It instructs codebook to search the data to determine patterns of missing
values. Different kinds of missing values are not distinguished in the patterns.
. use https://www.stata-press.com/data/r19/citytemp
(City temperature data)
. codebook cooldd heatdd tempjan tempjuly, mv

cooldd Cooling degree days

Type: Numeric (int)
Range: [0,4389] Units: 1
Unique values: 438 Missing .: 3/956

Mean: 1240.41
Std. dev.: 937.668

Percentiles: 10% 257, 50% 75% 90%
411 615 940 1566 2761
Missing values: heatdd==mv <-> cooldd==mv

tempjan==mv --> cooldd==mv
tempjuly==mv --> cooldd==mv

heatdd Heating degree days

Type: Numeric (int)
Range: [0,10816] Units: 1
Unique values: 471 Missing .: 3/956

Mean: 4425.53
Std. dev.: 2199.6

Percentiles: 10% 25% 50% 75% 90%
1510 2460 4950 6232 6919
Missing values: cooldd==mv <-> heatdd==mv

tempjan==mv --> heatdd==mv
tempjuly==mv --> heatdd==mv

tempjan Average January temperature

Type: Numeric (float)

Range: [2.2,72.6] Units: .1
Unique values: 310 Missing .: 2/956

Mean: 35.749
Std. dev.: 14.1881

Percentiles: 10% 25% 50% 75% 90%
20.2 25.1 31.3 47.8 55.1

Missing values: tempjuly==mv <-> tempjan==mv

codebook — Describe data contents 58

tempjuly Average July temperature

Type: Numeric (float)
Range: [58.1,93.6] Units: .1
Unique values: 196 Missing .: 2/956

Mean: 75.0538
Std. dev.: 5.49504

Percentiles: 10% 257, 50% 75% 90%
68.8 71.8 74.25 78.7 82.3
Missing values: tempjan==mv <-> tempjuly==mv

codebook reports that if tempjan is missing, tempjuly is also missing, and vice versa. In the output
for the cooldd variable, codebook also reports that the pattern of missing values is the same for cooldd
and heatdd. In both cases, the correspondence is indicated with “<->".

For cooldd, codebook also states that “tempjan==mv -> cooldd==mv”. The one-way arrow means
that a missing tempjan value implies a missing cooldd value but that a missing cooldd value does not
necessarily imply a missing tempjan value.

N

Another feature of codebook—this one for numeric variables—is that it can determine the units of
the variable. For instance, in the example above, tempjan and tempjuly both have units of 0.1, meaning
that temperature is recorded to tenths of a degree. codebook handles precision considerations in making
this determination (tempjan and tempjuly are floats; see [U] 13.12 Precision and problems therein).
If we had a variable in our dataset recorded in 100s (for example, 21,500 or 36,800), codebook would
have reported the units as 100. If we had a variable that took on only values divisible by 5 (5, 10, 15,
etc.), codebook would have reported the units as 5.

b Example 3

We can use the 1abel language command (see [D] label language) and the 1abel command (see
[D] label) to create German value labels for our auto dataset. These labels are reported by codebook:
. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)

. label language en, rename
(language default renamed en)

. label language de, new
(language de now current language)

. label data "1978 Automobile Daten"
. label variable foreign "Art Auto"
. label values foreign origin_de

. label define origin_de O "Innen" 1 "Ausl&ndisch"

codebook — Describe data contents 59

. codebook foreign

foreign Art Auto
Type: Numeric (byte)
Label: origin_de
Range: [0,1] Units: 1
Unique values: 2 Missing .: 0/74
Tabulation: Freq. Numeric Label
52 0 Innen
22 1 Ausléndisch
. codebook foreign, languages(en de)
foreign in en: Car origin
in de: Art Auto
Type: Numeric (byte)
Label in en: origin
Label in de: origin_de
Range: [0,1] Units: 1
Unique values: 2 Missing .: 0/74
Tabulation: Freq. Numeric origin origin_de
52 0 Domestic Innen
22 1 Foreign Ausléndisch

With the 1anguages () option, the value labels are shown in the specified active and available lan-
guages.

d

b Example 4

codebook, compact summarizes the variables in your dataset, including variable labels. It is an
alternative to the summarize command.
. use https://www.stata-press.com/data/r19/auto, clear
(1978 automobile data)

. codebook, compact

Variable Obs Unique Mean Min Max Label

make 74 74 . . . Make and model

price 74 74 6165.257 3291 15906 Price

mpg 74 21 21.2973 12 41 Mileage (mpg)

rep78 69 5 3.405797 1 5 Repair record 1978
headroom 74 8 2.993243 1.5 5 Headroom (in.)

trunk 74 18 13.75676 5 23 Trunk space (cu. ft.)
weight 74 64 3019.459 1760 4840 Weight (1lbs.)

length 74 47 187.9324 142 233 Length (in.)

turn 74 18 39.64865 31 51 Turn circle (ft.)
displacement 74 31 197.2973 79 425 Displacement (cu. in.)
gear_ratio 74 36 3.014865 2.19 3.89 Gear ratio

foreign 74 2 .2972973 0 1 Car origin

codebook — Describe data contents 60

. summarize

Variable Obs Mean Std. dev. Min Max

make 0
price 74 6165.257 2949.496 3291 15906
mpg 74 21.2973 5.785503 12 41
rep78 69 3.405797 .9899323 1 5
headroom 74 2.993243 .8459948 1.5 5
trunk 74 13.75676 4.277404 5 23
weight 74 3019.459 777.1936 1760 4840
length 74 187.9324 22.26634 142 233
turn 74 39.64865 4.399354 31 51
displacement 74 197.2973 91.83722 79 425
gear_ratio 74 3.014865 .4562871 2.19 3.89
foreign 74 .2972973 .4601885 0 1

N
b Example 5

When codebook determines that neither a tabulation nor a listing of summary statistics is appropriate,
for instance, for a string variable or for a numeric variable taking on many labeled values, it reports a
few examples instead.

. use https://www.stata-press.com/data/r19/funnyvar

. codebook name

name (unlabeled)

Type: String (str5), but longest is str3

Unique values: 10 Missing "": 0/10
Examples: "1 0"
ngn
Il5||
Il7||

Warning: Variable has embedded blanks.

codebook is also on the lookout for common problems that might cause you to make errors when
dealing with the data. For string variables, this includes leading, embedded, and trailing blanks and
embedded binary 0 (\0). In the output above, codebook informed us that name includes embedded
blanks. If name had leading or trailing blanks, it would have mentioned that, too.

When variables are value labeled, codebook performs two checks. First, if a value label labname
is associated with a variable, codebook checks whether labname is actually defined. Second, it checks
whether all values are value labeled. Partial labeling of a variable may mean that the label was defined
incorrectly (for instance, the variable has values 0 and 1, but the value label maps 1 to “male” and 2 to
“female”) or that the variable was defined incorrectly (for example, a variable gender with three values).
codebook checks whether date variables are integer valued.

If the problems option is specified, codebook does not provide detailed descriptions of each variable
but reports only the potential problems in the data.

codebook — Describe data contents 61

. codebook, problems

Potential problems in dataset https://www.stata-press.com/data/r19/

> funnyvar.dta

Potential problem

Variables

constant (or all missing) vars
vars with nonexisting label
incompletely labeled vars

str# vars that may be compressed
string vars with leading blanks

human planet

educ

gender

name address city country planet
city country

string vars with trailing blanks planet
string vars with embedded blanks name address
string vars with embedded \0 mugshot

noninteger-valued date vars birthdate

d

In the example above, codebook, problems reported various potential problems with the dataset.
These problems include

o Constant variables, including variables that are always missing

Variables that are constant, taking the same value in all observations, or that are always
missing, are often superfluous. Such variables, however, may also indicate problems. For
instance, variables that are always missing may occur when importing data with an incor-
rect input specification. Such variables may also occur if you generate a new variable for
a subset of the data, selected with an expression that is false for all observations.

Advice: Carefully check the origin of constant variables. If you are saving a constant
variable, be sure to compress the variable to use minimal storage.

e Variables with nonexisting value labels

Stata treats value labels as separate objects that can be attached to one or more variables.
A problem may arise if variables are linked to value labels that are not yet defined or if an
incorrect value label name was used.

Advice: Attach the correct value label, or 1abel define the value label. See [D] label.
e Incompletely labeled variables

A variable is called “incompletely value labeled” if the variable is value labeled but no
mapping is provided for some values of the variable. An example is a variable with values
0, 1, and 2 and value labels for 1, 2, and 3. This situation usually indicates an error, either
in the data or in the value label.

Advice: Change either the data or the value label.
e String variables that may be compressed

The storage space used by a string variable is determined by its data type; see [D] Data
types. For instance, the storage type str20 indicates that 20 bytes are used per observation.
If the declared storage type exceeds your requirements, memory and disk space is wasted.

Advice: Use compress to store the data as compactly as possible.

codebook — Describe data contents 62

e String variables with leading or trailing blanks

In most applications, leading and trailing spaces do not affect the meaning of variables
but are probably side effects from importing the data or from data manipulation. Spurious
leading and trailing spaces force Stata to use more memory than required. In addition,
manipulating strings with leading and trailing spaces is harder.

Advice: Remove leading and trailing blanks from a string variable s by typing
replace s = strtrim(s)
See [FN] String functions.
e String variables with embedded blanks

String variables with embedded blanks are often appropriate; however, sometimes they
indicate problems importing the data.

Advice: Verify that blanks are meaningful in the variables.
e String variables with embedded binary 0 (\0)

String variables with embedded binary 0 (\0) are allowed; however, caution should be
used when working with them as some commands and functions may only work with the
plain text portion of a binary string, ignoring anything after the first binary 0.

Advice: Be aware of binary strings in your data and whether you are manipulating them
in a way that is only appropriate with plain text values.

e Noninteger-valued date variables

Stata’s date and time formats were designed for use with integer values but will work with
noninteger values.

Advice: Carefully inspect the nature of the noninteger values. If noninteger values in a
variable are the consequence of roundoff error, you may want to round the variable to the
nearest integer.

replace time = round(time)
Of course, more problems not reported by codebook are possible. These might include
e Numerical data stored as strings

After importing data into Stata, you may discover that some string variables can actually be
interpreted as numbers. Stata can do much more with numerical data than with string data.
Moreover, string representation usually makes less efficient use of computer resources.
destring will convert string variables to numeric.

A string variable may contain a “field” with numeric information. An example is an address
variable that contains the street name followed by the house number. The Stata string
functions can extract the relevant substring.

o Categorical variables stored as strings

Most statistical commands do not allow string variables. Moreover, string variables that
take only a limited number of distinct values are an inefficient storage method. Use value-
labeled numeric values instead. These are easily created with encode.

e Duplicate observations

See [D] duplicates.

codebook — Describe data contents 63

e Observations that are always missing

Drop observations that are missing for all variables in varlist using the rownonmiss ()
egen function:

egen nobs = rownonmiss (varlist)
drop if nobs==

Specify _all for varlist if only observations that are always missing should be dropped.

Stored results

codebook stores the following lists of variables with potential problems in r ():

Macros
r(cons) constant (or missing)
r(labelnotfound) undefined value labeled
r(notlabeled) value labeled but with unlabeled categories
r(str_type) compressible
r(str_leading) leading blanks
r(str_trailing) trailing blanks
r(str_embedded) embedded blanks
r(str_embedded0) embedded binary 0 (\0)
r(realdate) noninteger dates
References

Bjarkefur, K., L. Cardoso de Andrade, and B. Daniels. 2020. iefieldkit: Commands for primary data collection and
cleaning. Stata Journal 20: 892-915.

. 2023. iefieldkit: Commands for primary data collection and cleaning (update). Stata Journal 23: 875-883.
Cox, N. J. 2012. Software Updates: Speaking Stata: Distinct observations. Stata Journal 12: 352.

Cox, N. J., and G. M. Longton. 2008. Speaking Stata: Distinct observations. Stata Journal 8: 557-568.

Long, J. S. 2009. The Worktflow of Data Analysis Using Stata. College Station, TX: Stata Press.

Also see

[D] describe — Describe data in memory or in a file

[D] ds — Compactly list variables with specified properties
[D] inspect — Display simple summary of data’s attributes
[D] labelbook — Label utilities

[D] notes — Place notes in data

[D] split — Split string variables into parts

[U] 15 Saving and printing output—Ilog files

https://doi.org/10.1177/1536867X20976321
https://doi.org/10.1177/1536867X20976321
https://doi.org/10.1177/1536867X231196496
https://www.stata-journal.com/article.html?article=up0036
https://www.stata-journal.com/article.html?article=dm0042
https://www.stata-press.com/books/wdaus.html

collapse — Make dataset of summary statistics

Description Quick start Menu Syntax
Options Remarks and examples Acknowledgment Also see
Description

collapse converts the dataset in memory into a dataset of means, sums, medians, etc. clist must
refer to numeric variables exclusively.

Note: See [D] contract if you want to collapse to a dataset of frequencies.

Quick start

Replace dataset in memory with means of v1 and v2

collapse vl v2

Same as above, but calculate statistics separately by each level of catvar
collapse vl v2, by(catvar)

Dataset of mean, standard deviation, and standard error of the mean of v1

collapse (mean) meanl=vl (sd) sdi=v1l (semean) seml=v1l

Mean and standard error of the mean for binomial v2

collapse (mean) mean2=v2 (sebinomial) sem2=v2

Frequency, median, and interquartile range of v1
collapse (count) freq=vl (p50) p50=v1 (iqr) iqr=vil

Weighted and unweighted sum of v2 using frequency weight wvar
collapse (sum) weighted=v2 (rawsum) unweighted=v2 [fweight=wvar]

Menu

Data > Create or change data > Other variable-transformation commands > Make dataset of means, medians,
etc.

64

collapse — Make dataset of summary statistics 65

Syntax
collapse clist [if'] [in] [weight] |, options]
where clist is either

[(stat) | varlist | [(stat)] ...]

[(stat)] target_var=varname [target_var=varname ...| [[(stat)] ...]

or any combination of the varlist and target_var forms, and stat is one of

mean means; the default

median medians

pl Ist percentile

p2 2nd percentile

. 3rd—49th percentiles

p50 50th percentile (same as median)
e 51st—97th percentiles

p98 98th percentile

P99 99th percentile

sd standard deviations

semean standard error of the mean (sd/sqrt(n))

sebinomial standard error of the mean, binomial (sqrt (p(1-p)/n))
sepoisson standard error of the mean, Poisson (sqrt (mean/n))

sum sums
rawsum sums, ignoring optionally specified weight except observations with a weight of zero are excluded
count number of nonmissing observations
percent percentage of nonmissing observations in the by group
(100 x (#nonmissing in by group)/(total # nonmissing))
max maximums
min minimums
iqr interquartile range
first first value
last last value
firstnm first nonmissing value
lastnm last nonmissing value
options Description
Options
by (varlist) groups over which stat is to be calculated
cw casewise deletion instead of all possible observations
fast do not restore the original dataset should the user press Break; programmer’s
command

varlist and varname in clist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight, and see Weights below. pweights may
not be used with sd, semean, sebinomial, or sepoisson. iweights may not be used with semean, sebinomial, or
sepoisson. aweights may not be used with sebinomial or sepoisson.

fast does not appear in the dialog box.

Examples:

. collapse age educ income, by(state)
. collapse (mean) age educ (median) income, by(state)
. collapse (mean) age educ income (median) medinc=income, by(state)

. collapse (p25) gpa [fw=number]l, by(year)

collapse — Make dataset of summary statistics 66

Options
_ [options |

by (varlist) specifies the groups over which the means, etc., are to be calculated. If this option is not
specified, the resulting dataset will contain 1 observation. If it is specified, varlist may refer to either
string or numeric variables.

cw specifies casewise deletion. If cw is not specified, all possible observations are used for each calculated
statistic.

The following option is available with collapse but is not shown in the dialog box:

fast specifies that collapse not restore the original dataset should the user press Break. fast is in-
tended for use by programmers.

Remarks and examples

collapse takes the dataset in memory and creates a new dataset containing summary statistics of the
original data. collapse adds meaningful variable labels to the variables in this new dataset. Because
the syntax diagram for collapse makes using it appear more complicated than it is, collapse is best
explained with examples.

Remarks are presented under the following headings:

Introductory examples
Variablewise or casewise deletion
Weights

A final example

Introductory examples

b Example 1

Consider the following artificial data on the grade-point average (gpa) of college students:
. use https://www.stata-press.com/data/r19/college
. describe

Contains data from https://www.stata-press.com/data/r19/college.dta

Observations: 12
Variables: 4 3 Jan 2024 12:05
Variable Storage Display Value
name type format label Variable label
gpa float %9.0g gpa for this year
hour int %9.0g Total academic hours
year int %9.0g 1 = freshman, 2 = sophomore, 3 =
junior, 4 = senior
number int %9.0g number of students

Sorted by: year

collapse — Make dataset of summary statistics 67

. list, sep(4)

gpa hour year number
1. 3.2 30 1 3
2. 3.5 34 1 2
3. 2.8 28 1 9
4. 2.1 30 1 4
5. 3.8 29 2 3
6. 2.5 30 2 4
7. 2.9 35 2 5
8. 3.7 30 3 4
9. 2.2 35 3 2
10. 3.3 33 3 3
11. 3.4 32 4 5
12. 2.9 31 4 2

To obtain a dataset containing the 25th percentile of gpa’s for each year, we type

. collapse (p25) gpa [fw=number], by(year)

We used frequency weights.

Next we want to create a dataset containing the mean of gpa and hour for each year. We do not have
to type (mean) to specify that we want the mean because the mean is reported by default.

. use https://www.stata-press.com/data/r19/college, clear
. collapse gpa hour [fw=number], by(year)

. list
year gpa hour
1 1 2.788889 29.44444
2 2 2.991667 31.83333
3 3 3.233333 32.11111
4 4 3.257143 31.71428

Now we want to create a dataset containing the mean and median of gpa and hour, and we want the
median of gpa and hour to be stored as variables medgpa and medhour, respectively.

. use https://www.stata-press.com/data/r19/college, clear

. collapse (mean) gpa hour (median) medgpa=gpa medhour=hour [fw=num], by(year)

. list
year gpa hour medgpa medhour
1 1 2.788889 29.44444 2.8 29
2 2 2.991667 31.83333 2.9 30
3 3 3.233333 32.11111 3.3 33
4 4 3.257143 31.71428 3.4 32

collapse — Make dataset of summary statistics 68

Here we want to create a dataset containing a count of gpa and hour and the minimums of gpa and
hour. The minimums of gpa and hour will be stored as variables mingpa and minhour, respectively.

. use https://www.stata-press.com/data/r19/college, clear

. collapse (count) gpa hour (min) mingpa=gpa minhour=hour [fw=num], by(year)

. list
year gpa hour mingpa minhour
1. 1 18 18 2.1 28
2. 2 12 12 2.5 29
3. 3 9 9 2.2 30
4. 4 7 7 2.9 31

Now we replace the values of gpa in 3 of the observations with missing values.

. use https://www.stata-press.com/data/r19/college, clear

. replace gpa = . in 2

(3 real changes made, 3 to missing)

. list, sep(4)

/4

gpa hour year number
1. 3.2 30 1 3
2. 34 1 2
3. 28 1 9
4. 30 1 4
5. 3.8 29 2 3
6. 2.5 30 2 4
7. 2.9 35 2 5
8. 3.7 30 3 4
9. 2.2 35 3 2
10. 3.3 33 3 3
11. 3.4 32 4 5
12. 2.9 31 4 2

If we now want to list the data containing the mean of gpa and hour for each year, collapse uses
all observations on hour for year = 1, even though gpa is missing for observations 1-3.

. collapse gpa hour [fw=num], by(year)

. list
year gpa hour
1. 1 3.2 29.44444
2. 2 2.991667 31.83333
3. 3 3.233333 32.11111
4. 4 3.257143 31.71428

collapse — Make dataset of summary statistics 69

If we repeat this process but specify the cw option, collapse ignores all observations that have
missing values.

. use https://www.stata-press.com/data/r19/college, clear

. replace gpa = . in 2/4
(3 real changes made, 3 to missing)

. collapse (mean) gpa hour [fw=num], by(year) cw

. list
year gpa hour
1. 1 3.2 30
2. 2 2.991667 31.83333
3. 3 3.233333 32.11111
4. 4 3.257143 31.71428
d
b Example 2

We have individual-level data from a census in which each observation is a person. Among other
variables, the dataset contains the numeric variables age, educ, and income and the string variable
state. We want to create a 50-observation dataset containing the means of age, education, and income
for each state.

. collapse age educ income, by(state)

The resulting dataset contains means because collapse assumes that we want means if we do not specify
otherwise. To make this explicit, we could have typed

. collapse (mean) age educ income, by(state)

Had we wanted the mean for age and educ and the median for income, we could have typed

. collapse (mean) age educ (median) income, by(state)

or if we had wanted the mean for age and educ and both the mean and the median for income, we could
have typed

. collapse (mean) age educ income (median) medinc=income, by(state)

This last dataset will contain three variables containing means—age, educ, and income—and one vari-
able containing the median of income—medinc. Because we typed (median) medinc=income, Stata
knew to find the median for income and to store those in a variable named medinc. This renaming con-
vention is necessary in this example because a variable named income containing the mean is also being
created.

d

collapse — Make dataset of summary statistics 70

Variablewise or casewise deletion

b Example 3

Let’s assume that in our census data, we have 25,000 persons for whom age is recorded but only
15,000 for whom income is recorded; that is, income is missing for 10,000 observations. If we want
summary statistics for age and income, collapse will, by default, use all 25,000 observations when
calculating the summary statistics for age. If we prefer that collapse use only the 15,000 observations
for which income is not missing, we can specify the cw (casewise) option:

. collapse (mean) age income (median) medinc=income, by(state) cw

Weights

collapse allows all four weight types; the default is aweights. Weight normalization affects only
the sum, count, sd, semean, and sebinomial statistics.

Let j index observations and ¢ index by-groups. Here are the definitions for count and sum with
weights:

count:
unweighted: N, the number of observations in group %
aweight: N, the number of observations in group ¢
fweight, iweight, pweight:) wj, the sum of the weights over observations in

group 1

sum:
unweighted: >, the sum of x; over observations in group 4
aweight: > v;x; over observations in group i; v; = weights

normalized to sum to NV,
fweight, iweight, pweight:) w,x; over observations in group i

When the by () option is not specified, the entire dataset is treated as one group.

The sd statistic with weights returns the square root of the bias-corrected variance, which is based on
the factor \/ N, /(N, — 1), where N, is the number of observations. Statistics sd, semean, sebinomial,
and sepoisson are not allowed with pweighted data. Otherwise, the statistic is changed by the weights
through the computation of the weighted count, as outlined above.

For instance, consider a case in which there are 25 observations in the dataset and a weighting variable
that sums to 57. In the unweighted case, the weight is not specified, and the count is 25. In the analytically
weighted case, the count is still 25; the scale of the weight is irrelevant. In the frequency-weighted case,
however, the count is 57, the sum of the weights.

The rawsum statistic with aweights ignores the weight, with one exception: observations with zero
weight will not be included in the sum.

collapse — Make dataset of summary statistics 71

b Example 4

Using our same census data, suppose that instead of starting with individual-level data and aggregating
to the state level, we started with state-level data and wanted to aggregate to the region level. Also assume
that our dataset contains pop, the population of each state.

To obtain unweighted means and medians of age and income, by region, along with the total popula-
tion, we could type

. collapse (mean) age income (median) medage=age medinc=income (sum) pop,
> by(region)

To obtain weighted means and medians of age and income, by region, along with the total population
and using frequency weights, we could type

. collapse (mean) age income (median) medage=age medinc=income (count) pop
> [fweight=pop], by(region)

Note: Specifying (sum) pop would not have worked because that would have yielded the pop-weighted
sum of pop. Specifying (count) age would have worked as well as (count) pop because count merely
counts the number of nonmissing observations. The counts here, however, are frequency-weighted and
equal the sum of pop.

To obtain the same mean and medians as above, but using analytic weights, we could type

. collapse (mean) age income (median) medage=age medinc=income (rawsum) pop
> [aweight=pop], by(region)

Note: Specifying (count) pop would not have worked because, with analytic weights, count would
count numbers of physical observations. Specifying (sum) pop would not have worked because sum
would calculate weighted sums (with a normalized weight). The rawsum function, however, ignores the
weights and sums only the specified variable, with one exception: observations with zero weight will
not be included in the sum. rawsum would have worked as the solution to all three cases.

d

collapse — Make dataset of summary statistics 72

A final example

b Example 5

We have census data containing information on each state’s median age, marriage rate, and divorce
rate. We want to form a new dataset containing various summary statistics, by region, of the variables:

. use https://www.stata-press.com/data/r19/censusb, clear
(1980 Census data by state)

. describe

Contains data from https://www.stata-press.com/data/r19/census5.dta

Observations: 50 1980 Census data by state

Variables: 7 6 Apr 2024 15:43

Variable Storage Display Value
name type format label Variable label

state stri4 %l14s State

state2 str2 %-2s Two-letter state abbreviation

region int %8.0g cenreg Census region

pop long %10.0g Population

median_age float %9.2f Median age

marriage_rate float %9.0g
divorce_rate float %9.0g

Sorted by: region

. collapse (median) median_age marriage divorce (mean) avgmrate=marriage
> avgdrate=divorce [aw=pop]l, by(region)

. list
region median~e marria~e divorc~e avgmrate avgdrate
1. NE 31.90 .0080657 .0035295 .0081472 .0035359
2. N Cntrl 29.90 .0093821 .0048636 .0096701 .004961
3. South 29.60 .0112609 .0065792 .0117082 .0059439
4. West 29.90 .0089093 .0056423 .0125199 .0063464
. describe

Contains data

Observations: 4 1980 Census data by state
Variables: 6
Variable Storage Display Value
name type format label Variable label
region int %8.0g cenreg Census region
median_age float %9.2f (p 50) median_age
marriage_rate float %9.0g (p 50) marriage_rate
divorce_rate float %9.0g (p 50) divorce_rate
avgmrate float %9.0g (mean) marriage_rate
avgdrate float %9.0g (mean) divorce_rate

Sorted by: region
Note: Dataset has changed since last saved.

collapse — Make dataset of summary statistics 73

Acknowledgment

We thank David Roodman of the Open Philanthropy Project for writing collapse2, which inspired
several features in collapse.

Also see

D] contract — Make dataset of frequencies and percentages

(D]

[D] egen — Extensions to generate

[D] statsby — Collect statistics for a command across a by list
[R]

R] summarize — Summary statistics

compare — Compare two variables

Description Quick start Menu Syntax Remarks and examples
Also see

Description

compare reports the differences and similarities between varname; and varname,.

Quick start

Describe differences in missing and defined values of v1 and v2

compare vl v2

Same as above, but only for observations where catvar is equal to 3

compare vl v2 if catvar==3

Same as above, but for each level of catvar

by catvar: compare vl v2

Menu

Data > Data utilities > Compare two variables

Syntax

compare varname, varnamesy |if | [in]

by is allowed; see [D] by.
Remarks and examples

b Example 1

One of the more useful accountings made by compare is the pattern of missing values:

. use https://www.stata-press.com/data/r19/fullauto
(Automobile models)

. compare rep77 rep78

Difference

Count Minimum Average Maximum
rep77<rep78 16 -3 -1.3125 -1
rep77=rep78 43
rep77>rep78 7 1 1 1
Jointly defined 66 -3 -.2121212 1
rep77 missing only 3
Jointly missing 5
Total 74

74

compare — Compare two variables 75

We see that both rep77 and rep78 are missing in 5 observations and that rep77 is also missing in 3
more observations.

N

Q Technical note

compare may be used with numeric variables, string variables, or both. When used with string vari-
ables, the summary of the differences (minimum, average, maximum) is not reported. When used with

string and numeric variables, the breakdown by <, =, and > is also suppressed.
a

Also see

[D] ef — Compare two datasets
[D] codebook — Describe data contents

[D] inspect — Display simple summary of data’s attributes

compress — Compress data in memory

Description Quick start Menu Syntax Option Remarks and examples
Also see
Description

compress attempts to reduce the amount of memory used by your data.

Quick start

Reduce the amount of memory used by the current dataset

compress

Same as above, but only reduce memory used by v1 and v2

compress vl v2

Speed up compress for large datasets with strL-type variables, but possibly reduce the amount of mem-
ory saved

compress, nocoalesce

Menu

Data > Data utilities > Optimize variable storage

Syntax

compress [varlist] [, nocoalesce |

Option

nocoalesce specifies that compress not try to find duplicate values within strL variables in an attempt
to save memory. If nocoalesce is not specified, compress must sort the data by each strL variable,
which can be time consuming in large datasets.

Remarks and examples
compress reduces the size of your dataset by considering two things. First, it considers demoting

doubles to longs, ints, or bytes
floats to intsorbytes

longs to intsor bytes
ints to bytes
stri#s to shorter str#s

strLs to stri#s

See [D] Data types for an explanation of these storage types.

76

compress — Compress data in memory 77

Second, it considers coalescing strLs within each strL variable. That is to say, if a strL variable takes
on the same value in multiple observations, compress can link those values to a single memory location
to save memory. To check for this, compress must sort the data on each strL variable. You can use the
nocoalesce option to tell compress not to take the time to perform this check. If compress does check
whether it can coalesce strL values, it will do whichever saves more memory—coalescing strL values
or demoting a strL to a str#—or it will do nothing if it cannot save memory by changing a strL.

compress leaves your data logically unchanged but (probably) appreciably smaller. compress never
makes a mistake, results in loss of precision, or hacks off strings.

b Example 1

If you do not specify varlist, compress considers demoting all the variables in your dataset, so typing
compress by itself is usually enough:
. use https://www.stata-press.com/data/r19/compxmp2
(1978 automobile data)

. compress
variable mpg was float now byte
variable price was long now int
variable yemprice was double now long
variable weight was double now int
variable make was str26 now stri7
(1,776 bytes saved)

If there are no compression possibilities, compress does nothing. For instance, typing compress again
results in

. compress
(0 bytes saved)

Video example

How to optimize the storage of variables

Also see

[D] Data types — Quick reference for data types

[D] recast — Change storage type of variable

https://www.youtube.com/watch?v=PIV9ugn6XL8

contract — Make dataset of frequencies and percentages

Description Quick start Menu Syntax Options
Remarks and examples Acknowledgments Reference Also see
Description

contract replaces the dataset in memory with a new dataset consisting of all combinations of varlist
that exist in the data and a new variable that contains the frequency of each combination.

Quick start

Frequency of each combination of v1 and v2 saved in _freq

contract vl v2

Same as above, but name new frequency variable newf

contract vl v2, freq(newf)

Add percentage of total in newp

contract vl v2, freq(newf) percent (newp)

Add cumulative frequency newcf and cumulative percentage newcp

contract vl v2, freq(newf) percent (newp) cfreq(newct) ///
cpercent (newcp)

Frequency of combinations excluding missing values

contract vl v2, nomiss

Add combinations with zero observations

contract vl v2, nomiss zero

Menu

Data > Create or change data > Other variable-transformation commands > Make dataset of frequencies

78

contract — Make dataset of frequencies and percentages 79

Syntax
contract varlist [if] [in] [weight] [, options]

options Description

Options
freq(newvar) name of frequency variable; default is _freq
cfreq(newvar) create cumulative frequency variable
percent (newvar) create percentage variable
cpercent (newvar) create cumulative percentage variable
float generate percentage variables as type float
format (format) display format for new percentage variables; default is format (%8.2f)
zero include combinations with frequency zero
nomiss drop observations with missing values

fweights are allowed; see [U] 11.1.6 weight.

Options

freq(newvar) specifies a name for the frequency variable. If not specified, _freq is used.

cfreq(newvar) specifies a name for the cumulative frequency variable. If not specified, no cumulative
frequency variable is created.

percent (newvar) specifies a name for the percentage variable. If not specified, no percentage variable
is created.

cpercent (newvar) specifies a name for the cumulative percentage variable. If not specified, no cumu-
lative percentage variable is created.

float specifies that the percentage variables specified by percent () and cpercent () will be generated
as variables of type float. If float is not specified, these variables will be generated as variables
of type double. All generated variables are compressed to the smallest storage type possible without
loss of precision; see [D] compress.

format (format) specifies a display format for the generated percentage variables specified by
percent () and cpercent (). If format() is not specified, these variables will have the display
format %8. 2f.

zero specifies that combinations with frequency zero be included.

nomiss specifies that observations with missing values on any variable in var/ist be dropped. If nomiss
is not specified, all observations possible are used.

contract — Make dataset of frequencies and percentages 80

Remarks and examples

contract takes the dataset in memory and creates a new dataset containing all combinations of varlist
that exist in the data and a new variable that contains the frequency of each combination.

Sometimes you may want to collapse a dataset into frequency form. Several observations that have
identical values on one or more variables will be replaced by one such observation, together with the
frequency of the corresponding set of values. For example, in certain generalized linear models, the
frequency of some combination of values is the response variable, so you would need to produce that
response variable. The set of covariate values associated with each frequency is sometimes called a
covariate class or covariate pattern. Such collapsing is reversible for the variables concerned, because
the original dataset can be reconstituted by using expand (see [D] expand) with the variable containing
the frequencies of each covariate class.

b Example 1

Suppose that we wish to collapse auto2.dta to a set of frequencies of the variables rep78, which
takes values labeled “Poor”, “Fair”, “Average”, “Good”, and “Excellent”, and foreign, which takes
values labeled “Domestic” and “Foreign”.

. use https://www.stata-press.com/data/r19/auto2
(1978 automobile data)

. contract rep78 foreign

. list
rep78 foreign _freq
1. Poor Domestic 2
2. Fair Domestic 8
3. Average Domestic 27
4. Average Foreign 3
5. Good Domestic 9
6. Good Foreign 9
7. Excellent Domestic 2
8. Excellent Foreign 9
9. Domestic 4
10. Foreign 1

By default, contract uses the variable name _freq for the new variable that contains the frequencies.
If _freq is in use, you will be reminded to specify a new variable name via the freq() option.

contract — Make dataset of frequencies and percentages 81

Specifying the zero option requests that combinations with frequency zero also be listed.

. use https://www.stata-press.com/data/r19/auto2, clear
(1978 automobile data)

. contract rep78 foreign, zero

. list
rep78 foreign _freq
1. Poor Domestic 2
2. Poor Foreign 0
3. Fair Domestic 8
4. Fair Foreign 0
5. Average Domestic 27
6. Average Foreign 3
7. Good Domestic 9
8. Good Foreign 9
9. Excellent Domestic 2
10. Excellent Foreign 9
11. . Domestic 4
12. . Foreign 1

d
Acknowledgments

contract was written by Nicholas J. Cox (1998) of the Department of Geography at Durham Uni-
versity, UK, who is coeditor of the Stata Journal and author of Speaking Stata Graphics. The cfreq(),
percent (), cpercent (), float, and format () options were written by Roger Newson of the Imperial
College London.

Reference

Cox, N.J. 1998. dm59: Collapsing datasets to frequencies. Stata Technical Bulletin 44: 2-3. Reprinted in Stata Technical
Bulletin Reprints, vol. 8, pp. 20-21. College Station, TX: Stata Press.

Also see

[D] expand — Duplicate observations
[D] collapse — Make dataset of summary statistics

[D] duplicates — Report, tag, or drop duplicate observations

https://www.stata-journal.com/
https://www.stata-press.com/books/speaking-stata-graphics/
https://www.stata.com/products/stb/journals/stb44.pdf

copy — Copy file from disk or URL

Description Quick start Syntax Options
Also see

Description

copy copies an existing file to a file with a new name.

Quick start

Copy mydata.dta from C:\myfolder to C:\otherfolder
copy c:\myfolder\mydata.dta c:\otherfolder\

Same as above, but change dataset name to newdata.dta

Remarks and examples

copy c:\myfolder\mydata.dta c:\otherfolder\newdata.dta

Same as above, but replace newdata.dta if it exists

copy c:\myfolder\mydata.dta c:\otherfolder\newdata.dta, replace

Copy web-based Stata example dataset fullauto.dta to the current working directory

copy https://www.stata-press.com/data/r19/fullauto.dta myauto.dta

Syntax

copy filename, filename, [, options |

filename, may be a filename or a URL. filename, may be the name of a file or a directory. If filename,
is a directory name, filename, will be copied to that directory. filename, may not be a URL.

Note: Double quotes may be used to enclose the filenames, and the quotes must be used if the filename

contains embedded blanks.

options Description

public make filename, readable by all

text interpret filename, as text file and translate to native text format
replace may overwrite filename,

replace does not appear in the dialog box.

82

copy — Copy file from disk or URL 83

Options

public specifies that filename, be readable by everyone; otherwise, the file will be created according
to the default permissions of your operating system.

text specifies that filename, be interpreted as a text file and be translated to the native form of text files
on your computer. Computers differ on how end-of-line is recorded: Unix systems record one line-
feed character, Windows computers record a carriage-return/line-feed combination, and Mac comput-
ers record just a carriage return. text specifies that filename, be examined to determine how it has
end-of-line recorded and that the line-end characters be switched to whatever is appropriate for your
computer when the copy is made.

There is no reason to specify text when copying a file already on your computer to a different location
because the file would already be in your computer’s format.

Do not specify text unless you know that the file is a text file; if the file is binary and you specify
text, the copy will be useless. Most word processors produce binary files, not text files. The term
text, as it is used here, specifies a particular way of recording textual information.

When other parts of Stata read text files, they do not care how lines are terminated, so there is no
reason to translate end-of-line characters on that score. You specify text because you may want to
look at the file with other software.

The following option is available with copy but is not shown in the dialog box:

replace specifies that filename, be replaced if it already exists.

Remarks and examples

Examples:
Windows:

. copy orig.dta newcopy.dta

. copy mydir\orig.dta .

. copy orig.dta ../../

. copy "my document" "copy of document"

. copy ..\mydir\doc.txt document\doc.tex

. copy https://www.stata.com/examples/simple.dta simple.dta

. copy https://www.stata.com/examples/simple.txt simple.txt, text

Mac and Unix:

. copy orig.dta newcopy.dta

. copy mydir/orig.dta .

. copy orig.dta ../../

. copy "my document" "copy of document"

. copy ../mydir/doc.txt document/doc.tex

. copy https://www.stata.com/examples/simple.dta simple.dta

. copy https://www.stata.com/examples/simple.txt simple.txt, text

copy — Copy file from disk or URL 84

Also see

[D] ed — Change directory
[D] dir — Display filenames
[D] erase — Erase a disk file
[D] mkdir — Create directory

[D] rmdir — Remove directory

[D] shell — Temporarily invoke operating system
[D] type — Display contents of a file

[U] 11.6 Filenaming conventions

corr2data — Create dataset with specified correlation structure

Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas Reference
Also see

Description

corr2data adds new variables with specified covariance (correlation) structure to the existing dataset
or creates a new dataset with a specified covariance (correlation) structure. Singular covariance (corre-
lation) structures are permitted. The purpose of this is to allow you to perform analyses from summary
statistics (correlations/covariances and maybe the means) when these summary statistics are all you know
and summary statistics are sufficient to obtain results. For example, these summary statistics are suffi-
cient for performing analysis of ¢ tests, variance, principal components, regression, and factor analysis.
The recommended process is

. clear (clear memory)
. corr2data ..., n(#) cov(...) ... (create artificial data)
. regress ... (use artificial data appropriately)

However, for factor analyses and principal components, the commands factormat and pcamat allow
you to skip the step of using corr2data; see [MV] factor and [MV] pca.

The data created by corr2data are artificial; they are not the original data, and it is not a sample
from an underlying population with the summary statistics specified. See [D] drawnorm if you want to
generate a random sample. In a sample, the summary statistics will differ from the population values and
will differ from one sample to the next.

The dataset corr2data creates is suitable for one purpose only: performing analyses when all that
is known are summary statistics and those summary statistics are sufficient for the analysis at hand. The
artificial data tricks the analysis command into producing the desired result. The analysis command, be-
ing by assumption only a function of the summary statistics, extracts from the artificial data the summary
statistics, which are the same summary statistics you specified, and then makes its calculation based on
those statistics.

If you doubt whether the analysis depends only on the specified summary statistics, you can generate
different artificial datasets by using different seeds of the random-number generator (see the seed ()
option below) and compare the results, which should be the same within rounding error.

Quick start

Create dataset with 1,000 observations, v1 with mean of 3.4 and std. dev. of 1, v2 with mean of 3 and
std. dev. of 0.5, and no correlation between v1 and v2
corr2data vl v2, n(1000) means (3.4 3) sds(1 .5)

Same as above, but with correlation between v1 and v2 specified in matrix mymat
corr2data vl v2, n(1000) means (3.4 3) sds(1 .5) corr(mymat)

Menu

Data > Create or change data > Other variable-creation commands > Create dataset with specified correlation

85

corr2data — Create dataset with specified correlation structure 86

Syntax
corr2data newvarlist | , options |
options Description
Main

clear replace the current dataset
double generate variable type as double; default is float
n(#) generate # observations; default is current number
sds (vector) standard deviations of generated variables
corr (matrix | vector) correlation matrix
cov (matrix | vector) covariance matrix
cstorage (full) store correlation/covariance structure as a symmetric kX k matrix
cstorage (lower) store correlation/covariance structure as a lower triangular matrix
cstorage (upper) store correlation/covariance structure as an upper triangular matrix
forcepsd force the covariance/correlation matrix to be positive semidefinite
means (vector) means of generated variables; default is means (0)

Options
seed (#) seed for random-number generator

Options

Main

clear specifies that it is okay to replace the dataset in memory, even though the current dataset has not
been saved on disk.

double specifies that the new variables be stored as Stata doubles, meaning 8-byte reals. If double is
not specified, variables are stored as f1oats, meaning 4-byte reals. See [D] Data types.

n(#) specifies the number of observations to be generated; the default is the current number of observa-
tions. If n(#) is not specified or is the same as the current number of observations, corr2data adds
the new variables to the existing dataset; otherwise, corr2data replaces the dataset in memory.

sds (vector) specifies the standard deviations of the generated variables. sds() may not be specified
with cov().

corr (matrix | vector) specifies the correlation matrix. If neither corr () nor cov() is specified, the
default is orthogonal data.

cov (matrix | vector) specifies the covariance matrix. If neither corr () nor cov() is specified, the de-
fault is orthogonal data.

corr2data — Create dataset with specified correlation structure 87

cstorage (full | lower | upper) specifies the storage mode for the correlation or covariance structure
in corr () or cov(). The following storage modes are supported:

full specifies that the correlation or covariance structure is stored (recorded) as a symmetric kxk
matrix.

lower specifies that the correlation or covariance structure is recorded as a lower triangular matrix.
With k variables, the matrix should have k(k + 1)/2 elements in the following order:

Cll C21 C22 CSI C32 C33 ce Ckl Ck2 ce Ckk

upper specifies that the correlation or covariance structure is recorded as an upper triangular matrix.
With k variables, the matrix should have k(k + 1)/2 elements in the following order:

Ci1CipCyg oo Gy Gy Cog .. Cypp C(kfllcfl) C(Icflk) Cir

Specifying cstorage(full) is optional if the matrix is square. cstorage(lower) or
cstorage (upper) is required for the vectorized storage methods. See Storage modes for correlation
and covariance matrices in [D] drawnorm for examples.

forcepsd modifies the matrix C to be positive semidefinite (psd) and to thus be a proper covariance
matrix. If C is not positive semidefinite, it will have negative eigenvalues. By setting the negative
eigenvalues to 0 and reconstructing, we obtain the least-squares positive-semidefinite approximation
to C. This approximation is a singular covariance matrix.

means (vector) specifies the means of the generated variables. The default is means (0).

seed (#) specifies the seed of the random-number generator used to generate data. # defaults to 0. The
random numbers generated inside corr2data do not affect the seed of the standard random-number
generator.

Remarks and examples

corr2data is designed to enable analyses of correlation (covariance) matrices by commands that
expect variables rather than a correlation (covariance) matrix. corr2data creates variables with exactly
the correlation (covariance) that you want to analyze. Apart from means and covariances, all aspects of
the data are meaningless. Only analyses that depend on the correlations (covariances) and means produce
meaningful results. Thus you may perform a paired ¢ test ([R] ttest) or an ordinary regression analysis
([R] regress), etc.

If you are not sure that a statistical result depends only on the specified summary statistics and not on
other aspects of the data, you can generate different datasets, each having the same summary statistics
but other different aspects, by specifying the seed () option. If the statistical results differ beyond what
is attributable to roundoff error, then using corr2data is inappropriate.

corr2data — Create dataset with specified correlation structure 88

b Example 1

We first run a regression using the auto dataset.

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)

. regress weight length trunk

Source SS df MS Number of obs = 74
F(2, 71) = 303.95

Model 39482774 .4 2 19741387.2 Prob > F = 0.0000
Residual 4611403.95 71 64949.3513 R-squared = 0.8954
Adj R-squared = 0.8925

Total 44094178.4 73 604029.841 Root MSE = 254.85
weight | Coefficient Std. err. t P>t [95% conf. intervall
length 33.83435 1.949751 17.35 0.000 29.94666 37.72204
trunk -5.83515 10.14957 -0.57 0.567 -26.07282 14.40252
_cons -3258.84 283.3547 -11.50 0.000 -3823.833 -2693.846

Suppose that, for some reason, we no longer have the auto dataset. Instead, we know the means and
covariance matrices of weight, length, and trunk, and we want to do the same regression again. The
matrix of means is

. matrix list M

M[1,3]
weight length trunk
_cons 3019.4595 187.93243 13.756757

and the covariance matrix is

. matrix list V

symmetric V[3,3]
weight length trunk
weight 604029.84
length 16370.922 495.78989
trunk 2234.6612 69.202518 18.296187

To do the regression analysis in Stata, we need to create a dataset that has the specified correlation
structure.

. corr2data x y z, n(74) cov(V) means(M)

. regress x y z

Source SS df MS Number of obs = 74
F(2, 71) = 303.95

Model 39482773.3 2 19741386.6 Prob > F = 0.0000
Residual 4611402.75 71 64949.3345 R-squared = 0.8954
Adj R-squared = 0.8925

Total 44094176 73 604029.809 Root MSE = 254.85

x | Coefficient Std. err. t P>|t] [95% conf. intervall]

y 33.83435 1.949751 17.35 0.000 29.94666 37.72204

z -5.835155 10.14957 -0.57 0.567 -26.07282 14.40251

_cons -3258.84 283.3546 -11.50 0.000 -3823.833 -2693.847

corr2data — Create dataset with specified correlation structure 89

The results from the regression based on the generated data are the same as those based on the real data.

d

Methods and formulas

Two steps are involved in generating the desired dataset. The first step is to generate a zero-mean,
zero-correlated dataset. The second step is to apply the desired correlation structure and the means to the
zero-mean, zero-correlated dataset. In both steps, we take into account that, given any matrix A and any
vector of variables X, Var(A’X) = A’ Var(X)A.

Reference

Cappellari, L., and S. P. Jenkins. 2006. Calculation of multivariate normal probabilities by simulation, with applications
to maximum simulated likelihood estimation. Stata Journal 6: 156—189.

Also see

[D] Data types — Quick reference for data types

[D] drawnorm — Draw sample from multivariate normal distribution

https://www.stata-journal.com/article.html?article=st0101
https://www.stata-journal.com/article.html?article=st0101

count — Count observations satisfying specified conditions

Description Quick start Menu Syntax
Remarks and examples Stored results References Also see

Description

count counts the number of observations that satisfy the specified conditions. If no conditions are
specified, count displays the number of observations in the data.

Quick start

Count the number of observations

count

Same as above, but where catvar equals 3

count if catvar==3

Count observations for each value of catvar

by catvar: count

Menu

Data > Data utilities > Count observations satisfying condition

Syntax

count [if]| [in]

by and collect are allowed; see [U] 11.1.10 Prefix commands.

Remarks and examples

count may strike you as an almost useless command, but it can be one of Stata’s handiest.

b Example 1

How many times have you obtained a statistical result and then asked yourself how it was possible?
You think a moment and then mutter aloud, “Wait a minute. Is income ever negative in these data?” or
“Is sex ever equal to 3?” count can quickly answer those questions:

90

count — Count observations satisfying specified conditions 91

. use https://www.stata-press.com/data/r19/countxmpl
(1980 Census data by state)

. count
641

. count if income<O
0

. count if sex==
1

. by division: count if sex==

-> division = New England
0

-> division = Mountain
0

-> division = Pacific
1

We have 641 observations. income is never negative. sex, however, takes on the value 3 once. When
we decompose the count by division, we see that it takes on that odd value in the Pacific division.

d

Stored results

count stores the following in r () :

Scalars
r(N) number of observations

References

Cox, N. J. 2007a. Speaking Stata: Counting groups, especially panels. Stata Journal 7: 571-581.
. 2007b. Speaking Stata: Making it count. Stata Journal 7: 117-130.
.2007c. Stata tip 51: Events in intervals. Stata Journal 7: 440-443.

Also see

[R] tabulate oneway — One-way table of frequencies

https://www.stata-journal.com/article.html?article=dm0033
https://www.stata-journal.com/article.html?article=pr0029
https://www.stata-journal.com/article.html?article=pr0033

cross — Form every pairwise combination of two datasets

Description Quick start Menu Syntax
Remarks and examples References Also see

Description

cross forms every pairwise combination of the data in memory with the data in filename. If filename
is specified without a suffix, .dta is assumed.

Quick start

Form every pairwise combination of observations frommydatal . dta in memory with observations from
mydata2.dta

cross using mydata?2

Menu

Data > Combine datasets > Form every pairwise combination of two datasets

Syntax

cross using filename

cross does not allow alias variables; see [D] frunalias for advice on how to get around this restriction.

Remarks and examples

This command is rarely used; also see [D] joinby, [D] merge, and [D] append.

Crossing refers to merging two datasets in every way possible. That is, the first observation of the
data in memory is merged with every observation of filename, followed by the second, and so on. Thus
the result will have IV; N, observations, where V; and NN, are the number of observations in memory
and in filename, respectively.

Typically, the datasets will have no common variables. If they do, such variables will take on only
the values of the data in memory.

b Example 1

We wish to form a dataset containing all combinations of three age categories and two sexes to serve
as a stub. The three age categories are 20, 30, and 40. The two sexes are male and female:

92

cross — Form every pairwise combination of two datasets 93

. input str6 sex

sex

1. male
2. female
3. end

. Save sex

file sex.dta saved

. drop _all
. input agecat
agecat
1. 20
2. 30
3. 40
4. end
. cross using sex
. list
agecat sex
1. 20 male
2. 30 male
3. 40 male
4. 20 female
5. 30 female
6. 40 female
References

Baum, C. F. 2016. An Introduction to Stata Programming. 2nd ed. College Station, TX: Stata Press.
Franklin, C. H. 2006. Stata tip 29: For all times and all places. Stata Journal 6: 147-148.

Also see

D
D

(D]
(D]
(D]
(D]
(D]
(D]

D] append — Append datasets

D] fillin — Rectangularize dataset

D] merge — Merge datasets

D] save — Save Stata dataset

frunalias — Change storage type of alias variables

joinby — Form all pairwise combinations within groups

https://www.stata-press.com/books/introduction-stata-programming/
https://www.stata-journal.com/article.html?article=dm0020

Data types — Quick reference for data types

Description Remarks and examples Also see

Description

This entry provides a quick reference for data types allowed by Stata. See [U] 12 Data for details.

Remarks and examples

Closest to 0

Storage type Minimum Maximum without being 0 Bytes
byte —127 100 +1 1
int —32,767 32,740 +1 2
long —2,147,483,647 2,147,483,620 +1 4
float —1.70141173319 x 10®® 1.70141173319 x 10*® +10738 4
double —8.9884656743 x 10307 8.9884656743 x 10307 +1073% 8

Precision for float is 3.795 x 1072,
Precision for double is 1.414 x 10716,

String Maximum

storage type length Bytes

stri 1 1

str2 2 2

str2045 2045 2045

strL 2000000000 2000000000

Each element of data is said to be either type numeric or type string. The word “real” is sometimes
used in place of numeric. Associated with each data type is a storage type.

Numbers are stored as byte, int, long, float, or double, with the default being float. byte, int,
and long are said to be of integer type in that they can hold only integers.

Strings are stored as str#, for instance, stri, str2, str3, ..., str2045, or as strL. The number
after the str indicates the maximum length of the string. A str5 could hold the word “male”, but not
the word “female” because “female” has six characters. A strL can hold strings of arbitrary lengths, up
to 2000000000 characters, and can even hold binary data containing embedded \0 characters.

Stata keeps data in memory, and you should record your data as parsimoniously as possible. If you
have a string variable that has maximum length 6, it would waste memory to store it as a str20. Similarly,
if you have an integer variable, it would be a waste to store it as a double.

94

Data types — Quick reference for data types 95

Precision of humeric storage types

floats have about 7 digits of accuracy; the magnitude of the number does not matter. Thus, 1234567
can be stored perfectly as a float, as can 1234567¢+20. The number 123456789, however, would be
rounded to 123456792. In general, this rounding does not matter.

If you are storing identification numbers, the rounding could matter. If the identification numbers are
integers and take 9 digits or less, store them as longs; otherwise, store them as doubles. doubles have
16 digits of accuracy.

Stata stores numbers in binary, and this has a second effect on numbers less than 1. 1/10 has no
perfect binary representation just as 1/11 has no perfect decimal representation. In float, .1 is stored
as .10000000149011612. Note that there are 7 digits of accuracy, just as with numbers larger than 1.
Stata, however, performs all calculations in double precision. If you were to store 0.1 in a float called
x and then ask, say, 1list if x==.1, there would be nothing in the list. The .1 that you just typed was
converted to double, with 16 digits of accuracy (.100000000000000014. . .), and that number is never
equal to 0.1 stored with float accuracy.

One solution is to type 1ist if x==float(.1). The float () function rounds its argument to float
accuracy; see [FN] Programming functions. The other alternative would be store your data as double,
but this is probably a waste of memory. Few people have data that is accurate to 1 part in 10 to the
7th. Among the exceptions are banks, who keep records accurate to the penny on amounts of billions of
dollars. If you are dealing with such financial data, store your dollar amounts as doubles.

Also see

D] compress — Compress data in memory

D] destring — Convert string variables to numeric variables and vice versa
D] encode — Encode string into numeric and vice versa

[
[
[
[D] format — Set variables’ output format

[D] recast — Change storage type of variable

[U] 12.2.2 Numeric storage types

[U] 12.4 Strings

[U] 12.5 Formats: Controlling how data are displayed

[U] 13.12 Precision and problems therein

datasignature — Determine whether data have changed

Description Quick start Menu

Syntax Options Remarks and examples
Stored results Methods and formulas Reference

Also see

Description

These commands calculate, display, save, and verify checksums of the data, which taken together
form what is called a signature. An example signature is 162:11(12321):2725060400:4007406597. That
signature is a function of the values of the variables and their names, and thus the signature can be used
later to determine whether a dataset has changed.

datasignature without arguments calculates and displays the signature of the data in memory.

datasignature set does the same, and it stores the signature as a characteristic in the dataset. You
should save the dataset afterward so that the signature becomes a permanent part of the dataset.

datasignature confirm verifies that, were the signature recalculated this instant, it would match
the one previously set. datasignature confirmdisplays an error message and returns a nonzero return
code if the signatures do not match.

datasignature report displays a full report comparing the previously set signature to the current
one.

In the above, the signature is stored in the dataset and accessed from it. The signature can also be
stored in a separate, small file.

datasignature set, saving(filename) calculates and displays the signature and, in addition to
storing it as a characteristic in the dataset, also saves the signature in filename.

datasignature confirm using filename verifies that the current signature matches the one stored
in filename.

datasignature report using filename displays a full report comparing the current signature with
the one stored in filename.

In all the above, if filename is specified without an extension, .dtasig is assumed.

datasignature clear clears the signature, if any, stored in the characteristics of the dataset in mem-
ory.

Quick start

Calculate and display the signature of the dataset in memory

datasignature

Same as above, and store the signature as a characteristic of the data

datasignature set

Same as above, but also save the signature in datasig.txt

datasignature set, saving(datasig.txt)

96

datasignature — Determine whether data have changed 97

Confirm that the data are currently exactly the same as they were when signed

datasignature confirm

Confirm that the data in memory have the same signature saved in datasig.txt

datasignature confirm using datasig.txt

Menu

Data > Other utilities > Manage data signature

Syntax

datasignature
datasignature set [, reset]

datasignature confirm [, strict]

datasignature report

datasignature set, saving(filename[, replace]) [reset |
datasignature confirm using filename [, strict]

datasignature report using filename

datasignature clear

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

reset is used with datasignature set. It specifies that even though you have previously set a signa-
ture, you want to erase the old signature and replace it with the current one.

strict is for use with datasignature confirm. It specifies that, in addition to requiring that the
signatures match, you also wish to require that the variables be in the same order and that no new
variables have been added to the dataset. (If any variables were dropped, the signatures would not
match.)

saving(filename[, replace) is used with datasignature set. It specifies that, in addition to stor-
ing the signature in the dataset, you want a copy of the signature saved in a separate file. If filename
is specified without a suffix, .dtasig is assumed. The replace suboption allows filename to be
replaced if it already exists.

datasignature — Determine whether data have changed 98

Remarks and examples

Remarks are presented under the following headings:

Using datasignature interactively
Example 1: Verification at a distance
Example 2: Protecting yourself from yourself
Example 3: Working with assistants
Example 4: Working with shared data

Using datasignature in do-files

Interpreting data signatures

The logic of data signatures

Using datasignature interactively

datasignature is useful in the following cases:

1. You and a coworker, separated by distance, have both received what is claimed to be the same
dataset. You wish to verify that it is.

2. You work interactively and realize that you could mistakenly modify your data. You wish to
guard against that.

3. You want to give your dataset to an assistant to improve the labels and the like. You wish to
verify that the data returned to you are the same data.

4. You work with an important dataset served on a network drive. You wish to verify that others
have not changed it.

Example 1: Verification at a distance
You load the data and type

. datasignature
74:12(71728) :3831085005: 1395876116

Your coworker does the same with his or her copy. You compare the two signatures.

Example 2: Protecting yourself from yourself
You load the data and type

. datasignature set
74:12(71728) :3831085005: 1395876116 (data signature set)

. save, replace

From then on, you periodically type

. datasignature confirm
(data unchanged since 19feb2025 14:24)

One day, however, you check and see the message:

. datasignature confirm
(data unchanged since 19feb2025 14:24, except 2 variables have been added)

datasignature — Determine whether data have changed 99

You can find out more by typing

. datasignature report
(data signature set on Monday 19feb2025 14:24)

Data signature summary
1. Previous data signature 74:12(71728) :3831085005:1395876116
2. Same data signature today (same as 1)
3. Full data signature today 74:14(113906):1142538197:2410350265

Comparison of current data with previously set data signature

variables number notes

original # of variables 12 (values unchanged)
added variables 2 (1)

dropped variables 0

resulting # of variables 14

(1) Added variables are agesquared logincome.

You could now either drop the added variables or decide to incorporate them:

. datasignature set

data signature already set -- specify option reset
r(110)
. datasignature set, reset
74:14(113906) : 1142538197:2410350265 (data signature reset)

Concerning the detailed report, three data signatures are reported: 1) the stored signature, 2) the
signature that would be calculated today on the basis of the same variables in their original order, and
3) the signature that would be calculated today on the basis of all the variables and in their current order.

datasignature confirmknew that new variables had been added because signature 1 was equal to
signature 2. If some variables had been dropped, however, datasignature confirm would not be able
to determine whether the remaining variables had changed.

Example 3: Working with assistants

You give your dataset to an assistant to have variable labels and the like added. You wish to verify
that the returned data are the same data.

Saving the signature with the dataset is inadequate here. Your assistant, having your dataset, could
change both your data and the signature and might even do that in a desire to be helpful. The solution is
to save the signature in a separate file that you do not give to your assistant:

. datasignature set, saving(mycopy)
74:12(71728) :3831085005: 1395876116 (data signature set)
(file mycopy.dtasig saved)

You keep filemycopy .dtasig. When your assistant returns the dataset to you, you use it and compare
the current signature to what you have stored in mycopy.dtasig:

. datasignature confirm using mycopy
(data unchanged since 19feb2025 15:05)

By the way, the signature is a function of the following:
e The number of observations and number of variables in the data

o The values of the variables

datasignature — Determine whether data have changed 100

e The names of the variables
e The order in which the variables occur in the dataset
e The storage types of the individual variables

The signature is not a function of variable labels, value labels, notes, and the like.

Example 4: Working with shared data

You work on a dataset served on a network drive, which means that others could change the data. You
wish to know whether this occurs.

The solution here is the same as working with an assistant: you save the signature in a separate, private
file on your computer,

. datasignature set, saving(private)
74:12(71728) :3831085005: 1395876116 (data signature set)
(file private.dtasig saved)

and then you periodically check the signature by typing

. datasignature confirm using private
(data unchanged since 15mar2025 11:22)

Using datasignature in do-files

datasignature confirm aborts with error if the signatures do not match:

. datasignature confirm
data have changed since 19feb2025 15:05
r(9);

This means that, if you use datasignature confirmin a do-file, execution of the do-file will be stopped
if the data have changed.

You may want to specify the strict option. strict adds two more requirements: that the variables
be in the same order and that no new variables have been added. Without strict, these are not considered
erTors:

. datasignature confirm
(data unchanged since 19feb2025 15:22)

. datasignature confirm, strict
(data unchanged since 19feb2025 15:05, but order of variables has changed)
r(9);

and

. datasignature confirm
(data unchanged since 19feb2025 15:22, except 1 variable has been added)

. datasignature confirm, strict
(data unchanged since 19feb2025 15:22, except 1 variable has been added)
r(9);

If you keep logs of your analyses, issuing datasignature or datasignature confirmimmediately
after loading each dataset is a good idea. This way, you have a permanent record that you can use for
comparison.

datasignature — Determine whether data have changed 101

Interpreting data signatures

An example signature is 74:12(71728) : 3831085005:1395876116. The components are
1. 74, the number of observations;
2. 12, the number of variables;
3. 71728, a checksum function of the variable names and the order in which they occur; and
4

. 3831085005 and 1395876116, checksum functions of the values of the variables, calculated
two different ways.

Two signatures are equal only if all their components are equal.

Two different datasets will probably not have the same signature, and it is even more unlikely that
datasets containing similar values will have equal signatures. There are two data checksums, but do
not read too much into that. If either data checksum changes, even just a little, the data have changed.
Whether the change in the checksum is large or small—or in one, the other, or both—signifies nothing.

The logic of data signatures

The components of a data signature are known as checksums. The checksums are many-to-one map-
pings of the data onto the integers. Let’s consider the checksums of auto . dta carefully.

The data portion of auto.dta contains 38,184 bytes. There are 2565184 such datasets or, equiva-
lently, 2395472 The first checksum has 2% possible values, and it can be proven that those values are
equally distributed over the 2395472 datasets. Thus there are 2507472 /248 _ 1 = 2305424 _ 1 {atasets that
have the same first checksum value as auto.dta. The same can be said for the second checksum. It
would be difficult to prove, but we believe that the two checksums are conditionally independent, being
based on different bit shifts and bit shuffles of the same data. Of the 2°°°424 — 1 datasets that have the
same first checksum as auto.dta, the second checksum should be equally distributed over them. Thus
there are about 23°°370 — 1 datasets with the same first and second checksums as auto.dta.

Now let’s consider those 2395376 — | other datasets. Most of them look nothing like auto.dta. The

checksum formulas guarantee that a change of one variable in 1 observation will lead to a change in
the calculated result if the value changed is stored in 4 or fewer bytes, and they nearly guarantee it in
other cases. When it is not guaranteed, the change cannot be subtle—“Chevrolet” will have to change
to binary junk, or a double-precision 1 to —6.476678983751e+301, and so on. The change will be easily
detected if you summarize your data and just glance at the minimums and maximums. If the data look
at all like auto.dta, which is unlikely, they will look like a corrupted version.

More interesting are offsetting changes across observations. For instance, can you change one variable
in 1 observation and make an offsetting change in another observation so that, taken together, they will
go undetected? You can fool one of the checksums, but fooling both of them simultaneously will prove
difficult. The basic rule is that the more changes you make, the easier it is to create a dataset with the same
checksums as auto.dta, but by the time you have done that, the data will look nothing like auto.dta.

datasignature — Determine whether data have changed 102

Stored results

datasignature without arguments and datasignature set store the following in r ():

Macros
r(datasignature) the signature

datasignature confirm stores the following in r O):

Scalars

r(k_added) number of variables added
Macros

r(datasignature) the signature

datasignature confirm aborts execution if the signatures do not match and so then returns nothing
except a return code of 9.

datasignature report stores the following in r ():

Scalars
r(datetime) %tc date—time when set
r(changed) . if r (k—dropped) # 0, otherwise
0 if data have not changed, 1 if data have changed
r(reordered) 1 if variables reordered, O if not reordered,
. if r(k_added) # 0| r(k_dropped) # 0
r(k_original) number of original variables
r(k_added) number of added variables
r (k_dropped) number of dropped variables
Macros
r(origdatasignature) original signature
r(curdatasignature) current signature on same variables, if it can be calculated
r(fulldatasignature) current full-data signature
r(varsadded) variable names added
r (varsdropped) variable names dropped

datasignature clear stores nothing in r () but does clear it.
datasignature set stores the signature in the following characteristics:

Characteristic

_dtal[datasignature_si] signature

_dta[datasignature_dt] %tc date—time when set in %21x format
_dtal[datasignature_v11] part 1, original variables
_dta[datasignature_v12] part 2, original variables, if necessary
etc.

To access the original variables stored in _dta[datasignature_v11], etc., from an ado-file, code

mata: ado_fromlchar("vars", "_dta", "datasignature_v1")

Thereafter, the original variable list would be found in ‘vars’.

Methods and formulas

datasignature is implemented using _datasignature; see [P] _datasignature.

datasignature — Determine whether data have changed 103

Reference
Gould, W. W. 2006. Stata tip 35: Detecting whether data have changed. Stata Journal 6: 428-429.

Also see

[P] _datasignature — Determine whether data have changed

[P] signestimationsample — Determine whether the estimation sample has changed

https://www.stata-journal.com/article.html?article=dm0024

Datetime — Date and time values and variables

Description Quick start Syntax Remarks and examples References Also see

Description

This entry provides a complete overview of Stata’s date and time values. We discuss functions used
to obtain Stata dates, including string-to-numeric conversions and conversions among different types of
dates and times.

Stata’s date and time values need to be formatted so they look like the dates and times we are familiar
with. We show basic formatting options here, but more details can be found in [D] Datetime display
formats.

[D] Datetime conversion has more details on converting dates and times stored as strings to numeri-
cally encoded Stata dates and times.

[D] Datetime values from other software discusses getting Stata dates from dates created by other
software.

[D] Datetime durations describes functions designed to get durations (for example, ages) from two
Stata dates or to express a duration in different units.

[D] Datetime relative dates describes functions that return dates based on other dates, for example,
the date of a birthday in another year.

[D] Datetime business calendars describes business calendars—using dates with nonbusiness days
(for example, weekends and holidays) removed. You can use existing calendars or create your own; see
[D] Datetime business calendars creation.

For an alphabetical listing of all the datetime functions, see [FN] Date and time functions.

Quick start

Convert the string variable strdate, with dates such as "January 1, 2020", to a numerically encoded
Stata date

generate numdate = date(strdate, "MDY")

Format numdate to make it readable when displayed
format numdate %td

Convert the string variable strtime, with dates and times such as "January 1,2020 10:30 am", to a
numerically encoded Stata datetime variable

generate double numtime = clock(strtime, "MDYhm")

Format numtime to make it readable when displayed

format numtime %tc

104

Datetime — Date and time values and variables 105

Convert the string variable strmonthly, with monthly dates such as "2012-04", to a Stata date, and
format it to make it readable when displayed
generate nummonth = monthly(strmonthly, "YM")
format nummonth %tm

List observations for which numdate is prior to February 15, 2013
list if numdate < td(15/2/2013)

Create a monthly date variable from numeric variables year and month
generate monthly = ym(year ,month)

Create a daily date variable from the datetimes stored in numtime
generate dateoftime = dofc(numtime)

Create a monthly date variable from the daily dates stored in numdate
generate monthlyofdate = mofd(numdate)

Create a new variable with the month of the daily dates stored in numdate
generate monthnum = month (numdate)

Syntax

Syntax is presented under the following headings:

Types of dates and how they are displayed

How Stata dates are stored

Converting dates stored as strings to Stata dates
Formatting Stata dates for display

Creating dates from components

Converting among units

Extracting time-of-day components from datetimes
Extracting date components from daily dates
Typing dates into expressions

Types of dates and how they are displayed

Dates and times can take many forms; below, we list the types of dates that are supported in Stata.
Note that throughout our documentation, we use the term “datetime” to refer to variables that record time
or date and time.

Date type Examples

datetime 20jan2010 09:15:22.120
date 20jan2010, 20/01/2010, ...
weekly date 2010w3

monthly date 2010m1

quarterly date 2010q1

half-yearly date 2010h1

yearly date 2010

The styles of the dates in the table above are merely examples; dates can be displayed in a number of
ways. Perhaps you prefer 2010.01.20; Jan. 20, 2010; 2010-1; etc.

Datetime — Date and time values and variables 106

How Stata dates are stored

Stata dates are numeric values that record durations (positive or negative) from 01jan1960. Below,
we list the numeric values corresponding to the dates displayed in the table in the previous section.

Stata date type Examples Units

datetime/c 1,579,598,122,120 milliseconds since 01jan1960 00:00:00.000,
assuming 86,400 s/day

datetime/C 1,579,598,146,120 milliseconds since 01jan1960 00:00:00.000,
adjusted for leap seconds*

date 18,282 days since 01jan1960 (01jan1960 = 0)

weekly date 2,601 weeks since 1960w1

monthly date 600 months since 1960m1

quarterly date 200 quarters since 1960q1

half-yearly date 100 half-years since 1960h1

yearly date 2010 years since 0000

* Datetime/C is equivalent to coordinated universal time (UTC). In UTC, leap seconds are
periodically inserted because the length of the mean solar day is slowly increasing. See
Why there are two datetime encodings in [D] Datetime conversion.

Stata dates are stored as regular Stata numeric variables.

You can convert dates stored as strings to Stata dates by using the string-to-numeric conversion func-
tions; see Converting dates stored as strings to Stata dates.

You can make Stata dates readable by placing the appropriate J%fn¢ on the numeric variable; see For-
matting Stata dates for display.

You can convert from one Stata date type to another by using conversion functions; see Converting
among units.

Storing dates as numeric values is convenient because you can subtract them to obtain time between
dates, for example,

datetime2 — datetimel = milliseconds between datetimel and datetime2
(divide by 1,000 to obtain seconds)

date2 — datel = days between datel and date2
week2 — weekl = weeks between week1 and week2
month2 — monthl = months between month1 and month2
half2 — halfl = half-years between halfl and half2
year2 — yearl = years between yearl and year2

For time differences in other units, for example, the number of years between datel and date2, see
[D] Datetime durations.

Datetime — Date and time values and variables 107

Converting dates stored as strings to Stata dates

To convert dates and times stored as strings to Stata dates and times, use one of the functions listed
below.

Stata date type Function Required variable precision
datetime/c clock(str, mask) double

datetime/C Clock (str, mask) double

date date (str, mask) float or long

weekly date weekly (str, mask)* float or int

monthly date monthly (str, mask)* float or int

quarterly date quarterly (str, mask)* float or int

half-yearly date halfyearly(str, mask)* float or int

yearly date yearly(str, mask) float or int

*stris a string variable or a literal string enclosed in quotes.

Within each function, you need to specify the string you want to convert and the order in which the
date and time components appear in that string.

The string to be converted with clock(), Clock(), and date() may contain dates and times that
are run together or include punctuation marks between the components. However, the functions marked
with an asterisk require that the string date contain a space or punctuation between the year and the other
component if the string consists only of numbers. For more information on how punctuation is handled
and other details related to these conversion functions, see [D] Datetime conversion.

The order of the components is specified within quotes, such as "YMD", and is referred to as a mask.
The mask may contain the following elements:

Mask element Component

day

week

month

quarter

half-year

year

19Y two-digit year in the 1900s
20Y two-digit year in the 2000s
hour

minute

second

placeholder for something to be ignored

< meo = =09

*+ n B &

Datetime — Date and time values and variables 108

Examples:

1.

You have datetimes stored in the string variable mystr, an example being 2010.07.12 14:32.
To convert this to a Stata datetime/c variable, you type

. generate double eventtime = clock(mystr, "YMDhm")

The string contains the year, month, and day followed by the hour and minute, so you specify
the mask "YMDhm".

You have datetimes stored in mystr, an example being 2010.07.12 14:32:12. You type

. generate double eventtime = clock(mystr, "YMDhms")

Mask element s specifies seconds. In example 1, there were no seconds; in this example, there
are.

. You have datetimes stored in mystr, an example being 2010 Jul 12 14:32. You type

. generate double eventtime = clock(mystr, "YMDhm")

This is the same command that you typed in example 1. In the mask, you specify the order of
the components; Stata figures out the style for itself. In example 1, months were numeric. In
this example, they are spelled out (and happen to be abbreviated).

You have datetimes stored in mystr, an example being July 12, 2010 2:32 PM. You type

. generate double eventtime = clock(mystr, "MDYhm")

Stata automatically looks for AM and PM, in uppercase and lowercase, with and without periods.

You have datetimes stored in mystr, an example being 7-12-10 14.32. The 2-digit year is to
be interpreted as being prefixed with 20. You type

. generate double eventtime = clock(mystr, "MD20Yhm")

You have datetimes stored in mystr, an example being 14:32 on 7/12/2010. You type
. generate double eventtime = clock(mystr, "hm#MDY")
The # sign between m and M means “ignore one thing between minute and month”, which in

this case is the word “on”. Had you omitted the # from the mask, the new variable eventtime
would have contained missing values.

You have a date stored in mystr, an example being 22/7/2010. In this case, you want to create
a Stata date instead of a datetime. You type

. generate eventdate = date(mystr, "DMY")

Typing

. generate double eventtime = clock(mystr, "DMY")

would have worked, too. Variable eventtime would contain a different coding from that
contained by eventdate; namely, it would contain milliseconds from 1jan1960 rather than
days (1,595,376,000,000 rather than 18,465). Datetime value 1,595,376,000,000 corresponds
to 22jul2010 00:00:00.000.

Datetime — Date and time values and variables 109

Formatting Stata dates for display

While Stata dates are stored as regular Stata numeric variables, they are formatted so they look like
the dates and times we are familiar with. Each type of date has a corresponding display format, and we
list them below:

Stata date type Display format
datetime/c htc
datetime/C #tC
date %td
weekly date htw
monthly date %tm
quarterly date wtq
half-yearly date %th
yearly date hty

The display formats above are the simplest forms of each of the Stata dates. You can control how
each type of Stata date is displayed; see [D] Datetime display formats.

Examples:
1. You have datetimes stored in string variable mystr, an example being 2010.07.12 14:32. To
convert this to a Stata datetime/c variable and make the new variable readable when displayed,

you type

. generate double eventtime = clock(mystr, "YMDhm")
. format eventtime Ytc

2. You have a date stored in mystr, an example being 22/7/2010. To convert this to a Stata date
variable and make the new variable readable when displayed, you type

. generate eventdate = date(mystr, "DMY")
. format eventdate %td

Datetime — Date and time values and variables 110

Creating dates from components

If you have components of your date stored separately, you can use the following functions to create
a single date variable. Note that each component used in this function must be numeric; you can specify
numeric variables or simply digits.

Stata date type Function to build from components

datetime/c mdyhms (M, D, Y, h, m, $)*

dhms (ey, b, m, s)*
hms (4, m, s)*

datetime/C Cmdyhms (M, D, Y, h, m, s)*

Cdhms(ey, h, m, s)*!
Chms (h, m, s)*

date mdy(M, D, Y)

dmy (D, M, Y)
weekly date yw (Y, W)
monthly date ym(Y, M)
quarterly date ya(Y, O)
half-yearly date yh(Y, H)
yearly date y(¥)

* Stata datetime variables must be stored as doubles.
T e, is a Stata date with a month, day, and year component.

Examples:

1. Your dataset has three variables, mo, da, and yr, with each variable containing a date component

in numeric form. To create a date variable from these components, you type

. generate eventdate = mdy(mo, da, yr)
. format eventdate %td

If you prefer the ordering day, month, and year, you can use dmy () instead of mdy ():

. generate eventdate = dmy(da, mo, yr)
. format eventdate Ytd

. Your dataset has two numeric variables, mo and yr. To create a date variable corresponding to

the first day of the month, you type

. generate eventdate = mdy(mo, 1, yr)
. format eventdate %td

. Your dataset has two numeric variables, da and yr, and one string variable, month, containing

the spelled-out month. In this case, do not use the building-from-component functions. Instead,
construct a new string variable with these components, and then convert the string to a Stata
date using the conversion functions:

. generate str work = month + " " + string(da) + " " + string(yr)

. generate eventdate = date(work, "MDY")
. format eventdate %td

Datetime — Date and time values and variables 111

Converting among units

The table below lists the functions for converting one type of date and time to another. Because there
are not official functions for every possible conversion, we have also included the functions you can nest
instead to obtain those conversions. Similarly, for any other conversion not listed here, you can use two
functions, going through date or datetime as appropriate. For example, to obtain a monthly date from a
datetime/c variable, you would use mofd (dofc (varname)).

To:
From: datetime/c datetime/C date
datetime/c Cofc() dofc()
datetime/C cofC() dofC()
date cofd() Cofd()
To:
From: date weekly monthly quarterly
date wofd () mofd () qofd ()
weekly dofw() mofd(dofw()) gofd(dofw())
monthly dofm() wofd(dofm()) gofd(dofm())
quarterly dofq() wofd(dofq()) mofd(dofq())
To:
From: date half-yearly yearly
date hofd() yofd O
half-yearly dofh()
yearly dofy()

Note that if you are converting to a date type for which you do not have all the components, those
missing elements will be set to their defaults. For example, converting a yearly date to a weekly date
would give you the first week of each year. Converting a quarterly date to a monthly date would give
you the first month of each quarter, along with the year, of course. Below, we list the defaults for the
date and time components:

Date component Default
year 1960
half-year 1
quarter 1
month 1

week 1

day 01
hour 00
minute 00
second 00

Datetime — Date and time values and variables 112

Examples:

1. You have the Stata datetime/c variable eventtime and wish to create the new variable
eventdate containing just the date from the datetime variable. You type

. generate eventdate = dofc(eventtime)
. format eventdate Ytd

2. You have the daily date eventdate and wish to create the new datetime/c variable eventtime
from it. For this unusual case, you can even type

. generate double eventtime = cofd(eventdate)
. format eventtime Ytc

The time components of the new variable will be set to the default 00:00:00.000.

3. You have the Stata quarterly variable eventqtr and wish to create the new Stata date variable
eventdate from it. You type

. generate eventdate = dofq(eventqtr)
. format eventdate Ytq

The new variable, eventdate, will contain 01jan dates for quarter 1, O1apr dates for quarter 2,
01jul dates for quarter 3, and Oloct dates for quarter 4.

4. You have the datetime/c variable admittime and wish to create the quarterly variable
admitqtr from it. You type

. generate admitqtr = qofd(dofc(admittime))
. format admitqtr %tq

Because there is no gofc () function, you use qofd(dofc()).

Datetime — Date and time values and variables 113

Extracting time-of-day components from datetimes

In the table below, we list the functions used to extract time-of-day components from datetimes. If
you are working with standard datetimes, use the functions in the datetime/c column. If you are working
with leap second—adjusted times, use the functions in the datetime/C column.

