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Intro — Introduction to data management reference manual

Description
This manual documents most of Stata’s data management features and is referred to as the [D] manual.

Some specialized data management features are documented in such subject-specific reference manuals

as [MI] Stata Multiple-Imputation Reference Manual, [SEM] Stata Structural Equation Modeling Refer-

ence Manual, [TS] Stata Time-Series Reference Manual, [ST] Stata SurvivalAnalysis Reference Manual,

and [XT] Stata Longitudinal-Data/Panel-Data Reference Manual.

Following this entry, [D] Data management provides an overview of data management in Stata and

of Stata’s data management commands. The other parts of this manual are arranged alphabetically. If

you are new to Stata’s data management features, we recommend that you read the following first:

[D] Data management — Introduction to data management commands

[U] 12 Data

[U] 13 Functions and expressions

[U] 11.5 by varlist: construct

[U] 22 Entering and importing data

[U] 23 Combining datasets

[U] 24 Working with strings

[U] 26 Working with categorical data and factor variables

[U] 25 Working with dates and times

[U] 16 Do-files

You can see that most of the suggested reading is in [U]. That is because [U] provides overviews of most

Stata features, whereas this is a reference manual and provides details on the usage of specific commands.

You will get an overview of features for combining data from [U] 23 Combining datasets, but the details

of performing a match-merge (merging the records of two files by matching the records on a common

variable) will be found here, in [D] merge.

Stata is continually being updated, and Stata users are always writing new commands. To ensure that

you have the latest features, you should install the most recent official update; see [R] update.

Also see
[U] 1.3 What’s new

[R] Intro — Introduction to base reference manual

1



Data management — Introduction to data management commands

Description References Also see

Description
This manual, called [D], documents Stata’s data management features. See Mitchell (2020) for addi-

tional information and examples on data management in Stata.

Data management for statistical applications refers not only to classical data management—sorting,

merging, appending, and the like—but also to data reorganization because the statistical routines you

will use assume that the data are organized in a certain way. For example, statistical commands that

analyze longitudinal data, such as xtreg, generally require that the data be in long rather than wide

form, meaning that repeated values are recorded not as extra variables, but as extra observations.

Here are the basics everyone should know:

[D] use Load Stata dataset

[D] sysuse Use shipped dataset

[D] webuse Use dataset from Stata website

[D] save Save Stata dataset

[D] describe Describe data in memory or in a file

[D] codebook Describe data contents

[D] inspect Display simple summary of data’s attributes

[D] count Count observations satisfying specified conditions

[D] Data types Quick reference for data types

[D]Missing values Quick reference for missing values

[D] Datetime Date and time values and variables

[D] list List values of variables

[D] edit Browse or edit data with Data Editor

[D] varmanage Manage variable labels, formats, and other properties

[D] rename Rename variable

[D] format Set variables’ output format

[D] label Manipulate labels

[D] frames intro Introduction to frames

2
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To work with multiple datasets in memory, see

[D] frames intro Introduction to frames

[D] frames Data frames

[D] frame change Change identity of current (working) frame

[D] frame copy Make a copy of a frame

[D] frame create Create a new frame

[D] frame drop Drop frames from memory

[D] frame prefix The frame prefix command

[D] frame put Copy selected variables or observations to a new frame

[D] frame pwf Display name of current (working) frame

[D] frame rename Rename existing frame

[D] frames dir Display names of all frames in memory

[D] frames reset Drop all frames from memory

[D] frames save Save a set of frames on disk

[D] frames modify Modify a set of frames on disk

[D] frames use Load a set of frames from disk

[D] frames describe Describe frames in memory or in a file

[D] frget Copy variables from linked frame

[D] frlink Link frames

You will need to create and drop variables, and here is how:

[D] generate Create or change contents of variable

[D] egen Extensions to generate

[D] drop Drop variables or observations

[D] clear Clear memory
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For inputting or importing data, see

[D] use Load Stata dataset

[D] sysuse Use shipped dataset

[D] webuse Use dataset from Stata website

[D] input Enter data from keyboard

[D] import Overview of importing data into Stata

[D] import dbase Import and export dBase files

[D] import delimited Import and export delimited text data

[D] import excel Import and export Excel files

[D] import fred Import data from Federal Reserve Economic Data

[D] import haver Import data from Haver Analytics databases

[D] import haverdirect Import data from Haver Analytics cloud servers

[D] import sas Import SAS files

[D] import sasxport5 Import and export data in SAS XPORT Version 5 format

[D] import sasxport8 Import and export data in SAS XPORT Version 8 format

[D] import spss Import and export SPSS files

[D] infile (fixed format) Import text data in fixed format with a dictionary

[D] infile (free format) Import unformatted text data

[D] infix (fixed format) Import text data in fixed format

[D] jdbc Load, write, or view data from a database with a Java API

[D] odbc Load, write, or view data from ODBC sources

[D] hexdump Display hexadecimal report on file

[D] icd9 ICD-9-CM diagnosis codes

[D] icd9p ICD-9-CM procedure codes

[D] icd10 ICD-10 diagnosis codes

[D] icd10cm ICD-10-CM diagnosis codes

[D] icd10pcs ICD-10-PCS procedure codes

and for exporting data, see

[D] save Save Stata dataset

[D] export Overview of exporting data from Stata

[D] outfile Export dataset in text format

[D] import dbase Import and export dBase files

[D] import delimited Import and export delimited text data

[D] import excel Import and export Excel files

[D] import sasxport5 Import and export data in SAS XPORT Version 5 format

[D] import sasxport8 Import and export data in SAS XPORT Version 8 format

[D] import spss Import and export SPSS files

[D] jdbc Load, write, or view data from a database with a Java API

[D] odbc Load, write, or view data from ODBC sources
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The ordering of variables and observations (sort order) can be important; see

[D] order Reorder variables in dataset

[D] sort Sort data

[D] gsort Ascending and descending sort

To reorganize or combine data, see

[D] append Append datasets

[D] merge Merge datasets

[D] frlink Link frames

[D] frget Copy variables from linked frame

[D] reshape Convert data from wide to long form and vice versa

[D] collapse Make dataset of summary statistics

[D] contract Make dataset of frequencies and percentages

[D] fillin Rectangularize dataset

[D] expand Duplicate observations

[D] expandcl Duplicate clustered observations

[D] stack Stack data

[D] joinby Form all pairwise combinations within groups

[D] xpose Interchange observations and variables

[D] cross Form every pairwise combination of two datasets

In the above list, we particularly want to direct your attention to [D] reshape, a useful command that

beginners often overlook.

For random sampling, see

[D] sample Draw random sample

[D] splitsample Split data into random samples

[D] drawnorm Draw sample from multivariate normal distribution

For file manipulation, see

[D] type Display contents of a file

[D] erase Erase a disk file

[D] copy Copy file from disk or URL

[D] cd Change directory

[D] dir Display filenames

[D] mkdir Create directory

[D] rmdir Remove directory

[D] cf Compare two datasets

[D] changeeol Convert end-of-line characters of text file

[D] filefilter Convert ASCII or binary patterns in a file

[D] checksum Calculate checksum of file

[D] zipfile Compress and uncompress files and directories in zip archive
format
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For handling Unicode strings, see

[D] unicode Unicode utilities

[D] unicode translate Translate files to Unicode

[D] unicode encoding Unicode encoding utilities

[D] unicode locale Unicode locale utilities

[D] unicode collator Language-specific Unicode collators

[D] unicode convertfile Low-level file conversion between encoding

The entries above are important. The rest are useful when you need them:

[D] datasignature Determine whether data have changed

[D] type Display contents of a file

[D] notes Place notes in data

[D] label language Labels for variables and values in multiple languages

[D] labelbook Label utilities

[D] encode Encode string into numeric and vice versa

[D] recode Recode categorical variables

[D] ipolate Linearly interpolate (extrapolate) values

[D] destring Convert string variables to numeric variables and vice versa

[D] mvencode Change missing values to numeric values and vice versa

[D] pctile Create variable containing percentiles

[D] range Generate numerical range

[D] by Repeat Stata command on subsets of the data

[D] statsby Collect statistics for a command across a by list

[D] dyngen Dynamically generate new values of variables

[D] compress Compress data in memory

[D] recast Change storage type of variable

[D] Datetime display formats Display formats for dates and times

[D] Datetime conversion String to numeric date conversion functions

[D] Datetime durations Obtaining and working with durations

[D] Datetime relative dates Datetime relative dates

[D] Datetime values from other Date and time conversion from other software
software

[D] bcal Business calendar file manipulation

[D] Datetime business calendars Business calendars

[D] Datetime business calendars Business calendars creation
creation
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[D] assert Verify truth of claim

[D] assertnested Verify variables nested

[D] clonevar Clone existing variable

[D] compare Compare two variables

[D] corr2data Create dataset with specified correlation structure

[D] ds Compactly list variables with specified properties

[D] duplicates Report, tag, or drop duplicate observations

[D] insobs Add or insert observations

[D] isid Check for unique identifiers

[D] lookfor Search for string in variable names and labels

[D] memory Memory management

[D] putmata Put Stata variables into Mata and vice versa

[D] obs Increase the number of observations in a dataset

[D] rename group Rename groups of variables

[D] separate Create separate variables

[D] shell Temporarily invoke operating system

[D] snapshot Save and restore data snapshots

[D] split Split string variables into parts

[D] vl Manage variable lists

[D] vl create Create and modify user-defined variable lists

[D] vl drop Drop variable lists or variables from variable lists

[D] vl list List contents of variable lists

[D] vl rebuild Rebuild variable lists

[D] vl set Set system-defined variable lists

There are some real jewels in the above, such as [D] notes, [D] compress, and [D] assert, which you will

find particularly useful.

References
Hoffmann, J. P. 2017. Principles of Data Management and Presentation. Oakland, CA: University of California Press.

Mitchell, M. N. 2020. Data Management Using Stata: A Practical Handbook. 2nd ed. College Station, TX: Stata Press.

Also see
[D] Intro — Introduction to data management reference manual

[R] Intro — Introduction to base reference manual

https://www.stata.com/bookstore/principles-of-data-management-and-presentation/
https://www.stata-press.com/books/data-management-using-stata/


append — Append datasets

Description Quick start Menu Syntax
Options Remarks and examples Reference Also see

Description
append appends Stata-format datasets stored on disk to the end of the dataset in memory. If any

filename is specified without an extension, .dta is assumed.

Stata can also join observations from two datasets into one; see [D] merge. See [U] 23 Combining

datasets for a comparison of append, merge, and joinby.

Quick start
Append mydata2.dta to mydata1.dta with no data in memory

append using mydata1 mydata2

Same as above, but with mydata1.dta in memory
append using mydata2

Same as above, and generate newv to indicate source dataset
append using mydata2, generate(newv)

Same as above, but do not copy value labels or notes from mydata2.dta
append using mydata2, generate(newv) nolabel nonotes

Only keep v1, v2, and v3 from mydata2.dta
append using mydata2, keep(v1 v2 v3)

Menu
Data > Combine datasets > Append datasets

8
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Syntax
append using filename [ filename [ . . . ] ] [ , options ]

You may enclose filename in double quotes and must do so if filename contains blanks or other special

characters.

options Description

generate(newvar) newvar marks source of resulting observations

keep(varlist) keep specified variables from appending dataset(s)

nolabel do not copy value-label definitions from dataset(s) on disk

nonotes do not copy notes from dataset(s) on disk

force append string to numeric or numeric to string without error

Options
generate(newvar) specifies the name of a variable to be created that will mark the source of observa-

tions. Observations from the master dataset (the data in memory before the append command) will
contain 0 for this variable. Observations from the first using dataset will contain 1 for this variable;

observations from the second using dataset will contain 2 for this variable; and so on.

keep(varlist) specifies the variables to be kept from the using dataset. If keep() is not specified, all
variables are kept.

The varlist in keep(varlist) differs from standard Stata varlists in two ways: variable names in varlist

may not be abbreviated, except by the use of wildcard characters, and you may not refer to a range of

variables, such as price-weight.

nolabel prevents Stata from copying the value-label definitions from the disk dataset into the dataset in

memory. Even if you do not specify this option, label definitions from the disk dataset never replace

definitions already in memory.

nonotes prevents notes in the using dataset from being incorporated into the result. The default is to

incorporate notes from the using dataset that do not already appear in the master data.

force allows string variables to be appended to numeric variables and vice versa, resulting in missing
values from the using dataset. If omitted, append issues an error message; if specified, append issues
a warning message.

Remarks and examples
The disk dataset must be a Stata-format dataset; that is, it must have been created by save (see

[D] save).

Example 1
We have two datasets stored on disk that we want to combine. The first dataset, called even.dta,

contains the sixth through eighth positive even numbers. The second dataset, called odd.dta, contains
the first five positive odd numbers. The datasets are
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. use even
(6th through 8th even numbers)
. list

number even

1. 6 12
2. 7 14
3. 8 16

. use odd
(First five odd numbers)
. list

number odd

1. 1 1
2. 2 3
3. 3 5
4. 4 7
5. 5 9

We will append the even data to the end of the odd data. Because the odd data are already in memory

(we just used them above), we type append using even. The result is

. append using even

. list

number odd even

1. 1 1 .
2. 2 3 .
3. 3 5 .
4. 4 7 .
5. 5 9 .

6. 6 . 12
7. 7 . 14
8. 8 . 16

Because the number variable is in both datasets, the variable was extended with the new data from

the file even.dta. Because there is no variable called odd in the new data, the additional observations

on odd were forward-filled with missing (.). Because there is no variable called even in the original
data, the first observations on even were back-filled with missing.
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Example 2
The order of variables in the two datasets is irrelevant. Stata always appends variables by name:

. use https://www.stata-press.com/data/r19/odd1
(First five odd numbers)
. describe
Contains data from https://www.stata-press.com/data/r19/odd1.dta
Observations: 5 First five odd numbers

Variables: 2 9 Jan 2024 08:41

Variable Storage Display Value
name type format label Variable label

odd float %9.0g Odd numbers
number float %9.0g

Sorted by: number
. describe using https://www.stata-press.com/data/r19/even
Contains data 6th through 8th even numbers
Observations: 3 9 Jan 2024 08:43

Variables: 2

Variable Storage Display Value
name type format label Variable label

number byte %9.0g
even float %9.0g Even numbers

Sorted by: number
. append using https://www.stata-press.com/data/r19/even
. list

odd number even

1. 1 1 .
2. 3 2 .
3. 5 3 .
4. 7 4 .
5. 9 5 .

6. . 6 12
7. . 7 14
8. . 8 16

The results are the same as those in the first example.

When Stata appends two datasets, the definitions of the dataset in memory, called the master dataset,

override the definitions of the dataset on disk, called the using dataset. This extends to value labels,

variable labels, characteristics, and date–time stamps. If there are conflicts in numeric storage types, the

more precise storage type will be used regardless of whether this storage type was in the master dataset

or the using dataset. If a variable is stored as a string in one dataset that is longer than in the other, the

longer str# storage type will prevail. If a variable is stored as a strL in one dataset and a str# in

another dataset, the strL storage type will prevail.
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Technical note
If a variable is a string in one dataset and numeric in the other, Stata issues an error message unless the

force option is specified. If force is specified, Stata issues a warning message before appending the
data. If the using dataset contains the string variable, the combined dataset will have numeric missing

values for the appended data on this variable; the contents of the string variable in the using dataset

are ignored. If the using dataset contains the numeric variable, the combined dataset will have empty

strings for the appended data on this variable; the contents of the numeric variable in the using dataset

are ignored.

Example 3
Because Stata has five numeric variable types—byte, int, long, float, and double—you may

attempt to append datasets containing variables with the same name but of different numeric types; see

[U] 12.2.2 Numeric storage types.

Let’s describe the datasets in the example above:

. describe using https://www.stata-press.com/data/r19/odd
Contains data First five odd numbers
Observations: 5 9 Jan 2024 08:50

Variables: 2

Variable Storage Display Value
name type format label Variable label

number float %9.0g
odd float %9.0g Odd numbers

Sorted by:
. describe using https://www.stata-press.com/data/r19/even
Contains data 6th through 8th even numbers
Observations: 3 9 Jan 2024 08:43

Variables: 2

Variable Storage Display Value
name type format label Variable label

number byte %9.0g
even float %9.0g Even numbers

Sorted by: number
. describe using https://www.stata-press.com/data/r19/oddeven
Contains data First five odd numbers
Observations: 8 9 Jan 2024 08:53

Variables: 3

Variable Storage Display Value
name type format label Variable label

number float %9.0g
odd float %9.0g Odd numbers
even float %9.0g Even numbers

Sorted by:
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The number variable was stored as a float in odd.dta but as a byte in even.dta. Because float
is the more precise storage type, the resulting dataset, oddeven.dta, had number stored as a float.
Had we instead appended odd.dta to even.dta, number would still have been stored as a float:

. use https://www.stata-press.com/data/r19/even, clear
(6th through 8th even numbers)
. append using https://www.stata-press.com/data/r19/odd
(variable number was byte, now float to accommodate using data’s values)
. describe
Contains data from https://www.stata-press.com/data/r19/even.dta
Observations: 8 6th through 8th even numbers

Variables: 3 9 Jan 2024 08:43

Variable Storage Display Value
name type format label Variable label

number float %9.0g
even float %9.0g Even numbers
odd float %9.0g Odd numbers

Sorted by:
Note: Dataset has changed since last saved.

Example 4
Suppose that we have a dataset in memory containing the variable educ, and we have previously given

a label variable educ ”Education Level” command so that the variable label associated with educ
is “Education Level”. We now append a dataset called newdata.dta, which also contains a variable
named educ, except that its variable label is “Ed. Lev”. After appending the two datasets, the educ
variable is still labeled “Education Level”. See [U] 12.6.2 Variable labels.

Example 5
Assume that the values of the educ variable are labeled with a value label named educlbl. Further

assume that in newdata.dta, the values of educ are also labeled by a value label named educlbl. Thus
there is one definition of educlbl in memory and another (although perhaps equivalent) definition in
newdata.dta. When you append the new data, you will see the following:

. append using newdata
label educlbl already defined

If one label in memory and another on disk have the same name, append warns you of the problem and

sticks with the definition currently in memory, ignoring the definition in the disk file.
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Technical note
When you append two datasets that both contain definitions of the same value label, the codings may

not be equivalent. That is why Stata warns you with a message like “label educlbl already defined”. If

you do not know that the two value labels are equivalent, you should convert the value-labeled variables

into string variables, append the data, and then construct a new coding. decode and encode make this
easy:

. use newdata, clear

. decode educ, gen(edstr)

. drop educ

. save newdata, replace

. use basedata

. decode educ, gen(edstr)

. drop educ

. append using newdata

. encode edstr, gen(educ)

. drop edstr

See [D] encode.

You can specify the nolabel option to force append to ignore all the value-label definitions in the
incoming file, whether or not there is a conflict. In practice, you will probably never want to do this.

Example 6
Suppose that we have several datasets containing the populations of counties in various states. We

can use append to combine these datasets all at once and use the generate() option to create a variable
identifying from which dataset each observation originally came.

. use https://www.stata-press.com/data/r19/capop

. list

county pop

1. Los Angeles 9878554
2. Orange 2997033
3. Ventura 798364

. append using https://www.stata-press.com/data/r19/ilpop
> https://www.stata-press.com/data/r19/txpop, generate(state)
. label define statelab 0 ”CA” 1 ”IL” 2 ”TX”
. label values state statelab
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. list

county pop state

1. Los Angeles 9878554 CA
2. Orange 2997033 CA
3. Ventura 798364 CA
4. Cook 5285107 IL
5. DeKalb 103729 IL

6. Will 673586 IL
7. Brazos 152415 TX
8. Johnson 149797 TX
9. Harris 4011475 TX

Video example
How to append files into a single dataset

Reference
Chatfield, M. D. 2015. precombine: Acommand to examine𝑛 ≥ 2 datasets before combining. Stata Journal 15: 607–626.

Also see
[D] cross — Form every pairwise combination of two datasets

[D] joinby — Form all pairwise combinations within groups

[D] merge — Merge datasets

[D] save — Save Stata dataset

[D] use — Load Stata dataset

[U] 23 Combining datasets

https://www.youtube.com/watch?v=AZGW8tohiqw
https://www.stata-journal.com/article.html?article=dm0081


assert — Verify truth of claim

Description Quick start Syntax Options Remarks and examples
Reference Also see

Description
assert verifies that exp is true. If it is true, the command produces no output. If it is not true, assert

informs you that the “assertion is false” and issues a return code of 9; see [U] 8 Error messages and

return codes.

Quick start
Confirm that v1 only takes values 0 or 1

assert v1==0 | v1==1

Verify that v2 is between 100 and 200 and never missing
assert inrange(v2,100,200)

Verify that v2 is between 100 and 200 for all nonmissing values
assert inrange(v2,100,200) if !missing(v2)

Verify that v2 is between 100 and 200 and never missing when catvar equals 2 or 3
assert inrange(v2,100,200) if (catvar==2 | catvar==3)

Verify that there are 5 observations per cluster identified by cvar
by cvar: assert _N==5

Same as above, but stop checking after the first cluster has fewer than or more than 5 observations

by cvar: assert _N==5, fast

16
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Syntax
assert exp [ if ] [ in ] [ , rc0 null fast ]

by is allowed; see [D] by.

Options
rc0 forces a return code of 0, even if the assertion is false.

null forces a return code of 8 on null assertions. A null assertion occurs when an if condition excludes
all observations from being checked by assert. By default, the return code is 0 for null assertions.

fast forces the command to exit at the first occurrence that exp evaluates to false.

Remarks and examples
assert verifies that the expression provided is true. It is useful because it tells Stata not only what to

do but also what you can expect to find. Groups of assertions are often combined in a do-file to certify

data. If the do-file runs all the way through without complaining, every assertion in the file is true.

Otherwise, assertwill provide a count of the contradictions when an assertion is false. It will also issue
an error message along with a return code of 9; see [U] 8 Error messages and return codes.

assert is seldom used interactively because it is easier to use inspect, summarize, or tabulate to
look for evidence of errors in the dataset. These commands, however, require you to review the output

to spot the error.

Example 1: Observation-level assertions
You and a colleague are analyzing union membership among women. Your colleague imported data

from the National Longitudinal Survey of young women for the years 1968 to 1988. You plan to include

the woman’s age, total work experience, and whether or not she graduated from college in your model.

Your colleague tells you that the cleaned dataset is called nlswork and that the following things

are true: that the variables recording union membership, age, total experience, and education level are

not missing for any of the observations; that observations taken before a woman turned 18 have been

removed; that total experience is always greater than or equal to 0; and that all college graduates have

at least 14 years of education. Before you begin your analysis, you should verify the accuracy of these

data. To test that the statements above are true, you create a do-file named check.do:

begin check.do, example 1
assert age>=18 & !missing(age)
assert !missing(union)
assert ttl_exp>=0 & !missing(ttl_exp)
assert grade>=14 & !missing(grade) if collgrad==1

end check.do, example 1

You save the above file, read in the data, and then issue the do command to check the assertions:

. use https://www.stata-press.com/data/r19/nlswork
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)
. do check
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The output is as follows:

. assert age>=18 & !missing(age)
159 contradictions in 28,534 observations
assertion is false
r(9);
end of do-file
r(9);

The do-file did not run to completion because it encountered a false assertion—that age is never

missing and always at least 18 years.

You should resolve this and any other discrepancies before analyzing the data. You run the do-file

again, this time with the nostop option, which tells Stata to continue executing the do-file despite any
errors.

. do check, nostop

Once it runs in its entirety, you will have a list of all the data discrepancies to discuss with your colleague.

The output is as follows:

. assert age>=18 & !missing(age)
159 contradictions in 28,534 observations
assertion is false
r(9);
. assert !missing(union)
9,296 contradictions in 28,534 observations
assertion is false
r(9);
. assert ttl_exp>=0 & !missing(ttl_exp)
. assert grade>=14 & !missing(grade) if collgrad==1
42 contradictions in 4,795 observations
assertion is false
r(9);
.
end of do-file

The output from the false assertions above is helpful. First, the number of contradictions can serve as

a clue; a few contradictions may suggest data entry errors, whereas a large number may motivate further

investigation. Second, you get a straightforward message that the assertion is false. Finally, you get a

return code of 9, which makes it easy to write code based on whether or not an assertion is true.

Example 2: Speeding up assert
In example 1, we obtained a count of the number of observations where each assertion was false.

However, if all you wanted to know was whether or not an assertion was true, you could reduce the

amount of time required to check that assertion by specifying the fast option, as shown below:

. assert age>=18 & !missing(age), fast
assertion is false
r(9);

The fast option tells Stata to stop checking the assertion when it encounters the first case where it is
false, which is why you do not get a count of the contradictions.
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Example 3: Assertions by groups
Your assertions in the previous examples were tested in each observation. You spoke with your col-

league regarding those assertions, and she has sent you a revised version of the dataset. The next goal is

to make sure that age has been recorded correctly over time. Women in the study were observed once per

year, and in some years, they were not observed at all. Therefore, you know that age must be increasing
with every time period.

Thus, now you want to assess the characteristics of each woman over time, and you can do so with

the by: prefix. You include the sort option with the by prefix because the data have not been sorted
by woman (idcode) and year already; see [U] 11.5 by varlist: construct. Now you can assert that for

each woman, the value of age is greater than it was in the previous year for all years except the first.

You add the following line to check.do:

begin check.do, example 3
by idcode (year), sort: assert age>=age[_n-1]+1 if _n>1

end check.do, example 3

Upon reissuing the the do check, nostop command, the following output is shown:

. by idcode (year), sort: assert age>=age[_n-1]+1 if _n>1
171 contradictions in 23,823 observations
assertion is false
r(9);
.
end of do-file

Again, we have found a few errors in the dataset. We might want to check the source of the dataset for

any notes on data discrepancies.

Technical note
assert is smart in how it evaluates expressions. When you type something like assert N==522

or assert work[ N]>0, assert knows that the expression needs to be evaluated only once. When you

type assert female==1 | female==0, assert knows that the expression needs to be evaluated once
for each observation in the dataset.

Here are some more examples demonstrating assert’s intelligence.

by female: assert _N==100

asserts that there should be 100 observations for every unique value of female. The expression is eval-
uated once per by-group.

by female: assert work[_N]>0

asserts that the last observation on work in every by-group should be greater than zero. It is evaluated
once per by-group.

by female: assert work>0

is evaluated once for each observation in the dataset and, in that sense, is formally equivalent to assert
work>0.



assert — Verify truth of claim 20

Reference
Gould, W. W. 2001. Statistical software certification. Stata Journal 1: 29–50.

Also see
[D] assertnested — Verify variables nested

[P] capture — Capture return code

[P] confirm —Argument verification

[U] 16 Do-files

https://www.stata-journal.com/article.html?article=pr0001


assertnested — Verify variables nested

Description Quick start Syntax Options Remarks and examples Also see

Description
assertnested verifies that the values of variables are nested within the values of other variables. If

they are nested, the command produces no output. If they are not nested, assertnested informs you
that they are not and issues an error return code of 459; see [U] 8 Error messages and return codes.

Quick start
Confirm that the values of psu are nested within stratum

assertnested stratum psu

Confirm that the values of IDs in student are nested within school, which is nested within district
assertnested district school student

For panel data, where panels are individuals with IDs stored in panelid, check that values of age and
income are the same for all observations in each panel

assertnested panelid, within(age income)

Same as above, but treat any missing values the same as nonmissing values

assertnested panelid, within(age income) missing

Syntax
assertnested varlist [ if ] [ in ] [ , within(withinvars) missing ]

The variables in varlist are given in the order of biggest grouping to smallest grouping.

by is allowed; see [D] by.

Options
within(withinvars) asserts that the values of varlist are nestedwithin each of the variables inwithinvars.

That is, assertnested varlist, within(w1 w2 . . . ) will issue an error if any of assertnested w1
varlist, assertnested w2 varlist, . . . issue an error.

missing specifies that missing values in varlist and withinvars are to be treated the same as nonmissing
values.
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Remarks and examples
assertnested is a convenience command for checking whether variables are nested. We say that

v2 is nested within v1 if for all observations that have the same value of v2, the observations also have
the same value of v1.

Here are data that are nested.

. list v1 v2, sepby(v1)

v1 v2

1. 0 1
2. 0 1
3. 0 2
4. 0 2

5. 1 3
6. 1 3
7. 1 4
8. 1 4

. assertnested v1 v2

assertnested succeeds.

Here are data that are not nested.

. list v1 v3, sepby(v1)

v1 v3

1. 0 1
2. 0 2
3. 0 3
4. 0 4

5. 1 1
6. 1 2
7. 1 3
8. 1 4

. assertnested v1 v3
v3 not nested within v1
r(459);

assertnested fails.

Running

assertnested v1 v2 v3

is the same as running

assertnested v1 v2
assertnested v2 v3

Variables must be specified with the biggest nested grouping first, then the second biggest nested group-

ing, and so on, to the smallest nested grouping.
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Example 1: Nested variables
We have a dataset consisting of two school districts in Texas: the district for the city of College Station

and the district for the city of Richardson. The dataset contains the actual names of all the public schools

in the variable school in these districts, given by variable district. The dataset contains fictitious
student IDs in the variable student.

We want to assert that student is nested within school and that school is nested within district.

. use https://www.stata-press.com/data/r19/schools

. assertnested district school student
school not nested within district
r(459);

Schools are not nested within district! Are some schools in both districts? That is impossible. But it is

possible that both districts have one or more schools with the same name. Let’s find them.

We use egen’s tag() function to tag one observation for each distinct value of district for each
school. Then we sum up the number of tags in each school. If the schools were nested within district,

there would be only one tag per school. We list the districts and schools with more than one tag.

. egen tag_district = tag(school district)

. bysort school: egen ndistrict = sum(tag_district)

. list district school if tag_district == 1 & ndistrict > 1, noobs

district school

Richardson Spring Creek Elementary School
College Station Spring Creek Elementary School

Both College Station and Richardson have schools named Spring Creek Elementary School. If we want

to check that students are nested within schools, we need to do the check separately by district.

. bysort district: assertnested school student

Or else Texans need to get more creative about naming their schools.

Example 2: Variables constant within panels
Commands that work with panel data in Stata require the data to be in long form. That is, multiple

Stata observations for each panel. Saying a variable is constant within each panel is the same as saying

the panels are nested within that variable. assertnested allows you to assert that variables are constant
within each panel.

We illustrate this with choice model data. Choice model data are stored like panel data in that each

individual has multiple observations, one for each possible choice. Characteristics of the individual

should be constant across observations for an individual.

We load a dataset with consumer choices for purchasing a new car (see [CM] Intro 2 for a description

of these data). Then we check that gender and income are constant for the observations with the same
consumerid by using the within() option.
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. use https://www.stata-press.com/data/r19/carchoice, clear
(Car choice data)
. assertnested consumerid, within(gender income)

The within() option is a convenient way to do multiple assertions. The above is the same as running

. assertnested gender consumerid

. assertnested income consumerid

The option missing can be specified to treat missing values the same as any other value.

. assertnested consumerid, within(gender income) missing
consumerid not nested within gender
r(459);

We see that gender is not constant for some consumers when we treat missing values like any other

value. Let’s list one person who has missing values for gender:

. list consumerid gender if consumerid == 142, abbrev(10)

consumerid gender

509. 142 .
510. 142 Male
511. 142 Male
512. 142 Male

This person has a missing value for gender for one observation and nonmissing values for other obser-
vations. For the data to pass assertnested with the option missing, the variable would have to be
either all missing or all nonmissing (and the same value) for each individual.

Also see
[D] assert — Verify truth of claim

[CM] Intro 2 — Data layout

[P] capture — Capture return code

[SVY] Survey — Introduction to survey commands

[XT] xt — Introduction to xt commands

[U] 16 Do-files



bcal — Business calendar file manipulation

Description Quick start Menu Syntax
Option for bcal check Options for bcal create Remarks and examples Stored results
Reference Also see

Description
See [D] Datetime business calendars for an introduction to business calendars and dates.

bcal check lists the business calendars used by the data in memory, if any.

bcal dir pattern lists filenames and directories of all available business calendars matching pattern,
or all business calendars if pattern is not specified.

bcal describe calname presents a description of the specified business calendar.

bcal load calname loads the specified business calendar. Business calendars load automatically

when needed, and thus use of bcal load is never required. bcal load is used by programmers writing
their own business calendars. bcal load calname forces immediate loading of a business calendar and

displays output, including any error messages due to improper calendar construction.

bcal create filename, from(varname) creates a business calendar file based on dates in varname.
Business holidays are inferred from gaps in varname. The qualifiers if and in, as well as the option
excludemissing(), can also be used to exclude dates from the new business calendar.

Quick start
Create business calendar file mycal.stbcal from date variable tvar in the dataset in memory

bcal create mycal, from(tvar)

Same as above, and generate business date variable newt formatted as %tbmycal
bcal create mycal, from(tvar) generate(newt)

List directories and filenames of available business calendars

bcal dir

Describe range, center date, and number of omitted days in business calendar mycal.stbcal
bcal describe mycal

Report any %tb formats applied to the variables in memory
bcal check

Menu
Data > Other utilities > Create a business calendar

Data > Other utilities > Manage business calendars

Data > Variables Manager
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Syntax
List business calendars used by the data in memory

bcal check [ varlist ] [ , rc0 ]

List filenames and directories of available business calendars

bcal dir [ pattern ]

Describe the specified business calendar

bcal describe calname

Load the specified business calendar

bcal load calname

Create a business calendar from the current dataset

bcal create filename [ if ] [ in ], from(varname) [ bcal create options ]

where

varlist is a list of variable names to be checked for whether they use business calendars. If not speci-

fied, all variables are checked.

pattern is the name of a business calendar possibly containing wildcards * and ?. If pattern is not
specified, all available business calendar names are listed.

calname is the name of a business calendar either as a name or as a datetime format; for example,

calname could be simple or %tbsimple.

filename is the name of the business calendar file created by bcal create.

bcal create options Description

Main
∗ from(varname) specify date variable for calendar

generate(newvar) generate newvar containing business dates

excludemissing(varlist [ , any ]) exclude observations with missing values in varlist

personal save calendar file in your PERSONAL directory
replace replace file if it already exists

Advanced

purpose(text) describe purpose of calendar

dateformat(ymd | ydm | myd | mdy | dym | dmy) specify date format in calendar file

range(fromdate todate) specify range of calendar

centerdate(date) specify center date of calendar

maxgap(#) specify maximum gap allowed; default is 10 days

∗from(varname) is required.
collect is allowed with all bcal commands; see [U] 11.1.10 Prefix commands.
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Option for bcal check

� � �
Main �

rc0 specifies that bcal check is to exit without error (return 0) even if some calendars do not exist or
have errors. Programmers can then access the results bcal check stores in r() to get even more

details about the problems. If you wish to suppress bcal dir, precede the bcal check command

with capture and specify the rc0 option if you wish to access the r() results.

Options for bcal create

� � �
Main �

from(varname) specifies the date variable used to create the business calendar. Gaps between dates in
varname define business holidays. The longest gap allowed can be set with the maxgap() option.

from() is required.

generate(newvar) specifies that newvar be created. newvar is a date variable in %tbcalname format,
where calname is the name of the business calendar derived from filename.

excludemissing(varlist [ , any ]) specifies that the dates of observations withmissing values in varlist
are business holidays. By default, the dates of observations with missing values in all variables in

varlist are holidays. The any suboption specifies that the dates of observations with missing values
in any variable in varlist are holidays.

personal specifies that the calendar file be saved in the PERSONAL directory. This option cannot be used
if filename contains the pathname of the directory where the file is to be saved.

replace specifies that the business calendar file be replaced if it already exists.

� � �
Advanced �

purpose(text) specifies the purpose of the business calendar being created. text cannot exceed 63 char-
acters.

dateformat(ymd | ydm | myd | mdy | dym | dmy) specifies the date format in the new business calendar.

The default is dateformat(ymd). dateformat() has nothing to do with how dates will look when

variables are formatted with %tbcalname; it specifies how dates are typed in the calendar file.

range(fromdate todate) defines the date range of the calendar being created. fromdate and todate should
be in the format specified by the dateformat() option; if not specified, the default ymd format is
assumed.

centerdate(date) defines the center date of the new business calendar. If not specified, the earliest

date in the calendar is assumed. date should be in the format specified by the dateformat() option;
if not specified, the default ymd format is assumed.

maxgap(#) specifies the maximum number of consecutive business holidays allowed by bcal create.
The default is maxgap(10).
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Remarks and examples
bcal check reports on any %tb formats used by the data in memory:

. bcal check
%tbsimple: defined, used by variable

mydate

bcal dir reports on business calendars available:

. bcal dir
1 calendar file found:

simple: C:\Program Files\Stata19\ado\base\s\simple.stbcal

bcal describe reports on an individual calendar.

. bcal describe simple
Business calendar simple (format %tbsimple):
purpose: Example for manual
range: 01nov2011 30nov2011

18932 18961 in %td units
0 19 in %tbsimple units

center: 01nov2011
18932 in %td units

0 in %tbsimple units
omitted: 10 days

121.8 approx. days/year
included: 20 days

243.5 approx. days/year

bcal load is used by programmers writing new stbcal-files. See [D] Datetime business calendars

creation.

bcal create creates a business calendar file from the current dataset and describes the new calendar.

For example, sp500.dta is a dataset installed with Stata that has daily records on the S&P 500 stock
market index in 2001. The dataset has observations only for days when trading took place. A business

calendar for stock trading in 2001 can be automatically created from this dataset as follows:

. sysuse sp500
(S&P 500)
. bcal create sp500, from(date) purpose(S&P 500 for 2001) generate(bizdate)
Business calendar sp500 (format %tbsp500):
purpose: S&P 500 for 2001
range: 02jan2001 31dec2001

14977 15340 in %td units
0 247 in %tbsp500 units

center: 02jan2001
14977 in %td units

0 in %tbsp500 units
omitted: 116 days

116.4 approx. days/year
included: 248 days

248.9 approx. days/year
Notes:
business calendar file sp500.stbcal saved
variable bizdate created; it contains business dates in %tbsp500 format
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The business calendar file created:

begin sp500.stbcal
* Business calendar ”sp500” created by -bcal create-
* Created/replaced on 02 Apr 2021
version 19
purpose ”S&P 500 for 2001”
dateformat ymd
range 2001jan02 2001dec31
centerdate 2001jan02
omit dayofweek (Sa Su)
omit date 2001jan15
omit date 2001feb19
omit date 2001apr13
omit date 2001may28
omit date 2001jul04
omit date 2001sep03
omit date 2001sep11
omit date 2001sep12
omit date 2001sep13
omit date 2001sep14
omit date 2001nov22
omit date 2001dec25

end sp500.stbcal

bcal create filename, from() can save the calendar file anywhere in your directory system by

specifying a path in filename. It is assumed that the directory where the file is to be saved already exists.

The pattern of filename should be [ path ]calname[ .stbcal ]. Here calname should be without the %tb
prefix; calname has to be a valid Stata name but limited to 10 characters. If path is not specified, the file

is saved in the current working directory. If the .stbcal extension is not specified, it is added.

Save the file in a directory where Stata can find it. Stata automatically searches for stbcal-files in the

same way it searches for ado-files. Stata looks for ado-files and stbcal-files in the official Stata directo-

ries, your site’s directory (SITE), your current working directory, your personal directory (PERSONAL),
and your directory for materials written by other users (PLUS). The option personal specifies that the
calendar file be saved in your PERSONAL directory, which ensures that the created calendar can be easily
found in future work.

Stored results
bcal check stores the following in r():

Macros

r(defined) business calendars used, stbcal-file exists, and file contains no errors

r(undefined) business calendars used, but no stbcal-files exist for them

r(varlist calname) list of variable names that use business calendar calname

Warning to programmers: Specify the rc0 option to access these returned results. By default, bcal
check returns code 459 if a business calendar does not exist or if a business calendar exists but has

errors; in such cases, the results are not stored.

bcal dir stores the following in r():
Macros

r(calendars) business calendars available

r(fn calname) stbcal-file for business calendar calname
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bcal describe and bcal create store the following in r():

Scalars

r(min date td) calendar’s minimum date in %td units
r(max date td) calendar’s maximum date in %td units
r(ctr date td) calendar’s zero date in %td units
r(min date tb) calendar’s minimum date in %tb units
r(max date tb) calendar’s maximum date in %tb units
r(omitted) total number of days omitted from calendar

r(included) total number of days included in calendar

r(omitted year) approximate number of days omitted per year from calendar

r(included year) approximate number of days included per year in calendar

Macros

r(name) pure calendar name (for example, nyse)
r(purpose) short description of calendar’s purpose

r(fn) name of stbcal-file

bcal load stores the same results in r() as bcal describe, except it does not store r(omitted),
r(included), r(omitted year) and r(included year).

Reference
Rajbhandari, A. 2016. Handling gaps in time series using business calendars. The Stata Blog: Not Elsewhere Classified.

https://blog.stata.com/2016/02/04/handling-gaps-in-time-series-using-business-calendars/.

Also see
[D] Datetime — Date and time values and variables

[D] Datetime business calendars — Business calendars

[D] Datetime business calendars creation — Business calendars creation

https://blog.stata.com/2016/02/04/handling-gaps-in-time-series-using-business-calendars/


by — Repeat Stata command on subsets of the data

Description Quick start Syntax Options
Remarks and examples References Also see

Description
Most Stata commands allow the by prefix, which repeats the command for each group of observations

for which the values of the variables in varlist are the same. by without the sort option requires that the
data be sorted by varlist; see [D] sort.

Stata commands that work with the by prefix indicate this immediately following their syntax dia-
gram by reporting, for example, “by is allowed; see [D] by” or “bootstrap, by, etc., are allowed; see
[U] 11.1.10 Prefix commands”.

by and bysort are really the same command; bysort is just by with the sort option.

The varlist1 (varlist2) syntax is of special use to programmers. It verifies that the data are sorted by
varlist1 varlist2 and then performs a by as if only varlist1 were specified. For instance,

by pid (time): generate growth = (bp - bp[ n-1])/bp

performs the generate by values of pid but first verifies that the data are sorted by pid and timewithin
pid.

Quick start
Generate newv as an observation number within each level of catvar

by catvar: generate newv = _n

Same as above, but sort data by catvar first
by catvar, sort: generate newv = _n

Same as above

bysort catvar: generate newv = _n

Same as above, but sort by v within values of catvar
bysort catvar (v): generate newv = _n

Generate newv as an observation number for each observation in levels of catvar and v
bysort catvar v: generate newv = _n

Note: Any command that accepts the by prefix may be substituted for generate above.
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Syntax
by varlist : stata cmd

bysort varlist : stata cmd

The above diagrams show by and bysort as they are typically used.
The full syntax of the commands is

by varlist1 [(varlist2)] [ , sort rc0 ] : stata cmd

bysort varlist1 [(varlist2)] [ , rc0 ] : stata cmd

Options
sort specifies that if the data are not already sorted by varlist, by should sort them.

rc0 specifies that even if the stata cmd produces an error in one of the by-groups, then by is still to run
the stata cmd on the remaining by-groups. The default action is to stop when an error occurs. rc0
is especially useful when stata cmd is an estimation command and some by-groups have insufficient

observations.

Remarks and examples

Example 1
. use https://www.stata-press.com/data/r19/autornd
(1978 automobile data)
. keep in 1/20
(54 observations deleted)
. by mpg: egen mean_w = mean(weight)
not sorted
r(5);
. sort mpg
. by mpg: egen mean_w = mean(weight)
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. list

make weight mpg mean_w

1. Cad. Eldorado 4000 15 3916.667
2. AMC Pacer 3500 15 3916.667
3. Chev. Impala 3500 15 3916.667
4. Buick Electra 4000 15 3916.667
5. Buick Riviera 4000 15 3916.667

6. Cad. Deville 4500 15 3916.667
7. AMC Spirit 2500 20 3350
8. Chev. Monte Carlo 3000 20 3350
9. Chev. Malibu 3000 20 3350

10. Buick Skylark 3500 20 3350

11. Buick Regal 3500 20 3350
12. Buick LeSabre 3500 20 3350
13. AMC Concord 3000 20 3350
14. Chev. Nova 3500 20 3350
15. Cad. Seville 4500 20 3350

16. Buick Century 3500 20 3350
17. Buick Opel 2000 25 2500
18. Chev. Monza 3000 25 2500
19. Dodge Colt 2000 30 2000
20. Chev. Chevette 2000 30 2000

by requires that the data be sorted. In the above example, we could have typed by mpg, sort:
egen mean w = mean(weight) or bysort mpg: egen mean w = mean(weight) rather than the sepa-

rate sort; all would yield the same results.

For more examples, see [U] 11.1.2 by varlist:, [U] 11.5 by varlist: construct, and [U] 13.7 Explicit

subscripting. For extended introductions with detailed examples, see Cox (2002) and Mitchell (2020,

chap. 8).

Technical note
by repeats the stata cmd for each group defined by varlist. If stata cmd stores results, only the

results from the last group on which stata cmd executes will be stored.

References
Cox, N. J. 2002. Speaking Stata: How to move step by: step. Stata Journal 2: 86–102.

———. 2020. Speaking Stata: Concatenating values over observations. Stata Journal 20: 236–243.

———. 2023. Speaking Stata: Replacing missing values: The easiest problems. Stata Journal 23: 884–896.

Huber, C. 2014. How to simulate multilevel/longitudinal data. The Stata Blog: Not Elsewhere Classified. https://blog.

stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/.

Mitchell, M. N. 2020. Data Management Using Stata: A Practical Handbook. 2nd ed. College Station, TX: Stata Press.

https://www.stata-journal.com/article.html?article=pr0004
https://doi.org/10.1177/1536867X20909698
https://doi.org/10.1177/1536867X231196519
https://blog.stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/
https://blog.stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/
https://www.stata-press.com/books/data-management-using-stata/


by — Repeat Stata command on subsets of the data 34

Also see
[D] sort — Sort data

[D] statsby — Collect statistics for a command across a by list

[P] byable — Make programs byable

[P] foreach — Loop over items

[P] forvalues — Loop over consecutive values

[P] while — Looping

[U] 11.1.2 by varlist:

[U] 11.1.10 Prefix commands

[U] 11.4 varname and varlists

[U] 11.5 by varlist: construct



cd — Change directory

Description Quick start Syntax Remarks and examples Also see

Description
Stata for Windows: cd changes the current working directory to the specified drive and directory.

pwd is equivalent to typing cd without arguments; both display the name of the current working direc-
tory. Note: You can shell out to a Windows command prompt; see [D] shell. However, typing !cd
directory name does not change Stata’s current directory; use the cd command to change directories.

Stata for Mac and Stata for Unix: cd (synonym chdir) changes the current working directory to

directory name or, if directory name is not specified, the home directory. pwd displays the path of the
current working directory.

Quick start
Change working directory in Stata for Windows to C:\mydir\myfolder

cd c:\mydir\myfolder

Change working directory in Stata for Windows to C:\my dir\my folder
cd ”c:\my dir\my folder”

Change working directory in Stata for Mac or Unix to mydir/myfolder
cd mydir/myfolder

Move up one level in the directory structure

cd ..

Move to myfolder from mydir
cd myfolder

View current working directory

pwd

Go to home directory in Stata for Mac or Unix

cd
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Syntax
Stata for Windows

cd

cd [”]directory name[”]

cd [”]drive:[”]

cd [”]drive:directory name[”]

pwd

Stata for Mac and Stata for Unix

cd

cd [”]directory name[”]

pwd

If your directory name contains embedded spaces, remember to enclose it in double quotes.

Remarks and examples
Remarks are presented under the following headings:

Stata for Windows
Stata for Mac
Stata for Unix

Stata for Windows
When you start Stata for Windows, your current working directory is set to the Start in directory

specified in Properties. If you want to change this, see [GSW] B.1 The Windows Properties Sheet.

You can always see what your working directory is by looking at the status bar at the bottom of the Stata

window.

Once you are in Stata, you can change your directory with the cd command.

. cd
c:\data
. cd city
c:\data\city
. cd d:
D:\
. cd kande
D:\kande
. cd ”additional detail”
D:\kande\additional detail
. cd c:
C:\
. cd data\city
C:\data\city
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. cd \a\b\c\d\e\f\g
C:\a\b\c\d\e\f\g
. cd ..
C:\a\b\c\d\e\f
. cd ...
C:\a\b\c\d
. cd ....
C:\a

When we typed cd d:, we changed to the current directory of the D drive. We navigated our

way to d:\kande\additional detail with three commands: cd d:, then cd kande, and then cd
”additional detail”. The double quotes around “additional detail” are necessary because of

the space in the directory name. We could have changed to this directory in one command: cd
”d:\kande\additional detail”.

Notice the last three cd commands in the example above. You are probably familiar with the cd ..
syntax to move up one directory from where you are. The last two cd commands above let you move
up more than one directory: cd ... is shorthand for “cd ..\..” and cd .... is shorthand for “cd
..\..\..”. These shorthand cd commands are not limited to Stata; they will work in your Command
window under Windows as well.

You can see the current directory (where Stata saves files and looks for files) by typing pwd. You can
change the current directory by using cd or by selecting File > Change working directory.... Stata’s

cd command understands “~” as an abbreviation for the home directory, so you can type things like cd
~\data.

. pwd
C:\Users\bill\proj
. cd ”~\data\city”
C:\Users\bill\data\city
.

If you now wanted to change to ”C:\Users\bill\data\city\ny”, you could type cd ny. If you

wanted instead to change to ”C:\Users\bill\data”, you could type “cd ..”.

Stata for Mac
Read [U] 11.6 Filenaming conventions for a description of how filenames are written in a command

language before reading this entry.

Invoking an application and then changing folders is an action foreign to most Mac users. If it is

foreign to you, you can ignore cd and pwd. However, they can be useful. You can see the current folder
(where Stata saves files and looks for files) by typing pwd. You can change the current folder by using
cd or by selecting File > Change working directory.... Stata’s cd command understands “~” as an

abbreviation for the home directory, so you can type things like cd ~/data.
. pwd
/Users/bill/proj
. cd ”~/data/city”
/Users/bill/data/city
.

If you now wanted to change to ”/Users/bill/data/city/ny”, you could type cd ny. If you wanted
instead to change to ”/Users/bill/data”, you could type “cd ..”.
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Stata for Unix
cd and pwd are equivalent to Unix’s cd and pwd commands. Like csh, Stata’s cd understands “~” as

an abbreviation for the home directory $HOME, so you can type things like cd ~/data; see [U] 11.6 File-
naming conventions.

. pwd
/usr/bill/proj
. cd ~/data/city
/usr/bill/data/city
.

If you now wanted to change to /usr/bill/data/city/ny, you could type cd ny. If you wanted

instead to change to /usr/bill/data, you could type “cd ..”.

Also see
[D] copy — Copy file from disk or URL

[D] dir — Display filenames

[D] erase — Erase a disk file

[D] mkdir — Create directory

[D] rmdir — Remove directory

[D] shell — Temporarily invoke operating system

[D] type — Display contents of a file

[U] 11.6 Filenaming conventions



cf — Compare two datasets

Description Quick start Menu Syntax Options
Remarks and examples Stored results Acknowledgment Also see

Description
cf compares varlist of the dataset in memory (the master dataset) with the corresponding variables

in filename (the using dataset). cf returns nothing (that is, a return code of 0) if the specified variables
are identical and a return code of 9 if there are any differences. Only the variable values are compared.

Variable labels, value labels, notes, characteristics, etc., are not compared.

Quick start
Compare values of v1 and v2 from mydata1.dta in memory to mydata2.dta

cf v1 v2 using mydata2

Same as above, but give a detailed listing of the differences

cf v1 v2 using mydata2, verbose

Same as above, but for all variables in memory

cf _all using mydata2, verbose

Menu
Data > Data utilities > Compare two datasets
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Syntax
cf varlist using filename [ , all verbose ]

Options
all displays the result of the comparison for each variable in varlist. Unless all is specified, only the

results of the variables that differ are displayed.

verbose gives a detailed listing, by variable, of each observation that differs.

Remarks and examples
cf produces messages having the following form:

varname: does not exist in using
varname: in master but in using
varname: mismatches
varname: match

An example of the second message is “str4 in master but float in using”. Unless all is specified, the
fourth message does not appear—silence indicates matches.

Example 1
We think the dataset in memory is identical to mydata.dta, but we are unsure. Wewant to understand

any differences before continuing:

. cf _all using mydata

.

All the variables in the master dataset are in mydata.dta, and these variables are the same in both

datasets. We might see instead

. cf _all using mydata
mpg: 2 mismatches

headroom: does not exist in using
displacement: does not exist in using
gear_ratio: does not exist in using

r(9);

Two changes were made to the mpg variable, and the headroom, displacement, and gear ratio vari-
ables do not exist in mydata.dta.



cf — Compare two datasets 41

To see the result of each comparison, we could append the all option to our command:

. cf _all using mydata, all
make: match
price: match

mpg: 2 mismatches
rep78: match

headroom: does not exist in using
trunk: match

weight: match
length: match
turn: match

displacement: does not exist in using
gear_ratio: does not exist in using

foreign: match
r(9);

For more details on the mismatches, we can use the verbose option:

. cf _all using mydata, verbose
mpg: 2 mismatches

obs 1. 22 in master; 33 in using
obs 2. 17 in master; 33 in using

headroom: does not exist in using
displacement: does not exist in using
gear_ratio: does not exist in using

r(9);

This example shows us exactly which two observations for mpg differ, as well as the value stored in
each dataset.

Example 2
Wewant to compare a group of variables in the dataset in memory against the same group of variables

in mydata.dta.

. cf mpg headroom using mydata
mpg: 2 mismatches

headroom: does not exist in using
r(9);

Stored results
cf stores the following in r():
Macros

r(Nsum) number of differences

Acknowledgment
Speed improvements in cf were based on code written by David Kantor.