Function
Desired component datetime/c datetime/C Example
hour of day hh(e,.) hhC(e,) 14
minutes of day mm(e,.) mmC (e,) 42
seconds of day ss(e,.) ssC(e,) 57.123
year, month, day, clockpart(e,.,s,) Clockpart (e,s,s,,) 2020

hour, minute, second,
or millisecond

e,. is a Stata datetime/c value.

e, 18 a Stata datetime/C value (UTC time with leap seconds).

s,, 1s a string specifying the time unit. s,, can be string "year" or "y" for year;
"month" or "mon" for month; "day" or "d" for day; "hour" or "h" for hour;
"minute" or "min" for minute; "second", "sec", or "s" for second; and
"millisecond" or "ms" for millisecond (case insensitive).

Notes:

0 <hh(e,.) <23, 0<hhC(er) <23
0 <mm(e;.) <59, 0<mmC(e;) <359
0 <ss(e.) <60, 0<ssCler) <61 (sic)

Example:

1. You have the Stata datetime/c variable admittime. You wish to create the new variable
admithour equal to the hour and fraction of hour within the day of admission. You type

. generate admithour = hh(admittime) + mm(admittime)/60
> + ss(admittime)/3600

2. You have the Stata datetime/C variable admitTime. You wish to create the new variable
admityear to record the year of admission. You type

. generate admityear = Clockpart(admitTime, "year")

See [D] Datetime durations for other functions that can be used to calculate durations.

Datetime — Date and time values and variables 114

Extracting date components from daily dates

You might be working with dates that have more information than you need. For example, daily dates
refer to dates that have a month, day, and year component. If you want to refer only to the month, or
year, of a daily date, you can use the extraction functions below.

Desired component Function* Examplef

calendar year year(e,) 2013
datepart(e;, "year") 2013

calendar month month (ey) 7
datepart(e;, "month") 7

calendar day day(ey) 5
datepart(ey, "day") 5

day of week dow(e,) 2

(0=Sunday)

Julian day of year doy(ey) 186

(1=first day)

week within year week(ey) 27

(1=first week)

quarter within year quarter(e,) 3

(1=first quarter)

half within year halfyear(e,) 2

(1=first half)

* g4 18 a Stata date with a month, day, and year component.

T All examples are with e, = mdy(7,5,2013).

All functions require a numeric Stata daily date as an argument. A string variable cannot be specified
as the date. To extract components from other Stata date types, use the appropriate conversion function
to convert to a daily date. For example, quarter (dofq(qvar)) would return the quarter of the quarterly

date values stored in gvar.

Datetime — Date and time values and variables 115

Examples:

1. You wish to obtain the day of week Sunday, Monday, . .. corresponding to the daily date variable
eventdate. You type

. generate day_of_week = dow(eventdate)

The new variable, day_of _week, contains 0 for Sunday, 1 for Monday, ..., 6 for Saturday.

2. You wish to obtain the day of week Sunday, Monday, ... corresponding to the datetime/c vari-
able eventtime. You type

. generate day_of_week = dow(dofc(eventtime))

3. You have the daily date variable evdate and wish to create the new date variable evdate_r
from it. evdate_r will contain the same date as evdate but rounded back to the first of the
month. You type

. generate evdate_r = mdy(month(evdate), 1, year(evdate))

In the above solution, we used the date-component extraction functions month () and year ()
and used the build-from-components function mdy ().

Typing dates into expressions

You can type date values by just typing the number, such as 16,237 or 1,402,920,000,000, as in

. generate before = cond(hiredon < 16237, 1, 0) if !missing(hiredon)
. drop if admittedon < 1402920000000

Easier to type is

. generate before = cond(hiredon < td(15jun2004), 1, 0) if !missing(hiredon)
. drop if admittedon < tc(15jun2004 12:00:00)

You can type Stata date values by typing the date inside td (), as in td(15jun2004).

You can type Stata datetime/c values by typing the datetime inside tc(), as in tc(15jun2004
12:00:00).

td () and tc () are called pseudofunctions because they translate what you type into their numerical
equivalents. Pseudofunctions require only that you specify the datetime components in the expected
order, so rather than 15jun2004 above, we could have specified 15 June 2004, 15-6-2004, or 15/6/2004.

The pseudofunctions and their expected component order are

Desired date type Pseudofunction

datetime/c tc([day-month-year | hh:mm|[:ss[.sss]])
datetime/C tC([day-month-year | hh:mm|[:ss[.sss]])
date td (day-month-year)

weekly date tw (year-week)

monthly date tm (year-month)

quarterly date tq (year-quarter)

half-yearly date th (year-half’)

yearly date none necessary; years are numeric and can be typed directly

Datetime — Date and time values and variables 116

Note that the day-month-year in tc () and tC() are optional. If you omit them, 01jan1960 is assumed.
Doing so produces time as an offset, which can be useful in, for example,

. generate six_hrs_later = eventtime + tc(6:00)

Note that string-to-date functions can be used in expressions with literal strings. For example,
date("15jun2004","DMY") gives the same result as td (15jun2004).

Remarks and examples

Remarks are presented under the following headings:

Introduction

Example 1: Converting string datetimes to Stata datetimes
Example 2: Extracting date components

Example 3: Building dates from components

Example 4: Converting among date types

Example 5: Using dates in expressions

Introduction

To use dates in Stata, you must first convert what you have to a Stata date. Stata dates are numbers,
so they can easily be translated from, say, daily dates to monthly dates. Even so, they can be formatted
so that they look like the dates you are familiar with. If you have dates stored as strings, you must first
convert them to Stata dates.

Converting a string date to a Stata date is as simple as telling Stata the string date and the order of the
components. For example, we have a fictional dataset on patients who visited a local hospital. We have
their birthdates, the dates of their visits, the reasons for their visits, and the dates they were discharged.
All dates and times are stored as strings.

. use https://www.stata-press.com/data/r19/visits
(Fictional hospital visit data)
. describe

Contains data from https://www.stata-press.com/data/r19/visits.dta

Observations: 5 Fictional hospital visit data
Variables: 7 27 Aug 2024 22:56
Variable Storage Display Value
name type format label Variable label
patid byte %9.0g Patient ID
dateofbirth str9 %9s Date of birth
reason stris %15s Reason for visit
admit_d str8 %9s Admission date
admit_t stril7 %17s Admission date and time
discharge_d str9 %9s Discharge date
discharge_t stri4 %l14s Discharge date and time

Sorted by:

Datetime — Date and time values and variables 117

. list admit_d dateofbirth

admit_d dateofb~h
1. 20110625 May152001
2. 20110313 Apr011999
3. 20110409 Nov151975
4. 20120211 Aug261960
5. 20120801 Dec161987

If we wanted to sort our data by birthdates or use these dates to compute a patient’s age, we would
need these variables to be numeric, not strings. So let’s create numeric Stata dates from the birthdates

and dates of admission:

. generate admit = date(admit_d, "YMD")
. generate dob = date(dateofbirth, "MDY")

. list admit_d admit dateofbirth dob

admit_d admit dateofb~h dob
1. 20110625 18803 May152001 15110
2. 20110313 18699 Apr011999 14335
3. 20110409 18726 Nov151975 5797
4. 20120211 19034 Aug261960 238
5. 20120801 19206 Dec161987 10211

For dates of admission, we told Stata that the string date was stored in admit_d and that the date was
stored in the following order: year, month, day (YMD). Similarly, for birthdates we specify the string date
and the order of the components: month, day, and year (MDY). It does not matter whether the month is
written as a number, spelled out completely, or abbreviated to three letters.

You might be surprised by the values listed. The numbers represent the days elapsed since January 1,
1960, Stata’s base date. Most software store dates and times in this manner, but they differ in the date
they choose as a base. For us to understand the dates that these values represent, we apply a display
format. All datetime display formats begin with a %t and contain a second letter representing the type of
date: %td for daily dates, %tw for weekly dates, and so on. In our case, we have daily dates, so we use

the %td format.

. format admit dob %td

. list admit dob

admit dob
1. 25jun2011 15may2001
2. 13mar2011 01apr1999
3. 09apr2011 15n0v1975
4. 11feb2012 26augl960
5. 0laug2012 16dec1987

If we instead had weekly dates, monthly dates, or quarterly dates, we would use the appropriate string-
to-numeric conversion function to create the numeric variable and the appropriate display format. For
more ways to format the dates above, see [D] Datetime display formats.

Datetime — Date and time values and variables 118

This is a simple example to get us started. The key points are that we want our dates to be stored
numerically and formatted so that they look like the dates we are familiar with.

Below, we will discuss how to work with other types of dates. We will explore dates that have a time
component, dates with components stored in multiple variables, and dates that have more components
than we wish to work with. So whether you need to build, extract, or convert among different types of
dates, you will learn how to do so with the examples that follow.

Example 1: Converting string datetimes to Stata datetimes

In this dataset, we also have string variables that record the date and time of admission and discharge:
. codebook admit_t discharge_t

admit_t Admission date and time

Type: String (stril7)
Unique values: 5 Missing "": 0/5

Tabulation: Freq. Value

"20110313 8:30:45"

"20110409 10:17:08"
"20110625 5:15:06"

"20120211 10:30:12"
1 "20120801 6:45:59"

Warning: Variable has embedded blanks.

o e e

discharge_t Discharge date and time

Type: String (stri4)
Unique values: 5 Missing "": 0/5

Tabulation: Freq. Value

"20110326 2:15"
"20110409 19:35"
"20110629 10:27"
"20120216 2:15"
1 "20120802 11:59"

Warning: Variable has embedded blanks.

O

Let’s convert these to Stata dates. Regardless if we are working with simple dates or dates and times,
the process is the same. We are going to specify the string we want to convert and the order of the
components. The only difference between this example and the previous example is the function; because
these variables record the date and time, we will now use the clock() function, and the variables we
generate will be referred to as datetime variables.

Datetime — Date and time values and variables 119

. generate double admit_time = clock(admit_t, "YMDhms")
. generate double disch_time = clock(discharge_t, "YMDhm")
. format admit_time disch_time %tc

. list admit_time disch_time

admit_time disch_time

25jun2011 05:15:06 29jun2011 10:27:00
13mar2011 08:30:45 26mar2011 02:15:00
09apr2011 10:17:08 09apr2011 19:35:00
11feb2012 10:30:12 16feb2012 02:15:00
0laug2012 06:45:59 02aug2012 11:59:00

O W N

Note that the string variable admit_t contained the hour, minutes, and seconds, whereas the string
variable discharge_t contained only the hour and minutes. This is why we did not specify an s in the
list of components for discharge_t, and it is also why the seconds are set to zero for disch_time.

These variables now record the milliseconds since 01jan1960 00:00:00.000, assuming 86,400 seconds
per day. You might have guessed that these values will be quite large, which is why we need to use the
most precise storage type in Stata, double.

We have a lot of information in these variables, but we can choose to view just the portion in which we
are interested by modifying the display format. For example, below we specify that we want to display
only the hour and minute for the time of discharge, and we list the newly formatted time alongside the
original string variable.

. format disch_time %tcHH:MM

. list discharge_t disch_time

discharge_t disch_~e

1. 20110629 10:27 10:27
2. 20110326 2:15 02:15
3. 20110409 19:35 19:35
4. 20120216 2:15 02:15
5. 20120802 11:59 11:59

We created the datetime variables above assuming there are 86,400 seconds in a day. This is one way
to record time; another way would be to use UTC. UTC times are adjusted for leap seconds and can be
obtained by modifying our commands just slightly, as follows:

. generate double admit_Time = Clock(admit_t, "YMDhms")
. format admit_Time %tC

Notice that the Clock () function and the %tC display format both contain a capital C. When you are
working with standard datetimes, you will use functions with a lowercase ¢, and for UTC times, you will
use functions with an uppercase C.

Datetime — Date and time values and variables 120

Example 2: Extracting date components

Suppose we want to work with just the month or year of admission. We can extract these components
from our Stata date variable:
. generate admonth = month(admit)
. generate adyear = year(admit)
. list admit admonth adyear

admit admonth adyear

1. 25jun2011 6 2011
2. 13mar2011 3 2011
3. 09apr2011 4 2011
4. 11feb2012 2 2012
5. O0laug2012 8 2012

Now, for each year, we can look at the patients that were admitted in the first three months and the
reason for their visit:

. bysort adyear: list patid reason if admonth < 4

-> adyear = 2011

patid reason

2. 2 chest pain

-> adyear = 2012

patid reason

1. 4 abdominal pain

Example 3: Building dates from components

If we are concerned only with the month and year of admission, we can also create a monthly date
with the two newly created variables above:
. generate monthly = ym(adyear,admonth)
. format monthly %tm
. list admit monthly

admit monthly

25jun2011 2011m6
13mar2011 2011m3
09apr2011 2011m4
11feb2012 2012m2
0laug2012 2012m8

[S2 OV SR

Because we now have monthly dates, we apply the %tm display format.

Datetime — Date and time values and variables 121

The ym () function shown above is useful when you have components of a date stored separately. In
fact, we could have created this monthly date variable by nesting functions:

. generate monthly2 = ym(year(admit), month(admit))
. format monthly2 %tm

Instead of generating those intermediary variables to extract the month and year of the daily date, we
simply used the extraction functions year () and month () within the ym() function. Either of the two
methods shown above will give you the same result, but if your goal is to convert a daily date variable
to a monthly date, you can use the mofd () conversion function, as demonstrated in the next example.

Example 4: Converting among date types

Often, we need to modify the data from its raw form for our purposes. For example, suppose our
dataset included only the datetime variable admit_time but we were interested only in the date. We
could type

. generate dateoftime = dofc(admit_time)
. format dateoftime %td
. list admit_time dateoftime

admit_time dateoft~e

25jun2011 05:15:06 25jun2011
13mar2011 08:30:45 13mar2011
09apr2011 10:17:08 09apr2011
11feb2012 10:30:12 11feb2012
0laug2012 06:45:59 0Olaug2012

[S2 VI SR

Or we might want to create a monthly date from the date of admission:

. generate monthofdate = mofd(admit)
. format monthofdate %tm

. list admit monthofdate

admit montho~e

1. 25jun2011 2011m6
2. 13mar2011 2011m3
3. 09apr2011 2011m4
4. 11feb2012 2012m2
5. O0laug2012 2012m8

Several functions are available for converting from one type of date and time to another. But, if one is
not available for what you need, you can nest functions to obtain the conversion you want. For example,
suppose we would like to convert a monthly date to a quarterly date. There is no direct function for this
conversion, so instead we type

Datetime — Date and time values and variables 122

. generate quarterly = qofd(dofm(monthofdate))
. format quarterly Jtq
. list monthofdate quarterly

montho~e quarte-~y

1. 2011m6 2011q2
2. 2011m3 2011q1
3. 2011m4 201192
4. 2012m2 2012q1
5. 2012m8 201293

We use the dofm() function to convert the monthly date to a daily date. This daily date will contain the
month and year from the monthly date, and the day will be set to 1. This is the general rule with datetime
functions; if you are converting from one type of date to another that has more elements, those elements
are set to their defaults. The qofd () function then converts the resulting daily date to a quarterly date.

Example 5: Using dates in expressions

Besides generating date and time variables, you might use dates in expressions. For example, suppose
we wanted to look only at observations after a certain date. Let’s list visit information for any patients
who were admitted after February 20, 2012:

. list admit patid reason if admit > td(20feb2012)

admit patid reason

5. 0laug2012 5 rapid breathing

This td () function will convert February 20, 2012, to its numeric form. Our expression is then evaluated
by comparing this numeric value with the numeric values stored in admit.

If you would like to see that underlying numeric value, you can type

. display td(20feb2012)

References

Cox, N. J. 2010. Stata tip 68: Week assumptions. Stata Journal 10: 682—685.
.2012. Stata tip 111: More on working with weeks. Stata Journal 12: 565-569.

Cox, N. J., and C. B. Schechter. 2018. Speaking Stata: Seven steps for vexatious string variables. Stata Journal 18:
981-994.

Also see

D] Datetime business calendars — Business calendars

D] Datetime conversion — Converting strings to Stata dates

D] Datetime durations — Obtaining and working with durations

(D]

(D]

[D] Datetime display formats — Display formats for dates and times

[D]

[D] Datetime relative dates — Obtaining dates and date information from other dates
(D]

D] Datetime values from other software — Date and time conversion from other software

https://www.stata-journal.com/article.html?article=dm0052
https://doi.org/10.1177/1536867X1201200316
https://www.stata-journal.com/article.html?article=dm0098

Datetime business calendars — Business calendars

Description Syntax Remarks and examples Also see

Description

Stata provides user-definable business calendars.

Syntax
Apply business calendar format

format varlist %tbcalname

Apply detailed date format with business calendar format

format varlist fitbcalname| : datetime-specifiers |

Convert between business dates and regular dates
enerate | replace ate = bo calname" , regulardate
g pl bd, bofd("cal ", regulardate)

{ generate | replace } regulardate = dofb (bdate, "calname")
File calname . stbcal contains the business calendar definition.
Details of the syntax follow:

1. Definition.
Business calendars are regular calendars with some dates crossed out:

November 2011
Su Mo Tu We Th Fr
1 2 3 4

X 7 8 9 10 11
X 14 15 16 17 18
X
X

S

21 22 23 X X
28 29 30

A date that appears on the business calendar is called a business date. 11nov2011 is a business date.
12nov2011 is not a business date with respect to this calendar.

Crossed-out dates are literally omitted. That is,

18nov2011 + 1 = 21nov2011
28n0v2011 — 1 = 23nov2011

Stata’s lead and lag operators work the same way.

123

Datetime business calendars — Business calendars 124

. Business calendars are named.
Assume that the above business calendar is named simple.

. Business calendars are defined in files named calname. stbcal, such as simple.stbcal. Calendars
may be supplied by StataCorp and already installed, obtained from other users directly or via the SSC,
or written yourself. Calendars can also be created automatically from the current dataset with the
bcal create command; see [D] beal. Stbcal-files are treated in the same way as ado-files.

You can obtain a list of all business calendars installed on your computer by typing bcal dir; see
[D] beal.

. Datetime format.
The date format associated with the business calendar named simple is %tbsimple, which is to say
%+t + b+ calname.

% it is a format
t it is a datetime
b it is based on a business calendar

calname the calendar’s name

. Format variables the usual way.
You format variables to have business calendar formats just as you format any variable, using the
format command.

. format mydate Ytbsimple

specifies that existing variable mydate contains values according to the business calendar named
simple. See [D] format.

You may format variables % tbcalname regardless of whether the corresponding stbcal-file exists. If
it does not exist, the underlying numeric values will be displayed in a %g format.

. Detailed date formats.
You may include detailed datetime format specifiers by placing a colon and the detail specifiers after
the calendar’s name.

. format mydate %tbsimple:CCYY.NN.DD

would display 21nov2011 as 2011.11.21. See [D] Datetime display formats for detailed datetime
format specifiers.

. Reading business dates.

To read files containing business dates, ignore the business date aspect and read the files as if they
contained regular dates. Convert and format those dates as %td; see Converting dates stored as strings
to Stata dates in [D] Datetime. Then convert the regular dates to %tb business dates:

. generate mydate = bofd("simple", regulardate)
. format mydate Ytbsimple

. assert mydate!=. if regulardate!=.

The first statement performs the conversion.

The second statement attaches the % tbsimple date format to the new variable mydate so that it will
display correctly.

Datetime business calendars — Business calendars 125

10.

The third statement verifies that all dates recorded in regulardate fit onto the business calendar.
For instance, 12nov2011 does not appear on the simple calendar but, of course, it does appear on the
regular calendar. If the data contained 12nov2011, that would be an error. Function bofd () returns
missing when the date does not appear on the specified calendar.

. More on conversion.

There are only two functions specific to business dates, bofd () and dofb (). Their definitions are

bdate = bofd ("calname”, regulardate)
dofb(bdate, "calname")

regulardate

bofd () returns missing if regulardate is missing or does not appear on the specified business calendar.
dofb () returns missing if bdate contains missing.

. Obtaining day of week, etc.

You obtain day of week, etc., by converting business dates to regular dates and then using the standard
functions. To obtain the day of week of bdate on business calendar calname, type

. generate dow = dow(dofb(bdate, "calname"))
See Extracting date components from daily dates in [D] Datetime for the other extraction functions.

Stbcal-files.
The stbcal-file for simple, the calendar shown below,

November 2011
Su Mo Tu We Th Fr Sa
1 2 3 4 X
X 7 8 9 10 11 X
X 14 15 16 17 18 X
X 21 22 23 X X X
X 28 29 30
is
begin simple.stbcal
*! version 1.0.0
* simple.stbcal
version 19.5 // (or version 19 if you do not have StataNow)

purpose "Example for manual"
dateformat dmy

range 01nov2011 30nov2011
centerdate Olnov2011

omit dayofweek (Sa Su)
omit date 24nov2011
omit date 25n0ov2011

end simple.stbcal

This calendar was so simple that we crossed out the Thanksgiving holidays by specifying the dates to
be omitted. In a real calendar, we would change the last two lines,

omit date 24nov2011
omit date 25n0ov2011

to read

omit dowinmonth +4 Th of Nov and +1

Datetime business calendars — Business calendars 126

which says to omit the fourth (+4) Thursday of November in every year, and omit the day after that
(+1), too. See [D] Datetime business calendars creation.

Remarks and examples

See [D] Datetime for an introduction to Stata’s date and time features.
Below we work through an example from start to finish.

Remarks are presented under the following headings:

Step 1: Read the data, date as string

Step 2: Convert date variable to %td date

Step 3: Convert %td date to %tb date

Key feature: Each business calendar has its own encoding
Key feature: Omitted dates really are omitted

Key feature: Extracting components from %tb dates

Key feature: Merging on dates

Step 1: Read the data, date as string

File bcal_simple.raw on our website provides data, including a date variable, that is to be inter-
preted according to the business calendar simple shown under Syntax above.

. type https://www.stata-press.com/data/r19/bcal_simple.raw
11/4/11 51

11/7/11 9

11/18/11 12

11/21/11 4

11/23/11 17

11/28/11 22

We begin by reading the data and then listing the result. Note that we read the date as a string variable:

. infile str10 sdate float x using https://www.stata-press.com/data/r19/bcal_simple
(6 observations read)

. list

sdate X
1. 11/4/11 51
2. 11/7/11 9
3. 11/18/11 12
4. 11/21/11 4
5. 11/23/11 17
6. 11/28/11 22

Step 2: Convert date variable to %td date

Now we create a numeric date variable from the string date and format it as a date (%td):

. generate rdate = date(sdate, "MD20Y")
. format rdate %td

See Converting dates stored as strings to Stata dates in [D] Datetime. We verify that the conversion
went well and drop the string variable of the date:

Datetime business calendars — Business calendars 127

. list
sdate X rdate
1. 11/4/11 51 04nov2011
2. 11/7/11 9 07nov2011
3. 11/18/11 12 18nov2011
4. 11/21/11 4 21nov2011
5. 11/23/11 17 23nov2011
6. 11/28/11 22 28nov2011
. drop sdate

Step 3: Convert %td date to %tb date

We convert the %td date to a %tbsimple date following the instructions of item 7 of Syntax above.
. generate mydate = bofd("simple", rdate)
. format mydate Ytbsimple

. assert mydate!=. if rdate!=.

Had there been any dates that could not be converted from regular dates to simple business dates,
assert would have responded, “assertion is false”. Nonetheless, we will list the data to show you that the
conversion went well. We would usually drop the %td encoding of the date, but we want it to demonstrate
a feature below.

. list

b4 rdate mydate
1. 51 04nov2011 04nov2011
2. 9 07nov2011 07nov2011
3. 12 18nov2011 18nov2011
4. 4 21nov2011 21nov2011
5. 17 23nov2011 23nov2011
6. 22 28nov2011 28nov2011

Key feature: Each business calendar has its own encoding

In the listing above, rdate and mydate appear to be equal. They are not:

. format rdate mydate %9.0g // remove date formats
. list
X rdate mydate
1. 51 18935 3
2. 9 18938 4
3. 12 18949 13
4. 4 18952 14
5. 17 18954 16
6. 22 18959 17

Datetime business calendars — Business calendars 128

%tb dates each have their own encoding, and those encodings differ from the encoding used by %td
dates. It does not matter. Neither encoding is better than the other. Neither do you need to concern
yourself with the encoding. If you were curious, you could learn more about the encoding used by
%tbsimple by typing bcal describe simple; see [D] beal.

We will drop variable rdate and put the %tbsimple format back on variable mydate:

. drop rdate
. format mydate Ytbsimple

Key feature: Omitted dates really are omitted

In Syntax, we mentioned that for the simple business calendar

18nov2011 + 1 = 21nov2011
28nov2011 — 1 = 23n0ov2011

That is true:
. generate tomorrow = mydate + 1
. generate yesterday = mydate - 1

. format tomorrow yesterday %tbsimple

. list

X mydate tomorrow yesterday
1. 51 04nov2011 07nov2011 03nov2011
2. 9 07nov2011 08nov2011 04nov2011
3. 12 18nov2011 21nov2011 17nov2011
4. 4 21nov2011 22nov2011 18nov2011
5. 17 23nov2011 28nov2011 22nov2011
6. 22 28nov2011 29nov2011 23nov2011

. drop tomorrow yesterday

Stata’s lag and lead operators L. varname and F . varname work similarly.

Key feature: Extracting components from %tb dates

You extract components such as day of week, month, day, and year from business dates using the
same extraction functions you use with Stata’s regular %td dates, namely, dow (), month (), day (), and
year (), and you use function dofb () to convert business dates to regular dates. Below we add day of
week to our data, list the data, and then drop the new variable:

Datetime business calendars — Business calendars 129

. generate dow = dow(dofb(mydate, "simple"))

. list
X mydate dow
1. 51 04nov2011 5
2. 9 07nov2011 1
3. 12 18nov2011 5
4. 4 21nov2011 1
5. 17 23nov2011 3
6. 22 28nov2011 1
. drop dow

See Extracting date components from daily dates in [D] Datetime.

Key feature: Merging on dates

It may happen that you have one dataset containing business dates and a second dataset containing
regular dates, say, on economic conditions, and you want to merge them. To do that, you create a regular
date variable in your first dataset and merge on that:

. generate rdate = dofb(mydate, "simple")
. merge 1:1 rdate using econditions, keep(match)

. drop rdate

Also see

[D] beal — Business calendar file manipulation
[D] Datetime business calendars creation — Business calendars creation

[D] Datetime — Date and time values and variables

Datetime business calendars creation — Business calendars creation

Description Syntax Remarks and examples Also see

Description

Stata provides user-definable business calendars. Business calendars are provided by StataCorp and
by other users, and you can write your own. You can also create a business calendar automatically from
the current dataset with the bcal create command; see [D] beal. This entry concerns writing your own
business calendars.

See [D] Datetime business calendars for an introduction to business calendars.

Syntax

Business calendar calname and corresponding display format %tbcalname are defined by the text file
calname . stbcal, which contains the following:

* comments

version version_of_stata
purpose "text"

dateformat { ymd | ydm|myd | mdy | dym | dmy }

range date date

centerdate date

[from {date| . } to {date|.}:] omit ... [if]

where
omit ... may be
omit date pdate [and pmlist |
omit dayofweek dowlist
omit dowinmonth pm# dow |of monthlist] [and pmlist
[if | may be
if restriction [& restriction . . .]
restriction is one of

dow (dowlist)
month (monthlist)
year (yearlist)

date is a date written with the year, month, and day in the order specified by dateformat. For
instance, if dateformat is dmy, a date can be 12apr2013, 12-4-2013, or 12.4.2013.

130

Datetime business calendars creation — Business calendars creation 131

pdate is a date or it is a date with character * substituted where the year would usually appear.
If dateformat is dmy, a pdate can be 12apr2013, 12-4-2013, or 12.4.2013; or it can be
12apr*, 12-4-%, or 12.4.*. 12apr* means the 12th of April across all years.

dow is a day of the week, in English. It may be abbreviated to as few as 2 characters, and
capitalization is irrelevant. Examples: Sunday, Mo, tu, Wed, th, Friday, saturday.

dowlist is a dow, or it is a space-separated list of one or more dows enclosed in parentheses.
Examples: Sa, (Sa), (Sa Su).

month is a month of the year, in English, or it is a month number. It may be abbreviated to the
minimum possible, and capitalization is irrelevant. Examples: January, 2, Mar, ap, may,
6, Jul, aug, 9, Octob, nov, 12.

monthlist is a month, or it is a space-separated list of one or more months enclosed in parenthe-
ses. Examples: Nov, (Nov), 11, (11), (Nov Dec), (11 12).

vear is a 4-digit calendar year. Examples: 1872, 1992, 2013, 2050.

yearlist is a year, or it is a space-separated list of one or more years enclosed in parentheses.
Examples: 2013, (2013), (2013 2014).

pm#is a nonzero integer preceded by a plus or minus sign. Examples: -2, -1, +1. pm# appears
in omit dowinmonth pm# dow of monthlist, where pm# specifies which dow in the month.
omit dowinmonth +1 Th means the first Thursday of the month. omit dowinmonth -1 Th
means the last Thursday of the month.

pmlist is a pm#, or it is a space-separated list of one or more pm#s enclosed in parentheses.
Examples: +1, (+1), (+1 +2), (-1 +1 +2). pmlist appears in the optional and pmlist al-
lowed at the end of omit date and omit dowinmonth, and it specifies additional dates to be
omitted. and +1 means and the day after. and -1 means and the day before.

Remarks and examples

Remarks are presented under the following headings:

Introduction

Concepts

The preliminary commands

The omit commands: from/to and if
The omit commands: and

The omit commands: omit date

The omit commands: omit dayofweek
The omit commands: omit dowinmonth
Creating stbcal-files with bcal create
Where to place stbcal-files

How to debug stbcal-files

Ideas for calendars that may not occur to you

Datetime business calendars creation — Business calendars creation 132

Introduction

A business calendar is a regular calendar with some dates crossed out, such as

November 2011
Su Mo Tu We Th Fr
1 2 3 4

7 &8 9 10 11
14 15 16 17 18
21 22 23 X X
28 29 30

TS
M x|

The purpose of the stbcal-file is to
1. Specify the range of dates covered by the calendar.
2. Specify the particular date that will be encoded as date 0.
3. Specify the dates from the regular calendar that are to be crossed out.

The stbcal-file for the above calendar could be as simple as

begin example_1.stbcal
version 19.5 // (or version 19 if you do not have StataNow)
range 01lnov2011 30nov2011

centerdate 0lnov2011

omit date b5nov2011

omit date 6nov2011

omit date 12nov2011

omit date 13nov2011

omit date 19nov2011

omit date 20nov2011

omit date 24nov2011

omit date 25n0ov2011

omit date 26nov2011

omit date 27nov2011

end example_1.stbcal

In fact, this calendar can be written more compactly because we can specify to omit all Saturdays and
Sundays:

begin example_2.stbcal
version 19.5 // (or version 19 if you do not have StataNow)

range 0lnov2011 30nov2011

centerdate 0lnov2011

omit dayofweek (Sa Su)

omit date 24nov2011

omit date 25nov2011

end example_2.stbcal

In this particular calendar, we are omitting 24nov2011 and 25n0v2011 because of the American
Thanksgiving holiday. Thanksgiving is celebrated on the fourth Thursday of November, and many busi-
nesses close on the following Friday as well. It is possible to specify rules like that in stbcal-files:

Datetime business calendars creation — Business calendars creation 133

begin example_3.stbcal
version 19.5 // (or version 19 if you do not have StataNow)

range 01lnov2011 30nov2011

centerdate Olnov2011

omit dayofweek (Sa Su)

omit dowinmonth +4 Th of Nov and +1

end example_3.stbcal

Understand that this calendar is an artificial example, and it is made all the more artificial because it
covers so brief a period. Real stbcal-files cover at least decades, and some cover centuries.

Concepts

You are required to specify four things in an stbcal-file:
1. the version of Stata being used,
2. the range of the calendar,
3. the center date of the calendar, and
4. the dates to be omitted.

Version.
You specify the version of Stata to ensure forward compatibility with future versions of Stata. If your
calendar starts with the line version 19.5 or, if you do not have StataNow, version 19.0, future
versions of Stata will know how to interpret the file even if the definition of the stbcal-file language
has greatly changed.

Range.
A calendar is defined over a specific range of dates, and you must explicitly state what that range
is. When you or others use your calendar, dates outside the range will be considered invalid, which
usually means that they will be treated as missing values.

Center date.
Stata stores dates as integers. In a calendar, 57 might stand for a particular date. If it did, then
57 — 1 = 56 stands for the day before, and 57 + 1 = 58 stands for the day after. The previous
statement works just as well if we substitute —12,739 for 57, and thus the particular values do not
matter except that we must agree upon what values we wish to standardize because we will be storing
these values in our datasets.

The standard is called the center date, and here center does not mean the date that corresponds to
the middle of your calendar. It means the date that corresponds to the center of integers, which is
to say, 0. You must choose a date within the range as the standard. The particular date you choose
does not matter, but most authors choose easily remembered ones. Stata’s built-in %td calendar uses
01jan1960, but that date will probably not be available to you because the center date must be a date
on the business calendars, and most businesses were closed on 01jan1960.

It will sometimes happen that you will want to expand the range of your calendar in the future. Today,
you make a calendar that covers, say 1990 to 2020, which is good enough for your purposes. Later,
you need to expand the range, say back to 1970 or forward to 2030, or both. When you update your
calendar, do not change the center date. This way, your new calendar will be backward compatible
with your previous one.

Datetime business calendars creation — Business calendars creation 134

Omitted dates.
Obviously you will need to specify the dates to be omitted. You can specify the exact dates to be
omitted when need be, but whenever possible, specify the rules instead of the outcome of the rules.
Rules change, so learn about the from/to prefix that can be used in front of omit commands. You
can code things like

from 01jan1960 to 31dec1968: omit ...
from 01jan1979 to .: omit ...

When specifying from/to, . for the first date is synonymous with the opening date of the range. .
for the second date is synonymous with the closing date.

The preliminary commands

Stbcal-files should begin with these commands:

version version_of_stata

purpose "fext"

dateformat { ymd|ydm|myd | mdy | dym | dmy }
range date date

centerdate date

version version_of_stata
You could specify version 19.5 or, if you do not have StataNow, version 19.0. Better still, type
command version in Stata to discover the version of Stata you are currently using. Specify that
version, and be sure to look at the documentation so that you use the modern syntax correctly.

purpose "fext"
This command is optional. The purpose of purpose is not to make comments in your file. If you want
comments, include those with a * in front. The purpose sets the text that bcal describe calname
will display.

dateformat { ymd |ydm|myd | mdy | dym | dmy }
This command is optional. dateformat ymd is assumed if not specified. This command has nothing
to do with how dates will look when variables are formatted with %tbcalname. This command speci-
fies how you are typing dates in this stbcal-file on the subsequent commands. Specify the format that
you find convenient.

range date date
The date range was discussed in Concepts. You must specify it.

centerdate date
The centering date was discussed in Concepts. You must specify it.

The omit commands: from/to and if
An stbcal-file usually contains multiple omit commands. The omit commands have the syntax
[from {date| . } to {date| . }:] omit ... [if]

That is, an omit command may optionally be preceded by from/to and may optionally contain an if
at the end.

Datetime business calendars creation — Business calendars creation 135

When you do not specify from/to, results are the same as if you specified

from . to .: omit ...

That is, the omit command applies to all dates from the beginning to the end of the range. In Intro-
duction, we showed the command

omit dowinmonth +4 Th of Nov and +1

Our sample calendar covered only the month of November, but imagine that it covered a longer period
and that the business was open on Fridays following Thanksgiving up until 1998. The Thanksgiving
holidays could be coded

from . to 31dec1997: omit dowinmonth +4 Th of Nov
from 01jan1998 to .: omit dowinmonth +4 Th of Nov and +1

The same holidays could also be coded

omit dowinmonth +4 Th of Nov
from 01jan1998 to .: omit dowinmonth +4 Th of Nov and +1

We like the first style better, but understand that the same dates can be omitted from the calendars
multiple times and for multiple reasons, and the result is still the same as if the dates were omitted only
once.

The optional if also determines when the omit statement is operational. Let’s think about the Christ-
mas holidays. Let’s say a business is closed on the 24th and 25th of December. That could be coded

omit date 24dec*
omit date 25dec*

although perhaps that would be more understandable if we coded

from . to .: omit date 24dec*
from . to .: omit date 25dec*

Remember, from . to . is implied when not specified. In any case, we are omitting 24dec and
25dec across all years.

Now consider a more complicated rule. The business is closed on the 24th and 25th of December
if the 25th is on Tuesday, Wednesday, Thursday, or Friday. If the 25th is on Saturday or Sunday, the
holidays are the preceding Friday and the following Monday. If the 25th is on Monday, the holidays are
Monday and Tuesday. The rule could be coded

omit date 25dec* and -1 if dow(Tu We Th Fr)
omit date 25dec* and (-2 -1) if dow(Sa)
omit date 25dec* and (-3 -2) if dow(Su)
omit date 25dec* and +1 if dow(Mo)

The if clause specifies that the omit command is only to be executed when 25decx* is one of the
specified days of the week. If 25decx* is not one of those days, the omit statement is ignored for that
year. Our focus here is on the if clause. We will explain about the and clause in the next section.

Sometimes, you have a choice between using from/to or if. In such cases, use whichever is conve-
nient. For instance, imagine that the Christmas holiday rule for Monday changed in 2011 and 2012. You
could code

from . to 31dec2010: omit date 25dec* and +1 if dow(Mo)
from 01jan2011 to .: omit date ... if dow(Mo)

Datetime business calendars creation — Business calendars creation 136

or

omit date 25decx and +1 if dow(Mo) & year (2007 2008 2009 2010)
omit date ... if dow(Mo) & year(2011 2012)

Generally, we find from/to more convenient to code than if year().

The omit commands: and

The other common piece of syntax that shows up on omit commands is and pmlist. We used it above
in coding the Christmas holidays,

omit date 25dec* and -1 if dow(Tu We Th Fr)
omit date 25dec* and (-2 -1) if dow(Sa)
omit date 25dec* and (-3 -2) if dow(Su)
omit date 25dec* and +1 if dow(Mo)

and pmlist specifies a list of days also to be omitted if the date being referred to is omitted. The extra
days are specified as how many days they are from the date being referred to. Please excuse the inelegant
“date being referred to”, but sometimes the date being referred to is implied rather than stated explicitly.
For this problem, however, the date being referred to is 25dec across a number of years. The line

omit date 25dec* and -1 if dow(Tu We Th Fr)

says to omit 25dec and the day before if 25dec is on a Tuesday, Wednesday, etc. The line

omit date 25dec* and (-2 -1) if dow(Sa)

says to omit 25dec and two days before and one day before if 25dec is Saturday. The line
omit date 25decx and (-3 -2) if dow(Su)

says to omit 25dec and three days before and two days before if 26dec is Sunday. The line

omit date 25dec* and +1 if dow(Mo)

says to omit 25dec and the day after if 25dec is Monday.
Another omit command for solving a different problem reads

omit dowinmonth -1 We of (Nov Dec) and +1 if year(2009)

Please focus on the and +1. We are going to omit the date being referred to and the date after if the
year is 2009. The date being referred to here is -1 We of (Nov Dec), which is to say, the last Wednesday
of November and December.

The omit commands: omit date

The full syntax of omit date is

[from {date| . } to {date| . }:] omit date pdate | and pmlist] [if |
You may omit specific dates,

omit date 25dec2010

or you may omit the same date across years:
omit date 25decx*

Datetime business calendars creation — Business calendars creation 137

The omit commands: omit dayofweek

The full syntax of omit dayofweek is
[from {date| . } to {date| . }:] omit dayofweek dowlist [if |
The specified days of week (Monday, Tuesday, ...) are omitted.

The omit commands: omit dowinmonth

The full syntax of omit dowinmonth is
[from {date| . } to {date| . }:] omit pm# dow [of monthlist] |and pmlist] [if |

dowinmonth stands for day of week in month and refers to days such as the first Monday, second
Monday, ..., next-to-last Monday, and last Monday of a month. This is written as +1 Mo, +2 Mo, ..., -2
Mo, and -1 Mo.

Creating stbcal-files with bcal create

Business calendars can be obtained from your Stata installation or from other Stata users. You can
also write your own business calendar files or use the bcal create command to automatically create
a business calendar from the current dataset. With bcal create, business holidays are automatically
inferred from gaps in the dataset, or they can be explicitly defined by specifying the if and in quali-
fiers, as well as the excludemissing () option. You can also edit business calendars created with bcal
create or obtained from other sources. It is advisable to use bcal load or bcal describe to verify
that a business calendar is well constructed and remains so after editing.

See [D] beal for more information on bcal create.

Where to place stbcal-files

Stata automatically searches for stbcal-files in the same way it searches for ado-files. Stata looks
for ado-files and stbcal-files in the official Stata directories, your site’s directory (SITE), your current
working directory (.), your personal directory (PERSONAL), and your directory for materials written by
other users (PLUS). On this writer’s computer, these directories happen to be

. sysdir
STATA: C:\Program Files\Statal9\
BASE: C:\Program Files\Statal2\ado\base\
SITE: C:\Program Files\Statal9\ado\site\
PLUS: C:\ado\plus\

PERSONAL: C:\ado\personal\

OLDPLACE: C:\ado\

Place calendars that you write into ., PERSONAL, or SITE. Calendars you obtain from others using
net or ssc will be placed by those commands into PLUS. See [P] sysdir, [R] net, and [R] ssc.

How to debug stbcal-files

Stbcal-files are loaded automatically as they are needed, and because this can happen anytime, even
at inopportune moments, no output is produced. If there are errors in the file, no mention is made of the
problem, and thereafter Stata simply acts as if it had never found the file, which is to say, variables with
%tbcalname formats are displayed in %g format.

Datetime business calendars creation — Business calendars creation 138

You can tell Stata to load a calendar file right now and to show you the output, including error mes-
sages. Type

. bcal load calname

It does not matter where calname.stbcal is stored, Stata will find it. It does not matter whether
Stata has already loaded calname . stbcal, either secretly or because you previously instructed the file
be loaded. It will be reloaded, you will see what you wrote, and you will see any error messages.

Ideas for calendars that may not occur to you

Business calendars obviously are not restricted to businesses, and neither do they have to be restricted
to days.

Say you have weekly data and want to create a calendar that contains only Mondays. You could code

begin mondays. stbcal
version 19.5 // (or version 19 if you do not have StataNow)

purpose "Mondays only"
range 04jan1960 06jan2020
centerdate 04jan1960

omitdow (Tu We Th Fr Sa Su)

end mondays.stbcal

Say you have semimonthly data and want to include the Ist and 15th of every month. You could code

begin smnth.stbcal
version 19.5 // (or version 19 if you do not have StataNow)

purpose "Semimonthly"
range 01jan1960 15dec2020
centerdate 01jan1960

omit date 2jan*
omit date 3jan*

omit date 14janx*
omit date 16janx*

omit date 31jan*
omit date 2feb*

end smnth.stbcal

Forgive the ellipses, but this file will be long. Even so, you have to create it only once.

As a final example, say that you just want Stata’s %td dates, but you wish they were centered on
01jan1970 rather than on 01jan1960. You could code

begin rectr.stbcal
version 19.5 // (or version 19 if you do not have StataNow)

Purpose "/td centered on 01jan1970"
range 01jan1800 31dec2999
centerdate 01jan1970

end rectr.stbcal

Datetime business calendars creation — Business calendars creation 139

Also see

[D] beal — Business calendar file manipulation
[D] Datetime business calendars — Business calendars

[D] Datetime — Date and time values and variables

Datetime conversion — Converting strings to Stata dates

Description Quick start Syntax Remarks and examples
Reference Also see

Description

These functions convert dates and times recorded as strings to Stata dates. Stata dates are numbers
that can be formatted so that they look like the dates you are familiar with. See [D] Datetime for an
introduction to Stata’s date and time features.

Quick start

Convert strdatel, with dates such as "Tue January 25, 2013", to a numerically encoded Stata date
variable, ignoring the day of the week from the string

generate numvarl = date(strdatel, "#MDY")

Convert strdate2, with dates in the 2000s such as "01-25-13", to a Stata date variable
generate numvar?2 = date(strdate2, "MD20Y")

Convert strdate3, with dates such as "15Jan05", to a Stata date variable; expand the two-digit years
to the largest year that does not exceed 2006

generate numvar3 = date(strdate3, "DMY", 2006)

Convert strtime, with times such as "11:15 am", to a numerically encoded Stata datetime/c variable
generate double numvar4 = clock(strtime, "hm")

140

Datetime conversion — Converting strings to Stata dates 141

Syntax
The string-to-numeric date and time conversion functions are
Desired Stata date type String-to-numeric conversion function
datetime/c clock(str, mask [, topyear])
datetime/C Clock(str, mask [, topyear])
date date(str, mask [, topyear])
weekly date weekly (str, mask [, topyear])
monthly date monthly (str, mask [, topyear])
quarterly date quarterly(str, mask [, topyear])
half-yearly date halfyearly (str, mask |, topyear])
yearly date yearly (str, mask [, topyear])

str is the string value to be converted.

mask specifies the order of the date and time components and is a string composed of a sequence of codes (see the next table).

topyear is described in Working with two-digit years, below.

Code Meaning

M month

D day within month

Y 4-digit year

19Y 2-digit year to be interpreted as 19xx
20Y 2-digit year to be interpreted as 20xx
W week (weekly () only)

Q quarter (quarterly () only)

H half-year (halfyearly () only)

h hour of day

m minutes within hour

s seconds within minute

ignore one element

Blanks are also allowed in mask, which can make the mask easier to read, but they otherwise have no

significance.

Examples of masks include the following:

n MDY n
"MD19Y"

"MDYhms"
"MDY hms"
"MDY#hms"

str contains month, day, and year, in that order.

means the same as "MDY", except that st may contain two-digit years, and when it
does, they are to be treated as if they are 4-digit years beginning with 19.

str contains month, day, year, hour, minute, and second, in that order.
means the same as "MDYhms"; the blank has no meaning.

means that one element between the year and the hour is to be ignored. For exam-
ple, str contains values like "1-1-2010 at 15:23:17" or values like "1-1-2010
at 3:23:17 PM".

Datetime conversion — Converting strings to Stata dates 142

Remarks and examples

Remarks are presented under the following headings:

Introduction

Specifying the mask

How the conversion functions interpret the mask
Working with two-digit years

Working with incomplete dates and times
Converting run-together dates, such as 20060125
Valid times

The clock() and Clock() functions

Why there are two datetime encodings

Advice on using datetime/c and datetime/C
Determining when leap seconds occurred

The date() function

The other conversion functions

Introduction

The conversion functions are used to convert string dates, such as 08/12/06, 12-8-2006, 12 Aug 06,
12aug2006 14:23, and 12 aug06 2:23 pm, to Stata dates. The conversion functions are typically used after
importing or reading data. You read the date information into string variables and then these functions
convert the string into something Stata can use, namely, a numeric Stata date variable.

You use generate to create the Stata date variables. The conversion functions are used in the expres-
sions, such as

. generate double time_admitted = clock(time_admitted_str, "DMYhms")
. format time_admitted %tc

. generate date_hired = date(date_hired_str, "MDY")
. format date_hired %td

Every conversion function—such as clock () and date () above—requires these two arguments:
1. str specifying the string to be converted; and
2. mask specifying the order in which the date and time components appear in str.

Notes:

1. You choose the conversion function clock(), Clock (), date(), etc., according to the type of
Stata date you want returned.

2. You specify the mask according to the contents of str.

Usually, you will want to convert st containing 2006.08.13 14:23 to a Stata datetime/c or datetime/C
value and convert s# containing 2006.08.13 to a Stata date. If you wish, however, it can be the other way
around. In that case, the detailed string would convert to a Stata date corresponding to just the date part,
13aug2006, and the less detailed string would convert to a Stata datetime corresponding to 13aug2006
00:00:00.000.

Datetime conversion — Converting strings to Stata dates 143

Specifying the mask

An argument mask is a string specifying the order of the date and time components in str. Examples
of string dates and the mask required to convert them include the following:

str

Corresponding mask

01dec2006 14:22
01-12-2006 14.22

1dec2006 14:22
1-12-2006 14:22

01dec06 14:22
01-12-06 14.22

December 1, 2006 14:22

2006 Dec 01 14:22
2006-12-01 14:22

2006-12-01 14:22:43
2006-12-01 14:22:43.2
2006-12-01 14:22:43.21
2006-12-01 14:22:43.213

2006-12-01 2:22:43.213 pm

2006-12-01 2:22:43.213 pm.
2006-12-01 2:22:43.213 p.m.
2006-12-01 2:22:43.213 PM.

20061201 1422

14:22
2006-12-01

Fri Dec 01 14:22:43 CST 2006

"DMYhm"
IIDMY'hInll

IIDMlel
"DMYhm"

"DM20Yhm"
"DM20Yhm"

"MDYhm"

IIYMDIHH"
IIYMDmll

"YMDhms"
"YMDhms"
"YMDhms"
"YMDhms"

"YMDhms" (see note 1)
"YMDhms"
"YMDhms"
"YMDhms"

"YMDhm"

"hm" (see note 2)
IIYMD n

"#MDhms#Y"

Notes:

1. Nothing special needs to be included in mask to process a.m. and p.m. markers. When you
include code h, the conversion functions automatically watch for meridian markers.

2. You specify the mask according to what is contained in str. If that is a subset of what
the selected Stata date type could record, the remaining elements are set to their defaults.
clock("14:22", "hm") produces 01jan1960 14:22:00 and clock("2006-12-01", "YMD")
produces 01dec2006 00:00:00. date ("jan 2006", "MY") produces 01jan2006.

mask may include spaces so that it is more readable; the spaces have no meaning. Thus, you can type

. generate double admit = clock(admitstr, "#MDhms#Y")

or type

. generate double admit = clock(admitstr, "# MD hms # Y")

and which one you use makes no difference.

Datetime conversion — Converting strings to Stata dates 144

How the conversion functions interpret the mask

The conversion functions apply the following rules when interpreting str:

1. For each string date to be converted, remove all punctuation except for the period separating
seconds from tenths, hundredths, and thousandths of seconds. Replace removed punctuation
with a space.

2. Insert a space in the string everywhere that a letter is next to a number, or vice versa.
3. Interpret the resulting elements according to mask.
For instance, consider the string
01dec2006 14:22
Under rule 1, the string becomes
01dec2006 14 22
Under rule 2, the string becomes
01 dec 2006 14 22

Finally, the conversion functions apply rule 3. If the mask is "DMYhm", then the functions interpret “01”
as the day, “dec” as the month, and so on.

Or consider the string
Wed Dec 01 14:22:43 CST 2006
Under rule 1, the string becomes
Wed Dec 01 14 22 43 CST 2006

Applying rule 2 does not change the string. Now rule 3 is applied. If the mask is "#MDhms#Y", the
conversion function skips “Wed”, interprets “Dec” as the month, and so on.

The # code serves a second purpose. If it appears at the end of the mask, it specifies that the rest of
string is to be ignored. Consider converting the string

Wed Dec 01 14 22 43 CST 2006 patient 42

The mask code that previously worked when patient 42 was not part of the string, "#MDhms#Y", will
result in a missing value in this case. The functions are careful in the conversion, and if the whole string
is not used, they return missing. If you end the mask in #, however, the functions ignore the rest of the
string. Changing the mask from "#MDhms#Y" to "#MDhms#Y#" will produce the desired result.

Working with two-digit years

Consider converting the string 01-12-06 14:22, which is to be interpreted as 01dec2006 14:22:00, to
a Stata datetime value. The conversion functions provide two ways of doing this.

The first is to specify the assumed prefix in the mask. The string 01-12-06 14:22 can be read by
specifying the mask "DM20Yhm". If we instead wanted to interpret the year as 1906, we would specify
the mask "DM19Yhm". We could even interpret the year as 1806 by specifying "DM18Yhm".

What if our data include 01-12-06 14:22 and include 15-06-98 11:01? We want to interpret the first
year as being in 2006 and the second year as being in 1998. That is the purpose of the optional argument
topyear:

clock(string, mask | , topyear])

Datetime conversion — Converting strings to Stata dates 145

When you specify topyear, you are stating that when years in string are two digits, the full year is to
be obtained by finding the largest year that does not exceed topyear. Thus, you could code

. generate double timestamp = clock(timestr, "DMYhm", 2020)

The two-digit year 06 would be interpreted as 2006 because 2006 does not exceed 2020. The two-digit
year 98 would be interpreted as 1998 because 2098 does exceed 2020.

Working with incomplete dates and times

The conversion functions do not require that every component of the date and time be specified.
Converting 2006-12-01 with mask "YMD" results in 01dec2006 00:00:00.
Converting 14:22 with mask "hm" results in 01jan1960 14:22:00.
Converting 11-2006 with mask "MY" results in 01nov2006 00:00:00.
The default for a component, if not specified in the mask, is
Code Default (if not specified)

M 01
D 01
Y 1960
h
m
s

00
00
00

Thus, if you have data recording 14:22, meaning a duration of 14 hours and 22 minutes or the time
14:22 each day, you can convert it with clock (str, "hm").

Converting run-together dates, such as 20060125

The clock (), Clock(), and date () conversion functions will convert dates and times that are run
together, such as 20060125, 060125, and 20060125110215 (which is 25jan2006 11:02:15). You do not
have to do anything special to convert them:

. display %d date("20060125", "YMD")
25;jan2006

. display %td date("060125", "20YMD")
25jan2006

. display %tc clock("20060125110215", "YMDhms")
25jan2006 11:02:15

However, the weekly (), monthly (), quarterly (), and halfyearly () functions will convert only
dates that are run together if there is a combination of letters and numbers. For example,
. display %tm monthly("2020m1", "YM")
2020m1

. display %tq quarterly("2020q2", "YQ")
2020q1

If your string consists of numbers only, such as 202001, you will need to insert a space or punctuation
between the year and the other component before using one of these functions.

Datetime conversion — Converting strings to Stata dates 146

In a data context, you could type
. generate startdate = date(startdatestr, "YMD")

. generate double starttime = clock(starttimestr, "YMDhms")

Remember to read the original date into a string. If you mistakenly read the date as numeric, the best
advice is to read the date again. Numbers such as 20060125 and 20060125110215 will be rounded unless
they are stored as doubles.

If you mistakenly read the variables as numeric and have verified that rounding did not occur, you
can convert the variable from numeric to string by using the string() function, which comes in one-
and two-argument forms. You will need the two-argument form:

. generate str startdatestr = string(startdatedouble, "%10.0g")

. generate str starttimestr = string(starttimedouble, "%16.0g")

If you omitted the format, string() would produce 2.01e4-07 for 20060125 and 2.01e+13 for
20060125110215. The format we used had a width that was two characters larger than the length of
the integer number, although using a too-wide format does no harm.

Valid times
An invalid time is 27:62:90. If you try to convert 27:62:90 to a datetime value, you will obtain a
missing value.
Another invalid time is 24:00:00. A correct time would be 00:00:00 of the next day.

In hh:mm:ss, the requirements are 0 < ik < 24,0 < mm < 60,and 0 < 55 < 60, although sometimes
60 is allowed. The encoding 31dec2005 23:59:60 is an invalid datetime/c but a valid datetime/C. The
encoding 31dec2005 23:59:60 includes an inserted leap second.

Invalid in both datetime encodings is 30dec2005 23:59:60. Not including a leap second as in
30dec2005 23:59:60 would also be an invalid encoding. A correct datetime would be 31dec2005
00:00:00.

The clock() and Clock() functions

Stata provides two separate datetime encodings that we call datetime/c and datetime/C and that others
would call “times assuming 86,400 seconds per day” and “times adjusted for leap seconds” or, equiva-
lently, Coordinated Universal Time (UTC).

The syntax of the two functions is the same:
clock(str, mask [, topyear])
Clock(str, mask [, topyear|)

Function Clock () is nearly identical to function clock (), except that Clock () returns a datetime/C
value rather than a datetime/c value. For instance,

Noon of 23n0v2010 = 1,606,132,800,000 in datetime/c
= 1,606,132,824,000 in datetime/C

They differ because 24 seconds have been inserted into datetime/C between 01jan1960 and 23n0v2010.
Correspondingly, Clock() understands times in which there are leap seconds, such as 30jun1997
23:59:60. clock() would consider 30jun1997 23:59:60 an invalid time and so return a missing value.

Datetime conversion — Converting strings to Stata dates 147

Why there are two datetime encodings

Stata provides two different datetime encodings, datetime/c and datetime/C.

The datetime/c encoding assumes that there are 24 x 60 x 60 x 1000 ms per day, just as an atomic
clock does. Atomic clocks count oscillations between the nucleus and the electrons of an atom and thus
provide a measurement of the real passage of time.

Time of day measurements have historically been based on astronomical observation, which is a fancy
way of saying that the measurements are based on looking at the sun. The sun should be at its highest
point at noon, right? So however you might have kept track of time—by falling grains of sand or a
wound-up spring—you would have periodically reset your clock and then gone about your business. In
olden times, it was understood that the 60 seconds per minute, 60 minutes per hour, and 24 hours per
day were theoretical goals that no mechanical device could reproduce accurately. These days, we have
more formal definitions for measurements of time. One second is 9,192,631,770 periods of the radiation
corresponding to the transition between two levels of the ground state of cesium 133. Obviously, we
have better equipment than the ancients, so problem solved, right? Wrong. There are two problems: the
formal definition of a second is just a little too short to use for accurately calculating the length of a day,
and the Earth’s rotation is slowing down.

Thus, since 1972, leap seconds have been added to atomic clocks once or twice a year to keep time
measurements in synchronization with Earth’s rotation. Unlike leap years, however, there is no formula
for predicting when leap seconds will occur. Earth may be on average slowing down, but there is a large
random component to that. Therefore, leap seconds are determined by committee and announced six
months before they are inserted. Leap seconds are added, if necessary, on the end of the day on June 30
and December 31 of the year. The exact times are designated as 23:59:60.

Unadjusted atomic clocks may accurately mark the passage of real time, but you need to understand
that leap seconds are every bit as real as every other second of the year. Once a leap second is inserted,
it ticks just like any other second and real things can happen during that tick.

You may have heard of terms such as Greenwich Mean Time (GMT) and UTC.
GMT, based on astronomical observation, has been replaced by UTC.

UTC is measured by atomic clocks and is occasionally corrected for leap seconds. UTC is derived
from two other times, Universal Time 1 (UT1) and International Atomic Time (TAI). UT1 is the mean
solar time with which UTC is kept in sync by the occasional addition of a leap second. TAI is the atomic
time on which UTC is based. TAI is a statistical combination of various atomic chronometers, and even it
has not ticked uniformly over its history; see http://www.ucolick.org/~sla/leapsecs/timescales.html and
especially http://www.ucolick.org/~sla/leapsecs/dutc.htmI#TAL.

UNK is our term for the time standard most people use. UNK stands for unknown or unknowing. UNK
is based on a recent time observation, probably UTC, and it just assumes that there are 86,400 seconds
per day after that.

The UNK standard is adequate for many purposes, and when using it you will want to use datetime/c
rather than the leap second—adjusted datetime/C encoding. If you are using computer-timestamped data,
however, you need to find out whether the timestamping system accounted for leap-second adjustment.
Problems can arise even if you do not care about losing or gaining a second here and there.

For instance, you may import from other systems timestamp values recorded in the number of mil-
liseconds that have passed since some agreed-upon date. You may do this, but if you choose the wrong
encoding scheme (choose datetime/c when you should choose datetime/C, or vice versa), more recent
times will be off by 24 seconds.

http://www.ucolick.org/~sla/leapsecs/timescales.html
http://www.ucolick.org/~sla/leapsecs/dutc.html#TAI

Datetime conversion — Converting strings to Stata dates 148

To avoid such problems, you may decide to import and export data as strings, such as Fri Aug 18
14:05:36 cDT 2010. This method has advantages, but for datetime/C (UTC) encoding, times such as
23:59:60 are possible. Some systems will refuse to decode such times.

Stata refuses to decode 23:59:60 in the datetime/c encoding (function clock()) and accepts it with
datetime/C (function Clock()). When datetime/C function Clock() sees a time with a 60th second,
Clock() verifies that the time is one of the official leap seconds. Thus, when converting from printable
forms, try assuming datetime/c, and check the result for missing values. If there are none, then you can
assume your use of datetime/c was valid. However, if there are missing values and they are due to leap
seconds and not some other error, you must use datetime/C Clock () to convert the string value. After
that, if you still want to work in datetime/c units, use function cofC() to convert datetime/C values to
datetime/c.

If precision matters, the best way to process datetime/C data is simply to treat them that way. The
inconvenience is that you cannot assume that there are 86,400 seconds per day. To obtain the duration
between dates, you must subtract the two time values involved. The other difficulty has to do with dealing
with dates in the future. Under the datetime/C (UTC) encoding, there is no set value for any date more
than six months in the future. Below is a summary of advice.

Advice on using datetime/c and datetime/C

Stata provides two datetime encodings:
1. datetime/C, also known as UTC, which accounts for leap seconds; and
2. datetime/c, which ignores leap seconds (it assumes 86,400 seconds/day).

Systems vary in how they treat time variables. SAS ignores leap seconds. Oracle includes them. Stata
handles either situation. Here is our advice:

o Ifyou obtain data from a system that accounts for leap seconds, import using Stata’s datetime/C
encoding.

a. Ifyou later need to export data to a system that does not account for leap seconds, use
Stata’s cofC() function to convert time values before exporting.

b. If you intend to tsset the time variable and the analysis will be at the second level
or finer, just tsset the datetime/C variable, specifying the appropriate delta() if
necessary—for example, delta(1000) for seconds.

c. If you intend to tsset the time variable and the analysis will be coarser than the
second level (minute, hour, etc.), create a datetime/c variable from the datetime/C
variable (generate double tctime = cofC(tCtime)) and tsset that, specifying the
appropriate delta () if necessary. You must do that because in a datetime/C variable,
there are not necessarily 60 seconds in a minute; some minutes have 61 seconds.

e If you obtain data from a system that ignores leap seconds, use Stata’s datetime/c encoding.

a. If you later need to export data to a system that does account for leap seconds, use
Stata’s Cofc () function to convert time values before exporting.

b. If you intend to tsset the time variable, just tsset it, specifying the appropriate
delta().

Datetime conversion — Converting strings to Stata dates 149

Some users prefer always to use Stata’s datetime/c because %tc values are a little easier to work with.
You can always use datetime/c if

e you do not mind having up to 1 second of error; and

e you do not import or export numerical values (clock ticks) from other systems that are using
leap seconds, because doing so could introduce nearly 30 seconds of error.

Remember these two things if you use datetime/C variables:

1. The number of seconds between two dates is a function of when the dates occurred. Five days
from one date is not simply a matter of adding 5 x 24 x 60 x 60 x 1000 ms. You might need to
add another 1,000 ms. Three hundred sixty-five days from now might require adding 1,000 or
2,000 ms. The longer the span, the more you might have to add. The best way to add durations
to datetime/C variables is to extract the components, add to them, and then reconstruct from
the numerical components.

2. You cannot accurately predict datetimes more than six months into the future. We do not know
what the datetime/C value of 25dec2026 00:00:00 will be, because every year along the way,
the International Earth Rotation Reference Systems Service (IERS) will twice announce whether
a leap second will be inserted.

You can help alleviate these inconveniences. Face west and throw rocks. The benefit will be transitory
only if the rocks land back on Earth, so you need to throw them really hard. We know what you are
thinking, but this does not need to be a coordinated effort.

Determining when leap seconds occurred

Stata system file leapseconds.maint lists the dates on which leap seconds occurred. The file is
updated periodically (see [R] update; the file is updated when you update all), and Stata’s datetime/C
functions access the file to know when leap seconds occurred.

You can access it, too. To view the file, type

. viewsource leapseconds.maint

The date() function
The syntax of the date () function is
date (string, mask [, topyear|)

The date () function is identical to clock(), except that date () returns a Stata date value rather
than a Stata datetime value. The date () function is the same as dofc(clock()).

daily() is a synonym for date ().

Datetime conversion — Converting strings to Stata dates 150

The other conversion functions

The other conversion functions are

Stata date type Conversion function

weekly date weekly (str, mask [, topyear])
monthly date monthly (str, mask [, topyear])
quarterly date quarterly(str, mask [, topyear])
half-yearly date halfyearly (str, mask [, topyear])

str is the value to be converted.
mask specifies the order of the components.

topyear is described in Working with two-digit years, above.

These functions are rarely used because data seldom arrive in these formats.

Each of the functions converts a pair of numbers: weekly() converts a year and a week number
(1-52); monthly () converts a year and a month number (1-12); quarterly() converts a year and a
quarter number (1—4); and halfyearly () translates a year and a half number (1-2).

The masks allowed are far more limited than the masks for clock (), Clock(), and date():

Code Meaning

Y 4-digit year

19Y 2-digit year to be interpreted as 19xx
20Y 2-digit year to be interpreted as 20xx

W week number (weekly () only)

M month number (monthly () only)

Q quarter number (quarterly () only)

H half-year number (halfyearly() only)

The pair of numbers to be converted must be separated by a space or punctuation. No extra characters are allowed.

Reference

Rajbhandari, A. 2015. A tour of datetime in Stata. The Stata Blog: Not Elsewhere Classified. https://blog.stata.com/2015/
12/17/a-tour-of-datetime-in-stata-i/.

Also see

D] Datetime — Date and time values and variables

[
[D] Datetime business calendars — Business calendars
[D] Datetime display formats — Display formats for dates and times
[D] Datetime durations — Obtaining and working with durations

[
[

D] Datetime relative dates — Obtaining dates and date information from other dates

[t e e i W R |

D] Datetime values from other software — Date and time conversion from other software

https://blog.stata.com/2015/12/17/a-tour-of-datetime-in-stata-i/
https://blog.stata.com/2015/12/17/a-tour-of-datetime-in-stata-i/

Datetime display formats — Display formats for dates and times

Description Quick start Syntax Remarks and examples Also see

Description

Stata stores dates and times numerically in one of eight units. The value of a Stata date might be
18,282 or even 1,579,619,730,000. Place the appropriate format on it, and the 18,282 is displayed as
20jan2010 (%td). The 1,579,619,730,000 is displayed as 20jan2010 15:15:30 (%tc).

If you specify additional format characters, you can change how the result is displayed. Rather than
20jan2010, you could change it to 2010.01.20; January 20, 2010; or 1/20/10. Rather than 20jan2010
15:15:30, you could change it to 2010.01.20 15:15; January 20, 2010 3:15 pm; or Wed Jan 20 15:15:30

2010.

See [D] Datetime for an introduction to Stata’s dates and times.

Quick start

Format daily dates stored in datevar to display as 15mar2005
format datevar %td

Format daily dates stored in datevar to display as 3/15/05
format datevar %tdnn/DD/YY

Format daily dates stored in datevar to display as Tue Mar. 15
format datevar %tdDay_Mon._DD

Format dates and times stored in timevar to display as 15mar2005 14:30:00

format timevar %tc

Format dates and times stored in timevar to display as 14:30

format timevar %tcHH:MM

Format dates and times stored in timevar to display as 2:30 PM

format timevar %tchh:mm_AM

151

Datetime display formats — Display formats for dates and times 152

Syntax
The formats for displaying Stata dates and times are

Stata date type Display format
datetime/c tc|details |
datetime/C %tC| details |
date %td[details |
weekly date it | details |
monthly date tm[details |
quarterly date tq| details |
half-yearly date th[details |

[]

yearly date %ty | details

The optional details allows you to control how results appear and is composed of a sequence of the

following codes:

Code Meaning Output

cC century-1 01-99

cc century-1 1-99

YY 2-digit year 00-99

vy 2-digit year 0-99

JJJ day within year 001-366

i day within year 1-366

Mon month Jan, Feb, ..., Dec

Month month January, February, ..., December
mon month jan, feb, ..., dec

month month january, february, ..., december
NN month 01-12

nn month 1-12

DD day within month 01-31

dd day within month 1-31

DAYNAME day of week Sunday, Monday, ... (aligned)
Dayname day of week Sunday, Monday, ... (unaligned)
Day day of week Sun, Mon, ...

Da day of week Su, Mo, ...

day day of week sun, mon, ...

da day of week su, mo, ...

Datetime display formats — Display formats for dates and times 153

Ww
wW

HH
Hh
hH
hh

MM

SS
ss

.88
.SSS

a.m.
AM
AM.

half
quarter
week
week

hour
hour
hour
hour

minute
minute

second
second
tenths
hundredths
thousandths

show am or pm
show a.m. or p.m.
show AM or PM

show A.M. or PM.

display period
display comma
display colon
display hyphen
display space
display slash
display backslash
display character

separator (see note)

1-2
1-4
01-52
1-52

00-23
00-12
0-23
0-12

00-59
0-59

00-60 (sic, due to leap seconds)
0—60 (sic, due to leap seconds)

.0-.9
.00—.99
.000-.999
am or pm
a.m. or p.m.
AM or PM
A.M. or PM.
/

\

c

Note: + displays nothing; it may be used to separate one code from the next to make the
format more readable. + is never necessary. For instance, %tchh:MM+am and %tchh : MMam
have the same meaning, as does %tc+hh+: +MM+am.

Datetime display formats — Display formats for dates and times 154

When details is not specified, it is equivalent to specifying

Format Implied (fully specified) format
%tC %tCDDmonCCYY_HH:MM: SS

yAde %tcDDmonCCYY_HH:MM: SS

%td %tdDDmonCCYY

%tw %twCCYY 'www

%tm %tmCCYY 'mnn

ntq %tqCCYY!qq

%th %thCCYY!hh

Wty %htyCCYY

That is, typing
. format mytimevar Jtc
has the same effect as typing

. format mytimevar %tcDDmonCCYY_HH:MM:SS

Format %tcDDmonCCYY_HH:MM: SS is interpreted as

) t c DDmonCCYY_HH:MM: SS
| | | |
all formats itisa variable formatting codes
start with % datetime format coded in specify how to
milliseconds display value

Remarks and examples

Remarks are presented under the following headings:

Specifying display formats
Times are truncated, not rounded, when displayed

Specifying display formats

Rather than using the default format 20jan2010, you could display the daily date in one of these
formats:

2010.01.20
January 20, 2010
1/20/10

Likewise, rather than displaying the datetime/c variable in the default format 20jan2010 15:15:30,
you could display it in one of these formats:

2010.01.20 15:15
January 20, 2010 3:15 pm
Wed Jan 20 15:15:30 2010

Datetime display formats — Display formats for dates and times 155

Here is how to do it:

1.

2010.01.20
format mytdvar %tdCCYY.NN.DD

January 20, 2010
format mytdvar J;tdMonth_dd, _CCYY

1/20/10
format mytdvar Ytdnn/dd/YY

2010.01.20 15:15
format mytcvar ,tcCCYY .NN.DD_HH: MM

January 20,2010 3:15 pm
format mytcvar fytcMonth_dd, _CCYY_hh:MM_am
Code am at the end indicates that am or pm should be displayed, as appropriate.

Wed Jan 20 15:15:30 2010
format mytcvar %tcDay_Mon_DD_HH:MM:SS_CCYY

In examples 1 to 3, the formats each begin with %td, and in examples 4 to 6, the formats begin with
%tc. It is important that you specify the opening correctly—namely, as % + t + third_character. The
third character indicates the particular encoding type, which is to say, how the numeric value is to be
interpreted. You specify %tc... for datetime/c variables, %tC... for datetime/C, %td... for date, and so

on.

The default format for datetime/c and datetime/C variables omits the fraction of seconds; 15:15:30.000
is displayed as 15:15:30. If you wish to see the fractional seconds, specify the format

or

%tcDDmonCCYY_HH:MM:SS.sss

%tCDDmonCCYY_HH:MM:SS.sss

as appropriate.

Times are truncated, not rounded, when displayed

Consider the time 11:32:59.999. Other, less precise, ways of writing that time are

11:32:59.99
11:32:59.9
11:32:59
11:32

That is, when you suppress the display of more-detailed components of the time, the parts that are
displayed are not rounded. Stata displays time just as a digital clock would; the time is 11:32 right up
until the instant that it becomes 11:33.

Datetime display formats — Display formats for dates and times 156

Also see

[D] Datetime — Date and time values and variables

[D] Datetime business calendars — Business calendars
[D] Datetime conversion — Converting strings to Stata dates
[D] Datetime durations — Obtaining and working with durations
[D] Datetime relative dates — Obtaining dates and date information from other dates

Datetime values from other software — Date and time conversion from other software

—_ = = = = =

[D

Datetime durations — Obtaining and working with durations

Description Quick start Syntax Remarks and examples Reference Also see

Description

This entry describes functions that calculate durations, such as the number of years between two dates
(for example, a person’s age). These functions account for leap years and leap days and produce results
that are more consistent than simply taking arithmetic differences of numerical dates and converting to
another unit.

This entry also describes functions that convert durations from one unit (for example, milliseconds)
to another (for example, hours).

Quick start

Calculate age of a subject in integer years on the date of a survey based on a numerically encoded Stata
date dob that gives the subject’s date of birth and a numerically encoded Stata date date_of _survey

generate subject_age = age(dob, date_of_survey)

Same as above, but calculate the age as a noninteger; that is, include the fractional part
generate subject_fage = age_frac(dob, date_of_survey)
Calculate age on date d for persons born on 29feb as having their birthday on 28feb in nonleap years
(rather than the default of O1mar)
generate celebrate = age(dob, d, "28feb")
Calculate the difference in number of months, rounded down to an integer, between two Stata dates, d1
and d2
generate diff_months = datediff (dl, d2, "month")

Same as above, but include the fractional part of the difference
generate diff_fmonths = datediff_frac(di, 42, "month")
Calculate the difference in number of hours, rounded down to an integer, between two Stata datetime/c
variables, t1 and t2
generate diff_hours = clockdiff (t1, t2, "hour")

Same as above, but include the fractional part of the difference
generate diff_fhours = clockdiff_frac(tl, t2, "hour")

Same as above, but use a conversion function to calculate hours with a fractional part
generate diff_fhours2 = hours(t2 - t1)

Calculate the difference in number of minutes, rounded down to an integer, between two Stata datetime/C
variables, tvar1 and tvar2

generate diff_minutes = Clockdiff (tvarl, tvar2, "minute")

Calculate the number of days since the previous Monday relative to Stata date d

generate ndays = dayssinceweekday(d, "Monday")

157

Datetime durations — Obtaining and working with durations 158

Syntax

Syntax is presented under the following headings:

Functions for calculating durations
Functions for converting units of a duration

Functions for calculating durations

Description

Function

Value returned

age
age with fraction

datetime/C difference
datetime/c difference

datetime/C difference
with fraction

datetime/c difference
with fraction

date difference

date difference with
fraction

days since previous
day of week

days until next
day of week

age (€gpon»€q| »Sn)
age_frac(eynos,€4] 50])
Clockdiff (e;q, €095 St)
clockdiff (e, .1, €095 5:,)

Clockdiff_frac(e,ci,€i005Sm,)
clockdiff_frac(e,.;,€;.9,5.,)

datediff (e41,€40, 54, »Sn])
datediff_frac(ey,€405Saul >S5 |)

dayssinceweekday (e, ,d)
or dayssincedow(e,,d)

daysuntilweekday(e;,d)
or daysuntildow(e,,d)

years rounded down to an integer
years with fractional part

integer (rounded down)

integer (rounded down)

floating point

floating point

integer (rounded down)
floating point

integers 1to 7

integers 1to 7

€4 €dpons €d1» and €4, are Stata dates.
e;c and e, are Stata datetime/C values.
e,.1 and e, are Stata datetime/c values.
s,,; 1s a string specifying nonleap-year birthdays or anniversaries of 29feb and may be
"Olmar", "imar", "mar01", or "marl" (the default); or
"28feb" or "feb28" (case insensitive).
Sy, 18 a string specifying time units:
"day" or "d" for day;
"hour" or "h" for hour;
"minute", "min", or "m" for minute;
"second", "sec", or "s" for second; or

"millisecond" or "ms" for millisecond (case insensitive).

S4, 18 @ string specifying date units:
"day" or "d" for day;
"month", "mon", or "m" for month; or
"year" or "y" for year (case insensitive).

d is a numeric day of week (0=Sunday, 1=Monday, .

.., 6=Saturday); alternatively,

it is a string specifying the first two or more letters of the day of week (case insensitive).

Datetime durations — Obtaining and working with durations 159

Notes:

1. The string s,,; specifying nonleap-year birthdays or anniversaries is an optional
argument. It rarely needs to be specified. See example 3 below.

2. When ey < egp05, a8 (€gpop»€q[»Sny |) and age_frac(e o, »€q] » 5, |) return
missing (.).

3. Clockdiff (eyoq,€s09554,) = —Clockdiff (e oo ,€i01s54)-
clockdiff (), Clockdiff_frac(), clockdiff_frac(), datediff (), and
datediff_frac() have the same anticommutative property.

Functions for converting units of a duration

Desired conversion Function Value returned
milliseconds to hours hours (ms) ms /(60 x 60 x 1000)
milliseconds to minutes ~ minutes (ms) ms /(60 x 1000)
milliseconds to seconds ~ seconds (ms) ms /1000

hours to milliseconds msofhours (4) * h x 60 x 60 x 1000
minutes to milliseconds msofminutes (m)* m x 60 x 1000
seconds to milliseconds msofseconds (s) * s x 1000

* Stata datetime values are in milliseconds and must be stored as doubles. When using millisecond
results to add to or subtract from a Stata datetime, store the results as doubles.

Remarks and examples

Remarks are presented under the following headings:

Calculating ages and differences of dates
Calculating differences of datetimes

We assume you have read [D] Datetime and are familiar with how Stata stores dates and datetimes.
String dates and times must be converted into numeric values to become Stata dates and datetimes.
Stata date and time values are durations (positive or negative) from 01jan1960. Stata date values record
the number of days from 01jan1960. Stata datetime/c values record the number of milliseconds from
01jan1960 00:00:00. Stata datetime/C is the same as datetime/c, except that it accounts for leap seconds
and encodes Coordinated Universal Time (UTC).

There are other types of Stata date and time values, ones for weeks, months, quarters, half years, and
years, but the functions described here are intended for use with daily dates or datetimes.

Calculating ages and differences of dates

The age () function calculates age just as one would expect. Typing

. generate subject_age = age(date_of_birth, current_date)

produces integers that are a person’s age in years on current_date given birthdate date_of_birth.
The variables date_of_birth and current_date must be Stata dates.

Datetime durations — Obtaining and working with durations 160

The arguments of age () need not be variables, but they must be Stata date values, which are numeric.
To get Stata date values for literal dates, we can use the date pseudofunction td () and use its results as
arguments to age (). For example,

. display age(td(05feb1927), td(24may2006))
79

shows that an individual born on 05feb1927 was 79 years old on 24may2006.

age_frac() returns age including the fractional part. For example, let’s use age_frac() with the
dates we specified above:

. display age_frac(td(05feb1927), td(24may2006))
79.29589

The datediff () and datediff_frac() functions produce results in units of years, months, or days.
For example, to determine the number of months between 05feb1927 and 24may2006, first as an integer
(rounded down) and as a number including the fractional part, we type

. display datediff (td(05feb1927), td(24may2006), "month")
951

. display datediff_frac(td(05feb1927), td(24may2006), "month")
951.6129

The optional last argument, s,,;, for age (), age_frac(), datediff (), and datediff_frac() was
not specified in any of the above examples. It applies only to a date of birth (or starting date) on 29feb
when the ending date is not in a leap year. The argument controls whether to use O1mar (the default) or
28feb as the birthday (or anniversary) in nonleap years. Setting this argument is important only when the
data you are using have a set rule for determining the age of persons born on 29feb. For example, you
might have data on the dates when people first get their driver’s licenses. You would want the argument
to match the legal rule for the data. See example 3.

The functions age() and age_frac() are based on datediff() and datediff_frac(),
respectively,
age(egpo»€q»5n;) = datediff (e,,,,,e4,"year",s,;)

and
age_frac(ey,op,€455,) = datediff_frac(ey .4, "year",s,;)

when e; > €;,,,- When e; < e, age) and age_frac () return missing (.).

datediff(...,"year",...) and datediff_frac(...,"year",...) calculate the number of years
between two dates just as one would expect. The only wrinkles are leap days and leap years. See Methods
and formulas in [FN] Date and time functions for details.