Also see
[D] compare — Compare two variables



changeeol — Convert end-of-line characters of text file

Description Quick start Syntax Options Remarks and examples Also see

Description
changeeol converts text file filename1 to text file filename2 with the specified Win-

dows/Unix/Mac/classic Mac-style end-of-line characters. changeeol changes the end-of-line characters
from one type of file to another.

Quick start
Create mytext2.txt with Windows end-of-line characters from mytext1.txt

changeeol mytext1.txt mytext2.txt, eol(windows)

Same as above, but convert to Mac-style end-of-line characters

changeeol mytext1.txt mytext2.txt, eol(mac)

Same as above, but convert to Unix-style end-of-line characters

changeeol mytext1.txt mytext2.txt, eol(unix)

Syntax
changeeol filename1 filename2, eol(platform) [ options ]

filename1 and filename2 must be filenames.

Note: Double quotes may be used to enclose the filenames, and the quotes must be used if the filename

contains embedded blanks.

options Description

∗ eol(windows) convert to Windows-style end-of-line characters (\r\n)
∗ eol(dos) synonym for eol(windows)
∗ eol(unix) convert to Unix-style end-of-line characters (\n)
∗ eol(mac) convert to Mac-style end-of-line characters (\n)
∗ eol(classicmac) convert to classic Mac-style end-of-line characters (\r)
replace overwrite filename2

force force to convert filename1 to filename2 if filename1 is a binary file

∗eol() is required.

Options
eol(windows | dos | unix | mac | classicmac) specifies to which platform style filename2 is to be con-

verted. eol() is required.

replace specifies that filename2 be replaced if it already exists.

force specifies that filename1 be converted if it is a binary file.
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Remarks and examples
changeeol uses hexdump to determine whether filename1 is text or binary. If it is binary, changeeol

will refuse to convert it unless the force option is specified.

Examples

Windows:

. changeeol orig.txt newcopy.txt, eol(windows)

Unix:

. changeeol orig.txt newcopy.txt, eol(unix)

Mac:

. changeeol orig.txt newcopy.txt, eol(mac)

Classic Mac:

. changeeol orig.txt newcopy.txt, eol(classicmac)

Also see
[D] filefilter — Convert ASCII or binary patterns in a file

[D] hexdump — Display hexadecimal report on file



checksum — Calculate checksum of file

Description Quick start Syntax Options
Remarks and examples Stored results Also see

Description
checksum creates filename.sum files for later use by Stata when it reads files over a network. These

optional files are used to reduce the chances of corrupted files going undetected. Whenever Stata reads

file filename.suffix over a network, whether by use, net, update, etc., it also looks for filename.sum.
If Stata finds that file, Stata reads it and uses its contents to verify that the first file was received without

error. If there are errors, Stata informs the user that the file could not be read.

Quick start
Calculate checksum of mydata.dta

checksum mydata.dta

Same as above, and save results to mydata.sum
checksum mydata.dta, save

Same as above, but save results to mycheck.sum
checksum mydata.dta, saving(mycheck.sum)

Same as above, but replace mycheck.sum if it exists
checksum mydata.dta, saving(mycheck.sum, replace)

Syntax
checksum filename [ , options ]

options Description

save save output to filename.sum; default is to display a report
replace may overwrite filename.sum; use with save
saving(filename2 [, replace ]) save output to filename2; alternative to save
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Technical note
checksum calculates a CRC checksum following the POSIX 1003.2 specification and displays the file

size in bytes. checksum produces the same results as the Unix cksum command. Comparing the check-
sum of the original file with the received file guarantees the integrity of the received file.

When comparing Stata’s checksum results with those of Unix, do not confuse Unix’s sum and cksum
commands. Unix’s cksum and Stata’s checksum use a more robust algorithm than that used by Unix’s

sum. In some Unix operating systems, there is no cksum command, and the more robust algorithm is

obtained by specifying an option with sum.

Options
save saves the output of the checksum command to the text file filename.sum. The default is to display

a report but not create a file.

replace is for use with save; it permits Stata to overwrite an existing filename.sum file.

saving(filename2 [ , replace ]) is an alternative to save. It saves the output in the specified filename.
You must supply a file extension if you want one, because none is assumed.

Remarks and examples

Example 1
Say that you wish to put a dataset on your homepage so that colleagues can use it over the internet by

typing

. use http://www.myuni.edu/department/~joe/mydata

mydata.dta is important, and even though the chances of the file mydata.dta being corrupted by the
internet are small, you wish to guard against that. The solution is to create the checksum file named

mydata.sum and place that on your homepage. Your colleagues need type nothing different, but now
Stata will verify that all goes well. When they use the file, they will see either

. use http://www.myuni.edu/department/~joe/mydata
(important data from joe)

or

. use http://www.myuni.edu/department/~joe/mydata
file transmission error (checksums do not match)
http://www.myuni.edu/department/~joe/mydata.dta not downloaded
r(639);

To make the checksum file, change to the directory where the file is located and type

. checksum mydata.dta, save
Checksum for mydata.dta = 263508742, size = 4052
file mydata.sum saved
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Example 2
Let’s use checksum on auto.dta that is shipped with Stata. We will load the dataset and save it to

our current directory.

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. save auto
file auto.dta saved
. checksum auto.dta
Checksum for auto.dta = 108935638, size = 12765

We see the report produced by checksum, but we decide to save this information to a file.

. checksum auto.dta, save

. type auto.sum
1 12765 108935638

The first number is the version number (possibly used for future releases). The second number is the

file’s size in bytes, which can be used with the checksum value to ensure that the file transferred without

corruption. The third number is the checksum value. Although two different files can have the same

checksum value, two files with the same checksum value almost certainly could not have the same file

size.

This example is admittedly artificial. Typically, you would use checksum to verify that no file trans-
mission error occurred during a web download. If you want to verify that your own data are unchanged,

using datasignature is better; see [D] datasignature.

Stored results
checksum stores the following in r():

Scalars

r(version) checksum version number
r(filelen) length of file in bytes

r(checksum) checksum value

Also see
[R] net — Install and manage community-contributed additions from the internet

[D] use — Load Stata dataset

[D] datasignature — Determine whether data have changed



clear — Clear memory

Description Quick start Syntax Remarks and examples Also see

Description
clear, by itself, removes data and value labels from memory and is equivalent to typing

. drop _all (see [D] drop)

. label drop _all (see [D] label)

clear mata removes Mata functions and objects from memory and is equivalent to typing

. mata: mata clear (see [M-3] mata clear)

clear results eliminates stored results from memory and is equivalent to typing

. return clear (see [P] return)

. ereturn clear (see [P] return)

. sreturn clear (see [P] return)

. _return drop _all (see [P] _return)

clear matrix eliminates from memory all matrices created by Stata’s matrix command; it does not
eliminate Mata matrices from memory. clear matrix is equivalent to typing

. return clear (see [P] return)

. ereturn clear (see [P] return)

. sreturn clear (see [P] return)

. _return drop _all (see [P] _return)

. matrix drop _all (see [P] matrix utility)

. estimates drop _all (see [R] estimates)

clear programs eliminates all programs from memory and is equivalent to typing

. program drop _all (see [P] program)

clear ado eliminates all automatically loaded ado-file programs from memory (but not programs

defined interactively or by do-files). It is equivalent to typing

. program drop _allado (see [P] program)

clear rngstream eliminates from memory stored random-number states for all mt64s streams (in-
cluding the current stream). It resets the mt64s generator to the beginning of every stream, based on the
current mt64s seed. clear rngstream does not change the current mt64s seed and stream. The mt64s
seed and stream can be set with set seed and set rngstream, respectively.

clear frames eliminates from memory all frames and restores Stata to its initial state of having a
single, empty frame named default.

clear collect removes all collections from memory and is equivalent to typing

. collect clear (see [TABLES] collect clear)
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clear all and clear * are synonyms. They remove all data, value labels, matrices, scalars, con-
straints, clusters, stored results, frames, sersets, and Mata functions and objects from memory. They

also close all open files and postfiles, clear the class system, close any open Graph windows and dialog

boxes, drop all programs from memory, and reset all timers to zero. However, they do not call clear
rngstream. They are equivalent to typing

. drop _all (see [D] drop)

. frames reset (see [D] frames reset)

. collect clear (see [TABLES] collect clear)

. label drop _all (see [D] label)

. matrix drop _all (see [P] matrix utility)

. scalar drop _all (see [P] scalar)

. constraint drop _all (see [R] constraint)

. cluster drop _all (see [MV] cluster utility)

. file close _all (see [P] file)

. postutil clear (see [P] postfile)

. _return drop _all (see [P] _return)

. discard (see [P] discard)

. program drop _all (see [P] program)

. timer clear (see [P] timer)

. putdocx clear (see [RPT] putdocx begin)

. putpdf clear (see [RPT] putpdf begin)

. mata: mata clear (see [M-3] mata clear)

. python clear (see [P] PyStata integration)

. java clear (see [P] Java integration)

Quick start
Remove data and value labels from memory

clear

Remove Stata matrices from memory

clear matrix

Remove Mata matrices, Mata objects, and Mata functions from memory

clear mata

Remove all programs from memory

clear programs

Same as above, but only programs automatically loaded by ado-files

clear ado

Remove results stored in r(), e(), and s() from memory

clear results

Remove all the above and constraints, clusters, and sersets; reset timers to 0; clear the class system; and

close all open files, graph windows, and dialog boxes

clear all

Same as above

clear *
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Syntax
clear

clear [ mata | results | matrix | programs | ado | rngstream | frames | collect ]

clear [ all | * ]

Remarks and examples
You can clear the entire dataset without affecting macros and programs by typing clear. You can also

type clear all. This command has the same result as clear by itself but also clears matrices, scalars,
constraints, clusters, stored results, sersets, Mata, the class system, business calendars, and programs;

closes all open files and postfiles; closes all open Graph windows and dialog boxes; and resets all timers

to zero.

Example 1
We load the bpwide dataset to correct a mistake in the data.

. use https://www.stata-press.com/data/r19/bpwide
(Fictional blood-pressure data)
. list in 1/5

patient sex agegrp bp_bef~e bp_after

1. 1 Male 30-45 143 153
2. 2 Male 30-45 163 170
3. 3 Male 30-45 153 168
4. 4 Male 30-45 153 142
5. 5 Male 30-45 146 141

. replace bp_after = 145 in 3
(1 real change made)

We made another mistake. We meant to change the value of bp after in observation 4. It is easiest to
begin again.

. clear

. use https://www.stata-press.com/data/r19/bpwide
(Fictional blood-pressure data)

Also see
[D] drop — Drop variables or observations

[P] discard — Drop automatically loaded programs

[U] 11 Language syntax

[U] 13 Functions and expressions



clonevar — Clone existing variable

Description Quick start Menu Syntax
Remarks and examples Acknowledgments Also see

Description
clonevar generates newvar as an exact copy of an existing variable, varname, with the same storage

type, values, and display format as varname. varname’s variable label, value labels, notes, and charac-

teristics will also be copied.

Quick start
Copy contents, label, and value label of v1 to newv1

clonevar newv1 = v1

Copy observations from v2 to newv2 where v2 is less than 30
clonevar newv2 = v2 if v2 < 30

Copy the first 20 observations of v3 to newv3
clonevar newv3 = v3 in f/20

Same as above

clonevar newv3 = v3 in 1/20

Menu
Data > Create or change data > Other variable-creation commands > Clone existing variable

Syntax
clonevar newvar = varname [ if ] [ in ]

Remarks and examples
clonevar has various possible uses. Programmers may desire that a temporary variable appear to

the user exactly like an existing variable. Interactively, you might want a slightly modified copy of an

original variable, so the natural starting point is a clone of the original.
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Example 1
We have a dataset containing information on modes of travel. These data contain a variable named

mode that identifies each observation as a specific mode of travel: air, train, bus, or car.

. use https://www.stata-press.com/data/r19/travel
(Modes of travel)
. describe mode
Variable Storage Display Value

name type format label Variable label

mode byte %8.0g travel Travel mode alternatives
. label list travel
travel:

1 Air
2 Train
3 Bus
4 Car

To create an identical variable identifying only observations that contain air or train, we could use

clonevar with an if qualifier.

. clonevar airtrain = mode if mode == 1 | mode == 2
(420 missing values generated)
. describe mode airtrain
Variable Storage Display Value

name type format label Variable label

mode byte %8.0g travel Travel mode alternatives
airtrain byte %8.0g travel Travel mode alternatives
. list mode airtrain in 1/5

mode airtrain

1. Air Air
2. Train Train
3. Bus .
4. Car .
5. Air Air

The new airtrain variable has the same storage type, display format, value label, and variable label
as mode. If mode had any characteristics or notes attached to it, they would have been applied to the new
airtrain variable, too. The only differences in the two variables are their names and values for bus and
car.

Technical note
The if qualifier used with the clonevar command in example 1 referred to the values of mode as 1

and 2. Had we wanted to refer to the values by their associated value labels, we could have typed

. clonevar airtrain = mode if mode == ”air”:travel | mode == ”train”:travel

For more details, see [U] 13.11 Label values.
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Also see
[D] generate — Create or change contents of variable

[D] separate — Create separate variables
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codebook — Describe data contents

Description Quick start Menu Syntax Options
Remarks and examples Stored results References Also see

Description
codebook examines the variable names, labels, and data to produce a codebook describing the dataset.

Quick start
Codebook of all variables in the dataset

codebook

Codebook of variables v1, v2, and v3
codebook v1 v2 v3

Codebook of all variables starting with code
codebook code*

Include dataset name, last saved date, and variable notes in the codebook

codebook, header notes

Report problemswith labels, constant-valued variables, embedded spaces and binary 0 in string variables,

and noninteger date variables

codebook, problems

Codebook for dataset with English and Spanish variable and value labels using label languages en and
es

codebook, languages(en es)

Menu
Data > Describe data > Describe data contents (codebook)
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Syntax
codebook [ varlist ] [ if ] [ in ] [ , options ]

options Description

Options

all print complete report without missing values

header print dataset name and last saved date

notes print any notes attached to variables

mv report pattern of missing values

tabulate(#) set tables/summary statistics threshold; default is tabulate(9)
problems report potential problems in dataset

detail display detailed report on the variables; only with problems
compact display compact report on the variables

dots display a dot for each variable processed; only with compact

Languages

languages[(namelist)] use with multilingual datasets; see [D] label language for details

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Options �

all is equivalent to specifying the header and notes options. It provides a complete report, which

excludes only performing mv.

header adds to the top of the output a header that lists the dataset name, the date that the dataset was last
saved, etc.

notes lists any notes attached to the variables; see [D] notes.

mv specifies that codebook search the data to determine the pattern of missing values. This is a CPU-

intensive task.

tabulate(#) specifies the number of unique values of the variables to use to determine whether a

variable is categorical or continuous. Missing values are not included in this count. The default is

9; when there are more than nine unique values, the variable is classified as continuous. Extended

missing values will be included in the tabulation.

problems specifies that a summary report is produced describing potential problems that have been

diagnosed:

• Variables that are labeled with an undefined value label

• Incompletely value-labeled variables

• Variables that are constant, including always missing

• Leading, trailing, and embedded spaces in string variables

• Embedded binary 0 (\0) in string variables

• Noninteger-valued date variables

See the discussion of these problems and advice on overcoming them following example 5.
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detail may be specified only with the problems option. It specifies that the detailed report on the

variables not be suppressed.

compact specifies that a compact report on the variables be displayed. compact may not be specified
with any options other than dots.

dots specifies that a dot be displayed for every variable processed. dots may be specified only with
compact.

� � �
Languages �

languages[(namelist)] is for use with multilingual datasets; see [D] label language. It indicates that the
codebook pertains to the languages in namelist or to all defined languages if no such list is specified

as an argument to languages(). The output of codebook lists the data label and variable labels in
these languages and which value labels are attached to variables in these languages.

Problems are diagnosed in all of these languages, as well. The problem report does not provide details

in which language problems occur. We advise you to rerun codebook for problematic variables;

specify detail to produce the problem report again.

If you have a multilingual dataset but do not specify languages(), all output, including the problem
report, is shown in the “active” language.

Remarks and examples
codebook, without arguments, is most usefully combined with log to produce a printed listing for

enclosure in a notebook documenting the data; see [U] 15 Saving and printing output—log files.

codebook is, however, also useful interactively, because you can specify one or a few variables.

Example 1
codebook examines the data in producing its results. For variables that codebook thinks are continu-

ous, it presents the mean; the standard deviation; and the 10th, 25th, 50th, 75th, and 90th percentiles. For

variables that it thinks are categorical, it presents a tabulation. In part, codebook makes this determina-
tion by counting the number of unique values of the variable. If the number is nine or fewer, codebook
reports a tabulation; otherwise, it reports summary statistics.

codebook distinguishes the standard missing values (.) and the extended missing values (.a through
.z, denoted by .*). If extended missing values are found, codebook reports the number of distinct

missing value codes that occurred in that variable. Missing values are ignored with the tabulate option
when determining whether a variable is treated as continuous or categorical.
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. use https://www.stata-press.com/data/r19/educ3
(ccdb46, 52-54)
. codebook fips division, all

Dataset: https://www.stata-press.com/data/r19/educ3.dta
Last saved: 6 Mar 2024 22:20

Label: ccdb46, 52-54
Number of variables: 42

Number of observations: 956
Size: 145,312 bytes ignoring labels, etc.

_dta:
1. confirmed data with steve on 7/22

fips state/place code

Type: Numeric (long)
Range: [10060,560050] Units: 1

Unique values: 956 Missing .: 0/956
Mean: 256495

Std. dev.: 156998
Percentiles: 10% 25% 50% 75% 90%

61462 120426 252848 391360 482530

division Census Division

Type: Numeric (int)
Label: division
Range: [1,9] Units: 1

Unique values: 9 Missing .: 4/956
Unique mv codes: 2 Missing .*: 2/956

Tabulation: Freq. Numeric Label
69 1 N. Eng.
97 2 Mid Atl

202 3 E.N.C.
78 4 W.N.C.

115 5 S. Atl.
46 6 E.S.C.
89 7 W.S.C.
59 8 Mountain

195 9 Pacific
4 .
2 .a

Because division has nine unique nonmissing values, codebook reported a tabulation. If division
had contained one more unique nonmissing value, codebookwould have switched to reporting summary
statistics, unless we had included the tabulate(#) option.



codebook — Describe data contents 57

Example 2
The mv option is useful. It instructs codebook to search the data to determine patterns of missing

values. Different kinds of missing values are not distinguished in the patterns.

. use https://www.stata-press.com/data/r19/citytemp
(City temperature data)
. codebook cooldd heatdd tempjan tempjuly, mv

cooldd Cooling degree days

Type: Numeric (int)
Range: [0,4389] Units: 1

Unique values: 438 Missing .: 3/956
Mean: 1240.41

Std. dev.: 937.668
Percentiles: 10% 25% 50% 75% 90%

411 615 940 1566 2761
Missing values: heatdd==mv <-> cooldd==mv

tempjan==mv --> cooldd==mv
tempjuly==mv --> cooldd==mv

heatdd Heating degree days

Type: Numeric (int)
Range: [0,10816] Units: 1

Unique values: 471 Missing .: 3/956
Mean: 4425.53

Std. dev.: 2199.6
Percentiles: 10% 25% 50% 75% 90%

1510 2460 4950 6232 6919
Missing values: cooldd==mv <-> heatdd==mv

tempjan==mv --> heatdd==mv
tempjuly==mv --> heatdd==mv

tempjan Average January temperature

Type: Numeric (float)
Range: [2.2,72.6] Units: .1

Unique values: 310 Missing .: 2/956
Mean: 35.749

Std. dev.: 14.1881
Percentiles: 10% 25% 50% 75% 90%

20.2 25.1 31.3 47.8 55.1
Missing values: tempjuly==mv <-> tempjan==mv
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tempjuly Average July temperature

Type: Numeric (float)
Range: [58.1,93.6] Units: .1

Unique values: 196 Missing .: 2/956
Mean: 75.0538

Std. dev.: 5.49504
Percentiles: 10% 25% 50% 75% 90%

68.8 71.8 74.25 78.7 82.3
Missing values: tempjan==mv <-> tempjuly==mv

codebook reports that if tempjan is missing, tempjuly is also missing, and vice versa. In the output
for the cooldd variable, codebook also reports that the pattern of missing values is the same for cooldd
and heatdd. In both cases, the correspondence is indicated with “<->”.

For cooldd, codebook also states that “tempjan==mv –> cooldd==mv”. The one-way arrow means

that a missing tempjan value implies a missing cooldd value but that a missing cooldd value does not
necessarily imply a missing tempjan value.

Another feature of codebook—this one for numeric variables—is that it can determine the units of

the variable. For instance, in the example above, tempjan and tempjuly both have units of 0.1, meaning
that temperature is recorded to tenths of a degree. codebook handles precision considerations in making
this determination (tempjan and tempjuly are floats; see [U] 13.12 Precision and problems therein).

If we had a variable in our dataset recorded in 100s (for example, 21,500 or 36,800), codebook would
have reported the units as 100. If we had a variable that took on only values divisible by 5 (5, 10, 15,

etc.), codebook would have reported the units as 5.

Example 3
We can use the label language command (see [D] label language) and the label command (see

[D] label) to create German value labels for our auto dataset. These labels are reported by codebook:

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. label language en, rename
(language default renamed en)
. label language de, new
(language de now current language)
. label data ”1978 Automobile Daten”
. label variable foreign ”Art Auto”
. label values foreign origin_de
. label define origin_de 0 ”Innen” 1 ”Ausländisch”
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. codebook foreign

foreign Art Auto

Type: Numeric (byte)
Label: origin_de
Range: [0,1] Units: 1

Unique values: 2 Missing .: 0/74
Tabulation: Freq. Numeric Label

52 0 Innen
22 1 Ausländisch

. codebook foreign, languages(en de)

foreign in en: Car origin
in de: Art Auto

Type: Numeric (byte)
Label in en: origin
Label in de: origin_de

Range: [0,1] Units: 1
Unique values: 2 Missing .: 0/74

Tabulation: Freq. Numeric origin origin_de
52 0 Domestic Innen
22 1 Foreign Ausländisch

With the languages() option, the value labels are shown in the specified active and available lan-
guages.

Example 4
codebook, compact summarizes the variables in your dataset, including variable labels. It is an

alternative to the summarize command.

. use https://www.stata-press.com/data/r19/auto, clear
(1978 automobile data)
. codebook, compact
Variable Obs Unique Mean Min Max Label

make 74 74 . . . Make and model
price 74 74 6165.257 3291 15906 Price
mpg 74 21 21.2973 12 41 Mileage (mpg)
rep78 69 5 3.405797 1 5 Repair record 1978
headroom 74 8 2.993243 1.5 5 Headroom (in.)
trunk 74 18 13.75676 5 23 Trunk space (cu. ft.)
weight 74 64 3019.459 1760 4840 Weight (lbs.)
length 74 47 187.9324 142 233 Length (in.)
turn 74 18 39.64865 31 51 Turn circle (ft.)
displacement 74 31 197.2973 79 425 Displacement (cu. in.)
gear_ratio 74 36 3.014865 2.19 3.89 Gear ratio
foreign 74 2 .2972973 0 1 Car origin
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. summarize
Variable Obs Mean Std. dev. Min Max

make 0
price 74 6165.257 2949.496 3291 15906

mpg 74 21.2973 5.785503 12 41
rep78 69 3.405797 .9899323 1 5

headroom 74 2.993243 .8459948 1.5 5

trunk 74 13.75676 4.277404 5 23
weight 74 3019.459 777.1936 1760 4840
length 74 187.9324 22.26634 142 233
turn 74 39.64865 4.399354 31 51

displacement 74 197.2973 91.83722 79 425

gear_ratio 74 3.014865 .4562871 2.19 3.89
foreign 74 .2972973 .4601885 0 1

Example 5
When codebook determines that neither a tabulation nor a listing of summary statistics is appropriate,

for instance, for a string variable or for a numeric variable taking on many labeled values, it reports a

few examples instead.

. use https://www.stata-press.com/data/r19/funnyvar

. codebook name

name (unlabeled)

Type: String (str5), but longest is str3
Unique values: 10 Missing ””: 0/10

Examples: ”1 0”
”3”
”5”
”7”

Warning: Variable has embedded blanks.

codebook is also on the lookout for common problems that might cause you to make errors when

dealing with the data. For string variables, this includes leading, embedded, and trailing blanks and

embedded binary 0 (\0). In the output above, codebook informed us that name includes embedded

blanks. If name had leading or trailing blanks, it would have mentioned that, too.

When variables are value labeled, codebook performs two checks. First, if a value label labname

is associated with a variable, codebook checks whether labname is actually defined. Second, it checks
whether all values are value labeled. Partial labeling of a variable may mean that the label was defined

incorrectly (for instance, the variable has values 0 and 1, but the value label maps 1 to “male” and 2 to

“female”) or that the variable was defined incorrectly (for example, a variable genderwith three values).
codebook checks whether date variables are integer valued.

If the problems option is specified, codebook does not provide detailed descriptions of each variable
but reports only the potential problems in the data.
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. codebook, problems
Potential problems in dataset https://www.stata-press.com/data/r19/
> funnyvar.dta

Potential problem Variables

constant (or all missing) vars human planet
vars with nonexisting label educ
incompletely labeled vars gender

str# vars that may be compressed name address city country planet
string vars with leading blanks city country
string vars with trailing blanks planet
string vars with embedded blanks name address

string vars with embedded \0 mugshot
noninteger-valued date vars birthdate

In the example above, codebook, problems reported various potential problems with the dataset.
These problems include

• Constant variables, including variables that are always missing

Variables that are constant, taking the same value in all observations, or that are always

missing, are often superfluous. Such variables, however, may also indicate problems. For

instance, variables that are always missing may occur when importing data with an incor-

rect input specification. Such variables may also occur if you generate a new variable for

a subset of the data, selected with an expression that is false for all observations.

Advice: Carefully check the origin of constant variables. If you are saving a constant

variable, be sure to compress the variable to use minimal storage.

• Variables with nonexisting value labels

Stata treats value labels as separate objects that can be attached to one or more variables.

A problem may arise if variables are linked to value labels that are not yet defined or if an

incorrect value label name was used.

Advice: Attach the correct value label, or label define the value label. See [D] label.

• Incompletely labeled variables

A variable is called “incompletely value labeled” if the variable is value labeled but no

mapping is provided for some values of the variable. An example is a variable with values

0, 1, and 2 and value labels for 1, 2, and 3. This situation usually indicates an error, either

in the data or in the value label.

Advice: Change either the data or the value label.

• String variables that may be compressed

The storage space used by a string variable is determined by its data type; see [D] Data

types. For instance, the storage type str20 indicates that 20 bytes are used per observation.
If the declared storage type exceeds your requirements, memory and disk space is wasted.

Advice: Use compress to store the data as compactly as possible.
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• String variables with leading or trailing blanks

In most applications, leading and trailing spaces do not affect the meaning of variables

but are probably side effects from importing the data or from data manipulation. Spurious

leading and trailing spaces force Stata to use more memory than required. In addition,

manipulating strings with leading and trailing spaces is harder.

Advice: Remove leading and trailing blanks from a string variable s by typing

replace s = strtrim(s)

See [FN] String functions.

• String variables with embedded blanks

String variables with embedded blanks are often appropriate; however, sometimes they

indicate problems importing the data.

Advice: Verify that blanks are meaningful in the variables.

• String variables with embedded binary 0 (\0)

String variables with embedded binary 0 (\0) are allowed; however, caution should be
used when working with them as some commands and functions may only work with the

plain text portion of a binary string, ignoring anything after the first binary 0.

Advice: Be aware of binary strings in your data and whether you are manipulating them

in a way that is only appropriate with plain text values.

• Noninteger-valued date variables

Stata’s date and time formats were designed for use with integer values but will work with

noninteger values.

Advice: Carefully inspect the nature of the noninteger values. If noninteger values in a

variable are the consequence of roundoff error, you may want to round the variable to the

nearest integer.

replace time = round(time)

Of course, more problems not reported by codebook are possible. These might include

• Numerical data stored as strings

After importing data into Stata, youmay discover that some string variables can actually be

interpreted as numbers. Stata can do much more with numerical data than with string data.

Moreover, string representation usually makes less efficient use of computer resources.

destring will convert string variables to numeric.

Astring variablemay contain a “field” with numeric information. An example is an address

variable that contains the street name followed by the house number. The Stata string

functions can extract the relevant substring.

• Categorical variables stored as strings

Most statistical commands do not allow string variables. Moreover, string variables that

take only a limited number of distinct values are an inefficient storage method. Use value-

labeled numeric values instead. These are easily created with encode.

• Duplicate observations

See [D] duplicates.
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• Observations that are always missing

Drop observations that are missing for all variables in varlist using the rownonmiss()
egen function:

egen nobs = rownonmiss(varlist)

drop if nobs==0

Specify all for varlist if only observations that are always missing should be dropped.

Stored results
codebook stores the following lists of variables with potential problems in r():

Macros

r(cons) constant (or missing)

r(labelnotfound) undefined value labeled

r(notlabeled) value labeled but with unlabeled categories

r(str type) compressible

r(str leading) leading blanks

r(str trailing) trailing blanks

r(str embedded) embedded blanks

r(str embedded0) embedded binary 0 (\0)
r(realdate) noninteger dates
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Description Quick start Menu Syntax
Options Remarks and examples Acknowledgment Also see

Description
collapse converts the dataset in memory into a dataset of means, sums, medians, etc. clist must

refer to numeric variables exclusively.

Note: See [D] contract if you want to collapse to a dataset of frequencies.

Quick start
Replace dataset in memory with means of v1 and v2

collapse v1 v2

Same as above, but calculate statistics separately by each level of catvar
collapse v1 v2, by(catvar)

Dataset of mean, standard deviation, and standard error of the mean of v1
collapse (mean) mean1=v1 (sd) sd1=v1 (semean) sem1=v1

Mean and standard error of the mean for binomial v2
collapse (mean) mean2=v2 (sebinomial) sem2=v2

Frequency, median, and interquartile range of v1
collapse (count) freq=v1 (p50) p50=v1 (iqr) iqr=v1

Weighted and unweighted sum of v2 using frequency weight wvar
collapse (sum) weighted=v2 (rawsum) unweighted=v2 [fweight=wvar]

Menu
Data > Create or change data > Other variable-transformation commands > Make dataset of means, medians,
etc.

64
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Syntax
collapse clist [ if ] [ in ] [weight ] [ , options ]

where clist is either

[(stat)] varlist [ [(stat)] . . . ]
[(stat)] target var=varname [target var=varname . . .] [ [(stat)] . . . ]

or any combination of the varlist and target var forms, and stat is one of

mean means; the default
median medians
p1 1st percentile
p2 2nd percentile
. . . 3rd–49th percentiles
p50 50th percentile (same as median)
. . . 51st–97th percentiles
p98 98th percentile
p99 99th percentile
sd standard deviations
semean standard error of the mean (sd/sqrt(n))
sebinomial standard error of the mean, binomial (sqrt(p(1-p)/n))
sepoisson standard error of the mean, Poisson (sqrt(mean/n))
sum sums
rawsum sums, ignoring optionally specified weight except observations with a weight of zero are excluded
count number of nonmissing observations
percent percentage of nonmissing observations in the by group

(100 × (# nonmissing in by group)/(total # nonmissing))
max maximums
min minimums
iqr interquartile range
first first value
last last value
firstnm first nonmissing value
lastnm last nonmissing value

options Description

Options

by(varlist) groups over which stat is to be calculated

cw casewise deletion instead of all possible observations

fast do not restore the original dataset should the user press Break; programmer’s
command

varlist and varname in clist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight, and see Weights below. pweights may
not be used with sd, semean, sebinomial, or sepoisson. iweights may not be used with semean, sebinomial, or
sepoisson. aweights may not be used with sebinomial or sepoisson.

fast does not appear in the dialog box.

Examples:

. collapse age educ income, by(state)

. collapse (mean) age educ (median) income, by(state)

. collapse (mean) age educ income (median) medinc=income, by(state)

. collapse (p25) gpa [fw=number], by(year)
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Options

� � �
Options �

by(varlist) specifies the groups over which the means, etc., are to be calculated. If this option is not
specified, the resulting dataset will contain 1 observation. If it is specified, varlist may refer to either

string or numeric variables.

cw specifies casewise deletion. If cw is not specified, all possible observations are used for each calculated
statistic.

The following option is available with collapse but is not shown in the dialog box:

fast specifies that collapse not restore the original dataset should the user press Break. fast is in-
tended for use by programmers.

Remarks and examples
collapse takes the dataset in memory and creates a new dataset containing summary statistics of the

original data. collapse adds meaningful variable labels to the variables in this new dataset. Because

the syntax diagram for collapse makes using it appear more complicated than it is, collapse is best
explained with examples.

Remarks are presented under the following headings:

Introductory examples
Variablewise or casewise deletion
Weights
A final example

Introductory examples

Example 1
Consider the following artificial data on the grade-point average (gpa) of college students:

. use https://www.stata-press.com/data/r19/college

. describe
Contains data from https://www.stata-press.com/data/r19/college.dta
Observations: 12

Variables: 4 3 Jan 2024 12:05

Variable Storage Display Value
name type format label Variable label

gpa float %9.0g gpa for this year
hour int %9.0g Total academic hours
year int %9.0g 1 = freshman, 2 = sophomore, 3 =

junior, 4 = senior
number int %9.0g number of students

Sorted by: year
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. list, sep(4)

gpa hour year number

1. 3.2 30 1 3
2. 3.5 34 1 2
3. 2.8 28 1 9
4. 2.1 30 1 4

5. 3.8 29 2 3
6. 2.5 30 2 4
7. 2.9 35 2 5
8. 3.7 30 3 4

9. 2.2 35 3 2
10. 3.3 33 3 3
11. 3.4 32 4 5
12. 2.9 31 4 2

To obtain a dataset containing the 25th percentile of gpa’s for each year, we type

. collapse (p25) gpa [fw=number], by(year)

We used frequency weights.

Next we want to create a dataset containing the mean of gpa and hour for each year. We do not have

to type (mean) to specify that we want the mean because the mean is reported by default.

. use https://www.stata-press.com/data/r19/college, clear

. collapse gpa hour [fw=number], by(year)

. list

year gpa hour

1. 1 2.788889 29.44444
2. 2 2.991667 31.83333
3. 3 3.233333 32.11111
4. 4 3.257143 31.71428

Now we want to create a dataset containing the mean and median of gpa and hour, and we want the
median of gpa and hour to be stored as variables medgpa and medhour, respectively.

. use https://www.stata-press.com/data/r19/college, clear

. collapse (mean) gpa hour (median) medgpa=gpa medhour=hour [fw=num], by(year)

. list

year gpa hour medgpa medhour

1. 1 2.788889 29.44444 2.8 29
2. 2 2.991667 31.83333 2.9 30
3. 3 3.233333 32.11111 3.3 33
4. 4 3.257143 31.71428 3.4 32
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Here we want to create a dataset containing a count of gpa and hour and the minimums of gpa and
hour. The minimums of gpa and hour will be stored as variables mingpa and minhour, respectively.

. use https://www.stata-press.com/data/r19/college, clear

. collapse (count) gpa hour (min) mingpa=gpa minhour=hour [fw=num], by(year)

. list

year gpa hour mingpa minhour

1. 1 18 18 2.1 28
2. 2 12 12 2.5 29
3. 3 9 9 2.2 30
4. 4 7 7 2.9 31

Now we replace the values of gpa in 3 of the observations with missing values.

. use https://www.stata-press.com/data/r19/college, clear

. replace gpa = . in 2/4
(3 real changes made, 3 to missing)
. list, sep(4)

gpa hour year number

1. 3.2 30 1 3
2. . 34 1 2
3. . 28 1 9
4. . 30 1 4

5. 3.8 29 2 3
6. 2.5 30 2 4
7. 2.9 35 2 5
8. 3.7 30 3 4

9. 2.2 35 3 2
10. 3.3 33 3 3
11. 3.4 32 4 5
12. 2.9 31 4 2

If we now want to list the data containing the mean of gpa and hour for each year, collapse uses
all observations on hour for year = 1, even though gpa is missing for observations 1–3.

. collapse gpa hour [fw=num], by(year)

. list

year gpa hour

1. 1 3.2 29.44444
2. 2 2.991667 31.83333
3. 3 3.233333 32.11111
4. 4 3.257143 31.71428
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If we repeat this process but specify the cw option, collapse ignores all observations that have

missing values.

. use https://www.stata-press.com/data/r19/college, clear

. replace gpa = . in 2/4
(3 real changes made, 3 to missing)
. collapse (mean) gpa hour [fw=num], by(year) cw
. list

year gpa hour

1. 1 3.2 30
2. 2 2.991667 31.83333
3. 3 3.233333 32.11111
4. 4 3.257143 31.71428

Example 2
We have individual-level data from a census in which each observation is a person. Among other

variables, the dataset contains the numeric variables age, educ, and income and the string variable

state. We want to create a 50-observation dataset containing the means of age, education, and income

for each state.

. collapse age educ income, by(state)

The resulting dataset contains means because collapse assumes that we want means if we do not specify
otherwise. To make this explicit, we could have typed

. collapse (mean) age educ income, by(state)

Had we wanted the mean for age and educ and the median for income, we could have typed

. collapse (mean) age educ (median) income, by(state)

or if we had wanted the mean for age and educ and both the mean and the median for income, we could
have typed

. collapse (mean) age educ income (median) medinc=income, by(state)

This last dataset will contain three variables containing means—age, educ, and income—and one vari-

able containing the median of income—medinc. Because we typed (median) medinc=income, Stata
knew to find the median for income and to store those in a variable named medinc. This renaming con-
vention is necessary in this example because a variable named income containing the mean is also being
created.
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Variablewise or casewise deletion

Example 3
Let’s assume that in our census data, we have 25,000 persons for whom age is recorded but only

15,000 for whom income is recorded; that is, income is missing for 10,000 observations. If we want
summary statistics for age and income, collapse will, by default, use all 25,000 observations when
calculating the summary statistics for age. If we prefer that collapse use only the 15,000 observations
for which income is not missing, we can specify the cw (casewise) option:

. collapse (mean) age income (median) medinc=income, by(state) cw

Weights
collapse allows all four weight types; the default is aweights. Weight normalization affects only

the sum, count, sd, semean, and sebinomial statistics.

Let 𝑗 index observations and 𝑖 index by-groups. Here are the definitions for count and sum with

weights:

count:
unweighted: 𝑁𝑖, the number of observations in group 𝑖
aweight: 𝑁𝑖, the number of observations in group 𝑖
fweight, iweight, pweight: ∑ 𝑤𝑗, the sum of the weights over observations in

group 𝑖
sum:

unweighted: ∑ 𝑥𝑗, the sum of 𝑥𝑗 over observations in group 𝑖
aweight: ∑ 𝑣𝑗𝑥𝑗 over observations in group 𝑖; 𝑣𝑗 = weights

normalized to sum to 𝑁𝑖
fweight, iweight, pweight: ∑ 𝑤𝑗𝑥𝑗 over observations in group 𝑖

When the by() option is not specified, the entire dataset is treated as one group.

The sd statistic with weights returns the square root of the bias-corrected variance, which is based on
the factor √𝑁𝑖/(𝑁𝑖 − 1), where 𝑁𝑖 is the number of observations. Statistics sd, semean, sebinomial,
and sepoisson are not allowed with pweighted data. Otherwise, the statistic is changed by the weights
through the computation of the weighted count, as outlined above.

For instance, consider a case in which there are 25 observations in the dataset and a weighting variable

that sums to 57. In the unweighted case, the weight is not specified, and the count is 25. In the analytically

weighted case, the count is still 25; the scale of the weight is irrelevant. In the frequency-weighted case,

however, the count is 57, the sum of the weights.

The rawsum statistic with aweights ignores the weight, with one exception: observations with zero
weight will not be included in the sum.
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Example 4
Using our same census data, suppose that instead of startingwith individual-level data and aggregating

to the state level, we started with state-level data and wanted to aggregate to the region level. Also assume

that our dataset contains pop, the population of each state.

To obtain unweighted means and medians of age and income, by region, along with the total popula-

tion, we could type

. collapse (mean) age income (median) medage=age medinc=income (sum) pop,
> by(region)

To obtain weighted means and medians of age and income, by region, along with the total population

and using frequency weights, we could type

. collapse (mean) age income (median) medage=age medinc=income (count) pop
> [fweight=pop], by(region)

Note: Specifying (sum) pop would not have worked because that would have yielded the pop-weighted
sum of pop. Specifying (count) agewould have worked as well as (count) pop because countmerely
counts the number of nonmissing observations. The counts here, however, are frequency-weighted and

equal the sum of pop.

To obtain the same mean and medians as above, but using analytic weights, we could type

. collapse (mean) age income (median) medage=age medinc=income (rawsum) pop
> [aweight=pop], by(region)

Note: Specifying (count) pop would not have worked because, with analytic weights, count would
count numbers of physical observations. Specifying (sum) pop would not have worked because sum
would calculate weighted sums (with a normalized weight). The rawsum function, however, ignores the
weights and sums only the specified variable, with one exception: observations with zero weight will

not be included in the sum. rawsum would have worked as the solution to all three cases.
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A final example

Example 5
We have census data containing information on each state’s median age, marriage rate, and divorce

rate. We want to form a new dataset containing various summary statistics, by region, of the variables:

. use https://www.stata-press.com/data/r19/census5, clear
(1980 Census data by state)
. describe
Contains data from https://www.stata-press.com/data/r19/census5.dta
Observations: 50 1980 Census data by state

Variables: 7 6 Apr 2024 15:43

Variable Storage Display Value
name type format label Variable label

state str14 %14s State
state2 str2 %-2s Two-letter state abbreviation
region int %8.0g cenreg Census region
pop long %10.0g Population
median_age float %9.2f Median age
marriage_rate float %9.0g
divorce_rate float %9.0g

Sorted by: region
. collapse (median) median_age marriage divorce (mean) avgmrate=marriage
> avgdrate=divorce [aw=pop], by(region)
. list

region median~e marria~e divorc~e avgmrate avgdrate

1. NE 31.90 .0080657 .0035295 .0081472 .0035359
2. N Cntrl 29.90 .0093821 .0048636 .0096701 .004961
3. South 29.60 .0112609 .0065792 .0117082 .0059439
4. West 29.90 .0089093 .0056423 .0125199 .0063464

. describe
Contains data
Observations: 4 1980 Census data by state

Variables: 6

Variable Storage Display Value
name type format label Variable label

region int %8.0g cenreg Census region
median_age float %9.2f (p 50) median_age
marriage_rate float %9.0g (p 50) marriage_rate
divorce_rate float %9.0g (p 50) divorce_rate
avgmrate float %9.0g (mean) marriage_rate
avgdrate float %9.0g (mean) divorce_rate

Sorted by: region
Note: Dataset has changed since last saved.
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Also see
[D] contract — Make dataset of frequencies and percentages

[D] egen — Extensions to generate

[D] statsby — Collect statistics for a command across a by list

[R] summarize — Summary statistics



compare — Compare two variables

Description Quick start Menu Syntax Remarks and examples
Also see

Description
compare reports the differences and similarities between varname1 and varname2.

Quick start
Describe differences in missing and defined values of v1 and v2

compare v1 v2

Same as above, but only for observations where catvar is equal to 3
compare v1 v2 if catvar==3

Same as above, but for each level of catvar
by catvar: compare v1 v2

Menu
Data > Data utilities > Compare two variables

Syntax
compare varname1 varname2 [ if ] [ in ]

by is allowed; see [D] by.

Remarks and examples

Example 1
One of the more useful accountings made by compare is the pattern of missing values:

. use https://www.stata-press.com/data/r19/fullauto
(Automobile models)
. compare rep77 rep78

Difference
Count Minimum Average Maximum

rep77<rep78 16 -3 -1.3125 -1
rep77=rep78 43
rep77>rep78 7 1 1 1

Jointly defined 66 -3 -.2121212 1
rep77 missing only 3
Jointly missing 5

Total 74

74
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We see that both rep77 and rep78 are missing in 5 observations and that rep77 is also missing in 3

more observations.

Technical note
compare may be used with numeric variables, string variables, or both. When used with string vari-

ables, the summary of the differences (minimum, average, maximum) is not reported. When used with

string and numeric variables, the breakdown by <, =, and > is also suppressed.

Also see
[D] cf — Compare two datasets

[D] codebook — Describe data contents

[D] inspect — Display simple summary of data’s attributes



compress — Compress data in memory

Description Quick start Menu Syntax Option Remarks and examples
Also see

Description
compress attempts to reduce the amount of memory used by your data.

Quick start
Reduce the amount of memory used by the current dataset

compress

Same as above, but only reduce memory used by v1 and v2
compress v1 v2

Speed up compress for large datasets with strL-type variables, but possibly reduce the amount of mem-
ory saved

compress, nocoalesce

Menu
Data > Data utilities > Optimize variable storage

Syntax
compress [ varlist ] [ , nocoalesce ]

Option
nocoalesce specifies that compress not try to find duplicate values within strL variables in an attempt

to save memory. If nocoalesce is not specified, compressmust sort the data by each strL variable,
which can be time consuming in large datasets.

Remarks and examples
compress reduces the size of your dataset by considering two things. First, it considers demoting

doubles to longs, ints, or bytes
floats to ints or bytes
longs to ints or bytes
ints to bytes
str#s to shorter str#s
strLs to str#s

See [D] Data types for an explanation of these storage types.
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Second, it considers coalescing strLs within each strL variable. That is to say, if a strL variable takes
on the same value in multiple observations, compress can link those values to a single memory location
to save memory. To check for this, compress must sort the data on each strL variable. You can use the
nocoalesce option to tell compress not to take the time to perform this check. If compress does check
whether it can coalesce strL values, it will do whichever saves more memory—coalescing strL values
or demoting a strL to a str#—or it will do nothing if it cannot save memory by changing a strL.

compress leaves your data logically unchanged but (probably) appreciably smaller. compress never
makes a mistake, results in loss of precision, or hacks off strings.

Example 1
If you do not specify varlist, compress considers demoting all the variables in your dataset, so typing

compress by itself is usually enough:

. use https://www.stata-press.com/data/r19/compxmp2
(1978 automobile data)
. compress
variable mpg was float now byte
variable price was long now int
variable yenprice was double now long
variable weight was double now int
variable make was str26 now str17
(1,776 bytes saved)

If there are no compression possibilities, compress does nothing. For instance, typing compress again
results in

. compress
(0 bytes saved)

Video example
How to optimize the storage of variables

Also see
[D] Data types — Quick reference for data types

[D] recast — Change storage type of variable

https://www.youtube.com/watch?v=PIV9ugn6XL8


contract — Make dataset of frequencies and percentages

Description Quick start Menu Syntax Options
Remarks and examples Acknowledgments Reference Also see

Description
contract replaces the dataset in memory with a new dataset consisting of all combinations of varlist

that exist in the data and a new variable that contains the frequency of each combination.

Quick start
Frequency of each combination of v1 and v2 saved in freq

contract v1 v2

Same as above, but name new frequency variable newf
contract v1 v2, freq(newf)

Add percentage of total in newp
contract v1 v2, freq(newf) percent(newp)

Add cumulative frequency newcf and cumulative percentage newcp
contract v1 v2, freq(newf) percent(newp) cfreq(newcf) ///

cpercent(newcp)

Frequency of combinations excluding missing values

contract v1 v2, nomiss

Add combinations with zero observations

contract v1 v2, nomiss zero

Menu
Data > Create or change data > Other variable-transformation commands > Make dataset of frequencies
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Syntax
contract varlist [ if ] [ in ] [weight ] [ , options ]

options Description

Options

freq(newvar) name of frequency variable; default is freq
cfreq(newvar) create cumulative frequency variable

percent(newvar) create percentage variable

cpercent(newvar) create cumulative percentage variable

float generate percentage variables as type float
format(format) display format for new percentage variables; default is format(%8.2f)
zero include combinations with frequency zero

nomiss drop observations with missing values

fweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Options �

freq(newvar) specifies a name for the frequency variable. If not specified, freq is used.

cfreq(newvar) specifies a name for the cumulative frequency variable. If not specified, no cumulative
frequency variable is created.

percent(newvar) specifies a name for the percentage variable. If not specified, no percentage variable
is created.

cpercent(newvar) specifies a name for the cumulative percentage variable. If not specified, no cumu-
lative percentage variable is created.

float specifies that the percentage variables specified by percent() and cpercent()will be generated
as variables of type float. If float is not specified, these variables will be generated as variables
of type double. All generated variables are compressed to the smallest storage type possible without
loss of precision; see [D] compress.

format(format) specifies a display format for the generated percentage variables specified by

percent() and cpercent(). If format() is not specified, these variables will have the display

format %8.2f.

zero specifies that combinations with frequency zero be included.

nomiss specifies that observations with missing values on any variable in varlist be dropped. If nomiss
is not specified, all observations possible are used.
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Remarks and examples
contract takes the dataset in memory and creates a new dataset containing all combinations of varlist

that exist in the data and a new variable that contains the frequency of each combination.

Sometimes you may want to collapse a dataset into frequency form. Several observations that have

identical values on one or more variables will be replaced by one such observation, together with the

frequency of the corresponding set of values. For example, in certain generalized linear models, the

frequency of some combination of values is the response variable, so you would need to produce that

response variable. The set of covariate values associated with each frequency is sometimes called a

covariate class or covariate pattern. Such collapsing is reversible for the variables concerned, because

the original dataset can be reconstituted by using expand (see [D] expand) with the variable containing
the frequencies of each covariate class.

Example 1
Suppose that we wish to collapse auto2.dta to a set of frequencies of the variables rep78, which

takes values labeled “Poor”, “Fair”, “Average”, “Good”, and “Excellent”, and foreign, which takes
values labeled “Domestic” and “Foreign”.

. use https://www.stata-press.com/data/r19/auto2
(1978 automobile data)
. contract rep78 foreign
. list

rep78 foreign _freq

1. Poor Domestic 2
2. Fair Domestic 8
3. Average Domestic 27
4. Average Foreign 3
5. Good Domestic 9

6. Good Foreign 9
7. Excellent Domestic 2
8. Excellent Foreign 9
9. . Domestic 4

10. . Foreign 1

By default, contract uses the variable name freq for the new variable that contains the frequencies.

If freq is in use, you will be reminded to specify a new variable name via the freq() option.
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Specifying the zero option requests that combinations with frequency zero also be listed.

. use https://www.stata-press.com/data/r19/auto2, clear
(1978 automobile data)
. contract rep78 foreign, zero
. list

rep78 foreign _freq

1. Poor Domestic 2
2. Poor Foreign 0
3. Fair Domestic 8
4. Fair Foreign 0
5. Average Domestic 27

6. Average Foreign 3
7. Good Domestic 9
8. Good Foreign 9
9. Excellent Domestic 2

10. Excellent Foreign 9

11. . Domestic 4
12. . Foreign 1

Acknowledgments
contract was written by Nicholas J. Cox (1998) of the Department of Geography at Durham Uni-

versity, UK, who is coeditor of the Stata Journal and author of Speaking Stata Graphics. The cfreq(),
percent(), cpercent(), float, and format() options were written by Roger Newson of the Imperial
College London.

Reference
Cox, N. J. 1998. dm59: Collapsing datasets to frequencies. Stata Technical Bulletin 44: 2–3. Reprinted in Stata Technical

Bulletin Reprints, vol. 8, pp. 20–21. College Station, TX: Stata Press.

Also see
[D] expand — Duplicate observations

[D] collapse — Make dataset of summary statistics

[D] duplicates — Report, tag, or drop duplicate observations

https://www.stata-journal.com/
https://www.stata-press.com/books/speaking-stata-graphics/
https://www.stata.com/products/stb/journals/stb44.pdf


copy — Copy file from disk or URL

Description Quick start Syntax Options Remarks and examples
Also see

Description
copy copies an existing file to a file with a new name.

Quick start
Copy mydata.dta from C:\myfolder to C:\otherfolder

copy c:\myfolder\mydata.dta c:\otherfolder\

Same as above, but change dataset name to newdata.dta
copy c:\myfolder\mydata.dta c:\otherfolder\newdata.dta

Same as above, but replace newdata.dta if it exists
copy c:\myfolder\mydata.dta c:\otherfolder\newdata.dta, replace

Copy web-based Stata example dataset fullauto.dta to the current working directory
copy https://www.stata-press.com/data/r19/fullauto.dta myauto.dta

Syntax
copy filename1 filename2 [ , options ]

filename1 may be a filename or a URL. filename2 may be the name of a file or a directory. If filename2
is a directory name, filename1 will be copied to that directory. filename2 may not be a URL.

Note: Double quotes may be used to enclose the filenames, and the quotes must be used if the filename

contains embedded blanks.

options Description

public make filename2 readable by all

text interpret filename1 as text file and translate to native text format

replace may overwrite filename2

replace does not appear in the dialog box.
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Options
public specifies that filename2 be readable by everyone; otherwise, the file will be created according

to the default permissions of your operating system.

text specifies that filename1 be interpreted as a text file and be translated to the native form of text files

on your computer. Computers differ on how end-of-line is recorded: Unix systems record one line-

feed character, Windows computers record a carriage-return/line-feed combination, andMac comput-

ers record just a carriage return. text specifies that filename1 be examined to determine how it has

end-of-line recorded and that the line-end characters be switched to whatever is appropriate for your

computer when the copy is made.

There is no reason to specify textwhen copying a file already on your computer to a different location
because the file would already be in your computer’s format.

Do not specify text unless you know that the file is a text file; if the file is binary and you specify

text, the copy will be useless. Most word processors produce binary files, not text files. The term

text, as it is used here, specifies a particular way of recording textual information.

When other parts of Stata read text files, they do not care how lines are terminated, so there is no

reason to translate end-of-line characters on that score. You specify text because you may want to
look at the file with other software.