The usefulness of these functions is solely in the way they handle leap days and leap years. Sup-
pose, for example, you are doing an analysis of age of onset of some disorder. If you use values from
age_frac() astime in a survival model, these times will match up perfectly with recorded ages (or ages
from age () of course). If instead you used

. generate time_years = (onset_date - date_of_birth)/365.25

as your time variable, there would be minor discrepancies between this time and ages at birthdays. See
examples below.

Datetime durations — Obtaining and working with durations 161

datediff(...,"month",...) and datediff_frac(...,"month",...) calculate the number of
months between two dates as one would expect for starting days 1-28. For example, a starting date
on the 28th of the month will have month anniversaries on the 28th of all other months. When the day
of the starting date is 29, 30, or 31, other months may not have this day of the month. The last day of
February will be 28 or 29. When the starting date is on the 31st, the months ending on the 30th obviously
do not have a 31st. In these cases, the first day of the next month is considered the month anniversary.
(This is consistent with the default handling of 29feb start dates when calculating year anniversaries in
nonleap years; the nonleap year anniversaries are on 0lmar.)

Fractional months are also a bit tricky because lengths of months vary. There is an example below,
and see Methods and formulas in [FN] Date and time functions for how they are calculated.

Note that datediff(...,"year",...), datediff_frac(...,"year",...), datediff (...,
"month",...), and datediff_frac(...,"month",...) all match up. That is, on an ending
date on which datediff(...,"year",...) increases by one from the previous day, the value of
datediff_frac(...,"year",...) is exactly an integer and equal to datediff(...,"year",...). On
this ending date, datediff_frac(...,"month",...) is also an integer and equal to 12 times the year
difference.

datediff(ey; ,e49,"day",s,,;) anddatediff_frac(ey; ,ey49,"day",s,,;) have no complications
in how they are calculated. Both are equal to e, — e,4; and are always integers. The optional argument
s,,; has no bearing on the calculation and is ignored if specified.

b Example 1: Ages
Calculating ages is straightforward, but we do need to show how age_frac () calculates the fractional
part of age. Here is an example.

We have a dataset with string dates. Date of birth is recorded in the variable str_dob, and the end
date for calculating age is in str_end_date.

. use https://www.stata-press.com/data/r19/ages
(Fictional data for calculating ages)

. describe
Contains data from https://www.stata-press.com/data/r19/ages.dta
Observations: 5 Fictional data for calculating
ages
Variables: 2 30 Oct 2024 17:35
Variable Storage Display Value
name type format label Variable label
str_dob str9 %9s Date of birth
str_end_date str9 %9s End date
Sorted by:

. list, abbreviate(12)

str_dob str_end_date

1. | 28/8/1967 27/8/2019
2. | 28/8/1967 28/8/2019
3. | 28/8/1967 29/8/2019
4. | 28/8/1967 28/8/2020
5. | 28/8/1967 29/8/2020

Datetime durations — Obtaining and working with durations 162

We must convert the strings to numeric Stata dates, which we do using the date () function with
a mask of "DMY" because the date components are in the order day, month, year. We format the new

encoded date variables using format %td, the simplest format specification for daily dates.

. generate dob = date(str_dob, "DMY")
. generate end_date = date(str_end_date, "DMY")
. format dob end_date %td

. list str_dob dob str_end_date end_date, abbreviate(12)

str_dob dob str_end_date end_date
1. 28/8/1967 28augl967 27/8/2019 27aug2019
2. 28/8/1967 28augl967 28/8/2019 28aug2019
3. 28/8/1967 28augl967 29/8/2019 29aug2019
4. 28/8/1967 28augl967 28/8/2020 28aug2020
5. 28/8/1967 28augl967 29/8/2020 29aug2020

This person was born on 28aug1967, and we compute his or her age and age with the fractional part

on the dates in end_date.

. generate age = age(dob, end_date)

. generate double fage = age_frac(dob, end_date)

. format fage %12.0g

. list dob end_date age fage

dob end_date age fage
1. 28augl967 27aug2019 51 51.99726027
2. 28augl967 28aug2019 52 52
3. 28augl967 29aug2019 52 52.00273224
4. 28augl967 28aug2020 53 53
5. 28augl967 29aug2020 53 53.00273973

Note that the fractional parts on end dates of 29aug2019 and 29aug2020 differ. There are 366 days
between 28aug2019 and 28aug2020 because 2020 is a leap year. So the fractional part for 29aug2019 is
1/366 = 0.00273224. There are 365 days between 28aug2020 and 28aug2021, so the fractional part for
29aug2020 is 1/365 = 0.00273973.

b Example 2: Differences in months

d

Here we show an example of how datediff () and datediff_frac() calculate date differences in

units of months.

We load a dataset with Stata date variables start and end. First, we generate months using
datediff (start, end, "month") to get the integer difference (rounded down) in months. Then, we
generate fmonths using datediff_frac(start, end, "month") to get the difference including the
fractional part. We also put datediff (start, end, "day") into a variable to get differences in days
to help us see how the fractional parts are calculated.

. use https://www.stata-press.com/data/r19/month_differences, clear

(Fictional data for calculating date differences)

. generate months = datediff(start, end, "month")

. generate double fmonths =

datediff_frac(start, end, "month")

Datetime durations — Obtaining and working with durations 163

. generate days = datediff(start, end, "day")
. format fmonths %12.0g
. list start end months fmonths days, sepby(start)

start end months fmonths days
1. 156jan2019 15jan2019 0 0 0
2. 15jan2019 16jan2019 0 .0322580645 1
3. 15jan2019 15feb2019 1 1 31
4. 156jan2019 16£feb2019 1 1.035714286 32
5. 15jan2019 15mar2019 2 2 59
6. 15jan2019 16mar2019 2 2.032258065 60
7. 15jan2019 15apr2019 3 3 90
8. 15jan2019 16apr2019 3 3.033333333 91
9. 31jan2019 01feb2019 0 .0344827586 1
10. 31jan2019 28feb2019 0 .9655172414 28
11. 31jan2019 01mar2019 1 1 29
12. 31jan2019 02mar2019 1 1.033333333 30
13. 31jan2019 31mar2019 2 2 59
14. 31jan2019 01apr2019 2 2.032258065 60
15. 31jan2019 30apr2019 2 2.967741935 89
16. 31jan2019 01may2019 3 3 90

Let’s first look at the start date 15jan2019. months increases by one on 15feb2019 and then again on
15mar2019 and 15apr2019. On these days, datediff_frac(..., "month") is an integer.

The fractional month difference between 15jan2019 and 16jan2019 is 1/31 = 0.032258. The de-
nominator is 31 because the next month anniversary is 15feb2019, which is 31 days from 15jan2019.
The fractional part of the difference between 15jan2019 and 16feb2019 is 1/28 = 0.035714 because
there are 28 days between the month anniversaries 15feb2019 and 15mar2019. The fractional part of the
difference between 15jan2019 and 16apr2019 is 1/30 = 0.033333 because there are 30 days between
the month anniversaries 15apr2019 and 15may2019.

For the start date 31jan2019, monthly anniversaries are 01mar2019, 31mar2019, and 01may2019.
Fractional differences are calculated based on the number of days between the monthly anniversaries.
For example, there are 29 days between 31jan2019 and 01mar2019, so the fractional difference between
31jan2019 and 01feb2019 is 1/29 = 0.034483.

The optional fourth argument, s,,;, of datediff (ey; , €49, "month", s, ;) applies only when the start
date, e, falls on 29feb. See the next example for what this option does with ages in years. It works

similarly when units are months.

d

b Example 3: Born on a leap day

If you are a “leapling”—Dborn on 29feb—when do you have a birthday in nonleap years? On 28feb
or 01lmar? Or do you not have a birthday at all in nonleap years (Sullivan 1923)?

In the United Kingdom, a leapling legally becomes 18 on 01mar. In Taiwan, it is 28feb. In the United
States, there is no legal statute concerning leap-day birthdates.

The functions age (), age_frac(), datediff (), and datediff_frac() all have an optional last
argument that sets the day of the birthday (or anniversary) in nonleap years. Here is an example using
age() and age_frac().

Datetime durations — Obtaining and working with durations 164

We load a dataset with Stata date variables dob (containing date of birth) and end_date. We generate
agel using age () with the "0O1mar" argument (which is the default if it is not specified). The age?2 vari-
able is generated using "28feb". We also generate the variables fagel and fage2 using age_frac()
with different last arguments.

. use https://www.stata-press.com/data/r19/leap_day, clear
(Fictional leapling data)

. generate agel = age(dob, end_date, "Olmar")

. generate double fagel = age_frac(dob, end_date, "Olmar")
. generate age2 = age(dob, end_date, "28feb")

. generate double fage2 = age_frac(dob, end_date, "28feb")
. generate year = year(end_date)

. format fagel fage2 %12.0g

. list dob end_date agel age2 fagel fage2, sepby(year)

dob end_date agel age2 fagel fage2
1. 29feb2004 27feb2019 14 14 14.99452055 14.99726027
2. 29feb2004 28feb2019 14 15 14.99726027 15
3. 29feb2004 01mar2019 15 15 15 15.00273224
4. 29feb2004 28feb2020 15 16 15.99726027 15.99726776
5. 29feb2004 29feb2020 16 16 16 16
6. 29feb2004 01mar2020 16 16 16.00273224 16.00273973

Changes in agel and age?2 (that is, birthdays) in nonleap years occur on the day specified by the
last argument to age (). Note that birthdays in leap years are, of course, on 29feb regardless of the
last argument. Fractional parts from age_frac () differ because they are based on the number of days
between birthdays on either side of end_date, which will be 365 or 366. So fractional parts are multiples
of 1/365 or 1/366.

It is worth mentioning again that age (), age_frac(), datediff (), and datediff_frac() all
match up sensibly, but if there are leaplings, the last argument must be the same (or not be specified)
for them to match up. See Methods and formulas in [FN] Date and time functions.

d

Calculating differences of datetimes

The clockdiff () function calculates differences of datetime/c values in units of days, hours, min-
utes, seconds, or milliseconds, with the result rounded down to an integer. The Clockdiff () function
does the same, except it calculates differences for datetime/C values (UTC times with leap seconds).

The clockdiff_frac() and Clockdiff_frac() functions calculate the corresponding differences
for datetime/c and datetime/C values, respectively, but the fractional part of the difference is also in-
cluded.

b Example 4: Differences of datetime/c values

We have a dataset with string datetimes. A start datetime is recorded in the variable str_start, and
an end datetime is in str_end.

Datetime durations — Obtaining and working with durations 165

. use https://www.stata-press.com/data/r19/time_differences, clear
(Fictional data for calculating time differences)

. list, abbreviate(9)

str_start str_end

2015-06-30 00:00:00 2015-06-30 23:59:59
2015-06-30 00:00:00 2015-06-30 23:59:60
2015-06-30 00:00:00 2015-07-01 00:00:00
2015-06-30 00:00:00 2015-07-01 23:59:59
2015-06-30 00:00:00 2015-07-02 00:00:00

(2 VI SR

We must convert the strings to numeric Stata datetimes, which we do using the clock() function
with a mask of "YMDhms". We format the new encoded datetime variables using format %tc, the simplest
format specification for datetime/c.

. generate double cstart = clock(str_start, "YMDhms")

. generate double cend = clock(str_end, "YMDhms")
(1 missing value generated)

. format cstart cend %tc

. list str_end cend

str_end cend

2015-06-30 23:59:59 30jun2015 23:59:59
2015-06-30 23:59:60 .
2015-07-01 00:00:00 01jul2015 00:00:00
2015-07-01 23:59:59 01jul2015 23:59:59
2015-07-02 00:00:00 02jul2015 00:00:00

[S2 I =V SR

One of the string values became missing when it was encoded. It was the value "2015-06-30
23:59:60". This is a leap second, which was added to the end of the day on 30jun2015. There is
no encoding for leap seconds in datetime/c. That is why it is missing. We snuck in this leap second to
illustrate a point later about datetime/C.

We now use clockdiff () to calculate differences in seconds and hours between the datetime/c vari-
ables cstart and cend.
. generate csecs = clockdiff(cstart, cend, "second")
(1 missing value generated)

. generate chours = clockdiff(cstart, cend, "hour")
(1 missing value generated)

. list cstart cend csecs chours

cstart cend csecs chours
1. 30jun2015 00:00:00 30jun2015 23:59:59 86399 23
2. 30jun2015 00:00:00 . . .
3. 30jun2015 00:00:00 01jul2015 00:00:00 86400 24
4. 30jun2015 00:00:00 01jul2015 23:59:59 172799 47
5. 30jun2015 00:00:00 02jul2015 00:00:00 172800 48

Datetime durations — Obtaining and working with durations 166

clockdiff () calculates values rounded down to integers, and the results are what we expect. Integer
hours starting at 30jun2015 00:00:00 are 23 hours at 30jun2015 23:59:59. Integer hours become 24 hours
one second later at 01jul2015 00:00:00.

Rather than use clockdiff (), we could take the difference between the datetime/c variables cstart
and cend and use the conversion functions seconds () and hours().
. generate double csecs2 = seconds(cend - cstart)
(1 missing value generated)

. generate double chours2 = hours(cend - cstart)
(1 missing value generated)

. format %12.0g chours2

. list csecs csecs2 chours chours2

csecs csecs2 chours chours2
1. 86399 86399 23 23.99972222
2.
3. 86400 86400 24 24
4. 172799 172799 47 47.99972222
5. 172800 172800 48 48

The results are consistent with our earlier results. The number of seconds are exactly the same in
csecs and csecs2 because they are integers. Hours in chours?2 are not integers, but rounded down to
integers, they agree with hours produced by clockdiff ().

If we want to calculate the difference between cstart and cend in hours with the fractional part, we
canuse clockdiff_frac() as follows:
. generate double fchours = clockdiff_frac(cstart, cend, "hour")
(1 missing value generated)
. format %12.0g fchours

. list chours chours2 fchours

chours chours2 fchours
1. 23 23.99972222 23.99972222
2. . . .
3. 24 24 24
4. a7 47.99972222 47.99972222
5. 48 48 48

As expected, fchours is the same as chours?2.

> Example 5: Differences of datetime/C values

What if we are using datetime/C values, that is, datetimes with leap seconds? Let’s redo
the previous example encoding the strings using Clock() to produce Cstart and Cend as date-
time/C. Then, we generate a variable Csecs using Clockdiff (Cstart, Cend, "second"), Chours
using clockdiff (Cstart, Cend, "hour"), and fChours using Clockdiff_frac(Cstart, Cend,
"hour").

. generate double Cstart = Clock(str_start, "YMDhms")
. generate double Cend = Clock(str_end, "YMDhms")

Datetime durations — Obtaining and working with durations 167

. format Cstart Cend %tC

. generate Csecs = Clockdiff(Cstart, Cend, "second")

. generate Chours = Clockdiff(Cstart, Cend, "hour")

. generate double fChours = Clockdiff_frac(Cstart, Cend, "hour")
. format %12.0g fChours

. list Cstart Cend Csecs Chours fChours

1. Cstart Cend Csecs Chours
30jun2015 00:00:00 30jun2015 23:59:59 86399 23
fChours
23.9994446
2. Cstart Cend Csecs Chours
30jun2015 00:00:00 30jun2015 23:59:60 86400 23
fChours
23.9997223
3. Cstart Cend Csecs Chours
30jun2015 00:00:00 01jul2015 00:00:00 86401 24
fChours
24
4. Cstart Cend Csecs Chours
30jun2015 00:00:00 01jul2015 23:59:59 172800 47
fChours
47.99972222
5. Cstart Cend Csecs Chours
30jun2015 00:00:00 02jul2015 00:00:00 172801 48
fChours
48

In the previous example, the difference between the times of the first observation was 23.99972222 hours;
now it is 23.99944460 hours. The difference for the first observation in this example is further from 24
hours because there are now two seconds between Cend and 24 hours from Cstart, whereas before there
was only one second because the leap second was treated as if it did not exist.

The other difference is the denominator of the fractional part. From the earlier example using date-
time/c values and clockdiff_frac(), we note that 1 — 0.99972222 = 0.00027778 = 1/3600,
where 3,600 is the number of seconds in an hour. In this example using datetime/C values and
Clockdiff_frac(), we see that 1 — 0.99944460 = 0.00055540 = 2/3601, where 3,601 is the number
of seconds in the hour containing the leap second.

Datetime durations — Obtaining and working with durations 168

For the second-to-last observation, the fractional part of the difference is 0.99972222, the same as the
fractional part in the previous example. So in this example, the hour differences with the fractional part
are not evenly spaced, and this would be true even without the second observation with the leap second
in the data. If the lack of uniform spacing is a problem and there are no leap seconds in your data, you
may want to consider converting your datetime/C data to datetime/c.

d

Reference
Sullivan, A. 1923. The Pirates of Penzance or the Slave of Duty, libretto by W. S. Gilbert. New York: G. Schirmer.

Also see

[D] Datetime — Date and time values and variables

[D] Datetime business calendars — Business calendars

[D] Datetime conversion — Converting strings to Stata dates
[D] Datetime display formats — Display formats for dates and times

[D] Datetime relative dates — Obtaining dates and date information from other dates
[

]
]
]
]
]
]

D] Datetime values from other software — Date and time conversion from other software

Datetime relative dates — Obtaining dates and date information from other dates

Description Quick start Syntax Remarks and examples Also see

Description

This entry describes functions that calculate dates from other dates, such as the date of a birthday in
another year or the next leap year after a given year. It also describes functions that return the current
date and current datetime.

Quick start
Display today’s date
display %td today ()
Save the current date and time in a scalar

scalar ctime = now()

Calculate the date of a birthday in the year given by numeric variable y based on a numerically encoded
Stata date variable dob that gives date of birth

generate bday_future = birthday(dob, y)

Same as above, but for persons born on 29feb have their birthdays on 28feb in nonleap years (rather than
the default of 01mar)

generate bday_future = birthday(dob, y, "28feb")

Calculate the date of the first birthday after Stata date date_today based on date of birth dob
generate next_bday = nextbirthday(dob, date_today)

Calculate the number of days in the year y
generate ndays = cond(isleapyear(y), 366, 365)

Calculate the year of the leap year immediately before the year y

generate yleap = previousleapyear (y)

Calculate the number of days in the month on which the values of Stata date variable 4 fall

generate ndays = daysinmonth(d)

Calculate the date of the first Friday of month m and year y
generate firstfriday = firstweekdayofmonth(m, y, "Friday")

Calculate the date of the previous Saturday relative to Stata date d

generate previous = previousweekday(d, "sat")

169

Datetime relative dates — Obtaining dates and date information from other dates 170

Syntax

Description Function Value returned

today today () Stata date

current date and time now () Stata datetime/c

birthday in year birthday (egp05, Y] 580]) Stata date

previous birthday previousbirthday (e poy,€q] » S |) Stata date

next birthday nextbirthday (€g 0, ,€4[> Sn]) Stata date

days in month daysinmonth(e,) 28-31

first day of month firstdayofmonth(e,) Stata date

last day of month lastdayofmonth(ey) Stata date

leap year indicator isleapyear (Y) Oorl

previous leap year previousleapyear (Y) year

next leap year nextleapyear (Y) year

leap second indicator isleapsecond(e,-) Oorl

first day of week of month firstweekdayofmonth(M,Y,d) Stata date
or firstdowofmonth(M,Y,d)

last day of week of month ~ lastweekdayofmonth(M,Y,d) Stata date
or lastdowofmonth(M,Y,d)

previous day of week previousweekday (e, ,d) Stata date
or previousdow(e,,d)

next day of week nextweekday (e, d) Stata date

or nextdow (e, ,d)

ey and e, are Stata dates.
e, 18 a Stata datetime/C value (UTC time with leap seconds).
s,,; 1s a string specifying nonleap-year birthdays of 29feb and may be
"Olmar", "imar", "mar01", or "mar1" (the default); or
"28feb" or "feb28" (case insensitive).
Y'is a numeric year.
d is a numeric day of week (0=Sunday, 1=Monday, ..., 6=Saturday); alternatively,
it is a string specifying the first two or more letters of the day of week (case insensitive).

Note: The string s,,; specifying nonleap-year birthdays is an optional argument. It rarely needs to be
specified. See example 3 in [D] Datetime durations.

Datetime relative dates — Obtaining dates and date information from other dates 171

Remarks and examples

Remarks are presented under the following headings:

Current date and time

Birthdays and anniversaries

Months: Number of days, first day, and last day
Determining leap years

Determining leap seconds

Dates of days of week

We assume you have read [D] Datetime and are familiar with how Stata stores and formats dates.

Current date and time

today () and now () return date and datetime/c values for today’s date and the current datetime, re-
spectively. Note that the datetime value returned by now () is not adjusted for leap seconds.

Birthdays and anniversaries

The birthday () function returns a Stata date giving the birthday in a specified year. For example,
suppose date_of _birth is a variable containing Stata dates and yvar is a numeric variable containing

years; typing
. generate bday = birthday(date_of_birth, yvar)
produces a Stata date variable bday containing birthdays in those years. However, it will not be formatted

as a date variable. If you list bday, you will see numbers, not dates. To see dates, you must give it a date
format, such as

. format bday %td

We used the format %td, the simplest format specification for daily dates.

Of course, birthday () can be used for more than just birthdays. It can be used to give anniversary
dates of any date in different years.

The previousbirthday () and nextbirthday () functions do what their names suggest. Typing

. generate pbday = previousbirthday(date_of_birth, current_date)
. format pbday %td

gives birthdays immediately before current_date. Typing

. generate nbday = nextbirthday(date_of_birth, current_date)
. format nbday %td

gives birthdays immediately after current_date. Note that if current_date is a birthday,
previousbirthday() returns the previous birthday, not the value of current_date. Similarly,
nextbirthday () returns the next birthday when the argument is a birthday.

The optional last argument, s,,;, for birthday(), previousbirthday(), and nextbirthday ()
applies only to a date of birth on 29feb. The argument controls whether to use Olmar (the default) or
28feb as the birthday in nonleap years. See example 3 in [D] Datetime durations and the example below.

Datetime relative dates — Obtaining dates and date information from other dates 172

b Example 1: Birthdays in other years

Here we show how to use birthday () and nextbirthday () to calculate birthdays in other years.
We load a dataset with Stata date variables dob and date and a numeric variable year.
. use https://www.stata-press.com/data/r19/birthdays
(Fictional data for calculating birthdays)
. list, sepby(dob)

dob date year

1. Mon 28 Aug 1967 Thu 27 Aug 2020 2020
2. Mon 28 Aug 1967 Sat 28 Aug 2021 2021
3. Mon 28 Aug 1967 Mon 29 Aug 2022 2022

4. Thu 29 Feb 1968 Tue 28 Feb 2023 2023
5. Thu 29 Feb 1968 Thu 29 Feb 2024 2024
6. Thu 29 Feb 1968 Sat 01 Mar 2025 2025

To calculate the birthday in year based on date of birth dob, we type

. generate bday = birthday(dob, year)
. format bday %tdDay_DD_Mon_CCYY
. list dob year bday, sepby(dob)

dob year bday

1. Mon 28 Aug 1967 2020 Fri 28 Aug 2020
2. Mon 28 Aug 1967 2021 Sat 28 Aug 2021
3. Mon 28 Aug 1967 2022 Sun 28 Aug 2022

4. Thu 29 Feb 1968 2023 Wed 01 Mar 2023
5. Thu 29 Feb 1968 2024 Thu 29 Feb 2024
6. Thu 29 Feb 1968 2025 Sat 01 Mar 2025

We see that for a date of birth of 28 Aug 1967, the birthday in 2020 is on 28 Aug 2020, which is a Friday.
For persons born on leap day 29 Feb 1968, their birthdays in nonleap years will be on 01 Mar. In leap
years, of course, they will be on 29 Feb.

Note that we used the fancy date format % tdDay_DD_Mon_CCYY. The %td at the beginning means it
is a format for daily dates. Day displays the day of the week abbreviated. The underscore (—) means put
in a space. DD displays the day with a leading zero. Mon displays the month abbreviated. CCYY displays
the year with the century. See [D] Datetime display formats for all the format variants.

For persons born on leap days (“leaplings”), we can change the day of their birthdays in nonleap years
from the default of 01 Mar to 28 Feb by specifying the optional argument "28feb". For example,

Datetime relative dates — Obtaining dates and date information from other dates 173

. generate abday = birthday(dob, year, "28feb")
. format abday %tdDay_DD_Mon_CCYY
. list dob year abday, sepby(dob)

dob year abday

e

Mon 28 Aug 1967 2020 Fri 28 Aug 2020
2. | Mon 28 Aug 1967 2021 Sat 28 Aug 2021
3. Mon 28 Aug 1967 2022 Sun 28 Aug 2022

4. Thu 29 Feb 1968 2023 Tue 28 Feb 2023
5. Thu 29 Feb 1968 2024 Thu 29 Feb 2024
6. Thu 29 Feb 1968 2025 Fri 28 Feb 2025

Birthdays of leaplings are now on 28 Feb in nonleap years. Birthdays for nonleaplings are unaffected by
this argument.

Suppose we want a birthday relative to another date. Say we want the date of the first birthday after
date. We can do this by typing

. generate nbday = nextbirthday(dob, date)
. format nbday %tdDay_DD_Mon_CCYY
. list dob date nbday, sepby(dob)

dob date nbday

e

Mon 28 Aug 1967 Thu 27 Aug 2020 Fri 28 Aug 2020
2. Mon 28 Aug 1967 Sat 28 Aug 2021 Sun 28 Aug 2022
3. Mon 28 Aug 1967 Mon 29 Aug 2022 Mon 28 Aug 2023

4. Thu 29 Feb 1968 Tue 28 Feb 2023 Wed 01 Mar 2023
5. Thu 29 Feb 1968 Thu 29 Feb 2024 Sat 01 Mar 2025
6. Thu 29 Feb 1968 Sat 01 Mar 2025 Sun 01 Mar 2026

We see that the first birthday after 27 Aug 2020 for someone born on 28 Aug is 28 Aug 2020. The first
birthday after 28 Aug 2021 (a birthday) for someone born on 28 Aug is the birthday in the next year,
28 Aug 2022.

The first birthday after 29 Feb 2024 for someone born on 29 Feb is 01 Mar 2025. Again, we can
specify the argument "28feb" to change the nonleap-year birthdays of leaplings to 28 Feb.

. generate anbday = nextbirthday(dob, date, "28feb")
. format anbday ’%tdDay_DD_Mon_CCYY
. list dob date anbday, sepby(dob)

dob date anbday

e

Mon 28 Aug 1967 Thu 27 Aug 2020 Fri 28 Aug 2020
2. Mon 28 Aug 1967 Sat 28 Aug 2021 Sun 28 Aug 2022
3. Mon 28 Aug 1967 Mon 29 Aug 2022 Mon 28 Aug 2023

4. Thu 29 Feb 1968 Tue 28 Feb 2023 Thu 29 Feb 2024
5. Thu 29 Feb 1968 Thu 29 Feb 2024 Fri 28 Feb 2025
6. Thu 29 Feb 1968 Sat 01 Mar 2025 Sat 28 Feb 2026

Datetime relative dates — Obtaining dates and date information from other dates 174

Now the first birthday after 29 Feb 2024 for someone born on 29 Feb is 28 Feb 2025.

Months: Number of days, first day, and last day

daysinmonth(e,), firstdayofmonth(e,), and lastdayofmonth(e,;) each take a Stata date e,
as an argument and determine the month of that date. daysinmonth() returns the number of days in
that month. firstdayofmonth() returns the date of the first day of that month. lastdayofmonth()
returns the date of the last day of that month.

For example, for any day in the month of February of leap year 2020 (such as 15feb2020), these
functions return the following:

. display daysinmonth(mdy(2,15,2020))

29

. display %td firstdayofmonth(mdy(2,15,2020))
01£eb2020

. display %td lastdayofmonth(mdy(2,15,2020))
29feb2020

Determining leap years

isleapyear (Y), previousleapyear(Y), and nextleapyear (Y) are functions that make it easier
to handle leap years. Each takes a single argument that is a numeric year.

isleapyear(Y) returns 1 if Yis a leap year and 0 otherwise. The argument Y can be a numeric
variable or a literal value. Here are some examples with literal values:
. display isleapyear (2020)
1

. display isleapyear(2021)
0

. display isleapyear(2100)
0

. display isleapyear(2400)
1

The year 2020 is a leap year, and 2021 is not. The year 2100 is not because it is divisible by 100 and not
by 400. The year 2400 is divisible by 400, so it is a leap year.

previousleapyear (Y) returns the leap year immediately before year Y. nextleapyear (Y) returns
the first leap year after year Y. Here are examples:
. display previousleapyear (2023)
2020

. display nextleapyear(2023)
2024

. display previousleapyear(2024)
2020

. display nextleapyear (2024)
2028

As you can see, when the argument is a leap year, these functions return the next leap year or previous
leap year and not the leap year argument.

Datetime relative dates — Obtaining dates and date information from other dates 175

Determining leap seconds

isleapsecond() takes a datetime/C value (UTC time) as an argument and returns 1 (true) if that

datetime is one of the 1,000 milliseconds of a leap second and 0 (false) otherwise. For example, the
first leap second was introduced on 30jun1972, after the last millisecond of the day. Here is what
isleapsecond() returns at various points in time, including right before the leap second was added
on 30jun1972 (at 23:59.999) and right after the leap second was added on 01jul1972 (at 00:00.000). We
use tC() to create datetime/C values.

. display isleapsecond(tC(30jun1972 23:59:59.999))

0

. display isleapsecond(tC(30jun1972 23:59:60.000))
1

. display isleapsecond(tC(30jun1972 23:59:60.999))
1

. display isleapsecond(tC(01jul1972 00:00:0))
0

isleapsecond() is useful for determining whether datetime/C values can be converted to datetime/c
without any loss of information. Suppose we have a variable admitTime that contains times of patient
admissions as datetime/C values. We can type the following:

. generate anyleapsec = isleapsecond(admitTime)

. tabulate anyleapsec

anyleapsec Freq. Percent Cum.
0 1,064 100.00 100.00
Total 1,064 100.00

anyleapsec is all zero, so no patient was admitted on a leap second, and we can convert admitTime to
datetime/c without any times being altered.

. generate newTime = cofC(admitTime)

Had there been leap seconds in the data, cofC() would have converted the leap-second times to times
one second later. For example,

. display %tc cofC(tC(31dec2016 23:59:60))
01jan2017 00:00:00

Dates of days of week

firstweekdayofmonth(M,Y,d) and lastweekdayofmonth (M,Y,d) return the Stata date of the
first and last day-of-week d, respectively, in month M of year Y. For example, we can find the first
Monday of January 2000 with the command

. display %td firstweekdayofmonth(1l, 2000, "Monday")
03jan2000

previousweekday (e, ,d) returns the Stata date corresponding to the last day-of-week d before the
Stata date e;. nextweekday (e, ,d) returns the Stata date corresponding to the first day-of-week d after
the Stata date e;. For example, the date of the first Saturday after today can be found with the command

. display %td nextweekday(today(), "sat")
25mar2023

Datetime relative dates — Obtaining dates and date information from other dates 176

Note that day-of-week d can be specified as an integer (0 = Sunday, 1 = Monday, ..., 6 = Saturday)
or as a string with the first two or more letters of the day of the week (case insensitive). For example,
Sunday can be specified as 0 or "Sunday", "Sun", "su", etc.

Also see

[D] Datetime — Date and time values and variables
[D] Datetime business calendars — Business calendars

[D] Datetime conversion — Converting strings to Stata dates

]
]
]
[D] Datetime display formats — Display formats for dates and times
[D] Datetime durations — Obtaining and working with durations

]

[D] Datetime values from other software — Date and time conversion from other software

Datetime values from other software — Date and time conversion from other software

Description Remarks and examples Reference Also see

Description

Most software packages store dates and times numerically as durations from some base date in spec-
ified units, but they differ on the base date and the units. In this entry, we discuss how to convert date
and time values that you have imported from other packages to Stata dates.

Remarks and examples

Remarks are presented under the following headings:

Introduction
Converting SAS dates
Converting SPSS dates
Converting R dates
Converting Excel dates
Example 1: Converting Excel dates to Stata dates
Converting OpenOffice dates
Converting Unix time

Introduction

Different software packages use different base dates for storing dates and times numerically. If you
are using one of the specialized subcommands for importing data from another package, you do not need
to convert your numeric dates after importing them into Stata. import sas, import spss, and import
excel will properly convert those dates to Stata dates. However, if you store data from another package
into a more general format, like a text file, you will need to do one of two things.

1. If you bring the date variable into Stata as a string, you will have to convert it to a numeric
variable.

2. If you import the date variable as a numeric variable, with values representing the underlying
numeric values that the other package used, you will have to convert that value to the numeric
value for a Stata date.

Below, we discuss the date systems for different software packages and how to convert their date and
time values to Stata dates.

Converting SAS dates

If you have data in a SAS-format file, you may want to use the import sas command. If the SAS file
contains numerically encoded dates, import sas will read those dates and properly store them as Stata
dates. You do not need to perform any conversion after importing your data with import sas.

On the other hand, if you import data originally from SAS that have been saved into another format,
such as a text file, dates and datetimes may exist as the underlying numeric values that SAS used. The
discussion below concerns converting those numeric values to Stata dates.

SAS provides dates measured as the number of days since 01jan1960 (positive or negative). This is
the same coding as used by Stata:

177

Datetime values from other software — Date and time conversion from other software 178

. generate statadate = sasdate
. format statadate %td

SAS provides datetimes measured as the number of seconds since 01jan1960 00:00:00, assuming
86,400 seconds/day. SAS datetimes do not have leap seconds. To convert to a Stata datetime/c variable,
type

. generate double statatime = (sastime*1000)

. format statatime %tc

It is important that variables containing SAS datetimes, such as sastime above, be imported into Stata
as doubles.

Converting SPSS dates

If you have data in an SPSS-format file, you may want to use the import spss command. If the SPSS
file contains numerically encoded dates, import spss will read those dates and properly store them as
Stata dates. You do not need to perform any conversion after importing your data with import spss.

On the other hand, if you import data originally from SPSS that have been saved into another format,
such as a text file, dates and datetimes may exist as the underlying numeric values that SPSS used. The
discussion below concerns converting those numeric values to Stata dates.

SPSS provides dates and datetimes measured as the number of seconds since 14oct1582 00:00:00,
assuming 86,400 seconds/day. SPSS datetimes do not have leap seconds. To convert to a Stata datetime/c
variable, type

. generate double statatime = (spsstime*1000) + tc(14oct1582 00:00)

. format statatime %tc

To convert to a Stata date, type

. generate statadate = dofc((spsstime*1000) + tc(14oct1582 00:00))
. format statadate %td

Converting R dates

R stores dates as days since 01jan1970. To convert to a Stata date, type
. generate statadate = rdate - td(01jan1970)
. format statadate %td

R stores datetimes as the number of UTC-adjusted seconds (that is, with leap seconds) since 01jan1970
00:00:00. To convert to a Stata datetime/C variable, type

. generate double statatime = rtime - tC(01jan1970 00:00)
. format statatime %tC

To convert to a Stata datetime/c variable, type

. generate double statatime = cofC(rtime - tC(01jan1970 00:00))
. format statatime %tc

There are issues of which you need to be aware when working with datetime/C values; see Why
there are two datetime encodings and Advice on using datetime/c and datetime/C, both in [D] Datetime
conversion.

Datetime values from other software — Date and time conversion from other software 179

Converting Excel dates

If you have data in an Excel format file, you may want to use the import excel command. If the
Excel file contains numerically encoded dates, import excel will read those dates and properly store
them as Stata dates. You do not need to perform any conversion after importing your data with import
excel.

On the other hand, if you are not using import excel and you need to manually convert Excel’s
numerically encoded dates to Stata dates, you can refer to the discussion below.

Excel has used different date systems across operating systems. Excel for Windows used the “1900
date system”. Excel for Mac used the “1904 date system”. More recently, Excel has been standardizing
on the 1900 date system on all operating systems.

Regardless of operating system, Excel can use either encoding. See
https://support.microsoft.com/kb/214330 for instructions on converting workbooks between date sys-
tems.

Converted dates will be off by four years if you choose the wrong date system.

Converting Excel 1900 date-system dates:

Excel’s 1900 date system stores dates as days since 31dec1899 (0jan1900), and it treats 1900 as a leap
year, although it was not. Therefore, this date system contains the nonexistent day 29feb1900, which is
not recognized by Stata. You can see http://www.cpearson.com/excel/datetime.htm for more information
on how dates and times are handled in Excel.

Because of this behavior, we need to account for that additional day when converting these numeri-
cally encoded dates to Stata dates. In other words, to convert Excel dates on or after 01mar1900 to Stata
dates, we instead use 30dec1899 as the base.

. generate statadate = exceldate + td(30dec1899)
. format statadate %td

To convert Excel dates on or before 28feb1900 to Stata dates, we use 31dec1899 as the base. For an
example of working with these dates, see the technical note following example 1.

Stata stores date and datetime values differently, with dates recorded as the number of days since
01jan1960 and datetimes recorded as the number of milliseconds from 01jan1960 00:00:00. However,
Excel stores date and time values together in a single number. For datetimes on or after 01mar1900
00:00:00, Excel stores datetimes as days plus fraction of day since 30dec1899 00:00:00, such as
ddddddd. tttttt. The integer records the days, and the fractional part records the number of seconds
from 00:00:00, the beginning of the day, divided by the number of seconds in 24 hours (24*¥*60*60 =
86400).

To convert with a one-second resolution to a Stata datetime, type
. generate double statatime = round((exceltime+td(30dec1899))*86400)*1000
. format statatime %tc

Converting Excel 1904 date-system dates:

For dates on or after 01jan1904, Excel stores dates as days since 01jan1904. To convert to a Stata
date, type

. generate statadate = exceldate + td(01jan1904)
. format statadate %td

https://support.microsoft.com/kb/214330
http://www.cpearson.com/excel/datetime.htm

Datetime values from other software — Date and time conversion from other software 180

For datetimes on or after 01jan1904 00:00:00, Excel stores datetimes as days plus the fraction of the
day since 01jan1904 00:00:00. To convert with a one-second resolution to a Stata datetime, type

. generate double statatime = round((exceltime+td(01jan1904))*86400)*1000
. format statatime %tc

Example 1: Converting Excel dates to Stata dates

We have some Excel 1900 date-system dates saved in a tab-delimited file. The file contains patients’
ID numbers and their dates of birth. The numeric variable bdate contains the numeric values that Excel
used to store those dates.

. clear

. import delimited "exceldates.txt"
(encoding automatically selected: IS0-8859-1)
(2 vars, 3 obs)

. list

patid bdate

1. 1 33106
2. 2 31305
3. 3 37327

Stata dates measure the number of days since January 1, 1960. For dates on or after March 1, 1900,
Excel’s base date is December 30, 1899. To convert bdate to a Stata date, we need to add the number
of days from January 1, 1960, to December 30, 1899 (which is a negative number of days).

. generate statadate = bdate + td(30dec1899)
. format statadate %td
. list

patid bdate statadate

1. 1 33106 21augl990
2. 2 31305 15sep1985
3. 3 37327 12mar2002

If you would like to confirm that the conversion has been done properly, you can copy those values
of bdate into an Excel spreadsheet and format them as dates. You will see the same dates as those listed
under statadate.

Q Technical note

Suppose we were working with data in Excel that contained dates between January 1, 1900, and
February 28, 1900. If we saved these data to a .txt or .csv file and brought in those numerically
encoded dates into Stata, we could not use the conversion function above. The reason these dates are
treated differently is that Excel treats 1900 as a leap year, even though it was not; therefore, Excel behaves
as if 29feb1900 was an actual date. If you are curious, the purpose of this behavior was to be compatible
with a spreadsheet software that was dominant at the time. In short, what this means for us is that if we
are working with these particular dates, we need to modify Excel’s base date.

Datetime values from other software — Date and time conversion from other software 181

Below, we import a text file with dates between January 1, 1900, and February 28, 1900, to demon-
strate.

. clear

. import delimited "exceldates2.txt"
(encoding automatically selected: IS0-8859-1)
(2 vars, 3 obs)

. list

patid bdate

1. 1 1
2. 2 15
3. 3 43

Instead of using December 30, 1899, as Excel’s base date, as we did previously, we will now use
December 31, 1899.

. generate statadate = bdate + td(31dec1899)
. format statadate Jtd
. list

patid bdate statadate

1. 1 1 01jan1900
2. 2 15 15jan1900
3. 3 43 12£eb1900

Now we have a Stata date recording dates between January 1, 1900, and February 28, 1900.

Converting OpenOffice dates

OpenOffice uses the Excel 1900 date system described above.

Converting Unix time

Unix time is stored as the number of seconds since midnight, 01jan1970. To convert to a Stata date-
time, type
. generate double statatime = unixtime * 1000 + mdyhms(1,1,1970,0,0,0)
To convert to a Stata date, type

. generate statadate = dofc(unixtime * 1000 + mdyhms(1,1,1970,0,0,0))

Reference

Gould, W. W. 2011. Using dates and times from other software. The Stata Blog: Not Elsewhere Classified. https://blog.
stata.com/2011/01/05/using-dates-and-times-from-other-software/.

https://blog.stata.com/2011/01/05/using-dates-and-times-from-other-software/
https://blog.stata.com/2011/01/05/using-dates-and-times-from-other-software/

Datetime values from other software — Date and time conversion from other software 182

Also see

[D] Datetime — Date and time values and variables

[D] Datetime business calendars — Business calendars
[D] Datetime conversion — Converting strings to Stata dates
[D] Datetime display formats — Display formats for dates and times

[D] Datetime durations — Obtaining and working with durations

—_ = = = = =

[D] Datetime relative dates — Obtaining dates and date information from other dates

describe — Describe data in memory or in a file

Description Quick start
Menu Syntax
Options to describe data in memory Options to describe data in a file
Remarks and examples Stored results
References Also see
Description

describe produces a summary of the dataset in memory or of the data stored in a Stata-format dataset.

For a compact listing of variable names, use describe, simple.

Quick start

Describe all variables in the dataset

describe

Describe all variables starting with code

describe codex*

Describe properties of the dataset

describe, short

Describe without abbreviating variable names

describe, fullnames

Create a dataset containing variable descriptions

describe, replace

Describe contents of mydata.dta without opening the dataset

describe using mydata

Menu

Data > Describe data > Describe data in memory or in a file

183

describe — Describe data in memory or in a file 184

Syntax
Describe data in memory

describe [varl[st] [, memory_options]

Describe data in a file

describe [varlist | using filename | , file_options |

memory_options Description

simple display only variable names

short display only general information

fullnames do not abbreviate variable names

numbers display variable number along with name

replace make dataset, not written report, of description

clear for use with replace

varlist store r (varlist) and r (sortlist) in addition to usual stored results;

programmer’s option

varlist does not appear in the dialog box.

file_options Description

short display only general information

simple display only variable names

varlist store r (varlist) and r (sortlist) in addition to usual stored results;

programmer’s option

varlist does not appear in the dialog box.

collect is allowed; see [U] 11.1.10 Prefix commands.

Options to describe data in memory

simple displays only the variable names in a compact format. simple may not be combined with other
options.

short suppresses the specific information for each variable. Only the general information (number of
observations, number of variables, and sort order) is displayed.

fullnames specifies that describe display the full names of the variables. The default is to present an
abbreviation when the variable name is longer than 15 characters. describe using always shows
the full names of the variables, so fullnames may not be specified with describe using.

numbers specifies that describe present the variable number with the variable name. If numbers is
specified, variable names are abbreviated when the name is longer than eight characters. The numbers
and fullnames options may not be specified together. numbers may not be specified with describe
using.

describe — Describe data in memory or in a file 185

replace and clear are alternatives to the options above. describe usually produces a written report,
and the options above specify what the report is to contain. If you specify replace, however, no
report is produced; the data in memory are instead replaced with data containing the information that
the report would have presented. Each observation of the new data describes a variable in the original
data; see describe, replace below.

clear may be specified only when replace is specified. clear specifies that the data in memory be
cleared and replaced with the description information, even if the original data have not been saved
to disk.

The following option is available with describe but is not shown in the dialog box:

varlist, an option for programmers, specifies that, in addition to the usual stored results, r (varlist)
and r (sortlist) be stored, too. r (varlist) will contain the names of the variables in the dataset.
r(sortlist) will contain the names of the variables by which the data are sorted.

Options to describe data in a file
short suppresses the specific information for each variable. Only the general information (number of
observations, number of variables, and sort order) is displayed.

simple displays only the variable names in a compact format. simple may not be combined with other
options.

The following option is available with describe but is not shown in the dialog box:

varlist, an option for programmers, specifies that, in addition to the usual stored results, r (varlist)
and r (sortlist) be stored, too. r (varlist) will contain the names of the variables in the dataset.
r(sortlist) will contain the names of the variables by which the data are sorted.

Because Stata/MP and Stata/SE can create truly large datasets, there might be too many variables in
a dataset for their names to be stored in r (varlist), given the current maximum length of macros,
as determined by set maxvar. Should that occur, describe using will issue the error message “too
many variables”, r(103).

Remarks and examples

Remarks are presented under the following headings:

describe
describe, replace

describe

If describe is typed with no operands, the contents of the dataset currently in memory are described.

The varlist in the describe using syntax differs from standard Stata varlists in two ways. First, you
cannot abbreviate variable names; that is, you have to type displacement rather than displ. However,
you can use the abbreviation character (~) to indicate abbreviations, for example, displ~. Second, you
may not refer to a range of variables; specifying price-trunk is considered an error.

describe — Describe data in memory or in a file 186

If you are using frames to work with multiple datasets in memory, you can use frames describe to
describe data from one or more frames. However, you might also want to create alias variables, which
is similar to copying variables across frames but is more memory efficient. When the dataset in memory
contains alias variables, describe tries to report the storage type of the linked variable. If an alias
variable’s linkage is broken, then describe will report unknown for the storage type. In either case,
the storage type text will be a clickable link that runs command fralias describe on the associated
variable. For examples of describe output and behavior with alias variables, see [D] fralias.

For alias variables in filename, describe using reports alias for the storage type.

b Example 1

The basic description includes some general information on the number of variables and observations,
along with a description of every variable in the dataset:

. use https://www.stata-press.com/data/r19/states
(State data)

. describe, numbers
Contains data from https://www.stata-press.com/data/r19/states.dta
Observations: 50 State data

Variables: 5 3 Jan 2024 15:17
(_dta has notes)

Variable Storage Display Value

name type format label Variable label
1. state str8 %9s
2. region int %8.0g reg Census Region
3. median~e float %9.0g Median Age
4. marria~e long %12.0g Marriages per 100,000
5. divorc~e long %12.0g Divorces per 100,000

Sorted by: region

In this example, the dataset in memory comes from the file states.dta and contains 50 observations on
5 variables. The dataset is labeled “State data” and was last modified on January 3, 2024, at 15:17 (3:17
p-m.). The “_dta has notes” message indicates that a note is attached to the dataset; see [U] 12.7 Notes
attached to data.

The first variable, state, is stored as a str8 and has a display format of %9s.

The next variable, region, is stored as an int and has a display format of %8.0g. This variable has
associated with it a value label called reg, and the variable is labeled Census Region.

The third variable, which is abbreviated median-~e, is stored as a float, has a display format of
%9.0g, has no value label, and has a variable label of Median Age. The variables that are abbreviated
marria~e and divorc~e are both stored as longs and have display formats of %,12.0g. These last two
variables are labeled Marriages per 100,000 and Divorces per 100,000, respectively.

The data are sorted by region.

Because we specified the numbers option, the variables are numbered; for example, region is vari-
able 2 in this dataset.
N

describe — Describe data in memory or in a file 187

b Example 2

To view the full variable names, we could omit the numbers option and specify the fullnames option.

. describe, fullnames

Contains data from https://www.stata-press.com/data/r19/states.dta
Observations: 50 State data
Variables: 5 3 Jan 2024 15:17
(_dta has notes)

Variable Storage Display Value

name type format label Variable label
state str8 %9s
region int %8.0g reg Census Region
median_age float %9.0g Median Age
marriage_rate long %12.0g Marriages per 100,000
divorce_rate long %12.0g Divorces per 100,000

Sorted by: region

Here we did not need to specify the fullnames option to see the unabbreviated variable names because
the longest variable name is 13 characters. Omitting the numbers option results in 15-character variable
names being displayed.

d

Q Technical note

The output from describe allows you to compute the size of the dataset. If you are curious, you can
compute it for this dataset as follows:

(842+4+4+4) x50 = 1100

The numbers 8, 2, 4, 4, and 4 are the storage requirements for a str8, int, float, long, and long,
respectively; see [U] 12.2.2 Numeric storage types. Fifty is the number of observations in the dataset.

Q
b Example 3
If we specify the short option, only general information about the data is presented:

. describe, short

Contains data from https://www.stata-press.com/data/r19/states.dta

Observations: 50 State data

Variables: 5 3 Jan 2024 15:17

Sorted by: region

d

If we specify varlist, only the variables in that varlist are described.

describe — Describe data in memory or in a file 188

b Example 4

Let’s change datasets. The describe varlist command is particularly useful when combined with the
“*” wildcard character. For instance, we can describe all the variables whose names start with pop by
typing describe pop*:

. use https://www.stata-press.com/data/r19/census
(1980 Census data by state)

. describe pop*

Variable Storage Display Value

name type format label Variable label
pop long %12.0gc Population
poplts long %12.0gc Pop, < 5 year
pop5_17 long %12.0gc Pop, 5 to 17 years
pop18p long %12.0gc Pop, 18 and older
pop65p long %12.0gc Pop, 65 and older
popurban long %12.0gc Urban population

We can describe the variables state, region, and pop18p by specifying them:

. describe state region popl8p

Variable Storage Display Value

name type format label Variable label
state stri4 %-14s State
region int %-8.0g cenreg Census region
popl8p long %12.0gc Pop, 18 and older

d

Typing describe using filename describes the data stored in filename. If an extension is not speci-
fied, .dta is assumed.

b Example 5

We can describe the contents of states.dta without disturbing the data that we currently have in
memory by typing

. describe using https://www.stata-press.com/data/r19/states

Contains data State data
Observations: 50 3 Jan 2024 15:17
Variables: 5
Variable Storage Display Value
name type format label Variable label
state str8 %9s
region int %8.0g reg Census Region
median_age float %9.0g Median Age
marriage_rate long %12.0g Marriages per 100,000
divorce_rate long %12.0g Divorces per 100,000

Sorted by: region

describe — Describe data in memory or in a file 189

describe, replace

describe with the replace option is rarely used, although you may sometimes find it convenient.

Think of describe, replace as separate from but related to describe without the replace option.
Rather than producing a written report, describe, replace produces a new dataset that contains the
same information a written report would. For instance, try the following:

. sysuse auto, clear

. describe
(report appears; data in memory unchanged)

. list
(visual proof that data are unchanged)

. describe, replace
(no report appears, but the data in memory are changed!)

. list
(visual proof that data are changed)

describe, replace changes the original data in memory into a dataset containing an observation
for each variable in the original data. Each observation in the new data describes a variable in the original
data. The new variables are

1. position, a variable containing the numeric position of the original variable (1, 2, 3, ...).

2. name, a variable containing the name of the original variable, such as "make", "price", "mpg",

3. type, a variable containing the storage type of the original variable, such as "str18", "int",
"float",....

4. isnumeric, a variable equal to 1 if the original variable was numeric and equal to 0 if it was
string.

5. format, a variable containing the display format of the original variable, such as "%-18s",
"Y8.0gc",

6. vallab, a variable containing the name of the value label associated with the original variable,
if any.

7. varlab, a variable containing the variable label of the original variable, such as "Make and
model", "Price", "Mileage (mpg)",....

In addition, the data contain the following characteristics:
_dta[d_filename], the name of the file containing the original data.
_dta[d_filedate], the date and time the file was written.
_dta[d_N], the number of observations in the original data.

_dta[d_sortedby], the variables on which the original data were sorted, if any.

describe — Describe data in memory or in a file 190

Stored results

describe stores the following inr():

Scalars
r(N) number of observations
r (k) number of variables
r(width) width of dataset

r(changed) flag indicating data have changed since last saved

Macros
r(datalabel) dataset label
r(varlist) variables in dataset (if varlist specified)
r(sortlist) variables by which data are sorted (if varlist specified)

describe, replace stores nothing in r ().

References

Cox, N. J. 2015. Speaking Stata: A set of utilities for managing missing values. Stata Journal 15: 1174-1185.
Dietz, T., and L. Kalof. 2009. Introduction to Social Statistics: The Logic of Statistical Reasoning. Chichester, UK: Wiley.

Also see

[D] ds — Compactly list variables with specified properties

[D] varmanage — Manage variable labels, formats, and other properties
[D] ef — Compare two datasets

[D] codebook — Describe data contents

[D] compare — Compare two variables

[D] compress — Compress data in memory

]

]

]

]

]

]

[D] format — Set variables’ output format

[D] fralias — Alias variables from linked frames
[D] label — Manipulate labels

[D] lookfor — Search for string in variable names and labels
[D] notes — Place notes in data

[D] order — Reorder variables in dataset
[D] rename — Rename variable

[SVY] svydescribe — Describe survey data

[U] 6 Managing memory

https://www.stata-journal.com/article.html?article=dm0085
https://www.stata.com/bookstore/social-statistics-introduction/

destring — Convert string variables to numeric variables and vice versa

Description Quick start Menu

Syntax Options for destring Options for tostring
Remarks and examples Acknowledgment References

Also see

Description

destring converts variables in varlist from string to numeric. If varlist is not specified, destring
will attempt to convert all variables in the dataset from string to numeric. Characters listed in ignore ()
are removed. Variables in varlist that are already numeric will not be changed. destring treats both

empty strings “” and “.” as indicating sysmiss (.) and interprets the strings “.a”, “.b”, ..., “.z” as
the extended missing values .a, .b, ..., .z; see [U] 12.2.1 Missing values. destring also ignores any
leading or trailing spaces so that, for example, “ ” is equivalent to “” and “ . ” is equivalent to “.”.

tostring converts variables in varlist from numeric to string. The most compact string format pos-
sible is used. Variables in varlist that are already string will not be converted.

Quick start

Convert strgl from string to numeric, and place result in num1

destring strgl, generate(numil)

Same as above, but ignore the % character in strgl

destring strgl, generate(numl) ignore (%)

Same as above, but return . for observations with nonnumeric characters

destring strgl, generate(numl) force

Convert num2 from numeric to string, and place result in strg2

tostring num2, generate(strg2)

Same as above, but format with a leading zero and 3 digits after the decimal
tostring num2, generate(strg2) format(%09.3f)

Menu
destring

Data > Create or change data > Other variable-transformation commands > Convert variables from string to
numeric

tostring

Data > Create or change data > Other variable-transformation commands > Convert variables from numeric to
string

191

destring — Convert string variables to numeric variables and vice versa 192

Syntax
Convert string variables to numeric variables

destring [varlist], { generate (newvarlist) | replace } [destring_options |

Convert numeric variables to string variables

tostring varlist , {generate (newvarlist) | replace } [tosl‘ring_options}

destring_options Description
generate (newvarlist) generate newvary, ..., newvar,, for each variable in varlist
*replace replace string variables in var/ist with numeric variables

ignore("chars" |, ignoreopts]) remove specified nonnumeric characters, as characters or as
bytes, and illegal Unicode characters

force convert nonnumeric strings to missing values

float generate numeric variables as type float

percent convert percent variables to fractional form

dpcomma convert variables with commas as decimals to period-decimal
format

* Either generate (newvarlist) or replace is required.

tostring _options Description
* generate (newvarlist) generate newvary, ..., newvar,, for each variable in varlist
* replace replace numeric variables in varlist with string variables
force force conversion ignoring information loss
format (format) convert using specified format
usedisplayformat convert using display format

* Either generate (newvarlist) or replace is required.

Options for destring

Either generate () or replace must be specified. With either option, if any string variable contains
nonnumeric characters not specified with ignore (), then no corresponding variable will be generated,
nor will that variable be replaced (unless force is specified).

generate (newvarlist) specifies that a new variable be created for each variable in varlist. newvarlist
must contain the same number of new variable names as there are variables in varlist. If varlist is
not specified, destring attempts to generate a numeric variable for each variable in the dataset;
newvarlist must then contain the same number of new variable names as there are variables in the
dataset. Any variable labels or characteristics will be copied to the new variables created.

replace specifies that the variables in var/ist be converted to numeric variables. If varlist is not spec-
ified, destring attempts to convert all variables from string to numeric. Any variable labels or
characteristics will be retained.

destring — Convert string variables to numeric variables and vice versa 193

ignore ("chars" [, ignoreopts|) specifies nonnumeric characters be removed. ignoreopts may be
aschars, asbytes, or illegal. The default behavior is to remove characters as characters, which is
the same as specifying aschars. asbytes specifies removal of all bytes included in all characters in
the ignore string, regardless of whether these bytes form complete Unicode characters. i11legal spec-
ifies removal of all illegal Unicode characters, which is useful for removing high-ASCII characters.
illegal may not be specified with asbytes. If any string variable still contains any nonnumeric or
illegal Unicode characters after the ignore string has been removed, no action will take place for that
variable unless force is also specified. Note that to Stata the comma is a nonnumeric character; see
also the dpcomma option below.

force specifies that any string values containing nonnumeric characters, in addition to any specified
with ignore (), be treated as indicating missing numeric values.

float specifies that any new numeric variables be created initially as type float. The default is type
double; see [D] Data types. destring attempts automatically to compress each new numeric vari-
able after creation.

percent removes any percent signs found in the values of a variable, and all values of that variable are
divided by 100 to convert the values to fractional form. percent by itself implies that the percent
sign, “%7, is an argument to ignore (), but the converse is not true.

dpcomma specifies that variables with commas as decimal values should be converted to have periods as
decimal values.

Options for tostring

Either generate () or replace must be specified. If converting any numeric variable to string would
result in loss of information, no variable will be produced unless force is specified. For more details,
see force below.

generate (newvarlist) specifies that a new variable be created for each variable in varlist. newvarlist
must contain the same number of new variable names as there are variables in varlist. Any variable
labels or characteristics will be copied to the new variables created.

replace specifies that the variables in varlist be converted to string variables. Any variable labels or
characteristics will be retained.

force specifies that conversions be forced even if they entail loss of information. Loss of information
means one of two circumstances: 1) The result of real (strofreal (varname, "format")) is not
equal to varname; that is, the conversion is not reversible without loss of information; 2) replace
was specified, but a variable has associated value labels. In circumstance 1, it is usually best to
specify usedisplayformat or format (). In circumstance 2, value labels will be ignored in a forced
conversion. decode (see [D] encode) is the standard way to generate a string variable based on value
labels.

format (format) specifies that a numeric format be used as an argument to the strofreal () function,
which controls the conversion of the numeric variable to string. For example, a format of %7 . 2f spec-
ifies that numbers are to be rounded to two decimal places before conversion to string. See Remarks
and examples below and [FN] String functions and [D] format. format () cannot be specified with
usedisplayformat.

usedisplayformat specifies that the current display format be used for each variable. For example,
this option could be useful when using US Social Security numbers or daily or other dates with some
%d or %t format assigned. usedisplayformat cannot be specified with format ().

destring — Convert string variables to numeric variables and vice versa 194

Remarks and examples

Remarks are presented under the following headings:

destring

tostring

Saved characteristics
Video example

destring

b Example 1

We read in a dataset, but somehow all the variables were created as strings. The variables contain no
nonnumeric characters, and we want to convert them all from string to numeric data types.

. use https://www.stata-press.com/data/r19/destringl
. describe

Contains data from https://www.stata-press.com/data/r19/destringl.dta

Observations: 10
Variables: 5 3 Mar 2024 10:15
Variable Storage Display Value
name type format label Variable label
id str3 %9s
num str3 %9s
code str4 %9s
total strb %9s
income strb %9s
Sorted by:
. list
id num code total income
1. 111 243 1234 543 23423
2. 111 123 2345 67854 12654
3. 111 234 3456 345 43658
4. 222 345 4567 57 23546
5. 333 456 5678 23 21432
6. 333 567 6789 23465 12987
7. 333 678 7890 65 9823
8. 444 789 8976 23 32980
9. 444 901 7654 23 18565
10. 555 890 6543 423 19234

. destring, replace

id: all characters numeric; replaced as int

num: all characters numeric; replaced as int
code: all characters numeric; replaced as int
total: all characters numeric; replaced as long
income: all characters numeric; replaced as long

destring — Convert string variables to numeric variables and vice versa 195

. describe

Contains data from https://www.stata-press.com/data/r19/destringl.dta

Observations: 10
Variables: 5 3 Mar 2024 10:15
Variable Storage Display Value
name type format label Variable label
id int %10.0g
num int %10.0g
code int %10.0g
total long %10.0g
income long %10.0g
Sorted by:
Note: Dataset has changed since last saved.
. list
id num code total income
1. 111 243 1234 543 23423
2. 111 123 2345 67854 12654
3. 111 234 3456 345 43658
4. 222 345 4567 57 23546
5. 333 456 5678 23 21432
6. 333 567 6789 23465 12987
7. 333 678 7890 65 9823
8. 444 789 8976 23 32980
9. 444 901 7654 23 18565
10. 565 890 6543 423 19234

b Example 2

Our dataset contains the variables date, price, and percent. These variables were accidentally read
into Stata as string variables because they contain spaces, dollar signs, commas, and percent signs. We
will leave the date variable as a string so that we can use the date () function to convert it to a numeric
date. For price and percent, we want to remove all of the nonnumeric characters and create new
variables containing numeric values. After removing the percent sign, we want to convert the percent
variable to decimal form.

destring — Convert string variables to numeric variables and vice versa 196

. use https://www.stata-press.com/data/r19/destring2, clear
. describe

Contains data from https://www.stata-press.com/data/r19/destring2.dta

Observations: 10
Variables: 3 3 Mar 2024 22:50
Variable Storage Display Value
name type format label Variable label
date stri4 %10s
price stril Ylils
percent str3 %9s
Sorted by:
. list
date price percent
1. 1999 12 10 $2,343.68 347
2. 2000 07 08 $7,233.44 867
3. 1997 03 02 $12,442.89 129
4. 1999 09 00 $233,325.31 6%
5. 1998 10 04 $1,549.23 76%
6. 2000 03 28 $23,517.03 35%
7. 2000 08 08 $2.43 69%
8. 1997 10 20 $9,382.47 32%
9. 1998 01 16 $289,209.32 457
10. 1999 11 12 $8,282.49 1%

. destring price percent, generate(price2 percent2) ignore("$,%") percent
price: characters $, removed; price2 generated as double
percent: character % removed; percent2 generated as double

. describe

Contains data from https://www.stata-press.com/data/r19/destring2.dta

Observations: 10
Variables: 5 3 Mar 2024 22:50
Variable Storage Display Value
name type format label Variable label
date stri4 %10s
price stril %lis
price2 double %10.0g
percent str3 %9s
percent2 double %10.0g
Sorted by:
Note: Dataset has changed since last saved.

destring — Convert string variables to numeric variables and vice versa 197

. list
date price price2 percent percent2
1. 1999 12 10 $2,343.68 2343.68 34% .34
2. | 2000 07 08 $7,233.44 7233.44 867% .86
3. 1997 03 02 $12,442.89 12442.89 12% .12
4. 1999 09 00 $233,325.31 233325.31 6% .06
5. 1998 10 04 $1,549.23 1549.23 76% .76
6. | 2000 03 28 $23,517.03 23517.03 35% .35
7. | 2000 08 08 $2.43 2.43 697% .69
8. 1997 10 20 $9,382.47 9382.47 32% .32
9. 1998 01 16 $289,209.32 289209.32 45% .45
10. 1999 11 12 $8,282.49 8282.49 1% .01

d
tostring

Conversion of numeric data to string equivalents can be problematic. Stata, like most software, holds
numeric data to finite precision and in binary form. See the discussion in [U] 13.12 Precision and
problems therein. If no format () is specified, tostring uses the format %12.0g. This format is, in
particular, sufficient to convert integers held as bytes, ints, or longs to string equivalent without loss of
precision.

However, users will often need to specify a format themselves, especially when the numeric data have
fractional parts and for some reason a conversion to string is required.

b Example 3

Our dataset contains a string month variable and numeric year and day variables. We want to convert
the three variables to a %td date.

. use https://www.stata-press.com/data/r19/tostring, clear

. list
id month day year
1. 123456789 jan 10 2001
2. 123456710 mar 20 2001
3. 123456711 may 30 2001
4. 123456712 jun 9 2001
5. 123456713 oct 17 2001
6. 123456714 nov 15 2001
7. 123456715 dec 28 2001
8. 123456716 apr 29 2001
9. 123456717 mar 11 2001
10. 123456718 jul 3 2001

. tostring year day, replace
year was float now str4
day was float now str2

. generate date = month + "/" + day + "/" + year

. generate edate = date(date, "MDY")

destring — Convert string variables to numeric variables and vice versa 198

. format edate %td

. list
id month day year date edate
1. 123456789 jan 10 2001 jan/10/2001 10jan2001
2. 123456710 mar 20 2001 mar/20/2001 20mar2001
3. | 123456711 may 30 2001 may/30/2001 30may2001
4. 123456712 jun 9 2001 jun/9/2001 09jun2001
5. 123456713 oct 17 2001 oct/17/2001 170ct2001
6. 123456714 nov 156 2001 nov/15/2001 15n0v2001
7. 123456715 dec 28 2001 dec/28/2001 28dec2001
8. 123456716 apr 29 2001 apr/29/2001 29apr2001
9. 123456717 mar 11 2001 mar/11/2001 11mar2001
10. 123456718 jul 3 2001 jul/3/2001 03jul2001

Saved characteristics

Each time the destring or tostring commands are issued, an entry is made in the characteristics
list of each converted variable. You can type char 1ist to view these characteristics.

After example 2, we could use char list to find out what characters were removed by the destring
command.

. char list
price2[destring]: Characters removed were: $,
price2[destring_cmd]: destring price percent, generate(price2 percent..
percent2[destring] : Character removed was: %
percent2[destring_cmd] : destring price percent, generate(price2 percent..

Video example

How to convert a string variable to a numeric variable

Acknowledgment

destring and tostring were originally written by Nicholas J. Cox of the Department of Geography
at Durham University, UK, who is coeditor of the Stata Journal and author of Speaking Stata Graphics.

References

Cox, N. J. 1999a. dm45.1: Changing string variables to numeric: Update. Stata Technical Bulletin 49: 2. Reprinted in
Stata Technical Bulletin Reprints, vol. 9, p. 14. College Station, TX: Stata Press.

. 1999b. dm45.2: Changing string variables to numeric: Correction. Stata Technical Bulletin 52: 2. Reprinted in
Stata Technical Bulletin Reprints, vol. 9, p. 14. College Station, TX: Stata Press.

. 2011. Speaking Stata: MMXI and all that: Handling Roman numerals within Stata. Stata Journal 11: 126-142.

Cox, N. J., and W. W. Gould. 1997. dm45: Changing string variables to numeric. Stata Technical Bulletin 37: 4-6.
Reprinted in Stata Technical Bulletin Reprints, vol. 7, pp. 34-37. College Station, TX: Stata Press.

Cox, N. J., and C. B. Schechter. 2018. Speaking Stata: Seven steps for vexatious string variables. Stata Journal 18:
981-994.

https://www.youtube.com/watch?v=Js_i3wI2-jY
https://www.stata-journal.com/
https://www.stata-press.com/books/speaking-stata-graphics/
https://www.stata.com/products/stb/journals/stb49.pdf
https://www.stata.com/products/stb/journals/stb52.pdf
https://www.stata-journal.com/article.html?article=dm0054
https://www.stata.com/products/stb/journals/stb37.pdf
https://www.stata-journal.com/article.html?article=dm0098

destring — Convert string variables to numeric variables and vice versa 199

Cox, N. J., and J. B. Wernow. 2000a. dm8&0: Changing numeric variables to string. Stata Technical Bulletin 56: 8§—12.
Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 24-28. College Station, TX: Stata Press.

. 2000b. dm8&0.1: Update to changing numeric variables to string. Stata Technical Bulletin 57: 2. Reprinted in
Stata Technical Bulletin Reprints, vol. 10, pp. 28-29. College Station, TX: Stata Press.

Jeanty, P. W. 2013. Dealing with identifier variables in data management and analysis. Stata Journal 13: 699-718.

Also see

[D] egen — Extensions to generate

[D] encode — Encode string into numeric and vice versa
[D] generate — Create or change contents of variable
[D] split — Split string variables into parts

[FN] String functions

https://www.stata.com/products/stb/journals/stb56.pdf
https://www.stata.com/products/stb/journals/stb57.pdf
https://www.stata-journal.com/article.html?article=dm0071

dir — Display filenames

Description Quick start Syntax Option Remarks and examples
Also see

Description

dir and 1s—they work the same way—list the names of files in the specified directory; the names
of the commands come from names popular on Unix and Windows computers.

Quick start
List the names of all files in the current directory using Stata for Windows
dir
Same as above, but for Mac or Unix

1s

List Stata datasets in the current directory using Stata for Windows
dir *.dta

Same as above, but for Mac or Unix
1s x.dta

List dataset name for all .dta files in the C:\ directory using Stata for Windows
dir C:\x*.dta

List dataset name for all .dta files in the home directory using Stata for Windows
dir ~*.dta

Same as above, but for Mac or Unix

1ls ~/*.dta
Syntax
{dir|1s} ["][filespec]["] [, wide]

filespec is any valid Mac, Unix, or Windows file path or file specification (see [U] 11.6 Filenaming

€y

conventions) and may include “*” to indicate any string of characters.

Note: Double quotes must be used to enclose filespec if the name contains spaces.

200

dir — Display filenames 201

Option

wide under Mac and Windows produces an effect similar to specifying /W with the DOS dir com-
mand—it compresses the resulting listing by placing more than one filename on a line. Under Unix,
it produces the same effect as typing 1s -F -C. Without the wide option, 1s is equivalent to typing
1s -F -1.

Remarks and examples

Mac and Unix: The only difference between the Stata and Unix 1s commands is that piping through
the more(1) or pg(1) filter is unnecessary— Stata always pauses when the screen is full.

Windows: Other than minor differences in presentation format, there is only one difference between
the Stata and DOS dir commands: the DOS /P option is unnecessary, because Stata always pauses when
the screen is full.

b Example 1

If you use Stata for Windows and wish to obtain a list of all your Stata-format data files, type

. dir *.dta
3.9k 7/07/15 13:51 auto.dta
0.6k 8/04/15 10:40 cancer.dta
3.5k 7/06/08 17:06 census.dta
3.4k 1/25/08 9:20 hsng.dta
0.3k 1/26/08 16:54 kva.dta
0.7k 4/27/11 11:39 sysage.dta
0.5k 5/09/07 2:56 systolic.dta
10.3k 7/13/08 8:37 Household Survey.dta

You could also include the wide option:

. dir *.dta, wide

3.9k auto.dta 0.6k cancer.dta 3.5k census.dta
3.4k hsng.dta 0.3k kva.dta 0.7k sysage.dta
0.5k systolic.dta 10.3k Household Survey.dta

Unix users will find it more natural to type

. 1s *.dta

-rw-r----- 1 roger 2868 Mar 4 15:34 highway.dta
-ry-r----- 1 roger 941 Apr 5 09:43 hoyle.dta
—rw-r----- 1 roger 19312 May 14 10:36 pl.dta
“rW-r—--—-—--- 1 roger 11838 Apr 11 13:26 p2.dta

but they could type dir if they preferred. Mac users may also type either command.

. dir *.dta

—rw-r----- 1 roger 2868 Mar 4 15:34 highway.dta
“IW-r-—--- 1 roger 941 Apr 5 09:43 hoyle.dta
“ITW-r----- 1 roger 19312 May 14 10:36 pl.dta
—rw-r----- 1 roger 11838 Apr 11 13:26 p2.dta

dir — Display filenames 202

Q Technical note

There is a macro function named dir that allows you to obtain a list of files in a macro for later
processing. See Macro functions for filenames and file paths in [P] macro.
a

Also see

[D] ed — Change directory
[D] copy — Copy file from disk or URL

[D] erase — Erase a disk file

—

D] mkdir — Create directory

]
]
]
]
[D] rmdir — Remove directory

[D] shell — Temporarily invoke operating system
[D] type — Display contents of a file

[U] 11.6 Filenaming conventions

drawnorm — Draw sample from multivariate normal distribution

Description Quick start Menu Syntax Options
Remarks and examples Methods and formulas References Also see
Description

drawnorm draws a sample from a multivariate normal distribution with desired means and covariance
matrix. The default is orthogonal data with mean 0 and variance 1. The covariance matrix may be
singular. The values generated are a function of the current random-number seed or the number specified
with set seed(); see [R] set seed.

Quick start

Generate independent variables x and y, where x has mean 2 and standard deviation 0.5 and y has mean
3 and standard deviation 1

drawnorm x y, means(2,3) sds(.5,1)

Same as above, but create dataset of 1,000 observations on x and y with means stored in vector m and
standard deviations stored in vector sd

drawnorm x y, means (m) sds(sd) n(1000)

Same as above, and set the seed for the random-number generator to reproduce results
drawnorm x y, means (m) sds(sd) n(1000) seed(81625)

Sample from bivariate standard normal distribution with covariance between x and y of 0.5 stored in
variance—covariance matrix C

matrixC= (1, .5\ .5, 1)
drawnorm x y, cov(C)

Sample from a trivariate standard normal distribution with correlation between x and y of 0.4, x and z
0f 0.3, and y and z of 0.6 stored in correlation matrix C

matrix C= (1, .4, .3\ .4,1, .6\ .3, .6, 1)
drawnorm x y z, corr(C)

Same as above, but avoid typing full matrix by specifying correlations in vector v treated as a lower
triangular matrix

matrixv=(1, .4,1, .3, .6, 1)
drawnorm x y z, corr(v) cstorage (lower)

Menu

Data > Create or change data > Other variable-creation commands > Draw sample from normal distribution

203

drawnorm — Draw sample from multivariate normal distribution 204

Syntax
drawnorm newvarlist | , options |
options Description
Main
clear replace the current dataset
double generate variable type as double; default is float
n(#) generate # observations; default is current number
sds (vector) standard deviations of generated variables
corr (matrix | vector) correlation matrix
cov (matrix | vector) covariance matrix
cstorage (full) store correlation/covariance structure as a symmetric kX k matrix
cstorage (lower) store correlation/covariance structure as a lower triangular matrix
cstorage (upper) store correlation/covariance structure as an upper triangular matrix
forcepsd force the covariance/correlation matrix to be positive semidefinite
means (vector) means of generated variables; default is means (0)
Options
seed (#) seed for random-number generator
Options
Main

clear specifies that the dataset in memory be replaced, even though the current dataset has not been
saved on disk.

double specifies that the new variables be stored as Stata doubles, meaning 8-byte reals. If double is
not specified, variables are stored as f1oats, meaning 4-byte reals. See [D] Data types.

n(#) specifies the number of observations to be generated. The default is the current number of obser-
vations. If n(#) is not specified or is the same as the current number of observations, drawnorm adds
the new variables to the existing dataset; otherwise, drawnorm replaces the data in memory.

sds (vector) specifies the standard deviations of the generated variables. sds() may not be specified
with cov().

corr (matrix | vector) specifies the correlation matrix. If neither corr () nor cov() is specified, the
default is orthogonal data.

cov (matrix | vector) specifies the covariance matrix. If neither cov () nor corr () is specified, the de-
fault is orthogonal data.

cstorage (full | lower | upper) specifies the storage mode for the correlation or covariance structure
in corr () or cov(). The following storage modes are supported:

full specifies that the correlation or covariance structure is stored (recorded) as a symmetric kxk
matrix.

drawnorm — Draw sample from multivariate normal distribution 205

lower specifies that the correlation or covariance structure is recorded as a lower triangular matrix.
With k variables, the matrix should have k(k + 1)/2 elements in the following order:

C11 (:21 (:22 C31 (:32 (:33 te (:kl (:k2 te (:kk

upper specifies that the correlation or covariance structure is recorded as an upper triangular matrix.
With k variables, the matrix should have k(k + 1)/2 elements in the following order:

Ci1CiaCyz oot Cyp Cp Coz .. Cyp - Cpmipny Clmany G

Specifying cstorage(full) is optional if the matrix is square. cstorage(lower) or
cstorage (upper) is required for the vectorized storage methods. See Example 2: Storage modes
for correlation and covariance matrices.

forcepsd modifies the matrix C to be positive semidefinite (psd), and so be a proper covariance matrix.
If C is not positive semidefinite, it will have negative eigenvalues. By setting negative eigenvalues
to 0 and reconstructing, we obtain the least-squares positive-semidefinite approximation to C. This
approximation is a singular covariance matrix.

means (vector) specifies the means of the generated variables. The default is means (0).

seed (#) specifies the initial value of the random-number seed used by the runiform() function. The

default is the current random-number seed. Specifying seed (#) is the same as typing set seed #
before issuing the drawnorm command.

Remarks and examples

b Example 1

Suppose that we want to draw a sample of 1,000 observations from a normal distribution N (M, V),
where M is the mean matrix and V is the covariance matrix:

. matrix M = 5, -6, 0.5
.matrix V= (9, 5, 2\ 5,4, 1\2,1, 1)
. matrix list M

M[1,3]
cl c2 «c3
rl 5 -6 .5

. matrix list V

symmetric V[3,3]

cl c2 c3
rl 9
r2 5 4

r3 2 1 1

. drawnorm x y z, n(1000) cov(V) means(M)
(obs 1,000)

drawnorm — Draw sample from multivariate normal distribution 206

. summarize
Variable Obs Mean Std. dev. Min Max
b'q 1,000 5.0424 3.061953 -5.065592 15.96129
y 1,000 -5.914462 2.012488 -12.25234 .3326397
z 1,000 .5181909 1.017397 -2.59316 3.884182
. correlate, cov
(obs=1,000)
b'd y z
b4 9.37556
y 5.14201 4.05011
z 2.17972 1.07222 1.0351

Q Technical note

The values generated by drawnorm are a function of the current random-number seed. To reproduce
the same dataset each time drawnorm is run with the same setup, specify the same seed number in the
seed () option.

a

b Example 2: Storage modes for correlation and covariance matrices

The three storage modes for specifying the correlation or covariance matrix in corr2data and
drawnorm can be illustrated with a correlation structure, C, of 4 variables. In full storage mode, this
structure can be entered as a 4 x 4 Stata matrix:

. matrix C = (1.0000, 0.3232, 0.1112, 0.0066 \ ///
0.3232, 1.0000, 0.6608, -0.1572 \ ///
0.1112, 0.6608, 1.0000, -0.1480 \ ///
0.0066, -0.1572, -0.1480, 1.0000)

Elements within a row are separated by commas, and rows are separated by a backslash, \. We use
the input continuation operator /// for convenient multiline input; see [P] comments. In this storage
mode, we probably want to set the row and column names to the variable names:

matrix rownames C = price trunk headroom rep78
matrix colnames C = price trunk headroom rep78

This correlation structure can be entered more conveniently in one of the two vectorized storage
modes. In these modes, we enter the lower triangle or the upper triangle of C in rowwise order; these two
storage modes differ only in the order in which the k(% + 1)/2 matrix elements are recorded. The lower
storage mode for C comprises a vector with 4(4 4+ 1)/2 = 10 elements, thatis, a 1 x 10 or 10 x 1 Stata
matrix, with one row or column,

matrix C = (1.0000, ///
0.3232, 1.0000, ///

0.1112, 0.6608, 1.0000, ///
0.0066, -0.1572, -0.1480, 1.0000)

or more compactly as

matrix C = (1, 0.3232, 1, 0.1112, 0.6608, 1, 0.0066, -0.1572, -0.1480, 1)

drawnorm — Draw sample from multivariate normal distribution 207

C may also be entered in upper storage mode as a vector with 4(4 + 1)/2 = 10 elements, that is, a
1 x 10 or 10 x 1 Stata matrix,

matrix C = (1.0000, 0.3232, 0.1112, 0.0066, ///
1.0000, 0.6608, -0.1572, ///
1.0000, -0.1480, ///

1.0000)

or more compactly as

matrix C = (1, 0.3232, 0.1112, 0.0066, 1, 0.6608, -0.1572, 1, -0.1480, 1)

Methods and formulas

Results are asymptotic. The more observations generated, the closer the correlation matrix of the
dataset is to the desired correlation structure.