The following option is available with copy but is not shown in the dialog box:

replace specifies that filename2 be replaced if it already exists.

Remarks and examples
Examples:

Windows:

. copy orig.dta newcopy.dta

. copy mydir\orig.dta .

. copy orig.dta ../../

. copy ”my document” ”copy of document”

. copy ..\mydir\doc.txt document\doc.tex

. copy https://www.stata.com/examples/simple.dta simple.dta

. copy https://www.stata.com/examples/simple.txt simple.txt, text

Mac and Unix:

. copy orig.dta newcopy.dta

. copy mydir/orig.dta .

. copy orig.dta ../../

. copy ”my document” ”copy of document”

. copy ../mydir/doc.txt document/doc.tex

. copy https://www.stata.com/examples/simple.dta simple.dta

. copy https://www.stata.com/examples/simple.txt simple.txt, text
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Also see
[D] cd — Change directory

[D] dir — Display filenames

[D] erase — Erase a disk file

[D] mkdir — Create directory

[D] rmdir — Remove directory

[D] shell — Temporarily invoke operating system

[D] type — Display contents of a file

[U] 11.6 Filenaming conventions



corr2data — Create dataset with specified correlation structure

Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas Reference
Also see

Description
corr2data adds new variables with specified covariance (correlation) structure to the existing dataset

or creates a new dataset with a specified covariance (correlation) structure. Singular covariance (corre-

lation) structures are permitted. The purpose of this is to allow you to perform analyses from summary

statistics (correlations/covariances andmaybe themeans) when these summary statistics are all you know

and summary statistics are sufficient to obtain results. For example, these summary statistics are suffi-

cient for performing analysis of 𝑡 tests, variance, principal components, regression, and factor analysis.
The recommended process is

. clear (clear memory)

. corr2data ..., n(#) cov(...) ... (create artificial data)

. regress ... (use artificial data appropriately)

However, for factor analyses and principal components, the commands factormat and pcamat allow
you to skip the step of using corr2data; see [MV] factor and [MV] pca.

The data created by corr2data are artificial; they are not the original data, and it is not a sample

from an underlying population with the summary statistics specified. See [D] drawnorm if you want to

generate a random sample. In a sample, the summary statistics will differ from the population values and

will differ from one sample to the next.

The dataset corr2data creates is suitable for one purpose only: performing analyses when all that
is known are summary statistics and those summary statistics are sufficient for the analysis at hand. The

artificial data tricks the analysis command into producing the desired result. The analysis command, be-

ing by assumption only a function of the summary statistics, extracts from the artificial data the summary

statistics, which are the same summary statistics you specified, and then makes its calculation based on

those statistics.

If you doubt whether the analysis depends only on the specified summary statistics, you can generate

different artificial datasets by using different seeds of the random-number generator (see the seed()
option below) and compare the results, which should be the same within rounding error.

Quick start
Create dataset with 1,000 observations, v1 with mean of 3.4 and std. dev. of 1, v2 with mean of 3 and

std. dev. of 0.5, and no correlation between v1 and v2
corr2data v1 v2, n(1000) means(3.4 3) sds(1 .5)

Same as above, but with correlation between v1 and v2 specified in matrix mymat
corr2data v1 v2, n(1000) means(3.4 3) sds(1 .5) corr(mymat)

Menu
Data > Create or change data > Other variable-creation commands > Create dataset with specified correlation
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Syntax
corr2data newvarlist [ , options ]

options Description

Main

clear replace the current dataset

double generate variable type as double; default is float
n(#) generate # observations; default is current number

sds(vector) standard deviations of generated variables

corr(matrix | vector) correlation matrix

cov(matrix | vector) covariance matrix

cstorage(full) store correlation/covariance structure as a symmetric 𝑘×𝑘 matrix
cstorage(lower) store correlation/covariance structure as a lower triangular matrix

cstorage(upper) store correlation/covariance structure as an upper triangular matrix

forcepsd force the covariance/correlation matrix to be positive semidefinite

means(vector) means of generated variables; default is means(0)

Options

seed(#) seed for random-number generator

Options

� � �
Main �

clear specifies that it is okay to replace the dataset in memory, even though the current dataset has not
been saved on disk.

double specifies that the new variables be stored as Stata doubles, meaning 8-byte reals. If double is
not specified, variables are stored as floats, meaning 4-byte reals. See [D] Data types.

n(#) specifies the number of observations to be generated; the default is the current number of observa-
tions. If n(#) is not specified or is the same as the current number of observations, corr2data adds
the new variables to the existing dataset; otherwise, corr2data replaces the dataset in memory.

sds(vector) specifies the standard deviations of the generated variables. sds() may not be specified
with cov().

corr(matrix | vector) specifies the correlation matrix. If neither corr() nor cov() is specified, the

default is orthogonal data.

cov(matrix | vector) specifies the covariance matrix. If neither corr() nor cov() is specified, the de-
fault is orthogonal data.



corr2data — Create dataset with specified correlation structure 87

cstorage(full | lower | upper) specifies the storage mode for the correlation or covariance structure
in corr() or cov(). The following storage modes are supported:

full specifies that the correlation or covariance structure is stored (recorded) as a symmetric 𝑘×𝑘
matrix.

lower specifies that the correlation or covariance structure is recorded as a lower triangular matrix.
With 𝑘 variables, the matrix should have 𝑘(𝑘 + 1)/2 elements in the following order:

C11 C21 C22 C31 C32 C33 . . . C𝑘1 C𝑘2 . . . C𝑘𝑘

upper specifies that the correlation or covariance structure is recorded as an upper triangular matrix.
With 𝑘 variables, the matrix should have 𝑘(𝑘 + 1)/2 elements in the following order:

C11 C12 C13 . . . C1𝑘 C22 C23 . . .C2𝑘 . . . C(𝑘−1𝑘−1) C(𝑘−1𝑘) C𝑘𝑘

Specifying cstorage(full) is optional if the matrix is square. cstorage(lower) or

cstorage(upper) is required for the vectorized storage methods. See Storage modes for correlation
and covariance matrices in [D] drawnorm for examples.

forcepsd modifies the matrix C to be positive semidefinite (psd) and to thus be a proper covariance

matrix. If C is not positive semidefinite, it will have negative eigenvalues. By setting the negative

eigenvalues to 0 and reconstructing, we obtain the least-squares positive-semidefinite approximation

to C. This approximation is a singular covariance matrix.

means(vector) specifies the means of the generated variables. The default is means(0).

� � �
Options �

seed(#) specifies the seed of the random-number generator used to generate data. # defaults to 0. The
random numbers generated inside corr2data do not affect the seed of the standard random-number
generator.

Remarks and examples
corr2data is designed to enable analyses of correlation (covariance) matrices by commands that

expect variables rather than a correlation (covariance) matrix. corr2data creates variables with exactly
the correlation (covariance) that you want to analyze. Apart from means and covariances, all aspects of

the data are meaningless. Only analyses that depend on the correlations (covariances) and means produce

meaningful results. Thus you may perform a paired 𝑡 test ([R] ttest) or an ordinary regression analysis
([R] regress), etc.

If you are not sure that a statistical result depends only on the specified summary statistics and not on

other aspects of the data, you can generate different datasets, each having the same summary statistics

but other different aspects, by specifying the seed() option. If the statistical results differ beyond what
is attributable to roundoff error, then using corr2data is inappropriate.
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Example 1
We first run a regression using the auto dataset.

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. regress weight length trunk

Source SS df MS Number of obs = 74
F(2, 71) = 303.95

Model 39482774.4 2 19741387.2 Prob > F = 0.0000
Residual 4611403.95 71 64949.3513 R-squared = 0.8954

Adj R-squared = 0.8925
Total 44094178.4 73 604029.841 Root MSE = 254.85

weight Coefficient Std. err. t P>|t| [95% conf. interval]

length 33.83435 1.949751 17.35 0.000 29.94666 37.72204
trunk -5.83515 10.14957 -0.57 0.567 -26.07282 14.40252
_cons -3258.84 283.3547 -11.50 0.000 -3823.833 -2693.846

Suppose that, for some reason, we no longer have the auto dataset. Instead, we know the means and

covariance matrices of weight, length, and trunk, and we want to do the same regression again. The
matrix of means is

. matrix list M
M[1,3]

weight length trunk
_cons 3019.4595 187.93243 13.756757

and the covariance matrix is

. matrix list V
symmetric V[3,3]

weight length trunk
weight 604029.84
length 16370.922 495.78989
trunk 2234.6612 69.202518 18.296187

To do the regression analysis in Stata, we need to create a dataset that has the specified correlation

structure.

. corr2data x y z, n(74) cov(V) means(M)

. regress x y z
Source SS df MS Number of obs = 74

F(2, 71) = 303.95
Model 39482773.3 2 19741386.6 Prob > F = 0.0000

Residual 4611402.75 71 64949.3345 R-squared = 0.8954
Adj R-squared = 0.8925

Total 44094176 73 604029.809 Root MSE = 254.85

x Coefficient Std. err. t P>|t| [95% conf. interval]

y 33.83435 1.949751 17.35 0.000 29.94666 37.72204
z -5.835155 10.14957 -0.57 0.567 -26.07282 14.40251

_cons -3258.84 283.3546 -11.50 0.000 -3823.833 -2693.847
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The results from the regression based on the generated data are the same as those based on the real data.

Methods and formulas
Two steps are involved in generating the desired dataset. The first step is to generate a zero-mean,

zero-correlated dataset. The second step is to apply the desired correlation structure and the means to the

zero-mean, zero-correlated dataset. In both steps, we take into account that, given any matrixA and any

vector of variables X, Var(A′X) = A′Var(X)A.

Reference
Cappellari, L., and S. P. Jenkins. 2006. Calculation of multivariate normal probabilities by simulation, with applications

to maximum simulated likelihood estimation. Stata Journal 6: 156–189.

Also see
[D] Data types — Quick reference for data types

[D] drawnorm — Draw sample from multivariate normal distribution

https://www.stata-journal.com/article.html?article=st0101
https://www.stata-journal.com/article.html?article=st0101


count — Count observations satisfying specified conditions

Description Quick start Menu Syntax
Remarks and examples Stored results References Also see

Description
count counts the number of observations that satisfy the specified conditions. If no conditions are

specified, count displays the number of observations in the data.

Quick start
Count the number of observations

count

Same as above, but where catvar equals 3
count if catvar==3

Count observations for each value of catvar
by catvar: count

Menu
Data > Data utilities > Count observations satisfying condition

Syntax
count [ if ] [ in ]

by and collect are allowed; see [U] 11.1.10 Prefix commands.

Remarks and examples
count may strike you as an almost useless command, but it can be one of Stata’s handiest.

Example 1
How many times have you obtained a statistical result and then asked yourself how it was possible?

You think a moment and then mutter aloud, “Wait a minute. Is income ever negative in these data?” or

“Is sex ever equal to 3?” count can quickly answer those questions:
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. use https://www.stata-press.com/data/r19/countxmpl
(1980 Census data by state)
. count
641

. count if income<0
0

. count if sex==3
1

. by division: count if sex==3

-> division = New England
0

-> division = Mountain
0

-> division = Pacific
1

We have 641 observations. income is never negative. sex, however, takes on the value 3 once. When

we decompose the count by division, we see that it takes on that odd value in the Pacific division.

Stored results
count stores the following in r():

Scalars

r(N) number of observations

References
Cox, N. J. 2007a. Speaking Stata: Counting groups, especially panels. Stata Journal 7: 571–581.

———. 2007b. Speaking Stata: Making it count. Stata Journal 7: 117–130.

———. 2007c. Stata tip 51: Events in intervals. Stata Journal 7: 440–443.

Also see
[R] tabulate oneway — One-way table of frequencies

https://www.stata-journal.com/article.html?article=dm0033
https://www.stata-journal.com/article.html?article=pr0029
https://www.stata-journal.com/article.html?article=pr0033


cross — Form every pairwise combination of two datasets

Description Quick start Menu Syntax
Remarks and examples References Also see

Description
cross forms every pairwise combination of the data in memory with the data in filename. If filename

is specified without a suffix, .dta is assumed.

Quick start
Form every pairwise combination of observations from mydata1.dta in memory with observations from

mydata2.dta
cross using mydata2

Menu
Data > Combine datasets > Form every pairwise combination of two datasets

Syntax
cross using filename

cross does not allow alias variables; see [D] frunalias for advice on how to get around this restriction.

Remarks and examples
This command is rarely used; also see [D] joinby, [D] merge, and [D] append.

Crossing refers to merging two datasets in every way possible. That is, the first observation of the

data in memory is merged with every observation of filename, followed by the second, and so on. Thus

the result will have 𝑁1𝑁2 observations, where 𝑁1 and 𝑁2 are the number of observations in memory

and in filename, respectively.

Typically, the datasets will have no common variables. If they do, such variables will take on only

the values of the data in memory.

Example 1
We wish to form a dataset containing all combinations of three age categories and two sexes to serve

as a stub. The three age categories are 20, 30, and 40. The two sexes are male and female:
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. input str6 sex
sex

1. male
2. female
3. end

. save sex
file sex.dta saved
. drop _all
. input agecat

agecat
1. 20
2. 30
3. 40
4. end

. cross using sex

. list

agecat sex

1. 20 male
2. 30 male
3. 40 male
4. 20 female
5. 30 female

6. 40 female

References
Baum, C. F. 2016. An Introduction to Stata Programming. 2nd ed. College Station, TX: Stata Press.

Franklin, C. H. 2006. Stata tip 29: For all times and all places. Stata Journal 6: 147–148.

Also see
[D] append —Append datasets

[D] fillin — Rectangularize dataset

[D] frunalias — Change storage type of alias variables

[D] joinby — Form all pairwise combinations within groups

[D] merge — Merge datasets

[D] save — Save Stata dataset

https://www.stata-press.com/books/introduction-stata-programming/
https://www.stata-journal.com/article.html?article=dm0020


Data types — Quick reference for data types

Description Remarks and examples Also see

Description
This entry provides a quick reference for data types allowed by Stata. See [U] 12 Data for details.

Remarks and examples

Closest to 0

Storage type Minimum Maximum without being 0 Bytes

byte −127 100 ±1 1

int −32,767 32,740 ±1 2

long −2,147,483,647 2,147,483,620 ±1 4

float −1.70141173319 × 1038 1.70141173319 × 1038 ±10−38 4

double −8.9884656743 × 10307 8.9884656743 × 10307 ±10−323 8

Precision for float is 3.795 × 10−8.

Precision for double is 1.414 × 10−16.

String Maximum

storage type length Bytes

str1 1 1

str2 2 2

. . . . .

. . . . .

. . . . .

str2045 2045 2045

strL 2000000000 2000000000

Each element of data is said to be either type numeric or type string. The word “real” is sometimes

used in place of numeric. Associated with each data type is a storage type.

Numbers are stored as byte, int, long, float, or double, with the default being float. byte, int,
and long are said to be of integer type in that they can hold only integers.

Strings are stored as str#, for instance, str1, str2, str3, . . . , str2045, or as strL. The number
after the str indicates the maximum length of the string. A str5 could hold the word “male”, but not
the word “female” because “female” has six characters. A strL can hold strings of arbitrary lengths, up
to 2000000000 characters, and can even hold binary data containing embedded \0 characters.

Stata keeps data in memory, and you should record your data as parsimoniously as possible. If you

have a string variable that hasmaximum length 6, it wouldwastememory to store it as a str20. Similarly,
if you have an integer variable, it would be a waste to store it as a double.
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Precision of numeric storage types
floats have about 7 digits of accuracy; the magnitude of the number does not matter. Thus, 1234567

can be stored perfectly as a float, as can 1234567e+20. The number 123456789, however, would be
rounded to 123456792. In general, this rounding does not matter.

If you are storing identification numbers, the rounding could matter. If the identification numbers are

integers and take 9 digits or less, store them as longs; otherwise, store them as doubles. doubles have
16 digits of accuracy.

Stata stores numbers in binary, and this has a second effect on numbers less than 1. 1/10 has no

perfect binary representation just as 1/11 has no perfect decimal representation. In float, .1 is stored
as .10000000149011612. Note that there are 7 digits of accuracy, just as with numbers larger than 1.

Stata, however, performs all calculations in double precision. If you were to store 0.1 in a float called
x and then ask, say, list if x==.1, there would be nothing in the list. The .1 that you just typed was
converted to double, with 16 digits of accuracy (.100000000000000014. . .), and that number is never
equal to 0.1 stored with float accuracy.

One solution is to type list if x==float(.1). The float() function rounds its argument to float
accuracy; see [FN] Programming functions. The other alternative would be store your data as double,
but this is probably a waste of memory. Few people have data that is accurate to 1 part in 10 to the

7th. Among the exceptions are banks, who keep records accurate to the penny on amounts of billions of

dollars. If you are dealing with such financial data, store your dollar amounts as doubles.

Also see
[D] compress — Compress data in memory

[D] destring — Convert string variables to numeric variables and vice versa

[D] encode — Encode string into numeric and vice versa

[D] format — Set variables’ output format

[D] recast — Change storage type of variable

[U] 12.2.2 Numeric storage types

[U] 12.4 Strings

[U] 12.5 Formats: Controlling how data are displayed

[U] 13.12 Precision and problems therein



datasignature — Determine whether data have changed

Description Quick start Menu
Syntax Options Remarks and examples
Stored results Methods and formulas Reference
Also see

Description
These commands calculate, display, save, and verify checksums of the data, which taken together

form what is called a signature. An example signature is 162:11(12321):2725060400:4007406597. That

signature is a function of the values of the variables and their names, and thus the signature can be used

later to determine whether a dataset has changed.

datasignature without arguments calculates and displays the signature of the data in memory.

datasignature set does the same, and it stores the signature as a characteristic in the dataset. You
should save the dataset afterward so that the signature becomes a permanent part of the dataset.

datasignature confirm verifies that, were the signature recalculated this instant, it would match
the one previously set. datasignature confirm displays an error message and returns a nonzero return
code if the signatures do not match.

datasignature report displays a full report comparing the previously set signature to the current
one.

In the above, the signature is stored in the dataset and accessed from it. The signature can also be

stored in a separate, small file.

datasignature set, saving( filename) calculates and displays the signature and, in addition to

storing it as a characteristic in the dataset, also saves the signature in filename.

datasignature confirm using filename verifies that the current signature matches the one stored

in filename.

datasignature report using filename displays a full report comparing the current signature with

the one stored in filename.

In all the above, if filename is specified without an extension, .dtasig is assumed.

datasignature clear clears the signature, if any, stored in the characteristics of the dataset in mem-
ory.

Quick start
Calculate and display the signature of the dataset in memory

datasignature

Same as above, and store the signature as a characteristic of the data

datasignature set

Same as above, but also save the signature in datasig.txt
datasignature set, saving(datasig.txt)
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Confirm that the data are currently exactly the same as they were when signed

datasignature confirm

Confirm that the data in memory have the same signature saved in datasig.txt
datasignature confirm using datasig.txt

Menu
Data > Other utilities > Manage data signature

Syntax
datasignature

datasignature set [ , reset ]

datasignature confirm [ , strict ]

datasignature report

datasignature set, saving( filename[ , replace ]) [ reset ]

datasignature confirm using filename [ , strict ]

datasignature report using filename

datasignature clear

collect is allowed; see [U] 11.1.10 Prefix commands.

Options
reset is used with datasignature set. It specifies that even though you have previously set a signa-

ture, you want to erase the old signature and replace it with the current one.

strict is for use with datasignature confirm. It specifies that, in addition to requiring that the

signatures match, you also wish to require that the variables be in the same order and that no new

variables have been added to the dataset. (If any variables were dropped, the signatures would not

match.)

saving(filename[ , replace ]) is used with datasignature set. It specifies that, in addition to stor-
ing the signature in the dataset, you want a copy of the signature saved in a separate file. If filename

is specified without a suffix, .dtasig is assumed. The replace suboption allows filename to be

replaced if it already exists.
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Remarks and examples
Remarks are presented under the following headings:

Using datasignature interactively
Example 1: Verification at a distance
Example 2: Protecting yourself from yourself
Example 3: Working with assistants
Example 4: Working with shared data

Using datasignature in do-files
Interpreting data signatures
The logic of data signatures

Using datasignature interactively
datasignature is useful in the following cases:

1. You and a coworker, separated by distance, have both received what is claimed to be the same

dataset. You wish to verify that it is.

2. You work interactively and realize that you could mistakenly modify your data. You wish to

guard against that.

3. You want to give your dataset to an assistant to improve the labels and the like. You wish to

verify that the data returned to you are the same data.

4. You work with an important dataset served on a network drive. You wish to verify that others

have not changed it.

Example 1: Verification at a distance
You load the data and type

. datasignature
74:12(71728):3831085005:1395876116

Your coworker does the same with his or her copy. You compare the two signatures.

Example 2: Protecting yourself from yourself
You load the data and type

. datasignature set
74:12(71728):3831085005:1395876116 (data signature set)

. save, replace

From then on, you periodically type

. datasignature confirm
(data unchanged since 19feb2025 14:24)

One day, however, you check and see the message:

. datasignature confirm
(data unchanged since 19feb2025 14:24, except 2 variables have been added)
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You can find out more by typing

. datasignature report
(data signature set on Monday 19feb2025 14:24)
Data signature summary

1. Previous data signature 74:12(71728):3831085005:1395876116
2. Same data signature today (same as 1)
3. Full data signature today 74:14(113906):1142538197:2410350265

Comparison of current data with previously set data signature

variables number notes

original # of variables 12 (values unchanged)
added variables 2 (1)
dropped variables 0

resulting # of variables 14
(1) Added variables are agesquared logincome.

You could now either drop the added variables or decide to incorporate them:

. datasignature set
data signature already set -- specify option reset

r(110)
. datasignature set, reset
74:14(113906):1142538197:2410350265 (data signature reset)

Concerning the detailed report, three data signatures are reported: 1) the stored signature, 2) the

signature that would be calculated today on the basis of the same variables in their original order, and

3) the signature that would be calculated today on the basis of all the variables and in their current order.

datasignature confirm knew that new variables had been added because signature 1 was equal to

signature 2. If some variables had been dropped, however, datasignature confirm would not be able
to determine whether the remaining variables had changed.

Example 3: Working with assistants
You give your dataset to an assistant to have variable labels and the like added. You wish to verify

that the returned data are the same data.

Saving the signature with the dataset is inadequate here. Your assistant, having your dataset, could

change both your data and the signature and might even do that in a desire to be helpful. The solution is

to save the signature in a separate file that you do not give to your assistant:

. datasignature set, saving(mycopy)
74:12(71728):3831085005:1395876116 (data signature set)
(file mycopy.dtasig saved)

You keep file mycopy.dtasig. When your assistant returns the dataset to you, you use it and compare
the current signature to what you have stored in mycopy.dtasig:

. datasignature confirm using mycopy
(data unchanged since 19feb2025 15:05)

By the way, the signature is a function of the following:

• The number of observations and number of variables in the data

• The values of the variables
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• The names of the variables

• The order in which the variables occur in the dataset

• The storage types of the individual variables

The signature is not a function of variable labels, value labels, notes, and the like.

Example 4: Working with shared data
You work on a dataset served on a network drive, which means that others could change the data. You

wish to know whether this occurs.

The solution here is the same as working with an assistant: you save the signature in a separate, private

file on your computer,

. datasignature set, saving(private)
74:12(71728):3831085005:1395876116 (data signature set)
(file private.dtasig saved)

and then you periodically check the signature by typing

. datasignature confirm using private
(data unchanged since 15mar2025 11:22)

Using datasignature in do-files
datasignature confirm aborts with error if the signatures do not match:

. datasignature confirm
data have changed since 19feb2025 15:05

r(9);

This means that, if you use datasignature confirm in a do-file, execution of the do-file will be stopped
if the data have changed.

You may want to specify the strict option. strict adds two more requirements: that the variables
be in the same order and that no new variables have been added. Without strict, these are not considered
errors:

. datasignature confirm
(data unchanged since 19feb2025 15:22)

. datasignature confirm, strict
(data unchanged since 19feb2025 15:05, but order of variables has changed)

r(9);

and

. datasignature confirm
(data unchanged since 19feb2025 15:22, except 1 variable has been added)

. datasignature confirm, strict
(data unchanged since 19feb2025 15:22, except 1 variable has been added)

r(9);

If you keep logs of your analyses, issuing datasignature or datasignature confirm immediately
after loading each dataset is a good idea. This way, you have a permanent record that you can use for

comparison.
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Interpreting data signatures
An example signature is 74:12(71728):3831085005:1395876116. The components are

1. 74, the number of observations;

2. 12, the number of variables;

3. 71728, a checksum function of the variable names and the order in which they occur; and

4. 3831085005 and 1395876116, checksum functions of the values of the variables, calculated

two different ways.

Two signatures are equal only if all their components are equal.

Two different datasets will probably not have the same signature, and it is even more unlikely that

datasets containing similar values will have equal signatures. There are two data checksums, but do

not read too much into that. If either data checksum changes, even just a little, the data have changed.

Whether the change in the checksum is large or small—or in one, the other, or both—signifies nothing.

The logic of data signatures
The components of a data signature are known as checksums. The checksums are many-to-one map-

pings of the data onto the integers. Let’s consider the checksums of auto.dta carefully.

The data portion of auto.dta contains 38,184 bytes. There are 25638184 such datasets or, equiva-

lently, 2305472. The first checksum has 248 possible values, and it can be proven that those values are

equally distributed over the 2305472 datasets. Thus there are 2305472/248 − 1 = 2305424 − 1 datasets that

have the same first checksum value as auto.dta. The same can be said for the second checksum. It
would be difficult to prove, but we believe that the two checksums are conditionally independent, being

based on different bit shifts and bit shuffles of the same data. Of the 2305424 − 1 datasets that have the

same first checksum as auto.dta, the second checksum should be equally distributed over them. Thus

there are about 2305376 − 1 datasets with the same first and second checksums as auto.dta.

Now let’s consider those 2305376 − 1 other datasets. Most of them look nothing like auto.dta. The
checksum formulas guarantee that a change of one variable in 1 observation will lead to a change in

the calculated result if the value changed is stored in 4 or fewer bytes, and they nearly guarantee it in

other cases. When it is not guaranteed, the change cannot be subtle—“Chevrolet” will have to change

to binary junk, or a double-precision 1 to −6.476678983751e+301, and so on. The change will be easily

detected if you summarize your data and just glance at the minimums and maximums. If the data look
at all like auto.dta, which is unlikely, they will look like a corrupted version.