Let V = A’A be the desired covariance matrix and M be the desired mean matrix. We first generate
X, such that X ~ N(0,1). Let Y = A’X + M, then Y ~ N(M, V).

References

Canette, 1. 2013. Fitting ordered probit models with endogenous covariates with Stata’s gsem command. The Stata
Blog: Not Elsewhere Classified. https://blog.stata.com/2013/11/07/fitting-ordered-probit-models-with-endogenous-
covariates-with-statas-gsem-command/.

Chen, M. 2015. Generating nonnegatively correlated binary random variates. Stata Journal 15: 301-308.

Gould, W. W. 2012a. Using Stata’s random-number generators, part 2: Drawing without replacement. The Stata Blog:
Not Elsewhere Classified. https://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-
without-replacement/.

. 2012b. Using Stata’s random-number generators, part 3: Drawing with replacement. The Stata Blog:
Not Elsewhere Classified. https://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawing-
with-replacement/.

Huber, C. 2014. How to simulate multilevel/longitudinal data. The Stata Blog: Not Elsewhere Classified. https://blog.
stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/.

Lee, S. 2015. Generating univariate and multivariate nonnormal data. Stata Journal 15: 95-109.

Lindsey, C. 2015a. Probit model with sample selection by mlexp. The Stata Blog: Not Elsewhere Classified. https:
//blog.stata.com/2015/10/22/probit-model-with-sample-selection-by-mlexp/.

. 2015b. Using mlexp to estimate endogenous treatment effects in a probit model. The Stata Blog: Not
Elsewhere Classified. https://blog.stata.com/2015/11/05/using-mlexp-to-estimate-endogenous-treatment-effects-in-a-
probit-model/.

Also see

[D] corr2data — Create dataset with specified correlation structure

[R] set seed — Specify random-number seed and state

https://blog.stata.com/2013/11/07/fitting-ordered-probit-models-with-endogenous-covariates-with-statas-gsem-command/
https://blog.stata.com/2013/11/07/fitting-ordered-probit-models-with-endogenous-covariates-with-statas-gsem-command/
https://www.stata-journal.com/article.html?article=st0382
https://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-without-replacement/
https://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-without-replacement/
https://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawing-with-replacement/
https://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawing-with-replacement/
https://blog.stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/
https://blog.stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/
https://www.stata-journal.com/article.html?article=st0371
https://blog.stata.com/2015/10/22/probit-model-with-sample-selection-by-mlexp/
https://blog.stata.com/2015/10/22/probit-model-with-sample-selection-by-mlexp/
https://blog.stata.com/2015/11/05/using-mlexp-to-estimate-endogenous-treatment-effects-in-a-probit-model/
https://blog.stata.com/2015/11/05/using-mlexp-to-estimate-endogenous-treatment-effects-in-a-probit-model/

drop — Drop variables or observations

Description Quick start Menu Syntax
Remarks and examples Stored results Also see

Description

drop eliminates variables or observations from the data in memory.

keep works the same way as drop, except that you specify the variables or observations to be kept
rather than the variables or observations to be deleted.

Warning: drop and keep are not reversible. Once you have eliminated observations, you cannot read
them back in again. You would need to go back to the original dataset and read it in again. Instead of
applying drop or keep for a subset analysis, consider using if or in to select subsets temporarily. This
is usually the best strategy. Alternatively, applying preserve followed in due course by restore may
be a good approach. You can also use frame put to place a subset of variables or observations from the
current dataset into another frame; see [D] frame put.

Quick start

Remove v1, v2, and v3 from memory

drop vl v2v3

Remove all variables whose name begins with code from memory

drop codex*

Remove observations where v1 is equal to 99
drop if v1==99

Also drop observations where v1 equals 88 or v2 is missing
drop if inlist(v1,88,99) | missing(v2)

Keep observations where v3 is not missing

keep if !missing(v3)

Keep the first observation from each cluster identified by cvar

by cvar: keep if _n==1

Menu

Drop or keep variables

Data > Variables Manager

Drop or keep observations

Data > Create or change data > Drop or keep observations

208

drop — Drop variables or observations 209

Syntax
Drop variables

drop varlist

Drop observations

drop if exp

Drop a range of observations

drop in range [if exp]

Keep variables

keep varlist

Keep observations that satisfy specified condition

keep if exp
Keep a range of observations
keep in range [if exp|

by and collect are allowed with the second syntax of drop and the second syntax of keep; see [U] 11.1.10 Prefix commands.

Remarks and examples

You can clear the entire dataset by typing drop —all without affecting value labels, macros, and
programs. (Also see [U] 12.6 Dataset, variable, and value labels, [U] 18.3 Macros, and [P] program.)

drop — Drop variables or observations 210

b Example 1

We will systematically eliminate data until, at the end, no data are left in memory. We begin by

describing the data:

. use https://www.stata-press.com/data/r19/censusil
(1980 Census data by state)

. describe

Contains data from https://www.stata-press.com/data/r19/censusil.dta

Observations: 50 1980 Census data by state

Variables: 15 2 Dec 2024 14:31

Variable Storage Display Value
name type format label Variable label

state stri3 %-13s State

state2 str2 %=2s Two-letter state abbreviation

region byte %-8.0g cenreg Census region

pop long %12.0gc Population

poplts long %12.0gc Pop, < 5 year

pop5_17 long %12.0gc Pop, 5 to 17 years

pop18p long %12.0gc Pop, 18 and older

pop65p long %12.0gc Pop, 65 and older

popurban long %12.0gc Urban population

medage float %9.2f Median age

death long %12.0gc Number of deaths

marriage long %12.0gc Number of marriages

divorce long %12.0gc Number of divorces

mrgrate float %9.0g Marriage rate

dvcrate float %9.0g Divorce rate

Sorted by: region

We can eliminate all the variables with names that begin with pop by typing drop popx*:

drop — Drop variables or observations 211

. drop pop*
. describe

Contains data from https://www.stata-press.com/data/r19/censusil.dta

Observations: 50 1980 Census data by state
Variables: 9 2 Dec 2024 14:31
Variable Storage Display Value
name type format label Variable label
state stri3 %-13s State
state2 str2 %=-2s Two-letter state abbreviation
region byte %-8.0g cenreg Census region
medage float %9.2f Median age
death long %12.0gc Number of deaths
marriage long %12.0gc Number of marriages
divorce long %12.0gc Number of divorces
mrgrate float %9.0g Marriage rate
dvcrate float %9.0g Divorce rate

Sorted by: region
Note: Dataset has changed since last saved.

Let’s eliminate more variables and then eliminate observations:

. drop marriage divorce mrgrate dvcrate
. describe

Contains data from https://www.stata-press.com/data/r19/censuslil.dta

Observations: 50 1980 Census data by state

Variables: 5 2 Dec 2024 14:31

Variable Storage Display Value
name type format label Variable label

state stri3 %-13s State

state2 str2 %-2s Two-letter state abbreviation

region byte %-8.0g cenreg Census region

medage float %9.2f Median age

death long %12.0gc Number of deaths

Sorted by: region
Note: Dataset has changed since last saved.

Next we will drop any observation for which medage is greater than 32.

. drop if medage > 32
(3 observations deleted)

Let’s drop the first observation in each region:

. by region: drop if _n==
(4 observations deleted)

Now we drop all but the last observation in each region:

. by region: drop if _n!=_N
(39 observations deleted)

Let’s now drop the first 2 observations in our dataset:

. drop in 1/2
(2 observations deleted)

drop — Drop variables or observations 212

Finally, let’s get rid of everything:

. drop _all
. describe

Contains data

Observations: 0
Variables: 0
Sorted by:

Typing keep in 10/1 is the same as typing drop in 1/9.
Typing keep if x==3 is the same as typing drop if x !=3.

keep is especially useful for keeping a few variables from a large dataset. Typing keep myvarl
myvar? is the same as typing drop followed by all the variables in the dataset exceptmyvar1 and myvar2.

Q Technical note

In addition to dropping variables and observations, drop _all removes any business calendars; see
[D] Datetime business calendars.

a

Stored results

drop and keep store the following in r () :

Scalars
r (N_drop) number of observations dropped
r (k_drop) number of variables dropped
Also see

[D] clear — Clear memory

[D] frame put — Copy selected variables or observations to a new frame
[D] varmanage — Manage variable labels, formats, and other properties
[U] 11 Language syntax

[U] 13 Functions and expressions

ds — Compactly list variables with specified properties

Description Quick start Menu Syntax Options
Remarks and examples Stored results Acknowledgments Also see
Description

ds lists variable names of the dataset currently in memory in a compact or detailed format, and lets
you specify subsets of variables to be listed, either by name or by properties (for example, the variables
are numeric). In addition, ds leaves behind in r (varlist) the names of variables selected so that you
can use them in a subsequent command.

ds, typed without arguments, lists all variable names of the dataset currently in memory in a compact
form.

Quick start

List variables in alphabetical order
ds, alpha

List all string variables

ds, has(type string)

List all numeric variables

ds, has(type numeric)

Same as above, but exclude date-formatted variables
ds, not (format %td* type string)

List all variables whose label includes the phrase “my text” regardless of case

ds, has(varlabel "#my text*") insensitive

Menu

Data > Describe data > Compactly list variable names

213

ds — Compactly list variables with specified properties 214

Syntax
Simple syntax

ds [, glpha]

Advanced syntax

ds [varlisl} [, Options]

options Description
Main
not list variables not specified in varlist
alpha list variables in alphabetical order
detail display additional details
varwidth(#) display width for variable names; default is varwidth(12)
skip(#) gap between variables; default is skip(2)
Advanced
has (spec) describe subset that matches spec
not (spec) describe subset that does not match spec
insensitive perform case-insensitive pattern matching
indent (#) indent output; seldom used

collect is allowed; see [U] 11.1.10 Prefix commands.

insensitive and indent (#) are not shown in the dialog box.

spec Description

type typelist specified types

format patternlist display format matching patternlist

varlabel [patternlist | variable label or variable label matching patternlist
char [patternlist | characteristic or characteristic matching patternlist
vallabel [patternlist | value label or value label matching patternlist

linkname namelist link name matching namelist

ds — Compactly list variables with specified properties 215

typelist used in has (type typelist) and not (type #ypelist) is a list of one or more types, each of which
may be alias, unknown, numeric, string, str#, strL, byte, int, long, float, or double or
may be a numlist such as 1/8 to mean “stri str2 ... str8”. Examples include

has(type alias) was created by fralias add; see [D] fralias
has (type unknown) is type alias, but the link is broken
has(type int) is of type int

has(type byte int long) is of integer type

not (type int) is not of type int

not (type byte int long) is not of the integer types

has (type numeric) is a numeric variable

not (type string) is not a string (str# or strL) variable (same as above)
has (type 1/40) is stri, str2,..., str40

has(type str#) is stril, str2, ..., str2045 but not strL
has(type strL) is of type strL but not str#

has (type numeric 1/2) is numeric or strl or str2

patternlist used in, for instance, has (format patternlist), is a list of one or more patterns. A pattern is
the expected text with the addition of the characters * and 7. * indicates 0 or more characters go here,
and 7 indicates exactly 1 character goes here. Examples include

has(format *f) format is %#. #£

has(format %t*) has time or date format

has(format %-*s) is a left-justified string

has(varl *weight*) variable label includes word weight
has(varl *weight* *Weight*) variable label has weight or Weight

To match a phrase, enclose the phrase in quotes.
has(varl "*some phrasex") variable label has some phrase
If instead you used has(varl *some phrasex*), then only variables having labels ending in some or
starting with phrase would be listed.

namelist used in, for instance, has (1inkname namelist) is a list of one or more names. 1inkname refers
to the linkage variables used to create alias variables; see [D] fralias. Abbreviations in namelist are
not supported.

Options

Main

not specifies that the variables in varlist not be listed. For instance, ds pop*, not specifies that all
variables not starting with the letters pop be listed. The default is to list all the variables in the dataset
or, if varlist is specified, the variables specified.

alpha specifies that the variables be listed in alphabetical order. If the variable contains Unicode char-
acters other than plain ASCII, the sort order is determined strictly by the underlying byte order. See
[U] 12.4.2.5 Sorting strings containing Unicode characters.

detail specifies that detailed output identical to that of describe be produced. If detail is specified,
varwidth(), skip(), and indent () are ignored.

ds — Compactly list variables with specified properties 216

varwidth(#) specifies the display width of the variable names; the default is varwidth(12).

skip (#) specifies the number of spaces between variable names, where all variable names are assumed
to be the length of the longest variable name; the default is skip(2).

Advanced

has (spec) and not (spec) select from the dataset (or from varlist) the subset of variables that meet or
fail the specification spec. Selection may be made on the basis of storage type, variable label, value
label, display format, or characteristics. Only one not, has (), or not () option may be specified.

has(type string) selects all string variables. Typing ds, has(type string) would list all string
variables in the dataset, and typing ds pop*, has (type string) would list all string variables whose
names begin with the letters pop.

has (format patternlist) specifies variables whose format matches any of the patterns in patternlist.
has(format *f) would select all variables with formats ending in £, which presumably would be all
%H#.#E, %O#. #E, and %-#. #f formats. has (format *f *fc) would select all variables with formats
ending in f or fc. not (format %t* %-t*) would select all variables except those with date or time-
series formats.

has(varlabel) selects variables with defined variable labels. has(varlabel *weight*) selects
variables with variable labels including the word “weight”. not (varlabel) would select all variables
with no variable labels.

has(char) selects all variables with defined characteristics. has(char problem) selects all vari-
ables with a characteristic named problem.

has(vallabel) selects variables with defined value labels. has (vallabel yesno) selects variables
whose value label is yesno. has(vallabel *no) selects variables whose value label ends in the
letters no.

has(linkname) selects variables to create alias variables; see [D] fralias.

The following options are available with ds but are not shown in the dialog box:

insensitive specifies that the matching of the patfern in has () and not () be case insensitive. Note
that the case insensitivity applies only to ASCII characters.

indent (#) specifies the amount the lines are indented.

Remarks and examples
If ds is typed without any operands, then a compact list of the variable names for the data currently
in memory is displayed.
b Example 1

ds can be especially useful if you have a dataset with over 1,000 variables, but you may find it con-
venient even if you have considerably fewer variables.

ds — Compactly list variables with specified properties 217

. use https://www.stata-press.com/data/r19/educ3
(ccdb46, 52-54)

. ds

fips popcol medhhinc tlf emp clfbls z

crimes perhspls medfinc clf empmanuf clfuebls adjinc

pcrimes perclpls state clffem emptrade famnw perman

crimrate prcolhs division clfue empserv fam2w pertrade

pop25pls medage region empgovt osigind famwsamp perserv

pophspls perwhite dc empself osigindp popl8pls perother

d

b Example 2

You might wonder why you would ever specify varlist with this command. Remember that varlist
understands the ‘*’ abbreviation character and the ‘-’ dash notation; see [U] 11.4 varname and varlists.
. ds p*

pcrimes pophspls perhspls prcolhs popl8pls pertrade perother
pop25pls popcol perclpls perwhite perman perserv

. ds popcol-clfue

popcol perclpls medage medhhinc state region t1lf clffem
perhspls prcolhs perwhite medfinc division dc clf clfue
d
b Example 3

Because the primary use of ds is to inspect the names of variables, it is sometimes useful to let ds
display the variable names in alphabetical order.

. ds, alpha

adjinc crimes empmanuf famwsamp osigindp perserv pophspls
clf crimrate empself fips pcrimes pertrade prcolhs
clfbls dc empserv medage perclpls perwhite region
clffem division emptrade medfinc perhspls popl8pls state
clfue emp fam2w medhhinc perman pop25pls tlf
clfuebls empgovt famnw osigind perother popcol z

Stored results

ds stores the following in r ():

Macros
r(varlist) the varlist of found variables
Acknowledgments

ds was originally written by StataCorp. It was redesigned and rewritten by Nicholas J. Cox of the
Department of Geography at Durham University, UK, who is coeditor of the Stata Journal and author
of Speaking Stata Graphics. The purpose was to include the selection options not, has (), and not Q);
to produce better-formatted output; and to be faster. Cox thanks Richard Goldstein, William Gould,
Kenneth Higbee, Jay Kaufman, Jean Marie Linhart, and Fred Wolfe for their helpful suggestions on
previous versions.

https://www.stata-journal.com/
https://www.stata-press.com/books/speaking-stata-graphics/

ds — Compactly list variables with specified properties 218

Also see

D] ¢f — Compare two datasets

D] codebook — Describe data contents

D] compare — Compare two variables

D] compress — Compress data in memory

D] describe — Describe data in memory or in a file

D] format — Set variables’ output format

(D]
[D]
(D]
(D]
[D]
(D]
[D] fralias — Alias variables from linked frames
[D] label — Manipulate labels

[D] lookfor — Search for string in variable names and labels
[D] notes — Place notes in data

[D] order — Reorder variables in dataset

(D]

D] rename — Rename variable

duplicates — Report, tag, or drop duplicate observations

Description Quick start Menu Syntax Options
Remarks and examples Stored results Acknowledgments References Also see
Description

duplicates reports, displays, lists, tags, or drops duplicate observations, depending on the subcom-
mand specified. Duplicates are observations with identical values either on all variables if no var/ist is
specified or on a specified varlist.

duplicates report produces a table showing observations that occur as one or more copies and
indicating how many observations are “surplus” in the sense that they are the second (third, ...) copy of
the first of each group of duplicates.

duplicates examples lists one example for each group of duplicated observations. Each example
represents the first occurrence of each group in the dataset.

duplicates list lists all duplicated observations.

duplicates tag generates a variable representing the number of duplicates for each observation.
This will be 0 for all unique observations.

duplicates drop drops all but the first occurrence of each group of duplicated observations. The
word drop may not be abbreviated.

Any observations that do not satisfy specified if and/or in conditions are ignored when you use
report, examples, list, or drop. The variable created by tag will have missing values for such
observations.

Quick start

Report the total number of observations and the number of duplicates
duplicates report

Same as above, but only check for duplicates jointly by v1, v2, and v3
duplicates report vl v2 v3

Generate newv equal to the number of duplicate observations or 0 for unique observations
duplicates tag, generate (newv)

List all duplicate observations
duplicates list

Same as above, but determine duplicates by v1, v2, and v3 and separate list by values of v1
duplicates list vl v2 v3, sepby(v1l)

Drop duplicate observations
duplicates drop

Force dropping observations with duplicates for v1, v2, and v3 if observations are unique by other vari-
ables
duplicates drop vl v2 v3, force

219

duplicates — Report, tag, or drop duplicate observations 220

Menu

duplicates report, duplicates examples, and duplicates list
Data > Data utilities > Report and list duplicated observations

duplicates tag

Data > Data utilities > Tag duplicated observations

duplicates drop

Data > Data utilities > Drop duplicated observations

Syntax
Report duplicates

duplicates report [varlist] [if | [in]
List one example for each group of duplicates
duplicates examples [varlist] [if | [in] [, options|
List all duplicates

duplicates list [varlist] [if] [in] [, options|

Tag duplicates

duplicates tag [varlist] [if] [in], generate (newvar)

Drop duplicates
duplicates drop [if | [in]

duplicates drop varlist [if | [in] , force

duplicates — Report, tag, or drop duplicate observations 221

options Description
Main
compress compress width of columns in both table and display formats
nocompress use display format of each variable
fast synonym for nocompress; no delay in output of large datasets
abbreviate (#) abbreviate variable names to # characters; default is ab(8)
string(#) truncate string variables to # characters; default is string(10)
Options
table force table format
display force display format
header display variable header once; default is table mode
noheader suppress variable header
header (#) display variable header every # lines
clean force table format with no divider or separator lines
divider draw divider lines between columns
separator (#) draw a separator line every # lines; default is separator (5)
sepby (varlist) draw a separator line whenever varlist values change
nolabel display numeric codes rather than label values
Summary
mean|(varlist)] add line reporting the mean for each of the (specified) variables
sum| (varlist) | add line reporting the sum for each of the (specified) variables
N[(varlist)] add line reporting the number of nonmissing values for each of the
(specified) variables
labvar (varname) substitute Mean, Sum, or N for value of varname in last row of table
Advanced
constant|(varlist) separate and list variables that are constant only once
notrim suppress string trimming
absolute display overall observation numbers when using by varlist:
nodotz display numerical values equal to .z as field of blanks
subvarname substitute characteristic for variable name in header
linesize(#) columns per line; default is 1inesize (79)

collect is allowed with all duplicates commands; see [U] 11.1.10 Prefix commands.

Options

Options are presented under the following headings:

Options for duplicates examples and duplicates list
Option for duplicates tag
Option for duplicates drop

Options for duplicates examples and duplicates list

Main

compress, nocompress, fast, abbreviate (#), string(#); see [D] list.

duplicates — Report, tag, or drop duplicate observations 222

table, display, header, noheader, header (#), clean, divider, separator (#),
sepby (varlist), nolabel; see [D] list.

Summary

mean|(varlist)], sum[(varlist) |, N[(varlist) |, labvar (varname); see [D] list.

Advanced

constant [(varlisl)], notrim, absolute, nodotz, subvarname, linesize (#); see [D] list.

Option for duplicates tag

generate (newvar) is required and specifies the name of a new variable that will tag duplicates.

Option for duplicates drop

force specifies that observations duplicated with respect to a named varlist be dropped. The force
option is required when such a varlist is given as a reminder that information may be lost by dropping
observations, given that those observations may differ on any variable not included in variist.

Remarks and examples

Current data management and analysis may hinge on detecting (and sometimes dropping) duplicate
observations. In Stata terms, duplicates are observations with identical values, either on all variables if
no varlist is specified or on a specified varlist; that is, 2 or more observations that are identical on all
specified variables form a group of duplicates. When the specified variables are a set of explanatory
variables, such a group is often called a covariate pattern or a covariate class.

Linguistic purists will point out that duplicate observations are strictly only those that occur in pairs,
and they might prefer a more literal term, although the most obvious replacement, “replicates”, already
has another statistical meaning. However, the looser term appears in practice to be much more frequently
used for this purpose and to be as easy to understand.

Observations may occur as duplicates through some error; for example, the same observations might
have been entered more than once into your dataset. In contrast, some researchers deliberately enter a
dataset twice. Each entry is a check on the other, and all observations should occur as identical pairs,
assuming that one or more variables identify unique records. If there is just one copy, or more than two
copies, there has been an error in data entry.

Or duplicate observations may also arise simply because some observations just happen to be identical,
which is especially likely with categorical variables or large datasets. In this second situation, consider
whether contract, which automatically produces a count of each distinct set of observations, is more
appropriate for your problem. See [D] contract.

Observations unique on all variables in varlist occur as single copies. Thus there are no surplus ob-
servations in the sense that no observation may be dropped without losing information about the contents
of observations. (Information will inevitably be lost on the frequency of such observations. Again, if
recording frequency is important to you, contract is the better command to use.) Observations that are
duplicated twice or more occur as copies, and in each case, all but one copy may be considered surplus.

duplicates — Report, tag, or drop duplicate observations 223

This command helps you produce a dataset, usually smaller than the original, in which each observa-
tion is unique (literally, each occurs only once) and distinct (each differs from all the others). If you are
familiar with Unix systems, or with sets of Unix utilities ported to other platforms, you will know the
uniq command, which removes duplicate adjacent lines from a file, usually as part of a pipe.

b Example 1

Suppose that we are given a dataset in which some observations are unique (no other observation is
identical on all variables) and other observations are duplicates (in each case, at least 1 other observation
exists that is identical). Imagine dropping all but 1 observation from each group of duplicates, that is,
dropping the surplus observations. Now all the observations are unique. This example helps clarify the
difference between 1) identifying unique observations before dropping surplus copies and 2) identifying
unique observations after dropping surplus copies (whether in truth or merely in imagination). codebook
(see [D] codebook) reports the number of unique values for each variable in this second sense.

Suppose that we have typed in a dataset for 200 individuals. However, a simple describe or count
shows that we have 202 observations in our dataset. We guess that we may have typed in 2 observations
twice. duplicates report gives a quick report of the occurrence of duplicates:

. use https://www.stata-press.com/data/r19/dupxmpl
. duplicates report

Duplicates in terms of all variables

Copies Observations Surplus
1 198 0
4 2

Our hypothesis is supported: 198 observations are unique (just 1 copy of each), whereas 4 occur
as duplicates (2 copies of each; in each case, 1 may be dubbed surplus). We now wish to see which
observations are duplicates, so the next step is to ask for a duplicates list.

. duplicates list

Duplicates in terms of all variables

Group Obs id x y

1 42 42 0 2
1 43 42 0 2
2 145 144 4 4
2 146 144 4 4

duplicates — Report, tag, or drop duplicate observations 224

The records for id 42 and id 144 were evidently entered twice. Satisfied, we now issue duplicates
drop.

. duplicates drop
Duplicates in terms of all variables

(2 observations deleted)

N

The report, 1ist, and drop subcommands of duplicates are perhaps the most useful, especially

for a relatively small dataset. For a larger dataset with many duplicates, a full listing may be too long to

be manageable, especially as you see repetitions of the same data. duplicates examples gives you a

more compact listing in which each group of duplicates is represented by just 1 observation, the first to
occur.

A subcommand that is occasionally useful is duplicates tag, which generates a new variable con-
taining the number of duplicates for each observation. Thus unique observations are tagged with value
0, and all duplicate observations are tagged with values greater than 0. For checking double data entry,
in which you expect just one surplus copy for each individual record, you can generate a tag variable and
then look at observations with tag not equal to 1 because both unique observations and groups with two
or more surplus copies need inspection.

. duplicates tag, gen(tag)

Duplicates in terms of all variables

As of Stata 11, the browse subcommand is no longer available. To open duplicates in the Data
Browser, use the following commands:

. duplicates tag, generate(newvar)
. browse if newvar > 0

See [D] edit for details on the browse command.

Video example

How to identify and remove duplicate observations

Stored results
duplicates report, duplicates examples, duplicateslist, duplicatestag, and
duplicates drop store the following in r ():
Scalars
r(N) number of observations
duplicates report also stores the following in r():
Scalars
r(unique_value) number of unique observations
duplicates drop also stores the following in r ():

Scalars
r(N_drop) number of observations dropped

https://www.youtube.com/watch?v=433GzdIwZN8

duplicates — Report, tag, or drop duplicate observations 225

Acknowledgments

duplicates was written by Nicholas J. Cox of the Department of Geography at Durham University,
UK, who is coeditor of the Stata Journal and author of Speaking Stata Graphics. He in turn thanks Thomas
Steichen (retired) of RIRT for ideas contributed to an earlier jointly written program (Steichen and Cox
1998).

References

Bjérkefur, K., L. Cardoso de Andrade, and B. Daniels. 2020. iefieldkit: Commands for primary data collection and
cleaning. Stata Journal 20: 892-915.
.2023. iefieldkit: Commands for primary data collection and cleaning (update). Stata Journal 23: 875-883.

Steichen, T. J., and N. J. Cox. 1998. dm53: Detection and deletion of duplicate observations. Stata Technical Bulletin 41:
2-4. Reprinted in Stata Technical Bulletin Reprints, vol. 7, pp. 52-55. College Station, TX: Stata Press.

Also see

D] codebook — Describe data contents

D] contract — Make dataset of frequencies and percentages

D] isid — Check for unique identifiers

(D]
[D]
[D] edit — Browse or edit data with Data Editor
(D]
[D] list — List values of variables

https://www.stata-journal.com/
https://www.stata-press.com/books/speaking-stata-graphics/
https://doi.org/10.1177/1536867X20976321
https://doi.org/10.1177/1536867X20976321
https://doi.org/10.1177/1536867X231196496
https://www.stata.com/products/stb/journals/stb41.pdf

dyngen — Dynamically generate new values of variables

Description Menu Syntax Option Remarks and examples Also see

Description

dyngen replaces the value of variables when two or more variables depend on each other’s lagged
values. Use dyngen when the values for the whole set of variables must be computed for an observation
before moving to the next observation.

Menu

Data > Create or change data > Dynamically generate new values

Syntax
dyngen {

update varname, = exp [if | [, missval(#)]

update varnamey = exp [if] [, missval(#) |
Y [if] [in]

varname,,,n = 1,..., N, must already exist in the dataset and cannot be an alias variable; see [D] frunalias.

exp must be a valid expression and may include time-series operators; see [U] 11.4.4 Time-series varlists.

Option

missval (#) specifies the value to use in place of missing values when performing calculations. This
option is particularly useful when referring to lags that exist prior to the data.

Remarks and examples

Like replace, dyngen modifies the contents of existing variables. However, dyngen works obser-
vation by observation. If you are doing a computation only on a single variable that relies only on its own
lagged values or those of other variables, you do not need dyngen because generate and replace work
their way through the data sequentially. Use dyngen when you need to modify two or more variables at
the same time.

226

dyngen — Dynamically generate new values of variables 227

The examples in this entry use the following data:

. input time x1 x2

time x1 x2
1.1 3
2. 2 4 4
3.3 5 2
4. 4 5 1
5. 5 2 1
6. end

b Example 1: Using dyngen

We want to update our values of x1 and x2 such that x1 depends on its current value and the previous
value of x2, and x2 depends on previous values of x1 and x2. We will be using these same values of x1
and x2 in subsequent examples, so we do not want to overwrite their values. We create a copy of each in
the variables d1 and d2, where the d prefix is used to remind us that these variables contain dynamically
updated values.

. generate dil=x1
. generate d2=x2
Because we are using previous values, we need to specify a value for dyngen to substitute in place of
missings; in this case, we use the means.

. summarize d1 d2

Variable ‘ Obs Mean Std. dev. Min Max
d1 5 3.8 1.30384 2 5
d2 5 1.8 1.30384 1 4

Within the dyngen command, we specify an update statement for d1 and d2. We also use observation
subscripts to indicate the previous values as needed; see [U] 13.7 Explicit subscripting. With time-series
data, we could also use time-series operators; see example 3 for an illustration.

. dyngen {
update d1 = .4%d1 + .1*d2[_n-1], missval(3.8)
. update d2 = .2%d1[_n-1] + .3*d2[_n-1], missval(1.8)
.}
. list x1 x2 d*
x1 x2 d1i d2

1 3 1 3.8 1.8

2 4 4 1.78 1.3

3 5 2 2.13 .746

4 5 1 2.0746 .6498

5 2 1 .86498 .60986

In observation 1, dyngen has substituted 3.8 for d1 and 1.8 for d2, values that would otherwise be
missing because there are no data preceding the first observation. In observation 2, the updated value of
d1is 0.4 x4+ 0.1 x 1.8 = 1.78 and that of d21is 0.2 x 3.8 + 0.3 x 1.8 = 1.3, and so on.

N

dyngen — Dynamically generate new values of variables 228

b Example 2: Distinction between dyngen and replace

We can compare the results from example 1 with those from replace to see how dyngen operates
differently.

As in example 1, we create two new variables, r1 and r2, that will hold values we update using
replace. There is no automatic way to handle missing values with replace, so we need to set the first
values to the means “by hand” to avoid missing values later. We then have a replace command for each
variable, restricted to observations 2 through 5.

. generate ri=xi1
. generate r2=x2

. replace rl = 3.8 in 1
(1 real change made)

. replace r2 = 1.8 in 1
(1 real change made)

. replace rl = .4xrl1 + .1*xr2[_n-1] in 2/5
(4 real changes made)

. replace r2 = .2%r1[_n-1] + .3*r2[_n-1] in 2/5
(4 real changes made)

Now, we can compare the results side by side.

. list x* d*x r*

x1 x2 d1 d2 rl r2
1 3 1 3.8 1.8 3.8 1.8
2 4 4 1.78 1.3 1.78 1.3
3 5 2 2.13 .746 2.4 .746
4 5 1 2.0746 .6498 2.2 .7038
5 2 1 .86498 .60986 9 .65114

For the first two observations, the inputs are exactly the same, so there is no difference in the outcome.
We see differences starting in the third row.

At the time that replace is updating the value of r1 in observation 3, it is making the calculation
04x5+01x4=24

because the value of r2 is still 4, the original value of x2. Compare this with the results of dyngen,
which uses
04x540.1x1.3=2.13

That is, the key distinction is dyngen has fully updated observation 2 before moving on to observation 3.
replace will make a full pass through r1 before moving on to r2.

d

dyngen — Dynamically generate new values of variables 229

b Example 3: Processing if conditions

Each update statement within the dyngen command can take an if condition. To illustrate, we
replace d1 and d2 with the original values of x1 and x2 and update them again, this time restricting the
updated observations to just those observations where time > 3.

. replace di=x1
(5 real changes made)

. replace d2=x2
(5 real changes made)

Here, we tsset the data and use the lag operator instead of subscripting observations, but that is not
required.

. tsset time

Time variable: time, 1 to 5
Delta: 1 unit

. dyngen {
update dl = .4%dl + .1*xL.d2 if time>=3
. update d2 = .2xL.d1 + .3*L.d2 if time>=3
.3
. list x*x dx
x1 x2 d1 d2

1 3 1 3 1

2 4 4 4 4

3 5 2 2.4 2

4 5 1 2.2 1.08

5 2 1 .908 .764

When the same if condition is specified on all update statements, the results are equivalent to specifying
one if condition on the entire dyngen block. We used the same if statement on both update statements
above, so typing the following produces the same results as the code above.

dyngen {
update dl = .4%d1 + .1%L.d2
update d2 = .2xL.d1 + .3xL.d2

} if time>=3

You may also specify an in qualifier with the dyngen command. If you specify an if or in qualifier,
dyngen loops over the observations that meet the if condition or in range but will reference values
outside that range if needed.

N

Also see

[D] frunalias — Change storage type of alias variables
[D] generate — Create or change contents of variable
[U] 12 Data

[U] 13 Functions and expressions

edit — Browse or edit data with Data Editor

Description Quick start Menu Syntax
Option Remarks and examples Also see

Description

edit brings up a spreadsheet-style data editor for entering new data and editing existing data. edit
is a better alternative to input; see [D] input.

browse is similar to edit, except that modifications to the data by editing in the grid are not permitted.
browse is a convenient alternative to 1ist; see [D] list.

See [GS] 6 Using the Data Editor (GSM, GSU, or GSW) for a tutorial discussion of the Data Editor.
This entry provides the technical details.

Quick start

Open dataset in the Data Editor for entering new data or editing existing data
edit

Same as above, but include only v1, v2, and v3
edit vl v2v3

Same as above, but only for observations where v3 is missing
edit vliv2v3if v3>=.

Open dataset in the Data Editor with no ability to edit data
browse

Same as above, but include only v1, v2, and v3 and suppress value labels

browse vl v2 v3, nolabel

Menu
edit
Data > Data Editor > Data Editor (Edit)

browse

Data > Data Editor > Data Editor (Browse)

230

edit — Browse or edit data with Data Editor 231

Syntax
Edit using Data Editor

edit [varlist] [if] [in] [, nolabel]

Browse using Data Editor

browse [varlist] [lf] [in] [, Mabel]

Option

nolabel causes the underlying numeric values, rather than the label values (equivalent strings), to be
displayed for variables with value labels; see [D] label.

Remarks and examples

Remarks are presented under the following headings:

Modes

The current observation and current variable
Assigning value labels to variables
Changing values of existing cells

Adding new variables

Adding new observations

Copying and pasting

Logging changes

Advice

Clicking on Stata’s Data Editor (Edit) button is equivalent to typing edit by itself. Clicking on
Stata’s Data Editor (Browse) button is equivalent to typing browse by itself.

edit, typed by itself, opens the Data Editor with all observations on all variables displayed. If you
specify varlist, only the specified variables are displayed in the Editor. If you specify one or both of in
range and if exp, only the observations specified are displayed.

Modes

We will refer to the Data Editor in the singular with edit and browse referring to two of its three
modes.

Full-edit mode. This is the Editor’s mode that you enter when you type edit or type edit followed by
a list of variables. All features of the Editor are turned on.

Filtered mode. This is the Editor’s mode that you enter when you use edit with or without a list of
variables but include in range, if exp, or both, or if you filter the data from within the Editor. A few
of the Editor’s features are turned off, most notably, the ability to sort data and the ability to paste data
into the Editor.

Browse mode. This is the Editor’s mode that you enter when you use browse or when you change the
Editor’s mode to Browse after you start the Editor. The ability to type in the Editor, thereby changing
data, is turned off, ensuring that the data cannot accidentally be changed. One feature that is left on
may surprise you: the ability to sort data. Sorting, in Stata’s mind, is not really a change to the dataset.
On the other hand, if you enter using browse and specify in range or if exp, sorting is not allowed.
You can think of this as restricted-browse mode.

edit — Browse or edit data with Data Editor 232

Actually, the Editor does not set its mode to filtered just because you specify an in range or if exp.
It sets its mode to filtered if you specify in or if and if this restriction is effective, that is, if the in
or if would actually cause some data to be omitted. For instance, typing edit if x>0 would result in
unrestricted full-edit mode if x were greater than zero for all observations.

The current observation and current variable

The Data Editor looks much like a spreadsheet, with rows and columns corresponding to observations
and variables, respectively. At all times, one of the cells is highlighted. This is called the current cell.
The observation (row) of the current cell is called the current observation. The variable (column) of the
current cell is called the current variable.

You change the current cell by clicking with the mouse on another cell or by using the arrow keys.

To help distinguish between the different types of variables in the Editor, string values are displayed
in red, value labels are displayed in blue, and all other values are displayed in black. You can change
the colors for strings and value labels by right-clicking on the Data Editor window and selecting Prefer-
ences....

Assigning value labels to variables

You can assign a value label to a nonstring variable by right-clicking any cell on the variable column,
choosing the Data > Value Labels menu, and selecting a value label from the Attach Value Label to
Variable ‘varname’ menu. You can define a value label by right-clicking on the Data Editor window
and selecting Data > Value Labels > Manage Value Labels.... You can also accomplish these tasks by
using the Properties pane; see [GS] 6 Using the Data Editor (GSM, GSU, or GSW) for details.

Changing values of existing cells

Make the cell you wish to change the current cell. Type the new value, and press Enter. When updating
string variables, do not type double quotes around the string. For variables that have a value label, you
can right-click on the cell to display a list of values for the value label. You can assign a new value to
the cell by selecting a value from the list.

Q Technical note

Stata experts will wonder about storage types. Say that variable mpg is stored as an int and you want
to change the fourth observation to contain 22.5. The Data Editor will change the storage type of the
variable. Similarly, if the variable is a str4 and you type alpha, it will be changed to str5.

The Editor will not, however, change numeric variable types to strings (unless the numeric variable
contains only missing values). This is intentional, as such a change could result in a loss of data and is
probably the result of a mistake.

a

Q Technical note

Stata can store long strings in the strL storage type. Although the strL type can hold very long
strings, these strings may only be edited if they are 2045 characters or less. Similarly, strLs that hold
binary data may not be edited. For more information on storage types, see [D] Data types.

a

edit — Browse or edit data with Data Editor 233

Adding new variables

Go to the first empty column, and begin entering your data. The first entry that you make will create
the variable and determine whether that variable is numeric or string. The variable will be given a name
like vari, but you can rename it by using the Properties pane.

Q Technical note

Stata experts: The storage type will be determined automatically. If you type a number, the created
variable will be numeric; if you type a string, it will be a string. Thus if you want a string variable, be sure
that your first entry cannot be interpreted as a number. A way to achieve this is to use surrounding quotes
so that "123" will be taken as the string "123", not the number 123. If you want a numeric variable, do
not worry about whether it is byte, int, float, etc. If a byte will hold your first number but you need
a float to hold your second number, the Editor will recast the variable later.

a

Q Technical note

If you do not type in the first empty column but instead type in one to the right of it, the Editor will
create variables for all the intervening columns.
a

Adding new observations

Go to the first empty row, and begin entering your data. As soon as you add one cell below the last
row of the dataset, an observation will be created.

Q Technical note

If you do not enter data in the first empty row but, instead, enter data in a row below it, the Data Editor
will create observations for all the intervening rows.
a

Copying and pasting
You can copy and paste data between Stata’s Data Editor and other applications.

First, select the data you wish to copy. In Stata, click on a cell and drag the mouse across other cells
to select a range of cells. If you want to select an entire column, click once on the variable name at the
top of that column. If you want to select an entire row, click once on the observation number at the left
of that row. You can hold down the mouse button after clicking and drag to select multiple columns or
rOWS.

Once you have selected the data, copy the data to the Clipboard. In Stata, right-click on the selected
data, and select Copy.

You can copy data to the Clipboard from Stata with or without the variable names at the top of each
column by right-clicking on the Data Editor window, selecting Preferences..., and checking or uncheck-
ing Include variable names on copy to Clipboard.

edit — Browse or edit data with Data Editor 234

You can choose to copy either the value labels or the underlying numeric values associated with
the selected data by right-clicking on the Data Editor window, selecting Preferences..., and checking
or unchecking Copy value labels instead of numbers. For more information about value labels, see
[U] 12.6.3 Value labels and [D] label.

After you have copied data to the Clipboard from Stata’s Data Editor or another spreadsheet, you
can paste the data into Stata’s Data Editor. First, select the top-left cell of the area into which you wish
to paste the data by clicking on it once. Then right-click on the cell and select Paste. Stata will paste
the data from the Clipboard into the Editor, overwriting any data below and to the right of the cell you
selected as the top left of the paste area. If the Data Editor is in filtered mode or in browse mode, Paste
will be disabled, meaning that you cannot paste into the Data Editor. You can have more control over
how data are pasted by selecting Paste Special....

Q Technical note

If you attempt to paste one or more string values into numeric variables, the original numeric values
will be left unchanged for those cells. Stata will display a message box to let you know that this has
happened: “You attempted to paste one or more string values into numeric variables. The contents of
these cells, if any, are unchanged.”

If you see this message, you should look carefully at the data that you pasted into Stata’s Data Editor
to make sure that you pasted into the area that you intended. We recommend that you take a snapshot of
your data before pasting into Stata’s Data Editor so that you can restore the data from the snapshot if you
make a mistake. See [GS] 6 Using the Data Editor (GSM, GSU, or GSW) to read about snapshots.

Qa

Logging changes

When you use edit to enter new data or change existing data, you will find output in the Stata Results
window documenting the changes that you made. For example, a line of this output might be

. replace mpg = 22.5 in 5

The Editor submits a command to Stata for everything you do in it except pasting. If you are logging
your results, you will have a permanent record of what you did in the Editor.

Advice

e People who care about data integrity know that editors are dangerous—it is too easy to make changes
accidentally. Never use edit when you want to browse.

e Protect yourself when you edit existing data by limiting exposure. If you need to change mpg and
need to see model to know which value of mpg to change, do not click on the Data Editor button.
Instead, type edit model mpg. It is now impossible for you to change (damage) variables other than
model and mpg. Furthermore, if you know that you need to change mpg only if it is missing, you can
reduce your exposure even more by typing ‘edit model mpg if mpg>=.’.

e Stata’s Data Editor is safer than most because it logs changes to the Results window. Use this fea-
ture—look at the log afterward, and verify that the changes you made are the changes you wanted to
make.

edit — Browse or edit data with Data Editor 235

Also see

[D] import — Overview of importing data into Stata
[D] input — Enter data from keyboard

[D] list — List values of variables

[D] save — Save Stata dataset

[GSM] 6 Using the Data Editor

[GSW] 6 Using the Data Editor

[GSU] 6 Using the Data Editor

egen — Extensions to generate

Description Quick start Menu Syntax
Remarks and examples Acknowledgments References Also see
Description

egen creates a new variable of the optionally specified storage type equal to the given function based
on arguments of that function. The functions are specifically written for egen, as documented below or
as written by users.

Quick start

Generate newv1 for distinct groups of v1 and v2, and create and apply value label mylabel
egen newvl = group (vl v2), label(mylabel)

Generate newv2 equal to the minimum of v1, v2, and v3 for each observation

egen newv2 = rowmin (vl v2 v3)

Generate newv3 equal to the overall sum of v1

egen newv3 = total(vl)

Same as above, but calculate total within each level of catvar
egen newv3 = total(vl), by(catvar)

Generate newv4 equal to the number of nonmissing numeric values across v1, v2, and v3 for each ob-
servation

egen newv4 = rownonmiss (vl v2 v3)

Same as above, but allow string values

egen newv4 = rownonmiss (vl v2 v3), strok

Generate newvb as the concatenation of numeric v1 and string v4 separated by a space

egen newvb = concat (vl v4), punct(" ")

Menu

Data > Create or change data > Create new variable (extended)

236

egen — Extensions to generate 237

Syntax
egen | fype | newvar = fen(arguments) [if | [in] [, options]
by is allowed with some of the egen functions, as noted below.

Depending on fcn, arguments refers to an expression, varlist, or numlist, and the options are also fcn
dependent. fcn and its dependencies are listed below.

anycount (varlist) , values (integer numlist)
may not be combined with by. It returns the number of variables in varlist for which values are
equal to any integer value in a supplied numlist. Values for any observations excluded by either
if or in are set to 0 (not missing). Also see anyvalue (varname) and anymatch (varlist).

anymatch (varlist) , values (integer numlist)
may not be combined with by. It is 1 if any variable in varlist is equal to any integer value in a
supplied numlist and 0 otherwise. Values for any observations excluded by either if or in are set
to 0 (not missing). Also see anyvalue (varname) and anycount (varlist).

anyvalue (varname) , values (integer numlist)
may not be combined with by. It takes the value of varname if varname is equal to any in-
teger value in a supplied numlist and is missing otherwise. Also see anymatch (varlist) and
anycount (varlist) .

concat (varlist) [, format (% fint) decode maxlength(#) punct (pchars)]
may not be combined with by. It concatenates varlist to produce a string variable. Values of string
variables are unchanged. Values of numeric variables are converted to string, as is, or are converted
using a numeric format under the format (%fm¢) option or decoded under the decode option, in
which case maxlength () may also be used to control the maximum label length used. By default,
variables are added end to end: punct (pchars) may be used to specify punctuation, such as a
space, punct (" "), or a comma, punct(,).

count (exp) (allows by varlist:)
creates a constant (within var/ist) containing the number of nonmissing observations of exp. Also
see rownonmiss () and rowmiss ().

cut (varname) , { at (numlist) | group (#) } [icodes label |
may not be combined with by. Either at () or group () must be specified. When at () is speci-
fied, it creates a new categorical variable coded with the left-hand ends of the grouping intervals
specified in the at () option. When group () is specified, groups of roughly equal frequencies are
created.

at (numlist) with numlist in ascending order supplies the breaks for the groups. newvar is set
to missing for observations with varname less than the first number specified in at () and for
observations with varname greater than or equal to the last number specified in at ().

group (#) specifies the number of equal-frequency grouping intervals when breaks are not speci-
fied. Specifying this option automatically invokes icodes.

icodes requests that the codes 0, 1, 2, etc., be used in place of the left-hand ends of the intervals.

label requests that the integer-coded values of the grouped variable be labeled with the left-hand
ends of the grouping intervals. Specifying this option automatically invokes icodes.

diff (varlist)
may not be combined with by. It creates an indicator variable equal to 1 if the variables in varlist
are not equal and 0 otherwise.

egen — Extensions to generate 238

ends (strvar) [, punct (pchars) trim [head | last |§ail]]
may not be combined with by. It gives the first “word” or head (with the head option), the last
“word” (with the 1ast option), or the remainder or tail (with the tail option) from string variable
strvar.

head, last, and tail are determined by the occurrence of pchars, which is by default one space
(‘6 77)'

The head is whatever precedes the first occurrence of pchars, or the whole of the string if it does not
occur. For example, the head of “frog toad” is “frog” and that of “frog” is “frog”. With punct(,),
the head of “frog,toad” is “frog”.

The last word is whatever follows the last occurrence of pchars or is the whole of the string if a
space does not occur. The last word of “frog toad newt” is “newt” and that of “frog” is “frog”.
With punct(,), the last word of “frog,toad” is “toad”.

The remainder or tail is whatever follows the first occurrence of pchars, which will be the empty
string "" if pchars does not occur. The tail of “frog toad newt” is “toad newt” and that of “frog”
is "". With punct (,), the tail of “frog,toad” is “toad”.

The trim option trims any leading or trailing spaces.

£i11 (numlist)
may not be combined with by. It creates a variable of ascending or descending numbers or complex
repeating patterns. numlist must contain at least two numbers and may be specified using standard
numlist notation; see [U] 11.1.8 numlist. if and in are not allowed with £111 ().

group (varlist) [, missing autotype label|(/blname]| , replace truncate (#)])|]
may not be combined with by. It creates one variable taking on values 1, 2, ... for the groups
formed by varlist. varlist may contain numeric variables, string variables, or a combination of the
two. The order of the groups is that of the sort order of varlist.

missing indicates that missing values in varlist (either . or "") are to be treated like any other
value when assigning groups. By default, any observation with a missing value is assigned to the
group with newvar equal to missing (.).

autotype specifies that newvar be the smallest zype possible to hold the integers generated. The
resulting #ype will be byte, int, long, or double.

label or label (/blname) creates a value label for newvar. The integers in newvar are la-
beled with the values of varlist or their value labels, if they exist. label (/blname) specifies
Iblname as the name of the value label. If 1abel alone is specified, the name of the value label
is newvar. label(..., replace) allows an existing value label to be redefined. labelC(...,
truncate (#)) truncates the values contributed to the label from each variable in varlist to the
length specified by the integer argument #.

igr(exp) |, autotype] (allows by varlist:)
creates a constant (within varlist) containing the interquartile range of exp. autotype specifies
that newvar be the smallest type possible to hold the result. The resulting fype will be byte, int,
long, or double. Also see pctile().

kurt (exp) (allows by varlist:)
returns the kurtosis (within varlist) of exp.

mad (exp) (allows by varlist:)
returns the median absolute deviation from the median (within varlist) of exp.

egen — Extensions to generate 239

max (exp) [, missing] (allows by varlist:)
creates a constant (within varlist) containing the maximum value of exp. missing indicates that
missing values be treated like other values.

mdev (exp) (allows by varlist:)
returns the mean absolute deviation from the mean (within varlist) of exp.

mean (exp) (allows by varlist:)
creates a constant (within varlist) containing the mean of exp.

median(exp) [, autotype | (allows by varlist:)
creates a constant (within varlist) containing the median of exp. autotype specifies that newvar
be the smallest #ype possible to hold the result. The resulting fype will be byte, int, long, or
double. Also see pctile().

min(exp) [, missing] (allows by varlist:)
creates a constant (within varlist) containing the minimum value of exp. missing indicates that
missing values be treated like other values.

mode (varname) [, minmode maxmode nummode (integer) Ming] (allows by varlist:)
produces the mode (within varlist) for varname, which may be numeric or string. The mode is
the value occurring most frequently. If two or more modes exist or if varname contains all miss-
ing values, the mode produced will be a missing value. To avoid this, the minmode, maxmode,
or nummode () option may be used to specify choices for selecting among the multiple modes.
minmode returns the lowest value, and maxmode returns the highest value. nummode (#) returns
the #th mode, counting from the lowest up. missing indicates that missing values be treated like
other values.

pc(exp) [, prop] (allows by varlist:)
returns exp (within varlist) scaled to be a percentage of the total, between 0 and 100. The prop
option returns exp scaled to be a proportion of the total, between 0 and 1.

pctile(exp) [, p(#) autotype | (allows by varlist:)
creates a constant (within varlist) containing the #th percentile of exp. If p (#) is not specified, 50
is assumed, meaning medians. autotype specifies that newvar be the smallest #ype possible to
hold the result. The resulting type will be byte, int, long, or double. Also see median().

rank(exp) [, field|track |unique] (allows by varlist:)
creates ranks (within varlist) of exp; by default, equal observations are assigned the average rank.
The field option calculates the field rank of exp: the highest value is ranked 1, and there is no
correction for ties. That is, the field rank is 1 4 the number of values that are higher. The track
option calculates the track rank of exp: the lowest value is ranked 1, and there is no correction for
ties. Thatis, the track rank is 1 + the number of values that are lower. The unique option calculates
the unique rank of exp: values are ranked 1, ..., #, and values and ties are broken arbitrarily. Two
values that are tied for second are ranked 2 and 3.

rowfirst (varlist)
may not be combined with by. It gives the first nonmissing value in varlist for each observation
(row). If all values in varlist are missing for an observation, newvar is set to missing for that
observation.

rowlast (varlist)
may not be combined with by. It gives the last nonmissing value in varlist for each observation
(row). If all values in varlist are missing for an observation, newvar is set to missing for that
observation.

egen — Extensions to generate 240

rowmax (varlist)
may not be combined with by. It gives the maximum value (ignoring missing values) in varlist
for each observation (row). If all values in varlist are missing for an observation, newvar is set to
missing for that observation.

rowmean (varlist)
may not be combined with by. It creates the (row) means of the variables in varlist, ignoring
missing values. For example, if three variables are specified and, in some observations, one of the
variables is missing, in those observations newvar will contain the mean of the two variables that
do exist. Other observations will contain the mean of all three variables. If all values in varlist are
missing for an observation, newvar is set to missing for that observation.

rowmedian (varlist)
may not be combined with by. It gives the (row) median of the variables in varlist, ignoring
missing values. If all values in varlist are missing for an observation, newvar is set to missing for
that observation. Also see rowpctile().

rowmin (varlist)
may not be combined with by. It gives the minimum value in varlist for each observation (row).
If all values in varlist are missing for an observation, newvar is set to missing for that observation.

rowniss (varlist)
may not be combined with by. It gives the number of missing values in varlist for each observation
(row).

rownonmiss (varlist) [, §trok]
may not be combined with by. It gives the number of nonmissing values in varlist for each obser-
vation (row).

String variables may not be specified unless the strok option is also specified. When strok is
specified, varlist may contain a mixture of string and numeric variables.

rowpctile (varlist) [, p(#) |
may not be combined with by. It gives the #th percentile of the variables in varlist, ignoring missing
values. If p() is not specified, p(50) is assumed, meaning medians. If all values in varlist are
missing for an observation, newvar is set to missing for that observation. Also see rowmedian().

rowsd (varlist)
may not be combined with by. It creates the (row) standard deviations of the variables in varlist,
ignoring missing values. If all values in varlist are missing for an observation, newvar is set to
missing for that observation.

rowtotal (varlist) |, missing]
may not be combined with by. It creates the (row) sum of the variables in varlist, treating missing
values as 0. If missing is specified and all values in varlist are missing for an observation, newvar
is set to missing for that observation.

sd (exp) (allows by varlist:)
creates a constant (within varlist) containing the standard deviation of exp. Also see mean ().
seq() [, from(#) to(#) block(#) | (allows by varlist:)

returns integer sequences. Values start from from() (default 1) and increase to to () (the default
is the maximum number of values) in blocks (default size 1). If to() is less than the maximum
number, sequences restart at from(). Numbering may also be separate within groups defined by
varlist or decreasing if to () is less than from(). Sequences depend on the sort order of observa-

egen — Extensions to generate 241

tions, following three rules: 1) observations excluded by if or in are not counted; 2) observations
are sorted by varlist, if specified; and 3) otherwise, the order is that when called. No arguments
are specified.

skew (exp) (allows by varlist:)
returns the skewness (within varlist) of exp.

std(exp) [, mean(#) sd(#)] (allows by varlist:)
creates the standardized values (within varlist) of exp. The options specify the desired mean and
standard deviation. The default is mean(0) and sd(1), producing a variable with mean 0 and
standard deviation 1 (within each group defined by varlist).

tag(varlist) |, missing]

may not be combined with by. It tags just one observation in each distinct group defined by varlist.
When all observations in a group have the same value for a summary variable calculated for the
group, it will be sufficient to use just one value for many purposes. The result will be 1 if the
observation is tagged and never missing, and 0 otherwise. Values for any observations excluded
by either if or in are set to 0 (not missing). Hence, if tag is the variable produced by egen tag
= tag(varlist), the idiom if tag is always safe. missing specifies that missing values of varlist
may be included.

total(exp) [, missing] (allows by varlist:)
creates a constant (within varlist) containing the sum of exp treating missing as 0. If missing is
specified and all values in exp are missing, newvar is set to missing. Also see mean ().

Remarks and examples

Remarks are presented under the following headings:

Summary statistics

Missing values

Generating patterns

Marking differences among variables
Ranks

Standardized variables

Row functions

Categorical and integer variables
String variables

See Mitchell (2020) for numerous examples using egen.

Summary statistics

The functions count(), iqr(), kurt(), mad(), max(), mdev(), mean(), median(), min(),
mode (), pc), pctile(), sd (), skew(), and total () create variables containing summary statistics.
These functions take a by ...: prefix and, if specified, calculate the summary statistics within each
by-group.

egen — Extensions to generate 242

b Example 1: Without the by prefix

Without the by prefix, the result produced by these functions is a constant for every observation in
the data. For instance, we have data on cholesterol levels (chol) and wish to have a variable that, for
each patient, records the deviation from the average across all patients:

. use https://www.stata-press.com/data/r19/egenxmpl
. egen avg = mean(chol)

. generate deviation = chol - avg

b Example 2: With the by prefix

These functions are most useful when the by prefix is specified. For instance, assume that our dataset
includes dcode, a hospital—patient diagnostic code, and 1os, the number of days that the patient remained
in the hospital. We wish to obtain the deviation in length of stay from the median for all patients having
the same diagnostic code:

. use https://www.stata-press.com/data/r19/egenxmpl2, clear
. by dcode, sort: egen medstay = median(los)

. generate deltalos = los - medstay

b Example 3: sum() function and egen total()

Distinguish carefully between Stata’s sum() function and egen’s total() function. Stata’s sum()
function creates the running sum, whereas egen’s total () function creates a constant equal to the overall
sum, for example,

. clear

. set obs b
Number of observations (_N) was O, now 5.

. generate a = _n

. generate suml = sum(a)
. egen sum2 = total(a)

. list

suml sum2

[

1. 1 1 15
2. 2 3 15
3. 3 6 15
4. 4 10 15
5. 5 15 15

Definitions of egen summary functions

The definitions and formulas used by egen summary functions are the same as those used by
summarize; see [R] summarize. For comparison with summarize, mean() and sd() correspond to the
mean and standard deviation. total () is the numerator of the mean, and count () is its denominator.

egen — Extensions to generate 243

min() and max () correspond to the minimum and maximum. median () —or, equally well, pctile)
with p(50) —is the median. pctile () with p(5) refers to the 5th percentile, and so on. iqr () is the
difference between the 75th and 25th percentiles.

The mode is the most common value of a dataset, whether it contains numeric or string variables.
It is perhaps most useful for categorical variables (whether defined by integers or strings) or for other
integer-valued values, but mode () can be applied to variables of any type. Nevertheless, the modes of
continuous (or nearly continuous) variables are perhaps better estimated either from inspection of a graph
of a frequency distribution or from the results of some density estimation (see [R] kdensity).

Missing values need special attention. egen newvar = mode (varname) calculates the mode of all
nonmissing observations, and the variable newvar containing the mode is filled in for all observations,
even those for which varname is missing (except for observations excluded using an if or in statement).
This allows use of mode () as a simple way to impute categorical variables.

Missing values are by default excluded from the determination of modes (whether missing is defined
by the period [.] or extended missing values [.a, .b, ..., .z] for numeric variables or the empty string
[""] for string variables). However, missing may be the most common value in a variable, and you want
mode () to report this value as the mode. To include missing values as possible values for the mode, use
the missing option. See Missing values below for more on missing values.

mad () and mdev () produce alternative measures of spread. The median absolute deviation from the
median and even the mean deviation will both be more resistant than the standard deviation to heavy
tails or outliers, in particular from distributions with heavier tails than the normal or Gaussian. The first
measure was named the MAD by Andrews et al. (1972) but was already known to K. F. Gauss in 1816,
according to Hampel et al. (1986). For more historical and statistical details, see David (1998) and
Wilcox (2003, 72-73).

Missing values

Missing values in the argument to egen functions (typically, varname, an expression, or varlist) are
generally handled in one of three ways. Functions that calculate a single statistic for varname or an
expression (for example, mean () and total ()) fill in the result for all observations, including those for
which varname or the expression is missing.

Functions that calculate results that potentially differ observation by observation (for example,
group () and rank()) generally generate missing values for the result for observations where varname
or the expression is missing.

Functions that take varlist (for example, rowmean ()) generally generate a missing value for the result
only when every variable in varlist is missing for that observation.

egen — Extensions to generate 244

b Example 4: How missing values are handled

Here’s an example of how mean () handles missing values.

. use https://www.stata-press.com/data/r19/egenxmpll, clear

. egen y = mean(x)

. list x y

v
1 0o 3
2 5 3
3 2 3
4 5 3
5 3 3
6 . 3
7 .a 3

The result y is filled in for all observations, including the 6th and 7th observations where x is missing.
If you do not want this behavior, you can explicitly exclude missing values using an if statement.

. egen z = mean(x) if !missing(x)
(2 missing values generated)

. list x z
b4 z
1 0 3
2 5 3
3 2 3
4 5 3
5 3 3
6.
T. a

Other functions, such as group (), by default exclude missing values. If you want to treat missing
values just like other values and let them be part of the enumerated groups as well, use the missing
option.

. egen gl = group(x)
(2 missing values generated)

. egen g2 = group(x), missing

. list x gl g2

x gl g2
1. 0 1 1
2. 5 4 4
3. 2 2 2
4. 5 4 4
5. 3 3 3
6 . 5
7 .a 6

egen — Extensions to generate 245

With the missing option, the missing values “.” and “.a” are placed in two distinct groups, the Sth and
6th groups, in the result g2.

Here’s an example of how rowmean () and rowtotal () handle missing values.
. egen m = rowmean(xl x2 x3 x4)
(1 missing value generated)
. egen tl = rowtotal(xl x2 x3 x4)

. egen t2 = rowtotal(xl x2 x3 x4), missing
(1 missing value generated)

. list x1 x2 x3 x4 m tl t2

x1 x2 x3 x4 m t1 t2
1 2 6 4 8 5 20 20
2 9 . 0 3 4 12 12
3 .a b 2 2 2 2
4 . .a 3 6 4.5 9 9
5 4 5 5 2 4 16 16
6 7 8 4 5 6 24 24
7 .b a 0

rowmean () uses all the nonmissing values to calculate the mean of a row, ignoring any missing values.
In the first row, all four variables are nonmissing, so the result is the mean of these four values. In the
second row, three variables are nonmissing, and the result is the mean of these three values. In the third
row, only one variable is nonmissing, and the result is simply the mean of this one value, that is, the value
itself.

rowtotal () is similar to rowmean (), except that by default the total is 0 when all four variables are
missing. See the 7th observation in this example. The result t1 is 0 in this case. If you want rowtotal ()
to behave like rowmean (), use the missing option. The result t2 is produced with this option, and you
can see it is missing for the 7th observation, just like the rowmean () result.

Several egen functions have amissing option. See Syntax for the description of what missing does
with each function that has this option—or better yet create a simple example, and run the function with
and without the missing option.

N

Generating patterns

To create a sequence of numbers, simply “show” the £i11 () function how the sequence should look.
It must be a linear progression to produce the expected results. Stata does not understand geometric
progressions. To produce repeating patterns, you present £111 () with the pattern twice in the numlist.

b Example 5: Sequences produced by fill()

Here are some examples of ascending and descending sequences produced by £i11():
. clear

. set obs 12
Number of observations (_N) was O, now 12.

. egen i = fill(1 2)
. egen w = £i11(100 99)

egen — Extensions to generate 246

. egen x

. egen y
. egen z

£i11(22 17)

£ill(1 1 2 2)
£i11(8 8 8 7 7 7)

. list, sep(4)

©

11.
12.

W N

0 N o o

i w X y z
1 100 22 1 8
2 99 17 1 8
3 98 12 2 8
4 97 T2 7
5 96 2 3 7
6 95 -3 3 7
7 94 -8 4 6
8 93 -13 4 6
9 92 -18 &5 6
10 91 -23 5 5
11 90 -28 6 5
12 89 -33 6 5

b Example 6: Patterns produced by fill()

Here are examples of patterns produced by £i11():

. clear

. set obs 12
Number of observations (_N) was O, now 12.

. egen a

. egen b

. egen c

. egen d

£i11¢(0 0 1 0 0 1)
£il11(1 38 1 3 8)
£i11(-3(3)6 -3(3)6)
£i11(10 20 to 50

. list, sep(4)

©

11.
12.

W N

0 N o o,

a b c d
0 1 3 10
o 3 0o 20
1 8 3 30
0 1 6 40
o 3 3 50
1 8 0 10
0 1 3 20
o 3 6 30
1 8 3 40
0 1 0 50
o 3 3 10
1 8 6 20

10 20 to 50)

egen — Extensions to generate 247

b Example 7: seq()

seq() creates a new variable containing one or more sequences of integers. It is useful mainly for
quickly creating observation identifiers or automatically numbering levels of factors or categorical vari-
ables.

. clear

. set obs 12
In the simplest case,

. egen a = seq()

is just equivalent to the common idiom
. generate a = _n

a may also be obtained from
. range a 1 _N

(the actual value of _N may also be used).

In more complicated cases, seq() with option calls is equivalent to calls to the versatile functions
int and mod.

. egen b = seq(), b(2)

produces integers in blocks of 2, whereas
. egen ¢ = seq(), t(6)

restarts the sequence after 6 is reached.
. egen d = seq(), £(10) t(12)

shows that sequences may start with integers other than 1, and
. egen e = seq(), £(3) t(1)

shows that they may decrease.

The results of these commands are shown by

. list, sep(4)

a b c d e

1. 1 1 1 10 3

2. 2 1 2 11 2

3. 3 2 3 12 1

4. 4 2 4 10 3

5. 5 3 5 11 2

6. 6 3 6 12 1

7. 7 4 1 10 3

8. 8 4 2 11 2

9 9 5 3 12 1

10. 10 5 4 10 3
11. 11 6 5 11 2
12. 12 6 6 12 1

egen — Extensions to generate 248

All of these sequences could have been generated in one line with generate and with the use of the
int and mod functions. The variables b through e are obtained with

.genb =1+ int((_n - 1)/2)
.genc=1+mod(_n -1, 6)
. gend =10 + mod(_n - 1, 3)
. gene=3-mod(_n -1, 3)

Nevertheless, seq () may save users from puzzling out such solutions or from typing in the needed values.
In general, the sequences produced depend on the sort order of observations, following three rules:
1. observations excluded by if or in are not counted,
2. observations are sorted by varlist, if specified; and

3. otherwise, the order is that specified when seq() is called.
N
The £111 () and seq() functions are alternatives. In essence, £i11() requires a minimal example
that indicates the kind of sequence required, whereas seq() requires that the rule be specified through
options. There are sequences that £111 () can produce that seq () cannot, and vice versa. £111 () cannot
be combined with if or in, in contrast to seq (), which can.

Marking differences among variables

b Example 8: diff()

We have three measures of respondents’ income obtained from different sources. We wish to create
the variable differ equal to 1 for disagreements:
. use https://www.stata-press.com/data/r19/egenxmpl3, clear
. egen byte differ = diff(incx*)
. list if differ==

incl inc2 inc3 id differ
10. 42,491 41,491 41,491 110 1
11. 26,075 25,075 25,075 111 1
12. 26,283 25,283 25,283 112 1
78. 41,780 41,780 41,880 178 1
100. 25,687 26,687 25,687 200 1
101. 25,359 26,359 25,359 201 1
102. 25,969 26,969 25,969 202 1
103. 25,339 26,339 25,339 203 1
104. 25,296 26,296 25,296 204 1
105. 41,800 41,000 41,000 205 1
134. 26,233 26,233 26,133 234 1

Rather than typing diff (inc*), we could have typed diff (incl inc2 inc3).

egen — Extensions to generate 249

Ranks

b Example 9: rank()

Most applications of rank() will be to one variable, but the argument exp can be more general,
namely, an expression. In particular, rank (-varname) reverses ranks from those obtained by rank (var-
name) .

The default ranking and those obtained by using one of the track, field, and unique options differ
principally in their treatment of ties. The default is to assign the same rank to tied values such that the
sum of the ranks is preserved. The track option assigns the same rank but resembles the convention in
track events; thus, if one person had the lowest time and three persons tied for second-lowest time, their
ranks would be 1, 2, 2, and 2, and the next person(s) would have rank 5. The field option acts similarly
except that the highest is assigned rank 1, as in field events in which the greatest distance or height wins.
The unique option breaks ties arbitrarily: its most obvious use is assigning ranks for a graph of ordered
values. See also group () for another kind of “ranking”.

. use https://www.stata-press.com/data/r19/auto, clear
(1978 automobile data)

. keep in 1/10
(64 observations deleted)

. egen rank = rank(mpg)
. egen rank_r = rank(-mpg)

. egen rank_f = rank(mpg), field

. egen rank_t = rank(mpg), track

. egen rank_u = rank(mpg), unique
. egen rank_ur = rank(-mpg), unique
. sort rank_u

. list mpg rank*

mpg rank rank_r rank_f rank_t rank_u rank_ur
1. 15 1 10 10 1 1 10
2. 16 2 9 9 2 2 9
3. 17 3 8 8 3 3 8
4. 18 4 7 7 4 4 7
5. 19 5 6 6 5 5 6
6. 20 6.5 4.5 4 6 6 5
7. 20 6.5 4.5 4 6 7 4
8. 22 8.5 2.5 2 8 8 3
9. 22 8.5 2.5 2 8 9 2
10. 26 10 1 1 10 10 1

egen — Extensions to generate 250

Standardized variables

b Example 10: std()

We have a variable called age recording the median age in the 50 states. We wish to create the
standardized value of age and verify the calculation:

. use https://www.stata-press.com/data/r19/statesl, clear

(State data)
. egen stdage = std(age)

. summarize age stdage

Variable Obs Mean Std. dev. Min Max
age 50 29.54 1.693445 24.2 34.7
stdage 50 6.41e-09 1 -3.153336 3.047044
. correlate age stdage
(obs=50)
age stdage
age 1.0000
stdage 1.0000 1.0000

summarize shows that the new variable has a mean of approximately zero; 10~ is the precision of a
float and is close enough to zero for all practical purposes. If we wanted, we could have typed egen
double stdage = std(age), making stdage a double-precision variable, and the mean would have
been 1071, In any case, summarize also shows that the standard deviation is 1. correlate shows that
the new variable and the original variable are perfectly correlated.

We may optionally specify the mean and standard deviation for the new variable. For instance,

. egen newagel
. egen newage2

. egen newage3d

std(age), sd(2)
std(age), mean(2) sd(4)
std(age), mean(2)

. summarize age newagel-newage3

Variable Obs Mean Std. dev. Min Max
age 50 29.54 1.693445 24.2 34.7
newagel 50 1.28e-08 2 -6.306671 6.094089
newage2 50 2 4 -10.61334 14.18818
newage3 50 2 1 -1.153336 5.047044
. correlate age newagel-newage3
(obs=50)
age newagel newage2 newage3
age 1.0000
newagel 1.0000 1.0000
newage2 1.0000 1.0000 1.0000
newage3 1.0000 1.0000 1.0000 1.0000

egen — Extensions to generate 251

Row functions

b Example 11: rowtotal()

generate’s sum() function creates the vertical, running sum of its argument, whereas egen’s

total() function creates a constant equal to the overall sum. egen’s rowtotal() function, however,
creates the horizontal sum of its arguments. They all treat missing as zero. However, if the missing
option is specified with total () or rowtotal (), then newvar will contain missing values if all values
of exp or varlist are missing.

. use https://www.stata-press.com/data/r19/egenxmpl4, clear

. egen hsum = rowtotal(a b c)
. generate vsum = sum(hsum)

. egen sum = total (hsum)

. list
a b c hsum vsum sum
1. . 2 3 5 5 63
2. 4 . 6 10 15 63
3. 7 8 15 30 63
4. 10 11 12 33 63 63

b Example 12: rowmean(), rowmedian(), rowpctile(), rowsd(), and rownonmiss()

summarize displays the mean and standard deviation of a variable across observations; program writ-
ers can access the mean in r (mean) and the standard deviation in r (sd) (see [R] summarize). egen’s
rowmean () function creates the means of observations across variables. rowmedian() creates the medi-
ans of observations across variables. rowpctile () returns the #th percentile of the variables specified in
varlist. rowsd () creates the standard deviations of observations across variables. rownonmiss () creates
a count of the number of nonmissing observations, the denominator of the rowmean () calculation:

. use https://www.stata-press.com/data/r19/egenxmpl4, clear
. egen avg = rowmean(a b c)

. egen median = rowmedian(a b c)

. egen pct25 = rowpctile(a b c¢), p(25)
. egen std = rowsd(a b c)

. egen n = rownonmiss(a b c)

. list
a b c avg median pct25 std n
1. . 2 3 2.5 2.5 2 .7071068 2
2. 4 . 6 5 5 4 1.414214 2
3. 7 8 . 7.5 7.5 7 .7071068 2
4. 10 11 12 11 11 10 1 3

egen — Extensions to generate 252

b Example 13: rowmiss()
rowmiss () returns k£ — rownonmiss (), where k is the number of variables specified. rowmiss ()
can be especially useful for finding casewise-deleted observations caused by missing values.

. use https://www.stata-press.com/data/r19/auto3, clear
(1978 automobile data)

. correlate price weight mpg

(obs=70)
price weight mpg
price 1.0000
weight 0.5309 1.0000
mpg -0.4478 -0.7985 1.0000

. egen excluded = rowmiss(price weight mpg)

. list make price weight mpg if excluded~=0

make price weight mpg

5. Buick Electra . 4,080 15

12. Cad. Eldorado 14,500 3,900 .

40. 0lds Starfire 4,195 . 24
51. Pont. Phoenix . 3,420

b Example 14: rowmin(), rowmax(), rowfirst(), and rowlast()

rownin(), rowmax (), rowfirst (), and rowlast () return the minimum, maximum, first, or last
nonmissing value, respectively, for the specified variables within an observation (row).

. use https://www.stata-press.com/data/r19/egenxmpl5, clear

. egen min = rowmin(x y z)
(1 missing value generated)

. egen max = rowmax(x y z)
(1 missing value generated)

. egen first = rowfirst(x y z)
(1 missing value generated)

. egen last = rowlast(x y z)
(1 missing value generated)

. list, sep(4)

X y z min max first last
1 -1 2 3 -1 3 -1 3
2 -6 . -6 -6 -6 -6
3 7 -5 -5 7 7 -5
4 .
5. 4 4 4 4 4
6. 8 8 8 8 8
7. 3 7 3 7 3 7
8. 5 -1 6 -1 6 5 6

egen — Extensions to generate 253

Categorical and integer variables

b Example 15: anyvalue(), anymatch(), and anycount()

anyvalue (), anymatch(), and anycount () are for categorical or other variables taking integer val-
ues. If we define a subset of values specified by an integer numlist (see [U] 11.1.8 numlist), anyvalue ()
extracts the subset, leaving every other value missing; anymatch() defines an indicator variable (1 if
in subset, 0 otherwise); and anycount () counts occurrences of the subset across a set of variables.
Therefore, with just one variable, anymatch (varname) and anycount (varname) are equivalent.

With the auto dataset, we can generate a variable containing the high values of rep78 and a variable
indicating whether rep78 has a high value:
. use https://www.stata-press.com/data/r19/auto, clear
(1978 automobile data)

. egen hirep = anyvalue(rep78), v(3/5)
(15 missing values generated)

. egen ishirep = anymatch(rep78), v(3/5)

Here it is easy to produce the same results with official Stata commands:

. generate hirep = rep78 if inlist(rep78,3,4,5)
. generate byte ishirep = inlist(rep78,3,4,5)

However, as the specification becomes more complicated or involves several variables, the egen func-
tions may be more convenient.

d

b Example 16: group()

group () maps the distinct groups of a varlist to a categorical variable that takes on integer values
from 1 to the total number of groups. order of the groups is that of the sort order of varlist. The varlist
may be of numeric variables, string variables, or a mixture of the two. The resulting variable can be
useful for many purposes, including stepping through the distinct groups easily and systematically and
cleaning up an untidy ordering. Suppose that the actual (and arbitrary) codes present in the data are 1, 2,
4, and 7, but we desire equally spaced numbers, as when the codes will be values on one axis of a graph.
group () maps these to 1, 2, 3, and 4.

We have a variable agegrp that takes on the values 24, 40, 50, and 65, corresponding to age groups
18—24,25-40, 41-50, and 51 and above. Perhaps we created this coding using the recode () function
(see [U] 13.3 Functions and [U] 26 Working with categorical data and factor variables) from another
age-in-years variable:

. generate agegrp=recode(age,24,40,50,65)
We now want to change the codes to 1, 2, 3, and 4:

. egen agegrp2 = group(agegrp)

egen — Extensions to generate 254

b Example 17: group() with missing values

We have two categorical variables, race and sex, which may be string or numeric. We want to use
ir (see [R] Epitab) to create a Mantel—Haenszel weighted estimate of the incidence rate. ir, however,
allows only one variable to be specified in its by () option. We type

. use https://www.stata-press.com/data/r19/egenxmpl6, clear

. egen racesex = group(race sex)
(2 missing values generated)

. ir deaths smokes pyears, by(racesex)
(output omitted)

The new numeric variable, racesex, will be missing wherever race or sex is missing (meaning . for
numeric variables and "" for string variables), so missing values will be handled correctly. When we list
some of the data, we see

. list race sex racesex in 1/7, sep(0)

race sex racesex
1. White Female 1
2. White Male 2
3. Black Female 3
4. Black Male 4
5. Black Male 4
6. . Female

7. Black

group () began by putting the data in the order of the grouping variables and then assigned the numeric
codes. Observations 6 and 7 were assigned to racesex = . because, in one case, race was not known,
and in the other, sex was not known. (These observations were not used by ir.)

If we wanted the unknown groups to be treated just as any other category, we could have typed

. egen rs2 = group(race sex), missing

. list race sex rs2 in 1/7, sep(0)

race sex rs2
1. White Female 1
2. White Male 2
3. Black Female 3
4. Black Male 4
5. Black Male 4
6. . Female 6
7. Black 5

egen — Extensions to generate 255

The resulting variable from group() does not have value labels. Therefore, the values carry no
indication of meaning. Interpretation requires comparison with the original varlist. To get value labels,
we specify the option label.

. egen rs3 = group(race sex), missing label

. list race sex rs3 in 1/7, sep(0)

race sex rs3
1. White Female White Female
2. White Male White Male
3. Black Female Black Female
4. Black Male Black Male
5. Black Male Black Male
6. . Female . Female
7. Black . Black .

The numeric values of the generated variable rs3 are the same as rs2, but rs3 has a value label that
indicates the categories of race and sex that define the groups. The value label created by group()
uses the actual values of the categorical variables or their value labels, if they exist. In this case, the
categorical variables race and sex are numeric variables with value labels, so their value labels were
used to create the value label for rs3.

d

String variables

Concatenation of string variables is provided in Stata. In context, Stata understands the addition sym-
bol + as specifying concatenation or adding strings end to end. "soft" + "ware" produces "software",
and given string variables s1 and s2, s1 + s2 indicates their concatenation.

The complications that may arise in practice include wanting 1) to concatenate the string versions
of numeric variables and 2) to concatenate variables, together with some separator such as a space or a
comma. Given numeric variables n1 and n2,

. generate newstr = sl + string(nl) + string(n2) + s2
shows how numeric values may be converted to their string equivalents before concatenation, and

. generate newstr = s1 + " " + 82 + " " + s3

shows how spaces may be added between variables. Stata will automatically assign the most appropriate
data type for the new string variables.

b Example 18: concat()
concat () allows us to do everything in one line concisely.
. egen newstr = concat(sl nl n2 s2)

carries with it an implicit instruction to convert numeric values to their string equivalents, and the appro-
priate string data type is worked out within concat () by Stata’s automatic promotion. Moreover,

. egen newstr = concat(sl s2 s3), p(" ")

specifies that spaces be used as separators. (The default is to have no separation of concatenated strings.)

egen — Extensions to generate 256

As an example of punctuation other than a space, consider

. egen fullname = concat(surname forename), p(", ")

Noninteger numerical values can cause difficulties, but

. egen newstr = concat(nl n2), format(%9.3f) p(" ")

specifies the use of format %9.3£. This is equivalent to

. generate strl newstr = ""

. replace newstr = string(n1,"%9.3f") + " " + string(n2,"%9.3f")

See [FN] String functions for more about string().
N
As a final flourish, the decode option instructs concat () to use value labels. With that option, the
maxlength() option may also be used. For more details about decode, see [D] encode. Unlike the
decode command, however, concat () uses string(varname), not "", whenever values of varname
are not associated with value labels, and the format () option, whenever specified, applies to this use of
string().

b Example 19: ends()

The ends (strvar) function is used for subdividing strings. The approach is to find specified separators
by using the strpos() string function and then to extract what is desired, which either precedes or
follows the separators, using the substr () string function.

By default, substrings are considered to be separated by individual spaces, so we will give definitions
in those terms and then generalize.

The head of the string is whatever precedes the first space or is the whole of the string if no space
occurs. This could also be called the first “word”. The tail of the string is whatever follows the first
space. This could be nothing or one or more words. The last word in the string is whatever follows the
last space or is the whole of the string if no space occurs.

To clarify, let’s look at some examples. The quotation marks here just mark the limits of each string
and are not part of the strings.

head tail last

"frog" "frog" "“ "frog"

"frog toad" "frog" "toad" "toad"
"frog toad newt" "frog" "toad newt" "newt"
"frog toad newt" "frog" " toad newt" "newt"
"frog toad newt" "frog" "toad newt" "newt"

The main subtlety is that these functions are literal, so the tail of "frog toad newt", in which two
spaces follow "frog", includes the second of those spaces, and is thus " toad newt". Therefore, you
may prefer to use the trim option to trim the result of any leading or trailing spaces, producing "toad
newt" in this instance.

The punct (pchars) option may be used to specify separators other than spaces. The general defini-
tions of the head, tail, and last options are therefore interpreted in terms of whatever separator has
been specified; that is, they are relative to the first or last occurrence of the separator in the string value.

egen — Extensions to generate 257

Thus, with punct (,) and the string "Darwin, Charles Robert", the head is "Darwin", and the tail
and the last are both " Charles Robert". Note again the leading space in this example, which may be

[T

trimmed with trim. The punctuation (here the comma, “,”) is discarded, just as it is with one space.

pchars, the argument of punct (), will usually, but not always, be one character. If two or more
characters are specified, these must occur together; for example, punct (: ;) would mean that words are
separated by a colon followed by a semicolon (that is, : ;). It is not implied, in particular, that the colon
and semicolon are alternatives. To do that, you would have to modify the programs presented here or
resort to first principles by using split; see [D] split.

With personal names, the head or last option might be applied to extract surnames if strings were
similarto "Darwin, Charles Robert" or "Charles Robert Darwin", with the surname coming first or
last. What then happens with surnames like "von Neumann" or "de 1a Mare"? "von Neumann, John"
is no problem, if the comma is specified as a separator, but the 1ast option is not intelligent enough to
handle "Walter de la Mare" properly.

N

Acknowledgments

The cut () function was written by David Clayton (retired) of the Cambridge Institute for Medical
Research and Michael Hills (1934-2021) of the London School of Hygiene and Tropical Medicine.

Many of the other egen functions were written by Nicholas J. Cox of the Department of Geography
at Durham University, UK, and coeditor of the Stata Journal and author of Speaking Stata Graphics.

References

Andrews, D. F., P. J. Bickel, F. R. Hampel, P. J. Huber, W. H. Rogers, and J. W. Tukey. 1972. Robust Estimates of Location:
Survey and Advances. Princeton, NJ: Princeton University Press.

Cappellari, L., and S. P. Jenkins. 2006. Calculation of multivariate normal probabilities by simulation, with applications
to maximum simulated likelihood estimation. Stata Journal 6: 156—189.

Cox, N. J. 2009. Speaking Stata: Rowwise. Stata Journal 9: 137-157.

——— 2014. Speaking Stata: Self and others. Stata Journal 14: 432-444.

———. 2020. Speaking Stata: More ways for rowwise. Stata Journal 20: 481-488.

———.2021. Speaking Stata: Ordering or ranking groups of observations. Stata Journal 21: 818-837.
———. 2022. Speaking Stata: The largest five—a tale of tail values. Stata Journal 22: 446-459.

———. 2023. Speaking Stata: Replacing missing values: The easiest problems. Stata Journal 23: 884-896.
——— 2024, Stata tip 156: Concentration and diversity measures using egen. Stata Journal 24: 535-545.

Cox, N. J., and C. B. Schechter. 2018. Speaking Stata: Seven steps for vexatious string variables. Stata Journal 18:
981-994.

David, H. A. 1998. Early sample measures of variability. Statistical Science 13: 368-377. https://doi.org/10.1214/ss/
1028905831.

Gallup, J. L. 2019. Grade functions. Stata Journal 19: 459—476.

Hampel, F. R., E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel. 1986. Robust Statistics: The Approach Based on
Influence Functions. New York: Wiley. https://doi.org/10.1002/9781118186435.

Huber, C. 2014. How to simulate multilevel/longitudinal data. The Stata Blog: Not Elsewhere Classified. https://blog.
stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/.

Kohler, U., and J. Zeh. 2012. Apportionment methods. Stata Journal 12: 375-392.
Mitchell, M. N. 2020. Data Management Using Stata: A Practical Handbook. 2nd ed. College Station, TX: Stata Press.

https://www.stata-journal.com/
https://www.stata-press.com/books/speaking-stata-graphics/
https://www.stata-journal.com/article.html?article=st0101
https://www.stata-journal.com/article.html?article=st0101
https://www.stata-journal.com/article.html?article=pr0046
https://www.stata-journal.com/article.html?article=dm0075
https://doi.org/10.1177/1536867X20931007
https://doi.org/10.1177/1536867X211045582
https://doi.org/10.1177/1536867X221106436
https://doi.org/10.1177/1536867X231196519
https://doi.org/10.1177/1536867X241276115
https://www.stata-journal.com/article.html?article=dm0098
https://doi.org/10.1214/ss/1028905831
https://doi.org/10.1214/ss/1028905831
https://doi.org/10.1177/1536867X19854020
https://doi.org/10.1002/9781118186435
https://blog.stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/
https://blog.stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/
https://www.stata-journal.com/article.html?article=st0265
https://www.stata-press.com/books/data-management-using-stata/

egen — Extensions to generate 258

Pinzon, E. 2015. Fixed effects or random effects: The Mundlak approach. The Stata Blog: Not Elsewhere Classified.
https://blog.stata.com/2015/10/29/fixed-effects-or-random-effects-the-mundlak-approach/.

Rios-Avila, F. 2020. Recentered influence functions (RIFs) in Stata: RIF regression and RIF decomposition. Stata Journal
20: 51-94.

Salas Pauliac, C. H. 2013. group2: Generating the finest partition that is coarser than two given partitions. Stata Journal
13: 867-875.

Weiss, M. 2009. Stata tip 80: Constructing a group variable with specified group sizes. Stata Journal 9: 640—642.

Wilcox, R. R. 2003. Applying Contemporary Statistical Techniques. San Diego: Academic Press. https://doi.org/10.1016/
B978-0-12-751541-0.X5021-4.

Also see

[D] collapse — Make dataset of summary statistics
[D] generate — Create or change contents of variable

[U] 13.3 Functions

https://blog.stata.com/2015/10/29/fixed-effects-or-random-effects-the-mundlak-approach/
https://doi.org/10.1177/1536867X20909690
https://www.stata-journal.com/article.html?article=dm0073
https://www.stata-journal.com/article.html?article=st0181
https://doi.org/10.1016/B978-0-12-751541-0.X5021-4
https://doi.org/10.1016/B978-0-12-751541-0.X5021-4

encode — Encode string into numeric and vice versa

Description Quick start Menu Syntax
Options for encode Options for decode Remarks and examples References
Also see

Description

encode creates a new variable named newvar based on the string variable varname, creating, adding
to, or just using (as necessary) the value label newvar or, if specified, name. Do not use encode if
varname contains numbers that merely happen to be stored as strings; instead, use generate newvar
=real (varname) or destring; see [U] 24.2 Categorical string variables, [FN] String functions, and
[D] destring.

decode creates a new string variable named newvar based on the “encoded” numeric variable var-
name and its value label.

Quick start

Generate numeric newvl from string v1, using the values of v1 to create a value label that is applied to
newvl

encode v1, generate(newvl)

Same as above, but name the value label mylabell

encode v1, generate(newvl) label(mylabell)

Same as above, but refuse to encode v1 if values exist in v1 that are not present in preexisting value label
mylabell

encode v1, generate(newvl) label(mylabell) noextend

Convert numeric v2 to string newv2 using the value label applied to v2 to generate values of newv2

decode v2, generate (newv2)

Menu

encode

Data > Create or change data > Other variable-transformation commands > Encode value labels from string
variable

decode

Data > Create or change data > Other variable-transformation commands > Decode strings from labeled numeric
variable

259

encode — Encode string into numeric and vice versa 260

Syntax
String variable to numeric variable

encode varname [tf] [in] , generate (newvar) [label (name) noextend]

Numeric variable to string variable

decode varname [lf] [in] , generate (newvar) [maxlength(#)]

Options for encode

generate (newvar) is required and specifies the name of the variable to be created.

label (name) specifies the name of the value label to be created or used and added to if the named value
label already exists. If 1abel () is not specified, encode uses the same name for the label as it does
for the new variable.

noextend specifies that varname not be encoded if there are values contained in varname that are not
present in label (name). By default, any values not present in label (name) will be added to that
label.

Options for decode

generate (newvar) is required and specifies the name of the variable to be created.

maxlength (#) specifies how many bytes of the value label to retain; # must be between 1 and 32,000.
The default is maxlength (32000).

Remarks and examples

Remarks are presented under the following headings:

encode
decode
Video example

encode

encode is most useful in making string variables accessible to Stata’s statistical routines, most of
which can work only with numeric variables. encode is also useful in reducing the size of a dataset. If
you are not familiar with value labels, read [U] 12.6.3 Value labels.

The maximum number of associations within each value label is 65,536. Each association in a value
label maps a string of up to 32,000 bytes to a number. For plain ASCII text, the number of bytes is equal to
the number of characters. If your string has other Unicode characters, the number of bytes is greater than
the number of characters. See [U] 12.4.2 Handling Unicode strings. If your variable contains string
values longer than 32,000 bytes, then only the first 32,000 bytes are retained and assigned as a value
label to a number.

encode — Encode string into numeric and vice versa 261

b Example 1

We have a dataset on high blood pressure, and among the variables is sex, a string variable containing
either “male” or “female”. We wish to run a regression of high blood pressure on race, sex, and age group.
We type regress hbp race sex age_grp and get the message “no observations”.

. use https://www.stata-press.com/data/r19/hbp2

. regress hbp sex race age_grp
no observations
r(2000) ;

Stata’s statistical procedures cannot directly deal with string variables; as far as they are concerned,
all observations on sex are missing. encode provides the solution:

. encode sex, gen(gender)

. regress hbp gender race age_grp

Source SS df MS Number of obs = 1,121
F(3, 1117) = 15.15

Model 2.01013476 3 .67004492 Prob > F = 0.0000
Residual 49.3886164 1,117 .044215413 R-squared = 0.0391
Adj R-squared = 0.0365

Total 51.3987511 1,120 .045891742 Root MSE = .21027
hbp | Coefficient Std. err. t P>|t| [95% conf. intervall
gender .0394747 .0130022 3.04 0.002 .0139633 .0649861
race -.0409453 .0113721 -3.60 0.000 -.0632584 -.0186322
age_grp .0241484 .00624 3.87 0.000 .0119049 .0363919
_cons -.016815 .0389167 -0.43 0.666 -.093173 .059543

encode looks at a string variable and makes an internal table of all the values it takes on, here “male”
and “female”. It then alphabetizes that list and assigns numeric codes to each entry. Thus 1 becomes
“female” and 2 becomes “male”. It creates a new int variable (gender) and substitutes a 1 where sex
is “female”, a 2 where sex is “male”, and a missing (.) where sex is null (""). It creates a value label
(also named gender) that records the mapping 1 <+ female and 2 <+ male. Finally, encode labels the
values of the new variable with the value label.

d

b Example 2

It is difficult to distinguish the result of encode from the original string variable. For instance, in our
last two examples, we typed encode sex, gen(gender). Let’s compare the two variables:

. list sex gender in 1/4

sex gender

1. female female
2. .
3. male male
4. male male

They look almost identical, although you should notice the missing value for gender in the second ob-
servation.

encode — Encode string into numeric and vice versa 262

The difference does show, however, if we tell 1ist to ignore the value labels and show how the data
really appear:

. list sex gender in 1/4, nolabel

sex gender

1. female 1
2.

3. male 2
4. male 2

We could also ask to see the underlying value label:

. label list gender
gender:
1 female
2 male

gender really is a numeric variable, but because all Stata commands understand value labels, the variable
displays as “male” and “female”, just as the underlying string variable sex would.

d

b Example 3

We can drastically reduce the size of our dataset by encoding strings and then discarding the underlying
string variable. We have a string variable, sex, that records each person’s sex as “male” and “female”.
Because female has six characters, the variable is stored as a str6.

We can encode the sex variable and use compress to store the variable as a byte, which takes only
1 byte. Because our dataset contains 1,130 people, the string variable takes 6,780 bytes, but the encoded
variable will take only 1,130 bytes.

. use https://www.stata-press.com/data/r19/hbp2, clear
. describe

Contains data from https://www.stata-press.com/data/r19/hbp2.dta

Observations: 1,130
Variables: 7 3 Mar 2024 06:47
Variable Storage Display Value
name type format label Variable label
id stri0 %10s Record identification number
city byte %8.0g City
year int %8.0g Year
age_grp byte %8.0g agefmt Age group
race byte %8.0g racefmt Race
hbp byte %8.0g yn High blood pressure
sex stré %9s Sex
Sorted by:

. encode sex, generate(gender)

encode — Encode string into numeric and vice versa 263

. list sex gender in 1/5

sex gender
1. female female
2. .
3. male male
4. male male
5. female female

. drop sex

. rename gender sex

. compress
variable sex was long now byte
(3,390 bytes saved)

. describe

Contains data from https://www.stata-press.com/data/r19/hbp2.dta

Observations: 1,130
Variables: 7 3 Mar 2024 06:47
Variable Storage Display Value
name type format label Variable label
id stri0 %10s Record identification number
city byte %8.0g City
year int %8.0g Year
age_grp byte %8.0g agefmt Age group
race byte %8.0g racefmt Race
hbp byte %8.0g yn High blood pressure
sex byte %8.0g gender Sex
Sorted by:

Note: Dataset has changed since last saved.

The size of our dataset has fallen from 24,860 bytes to 19,210 bytes.

Q Technical note

In the examples above, the value label did not exist before encode created it, because that is not
required. If the value label does exist, encode uses your encoding as far as it can and adds new mappings
for anything not found in your value label. For instance, if you wanted “female” to be encoded as 0
rather than 1 (possibly for use in linear regression), you could type

. label define gender O "female"

. encode sex, gen(gender)
You can also specify the name of the value label. If you do not, the value label is assumed to have the
same name as the newly created variable. For instance,

. label define sexlbl O "female"
. encode sex, gen(gender) label(sexlbl)

encode — Encode string into numeric and vice versa 264

decode

decode is used to convert numeric variables with associated value labels into true string variables.

b Example 4
We have a numeric variable named female that records the values 0 and 1. female is associated with
a value label named sex1bl that says that 0 means male and 1 means female:

. use https://www.stata-press.com/data/r19/hbp3, clear

. describe female

Variable Storage Display Value
name type format label Variable label
female byte %8.0g sexlbl Female
. label list sexlbl
sexlbl:
0 Male
1 Female

We see that female is stored as a byte. It is a numeric variable. Nevertheless, it has an associated value
label describing what the numeric codes mean, so if we tabulate the variable, for instance, it appears
to contain the strings “male” and “female”:

. tabulate female

Female Freq. Percent Cum.

Male 695 61.61 61.61
Female 433 38.39 100.00
Total 1,128 100.00

We can create a real string variable from this numerically encoded variable by using decode:

. decode female, gen(sex)

. describe sex

Variable Storage Display Value
name type format label Variable label
sex stré %9s Female

We have a new variable called sex. It is a string, and Stata automatically created the shortest possible
string. The word “female” has six characters, so our new variable is a str6. female and sex appear
indistinguishable:

. list female sex in 1/4

female sex

Female Female

Male Male
Male Male

S wWN -

encode — Encode string into numeric and vice versa 265

But when we add nolabel, the difference is apparent:

. list female sex in 1/4, nolabel

female sex
1. 1 Female
2. .
3. 0 Male
4. 0 Male
N
b Example 5

decode is most useful in instances when we wish to match-merge two datasets on a variable that has
been encoded inconsistently.

For instance, we have two datasets on individual states in which one of the variables (state) takes on
values such as “CA” and “NY”. The state variable was originally a string, but along the way the variable
was encoded into an integer with a corresponding value label in one or both datasets.

We wish to merge these two datasets, but either 1) one of the datasets has a string variable for state
and the other an encoded variable or 2) although both are numeric, we are not certain that the codings
are consistent. Perhaps “CA” has been coded 5 in one dataset and 6 in another.

Because decode will take an encoded variable and turn it back into a string, decode provides the
solution:

use first (load the first dataset)
decode state, gen(st) (make a string state variable)
drop state (discard the encoded variable)
sort st (sort on string)

save first, replace (save the dataset)

use second (load the second dataset)
decode state, gen(st) (make a string variable)

drop state (discard the encoded variable)
sort st (sort on string)

merge 1:1 st using first (merge the data)

Video example

How to convert categorical string variables to labeled numeric variables

References

Cox, N. J., and C. B. Schechter. 2018. Speaking Stata: Seven steps for vexatious string variables. Stata Journal 18:
981-994.

Schechter, C. B. 2011. Stata tip 99: Taking extra care with encode. Stata Journal 11: 321-322.

https://www.youtube.com/watch?v=ZRWHjdIZyxo
https://www.stata-journal.com/article.html?article=dm0098
https://www.stata-journal.com/article.html?article=dm0057

encode — Encode string into numeric and vice versa 266

Also see

[D] compress — Compress data in memory

[D] destring — Convert string variables to numeric variables and vice versa
[D] generate — Create or change contents of variable

[U] 12.6.3 Value labels

[U] 24.2 Categorical string variables

erase — Erase a disk file

Description Quick start Syntax Remarks and examples Also see

Description

The erase command erases files stored on disk. rm is a synonym for erase for the convenience of
Mac and Unix users.

Stata for Mac users: erase is permanent; the file is not moved to the Trash but is immediately removed
from the disk.

Stata for Windows users: erase is permanent; the file is not moved to the Recycle Bin but is imme-
diately removed from the disk.

Quick start

Delete mylog.smcl from current directory in Stata for Windows

erase mylog.smcl

Same as above for Mac and Unix

rmmylog.smcl

Delete mydata.dta from current directory in Stata for Windows

erase mydata.dta

Same as above for Mac and Unix
rm mydata.dta

Delete mylog.smcl from C:\my dir\my folder in Stata for Windows
erase "c:\my dir\my folder\mylog.smcl"

Same as above for Mac and Unix
rm "~/my dir/my folder/mylog.smcl"

Syntax

{erase|rm} ["] filename|"]

Note: Double quotes must be used to enclose filename if the name contains spaces.

Remarks and examples

The only difference between Stata’s erase (rm) command and the Windows command prompt DEL
or Unix rm(1) command is that we may not specify groups of files. Stata requires that we erase files one
at a time.

Mac users may prefer to discard files by dragging them to the Trash.
Windows users may prefer to discard files by dragging them to the Recycle Bin.

267

erase — Erase a disk file 268

b Example 1

Stata provides seven operating system equivalent commands: cd, copy, dir, erase, mkdir, rmdir,
and type, or, from the Unix perspective, cd, copy, 1s, rm, mkdir, rmdir, and cat. These commands are
provided for Mac users, too. Stata users can also issue any operating system command by using Stata’s
shell command, so you should never have to exit Stata to perform some housekeeping detail.

Suppose that we have the file mydata.dta stored on disk and we wish to permanently eliminate it:

. erase mydata
file mydata not found
r(601);

. erase mydata.dta

Our first attempt, erase mydata, was unsuccessful. Although Stata ordinarily supplies the file extension
for you, it does not do so when you type erase. You must be explicit. Our second attempt eliminated
the file. Unix users could have typed rm mydata.dta if they preferred.

N

Also see

D] ed — Change directory

D] copy — Copy file from disk or URL
D] dir — Display filenames
mkdir — Create directory
D] rmdir — Remove directory

]
]
]
]
]
]

D] shell — Temporarily invoke operating system

[
[
[
[D
[
[
[

D] type — Display contents of a file

[U] 11.6 Filenaming conventions

expand — Duplicate observations

Description Quick start Menu Syntax
Option Remarks and examples References Also see

Description

expand replaces each observation in the dataset with n copies of the observation, where 7 is equal to
the required expression rounded to the nearest integer. If the expression is less than 1 or equal to missing,
it is interpreted as if it were 1, and the observation is retained but not duplicated.

Quick start

Duplicate each observation 3 times, resulting in the original and 2 copies
expand 3

Duplicate each observation the number of times stored in v

expand v

Same as above, but flag duplicated observations using generated newv

expand v, generate (newv)

Same as above, but only duplicate observations where catvar equals 4

expand v if catvar==4, generate (newv)

Menu

Data > Create or change data > Other variable-transformation commands > Duplicate observations

269

expand — Duplicate observations 270

Syntax

expand [=]exp [zf] [in] [, generate (newvar)]

Option

generate (newvar) creates new variable newvar containing 0 if the observation originally appeared in
the dataset and 1 if the observation is a duplicate. For instance, after an expand, you could revert to
the original observations by typing keep if newvar==0.

Remarks and examples

b Example 1

expand is, admittedly, a strange command. It can, however, be useful in tricky programs or for
reformatting data for survival analysis (see examples in [R] Epitab). Here is a silly use of expand:

. use https://www.stata-press.com/data/r19/expandxmpl

. list
n x
1. -1 1
2. 0o 2
3. 1 3
4. 2 4
5. 3 5
. expand n

(1 negative count ignored; observation not deleted)
(1 zero count ignored; observation not deleted)
(3 observations created)

. list

n x
1. -1 1
2. o 2
3. 1 3
4. 2 4
5. 3 5
6 2 4
7 3 5
8 3 b

The new observations are added to the end of the dataset. expand informed us that it created 3 obser-
vations. The first 3 observations were not replicated because n was less than or equal to 1. n is 2 in the
fourth observation, so expand created one replication of this observation, bringing the total number of
observations of this type to 2. expand created two replications of observation 5 because n is 3.

Because there were 5 observations in the original dataset and because expand adds new observations
onto the end of the dataset, we could now undo the expansion by typing drop in 6/1.

N

expand — Duplicate observations 271

References
Cox, N. J. 2013. Stata tip 114: Expand paired dates to pairs of dates. Stata Journal 13: 217-219.
. 2014. Stata tip 119: Expanding datasets for graphical ends. Stata Journal 14: 230-235.

Huber, C. 2014. How to simulate multilevel/longitudinal data. The Stata Blog: Not Elsewhere Classified. https://blog.
stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/.

Also see

[D] contract — Make dataset of frequencies and percentages
[D] expandcl — Duplicate clustered observations

[D] fillin — Rectangularize dataset

https://www.stata-journal.com/article.html?article=dm0068
https://www.stata-journal.com/article.html?article=gr0058
https://blog.stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/
https://blog.stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/

expandcl — Duplicate clustered observations

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description

expandcl duplicates clusters of observations and generates a new variable that identifies the clusters
uniquely.

expandcl replaces each cluster in the dataset with n copies of the cluster, where # is equal to the
required expression rounded to the nearest integer. The expression is required to be constant within
cluster. If the expression is less than 1 or equal to missing, it is interpreted as if it were 1, and the cluster
is retained but not duplicated.

Quick start

Duplicate each set of observations on clusters identified by cvar 3 times, and store new cluster identifier
in newcv

expandcl 3, cluster(cvar) generate(newcv)

Duplicate each cluster of observations the number of times stored in v

expandcl v, cluster(cvar) generate(newcv)

Menu

Data > Create or change data > Other variable-transformation commands > Duplicate clustered observations

272

expandcl — Duplicate clustered observations 273

Syntax

expandcl [=}exp [1]‘] [in} » cluster (varlist) generate(newvar)

Options
cluster (varlist) is required and specifies the variables that identify the clusters before expanding the
data.

generate (newvar) is required and stores unique identifiers for the duplicated clusters in newvar. new-
var will identify the clusters by using consecutive integers starting from 1.

Remarks and examples

b Example 1

We will show how expandcl works by using a small dataset with five clusters. In this dataset, cl
identifies the clusters, x contains a unique value for each observation, and n identifies how many copies
we want of each cluster.

. use https://www.stata-press.com/data/r19/expclxmpl
. list, sepby(cl)

cl X n

1. 10 1 -1
2. 10 2 -1
3. 20 3 0
4. 20 4 0
5. 30 5 1
6. 30 6 1
7. 40 7 2.7
8. 40 8 2.7
9. 50 9 3
10. 50 10 3

11. 60 11
12. 60 12

. expandcl n, generate(newcl) cluster(cl)

(2 missing counts ignored; observations not deleted)
(2 noninteger counts rounded to integer)

(2 negative counts ignored; observations not deleted)
(2 zero counts ignored; observations not deleted)

(8 observations created)

. sort mnewcl cl x

expandcl — Duplicate clustered observations 274

. list, sepby(newcl)

e

11.
12.

13.
14.

15.
16.

17.
18.

19.
20.

cl b4 n newcl
10 1 -1 1
10 2 -1 1
20 3 0 2
20 4 0 2
30 5 1 3
30 6 1 3
40 7 .7 4
40 8 7 4
40 7 7 5
40 8 7 5
40 7 7 6
40 8 7 6
50 9 3 7
50 10 3 7
50 9 3 8
50 10 3 8
50 9 3 9
50 10 3 9
60 11 10
60 12 10

The first three clusters were not replicated because n was less than or equal to 1. n is 2.7 in the fourth
cluster, so expandcl created two replications (2.7 was rounded to 3) of this cluster, bringing the total
number of clusters of this type to 3. expandcl created two replications of cluster 50 because n is 3.
Finally, expandcl did not replicate the last cluster because n was missing.

Also see

[D] expand — Duplicate observations

[R] bsample — Sampling with replacement

N

export — Overview of exporting data from Stata

Description Remarks and examples Also see

Description

This entry provides a quick reference for determining which method to use for exporting Stata data
from memory to other formats.

Remarks and examples

Remarks are presented under the following headings:

Summary of the different methods
export excel
export delimited
Jjdbe
odbc
outfile

export sasxport5 and export sasxport8
export spss
export dbase

Summary of the different methods

export excel

o export excel creates Microsoft Excel worksheets in .x1s and .x1sx files.
o Entire worksheets can be exported, or custom cell ranges can be overwritten.

o See [D] import excel.

export delimited

o export delimited creates comma-separated or tab-delimited files that many other programs can
read.

o A custom delimiter may also be specified.

o The first line of the file can optionally contain the names of the variables.

o See [D] import delimited.
jdbc
o Java Database Connectivity (JDBC) is an application programming interface for the programming

language Java. The jdbc command allows you to connect to, load data from, insert data into, and
execute queries on a database using JDBC.

o See [D] jdbe.

275

export — Overview of exporting data from Stata 276

odbc

o ODBC, an acronym for Open DataBase Connectivity, is a standard for exchanging data between pro-
grams. Stata supports the ODBC standard for exporting data via the odbc command and can write to
any ODBC data source on your computer.

o See [D] odbc.

outfile

o outfile creates text-format datasets.
o The data can be written in space-separated or comma-separated format.
o Alternatively, the data can be written in fixed-column format.

o See [D] outfile.

export sasxport5 and export sasxport8

o export sasxportb saves SAS XPORT Version 5 Transport format files.
o export sasxportb can also write value-label information to a formats.xpf XPORT file.
o export sasxport8 saves SAS XPORT Version § Transport format files.
o export sasxport8 can also write value-label information to a SAS command (. sas) file.

o See [D] import sasxport5 and [D] import sasxport8.

export spss

o export spss saves an IBM SPSS Statistics (. sav) file.

o See [D] import spss.

export dbase

o export dbase saves version IV dBase (. dbf) files.

o See [D] import dbase.

Also see

[D] import — Overview of importing data into Stata

[M-5] _docx*() — Generate Office Open XML (.docx) file

[M-5] x1() — Excel file I/O class

[RPT] dyndoc — Convert dynamic Markdown document to HTML or Word (.docx) document
[RPT] putdocx intro — Introduction to generating Office Open XML (.docx) files

[RPT] putexcel — Export results to an Excel file

[

RPT] putpdf intro — Introduction to generating PDF files

filefilter — Convert ASCII or binary patterns in a file

Description Quick start Syntax Options
Remarks and examples Stored results Reference Also see

Description

filefilter reads an input file, searching for oldpattern. Whenever a matching pattern is found, it
is replaced with newpattern. All resulting data, whether matching or nonmatching, are then written to
the new file.

Because of the buffering design of filefilter, arbitrarily large files can be converted quickly.
filefilter is also useful when traditional editors cannot edit a file, such as when unprintable ASCII
characters are involved. In fact, converting end-of-line characters between Macintosh, Windows, and
Unix is convenient with the EOL codes.

Unicode is not directly supported, but UTF-8 encoded files can be operated on by using byte-sequence
methods in some cases.

Although it is not mandatory, you may want to use quotes to delimit a pattern, protecting the pattern
from Stata’s parsing routines. A pattern that contains blanks must be in quotes.

Quick start

Create newfile.txt from oldfile.txt by replacing all tabs with semicolons
filefilter oldfile.txt newfile.txt, from(\t) to(";")

Create newfile.txt from oldfile.txt by replacing all instances of “The” with “the”
filefilter oldfile.txt newfile.txt, from("The") to("the")

277

filefilter — Convert ASCII or binary patterns in a file 278

Syntax
filefilter oldfile newfile ,

{ from(oldpattern) to(newpattern) |ascii2ebcdic |ebcdic2ascii } [options]

where oldpattern and newpattern for ASCII characters are
"string" or string
string := [char[char[char[...111]

char :=regchar | code
regchar := ASCIl 32-91, 93—-127, or

extended ASCIT 128, 161-255; excludes ‘\’

code :=\BS backslash
\r carriage return
\n newline
\t tab
\M Classic Mac EOL, or \r
\W Windows EOL, or \r\n
\U Unix or Mac EOL, or \n
\LQ left single quote, *
\RQ right single quote, ’
\Q double quote, ”
\$ dollar sign, $
\###d 3-digit [0-9] decimal ASCII
\##h 2-digit [0-9, A—F] hexadecimal ASCIT
options Description
* from(oldpattern) find oldpattern to be replaced
* to (newpattern) use newpattern to replace occurrences of from()
*ascii2ebcdic convert file from ASCII to EBCDIC
*ebcdic2ascii convert file from EBCDIC to ASCII
replace replace newfile if it already exists

* Both from(oldpattern) and to (newpattern) are required, or ascii2ebcdic or ebcdic2ascii is required.

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

from(oldpattern) specifies the pattern to be found and replaced. It is required unless ascii2ebcdic or

ebcdic2ascii is specified.

to(newpattern) specifies the pattern used to replace occurrences of from(). It is required unless

ascii2ebcdic or ebcdic2ascii is specified.

ascii2ebcdic specifies that characters in the file be converted from ASCII coding to EBCDIC coding.
from(), to(), and ebcdicascii are not allowed with ascii2ebcdic.

ebcdic2ascii specifies that characters in the file be converted from EBCDIC coding to ASCII coding.
from(), to(), and ascii2ebcdic are not allowed with ebcdic2ascii.

replace specifies that newfile be replaced if it already exists.

filefilter — Convert ASCII or binary patterns in a file 279

Remarks and examples

Convert Classic Mac-style EOL characters to Windows-style

. filefilter macfile.txt winfile.txt, from(\M) to(\W) replace

Convert left quote (°) characters to the string “left quote”

. filefilter autol.csv auto2.csv, from(\LQ) to("left quote")

Convert the character with hexidecimal code 60 to the string “left quote”

. filefilter autol.csv auto2.csv, from(\60h) to("left quote")

Convert the character with decimal code 96 to the string “left quote”

. filefilter autol.csv auto2.csv, from(\096d) to("left quote")
Convert strings beginning with hexidecimal code 6B followed by “Text” followed by decimal character
100 followed by “Text” to an empty string (remove them from the file)

. filefilter filel.txt file2.txt, from("\6BhText\100dText") to("")

Convert file from EBCDIC to ASCII encoding

. filefilter ebcdicfile.txt asciifile.txt, ebcdic2ascii

Q Technical note

Unicode is not directly supported, but you can try to operate on a UTF-8 encoded Unicode file by
working on the byte sequence representation of the UTF-8 encoded Unicode character. For example, the
Unicode character &, the Latin small letter “e” with an acute accent (Unicode code point \u00e9), has
the byte sequence representation (195,169). You can obtain the byte sequence by using tobytes("é").
Although you may use 195 and 169 in regchar and code, they will be treated as two separate bytes instead
of one character & (195 followed by 169). In short, this goes beyond the original design of the command
and is technically unsupported. If you try to use filefilter in this way, you might encounter problems.

a

Stored results

filefilter stores the following inr ():

Scalars
r(occurrences) number of oldpattern found
r(bytes_from) # of bytes represented by oldpattern
r (bytes_to) # of bytes represented by newpattern

Reference
Riley, A. R. 2008. Stata tip 60: Making fast and easy changes to files with filefilter. Stata Journal 8: 290-292.

Also see

[P] file — Read and write text and binary files

[D] changeeol — Convert end-of-line characters of text file

]
[D] hexdump — Display hexadecimal report on file

https://www.stata-journal.com/article.html?article=pr0039

fillin — Rectangularize dataset

Description Quick start Menu Syntax
Remarks and examples References Also see

Description

fillin adds observations with missing data so that all interactions of varlist exist, thus making a
complete rectangularization of varlist. £i11in also adds the variable _fillin to the dataset. _fillin
is 1 for observations created by using £i11in and 0 for previously existing observations.

Quick start

Add observations so that all possible interactions of v1 and v2 exist and flag new observations with
_fillin =1
fillin vl v2

Same as above, but also include interactions with v3
fillinvlv2v3

Menu

Data > Create or change data > Other variable-transformation commands > Rectangularize dataset

Syntax
£illin varlist

varlist may not contain strLs or alias variables.

280

fillin — Rectangularize dataset 281

Remarks and examples

b Example 1

We have data on something by sex, race, and age group. We suspect that some of the combinations
of sex, race, and age do not exist, but if so, we want them to exist with whatever remaining variables
there are in the dataset set to missing. For example, rather than having a missing observation for black
females aged 20—24, we want to create an observation that contains missing values:

. use https://www.stata-press.com/data/r19/fillinl

. list
sex race age_gr-p x1 x2
1. female white 20-24 20393 14.5
2. male white 25-29 32750 12.7
3. | female black 30-34 39399 4.2

. fillin sex race age_group

. list, sepby(sex)

sex race age_gr-p x1 x2 _fillin

1. female white 20-24 20393 14.5 0
2. female white 25-29 1
3. female white 30-34 1
4. female black 20-24 1
5. female black 25-29 . . 1
6. female black 30-34 39399 14.2 0
7. male white 20-24 . . 1
8. male white 25-29 32750 12.7 0
9. male white 30-34 1
10. male black 20-24 1
11. male black 25-29 1
12. male black 30-34 1

d
References

Baum, C. F. 2016. An Introduction to Stata Programming. 2nd ed. College Station, TX: Stata Press.
Cox, N. J. 2005. Stata tip 17: Filling in the gaps. Stata Journal 5: 135-136.

Also see

D] cross — Form every pairwise combination of two datasets

D] expand — Duplicate observations

[D]

(D]

[D] frunalias — Change storage type of alias variables

[D] joinby — Form all pairwise combinations within groups
(D]

D] save — Save Stata dataset

https://www.stata-press.com/books/introduction-stata-programming/
https://www.stata-journal.com/article.html?article=dm0011

format — Set variables’ output format

Description Quick start Menu Syntax
Option Remarks and examples References Also see

Description

format varlist % fint and format % fint varlist are the same commands. They set the display format
associated with the variables specified. The default formats are a function of the type of the variable:

byte %8.0g
int %8.0g
long %12.0g
float %9.0g
double %10.0g
str# hits
strL %9s

set dp sets the symbol that Stata uses to represent the decimal point. The default is period, meaning
that one and a half is displayed as 1.5.

format |varlist | displays the current formats associated with the variables. format by itself lists
all variables that have formats too long to be listed in their entirety by describe. format varlist lists
the formats for the specified variables regardless of their length. format * lists the formats for all the
variables.

Quick start

Show 10-digit v1 as whole numbers with commas
format v1 %15.0gc

Same as above
format %15.0gc v1

Left-align string variable v2 of type str20
format v2 %-20s

Show 3-digit v3 with 1 digit after the decimal
format v3 %4.1f

Left-align v4 and v5, and show with leading zeros if less than 4 digits in length
format v4 v5 %-04.0f

Show v6 in Stata default date format like 19jun2014
format v6 Jtd

Same as above, but show v6 in a date format like 06/14/2014
format v6 %tdNN/DD/CCYY

Menu

Data > Variables Manager

282

format — Set variables’ output format 283

Syntax
Set formats

format varlist ¥, fimt

format % fint varlist

Set style of decimal point

set dp { comma|period } [, permanently |

Display long formats

format [varlist]

where % fmt can be a numerical, date, business calendar, or string format.

Numerical % fint Description Example
right-justified

Wit #Hg general %9.0g

Dt HE fixed %9.2f

Wit He exponential %10.7e

%h21x hexadecimal %21x

%16H binary, hilo %16H

%16L binary, lohi %16L

%8H binary, hilo %8H

%8L binary, lohi %8L
right-justified with commas

Wi . Hge general %9.0gc

Wi H#Hic fixed %9.2fc
right-justified with leading zeros

%O#. #E fixed %09.2f
left-justified

. Hg general %=9.0g

hh—#.HE fixed %-9.2f

h—#.#e exponential %=10.7e
left-justified with commas

h—#.#gc general %-9.0gc

h#.#fc fixed %=9.2fc

You may substitute comma (,) for period (.) in any

of the above formats to make comma the decimal point. In
%9,2fc, 1000.03 is 1.000,03. Or you can set dp comma.

format — Set variables’ output format 284

date % fint Description Example

right-justified
htc date/time %tc
#tC date/time %tC
%td date %td
htw week htw
%tm month %tm
wtq quarter %tq
%th half-year %th
Wty year hty
htg generic wtg

left-justified
h-tc date/time %h-tc
%-tC date/time %-tC
%-td date %-td
etc.

There are many variations allowed. See [D] Datetime display formats.

business calendar 7, fint Description Example
%tbcalname a business %tbsimple
[: datetime-specifiers | calendar defined in

calname.stbcal

See [D] Datetime business calendars.

string % fint Description Example
right-justified

hits string %15s
left-justified

h—#s string %-20s
centered]

h~#s string %~12s

The centered format is for use with display only.

Option

permanently specifies that, in addition to making the change right now, the dp setting be remembered
and become the default setting when you invoke Stata.

format — Set variables’ output format 285

Remarks and examples

Remarks are presented under the following headings:

Setting formats
Setting European formats
Details of formats
The %f format
The %fc format
The %g format
The %gc format
The %e format
The %21x format
The %16H and %16L formats
The %8H and %8L formats
The %t format
The %s format
Other effects of formats
Displaying current formats
Video example

Setting formats

See [U] 12.5 Formats: Controlling how data are displayed for an explanation of % fint. To review:
Stata’s three numeric formats are denoted by a leading percent sign, %, followed by the string w.d (or w,d
for European format), where w and d stand for two integers. The first integer, w, specifies the width of the
format. The second integer, d, specifies the number of digits that are to follow the decimal point; d must
be less than w. Finally, a character denoting the format type (e, £, or g) is appended. For example, %9 . 2f
specifies the f format that is nine characters wide and has two digits following the decimal point. For £
and g, a ¢ may also be suffixed to indicate comma formats. Other “numeric” formats known collectively
as the %t formats are used to display dates and times; see [D] Datetime display formats. String formats
are denoted by %ws, where w indicates the width of the format.

b Example 1

We have census data by region and state on median age and population in 1980.
. use https://www.stata-press.com/data/r19/census10
(1980 Census data by state)
. describe

Contains data from https://www.stata-press.com/data/r19/census10.dta

Observations: 50 1980 Census data by state

Variables: 4 9 Apr 2024 08:05

Variable Storage Display Value
name type format label Variable label

state stri4 %l4s State

region int %8.0g cenreg Census region

pop long %11.0g Population

medage float %9.0g Median age

Sorted by:

format — Set variables’ output format 286

. list in 1/8

state region pop medage
1. Alabama South 3893888 29.3
2. Alaska West 401851 26.1
3. Arizona West 2718215 29.2
4. Arkansas South 2286435 30.6
5. California West 23667902 29.9
6. Colorado West 2889964 28.6
7. Connecticut NE 3107576 32
8. Delaware South 594338 29.8

The state variable has a display format of % 14s. To left-align the state data, we type

. format state %-14s

. list in 1/8

state region pop medage
1. Alabama South 3893888 29.3
2. Alaska West 401851 26.1
3. Arizona West 2718215 29.2
4. Arkansas South 2286435 30.6
5. California West 23667902 29.9
6. Colorado West 2889964 28.6
7. Connecticut NE 3107576 32
8. Delaware South 594338 29.8

Although it seems like region is a string variable, it is really a numeric variable with an attached
value label. You do the same thing to left-align a numeric variable as you do a string variable: insert a
negative sign.

. format region %-8.0g

. list in 1/8

state region pop medage
1. Alabama South 3893888 29.3
2. Alaska West 401851 26.1
3. Arizona West 2718215 29.2
4. Arkansas South 2286435 30.6
5. California West 23667902 29.9
6. Colorado West 2889964 28.6
7. Connecticut NE 3107576 32
8. Delaware South 594338 29.8

format — Set variables’ output format 287

The pop variable would probably be easier to read if we inserted commas by appending a ‘c’:

. format pop %11.0gc

. list in 1/8

state region pop medage
1. Alabama South 3,893,888 29.3
2. Alaska West 401,851 26.1
3. Arizona West 2,718,215 29.2
4. Arkansas South 2,286,435 30.6
5. California West 23667902 29.9
6. Colorado West 2,889,964 28.6
7. Connecticut NE 3,107,576 32
8. Delaware South 594,338 29.8

Look at the value of pop for observation 5. There are no commas. This number was too large for Stata
to insert commas and still respect the current width of 11. Let’s try again:

. format pop %12.0gc

. list in 1/8

state region pop medage
1. Alabama South 3,893,888 29.3
2. Alaska West 401,851 26.1
3. Arizona West 2,718,215 29.2
4. Arkansas South 2,286,435 30.6
5. California West 23,667,902 29.9
6. Colorado West 2,889,964 28.6
7. Connecticut NE 3,107,576 32
8. Delaware South 594,338 29.8

Finally, medage would look better if the decimal points were vertically aligned.

. format medage %8.1f

. list in 1/8

state region pop medage
1. Alabama South 3,893,888 29.3
2. Alaska West 401,851 26.1
3. Arizona West 2,718,215 29.2
4. Arkansas South 2,286,435 30.6
5. California West 23,667,902 29.9
6. Colorado West 2,889,964 28.6
7. Connecticut NE 3,107,576 32.0
8. Delaware South 594,338 29.8

Display formats are permanently attached to variables by the format command. If we save the data,
the next time we use it, state will still be formatted as %-14s, region will still be formatted as %-8. Og,
etc.

N

format — Set variables’ output format 288

b Example 2

Suppose that we have an employee identification variable, empid, and that we want to retain the
leading zeros when we list our data. format has a leading-zero option that allows this.

. use https://www.stata-press.com/data/r19/fmtxmpl, clear

. describe empid

Variable Storage Display Value
name type format label Variable label

empid float %9.0g
. list empid in 83/87

empid
83. 98
84. 99
85. 100
86. 101
87. 102

. format empid %05.0f
. list empid in 83/87

empid
83. 00098
84. 00099
85. 00100
86. 00101
87. 00102

Q Technical note
The syntax of the format command allows varlist and not just one variable name. Thus you can
attach the %9 .2f format to the variables myvar, thisvar, and thatvar by typing

. format myvar thisvar thatvar %9.2f

b Example 3

We have employee data that includes hiredate and login and logout times. hiredate is stored
as a float, but we were careful to store login and logout as doubles. We need to attach a date format
to these three variables.

. use https://www.stata-press.com/data/r19/fmtxmpl2, clear
. format hiredate login logout

Variable name Display format

hiredate %9.0g
login %10.0g
logout %10.0g

format — Set variables’ output format 289

. format login logout %tcDDmonCCYY_HH:MM:SS.ss
. list login logout in 1/5

login logout

08nov2006 08:16:42.30 08nov2006 05:32:23.53
08nov2006 08:07:20.53 08nov2006 05:57:13.40
08nov2006 08:10:29.48 08nov2006 06:17:07.51
08nov2006 08:30:02.19 08nov2006 05:42:23.17
08nov2006 08:29:43.25 08nov2006 05:29:39.48

g wN e

. format hiredate %td
. list hiredate in 1/5

hiredate

24jan1986
10mar1994
29sep2006
14apr2006
03dec1999

[S2 I =V SR

We remember that the project manager requested that hire dates be presented in the same form as they
were previously.

. format hiredate J%tdDD/NN/CCYY
. list hiredate in 1/5

hiredate

24/01/1986
10/03/1994
29/09/2006
14/04/2006
03/12/1999

g wWN e

Setting European formats

Do you prefer that one and one half be written as 1,5 and that one thousand one and a half be written
as 1.001,5? Stata will present numbers in that format if, when you set the format, you specify *,’ rather
than ‘.’ as follows:

. use https://www.stata-press.com/data/r19/censusl10, clear
(1980 Census data by state)

. format pop %12,0gc

. format medage %9,2f

format — Set variables’ output format 290

. list in 1/8

state region pop medage
1. Alabama South 3.893.888 29,30
2. Alaska West 401.851 26,10
3. Arizona West 2.718.215 29,20
4. Arkansas South 2.286.435 30,60
5. California West 23.667.902 29,90
6. Colorado West 2.889.964 28,60
7. Connecticut NE 3.107.576 32,00
8. Delaware South 594 .338 29,80

You can also leave the formats just as they were and instead type set dp comma. That tells Stata to
interpret all formats as if you had typed the comma instead of the period:

. format pop %12.0gc (put the formats back as they were)
. format medage %9.2f

. set dp comma (tell Stata to use European format)
. list in 1/8

(same output appears as above)

set dp comma affects all Stata output, so if you run a regression, display summary statistics, or make a
table, commas will be used instead of periods in the output:

. tabulate region [fw=pop]

Census
region Freq. Percent Cum.
NE 49135283 21,75 21,75
N Cntrl 58865670 26,06 47,81
South 74734029 33,08 80,89
West 43172490 19,11 100,00
Total 225907472 100,00

You can return to using periods by typing

. set dp period

Setting a variable’s display format to European affects how the variable’s values are displayed by
list and in a few other places. Setting dp to comma affects every bit of Stata.

Also, set dp comma affects only how Stata displays output, not how it gets input. When you need to
type one and a half, you must type 1.5 regardless of context.

Q Technical note

set dp comma makes drastic changes inside Stata, and we mention this because some older, user-
written programs may not be able to deal with those changes. If you are using an older, user-written
program, you might set dp comma only to find that the program does not work and instead presents
some sort of syntax error.

If, using any program, you get an unanticipated error, try setting dp back to period.

format — Set variables’ output format 291

Even with set dp comma, you might still see some output with the decimal symbol shown as a period
rather than a comma. There are two places in Stata where Stata ignores set dp comma because the
features are generally used to produce what will be treated as input, and set dp comma does not affect
how Stata inputs numbers. First,

local x = sqrt(2)
stores the string “1.414213562373095” in x and not “1,414213562373095”, so if some program were
to display ‘x’ as a string in the output, the period would be displayed. Most programs, however, would

use ‘x’ in subsequent calculations or, at the least, when the time came to display what was in ‘x’, would
display it as a number. They would code

X7 ...

display ...
and not

display ... "‘x’" ...
so the output would be

. 1,4142135 ...

The other place where Stata ignores set dp comma is the string() function. If you type

. generate res = string(numvar)

new variable res will contain the string representation of numeric variable numvar, with the decimal
symbol being a period, even if you have previously set dp comma. Of course, if you explicitly ask that
string() use European format,

. generate res = string(numvar,"%9,0g")

then string () honors your request; string () merely ignores the global set dp comma.

Details of formats

The %f format

In %w.d£, wis the total output width, including sign and decimal point, and d is the number of digits
to appear to the right of the decimal point. The result is right-justified.

The number 5.139 in %12.2f format displays as

R PR .
5.14

When d = 0, the decimal point is not displayed. The number 5.14 in %12.0f format displays as

1 ——
5

%-w.df works the same way, except that the output is left-justified in the field. The number 5.139 in
%-12.2f displays as

1 ——
5.14

format — Set variables’ output format 292

The %fc format

%w.dfc works like %w.df except that commas are inserted to make larger numbers more readable.
w records the total width of the result, including commas.

The number 5.139 in %12. 2f ¢ format displays as

——— e ——
5.14

The number 5203.139 in %12.2fc format displays as

____+____1__
5,203.14

As with %f, if d = 0, the decimal point is not displayed. The number 5203.139 in %12.0fc format
displays as

As with %£, a minus sign may be inserted to left justify the output. The number 5203.139in %-12.0fc
format displays as

____+____1__
5,203
The %g format

In %w.dg, w is the overall width, and d is usually specified as 0, which leaves up to the format the
number of digits to be displayed to the right of the decimal point. If d # 0 is specified, then not more
than d digits will be displayed. As with %£, a minus sign may be inserted to left-justify results.

%g differs from %f in that 1) it decides how many digits to display to the right of the decimal point,
and 2) it will switch to a %e format if the number is too large or too small.

The number 5.139 in %12. 0g format displays as

The number 5231371222.139 in %12. 0g format displays as

R
5231371222

The number 52313712223.139 displays as

PRI
5.23137e+10

The number 0.0000029394 displays as

PR
2.93940e-06

The %gc format

%w.dgc is %w.dg with commas. It works in the same way as the %g and %f c formats.

format — Set variables’ output format 293

The %e format

%w.de displays numeric values in exponential format. w records the width of the format. d records
the number of digits to be shown after the decimal place. w should be greater than or equal to d+7 or, if
3-digit exponents are expected, d+8.

The number 5.139 in %12 . 4e format is

PRI -
5.1390e+00

The number 5.139 x 10%2° is

PR
5.1390e+220

The %21x format

The %21x format is for those, typically programmers, who wish to analyze routines for numerical
roundoff error. There is no better way to look at numbers than how the computer actually records them.

The number 5.139 in %21x format is

+ 1 + 2-
+1.48e5604189375X+002

The number 5.125 is

e D S
+1.4800000000000X+002

Reported is a signed, base-16 number with base-16 point, the letter X, and a signed, 3-digit base-16
integer. Call the two numbers /" and e. The interpretation is f x 2°.

The %16H and %16L formats

The %16H and %16L formats show the value in the IEEE floating point, double-precision form. %16H
shows the value in most-significant-byte-first (hilo) form. %16L shows the number in least-significant-
byte-first (lohi) form.

The number 5.139 in %16H is

PR P .
40148e5604189375

The number 5.139 in %16L is

I .
75931804568e1440

The format is sometimes used by programmers who are simultaneously studying a hexadecimal dump
of a binary file.

The %8H and %8L formats
%8H and %8L are similar to %16H and %16L but show the number in IEEE single-precision form.
The number 5.139 in %8H is

[
40a472b0

format — Set variables’ output format 294

The number 5.139 in %8L is

[
b072a440

The %t format

The %t format displays numerical variables as dates and times. See [D] Datetime display formats.

The %s format

The %ws format displays a string in a right-justified field of width w. %-ws displays the string left-
justified.
“Mary Smith” in %16s format is
PR P
Mary Smith
“Mary Smith” in %-16s format is
RSP,
Mary Smith
Also, in some contexts, particularly display (see [P] display), %~ws is allowed, which centers the
string. “Mary Smith” in %~16s format is

JERSHRPRISE RS, |
Mary Smith

Other effects of formats

You have data on the age of employees, and you type summarize age to obtain the mean and standard
deviation. By default, Stata uses its default g format to provide as much precision as possible.
. use https://www.stata-press.com/data/r19/fmtxmpl, clear
. summarize age
Variable ‘ Obs Mean Std. dev. Min Max

age 204 30.18627 10.38067 18 66

Ifyou attach a %9 . 2f format to the variable and specify the format option, Stata uses that specification
to format the results:

. format age %9.2f
. summarize age, format
Variable ‘ Obs Mean Std. dev. Min Max

age 204 30.19 10.38 18.00 66.00

Displaying current formats

format varlist is not often used to display the formats associated with variables because using
describe (see [D] describe) is easier and provides more information. The exceptions are date vari-
ables. Unless you use the default %tc, %tC, ... formats (and most people do), the format specifier itself
can become very long, such as

. format admittime %tcDDmonCCYY_HH:MM:SS.sss

format — Set variables’ output format 295

Such formats are too long for describe to display, so it gives up. In such cases, you can use format
to display the format:

. format admittime

variable name display format

admittime %tcDDmonCCYY_HH:MM:SS.sss

Type format * to see the formats for all the variables.

Video example

How to change the display format of a variable

References

Cox, N. J. 2011. Speaking Stata: MMXI and all that: Handling Roman numerals within Stata. Stata Journal 11: 126-142.

Gould, W. W. 2011a. How to read the %21x format. The Stata Blog: Not Elsewhere Classified. https://blog.stata.com/
2011/02/02/how-to-read-the-percent-2 1 x-format/.

. 2011b. How to read the %21x format, part 2. The Stata Blog: Not Elsewhere Classified. https://blog.stata.com/
2011/02/10/how-to-read-the-percent-2 1 x-format-part-2/.

Linhart, J. M. 2008. Mata Matters: Overflow, underflow and the IEEE floating-point format. Stata Journal 8: 255-268.

Also see

[D] Datetime business calendars — Business calendars

[D] Datetime display formats — Display formats for dates and times
[D] list — List values of variables

[D] varmanage — Manage variable labels, formats, and other properties
[P] display — Display strings and values of scalar expressions

[U] 12.5 Formats: Controlling how data are displayed

[U] 12.6 Dataset, variable, and value labels

https://www.youtube.com/watch?v=cF_pJtXWf3Y
https://www.stata-journal.com/article.html?article=dm0054
https://blog.stata.com/2011/02/02/how-to-read-the-percent-21x-format/
https://blog.stata.com/2011/02/02/how-to-read-the-percent-21x-format/
https://blog.stata.com/2011/02/10/how-to-read-the-percent-21x-format-part-2/
https://blog.stata.com/2011/02/10/how-to-read-the-percent-21x-format-part-2/
https://www.stata-journal.com/article.html?article=pr0038

fralias — Alias variables from linked frames

Description Quick start Syntax Options
Remarks and examples Stored results Also see

Description

fralias add defines variable aliases, names that reference variables in a linked frame. An alias
defined by fralias add is a variable that behaves like a copy of a variable from a linked frame, which
you could obtain from frget. Unlike a copy, however, an alias uses very little memory, and you cannot
modify its observations. Almost all of Stata’s statistical and data-management commands allow you to
specify an alias just as you would specify the name of a variable in the current frame.

fralias describe produces a summary of the alias variables in the current frame.

See [D] frames intro if you do not know what a frame is.

Quick start

Define aliases for variables v1, v2, and v3 from another frame linked by 1nk
fralias add vl v2 v3, from(1nk)

Define aliases newv4 and newv5 for variables v4 and v5 linked via 1nk

fralias add newv4=v4 newv5=v5, from(1lnk)

Define aliases for all variables in linkage 1nk, prefixing them with 1_
fralias add *, from(1lnk) prefix(1_)

Define aliases for all variables via linkage 1nk, excluding those matching pattern indx

fralias add *, from(1lnk) exclude (indx*)

Report on all the alias variables in the current frame

fralias describe

Report on the alias variables starting with 1_

fralias describe 1_x*

296

fralias — Alias variables from linked frames 297

Syntax

Add alias variables
fralias add varlist, from(linkname) |rename_options| (1)

fralias add newalias, = varname,
[newalias, = varname, | ...|] , from(linkname) ()

Describe alias variables

fralias describe [varlist |

linkname is the name of a linkvar in the current frame that was created by frlink; see [D] frlink.

rename_options Description

prefix(string) prefix new alias names with string
suffix (string) suffix new alias names with string
exclude (varlist) exclude specified variables

collect is allowed; see [U] 11.1.10 Prefix commands.

Syntax 1 defines aliases for the variable names specified by varlist from the frame linked by linkname.

Syntax 2 defines alias newalias, in the current frame to be a reference to varname, from the frame linked
by linkname. Similarly, alias newalias, is a reference to varname, and so on.

Options

from(/inkname) specifies the identity of the linked frame from which variables are aliased. Linkages to
frames are created by the fr1ink command. Linkages are usually named for the frame to which they
link. Linkage counties links to frame counties, and so you specify from(counties). If linkage
c links to frame counties, you specify from(c). from() is required.

prefix(string) specifies a string to be prefixed to the names of the new aliases created in the current
frame. Say that you type

. fralias add inc*, from(counties)

to define aliases for variables income and income_family. If variable income already exists in the
current frame, the command would issue an error message to that effect and alias neither variable. To
alias the two variables, you could type

. fralias add inc*, from(counties) prefix(c_)
Then the new aliases would be named c_income and c_income_family.

suffix (string) works like prefix (string), the difference being that the string is suffixed rather than
prefixed to the alias names. Both options may be specified if you wish.

exclude (varlist) specifies variables that are not to be aliased. An example of the option is

. fralias add *, from(counties) exclude(emp*)

All variables except variables starting with emp would get an alias. More correctly, all variables
except emp*, _x, and the match variables would be aliased because fralias add always omits the
underscore and match variables. See the explanation below.

fralias — Alias variables from linked frames 298

Remarks and examples

Remarks are presented under the following headings:

Overview
Everything you need to know about fralias add
Where are alias variables not allowed
Breaking alias variables
Rename or drop the linked variable
Rename or drop the linkage variable
Rename or drop a matching variable
Rename or drop the linked frame
Change sort order in the linked frame

Overview

You have data on people and data on counties. You loaded the datasets and created a linkage named
uscounties by typing
. use people
. frame create uscounties

. frame uscounties: use uscounties
. frlink m:1 countyid, frame(uscounties)

See example 1 in [D] frlink for details.

Among the variables in uscounties.dta is median_income. Instead of copying the variable into
the current frame, you could define an alias for the variable by typing either of the following:

. fralias add median_income, from(uscounties)

. fralias add medinc = median_income, from(uscounties)

The first command defines an alias named median_income in the current frame. The second names it
medinc.

Everything you need to know about fralias add

Here is everything you need to know in outline form:

. What it means to alias a linked variable

. fralias add can define aliases one at a time

. fralias add allows variable names to be abbreviated

. fralias add can define groups of aliases

. fralias add works with all the variables specified, or none of them

. fralias add ignores repeated variables

. How to define aliases for all the variables 1: fralias add *

. How to define aliases for all the variables 2: fralias add *, prefix()

0 3 O\ L A WD —

We make two assumptions in what follows:

Al. The current frame contains data on people. A frame named uscounties contains data on
counties. That is, we assume
. use people

. frame create uscounties
. frame uscounties: use uscounties

fralias — Alias variables from linked frames 299

A2.

The frames are linked on the match variable countyid, which appears in both datasets. The
linkage between the frames is named uscounties, the same name as the frame being linked.
That is, we assume

. frlink m:1 countyid, frame(uscounties)

. What it means to alias a linked variable

When you type

. fralias add median_income, from(uscounties)

fralias add defines an alias named median_income in the current frame that references vari-
able median_income from frame uscounties. This allows you to use median_income as if
it were a variable in the current frame. It is like a copy of the original variable, but it uses much
less memory, and you cannot modify its observations.

fralias add can define aliases one at a time
To define alias median_income of variable median_income from linked frame uscounties,
type
. fralias add median_income, from(uscounties)
To instead define alias medinc of variable median_income from the same linked frame, type

. fralias add medinc=median_income, from(uscounties)

fralias add allows variable names to be abbreviated

fralias add allows abbreviations if you have not set varabbrev off. If median_income
is the only variable beginning with median in the linked frame, you can type

. fralias add median, from(uscounties)

The new alias will be named median_income.

When using fralias add’s newvar=varname syntax, you can abbreviate the variable being
copied that appears to the right of the equals sign:

. fralias add medinc=median, from(uscounties)

fralias add can define groups of aliases

fralias add allows you to specify a varlist. Even though you type fralias add in the current
frame, the varlist is interpreted in the linked frame. You can type

. fralias add emp*, from(uscounties)

. fralias add emp* median_income, from(uscounties)
. fralias add emp* median, from(uscounties)

. fralias add emp* m*, from(uscounties)

. fralias add *, from(uscounties)

When you specify a varlist, fralias add automatically omits the match variable or variables
and any variables starting with an underscore (). First, we will tell you why, and then, we will
tell you a workaround.

fralias — Alias variables from linked frames 300

‘We start with a match variable. The match variable in our example is match variable countyid.
The variable has the same name in both frames. Pretend for a moment that fralias add did not
exclude match variables. Then, if you tried to alias countyid, that would be an error because
fralias add will not overwrite an existing variable with a new alias. That seems reasonable
until you realize that it would also mean that fralias add would issue an error if you typed

. fralias add c*, from(uscounties)

or even if you typed

. fralias add *, from(uscounties)

fralias add would issue errors because c* and * would include countyid, which, being the
match variable, already exists in the current frame. fralias add automatically omits match
variables so that you can type fralias add cx and fralias add * and get aliases for all the
other variables.

fralias add omits _* variables because they tend to be Stata system variables that are valid
only in the dataset in which they appear. You do not want them.

What if you need to get one of these variables? Use the newvar=varname syntax. Type, for
instance,

. fralias add _myvar=_myvar, frame(uscounties)

Automatic omission is not applied to this syntax.
. fralias add works with all the variables specified, or none of them

fralias add will not replace existing variables with aliases. If just one variable in the specified
list already exists in the current frame, fralias add issues an error.

. fralias add emp* m*, from(uscounties)
variable mvalues already exists
r(110);

If you want all the m* variables except mvalues, use the exclude () option:
. fralias add emp* m*, from(uscounties) exclude(mvalues)

If you also want mvalues to have alias mvals in the current frame, type
. fralias add mvals=mvalues, from(uscounties)

. fralias add ignores repeated variables

It is not an error to type

. fralias add employment employment, from(uscounties)

We specified employment twice, but fralias add ignores that and defines the alias once. This
is convenient because variables can be inadvertently repeated, as in

. fralias add m* employment-larea, from(uscounties)

Although you cannot see it, variable mds is repeated in the example. m* contains mds, and so
does employment-larea because mds is among the variables stored between them.

When variables are repeated using the newvar=varname syntax, fralias add does not ignore
repetition. It defines an alias for each variable that you specify:

. fralias add medinc=income inc=income, from(uscounties)

fralias — Alias variables from linked frames 301

7. How to define aliases for all the variables 1: fralias add *
To define an alias for all the variables, try typing

. fralias add *, from(uscounties)

This sometimes works. Other times it does not because some of the variables in uscounties
already exist in the current frame. When it does not work, fralias add lists the variable names
that exist in both frames and, even better, stores them in r (dups). Thus, if you are willing to
exclude those variables, you can type

. fralias add *, from(uscounties) exclude(‘r(dups)’)

8. How to define aliases for all the variables 2: fralias add *, prefix()
Another way to define aliases for all the variables in a linked frame is to type

. fralias add *, from(uscounties) prefix(c_)

This defines aliases for all the variables in the linked frame, using their original names but pre-
fixed with c_. The variable mvalues in the linked frame, for instance, is aliased to c_mvalues.

Another advantage of this approach is how easily you can drop the aliases from the data should
you desire to do so. Type

. drop c_x*
You can choose your own prefix. If you prefer suffixing them, type

. fralias add *, from(uscounties) suffix(_c)

This names the aliasesmvaluesl_c,mvalues2_c, etc. These names are more like the originals,
at least if you use tab completion for typing them. Type the first characters of the original
name, and press Tab. And if you wish, you can later drop the suffixed variables just as easily
as prefixed ones. Type

. drop *_c

Where are alias variables not allowed

The following commands change the values in variables they operate on, so by their very nature,
they cannot work with alias variables: cross, dyngen, fillin, the icd suite of commands, recode,
reshape, stack, xpose, the mi suite of commands, and snapspan.

The error message they produce, when they detect alias variables, will mention using frunalias to work
around this restriction.

. Xpose, clear

alias variables not allowed
Alias variables detected: varl and var2.
You could use command frunalias to recast these variables to avoid this
error message.

r(109);

fralias — Alias variables from linked frames 302

Breaking alias variables

We can break the linkages that alias variables depend on. In the following, we cover the various ways
this can happen.

We use the datasets and linkage described in Example 1: A typical m:1 linkage of [D] frlink for our
setup. Recall that persons.dta contains data on people and txcounty.dta contains data on Texas
counties, and we link the two using variable countyid.

. use https://www.stata-press.com/data/r19/persons
. frame create txcounty

. frame txcounty: webuse txcounty
(Median income in Texas counties)

. frlink m:1 countyid, frame(txcounty)
(all observations in frame default matched)

Let’s create an alias for each variable in the linked frame.

. fralias add *, from(txcounty)
(variable not aliased from linked frame: countyid)
(1 variable aliased from linked frame)

fralias add informed us that it added 1 alias variable.

For alias variables, describe will try to report the storage type of the linked variable. If the link
is broken, then describe will report unknown for the storage type. In either case, describe will note
when it detects alias variables. The note indicates that alias variables have a clickable type.

. describe

Contains data from https://www.stata-press.com/data/r19/persons.dta

Observations: 20
Variables: 5 16 Apr 2024 13:36
(_dta has notes)

Variable Storage Display Value

name type format label Variable label
personid byte %9.0g Person ID
countyid byte %9.0g County ID
income float %9.0g Household income
txcounty byte %10.0g
median_income float %9.0g Household median income
Sorted by:

Note: Alias variables have clickable types.
Note: Dataset has changed since last saved.

Clicking on the storage type link (f1oat) in Stata will run the fralias describe command on the
associated variable.

. fralias describe median_income

Alias Type Target Link Frame

median_income float median_income txcounty txcounty

fralias — Alias variables from linked frames 303

Rename or drop the linked variable

Let’s break the link in our alias variable by renaming the linked variable median_income to medinc.
describe now reports unknown for the storage type of our alias variable.
. frame txcounty: rename median_income medinc
. describe

Contains data from https://www.stata-press.com/data/r19/persons.dta

Observations: 20
Variables: 5 16 Apr 2024 13:36
(_dta has notes)

Variable Storage Display Value

name type format label Variable label
personid byte %9.0g Person ID
countyid byte %9.0g County ID
income float %9.0g Household income
txcounty byte %10.0g
median_income unknown %9.0g Household median income
Sorted by:

Note: Alias variables have clickable types.
Note: Dataset has changed since last saved.

Clicking on the link (unknown) shows the same information as before, except the target type is
(unknown).

. fralias describe median_income

Alias Type Target Link Frame

median_income (unknown) median_income txcounty txcounty

If we try to use this broken alias variable in a calculation, Stata will exit with an informative error message.

. summarize median_income

variable median_income not found in frame txcounty
You created alias variable median_income using the fralias command. When
you did that, you specified median_income as the target variable and
txcounty as the link variable for frame txcounty. The target variable
median_income no longer exists in frame txcounty. Without it, the alias
variable median_income is broken. If you renamed the target variable in
frame txcounty, rename it back to median_income.

r(111);

We did rename median_income, so let’s rename back to the original and try summarize again.
. frame txcounty: rename medinc median_income

. summarize median_income

Variable ‘ Obs Mean Std. dev. Min Max

median_inc~e ‘ 20 56182.1 12207.6 43788 72785

Rename or drop the linkage variable

Renaming or dropping a linkage variable will break all the alias variables that depend on it. A linkage
variable is the variable created by frlink. In our example, this is the variable named txcounty. If we
rename txcounty to txcnty, describe reports unknown for the storage type of our alias variable.

fralias — Alias variables from linked frames 304

. rename txcounty txcnty
. describe

Contains data from https://www.stata-press.com/data/r19/persons.dta

Observations: 20
Variables: 5 16 Apr 2024 13:36
(_dta has notes)

Variable Storage Display Value

name type format label Variable label
personid byte %9.0g Person ID
countyid byte %9.0g County ID
income float %9.0g Household income
txenty byte %10.0g
median_income unknown %9.0g Household median income
Sorted by:

Note: Alias variables have clickable types.
Note: Dataset has changed since last saved.

Now, if we try to use this broken alias variable in a calculation, Stata will exit with another informative
€rror message.
summarize median_income
variable txcounty not found
You created alias variable median_income using the fralias command. When
you did that, you specified txcounty as the link variable. The link
variable txcounty no longer exists. Without it, the alias variable
median_income is broken. If you renamed the link variable, rename it back

to txcounty.
r(111);

. rename txcnty txcounty

Here, we simply renamed the linkage variable back to the original.

Rename or drop a matching variable

Renaming or dropping the variables used to link the frames will break alias variables that depend on
that link. In our example, variable countyid is used to link our frames. After we rename countyid to
cnty in frame txcounty, describe reports unknown for the storage type of our alias variable.

. frame txcounty: rename countyid cnty
. describe

Contains data from https://www.stata-press.com/data/r19/persons.dta

Observations: 20
Variables: 5 16 Apr 2024 13:36
(_dta has notes)

Variable Storage Display Value

name type format label Variable label
personid byte %9.0g Person ID
countyid byte %9.0g County ID
income float %9.0g Household income
txcounty byte %10.0g
median_income unknown %9.0g Household median income
Sorted by:

Note: Alias variables have clickable types.
Note: Dataset has changed since last saved.

fralias — Alias variables from linked frames 305

Now, if we try to use this broken alias variable in a calculation, Stata will exit with a different infor-
mative error message.

summarize median_income

variable countyid not found in frame txcounty
You created the link variable txcounty using the frlink command. When you
did that, you specified variable countyid as the link variable, or as one
of them. That variable no longer exists in frame txcounty. Without it,
the frames can no longer be linked. If you renamed the variable in the
frame, rename it back to countyid.

r(111);

. frame txcounty: rename cnty countyid

Renaming cnty back to countyid in frame txcounty resolves this problem.

Rename or drop the linked frame

Renaming or dropping a linked frame will break alias variables linked to that frame. Let’s rename
frame txcounty to county. As before, describe now reports unknown for the storage type of our alias
variable.

. frame rename txcounty county
. describe

Contains data from https://www.stata-press.com/data/r19/persons.dta

Observations: 20
Variables: 5 16 Apr 2024 13:36
(_dta has notes)

Variable Storage Display Value

name type format label Variable label
personid byte %9.0g Person ID
countyid byte %9.0g County ID
income float %9.0g Household income
txcounty byte %10.0g
median_income unknown %9.0g Household median income
Sorted by:

Note: Alias variables have clickable types.
Note: Dataset has changed since last saved.

Now, if we try to use this broken alias variable in a calculation, Stata will exit with another informative
error message.

. summarize median_income

frame txcounty not found
You created the link variable txcounty using the frlink command with
txcounty specified in option frame(). That frame no longer exists.
Without it, the frames can no longer be linked. If you renamed the frame,
rename it back to txcounty.

r(111);

. frame rename county txcounty

Renaming the frame back to txcounty again resolves this issue.

fralias — Alias variables from linked frames 306

Change sort order in the linked frame

Changing the sort order in the linked frame will break alias variables linked to that frame. Let’s sort
frame txcounty on median_income. As evidence that the link is broken, describe reports unknown
for the storage type of our alias variable.

. frame txcounty: sort median_income
. describe

Contains data from https://www.stata-press.com/data/r19/persons.dta

Observations: 20
Variables: 5 16 Apr 2024 13:36
(_dta has notes)

Variable Storage Display Value

name type format label Variable label
personid byte %9.0g Person ID
countyid byte %9.0g County ID
income float %9.0g Household income
txcounty byte %10.0g
median_income unknown %9.0g Household median income
Sorted by:

Note: Alias variables have clickable types.
Note: Dataset has changed since last saved.

Now, if we try to use this broken alias variable in a calculation, Stata will exit with another informative
error message.

. summarize median_income

data in frame txcounty not sorted
Type frlink describe txcounty. frlink describe will sort the data in the
frame, thus correcting the problem, and it will verify that the link
variable is otherwise still valid. If it is not, frlink describe will
tell you how to fix the problem.

r(5);

. quietly frlink describe txcounty

Using frlink describe restores the original sort order.

fralias — Alias variables from linked frames 307

Stored results

fralias add stores the following in r():

Scalars
r(k) number of aliases created

Macros
r(newlist) new aliases in the current frame
r(srclist) variables aliased from linked frame
r(excluded) variables not aliased from linked frame
r(dups) variables already present in the current frame
r(notfound) variables not found in the linked frame

r(dups) is present only if fralias add exits with an error message because a prospective new alias
name already exists in the current frame.

r(notfound) is present only for syntax 2 when fralias add exits with an error message because a
varname is not found in the linked frame.

fralias describe stores the following in r():

Macros
r(varlist) alias variables in the current frame

Also see

D] frlink — Link frames
D] frget — Copy variables from linked frame

]
]
D] frunalias — Change storage type of alias variables
]
]

D] merge — Merge datasets

[

[

[

[D] frames intro — Introduction to frames

[

[M-5] st_addalias() — Add alias variable to current Stata dataset
[

£ £

-5] st_isalias() — Properties of alias variable

frames intro — Introduction to frames

Description Remarks and examples References Also see

Description

Frames, also known as data frames, allow you to simultaneously store multiple datasets in memory.
The datasets in memory are stored in frames, and Stata allows multiple frames. You can switch between
them and even link data in them to data in other frames. How this works is presented below.

Remarks and examples

Remarks are presented under the following headings:

What frames can do for you
Use frames to multitask
Use frames to perform tasks integral to your work
Use frames to work with separate datasets simultaneously
Use frames to record statistics gathered from simulations
Frames make Stata (preserve/restore) faster
Other uses will occur to you that we should have listed

Learning frames
The current frame
Creating new frames
Type frame or frames, it does not matter
Switching frames
Copying frames
Dropping frames
Resetting frames
Frame prefix command
Linking frames
Ignore the _frval() function
Posting new observations to frames
Saving, modifying, loading, and describing a set of frames

Programming with frames
Ado-programming with frames
Mata programming with frames

What frames can do for you

Frames let you have multiple datasets in memory simultaneously. Here are a few ways you can use
them.

Use frames to multitask

You can create a new frame, load another dataset into it, perform some task, switch back, and discard
the frame.

308

frames intro — Introduction to frames 309

You are working. The phone rings. Something has to be handled right now.

. frame create interruption // you create new frame ...
. frame change interruption // and switch to it
. use another_dataset // you load a dataset

// you do what needs doing

. frame change default // you switch back
. frame drop interruption // you delete the new frame

You are back to work just as if you had never been interrupted.

Use frames to perform tasks integral to your work

You need to calculate a value from the data and add it to the data. This is troublesome because making
the calculation requires modifying the data, the same data that need to be unmodified and have the result
added to them.

You have loaded yourdata.dta into memory and have already made some updates to it. You have
not yet saved those changes. You set about calculating the troublesome value.

. frame copy default subtask // create & copy current data to new frame
. frame change subtask // switch to the new frame

. sort weight foreign // begin result calculation

. omitted steps

. keep if markl | mark2 // drop observations!

. omitted steps

. regress dmpg dw if mod(_n,2) // calculate troublesome value

. frame change default // switch back to previous frame

. gen dwc = cond(foreign, b[dw],0) // save result in yourdata.dta

. frame drop subtask // drop new frame

You could have used preserve and restore to perform this task. Using frames, however, is usually
more convenient, if for no other reason than you can switch back and forth between them. You cannot
do that with a preserved dataset and the modified copy in memory.

If you look carefully at the code above, you will notice that the troublesome value we needed to
calculate and store was _b[dw]. _b[dw] was calculated from data in frame subtask and stored in Stata
for subsequent use no matter which frame is current.

It is dataset values that are stored in frames. Programmatic values such as _b[], r(),e(),and s
are stored in Stata and available across frames.

Use frames to work with separate datasets simultaneously

When we say working with datasets simultaneously, we mean datasets that are linked. Linked datasets
are an alternative to merged datasets.

You have two datasets. persons.dta contains data on people. uscounties.dta contains data on
counties. You want to analyze the people in persons.dta and the counties in which they live. There
are issues in combining the two datasets:

1. Some of the people in persons.dta live in the same county.

2. There are counties in uscounties.dta that are irrelevant to your analysis because nobody in
persons.dta lives in them.

frames intro — Introduction to frames 310

3. You are not certain that uscounties.dta is complete. There might be some people in
persons.dta that live in counties not recorded in uscounties.dta.

4. And beyond that, only some of the variables in uscounties.dta are needed for your analysis.

The frames solution to all of these problems is to link the two datasets. You start by loading
persons.dta into one frame and uscounties.dta into another:

. use persons
. frame create uscounties
. frame uscounties: use uscounties

To link the datasets in the two frames, you type
. frlink m:1 countyid, frame(uscounties)
This matches the observations in persons.dta to those in uscounties.dta based on equal values

of variable countyid. The data are not merged, they are linked. No variables from uscounties.dta
are copied to persons.dta, but how the variables would be copied has been worked out.

You copy variables to the person data as you need them, one at a time, or in groups, using the frget
command:

. frget med_income nschools, from(uscounties)

You can perform the desired analysis using persons.dta, the dataset in the current frame:

. regress income med_income nschools educ age

Use frames to record statistics gathered from simulations

Simulations involve repeating a task—performing a simulation—each step of which produces statis-
tics that are somehow recorded. After that, you analyze the recorded statistics.

The frames solution to the simulation problem is to collect the statistics in another frame. We will
name that frame results. You start by creating a new frame and the variables in it to record the statistics,
such as blcoverage and b2coverage:

new frame's
name

\

. frame create results blcoverage b2coverage

/

new variables in it

The new frame contains zero observations at this point.

You will next write a do-file to create the values to be stored after each iteration. At the end of each
iteration, the do-file will contain the line

frame's name
\

. frame post results (exp;) (exp,)

/
values for
blcoverage and b2coverage

frame post adds an observation to the data in results. exp; and exp, are expressions.

frames intro — Introduction to frames 311

When the do-file finishes, the completed set of results will be found in frame results. You will want
to save them:

. frame results: save filename

You will then switch to the frame and begin your analysis of the statistics:

. frame change results
. summarize

Frames make Stata (preserve/restore) faster

Many programs written in Stata use the commands preserve and restore to temporarily save and
later restore the contents of the data in memory. Programs that use preserve and restore now run
faster if you are using Stata/MP. They run faster because Stata preserves data by copying them to hidden
frames. Those hidden frames are stored in memory. Copying data to frames stored in memory takes a
lot less time than copying data to disk.

More correctly, preserve copies data to hidden frames unless memory is in short supply. If it is,
preserve resorts to storing them on disk. That is temporary because later, as datasets are restored,
memory will again become available and preserve will return to preserving them in hidden frames.