More interesting are offsetting changes across observations. For instance, can you change one variable

in 1 observation and make an offsetting change in another observation so that, taken together, they will

go undetected? You can fool one of the checksums, but fooling both of them simultaneously will prove

difficult. The basic rule is that the more changes youmake, the easier it is to create a dataset with the same

checksums as auto.dta, but by the time you have done that, the data will look nothing like auto.dta.
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Stored results
datasignature without arguments and datasignature set store the following in r():

Macros

r(datasignature) the signature

datasignature confirm stores the following in r():

Scalars

r(k added) number of variables added

Macros

r(datasignature) the signature

datasignature confirm aborts execution if the signatures do not match and so then returns nothing
except a return code of 9.

datasignature report stores the following in r():

Scalars

r(datetime) %tc date–time when set
r(changed) . if r(k dropped) ≠ 0, otherwise

0 if data have not changed, 1 if data have changed
r(reordered) 1 if variables reordered, 0 if not reordered,

. if r(k added) ≠ 0 | r(k dropped) ≠ 0

r(k original) number of original variables

r(k added) number of added variables

r(k dropped) number of dropped variables

Macros

r(origdatasignature) original signature

r(curdatasignature) current signature on same variables, if it can be calculated

r(fulldatasignature) current full-data signature

r(varsadded) variable names added

r(varsdropped) variable names dropped

datasignature clear stores nothing in r() but does clear it.

datasignature set stores the signature in the following characteristics:

Characteristic

dta[datasignature si] signature

dta[datasignature dt] %tc date–time when set in %21x format
dta[datasignature vl1] part 1, original variables

dta[datasignature vl2] part 2, original variables, if necessary

etc.

To access the original variables stored in dta[datasignature vl1], etc., from an ado-file, code

mata: ado_fromlchar(”vars”, ”_dta”, ”datasignature_vl”)

Thereafter, the original variable list would be found in ‘vars’.

Methods and formulas
datasignature is implemented using datasignature; see [P] datasignature.
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Reference
Gould, W. W. 2006. Stata tip 35: Detecting whether data have changed. Stata Journal 6: 428–429.

Also see
[P] datasignature — Determine whether data have changed

[P] signestimationsample — Determine whether the estimation sample has changed

https://www.stata-journal.com/article.html?article=dm0024


Datetime — Date and time values and variables

Description Quick start Syntax Remarks and examples References Also see

Description
This entry provides a complete overview of Stata’s date and time values. We discuss functions used

to obtain Stata dates, including string-to-numeric conversions and conversions among different types of

dates and times.

Stata’s date and time values need to be formatted so they look like the dates and times we are familiar

with. We show basic formatting options here, but more details can be found in [D] Datetime display

formats.

[D] Datetime conversion has more details on converting dates and times stored as strings to numeri-

cally encoded Stata dates and times.

[D] Datetime values from other software discusses getting Stata dates from dates created by other

software.

[D] Datetime durations describes functions designed to get durations (for example, ages) from two

Stata dates or to express a duration in different units.

[D] Datetime relative dates describes functions that return dates based on other dates, for example,

the date of a birthday in another year.

[D] Datetime business calendars describes business calendars—using dates with nonbusiness days

(for example, weekends and holidays) removed. You can use existing calendars or create your own; see

[D] Datetime business calendars creation.

For an alphabetical listing of all the datetime functions, see [FN] Date and time functions.

Quick start
Convert the string variable strdate, with dates such as ”January 1, 2020”, to a numerically encoded

Stata date

generate numdate = date(strdate, ”MDY”)

Format numdate to make it readable when displayed
format numdate %td

Convert the string variable strtime, with dates and times such as ”January 1,2020 10:30 am”, to a
numerically encoded Stata datetime variable

generate double numtime = clock(strtime, ”MDYhm”)

Format numtime to make it readable when displayed
format numtime %tc

104
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Convert the string variable strmonthly, with monthly dates such as ”2012-04”, to a Stata date, and
format it to make it readable when displayed

generate nummonth = monthly(strmonthly, ”YM”)
format nummonth %tm

List observations for which numdate is prior to February 15, 2013
list if numdate < td(15/2/2013)

Create a monthly date variable from numeric variables year and month
generate monthly = ym(year,month)

Create a daily date variable from the datetimes stored in numtime
generate dateoftime = dofc(numtime)

Create a monthly date variable from the daily dates stored in numdate
generate monthlyofdate = mofd(numdate)

Create a new variable with the month of the daily dates stored in numdate
generate monthnum = month(numdate)

Syntax
Syntax is presented under the following headings:

Types of dates and how they are displayed
How Stata dates are stored
Converting dates stored as strings to Stata dates
Formatting Stata dates for display
Creating dates from components
Converting among units
Extracting time-of-day components from datetimes
Extracting date components from daily dates
Typing dates into expressions

Types of dates and how they are displayed
Dates and times can take many forms; below, we list the types of dates that are supported in Stata.

Note that throughout our documentation, we use the term “datetime” to refer to variables that record time

or date and time.

Date type Examples

datetime 20jan2010 09:15:22.120

date 20jan2010, 20/01/2010, . . .

weekly date 2010w3

monthly date 2010m1

quarterly date 2010q1

half-yearly date 2010h1

yearly date 2010

The styles of the dates in the table above are merely examples; dates can be displayed in a number of

ways. Perhaps you prefer 2010.01.20; Jan. 20, 2010; 2010-1; etc.



Datetime — Date and time values and variables 106

How Stata dates are stored
Stata dates are numeric values that record durations (positive or negative) from 01jan1960. Below,

we list the numeric values corresponding to the dates displayed in the table in the previous section.

Stata date type Examples Units

datetime/c 1,579,598,122,120 milliseconds since 01jan1960 00:00:00.000,
assuming 86,400 s/day

datetime/C 1,579,598,146,120 milliseconds since 01jan1960 00:00:00.000,
adjusted for leap seconds*

date 18,282 days since 01jan1960 (01jan1960 = 0)

weekly date 2,601 weeks since 1960w1

monthly date 600 months since 1960m1

quarterly date 200 quarters since 1960q1

half-yearly date 100 half-years since 1960h1

yearly date 2010 years since 0000

* Datetime/C is equivalent to coordinated universal time (UTC). In UTC, leap seconds are
periodically inserted because the length of the mean solar day is slowly increasing. See
Why there are two datetime encodings in [D] Datetime conversion.

Stata dates are stored as regular Stata numeric variables.

You can convert dates stored as strings to Stata dates by using the string-to-numeric conversion func-

tions; see Converting dates stored as strings to Stata dates.

You can make Stata dates readable by placing the appropriate %fmt on the numeric variable; see For-
matting Stata dates for display.

You can convert from one Stata date type to another by using conversion functions; see Converting

among units.

Storing dates as numeric values is convenient because you can subtract them to obtain time between

dates, for example,

datetime2 − datetime1= milliseconds between datetime1 and datetime2

(divide by 1,000 to obtain seconds)

date2 − date1 = days between date1 and date2

week2 − week1 = weeks between week1 and week2

month2 − month1 = months between month1 and month2

half2 − half1 = half-years between half1 and half2

year2 − year1 = years between year1 and year2

For time differences in other units, for example, the number of years between date1 and date2, see

[D] Datetime durations.
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Converting dates stored as strings to Stata dates
To convert dates and times stored as strings to Stata dates and times, use one of the functions listed

below.

Stata date type Function Required variable precision

datetime/c clock(str, mask) double
datetime/C Clock(str, mask) double

date date(str, mask) float or long

weekly date weekly(str, mask)* float or int
monthly date monthly(str, mask)* float or int
quarterly date quarterly(str, mask)* float or int
half-yearly date halfyearly(str, mask)* float or int
yearly date yearly(str, mask) float or int

* str is a string variable or a literal string enclosed in quotes.

Within each function, you need to specify the string you want to convert and the order in which the

date and time components appear in that string.

The string to be converted with clock(), Clock(), and date() may contain dates and times that
are run together or include punctuation marks between the components. However, the functions marked

with an asterisk require that the string date contain a space or punctuation between the year and the other

component if the string consists only of numbers. For more information on how punctuation is handled

and other details related to these conversion functions, see [D] Datetime conversion.

The order of the components is specified within quotes, such as ”YMD”, and is referred to as a mask.
The mask may contain the following elements:

Mask element Component

D day

W week

M month

Q quarter

H half-year

Y year

19Y two-digit year in the 1900s

20Y two-digit year in the 2000s

h hour

m minute

s second

# placeholder for something to be ignored
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Examples:

1. You have datetimes stored in the string variable mystr, an example being 2010.07.12 14:32.
To convert this to a Stata datetime/c variable, you type

. generate double eventtime = clock(mystr, ”YMDhm”)

The string contains the year, month, and day followed by the hour and minute, so you specify

the mask ”YMDhm”.

2. You have datetimes stored in mystr, an example being 2010.07.12 14:32:12. You type

. generate double eventtime = clock(mystr, ”YMDhms”)

Mask element s specifies seconds. In example 1, there were no seconds; in this example, there
are.

3. You have datetimes stored in mystr, an example being 2010 Jul 12 14:32. You type

. generate double eventtime = clock(mystr, ”YMDhm”)

This is the same command that you typed in example 1. In the mask, you specify the order of

the components; Stata figures out the style for itself. In example 1, months were numeric. In

this example, they are spelled out (and happen to be abbreviated).

4. You have datetimes stored in mystr, an example being July 12, 2010 2:32 PM. You type

. generate double eventtime = clock(mystr, ”MDYhm”)

Stata automatically looks forAM and PM, in uppercase and lowercase, with and without periods.

5. You have datetimes stored in mystr, an example being 7-12-10 14.32. The 2-digit year is to
be interpreted as being prefixed with 20. You type

. generate double eventtime = clock(mystr, ”MD20Yhm”)

6. You have datetimes stored in mystr, an example being 14:32 on 7/12/2010. You type

. generate double eventtime = clock(mystr, ”hm#MDY”)

The # sign between m and M means “ignore one thing between minute and month”, which in
this case is the word “on”. Had you omitted the # from the mask, the new variable eventtime
would have contained missing values.

7. You have a date stored in mystr, an example being 22/7/2010. In this case, you want to create
a Stata date instead of a datetime. You type

. generate eventdate = date(mystr, ”DMY”)

Typing

. generate double eventtime = clock(mystr, ”DMY”)

would have worked, too. Variable eventtime would contain a different coding from that

contained by eventdate; namely, it would contain milliseconds from 1jan1960 rather than

days (1,595,376,000,000 rather than 18,465). Datetime value 1,595,376,000,000 corresponds

to 22jul2010 00:00:00.000.
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Formatting Stata dates for display
While Stata dates are stored as regular Stata numeric variables, they are formatted so they look like

the dates and times we are familiar with. Each type of date has a corresponding display format, and we

list them below:

Stata date type Display format

datetime/c %tc
datetime/C %tC

date %td

weekly date %tw
monthly date %tm
quarterly date %tq
half-yearly date %th
yearly date %ty

The display formats above are the simplest forms of each of the Stata dates. You can control how

each type of Stata date is displayed; see [D] Datetime display formats.

Examples:

1. You have datetimes stored in string variable mystr, an example being 2010.07.12 14:32. To
convert this to a Stata datetime/c variable and make the new variable readable when displayed,

you type

. generate double eventtime = clock(mystr, ”YMDhm”)

. format eventtime %tc

2. You have a date stored in mystr, an example being 22/7/2010. To convert this to a Stata date
variable and make the new variable readable when displayed, you type

. generate eventdate = date(mystr, ”DMY”)

. format eventdate %td
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Creating dates from components
If you have components of your date stored separately, you can use the following functions to create

a single date variable. Note that each component used in this function must be numeric; you can specify

numeric variables or simply digits.

Stata date type Function to build from components

datetime/c mdyhms(M, D, Y, h, m, s)*
dhms(𝑒𝑑, h, m, s)*†

hms(h, m, s)*

datetime/C Cmdyhms(M, D, Y, h, m, s)*
Cdhms(𝑒𝑑, h, m, s)*†

Chms(h, m, s)*

date mdy(M, D, Y)
dmy(D, M, Y)

weekly date yw(Y, W)
monthly date ym(Y, M)
quarterly date yq(Y, Q)
half-yearly date yh(Y, H)
yearly date y(Y)

* Stata datetime variables must be stored as doubles.
† 𝑒𝑑 is a Stata date with a month, day, and year component.

Examples:

1. Your dataset has three variables, mo, da, and yr, with each variable containing a date component
in numeric form. To create a date variable from these components, you type

. generate eventdate = mdy(mo, da, yr)

. format eventdate %td

If you prefer the ordering day, month, and year, you can use dmy() instead of mdy():

. generate eventdate = dmy(da, mo, yr)

. format eventdate %td

2. Your dataset has two numeric variables, mo and yr. To create a date variable corresponding to
the first day of the month, you type

. generate eventdate = mdy(mo, 1, yr)

. format eventdate %td

3. Your dataset has two numeric variables, da and yr, and one string variable, month, containing
the spelled-out month. In this case, do not use the building-from-component functions. Instead,

construct a new string variable with these components, and then convert the string to a Stata

date using the conversion functions:

. generate str work = month + ” ” + string(da) + ” ” + string(yr)

. generate eventdate = date(work, ”MDY”)

. format eventdate %td
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Converting among units
The table below lists the functions for converting one type of date and time to another. Because there

are not official functions for every possible conversion, we have also included the functions you can nest

instead to obtain those conversions. Similarly, for any other conversion not listed here, you can use two

functions, going through date or datetime as appropriate. For example, to obtain a monthly date from a

datetime/c variable, you would use mofd(dofc(varname)).

To:

From: datetime/c datetime/C date

datetime/c Cofc() dofc()
datetime/C cofC() dofC()
date cofd() Cofd()

To:

From: date weekly monthly quarterly

date wofd() mofd() qofd()
weekly dofw() mofd(dofw()) qofd(dofw())
monthly dofm() wofd(dofm()) qofd(dofm())
quarterly dofq() wofd(dofq()) mofd(dofq())

To:

From: date half-yearly yearly

date hofd() yofd()
half-yearly dofh()
yearly dofy()

Note that if you are converting to a date type for which you do not have all the components, those

missing elements will be set to their defaults. For example, converting a yearly date to a weekly date

would give you the first week of each year. Converting a quarterly date to a monthly date would give

you the first month of each quarter, along with the year, of course. Below, we list the defaults for the

date and time components:

Date component Default

year 1960

half-year 1

quarter 1

month 1

week 1

day 01

hour 00

minute 00

second 00
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Examples:

1. You have the Stata datetime/c variable eventtime and wish to create the new variable

eventdate containing just the date from the datetime variable. You type

. generate eventdate = dofc(eventtime)

. format eventdate %td

2. You have the daily date eventdate and wish to create the new datetime/c variable eventtime
from it. For this unusual case, you can even type

. generate double eventtime = cofd(eventdate)

. format eventtime %tc

The time components of the new variable will be set to the default 00:00:00.000.

3. You have the Stata quarterly variable eventqtr and wish to create the new Stata date variable

eventdate from it. You type

. generate eventdate = dofq(eventqtr)

. format eventdate %tq

The new variable, eventdate, will contain 01jan dates for quarter 1, 01apr dates for quarter 2,
01jul dates for quarter 3, and 01oct dates for quarter 4.

4. You have the datetime/c variable admittime and wish to create the quarterly variable

admitqtr from it. You type

. generate admitqtr = qofd(dofc(admittime))

. format admitqtr %tq

Because there is no qofc() function, you use qofd(dofc()).



Datetime — Date and time values and variables 113

Extracting time-of-day components from datetimes
In the table below, we list the functions used to extract time-of-day components from datetimes. If

you are working with standard datetimes, use the functions in the datetime/c column. If you are working

with leap second–adjusted times, use the functions in the datetime/C column.

Function

Desired component datetime/c datetime/C Example

hour of day hh(𝑒𝑡𝑐) hhC(𝑒𝑡𝐶) 14

minutes of day mm(𝑒𝑡𝑐) mmC(𝑒𝑡𝐶) 42

seconds of day ss(𝑒𝑡𝑐) ssC(𝑒𝑡𝐶) 57.123

year, month, day, clockpart(𝑒𝑡𝑐,𝑠𝑢) Clockpart(𝑒𝑡𝐶,𝑠𝑢) 2020

hour, minute, second,

or millisecond

𝑒𝑡𝑐 is a Stata datetime/c value.
𝑒𝑡𝐶 is a Stata datetime/C value (UTC time with leap seconds).

𝑠𝑢 is a string specifying the time unit. 𝑠𝑢 can be string ”year” or ”y” for year;
”month” or ”mon” for month; ”day” or ”d” for day; ”hour” or ”h” for hour;
”minute” or ”min” for minute; ”second”, ”sec”, or ”s” for second; and
”millisecond” or ”ms” for millisecond (case insensitive).

Notes:
0 ≤ hh(𝑒𝑡𝑐) ≤ 23, 0 ≤ hhC(𝑒𝑡𝐶) ≤ 23
0 ≤ mm(𝑒𝑡𝑐) ≤ 59, 0 ≤ mmC(𝑒𝑡𝐶) ≤ 59
0 ≤ ss(𝑒𝑡𝑐) < 60, 0 ≤ ssC(𝑒𝑡𝐶) < 61 (sic)

Example:

1. You have the Stata datetime/c variable admittime. You wish to create the new variable

admithour equal to the hour and fraction of hour within the day of admission. You type
. generate admithour = hh(admittime) + mm(admittime)/60
> + ss(admittime)/3600

2. You have the Stata datetime/C variable admitTime. You wish to create the new variable

admityear to record the year of admission. You type

. generate admityear = Clockpart(admitTime, ”year”)

See [D] Datetime durations for other functions that can be used to calculate durations.
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Extracting date components from daily dates
You might be working with dates that have more information than you need. For example, daily dates

refer to dates that have a month, day, and year component. If you want to refer only to the month, or

year, of a daily date, you can use the extraction functions below.

Desired component Function* Example†

calendar year year(𝑒𝑑) 2013

datepart(𝑒𝑑, ”year”) 2013

calendar month month(𝑒𝑑) 7

datepart(𝑒𝑑, ”month”) 7

calendar day day(𝑒𝑑) 5

datepart(𝑒𝑑, ”day”) 5

day of week dow(𝑒𝑑) 2

(0=Sunday)

Julian day of year doy(𝑒𝑑) 186

(1=first day)

week within year week(𝑒𝑑) 27

(1=first week)

quarter within year quarter(𝑒𝑑) 3

(1=first quarter)

half within year halfyear(𝑒𝑑) 2

(1=first half)

* 𝑒𝑑 is a Stata date with a month, day, and year component.
† All examples are with 𝑒𝑑 = mdy(7,5,2013).

All functions require a numeric Stata daily date as an argument. A string variable cannot be specified

as the date. To extract components from other Stata date types, use the appropriate conversion function

to convert to a daily date. For example, quarter(dofq(qvar))would return the quarter of the quarterly
date values stored in qvar.
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Examples:

1. Youwish to obtain the day of week Sunday, Monday, . . . corresponding to the daily date variable

eventdate. You type

. generate day_of_week = dow(eventdate)

The new variable, day of week, contains 0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

2. You wish to obtain the day of week Sunday, Monday, . . . corresponding to the datetime/c vari-

able eventtime. You type

. generate day_of_week = dow(dofc(eventtime))

3. You have the daily date variable evdate and wish to create the new date variable evdate r
from it. evdate r will contain the same date as evdate but rounded back to the first of the
month. You type

. generate evdate_r = mdy(month(evdate), 1, year(evdate))

In the above solution, we used the date-component extraction functions month() and year()
and used the build-from-components function mdy().

Typing dates into expressions
You can type date values by just typing the number, such as 16,237 or 1,402,920,000,000, as in

. generate before = cond(hiredon < 16237, 1, 0) if !missing(hiredon)

. drop if admittedon < 1402920000000

Easier to type is

. generate before = cond(hiredon < td(15jun2004), 1, 0) if !missing(hiredon)

. drop if admittedon < tc(15jun2004 12:00:00)

You can type Stata date values by typing the date inside td(), as in td(15jun2004).

You can type Stata datetime/c values by typing the datetime inside tc(), as in tc(15jun2004
12:00:00).

td() and tc() are called pseudofunctions because they translate what you type into their numerical
equivalents. Pseudofunctions require only that you specify the datetime components in the expected

order, so rather than 15jun2004 above, we could have specified 15 June 2004, 15-6-2004, or 15/6/2004.

The pseudofunctions and their expected component order are

Desired date type Pseudofunction

datetime/c tc( [ day-month-year ] hh:mm[:ss [.sss ] ] )
datetime/C tC( [ day-month-year ] hh:mm[:ss [.sss ] ] )
date td(day-month-year)
weekly date tw(year-week)
monthly date tm(year-month)
quarterly date tq(year-quarter)
half-yearly date th(year-half )
yearly date none necessary; years are numeric and can be typed directly
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Note that the day-month-year in tc() and tC() are optional. If you omit them, 01jan1960 is assumed.
Doing so produces time as an offset, which can be useful in, for example,

. generate six_hrs_later = eventtime + tc(6:00)

Note that string-to-date functions can be used in expressions with literal strings. For example,

date(”15jun2004”,”DMY”) gives the same result as td(15jun2004).

Remarks and examples
Remarks are presented under the following headings:

Introduction
Example 1: Converting string datetimes to Stata datetimes
Example 2: Extracting date components
Example 3: Building dates from components
Example 4: Converting among date types
Example 5: Using dates in expressions

Introduction
To use dates in Stata, you must first convert what you have to a Stata date. Stata dates are numbers,

so they can easily be translated from, say, daily dates to monthly dates. Even so, they can be formatted

so that they look like the dates you are familiar with. If you have dates stored as strings, you must first

convert them to Stata dates.

Converting a string date to a Stata date is as simple as telling Stata the string date and the order of the

components. For example, we have a fictional dataset on patients who visited a local hospital. We have

their birthdates, the dates of their visits, the reasons for their visits, and the dates they were discharged.

All dates and times are stored as strings.

. use https://www.stata-press.com/data/r19/visits
(Fictional hospital visit data)
. describe
Contains data from https://www.stata-press.com/data/r19/visits.dta
Observations: 5 Fictional hospital visit data

Variables: 7 27 Aug 2024 22:56

Variable Storage Display Value
name type format label Variable label

patid byte %9.0g Patient ID
dateofbirth str9 %9s Date of birth
reason str15 %15s Reason for visit
admit_d str8 %9s Admission date
admit_t str17 %17s Admission date and time
discharge_d str9 %9s Discharge date
discharge_t str14 %14s Discharge date and time

Sorted by:
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. list admit_d dateofbirth

admit_d dateofb~h

1. 20110625 May152001
2. 20110313 Apr011999
3. 20110409 Nov151975
4. 20120211 Aug261960
5. 20120801 Dec161987

If we wanted to sort our data by birthdates or use these dates to compute a patient’s age, we would

need these variables to be numeric, not strings. So let’s create numeric Stata dates from the birthdates

and dates of admission:

. generate admit = date(admit_d, ”YMD”)

. generate dob = date(dateofbirth, ”MDY”)

. list admit_d admit dateofbirth dob

admit_d admit dateofb~h dob

1. 20110625 18803 May152001 15110
2. 20110313 18699 Apr011999 14335
3. 20110409 18726 Nov151975 5797
4. 20120211 19034 Aug261960 238
5. 20120801 19206 Dec161987 10211

For dates of admission, we told Stata that the string date was stored in admit d and that the date was
stored in the following order: year, month, day (YMD). Similarly, for birthdates we specify the string date

and the order of the components: month, day, and year (MDY). It does not matter whether the month is

written as a number, spelled out completely, or abbreviated to three letters.

You might be surprised by the values listed. The numbers represent the days elapsed since January 1,

1960, Stata’s base date. Most software store dates and times in this manner, but they differ in the date

they choose as a base. For us to understand the dates that these values represent, we apply a display

format. All datetime display formats begin with a %t and contain a second letter representing the type of
date: %td for daily dates, %tw for weekly dates, and so on. In our case, we have daily dates, so we use
the %td format.

. format admit dob %td

. list admit dob

admit dob

1. 25jun2011 15may2001
2. 13mar2011 01apr1999
3. 09apr2011 15nov1975
4. 11feb2012 26aug1960
5. 01aug2012 16dec1987

If we instead had weekly dates, monthly dates, or quarterly dates, we would use the appropriate string-

to-numeric conversion function to create the numeric variable and the appropriate display format. For

more ways to format the dates above, see [D] Datetime display formats.
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This is a simple example to get us started. The key points are that we want our dates to be stored

numerically and formatted so that they look like the dates we are familiar with.

Below, we will discuss how to work with other types of dates. We will explore dates that have a time

component, dates with components stored in multiple variables, and dates that have more components

than we wish to work with. So whether you need to build, extract, or convert among different types of

dates, you will learn how to do so with the examples that follow.

Example 1: Converting string datetimes to Stata datetimes
In this dataset, we also have string variables that record the date and time of admission and discharge:

. codebook admit_t discharge_t

admit_t Admission date and time

Type: String (str17)
Unique values: 5 Missing ””: 0/5

Tabulation: Freq. Value
1 ”20110313 8:30:45”
1 ”20110409 10:17:08”
1 ”20110625 5:15:06”
1 ”20120211 10:30:12”
1 ”20120801 6:45:59”

Warning: Variable has embedded blanks.

discharge_t Discharge date and time

Type: String (str14)
Unique values: 5 Missing ””: 0/5

Tabulation: Freq. Value
1 ”20110326 2:15”
1 ”20110409 19:35”
1 ”20110629 10:27”
1 ”20120216 2:15”
1 ”20120802 11:59”

Warning: Variable has embedded blanks.

Let’s convert these to Stata dates. Regardless if we are working with simple dates or dates and times,

the process is the same. We are going to specify the string we want to convert and the order of the

components. The only difference between this example and the previous example is the function; because

these variables record the date and time, we will now use the clock() function, and the variables we
generate will be referred to as datetime variables.
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. generate double admit_time = clock(admit_t, ”YMDhms”)

. generate double disch_time = clock(discharge_t, ”YMDhm”)

. format admit_time disch_time %tc

. list admit_time disch_time

admit_time disch_time

1. 25jun2011 05:15:06 29jun2011 10:27:00
2. 13mar2011 08:30:45 26mar2011 02:15:00
3. 09apr2011 10:17:08 09apr2011 19:35:00
4. 11feb2012 10:30:12 16feb2012 02:15:00
5. 01aug2012 06:45:59 02aug2012 11:59:00

Note that the string variable admit t contained the hour, minutes, and seconds, whereas the string
variable discharge t contained only the hour and minutes. This is why we did not specify an s in the
list of components for discharge t, and it is also why the seconds are set to zero for disch time.

These variables now record the milliseconds since 01jan1960 00:00:00.000, assuming 86,400 seconds

per day. You might have guessed that these values will be quite large, which is why we need to use the

most precise storage type in Stata, double.

We have a lot of information in these variables, but we can choose to view just the portion in which we

are interested by modifying the display format. For example, below we specify that we want to display

only the hour and minute for the time of discharge, and we list the newly formatted time alongside the

original string variable.