This is all automatic, but you may want to reset the value of max_preservemem, which controls this
behavior. When the amount stored in hidden frames would exceed max_preservemem, Stata preserves
subsequent datasets on disk. Out of the box, max_preservemen is set to 1 gigabyte. Perhaps you or
someone else has already changed that. To find out the current value of max_preservememn, type

. query memory
If you want to change max_preservememn to 2 gigabytes for the duration of the session, type
. set max_preservemem 2g

You can set the value up or down. You could set it to 4g or 50m. You could even set it to 0, and then
all datasets would be preserved to disk.

If you want to set max_preservemen to 2 gigabytes permanently, for this session and future Stata
sessions, type

. set max_preservemem 2g, permanently

Other uses will occur to you that we should have listed

Frames make doing lots of tasks more convenient, and you will find your own uses for them. Frames
make code faster too. Manipulating objects stored in memory takes less computer time than manipulating
disk files.

Learning frames

Here is a tutorial on using frames. In the tutorial, we will sometimes show you a syntax diagram. For
example, we might show you

frame copy framename newframename

frames intro — Introduction to frames 312

When we show syntax diagrams in the tutorial, they are not always the full syntax diagrams. frame
copy, for instance, also allows a replace option, and we might not only not show it in the syntax diagram
but also not even mention it. You can click on the command to see the full syntax.

The current frame

Everything hinges on the current frame. Stata commands use the data in the current frame. When
you load a dataset,

. sysuse auto
(1978 automobile data)

you are loading it into the current frame. Which frame is that? Type frame to discover its identity:

. frame
(current frame is default)

You can type frame or type pwf, which is a synonym for frame. The letters stand for “print working
frame”. We will type frame in this tutorial, but you may prefer to type pwf because it is shorter. Other
frame commands also have shorter synonyms. We will mention them as we go along.

We just discovered that the current frame is named default. When Stata is launched, that is what
it names the frame it creates for you. You cannot change that, but default is just a name, and you can
rename frames if you wish. You can create other frames too. You can create up to 100 of them.

To rename a frame, use the frame rename command:
frame rename oldname newname

To rename the frame default to genesis, type

. frame rename default genesis

. frame
(current frame is gemesis)

Frames can be renamed whether Stata created them or you did. They can be renamed whether they
have data in them or they are empty. Renaming default will not break anything subsequently. Stata
commands operate on the current frame, whatever its name.

Creating new frames
Create new frames using the frame create command:
frame create newframename

We will show you an example in a minute. First, however, if you are going to create a frame with a
new name, you need to know how to find out the names of the frames that currently exist. You do that
using the frames dir command:

frames dir

We recall that we renamed our default frame, but we cannot recall the name that we used. So what
frames are in memory?

. frames dir
genesis 74 x 12; 1978 automobile data

frames intro — Introduction to frames 313

There is one frame in memory, named genesis. It contains a dataset that is 74 x 12, meaning 74
observations and 12 variables. The dataset has a dataset label “1978 automobile data”, but if it did not,
the dataset’s name, auto.dta, would have appeared in its place in frames dir’s output, unless the data
had never been saved to disk. In that case, nothing would have appeared where “1978 automobile data”
appeared.

Now let’s create a new frame named second:

. frame create second

. frame dir
genesis 74 x 12; 1978 automobile data
second 0 x 0

There are now two frames in memory. The new frame is 0 x 0. It is empty.

By the way, frame create has a shorter synonym, mkf. The letters stand for “make frame”. We
could have typed mkf second to make the new frame.

Type frame or frames, it does not matter

You probably did not notice, but we have used frames dir twice so far, but we typed it differently
the second time. We typed

. frames dir
. frame dir

Stata does not care whether you type frame or frames. This indifference applies to all the
frames/frame commands.

Switching frames
frame change (synonym: cwf for “change working frame”) switches the identity of the current frame:
frame change framename

We could make second the current frame and switch back to genesis again:

. frames change second

. count
0

. cwf genesis

. count
74

We used Stata’s count command to demonstrate that the current frame really switched. count without

arguments displays the number of observations.

Copying frames
There are two commands for copying frames:
frame copy framename newframename

frame put varlist, into (newframename)

frame put if', into (newframename)

frames intro — Introduction to frames 314

frame copy copies the entire dataset.
frame put copies subsets of the dataset.

In either case, the commands create the frame being copied to.

Dropping frames
To drop existing frames, type

frame drop framename [ramename [. }]

The current frame cannot be dropped.

Resetting frames

Resetting frames means the following:

1. Drop all the data in all the frames, even if the data have not been saved since they were last
saved.

2. Drop (delete) all the frames.
3. Create a new frame named default, and make it the current frame.

Each of the following commands resets frames:

frames reset

clear frames

clear all

frames reset and clear frames are synonyms.

clear all resets the frames and does more. It returns Stata to as close to just-after-launch status as
possible.

Frame prefix command

The frame prefix command is perhaps the most convenient of the frame commands. Its syntax
command is

frame framename: stata_command

The frame prefix command 1) changes the current frame to the frame specified, 2) executes
stata_command, and 3) changes the current frame back to what it was.
For instance, say the current frame is default and we have a second frame named second. We type

. frame second: sysuse census, clear

The result would be that frame second would contain census.dta and the current frame would still be
default, just as if we had typed
. frame change second

. sysuse census, clear
. frame change default

frames intro — Introduction to frames 315

Frame prefix has a second feature too. Imagine that in doing the above, we omitted the clear option
when we use the data. Consider what would have happened if we set about typing the three commands
but the data in second had changed since they were last saved:

. frame change second

. sysuse census
no; dataset in memory has changed since last saved
r(4);

What is the current frame? It is second, of course, because we changed to it. Instead of using the two
previous commands, we could have used the frame prefix approach. (The current frame is default.)

. frame second: sysuse census
no; dataset in memory has changed since last saved
r(4);

Even though an error occurred, the current frame is still default! To recover from the error, we do
not have to change back to the original frame. The frame prefix command did that for us.

frame prefix has another syntax when you have more than one command to be executed:

frame framename {
stata_command
stata_command

}

This syntax is especially useful in programs.

Linking frames

When we say linking, we mean linking as shown in the earlier example when we had separate datasets
on people and counties and combined them in a merged-data kind of way. Linking can do a lot more than
we showed you.

In [D] frlink, we show you how to create a nested linkage to link students (one dataset) to the schools
they attend (a second dataset) and to the counties (a third dataset) in which their schools are located. We
show you an example of linking a generational dataset with itself, so that adult children are linked to
their parents and grandparents, a total of six simultaneous linkages!

Linkages are created by using the frlink command. Its simplest syntaxes are

frlink m:1 varlist, frame (framename)

frlink 1:1 varlist, frame (framename)

These syntaxes create anm: 1 or 1: 1 link between the current frame and framename based on observations
having equal values of varlist.

Once a link is created, you can use the frget command to copy the appropriate values of variables
from framename to the current frame. Its syntaxes are

frget varlist, from(linkagename)
frget newvar = varname, from(linkagename)

Alternatively, you can use the fralias add command to add an alias to variables from framename.
The alias variables can be used in the current frame similarly to copies created with frget, but alias
variables require less memory. The syntaxes of fralias add are

frames intro — Introduction to frames 316

fralias add varlist, from(linkagename)

fralias add newvar = varname, from(linkagename)

You can use the frval () function in expressions to access appropriate observations of variables in
the linked data. Its syntax is

... frval (linkagename ,varname) . . .

Ignore the _frval() function

While we are on the subject of the frval () function, we should warn you. Also available in [FN] Pro-
gramming functions is _frval (). Ignore it. frval () is better. _frval () is for use by programmers.

Posting new observations to frames

We used posting to perform simulations in an example earlier. That is one use of it. More generally,
posting solves problems that require transferring data or values from one frame to a new observation in
another.

First, you prepare the other frame to receive the data. frame create, which we already discussed,
has a syntax for doing this. We showed you its first syntax, which is

frame create newframename
The second syntax is
frame create newframename newvarlist

This syntax creates the new frame and creates in it a zero-observation dataset of the new variables spec-
ified. newvarlist really is a new varlist, and that means that you can specify variables types and variable
names. You could type

. frame create results strL(rngstate) double(blcoverage b2coverage)

Alternatively, you can use frame create’s first syntax to create the frame, use frame change to
switch to it, and create the zero-observation dataset yourself. Then, you can switch back to what was the
current frame.

frame post adds observations to the second frame. Its syntax is
frame post framename (exp) (exp) ... (exp)

The expressions are in the same order as the variables in the second frame.

Saving, modifying, loading, and describing a set of frames

You may want to save several frames for later use. We provide commands for saving a set of frames
in a Stata frameset (. dtas) file and loading saved frames back in memory.

frames save allows you to save a set of frames in a . dtas file. The command provides an option to
automatically save frames that are linked through frlink.

frames modify allows you to modify a Stata frameset (.dtas) file by adding or dropping frames.
You can also replace the contents of an existing frame in the frameset.

frames use allows you to load in memory frames that have been previously saved with frames save.

frames describe produces a summary of frames in memory or in a file.

frames intro — Introduction to frames 317

Programming with frames

Below we discuss writing Stata programs that deal with multiple frames.
If you are not interested in writing such programs, stop reading.

What follows is not a tutorial. What follows are numbered lists detailing everything you need to know
to write programs that use more than the current frame. That program could implement a command that
does something with frames specified by users. Or it could do something that, as far as users are con-
cerned, uses only the current frame and hidden from them is that your program uses frames to accomplish
certain internal tasks.

We also want to emphasize there still exists a place for programs written in Stata that do not use frames
at all. Perhaps most programs are like that.

Ado-programming with frames

1. tempnames.

Frames with names created by tempname are automatically dropped (deleted) when the program
generating the temporary name ends.

If the program you write is to create a new frame for the user, give the frame a tempname in your
program, and, at the end, use frame rename to change its name. This way, if an error occurs,
the frame the program may have been in the midst of creating will be dropped automatically.

2. Current frame.

Stata provides the name of the current frame in creturn result c (frame). You can obtain the
name of the current frame by coding

local curframe = c(frame)

Programs that use frames invariably change frames during their execution. Programs need to
ensure the appropriate frame is the current one at the time the program exits. This includes
when the program is successful and when it exits with error.

The successful case is easy enough to handle. At the point your program exits, set the current
frame appropriately. In general, the current frame should be the same as the current frame was
when the program started.

Error cases can be more difficult. Who knows when the user will press break or when the bug
buried in your code will bite? The code could be doing literally anything. Even so, your pro-
gram needs to ensure that the current frame is set appropriately. There is a style of programming
that does this.

Case 1: You are writing new command foo. foo uses frames but in all cases is to leave the
current frame the same as it was initially. The code reads as follows:

program foo
version ...

local curframe = c(frame)

frame ‘curframe’ {
foo_cmd ‘0’

}

end

frames intro — Introduction to frames 318

Write foo_cmd as you usually would. As you write foo_cmd, you can ignore the current-frame
problem. You can use frame change freely in foo_cmd and its subroutines. No matter what
happens, error or success, the program will end with the current frame unchanged.

Case 2: You are writing new command foo. If foo is successful, the new frame will change.
The code reads as follows:
program foo
version ...

local curframe = c(frame)
frame ‘curframe’ {
foo_cmd ‘0’
}
frame change ‘s(frame)’
end

Write foo_cmd as you usually would. If execution is successful, however, foo_cmd must
sreturn in s (frame) the name of the frame that is to be the current frame. As with case 1,
you can use frame change freely in foo_cmd and all of its subroutines.

. preserve and restore.

For end users, using frames is sometimes a better alternative to using preserve and restore.
Programmers should not, however, interpret that as preserve and restore are out of date and
not to be used in frame programming. preserve and restore in programming have the same
valid use they have always had.

Before frames existed in Stata, a single program could have at most one active preserve in it.
Active means not canceled by restore or restore, not. A program could preserve, later
restore or restore, not, and then preserve again. It would be odd but allowed.

, & si i reserve . -
Nowadays, a single program can have up to one active for each frame. If a pro
gram deals with frames ‘one’ and ‘two’ and it is necessary, it can preserve both of them.
preserve preserves the current frame. To preserve frames ‘one’ and ‘two’, code,

frame ‘one’: preserve
frame ‘two’: preserve

When frames are automatically restored at the end of the program, both frames will be restored.
If you wish to restore frame ‘one’ early and cancel its automatic restoration when the program
ends, code

frame ‘one’: restore
If you instead wish to restore frame ‘one’ now and still have it restored when the program
ends, code

¢

frame ‘one’: restore, preserve

If you instead wish simply to cancel the restoration of frame ‘one’ when the program ends,
code

frame ‘one’: restore, not
In all three cases, frame ‘two’ will still be restored when the program ends.

Any uncanceled automatic restorations when the program ends will re-create any frames that
have been dropped (deleted). Automatic restoration does not change the identity of the current
frame.

frames intro — Introduction to frames 319

Mata programming with frames

1. st_framex* () functions.

Mata provides a suite of frame-related functions. They can change frames, create frames, drop
frames, etc.

2. st_data(), st_sdata(), _st_data(), and _st_sdata() functions.

Calls to st_data() and its associated functions return the data from the current frame. If you
want data from other frames, change to the other frame first using st _framecurrent ().

3. st_view() and st_sview() functions.

Views are views onto the frame that was current at the time the view was created by st_view ()
or st_sview(), and they remain that after creation even when the identity of the current frame
changes. If X is a view onto frame default, it remains a view onto frame default even if the
current frame changes.

Views are how data can be copied between frames. Create a view onto the data in one frame.
Create another view onto the data in the other. Use one view to update the other.

References

Gopal, K. 2023. From datasets to framesets and alias variables: Data management advances in Stata. The Stata
Blog: Not Elsewhere Classified. https://blog.stata.com/2023/09/12/from-datasets-to-framesets-and-alias-variables-
data-management-advances-in-stata/.

Huber, C. 2019. Fun with frames. The Stata Blog: Not Elsewhere Classified. https://blog.stata.com/2019/09/06/fun-with-
frames/.

Also see

D] frames — Data frames

]
D] frget — Copy variables from linked frame
]

[

[

[D] frlink — Link frames
[FN] Programming functions
[

M-5] st_frame*() — Data frame manipulation

https://blog.stata.com/2023/09/12/from-datasets-to-framesets-and-alias-variables-data-management-advances-in-stata/
https://blog.stata.com/2023/09/12/from-datasets-to-framesets-and-alias-variables-data-management-advances-in-stata/
https://blog.stata.com/2019/09/06/fun-with-frames/
https://blog.stata.com/2019/09/06/fun-with-frames/

frames — Data frames

Description Menu Syntax Also see

Description

This entry provides a quick reference to each of the individual commands and functions related to
data frames.

If you are new to data frames in Stata, please start by reading [D] frames intro.
Data frames are discussed in detail in [D] frames intro.

There is also a set of Mata functions to work with frames. See [M-5] st_frame*().

Menu

Data > Frames Manager

Syntax

frame and frames are synonyms. Below, we will use one or the other depending on which one is more
natural given the context.

Display name of current (working) frame
frame pwf (see [D] frame pwf)
frame

pwf

Display names of all frames in memory

frames dir (see [D] frames dir)

Create new, empty frame

frame create newframename (see [D] frame create)

Create new frame with specified variables for use with frame post

frame create newframename newvarlist (see [P] frame post)

Change identity of current (working) frame
frame change framename (see [D] frame change)

cwf framename

320

frames — Data frames 321

Execute command on data in specified frame

frame framename: stata_command

frame framename {
commands to execute in context of framename

}

Make a copy of a frame

frame copy frame_from frame_to | , replace]

Copy subset of variables or observations to a new frame

frame put

Add new observation to frame

frame post framename (exp) (exp) ... (exp)

Drop (eliminate) frames that are not the current frame

frame drop framename [framename | .. .|]

Rename existing frame (which can be the current frame)

frame rename oldframename newframename

Reestablish initial state of having a single, empty frame named default

frames reset

Link frames
frlink

Get variables from linked frame
frget

Add aliases to variables from linked frame

fralias add

Describe alias variables in current frame

fralias describe

Recast alias variables into copies in the current frame

frunalias

Functions to access variables in another frame
frval (linkvar, varname)

_frval (framename, varname, i)

(see [D] frame prefix)

(see [D] frame copy)

(see [D] frame put)

(see [P] frame post)

(see [D] frame drop)

(see [D] frame rename)

(see [D] frames reset)

(see [D] frlink)

(see [D] frget)

(see [D] fralias)

(see [D] fralias)

(see [D] frunalias)

(see frval())

frames — Data frames 322

Saving, modifying, loading, and describing a set of frames
frames save

frames modify
frames use

frames describe

Also see

[D] frames intro — Introduction to frames

[M-5] st_frame*() — Data frame manipulation

(see [D] frames save)
(see [D] frames modify)
(see [D] frames use)

(see [D] frames describe)

frame change — Change identity of current (working) frame

Description Menu Syntax Remarks and examples Also see

Description

frame change makes the named frame current. This means that any commands you issue after frame
change will run on the data in that frame.

cwf (change working frame) is a synonym for frame change.

Menu

Data > Frames Manager

Syntax
frame change framename

cwf framename

Remarks and examples

frame change makes the named frame current, or active. After you change to a frame, any commands
you execute work with the data in that frame.

Another way to work with the data in another frame is the frame prefix command. See [D] frame
prefix.

b Example 1

Let’s assume we have several frames in memory, including our current frame named default. We
see this by typing frames dir:

. frames dir

cars 74 x 12; 1978 automobile data
default 50 x 13; 1980 Census data by state
work 28534 x 21; National Longitudinal Survey of Young Women, 14-24

years old in 1968

Our next project uses the 1978 automobile data in the cars frame. To change to this frame, we type

. frame change cars

323

frame change — Change identity of current (working) frame 324

We can now work with the data in this frame. For instance, we can describe the data by typing

. describe

Contains data from https://www.stata-press.com/data/r19/auto.dta

Observations: 74 1978 automobile data
Variables: 12 13 Apr 2024 17:45
(_dta has notes)
Variable Storage Display Value
name type format label Variable label
make stri8 %-18s Make and model
price int %8.0gc Price
mpg int %8.0g Mileage (mpg)
rep78 int %8.0g Repair record 1978
headroom float %6.1f Headroom (in.)
trunk int %8.0g Trunk space (cu. ft.)
weight int %8.0gc Weight (1bs.)
length int %8.0g Length (in.)
turn int %8.0g Turn circle (ft.)
displacement int %8.0g Displacement (cu. in.)
gear_ratio float %6.2f Gear ratio
foreign byte %8.0g origin Car origin

Sorted by: foreign

At any time, we can change back to the default frame by typing

. frame change default

Also see

[D] frames intro — Introduction to frames

[D] frame prefix — The frame prefix command

frame copy — Make a copy of a frame

Description Quick start Menu Syntax
Option Remarks and examples Also see

Description

frame copy copies an existing frame to a frame with a new name or to an existing frame, replacing
its contents. All data and metadata from frame_from are copied.

Quick start

Copy the default frame to a frame named fr1
frame copy default fril

Copy frame fr1 to existing frame fr2, replacing the data

frame copy fri1 fr2, replace

Menu

Data > Frames Manager

Syntax

frame copy frame_from frame_to | , replace]

Option

replace specifies that frame_to be replaced if it already exists.

Remarks and examples

frame_from must be an existing frame. It may be the current frame. frame_to may be the name of a
new frame or an existing frame. If it is an existing frame, replace must be specified.

In a programming context within a do-file or an ado-file, if you obtain a temporary name and copy a
frame to that name, the frame will automatically be removed upon conclusion of the do-file or program.
b Example 1

Let’s assume we have a frame named default in memory. We want to copy this frame to a new
frame named counties. To do this, we type

. frame copy default counties

325

frame copy — Make a copy of a frame 326

Later, we decide that we need to copy a frame named uscounties to our existing frame named
counties, replacing it

. frame copy uscounties counties, replace

d

When programming, we might want to copy a frame to a temporary name. To copy a frame named
counties to a temporary name, we could type the following:

. tempname newframe
. frame copy counties ‘newframe’

Also see

[D] frames intro — Introduction to frames
[D] frame put — Copy selected variables or observations to a new frame

[D] frame rename — Rename existing frame

frame create — Create a new frame

Description Menu Syntax Remarks and examples Also see

Description

frame create creates a new, empty frame.
mkf (make frame) is a synonym for frame create.

frame create with a newvarlist creates a new frame with the specified variables. This syntax is most
often used in combination with frame post for posting results in a new frame, see [P] frame post.

Menu

Data > Frames Manager

Syntax

Create new, empty frame
frame create newframename

mkf newframename

Create new frame with specified variables

frame create newframename newvarlist (see [P] frame post)

Remarks and examples

frame create creates a new, empty frame. After creation, you might use frame change to switch to
that frame, or you might use the frame prefix with use or import to load data for analysis in that frame.

b Example 1
To create a new frame named cars, type
. frame create cars
We can now load our 1978 automobile data into new the new frame:
. frame cars: use https://www.stata-press.com/data/r19/auto.dta

Here we loaded data from the web. More often, we will load data from our computer. If auto.dta
was saved in our current working directory, we could have typed

. frame cars: use auto.dta

327

frame create — Create a new frame 328

Also see

[D] frames intro — Introduction to frames
[D] frames — Data frames

[P] frame post — Post results to dataset in another frame

frame drop — Drop frames from memory

Description Menu Syntax Remarks and examples Also see

Description

frame drop eliminates from memory the specified frames, including any data that are in those frames.

Menu

Data > Frames Manager

Syntax

frame drop framename [framename | .. .]]

Remarks and examples

frame drop eliminates, or removes from memory, the specified frames. Any data in the frames are
dropped when the frames are dropped. The current frame cannot be dropped.

To eliminate all frames from memory, including the current frame, use frames reset. See [D] frames
reset.

frame drop supports wildcards * and ? in framename: * matches zero or more characters, and ?
matches exactly one character.
b Example 1

To drop a frame named cars, type

. frame drop cars

N
b Example 2
To drop all frames with name starting with auto, type
. frame drop autox*
N
b Example 3
To drop all frames with name starting with £ followed by exactly three characters, type
. frame drop £777
N

Also see

[D] frames intro — Introduction to frames
[D] frames — Data frames

[D] frames reset — Drop all frames from memory

329

frame prefix — The frame prefix command

Description Quick start Syntax Remarks and examples Also see

Description

The frame prefix allows you to execute one or more Stata commands in another frame, leaving the
current frame unchanged.

Quick start

Describe the data in frame fr1
frame fr1l: describe

Execute a series of commands in frame fr2

frame fr2 {
use mydata
summarize
codebook

Syntax

frame framename: stata_command

frame framename {
commands to execute in context of framename

}

Remarks and examples

Remarks are presented under the following headings:

Example of interactive use
Example of use in programs

Example of interactive use

You have data in two frames. In your current frame you have data containing detailed information on
sales for your company across four regions. A colleague just sent you an email with a summary dataset
named sales.dta, which is supposed to contain the total sales for each region. You want to make sure
the summary dataset was created from the same base sales information as the detailed dataset.

In your current dataset, you know from summarize that the total sales for the South region were
$532,399 and the total cost of the goods sold was $330,499. You check that the dataset you just received
matches these totals:

. frame create summary

. frame summary: use sales
. frame summary: list if region=="South"

330

frame prefix — The frame prefix command 331

The frame prefix command allowed you to load a dataset in frame summary and run a command on
that data without affecting anything in your current frame.

Example of use in programs

The frame prefix can be used for one-liners, such as above, or it can be used to execute a whole series
of commands on the data in another frame. The nice thing in either case is that no matter what happens
when those commands are executed, whether they complete successfully or exit with error, the current
frame will come back to what it was before you called the frame prefix command. In programs, this
means that you do not have to hold on to the current frame name and change back to it after working in
another frame.

You are writing a program that takes a subset of the current data, performs some manipulations on
that subset, and then graphs the result. The required manipulations would damage the original dataset.
One way to do this would be to

1. create a temporary frame:
tempname tmpframe
2. put a subset of data into it:

frame put if ..., into(‘tmpframe’)

3. perform the needed manipulations and graph the result:

frame ‘tmpframe’ {
some commands which manipulate the data
graph twoway ...

}

At the end of this block of code, any commands that appear next will work against the original frame,
not ‘tmpframe’. You could add a line to drop ‘tmpframe’, but there is no need. Because it has a
temporary name, the frame and the data in it will automatically be dropped when your program or do-file
completes.

An alternative workflow for the above would be to first preserve your data, then manipulate them
in place and obtain your graph. You could then restore the original data. Whether you should use the
frame prefix approach or the preserve and restore approach is up to you. The frame approach is
often faster, but if your dataset in memory is extremely large, you may not want to make another entire
copy of it in memory, even temporarily, and thus, the second approach may be better in such a case.

Also see

[D] frames intro — Introduction to frames

[D] frames — Data frames

frame put — Copy selected variables or observations to a new frame

Description Quick start Menu Syntax Remarks and examples Also see

Description

frame put copies a subset of variables or observations from the current frame to the specified frame.
It works much like Stata’s keep command (see [D] drop), except that the data in the current frame are
left unchanged, while the selected variables or observations are copied to a new frame.

Quick start

Put variables v1, v2, and v3 from the current frame into new frame fri
frame put vl v2 v3, into(frl)

Put all variables whose name begins with v into new frame fr2

frame put v, into(fr2)

Put all observations where v1 is not missing into new frame fr3

frame put if !missing(v1l), into(£fr3)

Put the first observation from each cluster identified by cvar into new frame fr4

by cvar: frame put if _n==1, into(fr4)

Menu

Data > Frames Manager

Syntax
Copy selected variables from the current frame to a new frame

frame put varlist, into (newframename)

Copy observations that satisfy specified condition from the current frame to a new frame

frame put [varlist] if , into(newframename)

Copy a range of observations from the current frame to a new frame

frame put [varlist| in [if |, into (newframename)

by is allowed with the second syntax of frame put; see [D] by.

332

frame put — Copy selected variables or observations to a new frame 333

Remarks and examples

There are three main workflows for operating on a subset of data you already have in memory. One is
to make use of Stata’s if and in qualifiers with your commands to restrict the observations to be used.
Another is to use preserve to make a temporary copy of the data in memory, then use keep and drop to
make a subset of those data for analysis, and then to use restore to bring the original data back. Finally,
you can leave the data in memory unchanged and use frame put to place a subset of the data in another
frame for analysis. That frame can then be dropped, saved, or left in memory for further analysis.

frame put copies all variable and value labels, characteristics, and notes for any variables copied to
the new frame.

b Example 1

To demonstrate frame put, we start with data from the 1980 US Census.
. use https://www.stata-press.com/data/r19/census
(1980 Census data by state)
. describe

Contains data from https://www.stata-press.com/data/r19/census.dta

Observations: 50 1980 Census data by state

Variables: 13 6 Apr 2024 15:43

Variable Storage Display Value
name type format label Variable label

state stri4 %-14s State

state2 str2 %=-2s Two-letter state abbreviation

region int %-8.0g cenreg Census region

pop long %12.0gc Population

poplth long %12.0gc Pop, < 5 year

pop5_17 long %12.0gc Pop, 5 to 17 years

popl8p long %12.0gc Pop, 18 and older

pop65p long %12.0gc Pop, 65 and older

popurban long %12.0gc Urban population

medage float %9.2f Median age

death long %12.0gc Number of deaths

marriage long %12.0gc Number of marriages

divorce long %12.0gc Number of divorces

Sorted by:

frame put — Copy selected variables or observations to a new frame 334

We put data from several variables for all states with a population greater than 5,000,000 into new
frame pop5.

. frame put state region pop* medage death if pop > 5000000, into(pop5)
. frame pop5: describe

Contains data

Observations: 14 1980 Census data by state
Variables: 10
Variable Storage Display Value
name type format label Variable label
state stri4 Y-14s State
region int %-8.0g cenreg Census region
pop long %12.0gc Population
poplth long %12.0gc Pop, < 5 year
pop5_17 long %12.0gc Pop, 5 to 17 years
popl8p long %12.0gc Pop, 18 and older
pop65p long %12.0gc Pop, 65 and older
popurban long %12.0gc Urban population
medage float %9.2f Median age
death long %12.0gc Number of deaths
Sorted by:

Note: Dataset has changed since last saved.

Also see

D] frames intro — Introduction to frames
D] frames — Data frames

] drop — Drop variables or observations
D] frame copy — Make a copy of a frame

[
[
[D
[
[

P] frame post — Post results to dataset in another frame

frame pwf — Display name of current (working) frame

Description

frame pwf displays the name of the current frame, also known as the working frame. frame by itself
and pwf (print working frame) by itself are synonyms for frame pwf.

Menu

Data > Frames Manager

Syntax

frame pwf
frame
pwi

collect is allowed with frame pwf; see [U] 11.1.10 Prefix commands.

Remarks and examples

You can type any of frame pwf, frame, or pwf to see what the current (working) frame is.

. sysuse auto
(1978 automobile data)

. frame pwf
(current frame is default)

. frame create cars
. frame change cars

. pwf
(current frame is cars)

Stored results

frame pwf stores the following in r():

Macros
r(currentframe) name of current (working) frame

Also see

[D] frames intro — Introduction to frames

[D] frames — Data frames

335

frame rename — Rename existing frame

Description

frame rename changes the name of an existing frame. You can even rename the current frame.

Menu

Data > Frames Manager

Syntax

frame rename oldframename newframename

Remarks and examples
oldframename must be an existing frame. It may be the current frame. newframename must not be
an existing frame.
b Example 1

Let’s assume we have several frames in memory, including a frame named default. We see this by
typing frames dir:

. frames dir

cars 74 x 12; 1978 automobile data
default 50 x 13; 1980 Census data by state
work 28534 x 21; National Longitudinal Survey of Young Women, 14-24

years old in 1968

We want to rename the default frame to a new frame named census:
. frame rename default census

We also want to rename the existing frame cars to automobiles:
. frame rename cars automobiles

We can then check the changes with frames dir:

. frames dir
automobiles 74 x 12; 1978 automobile data
census 50 x 13; 1980 Census data by state
work 28534 x 21; National Longitudinal Survey of Young Women, 14-24
years old in 1968

Also see

[D] frames intro — Introduction to frames
[D] frames — Data frames

[D] frame copy — Make a copy of a frame

336

frames describe — Describe frames in memory or in a file

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see
Description

frames describe produces a summary of frames in memory or in a Stata frameset (.dtas) file.

Quick start

Describe all frames in memory

frames describe

Describe frames in file myframeset.dtas

frames describe using myframeset

Describe variable var1 in frames A and B in memory

frames describe varl, frames(A B)

Menu

Data > Frames Manager

337

frames describe — Describe frames in memory or in a file 338

Syntax
Describe frames in memory

frames describe [varlist] [, memory_options |

Describe frames in a file

frames describe [varlist| using filename [, file_options]

If filename is specified without an extension, .dtas is assumed. If filename contains embedded spaces
or other special characters, enclose it in double quotes.

memory_options Description
frames (framelist) list of frames to describe
simple display only variable names
short display only general information
fullnames do not abbreviate variable names
numbers display variable number along with name
file_options Description
frames (framelist) list of frames to describe
simple display only variable names
short display only general information
Options

Options are presented under the following headings:

Options to describe frames in memory
Options to describe frames in a file

Options to describe frames in memory

frames (framelist) specifies the list of frames to describe.

simple displays only the variable names in a compact format. simple may not be combined with other
options, except for frames ().

short suppresses the specific information for each variable. Only the general information (number of
observations, number of variables, and sort order) is displayed.

fullnames specifies that frames describe display the full names of the variables. The default is to
present an abbreviation when the variable name is longer than 15 characters. fullnames may not be
specified with numbers.

numbers specifies that frames describe present the variable number with the variable name. If
numbers is specified, variable names are abbreviated when the name is longer than eight characters.
numbers may not be specified with fullnames.

frames describe — Describe frames in memory or in a file 339

Options to describe frames in a file

frames (framelist) specifies the list of frames to describe.

simple displays only the variable names in a compact format. simple may not be combined with other
options, except for frames ().

short suppresses the specific information for each variable. Only the general information (number of
observations, number of variables, and sort order) is displayed.

Remarks and examples

frames describe, with no operands, describes the frames in memory in alphabetical order.

frames describe with the using modifier describes frames on disk in the order they were specified
in framelist when saved with frames save, frames (framelist). This ordering is reflected in stored
result r (frames) after frames describe using.

b Example 1: Describe frames in memory

After loading multiple datasets in memory with data frames, you can use frames describe to get
a summary of the data in each frame. To demonstrate, below we create one frame with demographic
information from the 1980 census (census.dta) and another with housing data (hsng.dta) from the
same census.

. clear frames

. Sysuse census
(1980 Census data by state)

. frame rename default census
. frame create housing
. frame change housing

. use https://www.stata-press.com/data/r19/hsng
(1980 Census housing data)

frames describe — Describe frames in memory or in a file 340

By simply typing frames describe, we get detailed information about the data in each frame, such
as the number of observations and details about all the variables:

. frames describe

Frame: census

Contains data from C:\Program Files\Statal9\ado\base\c\census.dta

Observations: 50 1980 Census data by state

Variables: 13 6 Apr 2024 15:43

Variable Storage Display Value
name type format label Variable label

state stri4 %-14s State

state2 str2 =28 Two-letter state abbreviation

region int %-8.0g cenreg Census region

pop long %12.0gc Population

poplts long %12.0gc Pop, < 5 year

pop5_17 long %12.0gc Pop, 5 to 17 years

popl8p long %12.0gc Pop, 18 and older

pop65p long %12.0gc Pop, 65 and older

popurban long %12.0gc Urban population

medage float %9.2f Median age

death long %12.0gc Number of deaths

marriage long %12.0gc Number of marriages

divorce long %12.0gc Number of divorces

Sorted by:

Frame: housing

Contains data from https://www.stata-press.com/data/r19/hsng.dta

Observations: 50 1980 Census housing data
Variables: 12 3 Feb 2024 16:22
Variable Storage Display Value
name type format label Variable label
state stri4 %l4s State
division int %8.0g division Census division
region int %8.0g region Census region
pop long %10.0g Population in 1980
popgrow float %6.1f Pop. growth 1970-80
popden int %6.1£f Pop/sq. mile
pcturban float %8.1f Percent urban
faminc long %8.2f Median family inc., 1979
hsng long %10.0g Hsng units 1980
hsnggrow float %8.1f % housing growth
hsngval long %9.2f Median hsng value
rent long %6.2f Median gross rent

Sorted by: state

In the census data frame, we have information for each state about the median age and the numbers
of children and teens, adults, and senior citizens. In the housing data frame, we have information about
the housing units, median family income, and median housing value.

frames describe describes the frames in memory in alphabetical order. Therefore, we first get a
summary of the census frame and then a summary of the housing frame.

frames describe — Describe frames in memory or in a file 341

If we are interested only in certain variables, we can list them. Below, we describe the variables state
and region, as well as all variables whose names begin with pop, for all frames in memory:

. frames describe state region pop*

Frame: census

Variable Storage Display Value

name type format label Variable label
state stri4 Y-14s State
region int %-8.0g cenreg Census region
pop long %12.0gc Population
poplts long %12.0gc Pop, < 5 year
pop5_17 long %12.0gc Pop, 5 to 17 years
popl8p long %12.0gc Pop, 18 and older
pop65p long %12.0gc Pop, 65 and older
popurban long %12.0gc Urban population

Frame: housing

Variable Storage Display Value

name type format label Variable label
state stri4 %l4s State
region int %8.0g region Census region
pop long %10.0g Population in 1980
popgrow float %6.1f Pop. growth 1970-80
popden int %6.1f Pop/sq. mile

Furthermore, if we are interested only in describing the data for certain frames, we can list the names
with the frames () option. Below, we are interested in the population variables in the housing frame:

. frames describe pop*, frames(housing)

Frame: housing

Variable Storage Display Value

name type format label Variable label
pop long %10.0g Population in 1980
popgrow float %6.1f Pop. growth 1970-80
popden int %6.1f Pop/sq. mile

We can also skip the variable information altogether with the short option:

. frames describe, frames(housing) short

Frame: housing

Contains data from https://www.stata-press.com/data/r19/hsng.dta
Observations: 50 1980 Census housing data
Variables: 12 3 Feb 2024 16:22
Sorted by: state

frames describe — Describe frames in memory or in a file 342

b Example 2: Describe frames in a file

In example 1, we created two frames with different information from the 1980 census. Let’s save
these frames into a file called censuses.dtas:

. frames save censuses, frames(housing census) replace

(file censuses.dtas not found)
file censuses.dtas saved

Now suppose that we are working in a new Stata session and we wish to describe the frames from the

censuses.dtas file:

. clear all

. frames describe using censuses

Frame: housing

Contains data

1980 Census housing data

Observations: 50 28 Mar 2025 19:42
Variables: 12
Variable Storage Display Value
name type format label Variable label
state stri4 Yl4s State
division int %8.0g division Census division
region int %8.0g region Census region
pop long %10.0g Population in 1980
popgrow float %6.1f Pop. growth 1970-80
popden int %6.1f Pop/sq. mile
pcturban float %8.1f Percent urban
faminc long %8.2f Median family inc., 1979
hsng long %10.0g Hsng units 1980
hsnggrow float %8.1f % housing growth
hsngval long %9.2f Median hsng value
rent long %6 . 2f Median gross rent

Sorted by: state

frames describe — Describe frames in memory or in a file 343

Frame: census

Contains data

1980 Census data by state

Observations: 50 28 Mar 2025 19:42
Variables: 13
Variable Storage Display Value
name type format label Variable label
state stri4 J-14s State
state2 str2 %=2s Two-letter state abbreviation
region int %-8.0g cenreg Census region
pop long %12.0gc Population
poplth long %12.0gc Pop, < 5 year
pop5_17 long %12.0gc Pop, 5 to 17 years
pop18p long %12.0gc Pop, 18 and older
pop65p long %12.0gc Pop, 65 and older
popurban long %12.0gc Urban population
medage float %9.2f Median age
death long %12.0gc Number of deaths
marriage long %12.0gc Number of marriages
divorce long %12.0gc Number of divorces
Sorted by:

Note that when we describe frames from a file, the first frame listed in the frames save command
will be the first one described. Therefore, we now see the housing frame described first.

You can issue the return list command after frames describe using to see the order in which
the frames were saved.

Stored results

d

frames describe stores the following inr():

Scalars
r(complevel)

Macros
r (frames)
r(first)
r(N)
r(k)
r(width)
r (changed)

Also see

compression level (with option using only)

list of frames described

first frame in r (frames) (with option using only)

number of observations in each frame

number of variables in each frame

width of frames

1 or 0 for each frame in memory: 1 means the data in the frame have changed since last save; 0
means they have not changed

D] frames save — Save a set of frames on disk

D] frames — Data frames

(D]
[D] frames use — Load a set of frames from disk
[D]
(D]

D] describe — Describe data in memory or in a file

frames dir — Display names of all frames in memory

Description Menu Syntax Remarks and examples Stored results Also see

Description

frames dir lists all frames in memory, along with the dimensions of the data, the label of the data in
each (if any), and an indicator of whether the data in the frame have changed since last saved.

Menu

Data > Frames Manager

Syntax

frames dir

collect is allowed; see [U] 11.1.10 Prefix commands.

Remarks and examples

frames dir shows you at a glance information about all frames in memory.

The first column shows an asterisk if the data in a given frame have changed since they were last
saved. If you try to exit Stata and there are unsaved data in one or more frames, you will receive an error
warning you. You can type frames dir to see frames with unsaved data.

The third column shows the number of observations and variables along with the data label, if any,
for each frame. If there is not a data label, the dataset filename, if there is one, will be displayed.

b Example 1

We have been working with data in multiple frames. We now want to see all the frames currently in
memory. To do this, we type
. frames dir
* afewcars 74 x 3; Subset of auto.dta
default 74 x 12; 1978 automobile data

* work 3142 x 10; National Longitudinal Survey of Young Women, 14-24
years old in 1968

Note: Frames marked with * contain unsaved data.

We are reminded of the names and contents of the three frames in memory. We also see that the data
in frames afewcars and work have changed, but those changes have not been saved.

d

344

frames dir — Display names of all frames in memory 345

Stored results

frames dir stores the following in r ():

Macros
r(frames) names of frames in memory
r(changed) 1 or 0 for each frame in memory: 1 means the data in the frame have changed since last save; 0
means they have not changed
Also see

[D] frames intro — Introduction to frames
[D] frames — Data frames

[D] save — Save Stata dataset

frames modify — Modify a set of frames on disk

Description Quick start Menu Syntax Options
Remarks and examples Stored results Also see
Description

frames modify modifies a frameset (.dtas) file by adding frames, dropping frames, or replacing
the content of existing frames in the file.

Quick start

Add frames A, B, and C to file myframeset.dtas

frames modify using myframeset, add(A B C)

Drop frames A and B from file myframeset.dtas

frames modify using myframeset, drop(A B)

Menu

Data > Frames Manager

Syntax
Add frames to a frameset on disk

frames modify using filename, add(framelist [, replace]) [options |

Drop frames from a frameset on disk

frames modify using filename, drop (framelist)

If filename is specified without an extension, .dtas is assumed. If filename contains embedded spaces
or other special characters, enclose it in double quotes.

options Description
nolabel omit value labels from the added frames
orphans save value labels in added frames, even if they are not attached to a variable
emptyok add specified frames even if they have zero observations and zero
variables

346

frames modify — Modify a set of frames on disk 347

Options

add (framelist| , replace]) specifies the frames in memory to be added to the frameset. framelist is
a list of frame names separated by a space. To add all frames in memory to the frameset, specify
add(_all). Either add () or drop (), but not both, must be specified.

replace permits frames modify to overwrite frames that already exist in the frameset.

drop (framelist) specifies the frames to be dropped from the frameset. framelist is a list of frame names
separated by a space. Either drop () or add (), but not both, must be specified.

nolabel specifies that value labels be omitted when adding frames to the frameset.

orphans specifies that all value labels be saved with the frames to be added, including those not attached
to any variable.

emptyok specifies that frames be added to the frameset even if they contain zero observations and zero
variables.

Remarks and examples

frames modify allows you to conveniently modify a frameset (.dtas) file. You can add a list of
frames to the frameset, or drop a list of frames from the frameset, without loading the entire frameset
into memory.

frames modify is useful when you have already saved a set of frames with frames save but wish to
modify its contents. However, frames modify has the potential to break linkages, if they exist, between
frames in the frameset. Adding a frame that does not previously exist in the frameset will not affect any
existing links in the frameset. However, if a frame in the frameset was saved with links to other frames,
the linkages will be dropped if you replace the frame without reestablishing the link. If you are not sure
about existing linkages, you should load the frameset with frames use and examine linkages before
using frames modify.

b Example 1: Modify an existing frame in the frameset

In frames save, we saved frames census and housing in myframeset.dtas. Below, we re-create
that file:

. frame create census
. frame change census

. sysuse census
(1980 Census data by state)

. frame create housing
. frame change housing

. webuse hsng
(1980 Census housing data)

. frlink 1:1 state, frame(census)
(all observations in frame housing matched)

. frames save myframeset, frames(housing) linked
file myframeset.dtas saved

frames modify — Modify a set of frames on disk 348

Suppose that we wish to modify the contents of the housing frame. This is the current frame. Below,
we drop two variables that we are not interested in, and then we replace the contents of the housing
frame in myframeset.dtas.

. drop popden popgrow

. frames modify using myframeset, add(housing, replace)
frame housing replaced
file myframeset.dtas saved

frames modify reports that the housing frame was replaced and that the frameset file
myframeset.dtas has been saved.

d

Stored results

frames modify stores the following in r ():

Scalars
r(complevel) compression level
r(compsize) size, in bytes, of compressed file
r(compratio) compression ratio, defined as the ratio of compressed size to uncompressed size
Macros
r(fn) pathname of modified frameset file
r(frames) list of frames in the modified frameset
r(added) list of frames added, if add () specified
r(replaced) list of frames replaced
r(dropped) list of frames dropped, if drop () specified
Also see

[D] frames save — Save a set of frames on disk
[D] frames use — Load a set of frames from disk

[D] frames — Data frames

frames reset — Drop all frames from memory

Description Menu Syntax Remarks and examples Also see

Description

frames reset eliminates from memory all frames, including any data in them. It restores Stata to its
initial state of having a single, empty frame named default. clear frames is a synonym for frames
reset.

Menu

Data > Frames Manager

Syntax

frames reset

clear frames

Remarks and examples

frames reset eliminates, or removes from memory, all frames. It then creates a single, empty frame
named default. This is the same as Stata’s initial state when it first starts.

To drop frames, use frame drop. See [D] frame drop.

To drop results, programs, matrices, etc. in addition to frames, use the clear command. See [D] clear.

b Example 1

We have numerous frames in memory:

. frames dir
cars 74 x 12; 1978 automobile data
default 50 x 13; 1980 Census data by state
work 28534 x 21; National Longitudinal Survey of Young Women, 14-24
years of age in 1968
(output omitted)

We want to drop all the frames. We do this by typing

. frames reset

We now have the empty frame named default.

. frames dir
default 0 x O

349

frames reset — Drop all frames from memory 350

Also see

[D] frames intro — Introduction to frames
[D] frames — Data frames

[D] frame drop — Drop frames from memory
(D]

D] clear — Clear memory

frames save — Save a set of frames on disk

Description Quick start Menu Syntax Options
Remarks and examples Stored results Also see
Description

frames save saves a set of frames as a Stata frameset (. dtas) file.

Quick start

Save frames A, B, and C in file nyframeset .dtas

frames save myframeset, frames(A B C)

Save, in file myframeset . dtas, frames A and B as well as all frames linked, through frlink, to A and B

frames save myframeset, frames (A B) linked

Menu

Data > Frames Manager

Syntax

frames save filename, frames (framelist) [options |

If filename is specified without an extension, .dtas is assumed. If filename contains embedded spaces
or other special characters, enclose it in double quotes.

options Description

* frames (framelist) specify frames to be saved

replace overwrite existing .dtas file

linked save frames linked to those in framelist

relaxed ignore missing linked frames

complevel (#) specify compression level; default is complevel (1)

nolabel omit value labels from the saved frames

orphans save all value labels, even if they are not attached to a variable

emptyok save specified frames even if they have zero observations and zero variables
all save e (sample) with the frames in which it exists; programmer’s option

*frames (framelist) is required.

all does not appear in the dialog box.

351

frames save — Save a set of frames on disk 352

Options

frames (framelist) specifies the frames to be saved. framelist is a list of frame names separated by a
space. To save all frames in memory, specify frames(_all). frames() is required.

replace permits frames save to overwrite filename if it already exists.

linked specifies that all frames linked to those in framelist are also saved. Linkages are established
by the frlink command. Note that if frame A is linked to frame B through frlink, and frame B is
similarly linked to frame C, then saving frame A with the 1inked option will also save frames B and
C, as well as other frames linked to B and C, and so forth.

relaxed is allowed only with the 1inked option. relaxed specifies that an error message not be issued
if a linked frame does not exist.

complevel (#) specifies the compression level to be used. # may be any integer from 0 to 9; the default
is complevel (1). complevel (0) means no compression; a larger # means more compression. The
compression level can also be set with set dtascomplevel; type help set dtascomplevel to learn
more. complevel () overrides the dtascomplevel setting.

nolabel specifies that value labels from the saved frames are omitted.
orphans specifies that all value labels be saved, including those not attached to any variable.

emptyok specifies that the frames be saved even if they contain zero observations and zero variables.

The following option is available with frames save but is not shown in the dialog box:

all specifies that e (sample) be saved with the frames in which it exists. all is a programmer’s option.

Remarks and examples

Data frames allow you to work with multiple datasets in memory and to access variables across those
datasets. frames save allows you to save the data from multiple frames into a single file; the resulting
file is referred to as a Stata frameset and uses the .dtas extension. You can simply specify the list of
frames you want to save or specify that the listed frames and those linked to them be saved.

> Example 1: Save multiple frames

Suppose that we have two frames in memory and we want to save data from both in a single file. To
demonstrate, we first create a frame named census and load a dataset with population data by state:

. clear all
. frame create census
. frame change census

. Sysuse census
(1980 Census data by state)

Next we create a frame named housing in which we load housing data by state:

. frame create housing
. frame change housing

. webuse hsng
(1980 Census housing data)

frames save — Save a set of frames on disk 353

Now we save both frames, census and housing, into a file called myframeset.dtas:

. frames save myframeset, frames(census housing) replace
(file myframeset.dtas not found)
file myframeset.dtas saved

Whenever we wish to load the data frames from myframeset.dtas, we can use frames use.

» Example 2: Save linked frames

One advantage of working with data frames is that you can access values from one frame in another
by linking the two frames. Furthermore, when you save data from a frame, you may wish to save data
from the frames it is linked to, which we demonstrate below.

Continuing with our frames from example 1, we can use frame pwf to check which frame is the
working frame:

. frame pwf
(current frame is housing)

Our current frame ishousing. We now use frlink to link frame census to frame housing, matching
observations on values of state:

. frlink 1:1 state, frame(census)
(all observations in frame housing matched)

The message indicates that all observations in frame housing matched those in frame census. We can
use frames describe to get a summary of the data in each frame:

. frames describe

Frame: census

Contains data from C:\Program Files\Statai9\ado\base\c\census.dta

Observations: 50 1980 Census data by state
Variables: 13 28 Mar 2025 19:42
Variable Storage Display Value
name type format label Variable label
state stri4 %-14s State
state2 str2 %=2s Two-letter state abbreviation
region int %-8.0g cenreg Census region
pop long %12.0gc Population
popltd long %12.0gc Pop, < 5 year
pop5_17 long %12.0gc Pop, 5 to 17 years
pop18p long %12.0gc Pop, 18 and older
pop65p long %12.0gc Pop, 65 and older
popurban long %12.0gc Urban population
medage float %9.2f Median age
death long %12.0gc Number of deaths
marriage long %12.0gc Number of marriages
divorce long %12.0gc Number of divorces

Sorted by: state

frames save — Save a set of frames on disk 354

Frame: default

Contains data

Observations: 0
Variables: 0
Sorted by:

Frame: housing

Contains data from https://www.stata-press.com/data/r19/hsng.dta

Observations: 50 1980 Census housing data
Variables: 13 28 Mar 2025 19:42
Variable Storage Display Value
name type format label Variable label
state stri4 %l4s State
division int %8.0g division Census division
region int %8.0g region Census region
pop long %10.0g Population in 1980
popgrow float %6.1f Pop. growth 1970-80
popden int %6.1f Pop/sq. mile
pcturban float %8.1f Percent urban
faminc long %8.2f Median family inc., 1979
hsng long %10.0g Hsng units 1980
hsnggrow float %8.1f % housing growth
hsngval long %9.2f Median hsng value
rent long %6.2f Median gross rent
census byte %10.0g

Sorted by: state
Note: Dataset has changed since last saved.

We can see that frame housing has a variable named census; this is the variable that fr1ink created
to store the information needed to link the frames. We can also see that the default frame is empty
because we have not loaded a dataset into that frame.

We can now save frame housing and all frames linked to it by typing the following:

. frames save myframeset, frames(housing) linked replace
file myframeset.dtas saved

This saves frame housing, as well as frame census, because it is linked to frame housing. The
replace option replaces file myframeset.dtas if it already exists.

We now drop frame census using frame drop:

. frame drop census

Note that if we try to save frame housing and the frames linked to it, we get an error message:

. frames save myframeset, frames(housing) linked replace

linked frame does not exist
Frame census is linked from frame housing, but frame cemsus does not
exist. Use option relaxed if you wish to ignore this error and proceed
anyway .

r(111);

frames save — Save a set of frames on disk 355

Stata is attempting to save frame census because it is linked to frame housing, but it does not exist.
To save the frames we specified, and any existing frames linked to them, we can use the relaxed option
to ignore any linked frame that does not exist:

. frames save datasets, frames(housing) linked replace relaxed

(file datasets.dtas not found)
file datasets.dtas saved

We no longer get an error message, but because frame census does not exist, only frame housing gets
saved.

d
Stored results
frames save stores the following in r ():
Scalars
r(complevel) compression level
r(compsize) size, in bytes, of compressed file
r(compratio) compression ratio, defined as the ratio of compressed size to uncompressed size
Macros
r(fn) pathname of saved frameset file
r (frames) list of frames saved, listed in the same order as in option frames(); if frames(_all) is used,
then the working frame is listed first, followed by the remaining frames in alphabetical order
r(first) first frame in r (frames)
Also see

D] frames describe — Describe frames in memory or in a file

D] frames modify — Modify a set of frames on disk

(D]
(D]
[D] frames use — Load a set of frames from disk
[D] frames — Data frames

)

D] save — Save Stata dataset

frames use — Load a set of frames from disk

Description Quick start Menu Syntax Options
Remarks and examples Stored results Also see
Description

frames use loads into memory a set of frames from a Stata frameset (.dtas) file previously saved
by frames save.

Quick start

Load all frames in file myframeset.dtas

frames use myframeset

Load frames A and B in file myframeset.dtas

frames use myframeset, frames (A B)

Menu

Data > Frames Manager

Syntax

frames use filename [, oplions]

If filename is specified without an extension, .dtas is assumed. If filename contains embedded spaces
or other special characters, it has to be enclosed in double quotes.

options Description

frames (framelist) specify frames to be used

clear clear all frames in memory and replace them with the frames from disk
replace overwrite existing frames in memory with frames of the same name from
filename

356

frames use — Load a set of frames from disk 357

Options

frames (framelist) specifies the frames to be loaded into memory. framelist is a list of frame names
separated by a space. If frames () is not specified, all frames are loaded. The frames () option does
not change the current working frame; to change the working frame after frames use, use frame
change.

clear clears all frames in memory and replaces them with frames from disk. The new working frame
will be the first frame that was specified in the frames (framelist) option with frames save.

Ifboth clear and frames (framelist) are specified with frames use, the new working frame will be
the first one listed in framelist.

replace replaces frames in memory with frames from filename if the frame names are the same. This
option does not drop from memory existing frames with different names.

Remarks and examples

frames use is used to load a frameset previously saved with frames save. A frameset is a single file
with data from multiple frames. By loading a frameset with frames use, you can resume the work you
were doing with the frames saved with frames save.

frames use will load all the data frames stored in the .dtas file, unless you specify a list with the
frames () option. Additionally, when no other options are specified, the frames will be loaded into
memory, but the current working frame will not be changed, even if it is empty. When frames use is
specified with both the frames() and clear options, the new working frame will be the first frame
listed in the frames () option. When frames use is specified with the clear option but without the
frames () option, the new working frame will be the first frame that was specified in the frames ()
option with frames save. Note that the first frame of a .dtas file is stored in r(first) after the
frameset is described with frames describe using.

b Example 1

To demonstrate how to load a frameset, we first need to create a frameset. Below, we create frames
census and housing with data from the 1980 census. We then use frames save to store both of these
frames in a file named myframeset.dtas.

. clear frames

. Sysuse census
(1980 Census data by state)

. frame rename default census
. frame create housing
. frame change housing

. webuse hsng
(1980 Census housing data)

. frames save myframeset, frames(census housing) replace
(file myframeset.dtas not found)
file myframeset.dtas saved

frames use — Load a set of frames from disk 358

Suppose that at a later time we would like to load the frames in myframeset.dtas. We first clear
any data and frames and then use frames use.

. clear all

. frames use myframeset
census 50 x 13; 1980 Census data by state
housing 50 x 12; 1980 Census housing data

We see in the output above that both frames were loaded into memory. If there is no dataset in memory,
frames use loads the frames from the .dtas file, but the default frame remains the current working
frame, as shown below:

. pwf
(current frame is default)

The output from pwf shows that the current frame is default. frames describe below lists the
frames in alphabetical order and shows that the default frame (labeled Frame: default) is empty:

. frames describe

Frame: census

Contains data

Observations: 50 1980 Census data by state
Variables: 13 28 Mar 2025 19:42
Variable Storage Display Value
name type format label Variable label
state stri4 %-14s State
state2 str2 %=2s Two-letter state abbreviation
region int %-8.0g cenreg Census region
pop long %12.0gc Population
popltd long %12.0gc Pop, < 5 year
pop5_17 long %12.0gc Pop, 5 to 17 years
pop18p long %12.0gc Pop, 18 and older
pop65p long %12.0gc Pop, 65 and older
popurban long %12.0gc Urban population
medage float %9.2f Median age
death long %12.0gc Number of deaths
marriage long %12.0gc Number of marriages
divorce long %12.0gc Number of divorces
Sorted by:

Frame: default

Contains data
Observations: 0
Variables: 0
Sorted by:

frames use — Load a set of frames from disk 359

Frame: housing

Contains data

Observations: 50 1980 Census housing data
Variables: 12 28 Mar 2025 19:42
Variable Storage Display Value
name type format label Variable label
state stri4 %l4s State
division int %8.0g division Census division
region int %8.0g region Census region
pop long %10.0g Population in 1980
popgrow float %6.1f Pop. growth 1970-80
popden int %6.1f Pop/sq. mile
pcturban float %8.1f Percent urban
faminc long %8.2f Median family inc., 1979
hsng long %10.0g Hsng units 1980
hsnggrow float %8.1f % housing growth
hsngval long %9.2f Median hsng value
rent long %6.2f Median gross rent

Sorted by: state

If there are frames in memory, frames census and housing inmyframeset .dtas will be loaded into
memory, in addition to the frames already in memory. If there is already a frame in memory with the
same name as the frame you are loading, frames use issues an error message. For example, below we
rename the default frame to census and then run our frames use command once more:

clear frames

sysuse census, clear
(1980 Census data by state)

. frame rename default census

. frames use myframeset.dtas
frames in memory are in conflict with frames on disk
Frame cemsus is already in memory. Specify option clear to clear all
frames or option replace to replace only the frames in conflict.
r(4);

To successfully load the frames from myframeset .dtas, we can either use the clear option to clear
all frames from memory,

. frames use myframeset, clear

or use the replace option to replace the frames in conflict:

. frames use myframeset, replace

Stored results

frames use stores the following inr ():

Macros
r(fn) pathname of frameset
r (frames) list of frames loaded

frames use — Load a set of frames from disk 360

Also see

[D] frames describe — Describe frames in memory or in a file
[D] frames modify — Modify a set of frames on disk

[D] frames save — Save a set of frames on disk

[D] sysuse — Use shipped dataset

]

]

]
[D] frames — Data frames

]
[D] use — Load Stata dataset
]

[D] webuse — Use dataset from Stata website

frget — Copy variables from linked frame

Description Quick start Syntax Options
Remarks and examples Stored results Also see

Description

frget copies variables and their associated metadata from the data in the linked frame to the data in
the current frame. Copy means copying the relevant observations from the linked frame to the appropriate
observations in the current frame. If you would like to refer to a variable in another frame without copying
that variable into the current frame, see [D] fralias.

See [D] frames intro if you do not know what a frame is.

Quick start

Obtain variables v1, v2, and v3 from another frame linked to by linkage 1nk
frget vl v2 v3, from(lnk)

Obtain variables v4 and v5 via linkage 1nk, naming them newv4 and newv5 in the current frame

frget newv4=v4 newvb=v5, from(1lnk)

Obtain all variables via linkage 1nk, prefixing them with 1_
frget *, from(lnk) prefix(1_)

Obtain all variables via linkage 1nk, excluding those matching pattern indx
frget *, from(lnk) exclude (ind*)

Syntax
frget varlist, from(linkname) | rename_options | (1)
frget newvar, = varname, | newvary = varname, [...]|, from(linkname) 2)

linkname 1is the name of a linkvar in the current frame that was created by frlink; see [D] frlink.

rename_options Description

prefix(string) prefix new variable names with string
suffix (string) suffix new variable names with string
exclude (varlist) exclude specified variables

collect is allowed; see [U] 11.1.10 Prefix commands.

Syntax 1 copies the variable names specified by varlist from the frame linked by /inkname to the current
frame.

Syntax 2 copies varname; from the frame linked by linkname to newvar; in the current frame. Similarly,
varname, is copied to newvar, and so on.

Copy means copy and clone. Display formats, variable labels, value labels, notes, and characteristics
are also copied.

361

frget — Copy variables from linked frame 362

Options

from(/inkname) specifies the identity of the linked frame from which variables are copied. Linkages to
frames are created by the fr1ink command. Linkages are usually named for the frame to which they
link. Linkage counties links to frame counties, and so you specify from(counties). If linkage
c links to frame counties, you specify from(c). from() is required.

prefix (string) specifies a string to be prefixed to the names of the new variables created in the current
frame. Say that you type

. frget inc#*, from(counties)

to request that variables income and income_family be copied to the current frame. If variable
income already exists in the current frame, the command would issue an error message to that effect
and copy neither variable. To copy the two variables, you could type

. frget inc*, from(counties) prefix(c_)
Then the variables would be copied to variables named c_income and c_income_family.

suffix (string) works like prefix (string), the difference being that the string is suffixed rather than
prefixed to the variable names. Both options may be specified if you wish.

exclude (varlist) specifies variables that are not to be copied. An example of the option is

frget *, from(counties) exclude (emp*)

All variables except variables starting with emp would be copied.

More correctly, all variables except emp*, _*, and the match variables would be copied because frget
always omits the underscore and match variables. See the explanation below.

Remarks and examples

Remarks are presented under the following headings:

Overview
Everything you need to know about frget

Overview
You have data on people and data on counties. You loaded the datasets and created a linkage named
uscounties by typing

. use people

. frame create uscounties

. frame uscounties: use uscounties

. frlink m:1 countyid, frame(uscounties)

See example 1 in [D] frlink for details.

Among the variables in uscounties.dta is median_income. You could copy the variable to the
person data in the current frame by typing either of the following:

. frget median_income, from(uscounties)

. frget medinc = median_income, from(uscounties)

The first command names the copy median_income in the current frame. The second names it medinc.

frget — Copy variables from linked frame 363

Everything you need to know about frget

Here is everything you need to know in outline form:

. What it means to copy a linked variable

. frget can copy variables one at a time

. frget allows variable names to be abbreviated

. frget can bring over groups of variables

. frget copies all the variables specified, or none of them
. frget ignores repeated variables

. How to get all the variables 1: frget *

. How to get all the variables 2: frget *, prefix()

. How to create new variables

. frget copies and clones variables

© O IV AW —

—_

We make two assumptions in what follows:

Al. The current frame contains data on people. A frame named uscounties contains data on
counties. That is, we assume

. use people
. frame create uscounties
. frame uscounties: use uscounties

A2. The frames are linked on the match variable countyid, which appears in both datasets. The
linkage between the frames is named uscounties, the same name as the frame being linked.
That is, we assume

. frlink m:1 countyid, frame(uscounties)

1. What it means to copy a linked variable
When you type
. frget median_income, from(uscounties)
frget copies variable median_income from frame uscounties to the current frame. Well,
we say it copies the variable, but the process is more complicated than that. frget copies the
relevant observations of median_income from frame uscounties to the appropriate obser-

vations in the current frame. In the process, frget duplicates some observations and ignores
others.

If the person in observation 1 lives in county 401, then the median income recorded for county
401 in the uscounties frame is copied to observation 1 in the current frame.

If the people in observations 2, 33, and 65 in the current frame reside in county 207, then the
median income recorded for county 207 is duplicated in observations 2, 33, and 65 of the current
frame.

If the person in observation 3 lives in county 599 and there is no county 599 in the uscounties
frame, then missing value . or "" is stored in observation 3.

A copy of a variable from a linked frame is a copy of the relevant observations of the variable
to the appropriate observations in the current frame when relevant observations exist.

2. frget can copy variables one at a time
To copy variable median_income from frame uscounties to the current frame, type

. frget median_income, from(uscounties)

frget — Copy variables from linked frame 364

To instead copy median_income to a new variable named medinc in the current frame, type

. frget medinc=median_income, from(uscounties)

. frget allows variable names to be abbreviated

frget allows abbreviations if you have not set varabbrev off. If median_income is the
only variable beginning with median in the linked frame, you can type

. frget median, from(uscounties)

Variable median_income will be copied, and the new variable in the current frame will be
named median_income.

When using frget’s newvar=varname syntax, you can abbreviate the variable being copied
that appears to the right of the equals sign:

. frget medinc=median, from(uscounties)

. frget can bring over groups of variables

frget allows you to specify a varlist. Even though you type frget in the current frame, the
varlist is interpreted in the linked frame. You can type

. frget emp#*, from(uscounties)

. frget emp* median_income, from(uscounties)

. frget emp* median, from(uscounties)

. frget emp* m*, from(uscounties)
. frget *, from(uscounties)

When you specify a varlist, frget automatically omits the match variable or variables and any
variables starting with an underscore (-). First, we will tell you why, and then, we will tell you
a workaround.

We start with a match variable. The match variable(s) in our example is match variable
countyid. The variable has the same name in both frames. Pretend for a moment that frget
did not exclude match variables. Then, if you tried to copy countyid, that would be an error
because frget will not overwrite existing variables. That seems reasonable until you realize
that it would also mean that frget would issue an error if you typed

. frget cx, from(uscounties)

or even if you typed

. frget *, from(uscounties)

frget would issue errors because c* and * would include countyid, which, being the match
variable, already exists in the current frame. frget automatically omits match variables so that
you can type frget c* and frget * and get all the other variables.

frget omits _x variables because they tend to be Stata system variables that are valid only in
the dataset in which they appear. You do not want them.

What if you need to get one of these variables? Use the newvar=varname syntax. Type, for
instance,

. frget _myvar=_myvar, frame(uscounties)

Automatic omission is not applied to this syntax.

frget — Copy variables from linked frame 365

5. frget copies all the variables specified, or none of them

frget will not overwrite existing variables. If just one variable in the specified list already
exists in the current frame, frget copies none of the variables. It issues an error.

. frget emp* m¥, from(uscounties)
variable mvalues already exists
r(110);

If you want all the m* variables except mvalues, use the exclude () option:

. frget emp* m*, from(uscounties) exclude(mvalues)

If you also want mvalues copied to mvals in the current frame, type

. frget mvals=mvalues, from(uscounties)

6. frget ignores repeated variables
It is not an error to type

. frget employment employment, from(uscounties)

We specified employment twice, but frget ignores that and copies the variable once. This is
convenient because variables can be inadvertently repeated, as in

. frget mx employment-larea, from(uscounties)

Although you cannot see it, variable mds is repeated in the example. m* contains mds, and so
does employment-larea because mds is among the variables stored between them.

When variables are repeated using the newvar=varname syntax, frget does not ignore repeti-
tion. It copies the variables you specify to each of the new variables that you specify:

. frget medinc=income inc=income, from(uscounties)

7. How to get all the variables 1: frget *
To get all the variables, try typing

. frget *, from(uscounties)

This sometimes works. Other times it does not because some of the variables in uscounties
already exist in the current frame. When it does not work, frget lists the variable names that
exist in both frames and, even better, stores them in r(dups). Thus, if you are willing to
exclude those variables, you can type

. frget *, from(uscounties) exclude(‘r(dups)’)

8. How to get all the variables 2: frget *, prefix()
Another way to get all the variables is to type

. frget *, from(uscounties) prefix(c_)

This brings in all the variables under their original names but prefixed with c_. The variable
mvalues in the linked frame, for instance, is copied to c_mvalues.

Another advantage of this approach is how easily you can drop the copies from the data should
you desire to do so. Type

. drop c_x*

frget — Copy variables from linked frame 366

You can choose your own prefix. If you prefer suffixing them, type

. frget *, from(uscounties) suffix(_c)

This names the copies mvalues_c, etc. These names are more like the originals, at least if you
use tab completion for typing them. Type the first characters of the original name and press tab.
And if you wish, you can later drop the suffixed variables just as easily as prefixed ones. Type

. drop *_c
9. How to create new variables

Assume that the uscounties frame contains variables total_income and population. You
need avg_income in the current frame.

One solution would be

. frget total_income population, from(uscounties)
. generate avg_income = total_income/population

Another solution would be to use the frval () function to make the calculation directly:

. generate avg_income =
> frval(uscounties, total_income)/frval(uscounties, population)

Here, however, is perhaps the best solution:

. frame uscounties: generate avg_income = total_income/population
. frget avg_income, from(uscounties)

It is not often that one has the opportunity to save computer time and memory. The gist of this
approach is to create county-level variables in the uscounties frame and then use frget to
get the ones you need.

10. frget copies and clones variables

When frget copies variables, it also copies their display formats, variable labels, value labels,
notes, and characteristics.

The new variables are not just copies. They are clones.

Stored results

frget stores the following in r ():

Scalars
r(k) number of variables copied from linked frame
Macros
r(newlist) new variables in the current frame
r(srclist) variables copied from linked frame
r(excluded) variables not copied from linked frame
r(dups) variables already present in the current frame
r(notfound) variables not found in the linked frame

r(dups) is present only if frget exits with an error message because a prospective new variable
name already exists in the current frame.

r(notfound) is present only for syntax 2 when frget exits with an error message because a varname
is not found in the linked frame.

frget — Copy variables from linked frame 367

Also see
D] frlink — Link frames

(D]

[D] fralias — Alias variables from linked frames
[D] frames intro — Introduction to frames
(D]

D] merge — Merge datasets

frlink — Link frames

Description Quick start Syntax Options
Remarks and examples Stored results Also see

Description

frlink creates and helps manage links between datasets in different frames. A link allows the vari-
ables in one frame to be accessed by another. See [D] frames intro if you do not know what a frame
is.

Quick start

Create 1-to-1 linkage to frame fr2 and match on variable matchvar
frlink 1:1 matchvar, frame(fr2)

Create many-to-1 linkage to frame f£r3, matching variables v1 and v2 in the current frame to variables
x1 and x2 in frame fr3, naming the linkage 1nk

frlinkm:1 vl v2, frame(fr3 x1 x2) generate(lnk)

List names of linkages in current frame
frlinkdir

Show details for linkage 1nk
frlink describe 1lnk

Attempt to re-create linkage 1nk after data have changed
frlink rebuild 1nk

Eliminate linkage 1nk
drop 1nk

368

frlink — Link frames 369

Syntax
Create linkage between current frame and another

frlink {1:1|m:1} varlist,, frame(frame, [varlisty]) [generate (linkvar,) |

List names of existing linkages

frlink dir

List details about existing linkage, and verify it is still valid

frlink describe linkvar,

Re-create existing linkage when data have changed or frames are renamed

frlink rebuild linkvar, [, frame (frames)]

Drop existing linkage (dropping the variable eliminates the linkage)

drop linkvar,

1:1 and m: 1 indicate how observations are to be matched.
varlist; contains the match variables in the current frame, which we will call frame 1.

linkvar is the name to be given to the new variable that frlink creates. The variable is added to the
dataset in frame 1. The variable contains all the information needed to link the frames.

You specify the name for linkvar; using the generate (linkvar,) option, or you let frlink name it
for you. If fr1ink () chooses the name, the variable is given the same name as frame,.

linkvar, is the name of an existing link variable.

collect is allowed with frlink dir and frlink rebuild; see [U] 11.1.10 Prefix commands.

Options

Options are presented under the following headings:

Options for frlink 1:1 and frlink m:1
Options for frlink rebuild

Options for frlink 1:1 and frlink m:1

frame (frame, |varlist, |) specifies the name of the frame, frame,, to which a linkage is created and
optionally the names of variables in varlist, on which to match. If varlist, is not specified, the match
variables are assumed to have the same names in both frames. frame () is required.

To create a link to a frame named counties, you can type

. frlink m:1 countyid, frame(counties)

frlink — Link frames 370

This example omits specification of varlist,, and it works when the match variable countyid has the
same name in both frames. If the variable were named cntycode, however, in the other frame, you

type

. frlink m:1 countyid, frame(counties cntycode)

The rule for matching observations is thus that countyid in the current frame equals cntycode in
the other frame.

You can specify multiple match variables when necessary. For example, you want to match on county
names in US data. County names repeat across the states, so you match on the combined county and
state names by typing

. frlink m:1 countyname statename, frame(counties)

If the match variables had different names in frame counties, such as county and state, you type
. frlink m:1 countyname statename, frame(counties county state)
generate (/inkvar,) specifies the name of the new variable that will contain all the information needed
to link the frames. This variable is added to the dataset in frame 1. This option is rarely used.

If this option is not specified, the link variable will then be named the same as the frame name specified
in the frame () option.

Options for frlink rebuild

frame (frames) specifies a frame name that differs from the existing linkage. frame; is the new name
of a frame linked by linkvar,.
For instance, yesterday, you created a linkage named george to the data in the frame named george
by typing

. frlink m:1 countyname statename, frame(george)

Today, you loaded the linked data into a frame named counties. To rebuild the linkage so that linkage
george links to the data in frame counties, type

. frlink rebuild george, frame(counties)

If you also wish to rename the linkage to be counties, type

. rename george counties

Then you would have a linkage named counties to the data in the frame named counties.

Remarks and examples

Remarks are presented under the following headings:

Overview of the frlink command

Everything you need to know about linkages

Example 1: A typical m:1 linkage

How link variables work

Advanced examples

Example 2: A complex m:1 linkage

Example 3: A 1:1 linkage, a simple solution to a hard problem

frlink — Link frames 371

Overview of the frlink command

frlink1:1andfrlinkm: 1 create linkages between the current frame and another frame you specify.
This adds a new variable to the current frame, known as the link variable. You can use the frget
command to copy variables from the linked frame to the current frame and use the frval () function to
use the other frame’s variables in expressions. You can use the fralias add command to define aliases
of variables from the linked frame in the current frame. An alias is a reference to a variable in another

frame, similar to a copy, but uses very little memory. You cannot modify the observations in a alias
variable.

Linkages are said to be named, but the name is in fact the name of the link variable that frlink
creates.

frlink dir lists the names of existing linkages.

frlink describe linkvar displays details about the specified linkage. It also checks the validity of
the link variable and, if there are problems, tells you how to fix it.

frlink rebuild linkvar re-creates the specified linkvar. If linkvar is invalid, frlink rebuild will
fix it.

Type drop linkvar to delete linkages.

Everything you need to know about linkages
Here is everything you need to know in outline form:

1. A linkage connects one frame to another. Here are the advantages.
1.1 The frval () function.
1.2 The frget command.
1.3 The fralias add command.
. The frlink command creates linkages.
. Linkages are named.
. A linkage is variable added to the data.
. Drop the link variable, remove the link.
. Do not modify the contents of the link variable.
. Linkages are formed based on equality of the match variables.
. You can specify more than one match variable.
9. Match variables can be named differently in the two frames.
10. Match type: One-to-one or many-to-one matching.
11. Linking can result in unmatched observations.
12. Linkages are directional.
13. How to create nested linkages.
14. Saving and using linked frames.
15. Do’s and don’ts.

What follows will turn you into an expert.

0 NN L AW

1. Alinkage connects one frame to another. Here are the advantages.

Create a linkage and you can access the variables in another frame using the frval () function
and the commands frget and fralias add.

frlink — Link frames 372

1.1 The frval () function. You can type

. generate rel_income = income / frval(counties, median_income)

frval (counties, median_income) returns the value of the median_income vari-
able in frame counties. If the current frame contained data on people and the county
frame contained data on counties (linked to with link variable counties in the current
frame), the above would produce person income divided by the median income of the
county in which he or she resides. See frval () in [FN] Programming functions.

1.2 The frget command. You can type

(1) . frget median_income, from(counties)

(2) . frget medinc = median_income, from(counties)

(3) . frget median_income pop, from(counties)

(4) . frget median_income pop attr*, from(counties)

(5) . frget median_income pop attr*, from(counties) prefix(c_)

and more ...
(1) copiesmedian_income from frame counties into the data in the current frame.
(2) does the same but names the variable medinc.
(3) copies two variables.
(4) copies lots of variables.
(5) copies lots of variables and renames them to start with c_.
This is only a smattering of what frget can do. See [D] frget.
1.3 The fralias add command. You can type

(1) . fralias add median_income, from(counties)

(2) . fralias add medinc = median_income, from(counties)

(3) . fralias add median_income pop, from(counties)

(4) . fralias add median_income pop attr*, from(counties)

(5) . fralias add median_income pop attr*, from(counties) prefix(c_)

and more ...

(1) aliasmedian_income from frame counties so that you can use its observations
in the current frame.

(2) does the same but names the alias variable medinc.
(3) aliases two variables.
(4) aliases lots of variables.
(5) aliases lots of variables and renames them to start with c_.
This is only a smattering of what fralias add can do. See [D] fralias.
2. The frlink command creates linkages.
frlink creates a linkage from the current frame to the frame you specify.

. frlink ..., frame(counties)

frlink — Link frames 373

. Linkages are named.
The command

. frlink ..., frame(counties)

creates a linkage named counties to the frame named counties.

You can specify option generate () to give the linkage a different name. To create a linkage
named c to the frame counties, type

. frlink ..., frame(counties) generate(c)

. Alinkage is a variable added to the data.

The entire physical manifestation of a linkage is the addition of a single variable to the dataset
in the current frame. Typing

. frlink ..., frame(counties)

adds new variable counties to the dataset in the current frame.

. frlink ..., frame(counties) generate(c)

adds new variable c to the dataset in the current frame.

The added variable is known as the “link variable”, or linkvar.

. Drop the link variable, remove the link.

Because linkages are just a variable, if you drop the variable, you remove the link.

. drop counties

. drop ¢

. Do not modify the contents of the link variable.

If you modify the link variable’s contents, you invalidate the linkage. If you are lucky, the next
time you use the frget or fralias add command or the frval() function, they will detect
the problem and issue an error. If not, they will simply produce incorrect results.

. replace counties = ... // Do not do this

. replace ¢ = ... // Do not do this

If you accidentally modify the link variable’s contents, use frlink rebuild to repair it.

. frlink rebuild counties
. frlink rebuild c

. Linkages are formed based on equality of match variables.
To construct a link to frame counties, type

. frlink ..., frame(counties)

The complete command would have the dots filled in. Part of what needs to appear in place of
the dots are the match variables. A more complete version of the command is

. frlink ... countyid, frame(counties)
We specified one match variable, countyid.

Linkages are formed by matching observations in the current frame to observations in the other
frame when their match variables are equal.

frlink — Link frames 374

In the example, the match variables are countyid in the current frame and countyid in the
county frame. Observations are matched when the countyid variables are equal.

Let’s unravel that. The data in the current frame are on people. countyid in the current frame
records the county in which each person resides.

Meanwhile, the data in the county frame contains information on counties, such as a county’s
median income. Variable countyid in this frame records the county each observation de-
scribes.

Observations in the two frames are matched when the county in which a person resides equals
the county being described. Once we have formed the linkage by typing

. frlink ... countyid, frame(counties)
if we then type

. generate rel_income = income / frval(counties, median_income)

we obtain the ratio of each person’s income to the median income in the county in which he or
she resides.

. You can specify more than one match variable.
We just considered the case of one match variable—countyid—in each of the frames:

. frlink ... countyid, frame(counties)

Let’s imagine that instead of containing countyid, the datasets contain countyname. Substi-
tuting countyname for countyid might be insufficient to form the desired linkage:

. frlink ... countyname, frame(counties)

County names in the United States are repeated across states. Monroe County, for instance,
exists in Florida, Mississippi, Texas, and other states. To link the frames, we need to match on
both county and state names:

. frlink ... countyname statename, frame(counties)

Because county and state names, taken together, uniquely identify the locations, the order in
which we specify them is irrelevant:

. frlink ... statename countyname, frame(counties)

. Match variables can be named differently in the two frames.
When we type

. frlink ... countyname statename, frame(counties)

we are stating the variables countyname and statename appear in both frames. If the names
are different in the two frames, specify the names used in the current frame following the
frlink command, and specify the names used in the other frame in the frame () option, after
the frame’s name:

. frlink ... countyname statename, frame(counties cnty usstate)

countyname and statename are the variable names used in the current frame. The variables
corresponding to them in frame counties are named cnty and usstate.

frlink — Link frames 375

10. Match type: One-to-one or many-to-one matching.

11.

Consider the linkage created by

. frlink ... countyid, frame(counties)

The current frame contains data on persons, and the other frame—counties—contains data
on counties.

All that is needed to turn the above into a complete command is to replace the dots with a
match type, which can be 1:1 orm: 1. In this case, the match type should be m: 1, and the full
command is

. frlink m:1 countyid, frame(counties)

m: 1 stands for many-to-one matching. m: 1 means that is okay if more than one observation in
the current frame matches the same observation in the other frame. We specify m: 1 because it is
possible that multiple people in the current frame reside in the same county. If five people live
in county 207, all five will match to the observation in frame counties that describes county
207.

The alternative 1:1 means that at most one observation in the current frame can match an
observation in the other frame. Specifying 1:1 would be appropriate for matching person data
in the current frame with more data on him or her in the other frame. If persons were to be
matched on personid and if the other frame were named person2, we type

. frlink 1:1 personid, frame(person2)

Matched would be persons in the current frame who also appeared in the second frame.

If you think about it, 1: 1 is a special case of m: 1. 1:1 means at most one observation matches.
m: 1 means one or more observations match. This means that, if

. frlink 1:1 personid, frame(morepersons)

forms the linkage you want, so will

. frlink m:1 personid, frame(morepersons)

So why specify 1:1? We specify 1:1 so that frlink can issue an error message if the result is
not 1:1. When matching people’s data to more data on the same people, if two people in the
first frame matched the same observation in the second, that means

P1. there is an error in the first dataset: the same person appears more than once in it; or

P2. there is an error in variable personid in the first dataset: the personid variable
contains the wrong value; or

P3. we are not thinking clearly and should have specified m: 1 instead of 1: 1.

You specify 1:1 so that the software can flag situations where the reality is different from your
expectations. Then you fix your data or your thinking.

Linking can result in unmatched observations.
Imagine that you have successfully executed

. frlink m:1 countyid, frame(counties)

frlink — Link frames 376

The result will be that each observation in the current frame will be matched or unmatched.
Observations in the current frame are matched when the values of countyid are found in frame
counties. The remaining observations, if any, are unmatched. Unmatched observations are
not an error; they are a characteristic and perhaps a shortcoming of your datasets.

frlink tells you how many unmatched observations there are when you create the linkage.

Function frval () will subsequently return missing values for the unmatched observations. If
you type

. generate relative_income = income/frval (/inkvar, median_income)

12.

13.

variable relative_income would be missing (.) for the unmatched observations, the same
as if unmatched observations were matched but contained median_income==..

frget and alias variables created by fralias add behave similarly. frget sets the unmatched
observations equal to missing in the copied variable. Alias variables return missing values for
unmatched observations.

. frget median_income, from(counties)
. fralias add median_income, from(counties) prefix(a_)

In addition, the link variable in the current frame contains missing values for the unmatched
observations. This is useful. How many observations in the current frame are unmatched? If
you do not remember, type

. count if counties==.
You can look at the data for the unmatched observations.

. browse if counties==.

You can analyze the unmatched data.

. summarize if counties==.

If observations will be useful to you only when they are matched with county data, you can
keep just the matched data by typing

. keep if counties!=.

Linkages are directional.

We say that we link the current frame to another frame, but it’s really the other way around.
Data flow to the current frame from the other frame. If you have created the linkage

. frlink m:1 countyid, frame(counties)

then you can access data in frame counties from the current frame, but you cannot access data
in the current frame from frame counties.

How to create nested linkages.

Consider separate frames containing data on students, the schools they attend, and the counties
in which the schools are located. Here is the setup:

Current frame: students.dta containing variables for each student’s ID, the ID of
the schools he or she attends, and student characteristics.

Frame schools: schools.dta containing each school’s ID, the ID of the counties in
which the schools are located, and school characteristics.

frlink — Link frames 377

14.

Frame counties: us_counties.dta containing each county’s ID and county char-
acteristics.

Here is how you load the datasets into the frames:

. frame create schools
. frame create counties

. use students
. frame schools: use schools
. frame counties: use us_counties

Here is how you link the frames:

. frlink m:1 schoolid, frame(schools)
. frget countyid, from(schools)
. frlink m:1 countyid, frame(counties)

The first command links students with the schools they attend.
The second command copies variable countyid from frame schools to the current frame.
The third command links students with the counties in which their schools are located.

The command that copied countyid into the current frame was necessary so that the students
in the current frame could be linked to the county frame.

Said generically, if you have data in frames 4, B, and C, you link frame 4 to B and link frame
A to C to access all the data from 4.

Said negatively, linkages are not transitive. Linking frame 4 to B and B to C is not sufficient to
allow frame 4 to access all the data.

Saving and using linked frames.
You have created students-linked-to-county data:

. use students

. frame create counties

. frame counties: use us_counties

. frlink m:1 countyid, frame(counties)

To save the datasets so that you can use them later, you need only type

. save students, replace

It is necessary to save students.dta because it has a new variable in it, namely, the linkage
variable counties. It is not necessary to save us_counties.dta because it has not changed.

That said, you might still wish to save both files:

. save students, replace
. frame counties: save us_counties, replace

The data in frame counties were not changed, but the sort order of the data changed. Linking
sorts the linked-to frame on its match variables. We recommend you save both datasets.

To later load the data, you type

. use students
. frame create counties
. frame counties: use us_counties

frlink — Link frames 378

You might want to put these lines in a do-file. You could call it usestudents.do. Then,
whenever you wanted to load the data, all you need to do is type

. do usestudents

15. Do’s and don’ts.
We start with the don’ts. There are only three:
Do not modify the contents of the link variable,
... but if you do, use frlink rebuild to fix it.
Do not rename the match variables in either frame,

... but if you do, drop the link variable, and use frlinkm:1 or 1:1 to link the
frames again.

Do not drop the match variables from either frame,
... and if you do, we cannot help you.

Everything else is a do, but they come in two flavors. The first is do without qualifications.
The second is also a do, but do it only if you follow it by typing frlink rebuild.

Here are the do’s without qualifications:
Do drop the link variable. That’s how you eliminate the link.
Do rename the link variable.
Do drop observations in the current frame.
Do add new variables in either frame.

Do modify or rename variables in either frame, with the exception of the link and the
match variables.

And here are the do’s with qualification, which is always the same: Type frlink rebuild
afterward.

Do rebuild after adding observations in either or both frames.

Do rebuild after dropping observations in the linked frame.

Do rebuild after modifying the contents of the match variables in either or both frames.
And remember a rule that always applies:

It is always safe to type frlink rebuild.

If there is no problem, it will do nothing.

If there is a problem, it will fix it unless it cannot,

... then it explains why and do nothing to your data.

You are now an expert on linked frames.

Example 1: A typical m:1 linkage

File persons.dta contains data on people. Among its variables is countyid, containing the county
code where each person resides.

frlink — Link frames 379

File txcounty.dta contains data on Texas counties. Among its variables is countyid, the county
code for the county that each observation describes.

Here is how we load and link the datasets:
. use https://www.stata-press.com/data/r19/persons
. frame create txcounty

. frame txcounty: use https://www.stata-press.com/data/r19/txcounty
(Median income in Texas counties)

. frlink m:1 countyid, frame(txcounty)
(all observations in frame default matched)

Linkages are for situations where you want to analyze the data in the current frame using variables
from both frames.

Below, we create new variable relative_income in the current frame equal to income (in the current
frame) divided by median_income (from the county frame):

. generate relative_income = income / frval(txcounty, median_income)
. summarize relative_income
Variable ‘ Obs Mean Std. dev. Min Max

relative_i-~e 20 .5501545 .1090887 .352133 .7038001

If we wanted to use median_income from the county frame in a linear regression, we would use the
frget command to add median_income to the current frame’s data:

. frget median_income, from(txcounty)
. regress income ... median_income ...

We will not do that because persons.dta contains fictional values and is not worth the bother. But
realize what would be possible if these datasets were real and contained more variables:

Get a variable:
frget median_income, from(txcounty)
Get a variable, but change its name:
frget medinc = median_income, from(txcounty)
Get a lot of variables:
frget median* nbus-pop, from(txcounty)
Get a lot of variables, but change their names to begin with c_:
frget median* nbus-pop, prefix(c_) from(txcounty)
See [D] frget.

A more memory-efficient option is to use fralias add to create aliases instead of copies. See
[D] fralias.

How link variables work

frlink performs two actions when it creates a link:
1. It adds the link variable to the dataset in the current frame.

2. It sorts the dataset in the other frame by its match variables.

frlink — Link frames 380

In the example above, this means that
1. frlink adds variable txcounty to the data in the current frame.

2. frlink sorts the data in frame txcounty by countyid. (It literally executes frame
txcounty: sort countyid.)

Look at variable txcounty in the first observations of persons.dta in the current frame:
. list in 1/5

personid countyid income txcounty relati-e

1 1 5 30818 5 .7038001
2 2 3 30752 3 .4225046
3 3 2 29673 2 .5230381
4 4 3 32115 3 .441231
5 5 2 31189 2 .5497603

Each observation of variable txcounty contains the observation number in frame txcounty that
matches the current observation. The above list says that

obs. 5 of frame txcounty matches obs. 1 of the current frame
obs. 3 of frame txcounty matches obs. 2 of the current frame
obs. 2 of frame txcounty matches obs. 3 of the current frame
obs. 3 of frame txcounty matches obs. 4 of the current frame
obs. 2 of frame txcounty matches obs. 5 of the current frame
... assuming the data in frame txcounty are sorted on countyid

Frame txcounty is the other frame. It is the other frame that must be sorted, not the data in the current
frame.

Even so, the assumption is iffy. It is true after frlink creates the linkage because frlink itself sorts
the data. And fralias add, frget, and frval() check the sort order before using the other frame’s
data so that accidents do not happen.

The only way things can go wrong are 1) if you change the contents of the link variable txcounty or
2) you drop or modify the match variable countyid. So do not do that.

Advanced examples

Example 1 showed you how linkages are usually used. We linked person data to county data. We
could show you another example that links student data to school data and student data to county data,
but it amounts to nothing more than example 1, done twice.

We have two more examples to show you, but we admit that they are advanced and abstruse.

The first is an example in which linkage shines, but the solution is seldom useful beyond the particular
example shown.

frlink — Link frames 381

The second concerns 1:1 linkages. If 1:1 is appropriate for your problem, you probably want to
merge the datasets, not link them. You probably want to use merge, not frlink. On occasion, however,
a situation arises where linkage is a better solution. We show you one and provide guidelines on how to
identify other such situations.

Example 2: A complex m:1 linkage

We have a dataset on families and the file is named, naturally enough, family.dta. The dataset
contains information on variables of interest, as all datasets do, but that is not what makes this dataset
interesting, so the variables are simply named x1, x2, ..., x5. What makes this dataset interesting is that
it contains observations on related adult people. It contains adult children, parents, and grandparents.

Such data are notoriously difficult to process and analyze.

In the dataset, every person is identified by a person ID, called a “pid”. The data also contain the
variables pid_m and pid_£, which are the pids for the person’s mother and father, if they too are in the
data. The oldest generation in the data has pid_m==. and pid_f==..

One person in the data is person number 14982. Here are the values of ID variables for 14982:

. list pid* if pid==14982

pid pid_m pid_f

8. 14982 695966 933335

Variables pid_m and pid_f are the IDs of 14982’s mother and father. The mother is 695966 and the
father, 933335.

Here are the recorded ID variables for 695966, 14982°s mother:

. list pid* if pid==695966

pid pid_m pid_f

431. 695966 186484 238126

14982’s maternal grandmother is 186484 and maternal grandfather, 238126.

Let’s stay with the maternal side of the family. Here are the ID variables for 186484, 14982’s maternal
grandmother:

. list pid* if pid==186484

pid pid_m pid_f

100. 186484

The grandmother’s variables have missing values for her mother’s and father’s ID, so we cannot con-
tinue back further. Nonetheless, there are other people in this dataset just like 14982, people on whom
we have their data, their parents’ data, and their parents’ parents’ data.

frlink — Link frames 382

frlink can link the data so that we have access to all of them. To do that, we will create six linkages,

named

linkage name

meaning linkage to

f
m
mm
mf
fm
ff

father

mother
mother’s mother
mother’s father
father’s mother
father’s father

Once we have these six linkages, we will be able to access variables for the person, his or her parents,
and their parents. We will be able to do that using the frval () function or the fralias add and frget

commands.

If we wanted to access x1 using function frval (), we would do so with the following:

value of x1 desired

type

own value

mother’s value

father’s value

mother’s mother’s value
mother’s father’s value
father’s mother’s value
father’s father’s value

x1

frval(m, x1)
frval(f, x1)
frval (mm, x1)
frval (mf, x1)
frval (fm, x1)
frval (ff, x1)

If we wanted to copy all five variables of interest to the current frame, prefixed by their relationship,

we would do so with the following:

value of x1-x5 desired

type

own value

mother’s variables

father’s variables

mother’s mother’s variables
mother’s father’s variables
father’s mother’s variables
father’s father’s variables

x1-x5

frget x1-x5, from(m) prefix(m)
frget x1-x5, from(f) prefix(f)
frget x1-x5, from(mm) prefix (mm)
frget x1-x5, from(mf) prefix(mf)
frget x1-x5, from(fm) prefix(fm)
frget x1-x5, from(ff) prefix(ff)

frlink — Link frames 383

Instead, we can alias all five variables of interest to the current frame, prefixed by their relationship,
with the following:

value of x1-x5 desired type

own value x1-x5

mother’s variables fralias add x1-x5, from(m) prefix(m)
father’s variables fralias add x1-x5, from(f) prefix(f)
mother’s mother’s variables fralias add x1-x5, from(mm) prefix (mm)
mother’s father’s variables fralias add x1-x5, from(mf) prefix(mf)
father’s mother’s variables fralias add x1-x5, from(fm) prefix(fm)
father’s father’s variables fralias add x1-x5, from(ff) prefix (ff)

If we combined all 5 variables of interest from all 7 sources, we would have a total of 35 variables
of interest. We could form that dataset by typing just six commands. Before we can do any of this, we
must build the linkages.

To build them, we start in the usual way. We load the data of interest into the current frame and load
into the other frame the data we want to link:

. clear all

. use https://www.stata-press.com/data/r19/family
(Fictional family linkage data)

. frame create family

. frame family: use https://www.stata-press.com/data/r19/family // yes, the same data
(Fictional family linkage data)

We are in fact going to link family.dta to itself, but frlink requires that linkages be made from
the current frame to the other frame. Nonetheless, we will be able to create all six linkages to that single
frame.

To create the first two linkages, we type
. frlink m:1 pid_m, frame(family pid) generate(m)
(355 observations in frame default unmatched)

. frlink m:1 pid_f, frame(family pid) generate(f)
(355 observations in frame default unmatched)

Because we are linking people to people, your natural inclination might be that the matching needs
to be 1:1. That was our inclination too, but when we tried, frlink complained that the data were m: 1
and refused. It took us a minute to realize why. Some of the people in the data have the same mother or
father.

We have shown you the commands to build the first two linkages. Four remain to be built. What is
different about these four is that the current frame does not contain the necessary match variable. Think
about forming the mm linkage, which is the maternal grandmother of a person in the current frame. We
need a variable containing the ID of the current person’s mother’s mother or frval (m, pid_m). We
could call the variable pid_mm, and construct it and the related match variables by typing

frlink — Link frames 384

. generate pid_mm = frval(m, pid_m)
(639 missing values generated)
. generate pid_mf = frval(m, pid_f)
(539 missing values generated)
. generate pid_fm = frval(f, pid_m)
(5639 missing values generated)
. generate pid_ff = frval(f, pid_f)
(539 missing values generated)

Alternatively, we could have obtained them by using the frget command:

frget pid_mm = pid_m, from(m)
frget pid_mf = pid_f, from(m)
frget pid_fm = pid_m, from(f)
frget pid_ff = pid_f, from(f)

It does not matter which we use.
Once we have the match variables, we can form the linkages:
. frlink m:1 pid_mm, frame(family pid) generate(mm)
(539 observations in frame default unmatched)

. frlink m:1 pid_mf, frame(family pid) generate(mf)
(539 observations in frame default unmatched)

. frlink m:1 pid_fm, frame(family pid) generate(fm)
(539 observations in frame default unmatched)

. frlink m:1 pid_ff, frame(family pid) generate(ff)
(539 observations in frame default unmatched)

At this point, we are basically done. We are interested, however, in the sample of people for whom
data on their parents and grandparents are available. We can drop the other people from the data in the
current frame.

. drop if pid_m ==. | pid_f ==.

(355 observations deleted)

. drop if pid_mm==. | pid_mf==.

(184 observations deleted)

. drop if pid_fm==. | pid_ff==.

(0 observations deleted)

. count // number of observations remaining
100

We now have our data ready for analysis.

What are the chances that an even 100 people would be left? They would be nil if this were real data.
We manufactured these data, however, so there is no reason to continue to analyze variables x1 through
x5. They contain fictional values, and random.

Example 3: A 1:1 linkage, a simple solution to a hard problem

Most 1:1 cases are better handled by merge. Here is an exception.

You are working with hospital patient data, file dischargel.dta. The file contains vari-
able patientid among other variables, and you receive additional data on the same patients, file
discharge?2.dta. Loading the two datasets into separate frames and linking them is easy to do.

frlink — Link frames 385

. use https://www.stata-press.com/data/r19/dischargel, clear

. frame create discharge2

. frame discharge2: use https://www.stata-press.com/data/r19/discharge?2
. frlink 1:1 patientid, frame(discharge2)

But should we be doing this at all? Would it not be better to merge dischargel.dta with
discharge2.dta? It usually would be. It would be if you received the following note from George:

Kathy: Here are new data on the 1,980 patients. The data contain the five variables that
were previously omitted. — George.

merge will allow you to add these five new variables. Use it.
The note you received from George, however, reads

Kathy: Here are the data on the 1,980 patients. You’re not going to believe this, but even
though they said there are five values that needed to be updated, they sent all the data
again! Verify their claim, and tell me which variables they updated. — George.

This is a case for linking because you will not have to rename the 19 variables so that you can verify
their claim. The link solution of handling George’s request is easier:
. use https://wuw.stata-press.com/data/r19/dischargel, clear
(Fictional WA hospital discharges)
. frame create discharge2

. frame discharge2: use https://www.stata-press.com/data/r19/discharge2
(Fictional WA hospital discharges)

. frlink 1:1 patientid, frame(discharge2)
(all observations in frame default matched)

. foreach v of varlist patientid-proc3code {

2. quietly count if ‘v’ != frval(discharge2, ‘v’, discharge2)
3. if (xr(W)!1=0) {

4. display "‘v’: " r(N) " value(s) changed"

5. }

6. }

sex: 1 value(s) changed

los: 1 value(s) changed
billed: 1 value(s) changed
diagicode: 1 value(s) changed
diag2code: 1 value(s) changed

It turns out that the updated data are just as it was represented to be.
These data had two features that made them a candidate for linking rather than merging:

1. The sample of interest was the observations in the original data, the data in the current frame,
and

2. lots of variables in the two datasets had the same names, and we were interested in both sets of
values.

Let’s now think about other examples. Only some 1:1 problems will have feature 1. 1:1 matches
in which you will subsequently analyze the merged data—_merge==3 in merge speak—will all have
feature 1.

Feature 2 arises less often. In the example, the new data updated the old. Linkages make comparing
values easier when the names are the same. Linkages in general make it easier when variable names are
the same, even when there is no reason to compare them. Imagine that both datasets contain a variable
called income, but they are different measures of income. In the combined result, you want them both,

frlink — Link frames 386

so you need to rename one of them. Now imagine that there are hundreds of variables and a handful
share the same names across datasets even though they contain different concepts of whatever is being
measured. Linkages make renaming them easy.

First, link the data:
. frlink personid, frame(newdata)
Then, try to copy all the variables:
. frget *, from(newdata)
The command will either work or tell you the variables that have the same name in both frames.

Imagine that frget lists income and six other variables. You want to copy income, so you rename the
variable:

. frame newdata: rename income farmincome
Now try again:
. frget *, from(newdata)

Of course the command does nothing but repeat the six variables that still have the same names in both
frames. You review the list one last time and decide that you still do not care about those six variables.
Then you type

. frget *, from(newdata) exclude(‘r(dups)’)

This time it works! When variables have the same name, in addition to listing them, frget saves
their names in r (dups). That is why we typed frget *, from(newdata) when we knew we had not
yet resolved all the duplicate names. We wanted frget to set r (dups) so that we could next tell frget
to copy all the variables, except exclude (‘r(dups)’).

Now that we have gotten the variables of interest, we break the link:

. drop newdata
. frame drop newdata

The data in memory are now the same data that we could have coaxed merge into producing had we
done everything right.

Stored results

frlinkm:1 and frlink 1:1 store the following in r ()

Scalars
r (unmatched) # of observations in the current frame unable to be matched

frlink dir stores the following in r ():

Scalars
r(n_vars) # of link variables
Macros
r(vars) space-separated list of link-variable names

frlink describe stores nothing in r ().

frlink rebuild stores the following in r():

Scalars
r (unmatched) # of observations in the current frame unable to be matched

frlink — Link frames 387

Also see

[D] fralias — Alias variables from linked frames
[D] frget — Copy variables from linked frame

[D] frames intro — Introduction to frames
(D]

D] merge — Merge datasets

frunalias — Change storage type of alias variables

Description Quick start Syntax Remarks and examples Also see

Description

frunalias changes the storage type of alias variables identified in varlist to that of the variable they
reference in another frame. If varlist is not specified, then all alias variables are changed.

frunalias ignores variables that do not have storage type alias.

Quick start

Recast alias variables v1, v2, and v3 to be copies of the variables they reference in another frame
frunalias vl v2 v3

Recast all alias variables in the current dataset

frunalias

Syntax

frunalias [varlist }

Remarks and examples
If x is an alias variable, linked to a #ype variable in another frame, then
frunalias x

will recast x to be a #ype variable. This effectively makes x a copy of the variable from the linked frame.

The following commands change the values in variables they operate on, so by their very nature,
they cannot work with alias variables: cross, dyngen, fillin, the icd suite of commands, recode,
reshape, stack, xpose, the mi suite of commands, and snapspan.

The error message they produce, when they detect alias variables, will mention using frunalias to work
around this restriction.
. Xxpose, clear
alias variables not allowed
Alias variables detected: varl and var2.
You could use command frunalias to recast these variables to avoid this

error message.
r(109);

As this message indicates, we could now type
frunalias varl var2

to make a copy of var1 and var2 in the current frame. Then we can proceed with the xpose command.

388

frunalias — Change storage type of alias variables 389

Also see

[D] fralias — Alias variables from linked frames
[D] frlink — Link frames

[D] frames intro — Introduction to frames

[D] merge — Merge datasets
[M-5] st_addalias() — Add alias variable to current Stata dataset

[M-5] st_isalias() — Properties of alias variable

generate — Create or change contents of variable

Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description

generate creates a new variable. The values of the variable are specified by = exp.

If no type is specified, the new variable type is determined by the type of result returned by =exp.
A float variable (or a double, according to set type) is created if the result is numeric, and a string
variable is created if the result is a string. In the latter case, if the string variable contains values greater
than 2,045 characters or contains values with a binary 0 (\0), a strL variable is created. Otherwise, a
str# variable is created, where # is the smallest string that will hold the result.

If a type is specified, the result returned by =exp must be a string or numeric according to whether
type is string or numeric. If str is specified, a strL or a str# variable is created using the same rules
as above.

See [D] egen for extensions to generate.

replace changes the contents of an existing variable. Because replace alters data, the command
cannot be abbreviated.

set type specifies the default storage type assigned to new variables (such as those created by
generate) when the storage type is not explicitly specified.

Quick start

Create numeric variable newv1 equal to v1 4 2

generate newvl =vl + 2

Same as above, but use type byte and label the values of newv1 with value label mylabel
generate byte newvl:mylabel = vl + 2

String variable newv2 equal to “my text”
generate newv2 = "my text"

Variable newv3 equal to the observation number
generate newv3 = _n

Replace newv3 with observation number within each value of catvar
by catvar: replace newv3 = _n

Binary indicator for first observation within each value of catvar after sorting on v2

bysort catvar (v2): generate byte first = _n==

Same as above, but for last observation

bysort catvar (v2): generate byte last = _n==_

Combined datetime variable newv4 from %td formatted date and %tc formatted time
generate double newv4 = cofd(date) + time

390

generate — Create or change contents of variable 391

Menu

generate
Data > Create or change data > Create new variable

replace

Data > Create or change data > Change contents of variable

Syntax

Create new variable

generate [type] newvar| :Iblname] = exp [if] [in]

[, before (varname) | after (varname) }

Replace contents of existing variable

replace oldvar = exp [if] [in] [, ﬂromote]

Specify default storage type assigned to new variables

set type { float |double } [, permanently |

type is one of byte | int | long | float | double | str | strl | str2 | ...| str2045.
See Description below for an explanation of str. For the other types, see [U] 12 Data.
by is allowed with generate and replace; see [D] by.

Options

before (varname) or after (varname) may be used with generate to place the newly generated vari-
able in a specific position within the dataset. These options are primarily used by the Data Editor
and are of limited use in other contexts. A more popular alternative for most users is order (see
[D] order).

nopromote prevents replace from promoting the variable type to accommodate the change. For in-
stance, consider a variable stored as an integer type (byte, int, or long), and assume that you
replace some values with nonintegers. By default, replace changes the variable type to a floating
point (float or double) and thus correctly stores the changed values. Similarly, replace promotes
byte and int variables to longer integers (int and long) if the replacement value is an integer but is
too large in absolute value for the current storage type. replace promotes strings to longer strings.
nopromote prevents replace from doing this; instead, the replacement values are truncated to fit
into the current storage type.

permanently specifies that, in addition to making the change right now, the new limit be remembered
and become the default setting when you invoke Stata.

generate — Create or change contents of variable 392

Remarks and examples

Remarks are presented under the following headings:

generate and replace
set type
Video examples

generate and replace

generate and replace are used to create new variables and to modify the contents of existing vari-
ables, respectively. You can do anything with replace that you can do with generate. The only differ-
ence between the commands is that replace requires that the variable already exist, whereas generate
requires that the variable be new. Because Stata is an interactive system, we force a distinction between
replacing existing values and generating new ones so that you do not accidentally replace valuable data
while thinking that you are creating a new piece of information.

Detailed descriptions of expressions are given in [U] 13 Functions and expressions.
Also see [D] edit.

See [D] fralias for creating alias variables that reference other variables in a linked frame. replace
may not make changes to alias variables; see [D] frunalias for advice on how to get around this restriction.

b Example 1

We have a dataset containing the variable age2, which we have previously defined as age™2 (that is,
age?). We have changed some of the age data and now want to correct age2 to reflect the new values:
. use https://www.stata-press.com/data/r19/genxmpli
(Wages of women)

. generate age2=age”2
variable age2 already defined
r(110);

When we attempt to re-generate age?2, Stata refuses, telling us that age2 is already defined. We could
drop age?2 and then re-generate it, or we could use the replace command:

. replace age2=age”2
(204 real changes made)

When we use replace, we are informed of the number of actual changes made to the dataset.
N
You can explicitly specify the storage type of the new variable being created by putting the #ype, such
as byte, int, long, float, double, or str8, in front of the variable name. For example, you could type
generate double revenue = qty * price. Not specifying a type is equivalent to specifying float
if the variable is numeric, or, more correctly, it is equivalent to specifying the default type set by the
set type command; see below. If the variable is alphanumeric, not specifying a type is equivalent to
specifying str#, where # is the length of the largest string in the variable.

You may also specify a value label to be associated with the new variable by including “: /blname”
after the variable name. This is seldom done because you can always associate the value label later by
using the 1abel values command; see [U] 12.6.3 Value labels.

generate — Create or change contents of variable 393

b Example 2

Among the variables in our dataset is name, which contains the first and last name of each person. We
wish to create a new variable called 1astname, which we will then use to sort the data. name is a string
variable.

. use https://www.stata-press.com/data/r19/genxmpl2, clear

. list name

name

Johanna Roman
Dawn Mikulin
Malinda Vela

Kevin Crow
Zachary Bimslager

O W N

. generate lastname=word(name,2)
. describe

Contains data from https://www.stata-press.com/data/r19/genxmpl2.dta

Observations: 5
Variables: 2 18 Jan 2024 12:24
Variable Storage Display Value
name type format label Variable label
name stri7 %17s
lastname str9 %9s
Sorted by:

Note: Dataset has changed since last saved.

Stata is smart. Even though we did not specify the storage type in our generate statement, Stata knew to
create a str9 lastname variable, because the longest last name is Bimslager, which has nine characters.

d

b Example 3

We wish to create a new variable, age?2, that represents the variable age squared. We realize that
because age is an integer, age2 will also be an integer and will certainly be less than 32,740. We therefore
decide to store age?2 as an int to conserve memory:

. use https://www.stata-press.com/data/r19/genxmpl3, clear

. generate int age2=age”2
(9 missing values generated)

Preceding age2 with int told Stata that the variable was to be stored as an int. After creating the new
variable, Stata informed us that nine missing values were generated. generate informs us whenever it
produces missing values.
N
See [U] 13 Functions and expressions and [U] 26 Working with categorical data and factor vari-
ables for more information and examples. Also see [D] recode for a convenient way to recode categorical
variables.

generate — Create or change contents of variable 394

Q Technical note

If you specify the if or in qualifier, the = exp is evaluated only for those observations that meet the
specified condition or are in the specified range (or both, if both if and in are specified). The other
observations of the new variable are set to missing:

. use https://www.stata-press.com/data/r19/genxmpl3, clear

. generate int age2=age”2 if age>30
(290 missing values generated)

b Example 4

replace can be used to change just one value, as well as to make sweeping changes to our data. For
instance, say that we enter data on the first five odd and even positive integers and then discover that we
made a mistake:

. use https://www.stata-press.com/data/r19/genxmpl4, clear
. list

1 1 2
2 3 4
3 -8 6
4 7 8
5 9 10

The third observation is wrong; the value of odd should be 5, not —8. We can use replace to correct
the mistake:

. replace odd=5 in 3
(1 real change made)

We could also have corrected the mistake by typing replace odd=5 if odd==-8.

set type

When you create a new numeric variable and do not specify the storage type for it, say, by typing
generate y=x+2, the new variable is made a float if you have not previously issued the set type
command. If earlier in your session you typed set type double, the new numeric variable would be
made a double.

Video examples

How to create a new variable that is calculated from other variables

How to identify and replace unusual data values

https://www.youtube.com/watch?v=E_wCh0rf4p8
https://www.youtube.com/watch?v=jIiHb0gsyVo

generate — Create or change contents of variable 395

References

Newson, R. B. 2004. Stata tip 13: generate and replace use the current sort order. Stata Journal 4: 484-485.
Royston, P. 2013. marginscontplot: Plotting the marginal effects of continuous predictors. Stata Journal 13: 510-527.

Also see

[D] compress — Compress data in memory

[D] corr2data — Create dataset with specified correlation structure
[D] drawnorm — Draw sample from multivariate normal distribution
[D] dyngen — Dynamically generate new values of variables

[D] edit — Browse or edit data with Data Editor

[D] egen — Extensions to generate

[D] encode — Encode string into numeric and vice versa

[D] fralias — Alias variables from linked frames

[D] frunalias — Change storage type of alias variables

[D] label — Manipulate labels

[D] recode — Recode categorical variables

[D] rename — Rename variable

[U] 12 Data

[U] 13 Functions and expressions

https://www.stata-journal.com/article.html?article=dm0008
https://www.stata-journal.com/article.html?article=gr0056

gsort — Ascending and descending sort

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description

gsort arranges observations to be in ascending or descending order of the specified variables and so
differs from sort in that sort produces ascending-order arrangements only; see [D] sort.

Each varname can be numeric or a string.

The observations are placed in ascending order of varname if + or nothing is typed in front of the
name and are placed in descending order if - is typed.

Quick start

Sort dataset in memory by ascending values of v1, equivalent to sort
gsort vl

Sort dataset in memory by descending values of v1
gsort -vi

Sort dataset by ascending values of v1 and descending values of v2
gsort vl -v2

Create newv for use in subsequent by operations

gsort vl -v2, generate (newv)

Place missing values of descending-order v2 at the top of the dataset instead of the end

gsort vl -v2, mfirst

Menu

Data > Sort

396

gsort — Ascending and descending sort 397

Syntax

gsort [+| =] varname [[+|-] varname ...] [, generate (newvar) mfirst]

Options

generate (newvar) creates newvar containing 1, 2, 3, ... for each group denoted by the ordered data.
This is useful when using the ordering in a subsequent by operation; see [U] 11.5 by varlist: construct
and examples below.

mfirst specifies that missing values be placed first in descending orderings rather than last.

Remarks and examples

gsort is almost a plug-compatible replacement for sort, except that you cannot specify a general
varlist with gsort. For instance, sort alpha-gamma means to sort the data in ascending order of alpha,
within equal values of alpha; sort on the next variable in the dataset (presumably beta), within equal
values of alpha and beta; etc. gsort alpha-gamma would be interpreted as gsort alpha -gamma,
meaning to sort the data in ascending order of alpha and, within equal values of alpha, in descending
order of gamma.

b Example 1

The difference in varlist interpretation aside, gsort can be used in place of sort. To list the 10
lowest-priced cars in the data, we might type

. use https://www.stata-press.com/data/r19/auto
. gsort price
. list make price in 1/10
or, if we prefer,
. gsort +price
. list make price in 1/10
To list the 10 highest-priced cars in the data, we could type
. gsort -price

. list make price in 1/10

gsort can also be used with string variables. To list all the makes in reverse alphabetical order, we
might type

. gsort -make

. list make

b Example 2

gsort can be used with multiple variables. Given a dataset on hospital patients with multiple obser-
vations per patient, typing

gsort — Ascending and descending sort 398

. use https://www.stata-press.com/data/r19/bp3
. gsort id time

. list id time bp

lists each patient’s blood pressures in the order the measurements were taken. If we typed

. gsort id -time

. list id time bp

then each patient’s blood pressures would be listed in reverse time order.

Q Technical note

Say that we wished to attach to each patient’s records the lowest and highest blood pressures observed
during the hospital stay. The easier way to achieve this result is with egen’s min () and max () functions:

. egen lo_bp = min(bp), by(id)
. egen hi_bp = max(bp), by(id)
See [D] egen. Here is how we could do it with gsort:

. use https://www.stata-press.com/data/r19/bp3, clear
. gsort id bp

. by id: generate lo_bp = bp[1]
. gsort id -bp
. by id: generate hi_bp = bp[1]

. list, sepby(id)

This works, even in the presence of missing values of bp, because such missing values are placed last
within arrangements, regardless of the direction of the sort.
a

Q Technical note

Assume that we have a dataset containing x for which we wish to obtain the forward and reverse
cumulatives. The forward cumulative is defined as F'(X) = the fraction of observations such that
x < X. Again let’s ignore the easier way to obtain the forward cumulative, which would be to use
Stata’s cumul command,

. set obs 100
. generate x = rnormal()

. cumul x, gen(cum)

(see [R] cumul). Eschewing cumul, we could type

. sort x
. by x: generate cum = _N if _n==
. replace cum = sum(cum)

. replace cum = cum/cum[_N]

That is, we first place the data in ascending order of x; we used sort but could have used gsort. Next,
for each observed value of x, we generated cum containing the number of observations that take on that
value (you can think of this as the discrete density). We summed the density, obtaining the distribution,
and finally normalized it to sum to 1.

gsort — Ascending and descending sort 399

The reverse cumulative G(X) is defined as the fraction of data such that x > X. To obtain this, we
could try simply reversing the sort:

. gsort -x
. by x: generate rcum = _N if _n==
. replace rcum = sum(rcum)

. replace rcum = rcum/rcum[_N]

This would work, except for one detail: Stata will complain that the data are not sorted in the second
line. Stata complains because it does not understand descending sorts (gsort is an ado-file). To remedy
this problem, gsort’s generate () option will create a new grouping variable that is in ascending order
(thus satisfying Stata’s narrow definition) and that is, in terms of the groups it defines, identical to that
of the true sort variables:

. gsort -x, gen(revx)
. by revx: generate rcum = _N if _n==
. replace rcum = sum(rcum)

. replace rcum = rcum/rcum[_N]

Also see

[D] sort — Sort data

hexdump — Display hexadecimal report on file

Description Syntax Options
Remarks and examples Stored results Also see

Description

hexdump displays a hexadecimal dump of a file or, optionally, a report analyzing the dump.

Syntax
hexdump filename [, options |
options Description
analyze display a report on the dump rather than the dump itself
tabulate display a full tabulation of the ASCII and extended ASCII characters in the
analyze report
noextended do not display printable extended ASCII characters
results store results containing the frequency with which each character code was
observed; programmer’s option
from(#) dump or analyze first byte of the file; default is to start at first byte, from(0)
to(#) dump or analyze last byte of the file; default is to continue to the end of the file
Options

analyze specifies that a report on the dump, rather than the dump itself, be presented.

tabulate specifies in the analyze report that a full tabulation of the ASCII and extended ASCII characters
also be presented.

noextended specifies that hexdump not display printable extended ASCII characters, characters in the
range 161-254 or, equivalently, Oxal—0xfe. (hexdump does not display characters 128—160 and 255.)

results is for programmers. It specifies that, in addition to other stored results, hexdump store r (c0),
r(cl),...,r(c255), containing the frequency with which each character code was observed.

from(#) specifies the first byte of the file to be dumped or analyzed. The default is to start at the first
byte of the file, from(0).

to (#) specifies the last byte of the file to be dumped or analyzed. The default is to continue to the end
of the file.

Remarks and examples

hexdump is useful when you are having difficulty reading a file with infile, infix, or import
delimited. Sometimes, the reason for the difficulty is that the file does not contain what you think it
contains, or that it does contain the format you have been told, and looking at the file in text mode is
either not possible or not revealing enough.

400

hexdump — Display hexadecimal report on file 401

Pretend that we have the file myfile.raw containing

Datsun 210 4589 35 5 1
VW Scirocco 6850 25 4 1
Merc. Bobcat 3829 22 4 O
Buick Regal 5189 20 3 O
VW Diesel 5397 41 5 1
Pont. Phoenix 4424 19 . O
Merc. Zephyr 3291 20 3 O
0lds Starfire 4195 24 1 0
BMW 3201 9735 25 1

We will use myfile.raw with hexdump to produce output that looks like the following:

. hexdump myfile.raw

character
hex representation representation
address 01 23 45 67 89 ab cd ef | 0123456789abcdef

0 | 4461 7473 756e 2032 3130 2020 2020 2034 | Datsun 210 4
10 | 3538 3920 2033 3520 2035 2020 310a 5657 | 589 35 5 1.VW
20 | 2053 6369 726f 6363 6£20 2020 2036 3835 Scirocco 685
30 | 3020 2032 3520 2034 2020 310a 4d65 7263 | 0 25 4 1.Merc

40 | 2e20 426f 6263 6174 2020 2033 3832 3920 . Bobcat 3829
50 | 2032 3220 2034 2020 300a 4275 6963 6b20 22 4 0.Buick
60 | 5265 6761 6c20 2020 2035 3138 3920 2032 | Regal 5189 2
70 | 3020 2033 2020 300a 5657 2044 6965 7365 | 0 3 0.VW Diese

80 | 6c20 2020 2020 2035 3339 3720 2034 3120 | 1 5397 41
90 | 2035 2020 310a 506f 6e74 220 5068 6f65 5 1.Pont. Phoe
a0 | 6e69 7820 2034 3432 3420 2031 3920 202e | nix 4424 19

b0 | 2020 300a 4d65 7263 2e20 5a65 7068 7972 0.Merc. Zephyr

cO | 2020 2033 3239 3120 2032 3020 2033 2020 3291 20 3
d0 | 300a 4f6c 6473 2053 7461 7266 6972 6520 | 0.0lds Starfire
e0 | 2034 3139 3520 2032 3420 2031 2020 300a 4195 24 1 0.
£f0 | 424d 5720 3332 3069 2020 2020 2020 2039 | BMW 320i 9
100 | 3733 3520 2032 3520 2034 2020 310a 735 25 4 1.

hexdump — Display hexadecimal report on file 402

hexdump can also produce output that looks like the following:

. hexdump myfile.raw, analyze

Line-end characters Line length (tab=1)
\r\n (Windows) 0 minimum 29
\r by itself (Mac) 0 maximum 29
\n by itself (Unix) 9

Space/separator characters Number of lines 9
[blank] 99 EOL at EOF? yes
[tabl 0
[comma] (,) 0 Length of first 5 lines

Control characters Line 1 29
binary 0O 0 Line 2 29
CTL excl. \r, \n, \t 0 Line 3 29
DEL 0 Line 4 29
Extended (128-159,255) 0 Line 5 29

ASCII printable
A-Z 20
a-z 61 File format ASCII
0-9 7
Special (!@#$ etc.) 4
Extended (160-254) 0

Total 270

Observed were:
\nblank . 01 23456789BDMOPRSVWZabcdefghikl1
noprstuxy

Of the two forms of output, the second is often the more useful because it summarizes the file, and the
length of the summary is not a function of the length of the file. Here is the summary for a file that is
just over 4 MB long:

. hexdump bigfile.raw, analyze

Line-end characters Line length (tab=1)
\r\n (Windows) 147,456 minimum 29
\r by itself (Mac) 0 maximum 30
\n by itself (Unix) 2

Space/separator characters Number of lines 147,458
[blank] 1,622,039 EOL at EOF? yes
[tab] 0
[comma] (,) 0 Length of first 5 lines

Control characters Line 1 30
binary 0 0 Line 2 30
CTL excl. \r, \n, \t 0 Line 3 30
DEL 0 Line 4 30
Extended (128-159,255) 0 Line 5 30

ASCII printable
A-Z 327,684
a-z 999,436 File format ASCII
0-9 1,261,587
Special (!@#$ etc.) 65,536
Extended (160-254) 0

Total 4,571,196

Observed were:
\n \r blank . 01 23456789BDMOPRSVWZabcdefghi
klnoprstuxy

hexdump — Display hexadecimal report on file 403

Here is the same file but with a subtle problem:

. hexdump badfile.raw, analyze

Line-end characters Line length (tab=1)
\r\n (Windows) 147,456 minimum 30
\r by itself (Mac) 0 maximum 90
\n by itself (Unix) 0

Space/separator characters Number of lines 147,456
[blank] 1,622,016 EOL at EOF? yes
[tab] 0
[comma] (,) 0 Length of first 5 lines

Control characters Line 1 30
binary 0O 8 Line 2 30
CTL excl. \r, \n, \t 4 Line 3 30
DEL 0 Line 4 30
Extended (128-159,255) 24 Line 5 30

ASCII printable
A-Z 327,683
a-z 999,426 File format BINARY
0-9 1,261,568
Special (!@#$ etc.) 65,539
Extended (160-254) 16

Total 4,571,196

Observed were:
N0 °C"D"°G\n\r Ublank & . 01 23456789BDEMOPRSUVW
Zabcdefghiklnoprstuvzxyl} ~EAECETIEWME™P
& & 6 265

In the above, the line length varies between 30 and 90 (we were told that each line would be 30 characters
long). Also the file contains what hexdump, analyze labeled control characters. Finally, hexdump,
analyze declared the file to be BINARY rather than ASCII.

We created the second file by removing two valid lines from bigfile.raw (60 characters) and sub-
stituting 60 characters of binary junk. We would defy you to find the problem without using hexdump,
analyze. You would succeed, but only after much work. Remember, this file has 147,456 lines, and
only two of them are bad. If you print 1,000 lines at random from the file, your chances of listing the bad
part are only 0.013472. To have a 50% chance of finding the bad lines, you would have to list 52,000
lines, which is to say, review about 945 pages of output. On those 945 pages, each line would need to
be drawn at random. More likely, you would list lines in groups, and that would greatly reduce your
chances of encountering the bad lines.

The situation is not as dire as we make it out to be because, were you to read badfile.raw by using
infile, it would complain, and here it would tell you exactly where it was complaining. Still, at that
point you might wonder whether the problem was with how you were using infile or with the data.
Moreover, our 60 bytes of binary junk experiment corresponds to transmission error. If the problem were
instead that the person who constructed the file constructed two of the lines differently, infile might
not complain, but later you would notice some odd values in your data (because obviously you would
review the summary statistics, right?). Here hexdump, analyze might be the only way you could prove
to yourself and others that the raw data need to be reconstructed.

hexdump — Display hexadecimal report on file 404

Q Technical note

In the full hexadecimal dump,

. hexdump myfile.raw

character

hex representation representation

address 01 23 45 67 89 ab cd ef 0123456789abcdef
0 | 4461 7473 756e 2032 3130 2020 2020 2034 | Datsun 210 4

10 | 3538 3920 2033 3520 2035 2020 310d 0ab6 | 589 35 &5 1..V

20 | 5720 5363 6972 6£63 636f 2020 2020 3638 | W Scirocco 68

30 | 3530 2020 3235 2020 3420 2031 0dOa 4d65 | 50 25 4 1..Me

(output omitted)

addresses (listed on the left) are listed in hexadecimal. Above, 10 means decimal 16, 20 means decimal
32, and so on. Sixteen characters are listed across each line.

In some other dump, you might see something like

. hexdump myfile2.raw

character
hex representation representation
address 01 23 45 67 89 ab cd ef 0123456789abcdef
0 | 4461 7473 756e 2032 3130 2020 2020 2034 | Datsun 210 4
10 | 3538 3920 2033 3520 2035 2020 3120 2020 | 589 35 5 1
20 | 2020 2020 2020 2020 2020 2020 2020 2020
*
160 | 2020 2020 2020 0ab6 5720 5363 6972 6£63 .VW Sciroc
170 | 636f 2020 2020 3638 3530 2020 3235 2020 | co 6850 25

(output omitted)

The * in the address field indicates that the previous line is repeated until we get to hexadecimal address

160 (decimal 352).

a

hexdump — Display hexadecimal report on file 405

Stored results

hexdump, analyze and hexdump, results store the following in r():

Scalars
r(Windows) number of \r\n
r(Mac) number of \r by itself
r(Unix) number of \n by itself
r(blank) number of blanks
r(tab) number of tab characters
r (comma) number of comma (,) characters
r(ctl) number of binary 0s; A—Z, excluding \r, \n, \t; DELs; and 128—159, 255
r(uc) number of A-Z
r(lc) number of a-z
r(digit) number of 0-9

r(special) number of printable special characters (!@#, etc.)
r(extended) number of printable extended characters (160—254)
r(filesize) number of characters

r(lmin) minimum line length

r (1max) maximum line length

r (1num) number of lines

r(eoleof) 1 if EOL at EOF, 0 otherwise

r(11) length of 1st line

r(12) length of 2nd line

r(13) length of 3rd line

r(14) length of 4th line

r(15) length of 5th line

r(c0) number of binary 0s (results only)

r(cl) number of binary 1s ("A) (results only)

r(c2) number of binary 2s ("B) (results only)

r(c255) number of binary 255s (results only)
Macros

r(format) ASCII, EXTENDED ASCII, or BINARY

Also see

[D] filefilter — Convert ASCII or binary patterns in a file
[D] type — Display contents of a file

icd — Introduction to ICD commands

Description Remarks and examples References Also see

Description

This entry provides a brief introduction to the basic concepts of the International Classification of
Diseases (ICD). If you are not familiar with ICD terminology, we recommend that you read this entry
before proceeding to the individual command entries.

This entry also provides an overview of the format of the codes from each coding system that Stata’s
icd commands support. Stata supports 9th revision codes (ICD-9) and 10th revision codes (ICD-10). For
ICD-9, Stata uses codes from the United States’s Clinical Modification, the ICD-9-CM. For ICD-10, Stata
uses the World Health Organization’s (WHO’s) codes for international morbidity and mortality reporting
and the United States’s Clinical Modification (ICD-10-CM) and Procedure Coding System (ICD-10-PCS).
We encourage you to read this entry to ensure that you choose the correct command and that your data
are properly formatted for using the icd suite of commands.

Finally, this entry provides information about using the icd commands with multiple diagnosis or
procedure codes at one time. None of the commands accepts a varlist, so we illustrate methods for
working with multiple codes.

If you are familiar with ICD coding and the icd commands in Stata, you may want to skip to the
command-specific entries for details about syntax and examples.

Commands for ICD-9 codes
icd9 ICD-9-CM diagnosis codes
icd9p ICD-9-CM procedure codes

Commands for ICD-10 codes

icd10 ICD-10 diagnosis codes
icd10cm ICD-10-CM diagnosis codes
icd10pcs ICD-10-PCS procedure codes

Remarks and examples

Remarks are presented under the following headings:

Introduction to ICD coding
Terminology

Diagnosis codes

Procedure codes

Working with multiple codes

Introduction to ICD coding

The icd commands in Stata work with four different diagnosis and procedure coding systems: ICD-
9-CM, ICD-10, ICD-10-CM, and ICD-10-PCS.

406

icd — Introduction to ICD commands 407

The International Classification of Diseases (ICD) coding system was developed by and is copyrighted
by the World Health Organization (WHO). The ICD coding system is used for standardized mortality re-
porting and, by many countries, for reporting of morbidity and coding of diagnoses during healthcare
encounters. Since 1999, the ICD system has been under its 10th revision, ICD-10 (World Health Organi-
zation 2011). These codes provide information only about diagnoses, not about procedures.

The United States and some other countries have also developed country-specific coding systems
that are extensions of WHO’s system. These systems are used for coding information about healthcare
encounters. In the United States, the coding system is referred to as the International Classification of
Diseases, Clinical Modification. These codes are maintained and distributed by the National Center for
Health Statistics (NCHS) at the US Centers for Disease Control and Prevention (CDC) and by the Centers
for Medicare and Medicaid Services (CMS).

Terminology

The icd9 and icd10 entries assume knowledge of common terminology used in the ICD-9-CM doc-
umentation from the NCHS or CMS or in the ICD-10 revision manuals from WHO. The following brief
definitions are provided as a reference.

edition. The ICD-9-CM and ICD-10 each have editions, which represent major periodic changes. ICD-9-CM
is currently in its sixth edition (National Center for Health Statistics 2011). ICD-10 is currently in its
fifth edition (World Health Organization 2011).

version. In the ICD-9-CM coding system, the version number is a sequential number assigned by CMS
that is updated each Federal Fiscal Year when new codes are released. The last version was 32, which
was published on October 1, 2014. In ICD-10-CM/PCS, the version corresponds to the Federal Fiscal
Year.

update. In the ICD-10 coding system, an update may occur each year. The update is not issued with a
number but may be identified by the year in which it occurred.

category code. A category code is the portion of the ICD code that precedes the period. It may represent
a single disease or a group of related diseases or conditions.

valid code. A valid code is one that may be used for reporting in the current version of the ICD-10-CM/PCS
or current update to the ICD-10 edition. What constitutes a valid code changes over time.

defined code. A defined code is any code that is currently valid, was valid at a previous time, or has
meaning as a grouping of codes. See [D] icd9, [D] icd9p, [D] icd10, [D] icd10cm, and [D] icd10pcs
for information about how the individual commands treat defined codes.

Diagnosis codes

Let’s begin with the diagnostic codes processed by icd9. An ICD-9-CM diagnosis code may have one
of two formats. Most use the format

{0-9,v}{0-9}{0-9}[.][0-9[0-9]]

while E-codes have the format
E{0-0}{0-9}{0-9} .][0-9]

where braces, { }, indicate required items and brackets, [|, indicate optional items.

icd — Introduction to ICD commands 408

ICD-9-CM codes begin with a digit from O to 9, the letter V, or the letter E. E-codes are always followed
by three digits and may have another digit in the fifth place. All other codes are followed by two digits
and may have up to two more digits.

The format of an ICD-10 diagnosis code is
{A-T,v-Z}{0-9}{0-9}[.][0-9]

Each 1CD-10 code begins with a single letter followed by two digits. It may have an additional third
digit after the period.

ICD-10-CM diagnosis codes have up to seven characters; otherwise, the format is like that for ICD-10
codes. Each ICD-10-CM code begins with a single letter followed by a digit. However, ICD-10-CM permits
the third character to be a digit, the letter A, or the letter B. This forms the category code. The fourth and
fifth characters may be used to make up any potential subcategory code. For certain diagnoses, there exist
only three-, four- or five-character codes, so the diagnosis code and (sub)category code are equivalent.

Finally, the sixth and seventh characters provide additional detail. A peculiarity of the ICD-10-CM cod-
ing system is that it is not strictly hierarchical. The letter X is used as a placeholder if a subcategory has
not been defined at a particular level. For example, the code J09 indicates influenza due to an identi-
fied virus. There is no subcategory for J09, so the fourth character is an X, and additional detail about
complications is provided in the fifth character.

Codes in ICD-10-CM may have up to four more alpha-numeric characters after the period. Only codes
with the finest level of detail under a category code are considered valid.

Diagnosis codes must be stored in a string variable (see [D] Data types). For codes from either
revision, the period separating the category code from the other digits is treated as implied if it is not
present.

Q Technical note

There are defined five- and six-character ICD-10 codes. However, these codes are not part of the
standard four-character system codified by WHO for international morbidity and mortality reporting and
are not considered valid by 1cd10. See [D] icd10 for additional details about these codes and options for
using icd10 with them.

a

Q Technical note

ICD-10 codes U00—U49 are reserved for use by WHO for provisional assignment of new diseases.
Codes U50-U99 may be used for research to identify subjects with specific conditions under study for
which there is no defined ICD-10 code (World Health Organization 2011).

If you are working in one of these specialized cases, see the technical note in Creating new variables

under Remarks and examples of [D] icd10.
a

Procedure codes

The ICD-9-CM coding system also includes procedure codes. The format of ICD-9-CM procedure codes

{o-9}{0-9}[.][0-9[0-9]]

is

icd — Introduction to ICD commands 409

The general format of an ICD-10-PCS procedure code is a three-character category code followed by
four alpha-numeric characters after an (implied) period. The full codes are always seven characters long
and may be any combination of letters and numbers.

Procedure codes must be stored in a string variable.

Working with multiple codes

Oftentimes, multiple diagnoses or procedures are recorded for each observation. None of the icd
commands accepts a varlist, but you can still work with multiple diagnosis or multiple procedure records.
To use the icd commands with more than one diagnosis or procedure variable at a time, you must either
first reshape your data or use a loop; see [D] reshape and [P] forvalues.

b Example 1: Summarizing information from multiple variables

In example 1 of [D] icd9, we add a variable indicating whether each diagnosis code was invalid or
undefined. Here we use the same extract from the National Hospital Discharge Survey (NHDS).

It is often more useful to add a single variable that summarizes the results from several diagnosis
or procedure variables. For example, we may wish to add a variable indicating whether a particular
diagnosis code or range of codes appeared in any field. Summary variables can be created from the
results of the check subcommand with option generate () or the generate subcommand with option
range () or option category ().

Suppose that we want a single variable that contains the number of improperly formatted or undefined
codes that each discharge had. To illustrate, we use the nhds2010 dataset, keeping the variables for
discharge identifier (recid), patient age, and patient sex, as well as the three diagnosis variables. We
list the first ten observations below.

. use https://wuw.stata-press.com/data/r19/nhds2010
(Adult same-day discharges, 2010)

. keep recid age sex dx1 dx2 dx3

. list in 1/10, noobs

age sex dx1 dx2 dx3 recid
85 Female 4414 99811 14275 84
23 Male 25013 3572 -2506 105
63 Male 51909 1489 -V146 255
43 Female 9678 E8528 8 651
25 Female V271 64421 16564 696
57 Female 5409 V1582 2V106 779
61 Female 27651 V1087 7V436 814
60 Male 9951 462 -2724 826
22 Male 42789 5409 -2780 833
49 Male 5770 29181 14255 863

icd — Introduction to ICD commands 410

The data are in wide form, so we specify reshape long with stub dx because our diagnosis codes are
in dx1, dx2, and dx3. The observation identifier, recid, is specified in i (). reshape creates the new

variable dxnum for us.

. reshape long dx, i(recid) j(dxnum)

(G=123)
Data Wide -> Long
Number of observations 2,210 -> 6,630
Number of variables 6 -> 5
j variable (3 values) -> dxnum
xij variables:

dx1l dx2 dx3 -> dx

The output shows that dxnum has 3 values, so we know that all three diagnosis variables were recognized

by reshape.
. list in 1/9, sepby(recid) noobs
recid dxnum dx age sex
84 1 4414 85 Female
84 2 99811 85 Female
84 3 14275 85 Female
105 1 25013 23 Male
105 2 3572 23 Male
105 3 -2506 23 Male
255 1 51909 63 Male
255 2 1489 63 Male
255 3 -Vi46 63 Male

Notice that our data on recid, age, and sex are retained and duplicated for each new observation. If
you are working with a large dataset, you may wish to drop variables other than a merge key and your
diagnosis (or procedure) variables to conserve space and speed up reshape.

After we reshape, we create prob using icd9 check, an indicator for whether there was a problem
with a given diagnosis code. We then use egen to create anyprob, the total number of codes that had a
problem within each recid. See [D] egen for information about summary functions.

icd9 check dx, generate(prob)

(dx contains 358 missing values)

dx contains invalid codes:

Invalid 1st
Invalid 2nd
Invalid 3rd
Invalid 4th
Invalid 5th

O ©W O NOU P WN-

e

Total

char
char
char
char
char

Code not defined

Invalid placement of period
Too many periods
Code too short
Code too long

(not 0-9, E, or V)

(not 0-9)
(not 0-9)
(not 0-9)
(not 0-9)

778

1,994

icd — Introduction to ICD commands 411

. generate anyprob=prob>0

. by recid, sort: egen numprobs=total(anyprob)

. list recid dxnum dx anyprob numprobs in 1/9,

sepby(recid) noobs

recid dxnum dx anyprob numprobs
84 1 4414 0 1
84 2 99811 0 1
84 3 14275 1 1
105 1 25013 0 1
105 2 3572 0 1
105 3 -2506 1 1
255 1 51909 0 1
2565 2 1489 0 1
255 3 -Vi4e 1 1

Before we reshape, we drop prob and anyprob because they are specific to diagnosis variables. By
construction, numprobs is constant within recid, so we do not specify it when we reshape.

. drop prob anyprob

. reshape wide dx, i(recid) j(dxnum)

G=123)
Data Long -> Wide
Number of observations 6,630 -> 2,210
Number of variables 6 > 7
j variable (3 values) dxnum -> (dropped)
xij variables:
dx -> dx1 dx2 dx3
. list in 1/3, noobs
recid dx1 dx2 dx3 age sex numprobs
84 4414 99811 14275 85 Female 1
105 25013 3572 -2506 23 Male 1
25656 51909 1489 -V146 63 Male 1

The three diagnosis variables are restored to the dataset. We have added a single variable showing

the total number of codes with problems for each record.

d

b Example 2: Adding multiple variables from ICD codes

Now suppose that rather than creating a summary variable flagging any problem as we did in exam-
ple 1, we want a new variable for each diagnosis variable indicating whether there is a coding problem. In
example 1 of [D] ied9, we icd9 check each diagnosis variable separately, which requires us to type the
command three times. While this is not burdensome for 3 variables, the full NHDS includes 14 diagnosis
variables, for which we almost certainly would not want to type separate commands.

icd — Introduction to ICD commands 412

The easiest way to accomplish this is with a loop. We use forvalues because our codes all end in a
number.

. use https://www.stata-press.com/data/r19/nhds2010, clear
(Adult same-day discharges, 2010)
. forvalues i=1/3 {

2. icd9 check dx‘i’, generate(dx‘i’_prob)

3.}
(dx1 contains defined ICD-9-CM codes; no missing values)
(dx2 contains defined ICD-9-CM codes; 179 missing values)
(dx3 contains 179 missing values)

dx3 contains invalid codes:

1. Invalid placement of period 0
2. Too many periods 0
3. Code too short 177
4. Code too long 0
5. Invalid 1st char (not 0-9, E, or V) 875
6. Invalid 2nd char (not 0-9) 128
7. Invalid 3rd char (not 0-9) 0
8. Invalid 4th char (not 0-9) 0
9. Invalid 5th char (not 0-9) 36
10. Code not defined 778

Total 1,994

This is exactly what we obtain in example 1 of [D] icd9.

If our variables had not been numbered sequentially, we could have either renamed them or used
foreach; see [P] foreach.
N
The methods shown above will work for any of the 1cd9, icd9p, icd10, icd10cm, or icd10pcs data
management commands.

References
Baum, C. F., and N. J. Cox. 2007. Stata tip 45: Getting those data into shape. Stata Journal 7: 268-271.

Centers for Disease Control and Prevention. 2016. ICD-10-CM Official Guidelines for Coding and Reporting FY 2017
(October 1, 2016 - September 30, 2017). https://www.cdc.gov/nchs/data/icd/10cmguidelines_2017 _final.pdf.

Gallacher, D., and F. Achana. 2018. Assessing the health economic agreement of different data source. Stata Journal 18:
223-233.

Juul, S., and M. Frydenberg. 2021. An Introduction to Stata for Health Researchers. 5th ed. College Station, TX: Stata
Press.

National Center for Health Statistics. 2011. International Classification of Diseases, Ninth Revision, Clinical Modifica-
tion. https:/ftp.cdc.gov/pub/Health_Statistics/NCHS/Publications/ICD9-CM/2011/.

. 2012. National Hospital Discharge Survey: 2010 Public Use Data File Documentation.
https://ftp.cdc.gov/pub/Health _Statistics/NCHS/Dataset_Documentation/NHDS/NHDS _2010_Documentation.pdf.

World Health Organization. 2011. International Statistical Classification of Diseases and Related Health Problems. Vol. 2,
2016 Edition. Instruction manual. https://www.who.int/publications/m/item/international-statistical-classification-of-
diseases-and-related-health-problems---volume-2.

https://www.stata-journal.com/article.html?article=dm0031
https://www.cdc.gov/nchs/data/icd/10cmguidelines_2017_final.pdf
https://www.stata-journal.com/article.html?article=st0521
https://www.stata-press.com/books/introduction-stata-health-researchers/
https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Publications/ICD9-CM/2011/
https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/NHDS/NHDS_2010_Documentation.pdf
https://www.who.int/publications/m/item/international-statistical-classification-of-diseases-and-related-health-problems---volume-2
https://www.who.int/publications/m/item/international-statistical-classification-of-diseases-and-related-health-problems---volume-2

icd — Introduction to ICD commands 413

Also see

[D] icd9 — ICD-9-CM diagnosis codes

[D] icd9p — ICD-9-CM procedure codes

[D] icd10 — ICD-10 diagnosis codes

[D] icd10ecm — ICD-10-CM diagnosis codes
[D] icd10pes — ICD-10-PCS procedure codes

icd9 — ICD-9-CM diagnosis codes

Description Quick start Menu Syntax Options
Remarks and examples Stored results References Also see
Description

icd9 is a suite of commands for working with ICD-9-CM diagnosis codes from the 16th version
(effective October 1998) to the 32nd version. To see the current version of the ICD-9-CM diagnosis codes
and any changes that have been applied, type icd9 query.

icd9 check, icd9 clean, and icd9 generate are data management commands. icd9 check verifies
that a variable contains defined ICD-9-CM diagnosis codes and provides a summary of any problems
encountered. icd9 clean standardizes the format of the codes. icd9 generate can create a binary
indicator variable for whether the code is in a specified set of codes, a variable containing a corresponding
higher-level code, or a variable containing the description of the code.

icd9 lookup and icd9 search are interactive utilities. icd9 lookup displays descriptions of the
codes specified on the command line. icd9 search looks for relevant ICD-9-CM diagnosis codes from
keywords given on the command line.

Quick start

Determine whether ICD-9-CM diagnosis codes in diagl are invalid, and store reasons in invalid
icd9 check diagl, generate(invalid)

Standardize display of codes in diag2 to remove all periods, and align codes by padding with spaces
icd9 clean diag2, pad

Create descr3 as the diagnosis code prepended to short description of diagnosis code in diag3

icd9 generate descr3 = diag3, description long

Create diabetes as an indicator for a diabetes diagnosis in diag4 using ICD-9-CM codes 250.xx
icd9 generate diabetes = diag4, range (25000/25093)

Look up descriptions for ICD-9-CM diagnosis codes E827.0 to E828.9
icd9 lookup E8270/E8289

Menu

Data > ICD codes > ICD-9

414

icd9 — ICD-9-CM diagnosis codes 415

Syntax
Verify that variable contains defined codes

icd9 check varname [if | [in] [, any list generate (newvar)]

Clean variable and verity format of codes

icd9 clean varname [lf] [m} [, dots pad]

Generate new variable from existing variable
icd9 generate newvar = varname [if | [in] , category
icd9 generate newvar = varname [lf] [in} , description [1ong end]

icd9 generate newvar = varname [if | [in] , range (codelist)

Display code descriptions

icd9 lookup codelist

Search for codes from descriptions

icd9 search [" |text["] [[" |text["] ...] [, or]

Display ICD-9 code source

icd9 query

codelist is)
icd9code (the particular code)

icd9codex (all codes starting with)
icd9code/icd9code (the code range)

or any combination of the above, such as 001* 018/019 E* 018.02. icd9codes must be typed with
leading 0s. For example, type 001; typing 1 will result in an error.

collect is allowed with icd9 check, icd9 clean, and icd9 lookup; see [U] 11.1.10 Prefix commands.
The icd9 suite of commands does not allow alias variables; see [D] frunalias for advice on how to get around this restriction.

icd9 — ICD-9-CM diagnosis codes 416

Options

Options are presented under the following headings:

Options for icd9 check
Options for icd9 clean
Options for icd9 generate
Option for icd9 search

Options for icd9 check

any tells icd9 check to verify that the codes fit the format of ICD-9-CM diagnosis codes but not to check
whether the codes are defined.

list specifies that icd9 check list the observation number, the invalid or undefined ICD-9-CM diagnosis
code, and the reason the code is invalid or whether it is an undefined code.

generate (newvar) specifies that icd9 check create a new variable containing, for each observation,
0 if the observation contains a defined code or is missing. Otherwise, it contains a number from 1
to 10. The positive numbers indicate the kind of problem and correspond to the listing produced by
icd9 check.

Options for icd9 clean

dots specifies that the period be included in the final format. If dots is not specified, then all periods
are removed.

pad specifies that icd9 clean pad the codes with spaces, front and back, to make the (implied) dots
align vertically in listings. Specifying pad makes the resulting codes look better when used with most
other Stata commands.

Options for icd9 generate

category, description, and range (codelist) specify the contents of the new variable that icd9
generate is to create. You do not need to icd9 clean varname before using icd9 generate; it
will accept any supported format or combination of formats.

category creates a new variable that contains ICD-9-CM diagnosis category codes. The resulting
variable may be used with the other icd9 subcommands. For diagnosis codes, the category code
is the first three characters, except for E-codes, when it is the first four characters.

description creates newvar containing descriptions of the ICD-9-CM diagnosis codes.

long is for use with description. It specifies that the code be prepended to the text describing
the code.

end modifies long (specifying end implies long) and places the code at the end of the string.

range (codelist) creates a new indicator variable equal to 1 when the ICD-9-CM diagnosis code is in
the range specified, equal to 0 when the ICD-9-CM diagnosis code is not in the range, and equal to
missing when varname is missing.

Option for icd9 search

or specifies that ICD-9-CM diagnosis codes be searched for descriptions that contain any word specified
with icd9 search. The default is to list only descriptions that contain all the words specified.

icd9 — ICD-9-CM diagnosis codes 417

Remarks and examples

Remarks are presented under the following headings:

Using icd9 and icd9p

Verifying and cleaning variables
Interactive utilities

Creating new variables

If you have not yet read Introduction to ICD coding in [D] icd, please do so before using the icd9
commands.

Using icd9 and icd9p

The ICD-9-CM coding system includes diagnosis and procedure codes. Some examples of diagnosis
codes are 552.3 (Diaphragmatic hernia with obstruction) and E871.0 (Foreign object left in body during
surgical operation). Some example of procedure codes are 01.2 (Craniotomy and craniectomy) and 55.23
(Closed renal biopsy).

Many datasets record (and some people write) codes without the period; for example, diagnosis code
550.1 may appear as 5501. The icd9 commands understand both ways of recording codes. The com-
mands are also insensitive to codes recorded with or without leading and trailing blanks. For E-codes
and V-codes, the 1cd9 commands are case insensitive. All the following codes are acceptable formats.

diagnosis procedure

001 27.62
001. 72
00581 32.6
552.3 97.11
E800.2 872
8002 5523
v82.2 08.51

Important note: What constitutes a valid code changes between versions. For the rest of this entry, a
defined code is any code that is currently valid, was valid at some point since version 16 (V16, effective
1 October 1998), or has meaning as a grouping of codes. The list of valid codes and their associated
descriptions is from the US Centers for Medicare and Medicaid Services (CMS). These codes are jointly
maintained and distributed by the US Centers for Disease Control and Prevention’s National Center for
Health Statistics and by CMS (Centers for Disease Control and Prevention 2013).

In icd9, descriptions that end with an asterisk (*) are used to denote codes that are invalid for medical
coding purposes but are defined as a category code or a subcategory code that has been further subdivided.
For example, diagnosis code 001 (Cholera) is invalid without a fourth digit but is defined as a category
code, so its description appears as cholera*. CMS does not distribute short descriptions of category and
subcategory codes that are defined but not valid for coding. To ensure that Stata reports that these codes
are defined, we added them to the dataset icd9 uses with a description of *.

Codes that were valid in the past, but no longer are, have descriptions that end with a hash mark (#).
For example, the diagnosis code 645.01 was deleted between V16 and V18. It remains a defined code,
and its description appears as prolonged preg-delivered#.

icd9 — ICD-9-CM diagnosis codes 418

To view the current version of ICD-9-CM diagnosis codes in Stata, its source, and a log of changes that
have been made to the list of ICD-9-CM codes since the icd9 commands were implemented, type

icd9 query

ICD9 Diagnostic Code Mapping Data for use with Stata, History
(output omitted)

V32

Dataset obtained 26aug2014 from

<http://www.cms.gov/Medicare/Coding/ICD9ProviderDiagnosticCodes/

> codes.html>, by selecting the ’Version 32...° file. Can be gotten
directly via
<http://www.cms.gov/Medicare/Coding/ICD9ProviderDiagnosticCodes/

> Downloads/ICD-9-CM-v32-master-descriptions.zip>. After unzipping, the
useful file name is "CMS32_DESC_SHORT_DX.txt (there are other files we

did not use)."
090ct2014: V32 put into Stata distribution

BETWEEN V31 and V32: There were no additional codes.

BETWEEN V31 and V32: O codes were deleted.

BETWEEN V31 and V32: There were no description changes.

(output omitted)

Throughout the remainder of this entry, we use nhds2010.dta, an extract of adult same-day dis-
charges from the 2010 National Hospital Discharge Survey (NHDS). Below we describe the data and
list the first five observations for the diagnosis and procedure code variables.

. use https://www.stata-press.com/data/r19/nhds2010

(Adult same-day discharges, 2010)

. describe

Contains data from https://www.stata-press.com/data/r19/nhds2010.dta

Observations: 2,210 Adult same-day discharges, 2010
Variables: 15 30 Jan 2024 15:03
(_dta has notes)
Variable Storage Display Value
name type format label Variable label
ageu byte %8.0g ageu Units for age
age byte %8.0g Age
sex byte %8.0g sex Sex
race byte %8.0g race Race
month byte %8.0g Discharge month
status byte %8.0g status Discharge status
region byte %8.0g region Region
atype byte %8.0g atype Type of admission
dx1 strb %9s Diagnosis 1
dx2 strb %9s Diagnosis 2
dx3 strb %9s Diagnosis 3 (imported incorrectly)
dx3corr strb %9s Diagnosis 3 (corrected)
pri strd %9s Procedure 1
wgt int %12.0g Frequency weight
recid float %9.0g Order of record (raw data)

Sorted by: recid

icd9 — ICD-9-CM diagnosis codes 419

. list recid dx1 dx2 dx3 prl in 1/5

recid dx1 dx2 dx3 pril
1. 84 4414 99811 14275 3834
2. 105 25013 3572 -2506
3. 255 51909 1489 -V146
4. 651 9678 E8528 8
5.

696 V271 64421 16564 7359

Verifying and cleaning variables

icd9 check verifies that varname contains defined ICD-9-CM codes and, if not, provides a full report
on the problems. It is a good idea to begin with this command and fix any potential problems before
proceeding to other icd9 commands. However, the check subcommand is also useful for tracking down
problems when any of the other icd9 commands tell you that the “variable does not contain ICD-9 codes”.

icd9 clean modifies the variable to ensure consistency and to make subsequent output look better.
This is not strictly necessary because all icd9 commands work equally well with cleaned or uncleaned
codes. icd9 clean also can be used to verify that the codes in a variable conform with the ICD-9-CM
diagnosis format, without checking to see whether the codes are defined.

b Example 1: Checking the validity of a variable

We noticed when we listed our data that dx3 appears to be padded with dashes instead of spaces. As a
preemptive step, we replace the dashes with spaces by using the subinstr () function because the icd9
commands ignore spaces.

. replace dx3=subinstr(dx3,"-"," ",.)
(1,009 real changes made)
. list recid dx1 dx2 dx3 prl in 1/5

recid dx1 dx2 dx3 prl
1. 84 4414 99811 14275 3834
2. 105 25013 3572 2506
3. 265 51909 1489 V146
4. 651 9678 E8528 8
5.

696 V271 64421 16564 7359

Now that we have replaced the characters we know will be a problem, we can icd9 check the diag-
nosis variables. We add the generate () option so that we can identify any observations with invalid
codes.

. icd9 check dx1, generate(probi)
(dx1 contains defined ICD-9-CM codes; no missing values)

. icd9 check dx2, generate(prob2)
(dx2 contains defined ICD-9-CM codes; 179 missing values)

icd9 — ICD-9-CM diagnosis codes 420

. icd9 check dx3, generate(prob3)
(dx3 contains 277 missing values)

dx3 contains invalid codes:

1. Invalid placement of period 0
2. Too many periods 0
3. Code too short 79
4. Code too long 0
5. 1Invalid 1st char (not 0-9, E, or V) 0
6. Invalid 2nd char (not 0-9) 128
7. Invalid 3rd char (not 0-9) 0
8. Invalid 4th char (not 0-9) 0
9. Invalid 5th char (not 0-9) 0
10. Code not defined 793

Total 1,000

We see that all codes in dx1 are valid and all discharges have a primary diagnosis recorded. Likewise,
all codes in dx2 are defined, and we see that 179 observations did not have a second diagnosis.

However, icd9 check reports that 1,000 of the 2,210 observations on dx3 have some sort of prob-
lem: 79 codes are too short, 128 have an invalid second character, and 793 are undefined. After some
investigation, we discover that when we imported the data, we started reading from the wrong position
in the file. Hereafter, we use the correctly imported variable, dx3corr.

. icd9 check dx3corr
(dx3corr contains defined ICD-9-CM codes; 356 missing values)

d

Rather than typing the icd9 check command once for each variable, we could have checked all three
simultaneously. See Working with multiple codes in [D] icd.

b Example 2: Standardizing the format of codes

If we plan to do any reporting with these codes later, we may want to make them more readable.
Suppose we want to report the primary diagnosis and procedure for each discharge. We can use icd9
clean with the dots and pad options to add the period between the category code and any subsequent
digits and to align the periods.

. icd9 clean dx1, dots pad
(2210 changes made)

Using icd9 clean with undefined codes will not result in an error message. So if you are using codes
from a country other than the United States, the clean subcommand can still be used to standardize the
format of your codes and check for correct placement of the period.

d

Interactive utilities

icd9 search looks for relevant ICD-9-CM diagnosis codes from the description given on the command
line, and icd9 lookup lists the descriptions of codes given on the command line. The two commands
complement each other.

icd9 — ICD-9-CM diagnosis codes 421

b Example 3: Finding diagnosis codes

Suppose that we want to identify the observations for which the primary diagnosis is congestive heart
failure (CHF). As part of a quick exploratory analysis, we can use icd9 search to find ICD-9-CM codes
that we may want to use to define our study population. We use the terms “heart failure” and “chf”. We
enclose “heart failure” in quotation marks and use the or option so that 1cd9 search looks for either

term.

. icd9 search "heart failure" chf, or

5 matches found:

398.

428

428.
428.
428.

91

0
1
9

rheumatic heart failure
heart failurex

chf nos

left heart failure
heart failure nos

Because the descriptions are abbreviated, we are concerned that some of the 428 codes may be left

out. So we use icd9 lookup to list a range of codes.

. 1icd9 lookup 428%

19 matches found:

428

428.
428.
428.
428.
428.
428.
428.
428.
428.
428.
428.
428.
428.
428.
428.
428.
428.
428.

N =~ O

21
22
23
3

30
31
32
33
4

40
41
42
43
9

heart failurex

chf nos

left heart failure

*

systolic hrt failure nos
ac systolic hrt failure
chr systolic hrt failure
ac on chr syst hrt fail
*

diastolc hrt failure nos
ac diastolic hrt failure
chr diastolic hrt fail
ac on chr diast hrt fail
*

syst/diast hrt fail nos
ac syst/diastol hrt fail
chr syst/diastl hrt fail
ac/chr syst/dia hrt fail
heart failure nos

The same result could be found by typing

. icd9 lookup 428/4289

if we knew that 428.9 was the last code in the 428 category.

Creating new variables

icd9 generate produces new variables based on existing variables containing (cleaned or uncleaned)
ICD-9-CM diagnosis codes. icd9 generate, category creates newvar containing the category code that
corresponds to the code in the existing variable. icd9 generate, description creates newvar con-
taining the abbreviated textual description of the ICD-9-CM diagnosis code. icd9 generate, range()
produces numeric newvar containing 1 if varname records an ICD-9-CM diagnosis code in the range listed
and containing 0 otherwise.

icd9 — ICD-9-CM diagnosis codes 422

b Example 4: Creating an indicator variable

We review the list of codes we found in example 3 and decide that we will use 398.91 and all of
the 428 codes in our definition of a CHF diagnosis. Now we can use icd9 generate with the range ()
option to create an indicator variable.

. icd9 generate chf = dx1, range(398.91 428%)
. tabulate chf [fweight=wgt]

chf Freq. Percent Cum.

0 563,048 97.88 97.88

1 12,192 2.12 100.00
Total 575,240 100.00

After tabulating the results, we see that about 2.1% of all same-day discharges were for CHF in 2010.
N

Q Technical note

The dataset that supports icd9 includes all codes that were added or deleted between V16 and the last
version (V32). However, the descriptions were updated with each new version. If you are using icd9
generate with option description for codes from a version other than 32, please review the icd9
query log for any changes to descriptions between the version you are using and version 32.

a

b Example 5: Combining commands for reporting

The icd9 generate commands are useful in isolation, but their real power comes when they are
combined. For example, suppose that we want to make a graph showing the number of discharges in
each diagnosis category for ICD-9-CM chapter 4, “Diseases of Blood and Blood-Forming Organs”. We
could use several generate commands and string functions, but icd9 generate greatly reduces our
work.

First, we extract the category code from the detailed diagnosis code. Then, because the icd9 com-
mands work equally well with complete codes or category codes, we can use icd9 generate with the
range (280/289) option to create an indicator variable for whether the discharge had a primary diagnosis
in chapter 4.

. 1cd9 generate dxlcat = dxl1, category
. icd9 generate ch4 = dxlcat, range(280/289)

Next, we create a variable with the descriptions of the category codes in chapter 4.

. i1cd9 generate chd4des = dxlcat if ch4==1, description long

Finally, we use graph hbar to make a horizontal bar graph showing the frequencies of same-day
discharges by diagnosis category.

icd9 — ICD-9-CM diagnosis codes 423

. graph hbar (count) [fweight=wgt], over(ch4des) ytitle(Discharges)
> title(Diseases of Blood and Blood-Forming Organs, span)
> subtitle(Same-day Discharges (2010), span)

Diseases of Blood and Blood-Forming Organs
Same-day Discharges (2010)

280 iron deficiency anemias*
281 other deficiency anemia*
282 heredit hemolytic anemia*
283 acq hemolytic anemia*
284 aplastic anemia*
285 anemia nec/nos*
287 purpura & oth hemor cond*
288 whbc disorders*

289 other blood disease*

T T T
0 1,000 2,000 3,000
Discharges

See [G-2] graph bar for information about customizing the graph above. For more information about
graphing results, see [G-2] graph.
N

Stored results

icd9 check stores the following in r ():

Scalars
r(et) number of errors of type #
r (esum) total number of errors

icd9 clean stores the following in r ():

Scalars
r(N) number of changes

icd9 lookup stores the following in r ():

Scalars
r(N) number of codes found

References

Centers for Disease Control and Prevention. 2013. International Classification of Diseases, Ninth Revision, Clinical
Modification (ICD-9-CM). https://www.cdc.gov/nchs/icd/icd9cm.htm.