. format disch_time %tcHH:MM

. list discharge_t disch_time

discharge_t disch_~e

1. 20110629 10:27 10:27
2. 20110326 2:15 02:15
3. 20110409 19:35 19:35
4. 20120216 2:15 02:15
5. 20120802 11:59 11:59

We created the datetime variables above assuming there are 86,400 seconds in a day. This is one way

to record time; another way would be to use UTC. UTC times are adjusted for leap seconds and can be

obtained by modifying our commands just slightly, as follows:

. generate double admit_Time = Clock(admit_t, ”YMDhms”)

. format admit_Time %tC

Notice that the Clock() function and the %tC display format both contain a capital C. When you are

working with standard datetimes, you will use functions with a lowercase c, and for UTC times, you will
use functions with an uppercase C.
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Example 2: Extracting date components
Suppose we want to work with just the month or year of admission. We can extract these components

from our Stata date variable:

. generate admonth = month(admit)

. generate adyear = year(admit)

. list admit admonth adyear

admit admonth adyear

1. 25jun2011 6 2011
2. 13mar2011 3 2011
3. 09apr2011 4 2011
4. 11feb2012 2 2012
5. 01aug2012 8 2012

Now, for each year, we can look at the patients that were admitted in the first three months and the

reason for their visit:

. bysort adyear: list patid reason if admonth < 4

-> adyear = 2011

patid reason

2. 2 chest pain

-> adyear = 2012

patid reason

1. 4 abdominal pain

Example 3: Building dates from components
If we are concerned only with the month and year of admission, we can also create a monthly date

with the two newly created variables above:

. generate monthly = ym(adyear,admonth)

. format monthly %tm

. list admit monthly

admit monthly

1. 25jun2011 2011m6
2. 13mar2011 2011m3
3. 09apr2011 2011m4
4. 11feb2012 2012m2
5. 01aug2012 2012m8

Because we now have monthly dates, we apply the %tm display format.
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The ym() function shown above is useful when you have components of a date stored separately. In
fact, we could have created this monthly date variable by nesting functions:

. generate monthly2 = ym(year(admit), month(admit))

. format monthly2 %tm

Instead of generating those intermediary variables to extract the month and year of the daily date, we

simply used the extraction functions year() and month() within the ym() function. Either of the two
methods shown above will give you the same result, but if your goal is to convert a daily date variable

to a monthly date, you can use the mofd() conversion function, as demonstrated in the next example.

Example 4: Converting among date types
Often, we need to modify the data from its raw form for our purposes. For example, suppose our

dataset included only the datetime variable admit time but we were interested only in the date. We

could type

. generate dateoftime = dofc(admit_time)

. format dateoftime %td

. list admit_time dateoftime

admit_time dateoft~e

1. 25jun2011 05:15:06 25jun2011
2. 13mar2011 08:30:45 13mar2011
3. 09apr2011 10:17:08 09apr2011
4. 11feb2012 10:30:12 11feb2012
5. 01aug2012 06:45:59 01aug2012

Or we might want to create a monthly date from the date of admission:

. generate monthofdate = mofd(admit)

. format monthofdate %tm

. list admit monthofdate

admit montho~e

1. 25jun2011 2011m6
2. 13mar2011 2011m3
3. 09apr2011 2011m4
4. 11feb2012 2012m2
5. 01aug2012 2012m8

Several functions are available for converting from one type of date and time to another. But, if one is

not available for what you need, you can nest functions to obtain the conversion you want. For example,

suppose we would like to convert a monthly date to a quarterly date. There is no direct function for this

conversion, so instead we type
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. generate quarterly = qofd(dofm(monthofdate))

. format quarterly %tq

. list monthofdate quarterly

montho~e quarte~y

1. 2011m6 2011q2
2. 2011m3 2011q1
3. 2011m4 2011q2
4. 2012m2 2012q1
5. 2012m8 2012q3

We use the dofm() function to convert the monthly date to a daily date. This daily date will contain the
month and year from the monthly date, and the day will be set to 1. This is the general rule with datetime

functions; if you are converting from one type of date to another that has more elements, those elements

are set to their defaults. The qofd() function then converts the resulting daily date to a quarterly date.

Example 5: Using dates in expressions
Besides generating date and time variables, you might use dates in expressions. For example, suppose

we wanted to look only at observations after a certain date. Let’s list visit information for any patients

who were admitted after February 20, 2012:

. list admit patid reason if admit > td(20feb2012)

admit patid reason

5. 01aug2012 5 rapid breathing

This td() function will convert February 20, 2012, to its numeric form. Our expression is then evaluated
by comparing this numeric value with the numeric values stored in admit.

If you would like to see that underlying numeric value, you can type

. display td(20feb2012)

References
Cox, N. J. 2010. Stata tip 68: Week assumptions. Stata Journal 10: 682–685.

———. 2012. Stata tip 111: More on working with weeks. Stata Journal 12: 565–569.
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981–994.
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Description Syntax Remarks and examples Also see

Description
Stata provides user-definable business calendars.

Syntax
Apply business calendar format

format varlist %tbcalname

Apply detailed date format with business calendar format

format varlist %tbcalname[ :datetime-specifiers ]

Convert between business dates and regular dates

{ generate | replace } bdate = bofd(”calname”, regulardate)

{ generate | replace } regulardate = dofb(bdate, ”calname”)

File calname.stbcal contains the business calendar definition.

Details of the syntax follow:

1. Definition.

Business calendars are regular calendars with some dates crossed out:

November 2011

Su Mo Tu We Th Fr Sa

1 2 3 4 X

X 7 8 9 10 11 X

X 14 15 16 17 18 X

X 21 22 23 X X X

X 28 29 30

A date that appears on the business calendar is called a business date. 11nov2011 is a business date.

12nov2011 is not a business date with respect to this calendar.

Crossed-out dates are literally omitted. That is,

18nov2011 + 1 = 21nov2011

28nov2011 − 1 = 23nov2011

Stata’s lead and lag operators work the same way.
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2. Business calendars are named.

Assume that the above business calendar is named simple.

3. Business calendars are defined in files named calname.stbcal, such as simple.stbcal. Calendars
may be supplied by StataCorp and already installed, obtained from other users directly or via the SSC,

or written yourself. Calendars can also be created automatically from the current dataset with the

bcal create command; see [D] bcal. Stbcal-files are treated in the same way as ado-files.

You can obtain a list of all business calendars installed on your computer by typing bcal dir; see
[D] bcal.

4. Datetime format.

The date format associated with the business calendar named simple is %tbsimple, which is to say
% + t + b + calname.

% it is a format

t it is a datetime

b it is based on a business calendar

calname the calendar’s name

5. Format variables the usual way.

You format variables to have business calendar formats just as you format any variable, using the

format command.

. format mydate %tbsimple

specifies that existing variable mydate contains values according to the business calendar named

simple. See [D] format.

You may format variables %tbcalname regardless of whether the corresponding stbcal-file exists. If
it does not exist, the underlying numeric values will be displayed in a %g format.

6. Detailed date formats.

You may include detailed datetime format specifiers by placing a colon and the detail specifiers after

the calendar’s name.

. format mydate %tbsimple:CCYY.NN.DD

would display 21nov2011 as 2011.11.21. See [D] Datetime display formats for detailed datetime

format specifiers.

7. Reading business dates.

To read files containing business dates, ignore the business date aspect and read the files as if they

contained regular dates. Convert and format those dates as %td; see Converting dates stored as strings
to Stata dates in [D] Datetime. Then convert the regular dates to %tb business dates:

. generate mydate = bofd(”simple”, regulardate)

. format mydate %tbsimple

. assert mydate!=. if regulardate!=.

The first statement performs the conversion.

The second statement attaches the %tbsimple date format to the new variable mydate so that it will
display correctly.
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The third statement verifies that all dates recorded in regulardate fit onto the business calendar.

For instance, 12nov2011 does not appear on the simple calendar but, of course, it does appear on the
regular calendar. If the data contained 12nov2011, that would be an error. Function bofd() returns
missing when the date does not appear on the specified calendar.

8. More on conversion.

There are only two functions specific to business dates, bofd() and dofb(). Their definitions are

bdate = bofd(”calname”, regulardate)
regulardate = dofb(bdate, ”calname”)

bofd() returns missing if regulardate is missing or does not appear on the specified business calendar.
dofb() returns missing if bdate contains missing.

9. Obtaining day of week, etc.

You obtain day of week, etc., by converting business dates to regular dates and then using the standard

functions. To obtain the day of week of bdate on business calendar calname, type

. generate dow = dow(dofb(bdate, ”calname”))

See Extracting date components from daily dates in [D] Datetime for the other extraction functions.

10. Stbcal-files.

The stbcal-file for simple, the calendar shown below,

November 2011

Su Mo Tu We Th Fr Sa

1 2 3 4 X

X 7 8 9 10 11 X

X 14 15 16 17 18 X

X 21 22 23 X X X

X 28 29 30

is

begin simple.stbcal
*! version 1.0.0
* simple.stbcal
version 19.5 // (or version 19 if you do not have StataNow)
purpose ”Example for manual”
dateformat dmy
range 01nov2011 30nov2011
centerdate 01nov2011
omit dayofweek (Sa Su)
omit date 24nov2011
omit date 25nov2011

end simple.stbcal

This calendar was so simple that we crossed out the Thanksgiving holidays by specifying the dates to

be omitted. In a real calendar, we would change the last two lines,

omit date 24nov2011
omit date 25nov2011

to read

omit dowinmonth +4 Th of Nov and +1
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which says to omit the fourth (+4) Thursday of November in every year, and omit the day after that
(+1), too. See [D] Datetime business calendars creation.

Remarks and examples
See [D] Datetime for an introduction to Stata’s date and time features.

Below we work through an example from start to finish.

Remarks are presented under the following headings:

Step 1: Read the data, date as string
Step 2: Convert date variable to %td date
Step 3: Convert %td date to %tb date
Key feature: Each business calendar has its own encoding
Key feature: Omitted dates really are omitted
Key feature: Extracting components from %tb dates
Key feature: Merging on dates

Step 1: Read the data, date as string
File bcal simple.raw on our website provides data, including a date variable, that is to be inter-

preted according to the business calendar simple shown under Syntax above.
. type https://www.stata-press.com/data/r19/bcal_simple.raw
11/4/11 51
11/7/11 9
11/18/11 12
11/21/11 4
11/23/11 17
11/28/11 22

We begin by reading the data and then listing the result. Note that we read the date as a string variable:

. infile str10 sdate float x using https://www.stata-press.com/data/r19/bcal_simple
(6 observations read)
. list

sdate x

1. 11/4/11 51
2. 11/7/11 9
3. 11/18/11 12
4. 11/21/11 4
5. 11/23/11 17

6. 11/28/11 22

Step 2: Convert date variable to %td date
Now we create a numeric date variable from the string date and format it as a date (%td):

. generate rdate = date(sdate, ”MD20Y”)

. format rdate %td

See Converting dates stored as strings to Stata dates in [D] Datetime. We verify that the conversion

went well and drop the string variable of the date:
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. list

sdate x rdate

1. 11/4/11 51 04nov2011
2. 11/7/11 9 07nov2011
3. 11/18/11 12 18nov2011
4. 11/21/11 4 21nov2011
5. 11/23/11 17 23nov2011

6. 11/28/11 22 28nov2011

. drop sdate

Step 3: Convert %td date to %tb date
We convert the %td date to a %tbsimple date following the instructions of item 7 of Syntax above.

. generate mydate = bofd(”simple”, rdate)

. format mydate %tbsimple

. assert mydate!=. if rdate!=.

Had there been any dates that could not be converted from regular dates to simple business dates,
assertwould have responded, “assertion is false”. Nonetheless, wewill list the data to show you that the

conversion went well. We would usually drop the %td encoding of the date, but we want it to demonstrate
a feature below.

. list

x rdate mydate

1. 51 04nov2011 04nov2011
2. 9 07nov2011 07nov2011
3. 12 18nov2011 18nov2011
4. 4 21nov2011 21nov2011
5. 17 23nov2011 23nov2011

6. 22 28nov2011 28nov2011

Key feature: Each business calendar has its own encoding
In the listing above, rdate and mydate appear to be equal. They are not:

. format rdate mydate %9.0g // remove date formats

. list

x rdate mydate

1. 51 18935 3
2. 9 18938 4
3. 12 18949 13
4. 4 18952 14
5. 17 18954 16

6. 22 18959 17
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%tb dates each have their own encoding, and those encodings differ from the encoding used by %td
dates. It does not matter. Neither encoding is better than the other. Neither do you need to concern

yourself with the encoding. If you were curious, you could learn more about the encoding used by

%tbsimple by typing bcal describe simple; see [D] bcal.

We will drop variable rdate and put the %tbsimple format back on variable mydate:

. drop rdate

. format mydate %tbsimple

Key feature: Omitted dates really are omitted
In Syntax, we mentioned that for the simple business calendar

18nov2011 + 1 = 21nov2011

28nov2011 − 1 = 23nov2011

That is true:

. generate tomorrow = mydate + 1

. generate yesterday = mydate - 1

. format tomorrow yesterday %tbsimple

. list

x mydate tomorrow yesterday

1. 51 04nov2011 07nov2011 03nov2011
2. 9 07nov2011 08nov2011 04nov2011
3. 12 18nov2011 21nov2011 17nov2011
4. 4 21nov2011 22nov2011 18nov2011
5. 17 23nov2011 28nov2011 22nov2011

6. 22 28nov2011 29nov2011 23nov2011

. drop tomorrow yesterday

Stata’s lag and lead operators L.varname and F.varname work similarly.

Key feature: Extracting components from %tb dates
You extract components such as day of week, month, day, and year from business dates using the

same extraction functions you use with Stata’s regular %td dates, namely, dow(), month(), day(), and
year(), and you use function dofb() to convert business dates to regular dates. Below we add day of

week to our data, list the data, and then drop the new variable:
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. generate dow = dow(dofb(mydate, ”simple”))

. list

x mydate dow

1. 51 04nov2011 5
2. 9 07nov2011 1
3. 12 18nov2011 5
4. 4 21nov2011 1
5. 17 23nov2011 3

6. 22 28nov2011 1

. drop dow

See Extracting date components from daily dates in [D] Datetime.

Key feature: Merging on dates
It may happen that you have one dataset containing business dates and a second dataset containing

regular dates, say, on economic conditions, and you want to merge them. To do that, you create a regular

date variable in your first dataset and merge on that:

. generate rdate = dofb(mydate, ”simple”)

. merge 1:1 rdate using econditions, keep(match)

. drop rdate

Also see
[D] bcal — Business calendar file manipulation

[D] Datetime business calendars creation — Business calendars creation

[D] Datetime — Date and time values and variables
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Description Syntax Remarks and examples Also see

Description
Stata provides user-definable business calendars. Business calendars are provided by StataCorp and

by other users, and you can write your own. You can also create a business calendar automatically from

the current dataset with the bcal create command; see [D] bcal. This entry concerns writing your own
business calendars.

See [D] Datetime business calendars for an introduction to business calendars.

Syntax
Business calendar calname and corresponding display format %tbcalname are defined by the text file
calname.stbcal, which contains the following:

* comments

version version of stata

purpose ”text”

dateformat { ymd | ydm | myd | mdy | dym | dmy }

range date date

centerdate date

[ from { date | . } to { date | . }: ] omit . . . [ if ]
. . .

. . .

where

omit . . . may be

omit date pdate [ and pmlist ]
omit dayofweek dowlist

omit dowinmonth pm# dow [ of monthlist ] [ and pmlist ]
[ if ] may be

if restriction [ & restriction . . . ]
restriction is one of

dow(dowlist)
month(monthlist)
year(yearlist)

date is a date written with the year, month, and day in the order specified by dateformat. For
instance, if dateformat is dmy, a date can be 12apr2013, 12-4-2013, or 12.4.2013.
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pdate is a date or it is a date with character * substituted where the year would usually appear.
If dateformat is dmy, a pdate can be 12apr2013, 12-4-2013, or 12.4.2013; or it can be
12apr*, 12-4-*, or 12.4.*. 12apr* means the 12th of April across all years.

dow is a day of the week, in English. It may be abbreviated to as few as 2 characters, and

capitalization is irrelevant. Examples: Sunday, Mo, tu, Wed, th, Friday, saturday.

dowlist is a dow, or it is a space-separated list of one or more dows enclosed in parentheses.

Examples: Sa, (Sa), (Sa Su).

month is a month of the year, in English, or it is a month number. It may be abbreviated to the

minimum possible, and capitalization is irrelevant. Examples: January, 2, Mar, ap, may,
6, Jul, aug, 9, Octob, nov, 12.

monthlist is a month, or it is a space-separated list of one or more months enclosed in parenthe-

ses. Examples: Nov, (Nov), 11, (11), (Nov Dec), (11 12).

year is a 4-digit calendar year. Examples: 1872, 1992, 2013, 2050.

yearlist is a year, or it is a space-separated list of one or more years enclosed in parentheses.

Examples: 2013, (2013), (2013 2014).

pm# is a nonzero integer preceded by a plus or minus sign. Examples: -2, -1, +1. pm# appears
in omit dowinmonth pm# dow of monthlist, where pm# specifies which dow in the month.

omit dowinmonth +1 Th means the first Thursday of the month. omit dowinmonth -1 Th
means the last Thursday of the month.

pmlist is a pm#, or it is a space-separated list of one or more pm#s enclosed in parentheses.

Examples: +1, (+1), (+1 +2), (-1 +1 +2). pmlist appears in the optional and pmlist al-

lowed at the end of omit date and omit dowinmonth, and it specifies additional dates to be
omitted. and +1 means and the day after. and -1 means and the day before.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Concepts
The preliminary commands
The omit commands: from/to and if
The omit commands: and
The omit commands: omit date
The omit commands: omit dayofweek
The omit commands: omit dowinmonth
Creating stbcal-files with bcal create
Where to place stbcal-files
How to debug stbcal-files
Ideas for calendars that may not occur to you
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Introduction
A business calendar is a regular calendar with some dates crossed out, such as

November 2011

Su Mo Tu We Th Fr Sa

1 2 3 4 X

X 7 8 9 10 11 X

X 14 15 16 17 18 X

X 21 22 23 X X X

X 28 29 30

The purpose of the stbcal-file is to

1. Specify the range of dates covered by the calendar.

2. Specify the particular date that will be encoded as date 0.

3. Specify the dates from the regular calendar that are to be crossed out.

The stbcal-file for the above calendar could be as simple as

begin example 1.stbcal
version 19.5 // (or version 19 if you do not have StataNow)
range 01nov2011 30nov2011
centerdate 01nov2011
omit date 5nov2011
omit date 6nov2011
omit date 12nov2011
omit date 13nov2011
omit date 19nov2011
omit date 20nov2011
omit date 24nov2011
omit date 25nov2011
omit date 26nov2011
omit date 27nov2011

end example 1.stbcal

In fact, this calendar can be written more compactly because we can specify to omit all Saturdays and

Sundays:

begin example 2.stbcal
version 19.5 // (or version 19 if you do not have StataNow)
range 01nov2011 30nov2011
centerdate 01nov2011
omit dayofweek (Sa Su)
omit date 24nov2011
omit date 25nov2011

end example 2.stbcal

In this particular calendar, we are omitting 24nov2011 and 25nov2011 because of the American

Thanksgiving holiday. Thanksgiving is celebrated on the fourth Thursday of November, and many busi-

nesses close on the following Friday as well. It is possible to specify rules like that in stbcal-files:
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begin example 3.stbcal
version 19.5 // (or version 19 if you do not have StataNow)
range 01nov2011 30nov2011
centerdate 01nov2011
omit dayofweek (Sa Su)
omit dowinmonth +4 Th of Nov and +1

end example 3.stbcal

Understand that this calendar is an artificial example, and it is made all the more artificial because it

covers so brief a period. Real stbcal-files cover at least decades, and some cover centuries.

Concepts
You are required to specify four things in an stbcal-file:

1. the version of Stata being used,

2. the range of the calendar,

3. the center date of the calendar, and

4. the dates to be omitted.

Version.

You specify the version of Stata to ensure forward compatibility with future versions of Stata. If your

calendar starts with the line version 19.5 or, if you do not have StataNow, version 19.0, future
versions of Stata will know how to interpret the file even if the definition of the stbcal-file language

has greatly changed.

Range.

A calendar is defined over a specific range of dates, and you must explicitly state what that range

is. When you or others use your calendar, dates outside the range will be considered invalid, which

usually means that they will be treated as missing values.

Center date.

Stata stores dates as integers. In a calendar, 57 might stand for a particular date. If it did, then

57 − 1 = 56 stands for the day before, and 57 + 1 = 58 stands for the day after. The previous

statement works just as well if we substitute −12,739 for 57, and thus the particular values do not

matter except that we must agree upon what values we wish to standardize because we will be storing

these values in our datasets.

The standard is called the center date, and here center does not mean the date that corresponds to

the middle of your calendar. It means the date that corresponds to the center of integers, which is

to say, 0. You must choose a date within the range as the standard. The particular date you choose

does not matter, but most authors choose easily remembered ones. Stata’s built-in %td calendar uses
01jan1960, but that date will probably not be available to you because the center date must be a date

on the business calendars, and most businesses were closed on 01jan1960.

It will sometimes happen that you will want to expand the range of your calendar in the future. Today,

you make a calendar that covers, say 1990 to 2020, which is good enough for your purposes. Later,

you need to expand the range, say back to 1970 or forward to 2030, or both. When you update your

calendar, do not change the center date. This way, your new calendar will be backward compatible

with your previous one.
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Omitted dates.

Obviously you will need to specify the dates to be omitted. You can specify the exact dates to be

omitted when need be, but whenever possible, specify the rules instead of the outcome of the rules.

Rules change, so learn about the from/to prefix that can be used in front of omit commands. You
can code things like

from 01jan1960 to 31dec1968: omit ...
from 01jan1979 to .: omit ...

When specifying from/to, . for the first date is synonymous with the opening date of the range. .
for the second date is synonymous with the closing date.

The preliminary commands
Stbcal-files should begin with these commands:

version version of stata

purpose ”text”
dateformat { ymd | ydm | myd | mdy | dym | dmy }
range date date

centerdate date

version version of stata

You could specify version 19.5 or, if you do not have StataNow, version 19.0. Better still, type
command version in Stata to discover the version of Stata you are currently using. Specify that

version, and be sure to look at the documentation so that you use the modern syntax correctly.

purpose ”text”
This command is optional. The purpose of purpose is not to make comments in your file. If you want
comments, include those with a * in front. The purpose sets the text that bcal describe calname

will display.

dateformat { ymd | ydm | myd | mdy | dym | dmy }
This command is optional. dateformat ymd is assumed if not specified. This command has nothing
to do with how dates will look when variables are formatted with %tbcalname. This command speci-
fies how you are typing dates in this stbcal-file on the subsequent commands. Specify the format that

you find convenient.

range date date

The date range was discussed in Concepts. You must specify it.

centerdate date

The centering date was discussed in Concepts. You must specify it.

The omit commands: from/to and if
An stbcal-file usually contains multiple omit commands. The omit commands have the syntax

[ from { date | . } to { date | . }: ] omit . . . [ if ]
That is, an omit command may optionally be preceded by from/to and may optionally contain an if

at the end.
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When you do not specify from/to, results are the same as if you specified

from . to .: omit ...

That is, the omit command applies to all dates from the beginning to the end of the range. In Intro-

duction, we showed the command

omit dowinmonth +4 Th of Nov and +1

Our sample calendar covered only the month of November, but imagine that it covered a longer period

and that the business was open on Fridays following Thanksgiving up until 1998. The Thanksgiving

holidays could be coded

from . to 31dec1997: omit dowinmonth +4 Th of Nov
from 01jan1998 to .: omit dowinmonth +4 Th of Nov and +1

The same holidays could also be coded

omit dowinmonth +4 Th of Nov
from 01jan1998 to .: omit dowinmonth +4 Th of Nov and +1

We like the first style better, but understand that the same dates can be omitted from the calendars

multiple times and for multiple reasons, and the result is still the same as if the dates were omitted only

once.

The optional if also determines when the omit statement is operational. Let’s think about the Christ-
mas holidays. Let’s say a business is closed on the 24th and 25th of December. That could be coded

omit date 24dec*
omit date 25dec*

although perhaps that would be more understandable if we coded

from . to .: omit date 24dec*
from . to .: omit date 25dec*

Remember, from . to . is implied when not specified. In any case, we are omitting 24dec and

25dec across all years.

Now consider a more complicated rule. The business is closed on the 24th and 25th of December

if the 25th is on Tuesday, Wednesday, Thursday, or Friday. If the 25th is on Saturday or Sunday, the

holidays are the preceding Friday and the following Monday. If the 25th is on Monday, the holidays are

Monday and Tuesday. The rule could be coded

omit date 25dec* and -1 if dow(Tu We Th Fr)
omit date 25dec* and (-2 -1) if dow(Sa)
omit date 25dec* and (-3 -2) if dow(Su)
omit date 25dec* and +1 if dow(Mo)

The if clause specifies that the omit command is only to be executed when 25dec* is one of the
specified days of the week. If 25dec* is not one of those days, the omit statement is ignored for that
year. Our focus here is on the if clause. We will explain about the and clause in the next section.

Sometimes, you have a choice between using from/to or if. In such cases, use whichever is conve-
nient. For instance, imagine that the Christmas holiday rule for Monday changed in 2011 and 2012. You

could code

from . to 31dec2010: omit date 25dec* and +1 if dow(Mo)
from 01jan2011 to .: omit date ... if dow(Mo)
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or

omit date 25dec* and +1 if dow(Mo) & year(2007 2008 2009 2010)
omit date ... if dow(Mo) & year(2011 2012)

Generally, we find from/to more convenient to code than if year().

The omit commands: and
The other common piece of syntax that shows up on omit commands is and pmlist. We used it above

in coding the Christmas holidays,

omit date 25dec* and -1 if dow(Tu We Th Fr)
omit date 25dec* and (-2 -1) if dow(Sa)
omit date 25dec* and (-3 -2) if dow(Su)
omit date 25dec* and +1 if dow(Mo)

and pmlist specifies a list of days also to be omitted if the date being referred to is omitted. The extra
days are specified as howmany days they are from the date being referred to. Please excuse the inelegant

“date being referred to”, but sometimes the date being referred to is implied rather than stated explicitly.

For this problem, however, the date being referred to is 25dec across a number of years. The line

omit date 25dec* and -1 if dow(Tu We Th Fr)

says to omit 25dec and the day before if 25dec is on a Tuesday, Wednesday, etc. The line

omit date 25dec* and (-2 -1) if dow(Sa)

says to omit 25dec and two days before and one day before if 25dec is Saturday. The line

omit date 25dec* and (-3 -2) if dow(Su)

says to omit 25dec and three days before and two days before if 25dec is Sunday. The line

omit date 25dec* and +1 if dow(Mo)

says to omit 25dec and the day after if 25dec is Monday.

Another omit command for solving a different problem reads

omit dowinmonth -1 We of (Nov Dec) and +1 if year(2009)

Please focus on the and +1. We are going to omit the date being referred to and the date after if the

year is 2009. The date being referred to here is -1 We of (Nov Dec), which is to say, the last Wednesday

of November and December.