National Center for Health Statistics. 2011. International Classification of Diseases, Ninth Revision, Clinical Modifica-
tion. https:/ftp.cdc.gov/pub/Health_Statistics/NCHS/Publications/ICD9-CM/2011/.

. 2012. National Hospital Discharge Survey: 2010 Public Use Data File Documentation.
https://ftp.cdc.gov/pub/Health _Statistics/NCHS/Dataset_Documentation/NHDS/NHDS _2010_Documentation.pdf.

https://www.cdc.gov/nchs/icd/icd9cm.htm
https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Publications/ICD9-CM/2011/
https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/NHDS/NHDS_2010_Documentation.pdf

icd9 — ICD-9-CM diagnosis codes 424

Also see
[D] icd — Introduction to ICD commands
[D] icd9p — ICD-9-CM procedure codes
[D] icd10cm — ICD-10-CM diagnosis codes
(D]

D] frunalias — Change storage type of alias variables

icd9p — ICD-9-CM procedure codes

Description Quick start Menu Syntax Options
Remarks and examples Stored results References Also see
Description

icd9p is a suite of commands for working with ICD-9-CM procedure codes from the 16th version
(effective October 1998) to the 32nd version. To see the current version of the ICD-9-CM procedure codes
and any changes that have been applied, type icd9p query.

icd9p check, icd9p clean, and icd9p generate are data management commands. icd9p check
verifies that a variable contains defined ICD-9-CM procedure codes and provides a summary of any prob-
lems encountered. icd9p clean standardizes the format of the codes. icd9p generate can create
a binary indicator variable for whether the code is in a specified set of codes, a variable containing a
corresponding higher-level code, or a variable containing the description of the code.

icd9p lookup and icd9p search are interactive utilities. icd9p lookup displays descriptions of
the codes specified on the command line. icd9p search looks for relevant ICD-9-CM procedure codes
from keywords given on the command line.

Quick start

Determine whether ICD-9-CM procedure codes in proc1 are invalid, and store reasons in invalid

icd9p check procl, generate(invalid)

Standardize display of codes in proc2 to remove all periods
icd9p clean proc2

Create descr3 as the procedure code prepended to short description of procedure code in proc3

icd9p generate descr3 = proc3, description long

Create eye as an indicator for eye surgery in proc4 using ICD-9-CM procedure codes 16.1 through 16.99

icd9p generate eye = proc4, range (16%)

Look up descriptions for ICD-9-CM procedure codes 25.0 through 25.4 and 25.9 through 25.99
icd9p lookup 25.0/25.4 25.9%

Menu

Data > ICD codes > ICD-9

425

icd9p — ICD-9-CM procedure codes 426

Syntax
Verify that variable contains defined codes

icd9p check varname [if | [in] [, any list generate (newvar)]

Clean variable and verity format of codes

icd9p clean varname [if | [in] [, dots pad]

Generate new variable from existing variable
icd9p generate newvar = varname [if | [in] , category
icd9p generate newvar = varname [lf} [in] , description [1ong end]

icd9p generate newvar = varname [if | [in] , range (codelist)

Display code descriptions

icd9p lookup codelist

Search for codes from descriptions

icd9p search ["]rext[" | [["]text["] ...] [, or]

Display ICD-9 code source
icd9p query

codelist is)
icd9code (the particular code)

icd9codex (all codes starting with)
icd9code/icd9code (the code range)

or any combination of the above, such as 50.21 37.7x 88.71/88.79. icd9codes must be typed with
leading Os. For example, type 01; typing 1 will result in an error.

collect is allowed with icd9p check, icd9p clean, and icd9p lookup; see [U] 11.1.10 Prefix commands.
The icd9p suite of commands does not allow alias variables; see [D] frunalias for advice on how to get around this restriction.

icd9p — ICD-9-CM procedure codes 427

Options

Options are presented under the following headings:

Options for icd9p check
Options for icd9p clean
Options for icd9p generate
Option for icd9p search

Options for icd9p check

any tells 1cd9p check to verify that the codes fit the format of ICD-9-CM procedure codes but not to
check whether the codes are defined.

list specifies that icd9p check list the observation number, the invalid or undefined ICD-9-CM proce-
dure code, and the reason the code is invalid or whether it is an undefined code.

generate (newvar) specifies that icd9p check create a new variable containing, for each observation,
0 if the observation contains a defined code or is missing. Otherwise, it contains a number from 1
to 10. The positive numbers indicate the kind of problem and correspond to the listing produced by
icd9p check.

Options for icd9p clean

dots specifies that the period be included in the final format. If dots is not specified, then all periods
are removed.

pad specifies that icd9p clean pad the codes with spaces, front and back, to make the (implied) dots
align vertically in listings. Specifying pad makes the resulting codes look better when used with most
other Stata commands.

Options for icd9p generate

category, description, and range (codelist) specify the contents of the new variable that icd9p
generate is to create. You do not need to icd9p clean varname before using icd9p generate; it
will accept any supported format or combination of formats.

category creates a new variable that contains ICD-9-CM procedure category codes. The resulting
variable may be used with the other icd9p subcommands. For procedure codes, the category code
is the first two characters.

description creates newvar containing descriptions of the ICD-9-CM procedure codes.

long is for use with description. It specifies that the code be prepended to the text describing
the code.

end modifies long (specifying end implies long) and places the code at the end of the string.

range (codelist) creates a new indicator variable equal to 1 when the ICD-9-CM procedure code is in
the range specified, equal to 0 when the ICD-9-CM procedure code is not in the range, and equal to
missing when varname is missing.

Option for icd9p search

or specifies that ICD-9-CM procedure codes be searched for descriptions that contain any word specified
with icd9p search. The default is to list only descriptions that contain all the words specified.

icd9p — ICD-9-CM procedure codes 428

Remarks and examples

Remarks are presented under the following headings:

Veritying and cleaning variables
Interactive utilities

Creating new variables

If you have not yet read Introduction to ICD coding in [D] icd, please do so before using the icd9p
commands. Please also see Using icd9 and icd9p in [D] icd9 for information about Stata’s implementation
of the ICD-9 coding system.

Throughout the remainder of this entry, we use nhds2010.dta, an extract of adult same-day dis-
charges from the 2010 National Hospital Discharge Survey (NHDS). Below we describe the data.

. use https://www.stata-press.com/data/r19/nhds2010

(Adult same-day discharges, 2010)

. describe

Contains data from https://www.stata-press.com/data/r19/nhds2010.dta

Observations: 2,210 Adult same-day discharges, 2010
Variables: 15 30 Jan 2024 15:03
(_dta has notes)
Variable Storage Display Value
name type format label Variable label
ageu byte %8.0g ageu Units for age
age byte %8.0g Age
sex byte %8.0g sex Sex
race byte %8.0g race Race
month byte %8.0g Discharge month
status byte %8.0g status Discharge status
region byte %8.0g region Region
atype byte %8.0g atype Type of admission
dx1 strb %9s Diagnosis 1
dx2 strb %9s Diagnosis 2
dx3 strb %9s Diagnosis 3 (imported incorrectly)
dx3corr strb %9s Diagnosis 3 (corrected)
pri stré %9s Procedure 1
wgt int %12.0g Frequency weight
recid float %9.0g Order of record (raw data)

Sorted by: recid

Verifying and cleaning variables

icd9p check verifies that varname contains defined ICD-9-CM procedure codes and, if not, provides
a full report on the problems. It is a good idea to begin with this command and fix any potential problems
before proceeding to other icd9p commands. However, the check subcommand is also useful for track-
ing down problems when any of the other icd9p commands tell you that the “variable does not contain

ICD-9 codes”.

icd9p clean modifies the variable to ensure consistency and to make subsequent output look better.
This is not strictly necessary because all 1cd9p commands work equally well with cleaned or uncleaned
codes. icd9p clean also can be used to verify that the codes in a variable conform with the ICD-9-CM
procedure format, without checking to see whether the codes are defined.

icd9p — ICD-9-CM procedure codes 429

b Example 1: Standardizing the format of codes

If we plan to do any reporting with the codes in our data, we may want to make them more readable.
Suppose we want to report the primary procedure for each discharge. We can use icd9p clean with the
dots option to add the period between the category code and any subsequent digits.

. icd9p clean prl, dots pad
(821 changes made)

. list recid pril in 1/5

recid pril

1. 84 38.34
2. 105
3. 255
4. 651
5. 696 73.59

Using icd9p clean with undefined codes will not result in an error message. So if you are using codes
from a country other than the United States, the clean subcommand can still be used to standardize the
format of your codes and check for correct placement of the period.

d

Interactive utilities

icd9p search looks for relevant ICD-9-CM procedure codes from the description given on the com-
mand line, and icd9p lookup lists the descriptions of codes given on the command line. The two com-
mands complement each other.

b Example 2: Finding procedure code descriptions

If we wanted to find the corresponding abbreviated description for procedure code 38.34, we would
type
. 1cd9p lookup 38.34

1 match found:
38.34 aorta resection & anast

If you are curious, the cryptic result translates into resection with anastomosis of the aorta.

To find a list of other procedure codes for resection with anastomosis and their descriptions, we could
type icd9p lookup 38.3*. Or if we were interested in finding codes for procedures on the aorta, we
could type

. 1cd9p search aorta
(output omitted)

Creating new variables

icd9p generate produces new variables based on existing variables containing (cleaned or un-
cleaned) ICD-9-CM procedure codes. icd9p generate, category creates newvar containing the cat-
egory code that corresponds to the code in the existing variable. icd9p generate, description

icd9p — ICD-9-CM procedure codes 430

creates newvar containing the abbreviated textual description of the ICD-9-CM procedure code. icd9p
generate, range () produces numeric newvar containing 1 if varname records an ICD-9-CM procedure
code in the range listed and containing 0 otherwise.

b Example 3: Adding descriptions to codes

In example 4 of [D] icd9, we created an indicator variable for whether a patient had congestive heart
failure (CHF). We may want to know what procedures were performed for patients with CHF. We check
the procedure codes in pr1 and then generate a new variable with their descriptions. We include the long
option so that we can see the ICD-9-CM procedure code as well.

. icd9p check pril
(prl contains defined ICD-9-CM procedure codes; 1389 missing values)
. icd9p generate prildescr = prl, description long

. tabulate pridescr [fweight=wgt] if chf==1, missing sort

label for pri Freq. Percent Cum.

7,185 58.93 58.93

37.22 1left heart cardiac cath 1,906 15.63 74.57

92.05 c-vasc scan/isotop funct 1,027 8.42 82.99

88.72 dx ultrasound-heart 776 6.36 89.35

03.31 spinal tap 498 4.08 93.44

39.95 hemodialysis 388 3.18 96.62

34.91 thoracentesis 138 1.13 97.75

99.60 cardiopulm resuscita nos 112 0.92 98.67

37.94 1implt/repl carddefib tot 110 0.90 99.57

89.44 cardiac stress test nec 52 0.43 100.00
Total 12,192 100.00

We see that the majority of same-day discharges (58.9%) did not involve any procedure. When a proce-
dure was performed, the most common was left heart cardiac catheterization (15.6%).

N

Q Technical note

The dataset that supports icd9p includes all codes that were added or deleted between V16 and the
last version (V32). However, the descriptions were updated with each new version. If you are using
icd9p generate with option description for codes from a version other than 32, please review the
icd9p query log for any changes to descriptions between the version you are using and version 32.

Qa

icd9p — ICD-9-CM procedure codes 431

Stored results

icd9p check stores the following in r ():

Scalars
r(et) number of errors of type #
r (esum) total number of errors

icd9p clean stores the following inr () :

Scalars
r(N) number of changes

icd9p lookup stores the following in r():

Scalars
r(N) number of codes found

References

National Center for Health Statistics. 2011. International Classification of Diseases, Ninth Revision, Clinical Modifica-
tion. https:/ftp.cdc.gov/pub/Health_Statistics/NCHS/Publications/ICD9-CM/2011/.

. 2012. National Hospital Discharge Survey: 2010 Public Use Data File Documentation.
https://ftp.cdc.gov/pub/Health _Statistics/NCHS/Dataset_Documentation/NHDS/NHDS _2010_Documentation.pdf.

Also see
[D] icd — Introduction to ICD commands
[D] icd9 — ICD-9-CM diagnosis codes
[D] icd10pcs — ICD-10-PCS procedure codes
(D]

D] frunalias — Change storage type of alias variables

https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Publications/ICD9-CM/2011/
https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/NHDS/NHDS_2010_Documentation.pdf

icd10 — ICD-10 diagnosis codes

Description Quick start Menu Syntax
Options Remarks and examples Stored results Acknowledgments
References Also see

Description

icd10 is a suite of commands for working with the World Health Organization’s (WHO’s) ICD-10
diagnosis codes from the second edition (2003) to the sixth edition (2019). To see the current version of
the ICD-10 diagnosis codes and any changes that have been applied, type 1cd10 query.

icd10 check, icd10 clean, and icd10 generate are data management commands. icd10 check
verifies that a variable contains defined ICD-10 diagnosis codes and provides a summary of any problems
encountered. 1cd10 clean standardizes the format of the codes. icd10 generate can create a binary
indicator variable for whether the code is in a specified set of codes, a variable containing a corresponding
higher-level code, or a variable containing the description of the code.

icd10 lookup and icd10 search are interactive utilities. 1cd10 lookup displays descriptions of
the codes specified on the command line. icd10 search looks for relevant ICD-10 diagnosis codes from
keywords given on the command line.

Quick start

Determine whether ICD-10 diagnosis codes in diagl are invalid, and store reasons in invalid
icd10 check diagl, generate(invalid)

Standardize display of codes in diag?2 to add a period and left-align codes
icd10 clean diag2, replace

Generate descr3 as descriptions of the diagnosis codes in diag3

icd10 generate descr3 = diag3, description

Generate binary indicator for malignant or benign neoplasm, as indicated by an ICD-10 code beginning
with C or D in diagd

icd10 generate cancer = diag4, range (Cx D*)

Look up current descriptions for ICD-10 diagnosis codes W70 through W79
icd10 lookup W70/W79

Look up codes where the description contains the words “delivery” or “birth”

icd10 search delivery birth, or

Menu

Data > ICD codes > ICD-10

432

icd10 — ICD-10 diagnosis codes 433

Syntax
Verify that variable contains defined codes

icd10 check varname [if] [in] |, checkopts]

Clean variable and verity format of codes

icd10 clean varname [if | [in], {generate (newvar) | replace} [cleanopts |

Generate new variable from existing variable
icd10 generate newvar = varname [if | [in], {category | short} [check]
icd10 generate newvar = varname [lf} [in] , description [genopts]

icd10 generate newvar = varname [if | [in], range (codelist) | check |

Display code descriptions

1cd10 lookup codelist | , version(#)]

Search for codes from descriptions

icd10 search ["]rext[" | [["]text["] ...] [, searchopts]

Display ICD-10 version

icd10 query

codelist is one of the following:

icd10code (the particular code)
icd10codex (all codes starting with)
icd10code/icdl0code (the code range)

or any combination of the above, such as A27.0 G40* Y60/Y69.9.

checkopts Description

fmtonly check only format of the codes

summary frequency of each invalid or undefined code

list list observations with invalid or undefined ICD-10 codes
generate (newvar) create new variable marking invalid codes

version(#) year to check codes against; default is version(2019)

icd10 — ICD-10 diagnosis codes 434

cleanopts Description
* generate (newvar) create new variable containing cleaned codes
*replace replace existing codes with the cleaned codes
check check that variable contains ICD-10 codes before cleaning
nodots format codes without a period
pad add space to the right of three-character codes

* Either generate () or replace is required.

genopts Description

addcode (begin | end) add code to the beginning or end of the description

pad add spaces to the right of the code; must specify addcode (begin)
nodots format codes without a period; must specify addcode ()

check check that variable contains ICD-10 codes before generating new variable
version(#) select description from year #; default is version(2019)

searchopts Description

or match any keyword

matchcase match case of keywords

version(#) search description from year #; default is all

collect is allowed with icd10 check and icd10 clean; see [U] 11.1.10 Prefix commands.
The icd10 suite of commands does not allow alias variables; see [D] frunalias for advice on how to get around this restriction.

Options

Options are presented under the following headings:

Options for icd10 check
Options for icd10 clean
Options for icd10 generate
Option for icd10 lookup
Options for icd10 search

Warning: The option descriptions are brief and use jargon. Please read Introduction to ICD coding in
[D] icd before using the icd10 command.

Options for icd10 check

fmtonly tells icd10 check to verify that the codes fit the format of ICD-10 diagnosis codes but not to
check whether the codes are defined.

summary specifies that icd10 check should report the frequency of each invalid or undefined code that
was found in the data. Codes are displayed in descending order by frequency. summary may not be
combined with 1ist.

list specifies that 1cd10 check list the observation number, the invalid or undefined ICD-10 diagnosis
code, and the reason the code is invalid or whether it is an undefined code. 1ist may not be combined
with summary.

icd10 — ICD-10 diagnosis codes 435

generate (newvar) specifies that icd10 check create a new variable containing, for each observation,
0 if the observation contains a defined code. Otherwise, it contains a number from 1 to 8 if the code is
invalid, 99 if the code is undefined, or missing if the code is missing. The positive numbers indicate
the kind of problem and correspond to the listing produced by icd10 check.

version(#) specifies the version of the codes that 1cd10 check should reference. # may be any value
between 2003, which is the second edition of ICD-10 without any updates applied, and 2019, which is
the sixth edition of ICD-10. The appropriate value of # should be determined from the data source.
The default is version(2019).

Options for icd10 clean

generate (newvar) and replace specify how the formatted values of varname are to be handled. You
must specify either generate () or replace.

generate () specifies that the cleaned values be placed in the new variable specified in newvar.
replace specifies that the existing values of varname be replaced with the formatted values.

check specifies that icd10 clean should first check that varname contains codes that fit the format of
ICD-10 diagnosis codes. Specifying the check option will slow down icd10 clean.

nodots specifies that the period be removed in the final format.

pad specifies that spaces be added to the end of the codes to make the (implied) dots align vertically in
listings. The default is to left-align codes without adding spaces.

Options for icd10 generate

category, short, description, and range (codelist) specify the contents of the new variable that
icd10 generate is to create. You do not need to icd10 clean varname before using icd10
generate; it will accept any supported format or combination of formats.

category and short generate a new variable that also contains ICD-10 diagnosis codes. The resulting
variable may be used with the other icd10 subcommands.

category specifies to extract the three-character category code from the ICD-10 diagnosis code.

short is designed for users who have data with greater specificity than the standard four-character
ICD-10 codes. short will reduce five- and six-character codes to their first four characters.
Three- and four-character codes are left as they are.

description creates newvar containing descriptions of the ICD-10 diagnosis codes.

range (codelist) creates a new indicator variable equal to 1 when the ICD-10 diagnosis code is in the
range specified, equal to 0 when the ICD-10 diagnosis code is not in the range, and equal to missing
when varname is missing.

addcode (begin | end) specifies that the code should be included with the text describing the code. Spec-
ifying addcode (begin) will prepend the code to the text. Specifying addcode (end) will append
the code to the text.

pad specifies that the code that is to be added to the description should be padded spaces to the right of
the code so that the start of description text is aligned for all codes. pad may be specified only with
addcode (begin).

icd10 — ICD-10 diagnosis codes 436

nodots specifies that the code that is added to the description should be formatted without a period.
nodots may be specified only if addcode () is also specified.

check specifies that icd10 generate should first check that varname contains codes that fit the format
of ICD-10 diagnosis codes. Specifying the check option will slow down the generate subcommand.

version(#) specifies the version of the codes that icd10 generate should reference. # may be any
value between 2003, which is the second edition of ICD-10 without any updates applied, and 2019,
which is the sixth edition of ICD-10. The appropriate value of # should be determined from the data
source. The default is version(2019).

Option for icd10 lookup

version(#) specifies the version of the codes that 1cd10 lookup should reference. # may be any value
between 2003, which is the second edition of ICD-10 without any updates applied, and 2019, which is
the sixth edition of ICD-10. The appropriate value of # should be determined from the data source.
The default is version(2019).

Options for icd10 search

or specifies that ICD-10 diagnosis codes be searched for descriptions that contain any word specified with
icd10 search. The default is to list only descriptions that contain all the words specified.

matchcase specifies that icd10 search should match the case of the keywords given on the command
line. The default is to perform a case-insensitive search.

version(#) specifies the version of the codes that 1cd10 search should reference. # may be any value
between 2003, which is the second edition of ICD-10 without any updates applied, and 2019, which is
the sixth edition of ICD-10.

By default, descriptions for all versions are searched, meaning that codes that changed descriptions
and that have descriptions in multiple versions that contain the search terms will be duplicated. To
ensure a list of unique code values, specify the version number.

Remarks and examples

Remarks are presented under the following headings:

Introduction
Managing datasets with ICD-10 codes
Creating new variables

If you have not yet read Introduction to ICD coding in [D] icd, please do so before using the icd10
commands.

Introduction
The general format of an ICD-10 diagnosis code is
{a-z}{o-9}{0-9}[. [[0-9]

The code begins with a single letter followed by two digits. It may have an additional third digit after
the period.

icd10 — ICD-10 diagnosis codes 437

For example, in the ICD-10 coding system, E11.0 (Type 2 diabetes mellitus: With coma) and C56
(Malignant neoplasm of ovary) are diagnosis codes, although some datasets record (and some people
write) E110 rather than E11.0. The icd10 commands understand both ways of recording codes. The
commands are also insensitive to codes recorded with or without leading and trailing blanks and are case
insensitive.

All the following are acceptable formats to record codes in Stata.

N94.0
M32
K12
F102
x40

The list of defined codes and their associated descriptions is provided under license from the World
Health Organization (WHO); see [R] Copyright ICD-10. To view the current license and a log of changes
that WHO has made to the list of ICD-10 codes since the icd10 commands were implemented in Stata,

type
. 1cd10 query
ICD-10 Version and Change Log

License agreement
ICD-10 codes used by permission of the World Health Organization (WHO),
from: International Statistical Classification of Diseases and
Related Health Problems, Tenth Revision (ICD-10) 2010 Edition. Vols.
1-3. Geneva, World Health Organization, 2011.
See copyright icd10 for the ICD-10 copyright notification.

Edition 2019
The ICD-10 data were obtained from WHO on 27feb2023.
All updates scheduled for implementation through 01jan2023 have been
applied.
Between 2016 and 2019:
137 codes added, 23 codes deleted, 58 code descriptions changed.
(output omitted)

Q Technical note

Codes can have up to two more digits to form five- and six-character codes. Supplemental subdivi-
sions of ICD-10 codes may occur at the fifth and sixth characters. These supplemental subdivisions are
primarily used to indicate anatomical site and additional information about the diagnosis, for example,
whether a fracture was open or closed (World Health Organization 2011). However, these codes are
not part of the standard four-character system codified by WHO for international morbidity and mortality
reporting and are not considered valid by icd10.

If your data contain these longer codes, you can use icd10 generate with option short to shorten
your codes to the relevant four-character subcategory code. Any existing three- and four-character codes

in the data are left as they were originally.
a

icd10 — ICD-10 diagnosis codes 438

Managing datasets with ICD-10 codes

The icd10 suite of commands has three data management commands. icd10 check verifies that the
ICD-10 codes in varname are valid. icd10 clean standardizes the format of ICD-10 codes in varname.
And icd10 generate produces a new variable from an existing variable containing ICD-10 codes. It will
create a variable containing the associated category code, a description of the code, or a binary indicator
for whether the code is in a specified set of codes.

b Example 1: Checking the validity of a variable

Although not necessary, a good place to start is with icd10 check. The commands in the icd10 suite
will return an error message if the codes in your data are not valid. Running icd10 check is a good way
to avoid error messages later.

australial0.dta contains total deaths in 2010 for males and females from Australia, taken from
the WHO Mortality Database . Below we 1ist the first 10 observations.

. use https://www.stata-press.com/data/r19/australiall
(Australian mortality data, 2010)

. list in 1/10, sepby(cause) noobs

cause sex deaths
A020 Male 1
A020 Female 4
A021 Male 3
A021 Female 1
A047 Male 16
A047 Female 25
A048 Female 4
A049 Male 1
A049 Female 1
A063 Male 1

We will specify the generate () option to create a new variable called prob that will indicate that the
code in cause is valid (prob = 0) or will indicate a value of 1 through 8 for the reason the code is not
valid. icd10 check also creates a value of 99, which indicates that the code is not defined but otherwise
conforms to the formatting requirements for ICD-10 codes.

icd10 — ICD-10 diagnosis codes 439

. 1cd10 check cause, generate(prob)
(cause contains no missing values)

cause contains undefined codes:

1. Invalid placement of period

2. Too many periods

3 Code too short

4. Code too long

5. 1Invalid 1st char (not A-Z)

6. Invalid 2nd char (not 0-9)

7. Invalid 3rd char (not 0-9)

8. 1Invalid 4th char (mot 0-9)
77. Valid only for previous versions
88. Valid only for later versions
99. Code not defined

OO WO OOOOOOO

Total 9

icd10 check reports that there are six observations with undefined codes. In this case, this is because
we failed to specify that the data were reported using the ICD-10 codes from 2010.

. drop prob

. icd10 check cause, generate(prob) year(2010)
(cause contains defined codes; no missing values)

‘We see now that there are no errors in our dataset.

b Example 2: Standardizing the format of codes

If we plan to do any reporting with these codes later, we may want to make them more readable, so
we use 1cd10 clean. This command will automatically add a dot after the third character and change
the display format of the diagnosis variable so that it is left aligned. We specify replace so that the
standardized codes are placed in the existing cause variable.

When we listed our data before, they were sorted by cause of death and showed very few deaths
assigned to the first several codes. It might be more interesting to see the most frequent causes of death.
So before we list the data this time, we sort them in descending order with gsort.

icd10 — ICD-10 diagnosis codes 440

. 1cd10 clean cause, replace
variable cause was str4 now strb
(2,921 real changes made)

. gsort -deaths

. list cause sex deaths in 1/10, sepby(cause)

cause sex deaths

e

121.9 Male 5,057
2. I21.9 Female 4,885

3. C34.9 Male 4,859

4. I25.9 Male 3,805
5. 125.9 Female 3,636

6. F03 Female 3,517
7. c61 Male 3,236
8. 164 Female 3,204

9. C34.9 Female 3,130

10. C50.9 Female 2,842

Now it is clear that we have a mix of three- and four-character codes.

b Example 3: Looking up a single code

In example 2, we see that the highest number of reported deaths for men and women is for code 121.9.
If we were curious about what this code is, we could type

. 1cd10 lookup I21.9

I21.9 Acute myocardial infarction, unspecified

and we would see that these are deaths from acute myocardial infarction, commonly known as heart
attacks. Because the icd10 commands are case insensitive and do not care whether we use the dot, we
could have typed 121.9, 1219, or 1219, and Stata would have returned the same results.

N

Creating new variables

We now proceed to create new variables for later use.

b Example 4: Creating an indicator variable

Suppose that after watching several high-action nature shows on television, we now believe that death
due to shark attack is common in Australia. It did not show up in our top-ten list above, but we would
like to see how many deaths we have in our data. We can look up the code using WHO’s interactive web
utility (http://apps.who.int/classifications/icd10/browse/2010/en/) and then use icd10 generate with
the range () option to create an indicator for whether death occurred by shark bite (shark).

http://apps.who.int/classifications/icd10/browse/2010/en/

icd10 — ICD-10 diagnosis codes 441

. 1cd10 generate shark=cause, range(W56)
. tabulate shark [fweight=deaths]

shark Freq. Percent Cum.
0 143,472 100.00 100.00
1 1 0.00 100.00
Total 143,473 100.00

Reality was not nearly as exciting as television—there was only one death with a code relating to shark
bite in Australia in 2010.

If we wanted to study something less sensational, we could expand the icdlOrangelist to a more
complex list of codes. For example, perhaps we want to study the number of deaths from myocardial
infarction (MI) and complications that occurred afterward. We might pick codes 121.0 through 121.9,
122.0 through 122.9, and 123.0 through 123.8. We could create the variable mi by typing

. 1cd10 generate mi=cause, range(I210/I219 I220/I1229 I230/1238)
. tabulate mi [fweight=deaths]

mi Freq. Percent Cum.

0 133,522 93.06 93.06

1 9,951 6.94 100.00
Total 143,473 100.00

We see that 9,951 deaths were from MI or complications thereof, which equates to about 6.9% of all
deaths in Australia in 2010. It appears that hearts are far more dangerous than sharks.

d

Q Technical note

WHO reserves codes in categories U00 through U49 for the provisional assignment of new diseases
and designates codes U50 through U99 for research purposes (World Health Organization 2011).

In general, codes in categories US0 through U99 are treated as undefined. This means that you do
not need to take any special steps as long as your codes fit within the accepted four-character format.
However, if you wish to exclude U codes from the commands, you can use the if qualifier.

With the exception of icd10 generate with the description option, the icd10 commands will
continue to work as normal with undefined U codes. As arule, icd10 generate with the description
option will return missing values for codes U50 through U99. Note that some of these codes, however,
are defined and considered valid by icd10 because WHO has distributed descriptions for them. For these

codes, icd10 generate with option description will return results. The affected codes vary by year.
a

icd10 — ICD-10 diagnosis codes 442

Stored results

icd10 check stores the following in r ():

Scalars
r(et) number of errors of type #
r (esum) total number of errors
r(miss) number of missing values
r(N) number of nonmissing values

icd10 clean stores the following in r):

Scalars
r(N) number of changes

icd10 lookup and icd10 search store the following in r ():

Scalars
r(N_codes) number of codes found

Acknowledgments

We thank the World Health Organization for making ICD-10 codes available to Stata users. See
[R] Copyright ICD-10 for allowed usage.

We thank Joe Canner, who while at Yale University School of Medicine, wrote mycd10 and mycd10p,
which provide many utilities for ICD-10 diagnosis and procedure codes. The commands rely on a user-
supplied ICD-10 lookup dataset for diagnosis codes and ICD-10-PCS codes from the US Centers for Medi-
care and Medicaid Services for procedure codes.

References

de Kraker, M. E. A., M. Wolkewitz, P. G. Davey, H. Grundmann, and Burden Study Group. 2011. Clinical impact of
antimicrobial resistance in European hospitals: Excess mortality and length of hospital stay related to methicillin-
resistant staphylococcus aureus bloodstream infections. Antimicrobial Agents and Chemotherapy 55: 1598—1605. https:
//doi.org/10.1128/AAC.01157-10.

Klevens, R. M., M. A. Morrison, J. Nadle, S. Petit, K. Gershman, S. Ray, L. H. Harrison, R. Lynfield, G. Dumyati,
J. M. Townes, A. S. Craig, E. R. Zell, G. E. Fosheim, L. K. McDougal, R. B. Carey, and S. K. Fridkin. 2007. Invasive
methicillin-resistant Staphylococcus aureus infections in the United States. Journal of the American Medical Association
298: 1763-1771. https://doi.org/10.1001/jama.298.15.1763.

World Health Organization. 2011. International Statistical Classification of Diseases and Related Health Problems. Vol. 2,
2016 Edition. Instruction manual. https://www.who.int/publications/m/item/international-statistical-classification-of-
diseases-and-related-health-problems---volume-2.

Also see

[D] ied — Introduction to ICD commands
[D] icd10cm — ICD-10-CM diagnosis codes

[D] frunalias — Change storage type of alias variables

https://doi.org/10.1128/AAC.01157-10
https://doi.org/10.1128/AAC.01157-10
https://doi.org/10.1001/jama.298.15.1763
https://www.who.int/publications/m/item/international-statistical-classification-of-diseases-and-related-health-problems---volume-2
https://www.who.int/publications/m/item/international-statistical-classification-of-diseases-and-related-health-problems---volume-2

icd10cm — ICD-10-CM diagnosis codes

Description Quick start Menu Syntax Options
Remarks and examples Stored results Acknowledgments Reference Also see
Description

icd10cm is a suite of commands for working with ICD-10-CM diagnosis codes from US federal fiscal
year 2016 to the present. To see the current version of the ICD-10-CM diagnosis codes and any changes
that have been applied, type icd10cm query.

icd10cm check, icd10cm clean, and icd1Ocm generate are data management commands.
icd10cm check verifies that a variable contains defined ICD-10-CM diagnosis codes and provides a sum-
mary of any problems encountered. icd10cm clean standardizes the format of the codes. icd10cm
generate can create a binary indicator variable for whether the code is in a specified set of codes, a
variable containing a corresponding higher-level code, or a variable containing the description of the
code.

icd10cm lookup and icd10cm search are interactive utilities. icd10cm lookup displays descrip-
tions of the codes specified on the command line. icd10cm search looks for relevant ICD-10-CM diag-
nosis codes from keywords given on the command line.

Quick start

Determine whether ICD-10-CM diagnosis codes in diagl are invalid, and store reasons in invalid

icd10cm check diagl, generate(invalid)

Standardize display of codes in diag?2 to add a period and left-align codes

icd10cm clean diag2, replace

Generate descr3 as the diagnosis code prepended to the short description of diagnosis code in diag3

icd10cm generate descr3 = diag3, description addcode(begin)

Generate mhypertn as an indicator for a maternal hypertension diagnosis in diag4 using ICD-10-CM
codes 016.1 through 016.5 or 016.9

icd10cm generate mhypertn = diag4, range(0161/0165 0169)

Look up descriptions for ICD-10-CM diagnosis codes T46.1X1, T46.1X1A, T46.1X1D, and T46.1X1S
icd10cm lookup T46.1X1*

Look up codes where the description contains the words “delivery” or “birth”

icd10cm search delivery birth, or

Menu

Data > ICD codes > ICD-10-CM

443

icd10cm — ICD-10-CM diagnosis codes 444

Syntax
Verify that variable contains defined codes

icd10cm check varname [if | [in] [, checkopts]

Clean variable and verify format of codes

icd10cm clean varname [if | [in], {generate (newvar) | replace} [cleanopts |

Generate new variable from existing variable
icd10cm generate newvar = varname [if | [in], category | check |
icd10cm generate newvar = varname [lf] [in] , description [gem)pts]

icd10cm generate newvar = varname [if | [in], range (codelist) [check |

Display code descriptions

icd10cm lookup codelist [, version(#) |

Search for codes from descriptions

icd10cm search [" Jtext["] [[" |text["] ...] [, searchopts |

Display ICD-10-CM version

icd10cm query

codelist is one of the following:

icd10code (the particular code)
icd10codex (all codes starting with)
icd10code/icdl0code (the code range)

or any combination of the above, such as A27.0 G40* Y60/Y69.9.

checkopts Description

fmtonly check only format of the codes

summary frequency of each invalid or undefined code

list list observations with invalid or undefined ICD-10-CM codes
generate (newvar) create new variable marking invalid codes

version(#) fiscal year to check codes against; default is the current year

icd10cm — ICD-10-CM diagnosis codes 445

cleanopts Description
* generate (newvar) create new variable containing cleaned codes
*replace replace existing codes with the cleaned codes
check check that variable contains ICD-10-CM codes before cleaning
nodots format codes without a period
pad add space to the right of codes shorter than seven characters

* Either generate () or replace is required.

genopts Description

addcode (begin | end) add code to the beginning or end of the description

pad add spaces to the right of the code; must specify addcode (begin)

nodots format codes without a period; must specify addcode ()

check check that variable contains ICD-10-CM codes before generating new
variable

long use long description rather than short

version(#) select description from fiscal year #; default is the current year

searchopts Description

or match any keyword

matchcase match case of keywords

version(#) search description from fiscal year #; default is all

collect is allowed with icd10cm check and icd10cm clean; see [U] 11.1.10 Prefix commands.

The icd10cm suite of commands does not allow alias variables; see [D] frunalias for advice on how to get around this
restriction.

Options

Options are presented under the following headings:

Options for icd10cm check
Options for icd10cm clean
Options for icd10cm generate
Option for icd10cm lookup
Options for icd10cm search

Options for icd10cm check

fmtonly tells icd10cm check to verify that the codes fit the format of ICD-10-CM diagnosis codes but
not to check whether the codes are defined.

summary specifies that icd10cm check should report the frequency of each invalid or undefined code
that was found in the data. Codes are displayed in descending order by frequency. summary may not
be combined with 1ist.

list specifies that icd10cm check list the observation number, the invalid or undefined ICD-10-CM
diagnosis code, and the reason the code is invalid or whether it is an undefined code. 1ist may not
be combined with summary.

icd10cm — ICD-10-CM diagnosis codes 446

generate (newvar) specifies that icd10cm check create a new variable containing, for each observa-
tion, 0 if the observation contains a defined code. Otherwise, it contains a number from 1 to 11 if the
code is invalid, 77 if the code is valid only for a previous version, 88 if the code is valid only for a
later version, 99 if the code is undefined, or missing if varname is missing.. The positive numbers
indicate the kind of problem and correspond to the listing produced by icd10cm check.

version(#) specifies the version of the codes that icd10cm check should reference. # indicates the
federal fiscal year for the codes. For example, use 2016 for federal fiscal year 2016 (FFY-2016),
which is October 1, 2015 to September 30, 2016. icd10cm supports all years after the United States
officially adopted ICD-10-CM. The appropriate value of # should be determined from the data source.
The default is the current year.

Warning: The default value of version() will change over time so that the most recent codes are
used. Using the default value rather than specifying a specific version may change results after a new
version of the codes is introduced.

Options for icd10cm clean
generate (newvar) and replace specify how the formatted values of varname are to be handled. You
must specify either generate () or replace.
generate () specifies that the cleaned values be placed in the new variable specified in newvar.
replace specifies that the existing values of varname be replaced with the formatted values.

check specifies that icd10cm clean should first check that varname contains codes that fit the format
of ICD-10-CM diagnosis codes. Specifying the check option will slow down icd10cm clean.

nodots specifies that the period be removed in the final format.

pad specifies that spaces be added to the end of the codes to make the (implied) dots align vertically in
listings. The default is to left-align codes without adding spaces.

Options for icd10cm generate

category, description, and range (codelist) specify the contents of the new variable that icd10cm
generate isto create. You donotneed to icd10cm clean varname before using icd10cm generate;
it will accept any supported format or combination of formats.

category specifies to extract the three-character category code from the ICD-10-CM diagnosis code.
The resulting variable may be used with the other icd10cm subcommands.

description creates newvar containing descriptions of the ICD-10-CM diagnosis codes.

range (codelist) creates a new indicator variable equal to 1 when the ICD-10-CM diagnosis code is in
the range specified, equal to 0 when the ICD-10-CM diagnosis code is not in the range, and equal to
missing when varname is missing.

addcode (begin | end) specifies that the code should be included with the text describing the code. Spec-
ifying addcode (begin) will prepend the code to the text. Specifying addcode (end) will append
the code to the text.

pad specifies that the code that is to be added to the description should be padded spaces to the right of
the code so that the start of description text is aligned for all codes. pad may be specified only with
addcode (begin).

icd10cm — ICD-10-CM diagnosis codes 447

nodots specifies that the code that is added to the description should be formatted without a period.
nodots may be specified only if addcode () is also specified.

check specifies that icd10cm generate should first check that varname contains codes that fit the for-
mat of ICD-10-CM diagnosis codes. Specifying the check option will slow down the generate sub-
command.

long specifies that the long description of the code be used rather than the short (abbreviated) descrip-
tion.

version(#) specifies the version of the codes that icd10cm generate should reference. # indicates
the federal fiscal year for the codes. For example, use 2016 for federal fiscal year 2016 (FFY-2016),
which is October 1, 2015 to September 30, 2016. icd10cm supports all years after the United States
officially adopted ICD-10-CM. The appropriate value of # should be determined from the data source.
The default is the current year.

Warning: The default value of version() will change over time so that the most recent codes are
used. Using the default value rather than specifying a specific version may change results after a new
version of the codes is introduced.

Option for icd10cm lookup

version(#) specifies the version of the codes that icd10cm lookup should reference. # indicates the
federal fiscal year for the codes. For example, use 2016 for federal fiscal year 2016 (FFY-2016),
which is October 1, 2015 to September 30, 2016. icd10cm supports all years after the United States
officially adopted ICD-10-CM. The appropriate value of # should be determined from the data source.
The default is the current year.

Warning: The default value of version() will change over time so that the most recent codes are
used. Using the default value rather than specifying a specific version may change results after a new
version of the codes is introduced.

Options for icd10cm search

or specifies that ICD-10-CM diagnosis codes be searched for descriptions that contain any word specified
with icd10cm search. The default is to list only descriptions that contain all the words specified.

matchcase specifies that icd10cm search should match the case of the keywords given on the com-
mand line. The default is to perform a case-insensitive search.

version(#) specifies the version of the codes that icd10cm search should reference. # indicates the
federal fiscal year for the codes. For example, use 2016 for federal fiscal year 2016 (FFY-2016),
which is October 1, 2015 to September 30, 2016. icd10cm supports all years after the United States
officially adopted ICD-10-CM.

By default, descriptions for all versions are searched, meaning that codes that changed descriptions
and that have descriptions in multiple versions that contain the search terms will be duplicated. To
ensure a list of unique code values, specify the version number.

icd10cm — ICD-10-CM diagnosis codes 448

Remarks and examples

Remarks are presented under the following headings:

Introduction
Managing datasets with ICD-10-CM codes
Interactive utilities

If you have not yet read Introduction to ICD coding in [D] icd, please do so before using the icd10cm
commands.

Introduction

The general format of an ICD-10-CM diagnosis code is a three-character category code followed by up
to four characters after an (implied) period. The first character is always a letter and the second character
is always a number, but the remaining characters may be any combination of letters and numbers.

Some examples of ICD-10-CM diagnosis codes are B69 (cysticercosis) and W20.0XXA (struck by
falling object in cave-in, initial encounter). Many datasets record (and some people write) codes without
the period; for example, the code 174.3 may appear as 1743. The icd10cm commands understand both
ways of recording codes. The commands are also insensitive to codes recorded with or without leading
and trailing blanks and are case insensitive.

All the following are acceptable formats to record codes in Stata:

T37.0X3A
A25.1
C52
a80.0
z8261

Important note: What constitutes a valid code changes between versions. For the rest of this entry, a
defined code is any code that is currently valid, was valid at some point since the ICD-10-CM coding system
was introduced, or has a meaning as a grouping of codes. The list of valid codes and their associated
descriptions is from the US Centers for Disease Control and Prevention’s National Center for Health
Statistics (Centers for Disease Control and Prevention 2013). The ICD-10-CM is a licensed adaptation of
the ICD-10, which is copyrighted by the World Health Organization (WHO); see [R] Copyright ICD-10.

To view the current version of the ICD-10-CM diagnosis codes in Stata, its source, and a log of changes
that have been made to the list of ICD-10-CM diagnosis codes since the icd10cm commands were imple-
mented, type

. icd10cm query
ICD-10-CM Diagnosis Code Version and Change Log

Note
The ICD-10 coding system is copyrighted by the World Health Organization.
The ICD-10-CM is the WHO’s authorized adaptation for use in the
United States. It is maintained by the National Center for Health
Statistics (NCHS), at the Center for Disease Control and Prevention.
Stata obtains the ICD-10-CM data from the NCHS website.
See copyright icdl10 for the ICD-10 copyright notification.

(output omitted)

icd10cm — ICD-10-CM diagnosis codes 449

Managing datasets with ICD-10-CM codes

The icd10cm suite of commands has three data management commands. icd10cm check verifies that
the ICD-10-CM diagnosis codes in varname are valid. icd10cm clean standardizes the format of ICD-10-
CM diagnosis codes in varname. And icd10cm generate produces a new variable from an existing
variable containing ICD-10-CM diagnosis codes.

Examples in this section use hosp2015.dta, a fictional sample of inpatient hospital discharges
in Washington State from July 2015 to December 2015. The data were simulated based on the
Comprehensive Hospital Abstract Reporting System (CHARS); see https://www.doh.wa.gov/Dataand
StatisticalReports/Healthcarein Washington/HospitalandPatientData/HospitalDischargeDataCHARS.
Examples analyzing the procedure codes for this dataset may be found in [D] icd10pcs.

. use https://www.stata-press.com/data/r19/hosp2015

(Fictional WA hospital discharges)

. describe

Contains data from https://www.stata-press.com/data/r19/hosp2015.dta

Observations: 3,935 Fictional WA hospital discharges
Variables: 18 6 Apr 2024 13:10
Variable Storage Display Value
name type format label Variable label
hospid strb %9s Hospital ID
age byte %11.0g age Age (years)
sex byte %8.0g sex Sex
ins byte %9.0g ins Insurance type
los byte %19.0g los Length of stay (days)
atype byte %9.0g admtype Admission type
asource byte %18.0g admsrc Admission source
aday byte %8.0g day Admission day of week
dmonth int %tm Discharge month
dstatus byte %22.0g status Discharge status
died byte %8.0g Patient died (1=yes)
diagl str7 %9s Diagnosis 1
diag2 str7 %9s Diagnosis 2
diag3 str7 %9s Diagnosis 3
proci str7 %9s Procedure 1
proc2 str7 %9s Procedure 2
proc3 str7 %9s Procedure 3
billed float %8.2fc Amount billed ($1,000s)

Sorted by: hospid dmonth

Although not necessary, it is a good idea to begin with icd10cm check and fix any potential problems
before proceeding to other icd10cm commands. By default, it verifies that varname contains defined
ICD-10-CM diagnosis codes and, if not, tabulates the type of problems encountered.

b Example 1: Checking the validity of a variable

We want to verify that the primary diagnosis code (diagl) contains only valid ICD-10-CM diagno-
sis codes. Because any discharges that use ICD-10-CM diagnosis codes in our data will be from Octo-
ber 1, 2015 to December 31, 2015, we use version(2016) to specify the FFY-2016 version of ICD-10-CM.
If there are invalid or undefined codes in our data, we want to see what the codes are, their frequency,
and the reason they were not valid, so we add the summary option.

https://www.doh.wa.gov/DataandStatisticalReports/HealthcareinWashington/HospitalandPatientData/HospitalDischargeDataCHARS
https://www.doh.wa.gov/DataandStatisticalReports/HealthcareinWashington/HospitalandPatientData/HospitalDischargeDataCHARS

icd10cm — ICD-10-CM diagnosis codes 450

. icd10cm check diagl, version(2016) summary
(diagl contains no missing values)

diagl contains invalid codes:

1. Invalid placement of period 0
2. Too many periods 0
3. Code too short 0
4. Code too long 0
5. Invalid 1st char (not A-Z) 1,916
6. Invalid 2nd char (not 0-9) 0
7. Invalid 3rd char (not 0-9 A or B) 0
8. Invalid 4th char (not 0-9 or A-Z) 0
9. Invalid 5th char (not 0-9 or A-Z) 0
10. Invalid 6th char (not 0-9 or A-Z) 0
11. Invalid 7th char (not 0-9 or A-Z) 0
77. Valid only for previous versions 0
88. Valid only for later versions 0

99. Code not defined

w
N

Total 1,948

Summary of invalid and undefined codes

diagl Count Problem

0389 91 Invalid 1st char
65421 57 Invalid 1st char
64511 45 Invalid 1st char
71536 33 Invalid 1st char
66411 31 Invalid 1st char
(output omitted)

4940 Invalid 1st char

1
4270 1 Invalid 1st char
1570 1 Invalid 1st char

53550 1 Invalid 1st char

64413 1 Invalid 1st char

It looks like the records with problems used ICD-9-CM codes instead of ICD-10-CM codes. We could
confirm our suspicion by using icd9 check or icd9 lookup to see whether the codes are defined in the
ICD-9-CM coding system.

Because our data span the date the US switched to ICD-10-CM (October 1, 2015), we create an indicator
for whether the record should use ICD-10-CM based on the date of discharge (dmonth). We then run
icd10cm check again for only these records.

. generate usel0 = (dmonth>=tm(2015m10))

. icd10cm check diagl if usel0==1, version(2016)
(diagl contains defined codes; no missing values)

All the problems in diag1 are before the switch, so we proceed without concern about our data.

In the generate command above, we used the tm () function, which lets us easily provide date values
to Stata in string form; see [D]| Datetime for more information about working with dates.
d
If we wanted to check codes in more than one diagnosis variable, we could use a foreach loop or
reshape our data; see Working with multiple codes in [D] icd. Also, additional options for icd10cm
check help you identify the source of any errors. For example, you can obtain a list of observations that
have invalid codes. See Options for icd10cm check.

icd10cm — ICD-10-CM diagnosis codes 451

icd10cm clean formats the variable to ensure consistency and to make subsequent output from other
commands such as 1ist and tabulate look better. icd10cm clean also can be used to verify that
the codes in a variable conform to the ICD-10-CM format, without checking to see whether the codes are
defined.

» Example 2: Creating a variable with standardized codes

We would like to find the frequency of each primary diagnosis in our dataset. We can use tabulate
with the sort option to see the most common primary diagnoses first.

So that the codes in diagl are more readable in the tabulate output, we first use icd10cm clean.
This adds a period after the three-character category code. We specify the pad option to make sure our
codes align and store the result in the new variable pdx.

. icd10cm clean diagl if uselO==1, pad generate(pdx)
(1,955 missing values generated)

. tabulate pdx, sort

pdx Freq. Percent Cum.
A41.9 105 5.30 5.30
048.0 40 2.02 7.32
I121.4 37 1.87 9.19
070.1 36 1.82 11.01
M17.11 33 1.67 12.68
034.21 28 1.41 14.09
J96.01 21 1.06 15.15
Mi16.11 21 1.06 16.21
J18.9 20 1.01 17.22
070.0 20 1.01 18.23

(output omitted)
Total 1,980 100.00

Notice that we used if with the use10 variable we created in example 1 to restrict icd10cm clean to
just those diagnosis codes where the ICD-10-CM coding system should have been applied.
N
Aside from validating values of codes, the icd10cm command is primarily used to create inputs for
other Stata commands. For example, in example 5 of [D] icd9, we show how to graph the frequency of
category codes with descriptions, and in example 3 of [D] icd10pcs, we calculate average billed amounts
over different procedures.

b Example 3: Creating a variable indicating diagnosis

In example 2, we found that the most common primary diagnosis code in our data is A41.9, a code
for a type of sepsis (a complication of infection).

Suppose we are interested in differences in length of stay (1los) for discharges with and without a
primary diagnosis of sepsis. We can use icd10cm generate with the range () option to search records
for other diagnosis codes starting with A40, A41, and A42, which also indicate a sepsis diagnosis.

. icd10cm generate sepsis=diagl if usel0==1, range(A40% A41x A42x%)
An informal way to examine differences is to plot the average length of stay for discharges with and

without a sepsis diagnosis. We first label the values of our sepsis variable so that it displays nicely in
the graph.

icd10cm — ICD-10-CM diagnosis codes 452

. label define sepsis O "No sepsis" 1 "Sepsis"
. label values sepsis sepsis

. graph hbar los, over(sepsis) ytitle("Average length of stay (days)")

No sepsis

Sepsis

T

0 2 4 6
Average length of stay (days)

More formally, we could include the new sepsis indicator as a factor variable in a regression model.

d

Interactive utilities

icd10cm lookup and icd10cm search are interactive tools. You can use them without having any
ICD-10-CM diagnosis data in memory.

icd10cm lookup lists the descriptions of codes given on the command line, and icd10cm search
looks for relevant ICD-10-CM diagnosis codes from the specified keywords. The two commands comple-
ment each other.

b Example 4: Finding diagnosis codes from descriptions

In example 3, we specified codes for sepsis as any code starting with A40, A41, or A42. Suppose we
want to look for other relevant codes. We can search the descriptions of the ICD-10-CM codes to locate
codes of interest.

. icd10cm search sepsis, version(2016)

A02.1 Salmonella sepsis

A22.7 Anthrax sepsis

A26.7 Erysipelothrix sepsis

A32.7 Listerial sepsis
(output omitted)

Note that icd10cm search is case insensitive. If you want icd10cm search to respect the case of
the search terms you type, specify the matchcase option.

N
Using icd10cm lookup is similar to icd10pcs lookup. See example 4 in [D] icd10pcs.

icd10cm — ICD-10-CM diagnosis codes 453

Stored results

icd10cm check stores the following in r ():

Scalars
r(et) number of errors of type #
r (esum) total number of errors
r(miss) number of missing values
r(N) number of nonmissing values

icd10cm clean stores the following in r ():
Scalars
r(N) number of changes
icd10cm lookup and icd10cm search store the following inr():

Scalars
r(N_codes) number of codes found

Acknowledgments

We thank the Washington State Department of Health’s Center for Health Statistics for providing us
with access to its 2015 Comprehensive Hospital Abstract Reporting System (CHARS) inpatient dataset.
The hosp2015 dataset used here was partially simulated based on information from the 2015 limited use
CHARS. We also thank Jeanne M. Sears (retired) of the University of Washington for bringing the CHARS
to our attention.

We thank Joe Canner, who while at Yale University School of Medicine, wrote mycd10 and mycd10p,
which provide many utilities for ICD-10 diagnosis and procedure codes. The commands rely on a user-
supplied ICD-10 lookup dataset for diagnosis codes and ICD-10-PCS codes from the US Centers for Medi-
care and Medicaid Services for procedure codes.

Reference

Centers for Disease Control and Prevention. 2013. International Classification of Diseases, Ninth Revision, Clinical
Modification (ICD-9-CM). https://www.cdc.gov/nchs/icd/icd9cm.htm.

Also see

[D] ied — Introduction to ICD commands

[D] icd9 — ICD-9-CM diagnosis codes

[D] icd10 — ICD-10 diagnosis codes

[D] icd10pces — ICD-10-PCS procedure codes
(D]

D] frunalias — Change storage type of alias variables

https://www.cdc.gov/nchs/icd/icd9cm.htm

icd10pcs — ICD-10-PCS procedure codes

Description Quick start Menu Syntax Options
Remarks and examples Stored results Acknowledgments Also see
Description

icd10pcs is a suite of commands for working with ICD-10-PCS procedure codes from US federal fiscal
year 2016 to the present. To see the current version of the ICD-10-PCS procedure codes and any changes
that have been applied, type icd10pcs query.

icd10pcs check, icd10pcs clean, and icd10pcs generate are data management commands.
icd10pcs check verifies that a variable contains defined ICD-10-PCS procedure codes and provides
a summary of any problems encountered. icdlOpcs clean standardizes the format of the codes.
icd10pcs generate can create a binary indicator variable for whether the code is in a specified set
of codes, a variable containing a corresponding higher-level code, or a variable containing the descrip-
tion of the code.

icd10pcs lookup and icd10pcs search are interactive utilities. icd10pcs lookup displays de-
scriptions of the codes specified on the command line. icd10pcs search looks for relevant ICD-10-PCS
procedure codes from keywords given on the command line.

Quick start

Determine whether ICD-10-PCS procedure codes in proc1 are invalid, and store reasons in invalid

icd10pcs check procl, generate(invalid)

Standardize display of codes in proc2 to add a period and left-align codes

icd10pcs clean proc2, replace

Check that the codes in proc3 conform to ICD-10-PCS formatting rules, and if so, create main as the
corresponding three-character category code

icd10pcs generate main = proc3, category check

Generate descr4 as the current short description of procedure code in proc4

icd10pcs generate descr4 = proc4, description

Look up current descriptions for procedure codes 081.23J4 through 081.Y3Z3
icd10pcs lookup 081.23J4/081.Y3Z3

Look up codes where the description from FFY-2016 contains the word “foot”

icd10pcs search foot, version(2016)

Menu

Data > ICD codes > ICD-10-PCS

454

icd10pcs — ICD-10-PCS procedure codes 455

Syntax
Verify that variable contains defined codes

icd10pcs check varname [if | [in] [, checkopis |

Clean variable and verify format of codes

icd10pcs clean varname [if | [in], {generate (newvar) | replace} [cleanopts |

Generate new variable from existing variable

icd10pcs generate newvar = varname [if | [in], category [check|

icd10pcs generate newvar = varname [1}‘} [in] , description [genopls]

icd10pcs generate newvar = varname [if | [in], range (codelist) | check]

Display code descriptions

icd10pcs lookup codelist | , version(#) |

Search for codes from descriptions

icd10pcs search [" |text["] [[" |text["] ...] [, searchopts]
Display ICD-10-PCS version
icd10Opcs query

codelist is one of the following:

icd10code (the particular code)
icd10codex (all codes starting with)
icd10code/icdl0code (the code range)

or any combination of the above, such as 041 .E09P 2W3* BQ2L/BQ2LZZZ.

checkopts Description

fmtonly check only format of the codes

summary frequency of each invalid or undefined code

list list observations with invalid or undefined ICD-10-PCS codes
generate (newvar) create new variable marking invalid codes

version(#) fiscal year to check codes against; default is the current year

icd10pcs — ICD-10-PCS procedure codes 456

cleanopts Description

* generate (newvar) create new variable containing cleaned codes

*replace replace existing codes with the cleaned codes
check check that variable contains ICD-10-PCS codes before cleaning
nodots format codes without a period

* Either generate () or replace is required.

genopts Description

addcode (begin | end) add code to the beginning or end of the description

nodots format codes without a period; must specify addcode ()

check check that variable contains ICD-10-PCS codes before generating new
variable

long use long description rather than short

version(#) select description from fiscal year #; default is the current year

searchopts Description

or match any keyword

matchcase match case of keywords

version(#) search description from fiscal year #; default is all

collect is allowed with icd10pcs check and icd10pcs clean; see [U] 11.1.10 Prefix commands.

The icd10pcs suite of commands does not allow alias variables; see [D] frunalias for advice on how to get around this
restriction.

Options

Options are presented under the following headings:

Options for icd10pcs check
Options for icd10pcs clean
Options for icd10pcs generate
Option for icd10pcs lookup
Options for icd10pcs search

Options for icd10pcs check

fmtonly tells icd10pcs check to verify that the codes fit the format of ICD-10-PCS procedure codes but
not to check whether the codes are defined.

summary specifies that icd10pcs check should report the frequency of each invalid or undefined code
that was found in the data. Codes are displayed in descending order by frequency. summary may not
be combined with list.

list specifies that icd10pcs check list the observation number, the invalid or undefined ICD-10-PCS
procedure code, and the reason the code is invalid or whether it is an undefined code. 1ist may not
be combined with summary.

icd10pcs — ICD-10-PCS procedure codes 457

generate (newvar) specifies that icd10pcs check create a new variable containing, for each observa-
tion, O if the observation contains a defined code. Otherwise, it contains a number from 1 to 11 if
the code is invalid, 77 if the code is valid only for a previous version, 88 if the code is valid only for
a later version, 99 if the code is undefined, or missing if the code is missing. The positive numbers
indicate the kind of problem and correspond to the listing produced by icd10pcs check.

version(#) specifies the version of the codes that icd10pcs check should reference. # indicates the
federal fiscal year for the codes. For example, use 2016 for federal fiscal year 2016 (FFY-2016),
which is October 1, 2015 to September 30, 2016. icd10pcs supports all years after the United States
officially adopted ICD-10-PCS. The appropriate value of # should be determined from the data source.
The default is the current year.

Warning: The default value of version() will change over time so that the most recent codes are
used. Using the default value rather than specifying a specific version may change results after a new
version of the codes is introduced.

Options for icd10pcs clean

generate (newvar) and replace specify how the formatted values of varname are to be handled. You
must specify either generate () or replace.

generate () specifies that the cleaned values be placed in the new variable specified in newvar.
replace specifies that the existing values of varname be replaced with the formatted values.

check specifies that icd10pcs clean should first check that varname contains codes that fit the format
of ICD-10-PCS procedure codes. Specifying the check option will slow down icd10pcs clean.

nodots specifies that the period be removed in the final format.

Options for icd10pcs generate

category, description, and range (codelist) specify the contents of the new variable that icd10pcs
generate is to create. You do not need to icd10pcs clean varname before using icd10pcs
generate; it will accept any supported format or combination of formats.

category specifies to extract the three-character category code from the ICD-10-PCS procedure code.
The resulting variable may be used with the other icd10pcs subcommands.

description creates newvar containing descriptions of the ICD-10-PCS procedure codes.

range (codelist) creates a new indicator variable equal to 1 when the ICD-10-PCS procedure code is in
the range specified, equal to 0 when the ICD-10-PCS procedure code is not in the range, and equal
to missing when varname is missing.

addcode (begin | end) specifies that the code should be included with the text describing the code. Spec-
ifying addcode (begin) will prepend the code to the text. Specifying addcode (end) will append
the code to the text.

nodots specifies that the code that is added to the description should be formatted without a period.
nodots may be specified only if addcode () is also specified.

check specifies that icd10pcs generate should first check that varname contains codes that fit the
format of ICD-10-PCS procedure codes. Specifying the check option will slow down the generate
subcommand.

icd10pcs — ICD-10-PCS procedure codes 458

long specifies that the long description of the code be used rather than the short (abbreviated) descrip-
tion.

version(#) specifies the version of the codes that icd10pcs generate should reference. # indicates
the federal fiscal year for the codes. For example, use 2016 for federal fiscal year 2016 (FFY-2016),
which is October 1, 2015 to September 30, 2016. icd10pcs supports all years after the United States
officially adopted ICD-10-PCS. The appropriate value of # should be determined from the data source.
The default is the current year.

Warning: The default value of version() will change over time so that the most recent codes are
used. Using the default value rather than specifying a specific version may change results after a new
version of the codes is introduced.

Option for icd10pcs lookup

version(#) specifies the version of the codes that icd10pcs lookup should reference. # indicates
the federal fiscal year for the codes. For example, use 2016 for federal fiscal year 2016 (FFY-2016),
which is October 1, 2015 to September 30, 2016. icd10pcs supports all years after the United States
officially adopted ICD-10-PCS. The appropriate value of # should be determined from the data source.
The default is the current year.

Warning: The default value of version() will change over time so that the most recent codes are
used. Using the default value rather than specifying a specific version may change results after a new
version of the codes is introduced.

Options for icd10pcs search

or specifies that ICD-10-PCS procedure codes be searched for descriptions that contain any word specified
with icd10pcs search. The default is to list only descriptions that contain all the words specified.

matchcase specifies that icd10pcs search should match the case of the keywords given on the com-
mand line. The default is to perform a case-insensitive search.

version(#) specifies the version of the codes that icd10pcs search should reference. # indicates
the federal fiscal year for the codes. For example, use 2016 for federal fiscal year 2016 (FFY-2016),
which is October 1, 2015 to September 30, 2016. icd10pcs supports all years after the United States
officially adopted ICD-10-PCS.

By default, descriptions for all versions are searched, meaning that codes that changed descriptions
and that have descriptions in multiple versions that contain the search terms will be duplicated. To
ensure a list of unique code values, specify the version number.

Remarks and examples

Remarks are presented under the following headings:

Introduction
Managing datasets with ICD-10-PCS codes
Interactive utilities

If you have not yet read Introduction to ICD coding in [D] icd, please do so before using the icd10pcs
commands.

icd10pcs — ICD-10-PCS procedure codes 459

Introduction

The general format of an ICD-10-PCS procedure code is a three-character category code followed by
four alpha-numeric characters after an (implied) period. The full codes are always seven characters long
and may be any combination of letters and numbers.

Some examples of ICD-10-PCS procedure codes are 081 (Eye, Bypass) and 0GT.D0ZZ (Resection of
Aortic Body, Open Approach). Many datasets record (and some people write) codes without the period;
for example, the code 090.KXZZ may appear as 090KXZZ. The icd10pcs commands understand both
ways of recording codes. The commands are also insensitive to codes recorded with or without leading
and trailing blanks and are case insensitive.

All the following are acceptable formats to record codes in Stata:
03R
03]
00£53zz
OTL.C0ZZ
091

Important note: What constitutes a valid code changes between versions. For the rest of this entry, a
defined code is any code that is currently valid, was valid at some point since the ICD-10-CM/PCS coding
system was introduced, or has a meaning as a grouping of codes. The list of valid codes and their
associated descriptions is from the US Centers for Medicare and Medicaid Services (CMS).

To view the current version of the ICD-10-PCS procedure codes in Stata, its source, and a log of changes
that have been made to the list of ICD-10-PCS procedure codes since the icd10pcs commands were
implemented, type

. icd1Opcs query
ICD-10-PCS Procedure Code Version and Change Log

Note
Stata obtains the ICD-10-PCS dataset from the Centers for Medicare and
Medicaid Services website.

(output omitted)

Managing datasets with ICD-10-PCS codes

The icd10pcs suite of commands has three data management commands. icd10pcs check verifies
that the ICD-10-PCS procedure codes in varname are valid. icd10pcs clean standardizes the format of
ICD-10-PCS procedure codes in varname. And icd10pcs generate produces a new variable from an
existing variable containing ICD-10-PCS procedure codes.

Examples in this section use hosp2015.dta, a fictional sample of inpatient hospital discharges
in Washington state from July 2015 to December 2015. The data were simulated based on the
Comprehensive Hospital Abstract Reporting System (CHARS); see https://www.doh.wa.gov/Dataand
StatisticalReports/HealthcareinWashington/HospitalandPatientData/HospitalDischargeDataCHARS.
Examples analyzing the diagnosis codes for this dataset can be found in [D] icd10cm.

. use https://www.stata-press.com/data/r19/hosp2015
(Fictional WA hospital discharges)

icd10pcs check is the primary subcommand for validating ICD-10-PCS procedure codes. However,
if you just want to verify that the codes conform to the formatting rules for ICD-10-PCS procedure, you
can use the check option with icd10pcs clean or icd10pcs generate.

https://www.doh.wa.gov/DataandStatisticalReports/HealthcareinWashington/HospitalandPatientData/HospitalDischargeDataCHARS
https://www.doh.wa.gov/DataandStatisticalReports/HealthcareinWashington/HospitalandPatientData/HospitalDischargeDataCHARS

icd10pcs — ICD-10-PCS procedure codes 460

b Example 1: Checking for valid code values

You use icd10pcs check just like you do 1cd10cm check. Because the data are from federal fiscal
year 2016, we specify version(2016).

In example 1 of [D] icd10cm, we found that we needed to account for the date of the admission when
we used the 1cd10cm commands. The same is true of the icd10pcs commands because the two systems
were implemented simultaneously. We preemptively exclude records before October 2015 here.

. drop if dmonth < tm(2015m10)
(1,955 observations deleted)

. icd1Opcs check procl, version(2016)
(procl contains defined codes; 594 missing values)

We find that there are no errors in the coding of the proc1 variable and that 594 records in our dataset
did not have any procedure at all.
N
If we wanted to check codes in more than one procedure variable, we could use a foreach loop or
reshape our data; see Working with multiple codes in [D] icd. With large datasets, it is generally faster
to use a loop.

It is a good idea to begin with icd10pcs check and fix any potential problems before proceeding
to other icd10pcs commands. The icd10pcs check command with the generate () or 1ist option
is also useful for tracking down problems when any of the other icd10pcs commands tell you that the
variable “contains invalid codes”.

icd10pcs clean formats the variable to ensure consistency and to make subsequent output from
other commands such as 1ist and tabulate look better. icd10pcs clean also can be used to verify
that the codes in a variable conform to the ICD-10-CM format, without checking to see whether the codes
are defined.

b Example 2: Cleaning an existing variable

We standardize all the ICD-10-PCS procedure codes in proc1 to include a period after the third char-
acter. We specify the replace option rather than the generate () option so that the values in proc1 are
replaced with their formatted values.

. icd10pcs clean procl, replace

variable procl was str7 now str8
(1,980 real changes made)

icd10pcs clean reports that 1,980 values were replaced. If we wanted to standardize to a format
without the period, we could have specified the nodots option.
N
Aside from validating values of codes, the icd10pcs command is primarily used to create inputs for
other Stata commands. For example, in example 5 of [D] icd9, we show how to graph the frequency of
category codes with descriptions, and in example 3 of [D] icd10cm, we show how to graph summary
statistics by diagnosis.

b Example 3: Creating an indicator for common procedures

If we use tabulate on the primary procedure code (proc1) the same way we did for the primary
diagnosis in example 2, we find that the three most frequent primary procedure codes in our data are
10E0XZZ, 10D00Z1, and 0SRCO0J9. Suppose we want to know the average billed amount (billed) for
all admissions that had one of these procedure codes in the primary procedure field.

icd10pcs — ICD-10-PCS procedure codes 461

Our first step is to create an indicator for whether one of these codes is present in proc1. Then, we
summarize billed over the three top values of procl by using tabulate; see [R] tabulate, summa-
rize().

. icd1Opcs generate top3 = procl, range(10EOXZZ 10D00Z1 OSRC0J9)

. tabulate procl if top3==1, summarize(billed) freq means

Summary of Amount
billed ($1,000s)
Procedure 1 Mean Freq.
OSR.C0J9 60.62 40
10D.00Z1 27.55 92
10E.0XZZ 14.05 180
Total 24.00 312

We find that the highest average billed amount for the top three codes is for ICD-10-PCS procedure
code OSR.C0J9. There are 40 discharges in our dataset with this code as their principal procedure, and
their average billed amount is about $60,620.

N

Interactive utilities

icd10pcs lookup and icd10pcs search are interactive tools. You can use them without having any
ICD-10-PCS procedure data in memory.

icd10pcs lookup lists the descriptions of codes given on the command line, and icd10pcs search
looks for relevant ICD-10-PCS procedure codes from the specified keywords. The two commands com-
plement each other.

b Example 4: Finding procedure code descriptions

Suppose we wanted to find the short descriptions of the most frequent codes in our dataset. We can
supply icd10pcs lookup with the same list of codes we used in example 3.
. icd1Opcs lookup 10EOXZZ 10D00Z1 OSRC0J9, version(2016)

OSR.C0J9 Replace of R Knee Jt with Synth Sub, Cement, Open Approach
10D.00Z1 Extraction of POC, Low Cervical, Open Approach
10E.0XZZ Delivery of Products of Conception, External Approach

We see, for example, that ICD-10-PCS procedure code OSR.CO0J9 is for a type of knee replacement

surgery.
d

Using icd10pcs search is similar to using icd10cm search. See example 4 in [D] icd10cm.

icd10pcs — ICD-10-PCS procedure codes 462

Stored results

icd10pcs check stores the following in r ():

Scalars
r(et) number of errors of type #
r (esum) total number of errors
r(miss) number of missing values
r(N) number of nonmissing values

icd10pcs clean stores the following in r O):
Scalars
r(N) number of changes
icd10pcs lookup and icd10pcs search store the following in r ():

Scalars
r(N_codes) number of codes found

Acknowledgments

We thank the Washington State Department of Health’s Center for Health Statistics for providing us
with access to its 2015 Comprehensive Hospital Abstract Reporting System (CHARS) inpatient dataset.
The hosp2015 dataset used here was partially simulated based on information from the 2015 limited use
CHARS. We also thank Jeanne M. Sears (retired) of the University of Washington for bringing the CHARS
to our attention.

We thank Joe Canner, who while at Yale University School of Medicine, wrote mycd10 and mycd10p,
which provide many utilities for ICD-10 diagnosis and procedure codes. The commands rely on a user-
supplied ICD-10 lookup dataset for diagnosis codes and ICD-10-PCS codes from the US Centers for Medi-
care and Medicaid Services for procedure codes.

Also see

D] icd — Introduction to ICD commands
icd9p — ICD-9-CM procedure codes
icd10cm — ICD-10-CM diagnosis codes

D] frunalias — Change storage type of alias variables

D
D

(D]
(D]
(D]
(D]

import — Overview of importing data into Stata

Description Remarks and examples References Also see

Description

This entry provides a quick reference for determining which method to use for reading non-Stata data
into memory. See [U] 22 Entering and importing data for more details.

Remarks and examples

Remarks are presented under the following headings:

Summary of the different methods
import excel
import delimited
Jjdbe
odbc
infile (free format)—infile without a dictionary
infix (fixed format)
infile (fixed format)—infile with a dictionary
import sas
import sasxport5 and import sasxport8
import spss
import fred
import haver (Windows only)
import haverdirect (Windows only)
import dbase
spshape2dta
Examples
Video example

Summary of the different methods

import excel

o import excel reads worksheets from Microsoft Excel (.x1s and .x1sx) files.
o Entire worksheets can be read, or custom cell ranges can be read.

o See [D] import excel.

import delimited

o import delimited reads text-delimited files.

o The data can be tab-separated or comma-separated. A custom delimiter may also be specified.
o An observation must be on only one line.

o The first line in the file can optionally contain the names of the variables.

o See [D] import delimited.

463

import — Overview of importing data into Stata 464

jdbe

o Java Database Connectivity (JDBC) is an application programming interface for the programming
language Java. The jdbc command allows you to connect to, load data from, insert data into, and
execute queries on a database using JDBC.

o See [D] jdbe.

odbc

o ODBC, an acronym for Open DataBase Connectivity, is a standard for exchanging data between pro-
grams. Stata supports the ODBC standard for importing data via the odbc command and can read from
any ODBC data source on your computer.

o See [D] odbc.

infile (free format)—infile without a dictionary

o The data can be space-separated, tab-separated, or comma-separated.

o Strings with embedded spaces or commas must be enclosed in quotes (even if tab- or comma-
separated).

o An observation can be on more than one line, or there can even be multiple observations per line.

o See [D] infile (free format).

infix (fixed format)

o The data must be in fixed-column format.
o An observation can be on more than one line.
o infix has simpler syntax than infile (fixed format).

o See [D] infix (fixed format).

infile (fixed format)—infile with a dictionary

o The data may be in fixed-column format.

o An observation can be on more than one line.

o ASCII or EBCDIC data can be read.

o infile (fixed format) has the most capabilities for reading data.

o See [D] infile (fixed format).

import sas

o import sas reads Version 7 SAS (.sas7bdat) files.
o import sas will also read value-label information from a . sas7bcat file.

o See [D] import sas.

import — Overview of importing data into Stata 465

import sasxport5 and import sasxport8

o import sasxportb reads SAS XPORT Version 5 Transport format files.
o import sasxportb will also read value-label information from a formats.xpf XPORT file.
o import sasxport8 reads SAS XPORT Version 8 Transport format files.

o See [D] import sasxport5 and [D] import sasxport8.

import spss
o import spss reads IBM SPSS Statistics (. sav and .zsav) files.

o See [D] import spss.

import fred

o import fred reads Federal Reserve Economic Data.
o To use import fred, you must have a valid API key obtained from the St. Louis Federal Reserve.

o See [D] import fred.

import haver (Windows only)

o import haver reads data from Haver Analytics (https://www.haver.com/) databases.

o See [D] import haver.

import haverdirect (Windows only)

o import haverdirect reads data from Haver Analytics (https://www.haver.com/) cloud servers.

o See [D] import haverdirect.

import dbase

o import dbase reads a version III or version IV dBase (. dbf) file.

o See [D] import dbase.

spshape2dta

o spshape2dta translates the .dbf and . shp files of a shapefile into two Stata datasets.
o See [SP] spshape2dta.

Examples

b Example 1: Tab-separated data

begin examplel.raw

1 0 1 John Smith m
0 0 1 Paul Lin m
0 1 0 Jan Doe f

0 0 Julie McDonald f

end examplel.raw

https://www.haver.com/
https://www.haver.com/

import — Overview of importing data into Stata 466

. type examplel.raw, showtabs

1<T>0<T>1<T>John Smith<T>m
0<T>0<T>1<T>Paul Lin<T>m
0<T>1<T>0<T>Jan Doe<T>f
0<T>0<T>.<T>Julie McDonald<T>f

It could be read in by

import delimited a b ¢ name gender using examplel

b Example 2: Comma-separated data

,name, gender
,John Smith,m
,Paul Lin,m

Jan Doe, f

ulie McDonald,f

O OO
o= OoOOooT
O = =0

Ja—

contains tab-separated data. The type command with the showtabs option shows the tabs:

begin example2.raw

could be read in by

import delimited using example2

b Example 3: Tab-separated data with double-quoted strings

1 0 1 "John Smith" m
0 0 1 "Paul Lin" m
0 1 "Jan Doe" f
0 0 "Julie McDonald" f

end example2.raw

begin example3.raw

end example3.raw

contains tab-separated data with strings in double quotes.

. type example3.raw, showtabs

1<T>0<T>1<T>"John Smith"<T>m
0<T>0<T>1<T>"Paul Lin"<T>m
0<T>1<T>0<T>"Jan Doe"<T>f
O<T>0<T>.<T>"Julie McDonald"<T>f

It could be read in by

infile byte (a b c¢) strl5 name strl gender using example3

import delimited a b ¢ name gender using example3

infile using dict3

import — Overview of importing data into Stata 467

where the dictionary dict3.dct contains

begin dict3.dct
infile dictionary using example3 {

byte a
byte b
byte ¢

strl5 name
strl gender

end dict3.dct

b Example 4: Space-separated data with double-quoted strings

begin example4.raw
"John Smith" m

"Paul Lin" m

"Jan Doe" f

. "Julie McDonald" f

O O O -
(el e Ne)
O = =

end example4.raw
could be read in by

. infile byte (a b c) strib name strl gender using exampled
or

. infile using dict4

where the dictionary dict4.dct contains

begin dict4.dct
infile dictionary using example4 {

byte a

byte b

byte ¢

strl5 name

strl gender

end dict4.dct

b Example 5: Fixed-column format

begin exampleS.raw
101mJohn Smith

001mPaul Lin

010fJan Doe

00 fJulie McDonald

end example5.raw
could be read in by

. infix a 1 b 2 ¢ 3 str gender 4 str name 5-19 using exampleb
or

. infix using dictba

import — Overview of importing data into Stata 468

where dict5a.dct contains

begin dict5a.dct
infix dictionary using example5 {
a
b 2
c 3
str gender 4
str name 5-19
¥
end dict5a.dct
or
. infile using dictbb
where dict5b.dct contains
begin dictSb.dct
infile dictionary using example5 {
byte a %1f
byte b %1t
byte c %1t
strl gender Yls
strib name %15s

end dict5b.dct

b Example 6: Fixed-column format with headings

begin example6.raw
line 1 : a heading

There are a total of 4 lines of heading.

The next line contains a useful heading:

+ 1 + 2 + 3 + 4————t-
1 0 1 m John Smith
0 0 1 m Paul Lin
0 1 0 £ Jan Doe
0 0 f Julie McDonald
end example6.raw
could be read in by

. infile using dict6a

where dict6a.dct contains

begin dict6a.dct
infile dictionary using example6 {
_firstline(5)
byte a
byte b
_column(17) byte c %1f
stril gender
_column(33) stri5 name %15s
}
end dict6a.dct

or could be read in by

. infix 5 first a 1 b 9 ¢ 17 str gender 25 str name 33-46 using example6

import — Overview of importing data into Stata 469

or could be read in by

. infix using dict6b

where dict6b.dct contains

begin dict6b.dct
infix dictionary using example6 {
5 first
a 1
b 9
c 17
str gender 25
str name 33-46
}
end dict6b.dct

b Example 7: Fixed-column format with observations spanning multiple lines

begin example7.raw
gender name

o o

c
1

n Smith
1

O

o B

5]
il
-
L
=]

a

-
o

HOuUHOTUB OUB LW
of
o
o
(0]

Julie McDonald

end example7.raw

could be read in by

. infile using dict7a

where dict7a.dct contains

begin dict7a.dct
infile dictionary using example7 {
_firstline(2)
byte a
byte b
byte ¢
_line(2)
strl gender
_line(3)
strl5 name %15s
}
end dict7a.dct

or, if we wanted to include variable labels,

. infile using dict7b

import — Overview of importing data into Stata 470

where dict7b.dct contains

begin dict7b.dct
infile dictionary using example7 {
_firstline(2)
byte a "Question