The omit commands: omit date
The full syntax of omit date is

[ from { date | . } to { date | . }: ] omit date pdate [ and pmlist ] [ if ]
You may omit specific dates,

omit date 25dec2010

or you may omit the same date across years:

omit date 25dec*
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The omit commands: omit dayofweek
The full syntax of omit dayofweek is

[ from { date | . } to { date | . }: ] omit dayofweek dowlist [ if ]
The specified days of week (Monday, Tuesday, . . .) are omitted.

The omit commands: omit dowinmonth
The full syntax of omit dowinmonth is

[ from { date | . } to { date | . }: ] omit pm# dow [ of monthlist ] [ and pmlist ] [ if ]
dowinmonth stands for day of week in month and refers to days such as the first Monday, second

Monday, . . . , next-to-last Monday, and last Monday of a month. This is written as +1 Mo, +2 Mo, . . . , -2
Mo, and -1 Mo.

Creating stbcal-files with bcal create
Business calendars can be obtained from your Stata installation or from other Stata users. You can

also write your own business calendar files or use the bcal create command to automatically create
a business calendar from the current dataset. With bcal create, business holidays are automatically
inferred from gaps in the dataset, or they can be explicitly defined by specifying the if and in quali-
fiers, as well as the excludemissing() option. You can also edit business calendars created with bcal
create or obtained from other sources. It is advisable to use bcal load or bcal describe to verify
that a business calendar is well constructed and remains so after editing.

See [D] bcal for more information on bcal create.

Where to place stbcal-files
Stata automatically searches for stbcal-files in the same way it searches for ado-files. Stata looks

for ado-files and stbcal-files in the official Stata directories, your site’s directory (SITE), your current
working directory (.), your personal directory (PERSONAL), and your directory for materials written by
other users (PLUS). On this writer’s computer, these directories happen to be

. sysdir
STATA: C:\Program Files\Stata19\
BASE: C:\Program Files\Stata12\ado\base\
SITE: C:\Program Files\Stata19\ado\site\
PLUS: C:\ado\plus\

PERSONAL: C:\ado\personal\
OLDPLACE: C:\ado\

Place calendars that you write into ., PERSONAL, or SITE. Calendars you obtain from others using

net or ssc will be placed by those commands into PLUS. See [P] sysdir, [R] net, and [R] ssc.

How to debug stbcal-files
Stbcal-files are loaded automatically as they are needed, and because this can happen anytime, even

at inopportune moments, no output is produced. If there are errors in the file, no mention is made of the

problem, and thereafter Stata simply acts as if it had never found the file, which is to say, variables with

%tbcalname formats are displayed in %g format.
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You can tell Stata to load a calendar file right now and to show you the output, including error mes-

sages. Type

. bcal load calname

It does not matter where calname.stbcal is stored, Stata will find it. It does not matter whether

Stata has already loaded calname.stbcal, either secretly or because you previously instructed the file
be loaded. It will be reloaded, you will see what you wrote, and you will see any error messages.

Ideas for calendars that may not occur to you
Business calendars obviously are not restricted to businesses, and neither do they have to be restricted

to days.

Say you have weekly data and want to create a calendar that contains only Mondays. You could code

begin mondays.stbcal
version 19.5 // (or version 19 if you do not have StataNow)
purpose ”Mondays only”
range 04jan1960 06jan2020
centerdate 04jan1960
omitdow (Tu We Th Fr Sa Su)

end mondays.stbcal

Say you have semimonthly data and want to include the 1st and 15th of every month. You could code

begin smnth.stbcal
version 19.5 // (or version 19 if you do not have StataNow)
purpose ”Semimonthly”
range 01jan1960 15dec2020
centerdate 01jan1960
omit date 2jan*
omit date 3jan*
.
.
omit date 14jan*
omit date 16jan*
.
.
omit date 31jan*
omit date 2feb*
.
.

end smnth.stbcal

Forgive the ellipses, but this file will be long. Even so, you have to create it only once.

As a final example, say that you just want Stata’s %td dates, but you wish they were centered on

01jan1970 rather than on 01jan1960. You could code

begin rectr.stbcal
version 19.5 // (or version 19 if you do not have StataNow)
Purpose ”%td centered on 01jan1970”
range 01jan1800 31dec2999
centerdate 01jan1970

end rectr.stbcal
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Also see
[D] bcal — Business calendar file manipulation

[D] Datetime business calendars — Business calendars

[D] Datetime — Date and time values and variables
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Description Quick start Syntax Remarks and examples
Reference Also see

Description
These functions convert dates and times recorded as strings to Stata dates. Stata dates are numbers

that can be formatted so that they look like the dates you are familiar with. See [D] Datetime for an

introduction to Stata’s date and time features.

Quick start
Convert strdate1, with dates such as ”Tue January 25, 2013”, to a numerically encoded Stata date

variable, ignoring the day of the week from the string

generate numvar1 = date(strdate1, ”#MDY”)

Convert strdate2, with dates in the 2000s such as ”01-25-13”, to a Stata date variable
generate numvar2 = date(strdate2, ”MD20Y”)

Convert strdate3, with dates such as ”15Jan05”, to a Stata date variable; expand the two-digit years
to the largest year that does not exceed 2006

generate numvar3 = date(strdate3, ”DMY”, 2006)

Convert strtime, with times such as ”11:15 am”, to a numerically encoded Stata datetime/c variable
generate double numvar4 = clock(strtime,”hm”)

140
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Syntax
The string-to-numeric date and time conversion functions are

Desired Stata date type String-to-numeric conversion function

datetime/c clock(str, mask [ , topyear ] )
datetime/C Clock(str, mask [ , topyear ] )

date date(str, mask [ , topyear ] )

weekly date weekly(str, mask [ , topyear ] )
monthly date monthly(str, mask [ , topyear ] )
quarterly date quarterly(str, mask [ , topyear ] )
half-yearly date halfyearly(str, mask [ , topyear ] )
yearly date yearly(str, mask [ , topyear ] )
str is the string value to be converted.

mask specifies the order of the date and time components and is a string composed of a sequence of codes (see the next table).

topyear is described in Working with two-digit years, below.

Code Meaning

M month

D day within month

Y 4-digit year

19Y 2-digit year to be interpreted as 19xx

20Y 2-digit year to be interpreted as 20xx

W week (weekly() only)
Q quarter (quarterly() only)
H half-year (halfyearly() only)

h hour of day

m minutes within hour

s seconds within minute

# ignore one element

Blanks are also allowed in mask, which can make the mask easier to read, but they otherwise have no

significance.

Examples of masks include the following:

”MDY” str contains month, day, and year, in that order.

”MD19Y” means the same as ”MDY”, except that str may contain two-digit years, and when it
does, they are to be treated as if they are 4-digit years beginning with 19.

”MDYhms” str contains month, day, year, hour, minute, and second, in that order.

”MDY hms” means the same as ”MDYhms”; the blank has no meaning.

”MDY#hms” means that one element between the year and the hour is to be ignored. For exam-

ple, str contains values like ”1-1-2010 at 15:23:17” or values like ”1-1-2010
at 3:23:17 PM”.
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Remarks and examples
Remarks are presented under the following headings:

Introduction
Specifying the mask
How the conversion functions interpret the mask
Working with two-digit years
Working with incomplete dates and times
Converting run-together dates, such as 20060125
Valid times
The clock() and Clock() functions
Why there are two datetime encodings
Advice on using datetime/c and datetime/C
Determining when leap seconds occurred
The date() function
The other conversion functions

Introduction
The conversion functions are used to convert string dates, such as 08/12/06, 12-8-2006, 12 Aug 06,

12aug2006 14:23, and 12 aug06 2:23 pm, to Stata dates. The conversion functions are typically used after

importing or reading data. You read the date information into string variables and then these functions

convert the string into something Stata can use, namely, a numeric Stata date variable.

You use generate to create the Stata date variables. The conversion functions are used in the expres-
sions, such as

. generate double time_admitted = clock(time_admitted_str, ”DMYhms”)

. format time_admitted %tc

. generate date_hired = date(date_hired_str, ”MDY”)

. format date_hired %td

Every conversion function—such as clock() and date() above—requires these two arguments:

1. str specifying the string to be converted; and

2. mask specifying the order in which the date and time components appear in str.

Notes:

1. You choose the conversion function clock(), Clock(), date(), etc., according to the type of
Stata date you want returned.

2. You specify the mask according to the contents of str.

Usually, you will want to convert str containing 2006.08.13 14:23 to a Stata datetime/c or datetime/C

value and convert str containing 2006.08.13 to a Stata date. If you wish, however, it can be the other way

around. In that case, the detailed string would convert to a Stata date corresponding to just the date part,

13aug2006, and the less detailed string would convert to a Stata datetime corresponding to 13aug2006

00:00:00.000.
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Specifying the mask
An argument mask is a string specifying the order of the date and time components in str. Examples

of string dates and the mask required to convert them include the following:

str Corresponding mask

01dec2006 14:22 ”DMYhm”
01-12-2006 14.22 ”DMYhm”

1dec2006 14:22 ”DMYhm”
1-12-2006 14:22 ”DMYhm”

01dec06 14:22 ”DM20Yhm”
01-12-06 14.22 ”DM20Yhm”

December 1, 2006 14:22 ”MDYhm”

2006 Dec 01 14:22 ”YMDhm”
2006-12-01 14:22 ”YMDhm”

2006-12-01 14:22:43 ”YMDhms”
2006-12-01 14:22:43.2 ”YMDhms”
2006-12-01 14:22:43.21 ”YMDhms”
2006-12-01 14:22:43.213 ”YMDhms”

2006-12-01 2:22:43.213 pm ”YMDhms” (see note 1)

2006-12-01 2:22:43.213 pm. ”YMDhms”
2006-12-01 2:22:43.213 p.m. ”YMDhms”
2006-12-01 2:22:43.213 P.M. ”YMDhms”

20061201 1422 ”YMDhm”

14:22 ”hm” (see note 2)

2006-12-01 ”YMD”

Fri Dec 01 14:22:43 CST 2006 ”#MDhms#Y”

Notes:

1. Nothing special needs to be included in mask to process a.m. and p.m. markers. When you

include code h, the conversion functions automatically watch for meridian markers.

2. You specify the mask according to what is contained in str. If that is a subset of what

the selected Stata date type could record, the remaining elements are set to their defaults.

clock(”14:22”, ”hm”) produces 01jan1960 14:22:00 and clock(”2006-12-01”, ”YMD”)
produces 01dec2006 00:00:00. date(”jan 2006”, ”MY”) produces 01jan2006.

mask may include spaces so that it is more readable; the spaces have no meaning. Thus, you can type

. generate double admit = clock(admitstr, ”#MDhms#Y”)

or type

. generate double admit = clock(admitstr, ”# MD hms # Y”)

and which one you use makes no difference.
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How the conversion functions interpret the mask
The conversion functions apply the following rules when interpreting str:

1. For each string date to be converted, remove all punctuation except for the period separating

seconds from tenths, hundredths, and thousandths of seconds. Replace removed punctuation

with a space.

2. Insert a space in the string everywhere that a letter is next to a number, or vice versa.

3. Interpret the resulting elements according to mask.

For instance, consider the string

01dec2006 14:22

Under rule 1, the string becomes

01dec2006 14 22

Under rule 2, the string becomes

01 dec 2006 14 22

Finally, the conversion functions apply rule 3. If the mask is ”DMYhm”, then the functions interpret “01”
as the day, “dec” as the month, and so on.

Or consider the string

Wed Dec 01 14:22:43 CST 2006

Under rule 1, the string becomes

Wed Dec 01 14 22 43 CST 2006

Applying rule 2 does not change the string. Now rule 3 is applied. If the mask is ”#MDhms#Y”, the
conversion function skips “Wed”, interprets “Dec” as the month, and so on.

The # code serves a second purpose. If it appears at the end of the mask, it specifies that the rest of
string is to be ignored. Consider converting the string

Wed Dec 01 14 22 43 CST 2006 patient 42

The mask code that previously worked when patient 42 was not part of the string, ”#MDhms#Y”, will
result in a missing value in this case. The functions are careful in the conversion, and if the whole string

is not used, they return missing. If you end the mask in #, however, the functions ignore the rest of the
string. Changing the mask from ”#MDhms#Y” to ”#MDhms#Y#” will produce the desired result.

Working with two-digit years
Consider converting the string 01-12-06 14:22, which is to be interpreted as 01dec2006 14:22:00, to

a Stata datetime value. The conversion functions provide two ways of doing this.

The first is to specify the assumed prefix in the mask. The string 01-12-06 14:22 can be read by

specifying the mask ”DM20Yhm”. If we instead wanted to interpret the year as 1906, we would specify
the mask ”DM19Yhm”. We could even interpret the year as 1806 by specifying ”DM18Yhm”.

What if our data include 01-12-06 14:22 and include 15-06-98 11:01? We want to interpret the first

year as being in 2006 and the second year as being in 1998. That is the purpose of the optional argument

topyear:

clock(string, mask [ , topyear ])
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When you specify topyear, you are stating that when years in string are two digits, the full year is to

be obtained by finding the largest year that does not exceed topyear. Thus, you could code

. generate double timestamp = clock(timestr, ”DMYhm”, 2020)

The two-digit year 06 would be interpreted as 2006 because 2006 does not exceed 2020. The two-digit

year 98 would be interpreted as 1998 because 2098 does exceed 2020.

Working with incomplete dates and times
The conversion functions do not require that every component of the date and time be specified.

Converting 2006-12-01 with mask ”YMD” results in 01dec2006 00:00:00.

Converting 14:22 with mask ”hm” results in 01jan1960 14:22:00.

Converting 11-2006 with mask ”MY” results in 01nov2006 00:00:00.

The default for a component, if not specified in the mask, is

Code Default (if not specified)

M 01

D 01

Y 1960

h 00

m 00

s 00

Thus, if you have data recording 14:22, meaning a duration of 14 hours and 22 minutes or the time

14:22 each day, you can convert it with clock(str, ”hm”).

Converting run-together dates, such as 20060125
The clock(), Clock(), and date() conversion functions will convert dates and times that are run

together, such as 20060125, 060125, and 20060125110215 (which is 25jan2006 11:02:15). You do not

have to do anything special to convert them:

. display %d date(”20060125”, ”YMD”)
25jan2006
. display %td date(”060125”, ”20YMD”)
25jan2006
. display %tc clock(”20060125110215”, ”YMDhms”)
25jan2006 11:02:15

However, the weekly(), monthly(), quarterly(), and halfyearly() functions will convert only
dates that are run together if there is a combination of letters and numbers. For example,

. display %tm monthly(”2020m1”, ”YM”)
2020m1
. display %tq quarterly(”2020q2”, ”YQ”)
2020q1

If your string consists of numbers only, such as 202001, you will need to insert a space or punctuation

between the year and the other component before using one of these functions.
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In a data context, you could type

. generate startdate = date(startdatestr, ”YMD”)

. generate double starttime = clock(starttimestr, ”YMDhms”)

Remember to read the original date into a string. If you mistakenly read the date as numeric, the best

advice is to read the date again. Numbers such as 20060125 and 20060125110215 will be rounded unless

they are stored as doubles.

If you mistakenly read the variables as numeric and have verified that rounding did not occur, you

can convert the variable from numeric to string by using the string() function, which comes in one-
and two-argument forms. You will need the two-argument form:

. generate str startdatestr = string(startdatedouble, ”%10.0g”)

. generate str starttimestr = string(starttimedouble, ”%16.0g”)

If you omitted the format, string() would produce 2.01e+07 for 20060125 and 2.01e+13 for

20060125110215. The format we used had a width that was two characters larger than the length of

the integer number, although using a too-wide format does no harm.

Valid times
An invalid time is 27:62:90. If you try to convert 27:62:90 to a datetime value, you will obtain a

missing value.

Another invalid time is 24:00:00. A correct time would be 00:00:00 of the next day.

In hh:mm:ss, the requirements are 0 ≤ hh < 24, 0 ≤ mm < 60, and 0 ≤ ss < 60, although sometimes

60 is allowed. The encoding 31dec2005 23:59:60 is an invalid datetime/c but a valid datetime/C. The

encoding 31dec2005 23:59:60 includes an inserted leap second.

Invalid in both datetime encodings is 30dec2005 23:59:60. Not including a leap second as in

30dec2005 23:59:60 would also be an invalid encoding. A correct datetime would be 31dec2005

00:00:00.

The clock() and Clock() functions
Stata provides two separate datetime encodings that we call datetime/c and datetime/C and that others

would call “times assuming 86,400 seconds per day” and “times adjusted for leap seconds” or, equiva-

lently, Coordinated Universal Time (UTC).

The syntax of the two functions is the same:

clock(str, mask [ , topyear ])

Clock(str, mask [ , topyear ])

Function Clock() is nearly identical to function clock(), except that Clock() returns a datetime/C
value rather than a datetime/c value. For instance,

Noon of 23nov2010 = 1,606,132,800,000 in datetime/c

= 1,606,132,824,000 in datetime/C

They differ because 24 seconds have been inserted into datetime/C between 01jan1960 and 23nov2010.

Correspondingly, Clock() understands times in which there are leap seconds, such as 30jun1997

23:59:60. clock() would consider 30jun1997 23:59:60 an invalid time and so return a missing value.
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Why there are two datetime encodings
Stata provides two different datetime encodings, datetime/c and datetime/C.

The datetime/c encoding assumes that there are 24 × 60 × 60 × 1000 ms per day, just as an atomic

clock does. Atomic clocks count oscillations between the nucleus and the electrons of an atom and thus

provide a measurement of the real passage of time.

Time of day measurements have historically been based on astronomical observation, which is a fancy

way of saying that the measurements are based on looking at the sun. The sun should be at its highest

point at noon, right? So however you might have kept track of time—by falling grains of sand or a

wound-up spring—you would have periodically reset your clock and then gone about your business. In

olden times, it was understood that the 60 seconds per minute, 60 minutes per hour, and 24 hours per

day were theoretical goals that no mechanical device could reproduce accurately. These days, we have

more formal definitions for measurements of time. One second is 9,192,631,770 periods of the radiation

corresponding to the transition between two levels of the ground state of cesium 133. Obviously, we

have better equipment than the ancients, so problem solved, right? Wrong. There are two problems: the

formal definition of a second is just a little too short to use for accurately calculating the length of a day,

and the Earth’s rotation is slowing down.

Thus, since 1972, leap seconds have been added to atomic clocks once or twice a year to keep time

measurements in synchronization with Earth’s rotation. Unlike leap years, however, there is no formula

for predicting when leap seconds will occur. Earth may be on average slowing down, but there is a large

random component to that. Therefore, leap seconds are determined by committee and announced six

months before they are inserted. Leap seconds are added, if necessary, on the end of the day on June 30

and December 31 of the year. The exact times are designated as 23:59:60.

Unadjusted atomic clocks may accurately mark the passage of real time, but you need to understand

that leap seconds are every bit as real as every other second of the year. Once a leap second is inserted,

it ticks just like any other second and real things can happen during that tick.

You may have heard of terms such as Greenwich Mean Time (GMT) and UTC.

GMT, based on astronomical observation, has been replaced by UTC.

UTC is measured by atomic clocks and is occasionally corrected for leap seconds. UTC is derived

from two other times, Universal Time 1 (UT1) and International Atomic Time (TAI). UT1 is the mean

solar time with which UTC is kept in sync by the occasional addition of a leap second. TAI is the atomic

time on which UTC is based. TAI is a statistical combination of various atomic chronometers, and even it

has not ticked uniformly over its history; see http://www.ucolick.org/∼sla/leapsecs/timescales.html and

especially http://www.ucolick.org/∼sla/leapsecs/dutc.html#TAI.

UNK is our term for the time standard most people use. UNK stands for unknown or unknowing. UNK

is based on a recent time observation, probably UTC, and it just assumes that there are 86,400 seconds

per day after that.

The UNK standard is adequate for many purposes, and when using it you will want to use datetime/c

rather than the leap second–adjusted datetime/C encoding. If you are using computer-timestamped data,

however, you need to find out whether the timestamping system accounted for leap-second adjustment.

Problems can arise even if you do not care about losing or gaining a second here and there.

For instance, you may import from other systems timestamp values recorded in the number of mil-

liseconds that have passed since some agreed-upon date. You may do this, but if you choose the wrong

encoding scheme (choose datetime/c when you should choose datetime/C, or vice versa), more recent

times will be off by 24 seconds.

http://www.ucolick.org/~sla/leapsecs/timescales.html
http://www.ucolick.org/~sla/leapsecs/dutc.html#TAI
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To avoid such problems, you may decide to import and export data as strings, such as Fri Aug 18

14:05:36 CDT 2010. This method has advantages, but for datetime/C (UTC) encoding, times such as

23:59:60 are possible. Some systems will refuse to decode such times.

Stata refuses to decode 23:59:60 in the datetime/c encoding (function clock()) and accepts it with
datetime/C (function Clock()). When datetime/C function Clock() sees a time with a 60th second,

Clock() verifies that the time is one of the official leap seconds. Thus, when converting from printable

forms, try assuming datetime/c, and check the result for missing values. If there are none, then you can

assume your use of datetime/c was valid. However, if there are missing values and they are due to leap

seconds and not some other error, you must use datetime/C Clock() to convert the string value. After
that, if you still want to work in datetime/c units, use function cofC() to convert datetime/C values to

datetime/c.

If precision matters, the best way to process datetime/C data is simply to treat them that way. The

inconvenience is that you cannot assume that there are 86,400 seconds per day. To obtain the duration

between dates, youmust subtract the two time values involved. The other difficulty has to do with dealing

with dates in the future. Under the datetime/C (UTC) encoding, there is no set value for any date more

than six months in the future. Below is a summary of advice.

Advice on using datetime/c and datetime/C
Stata provides two datetime encodings:

1. datetime/C, also known as UTC, which accounts for leap seconds; and

2. datetime/c, which ignores leap seconds (it assumes 86,400 seconds/day).

Systems vary in how they treat time variables. SAS ignores leap seconds. Oracle includes them. Stata

handles either situation. Here is our advice:

• If you obtain data from a system that accounts for leap seconds, import using Stata’s datetime/C

encoding.

a. If you later need to export data to a system that does not account for leap seconds, use

Stata’s cofC() function to convert time values before exporting.

b. If you intend to tsset the time variable and the analysis will be at the second level
or finer, just tsset the datetime/C variable, specifying the appropriate delta() if

necessary—for example, delta(1000) for seconds.

c. If you intend to tsset the time variable and the analysis will be coarser than the

second level (minute, hour, etc.), create a datetime/c variable from the datetime/C

variable (generate double tctime = cofC(tCtime)) and tsset that, specifying the
appropriate delta() if necessary. You must do that because in a datetime/C variable,

there are not necessarily 60 seconds in a minute; some minutes have 61 seconds.

• If you obtain data from a system that ignores leap seconds, use Stata’s datetime/c encoding.

a. If you later need to export data to a system that does account for leap seconds, use

Stata’s Cofc() function to convert time values before exporting.

b. If you intend to tsset the time variable, just tsset it, specifying the appropriate

delta().
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Some users prefer always to use Stata’s datetime/c because %tc values are a little easier to work with.
You can always use datetime/c if

• you do not mind having up to 1 second of error; and

• you do not import or export numerical values (clock ticks) from other systems that are using

leap seconds, because doing so could introduce nearly 30 seconds of error.

Remember these two things if you use datetime/C variables:

1. The number of seconds between two dates is a function of when the dates occurred. Five days

from one date is not simply a matter of adding 5× 24× 60× 60× 1000 ms. You might need to

add another 1,000 ms. Three hundred sixty-five days from now might require adding 1,000 or

2,000 ms. The longer the span, the more you might have to add. The best way to add durations

to datetime/C variables is to extract the components, add to them, and then reconstruct from

the numerical components.

2. You cannot accurately predict datetimes more than six months into the future. We do not know

what the datetime/C value of 25dec2026 00:00:00 will be, because every year along the way,

the International Earth Rotation Reference Systems Service (IERS) will twice announce whether

a leap second will be inserted.

You can help alleviate these inconveniences. Face west and throw rocks. The benefit will be transitory

only if the rocks land back on Earth, so you need to throw them really hard. We know what you are

thinking, but this does not need to be a coordinated effort.

Determining when leap seconds occurred
Stata system file leapseconds.maint lists the dates on which leap seconds occurred. The file is

updated periodically (see [R] update; the file is updated when you update all), and Stata’s datetime/C
functions access the file to know when leap seconds occurred.

You can access it, too. To view the file, type

. viewsource leapseconds.maint

The date() function
The syntax of the date() function is

date(string, mask [ , topyear ])

The date() function is identical to clock(), except that date() returns a Stata date value rather

than a Stata datetime value. The date() function is the same as dofc(clock()).

daily() is a synonym for date().
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The other conversion functions
The other conversion functions are

Stata date type Conversion function

weekly date weekly(str, mask [ , topyear ] )
monthly date monthly(str, mask [ , topyear ] )
quarterly date quarterly(str, mask [ , topyear ] )
half-yearly date halfyearly(str, mask [ , topyear ] )
str is the value to be converted.

mask specifies the order of the components.

topyear is described in Working with two-digit years, above.

These functions are rarely used because data seldom arrive in these formats.

Each of the functions converts a pair of numbers: weekly() converts a year and a week number

(1–52); monthly() converts a year and a month number (1–12); quarterly() converts a year and a
quarter number (1–4); and halfyearly() translates a year and a half number (1–2).

The masks allowed are far more limited than the masks for clock(), Clock(), and date():

Code Meaning

Y 4-digit year

19Y 2-digit year to be interpreted as 19xx

20Y 2-digit year to be interpreted as 20xx

W week number (weekly() only)
M month number (monthly() only)
Q quarter number (quarterly() only)
H half-year number (halfyearly() only)

The pair of numbers to be converted must be separated by a space or punctuation. No extra characters are allowed.

Reference
Rajbhandari, A. 2015. A tour of datetime in Stata. The Stata Blog: Not Elsewhere Classified. https://blog.stata.com/2015/

12/17/a-tour-of-datetime-in-stata-i/.
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[D] Datetime — Date and time values and variables

[D] Datetime business calendars — Business calendars

[D] Datetime display formats — Display formats for dates and times

[D] Datetime durations — Obtaining and working with durations

[D] Datetime relative dates — Obtaining dates and date information from other dates

[D] Datetime values from other software — Date and time conversion from other software

https://blog.stata.com/2015/12/17/a-tour-of-datetime-in-stata-i/
https://blog.stata.com/2015/12/17/a-tour-of-datetime-in-stata-i/
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Description Quick start Syntax Remarks and examples Also see

Description
Stata stores dates and times numerically in one of eight units. The value of a Stata date might be

18,282 or even 1,579,619,730,000. Place the appropriate format on it, and the 18,282 is displayed as

20jan2010 (%td). The 1,579,619,730,000 is displayed as 20jan2010 15:15:30 (%tc).

If you specify additional format characters, you can change how the result is displayed. Rather than

20jan2010, you could change it to 2010.01.20; January 20, 2010; or 1/20/10. Rather than 20jan2010

15:15:30, you could change it to 2010.01.20 15:15; January 20, 2010 3:15 pm; or Wed Jan 20 15:15:30

2010.

See [D] Datetime for an introduction to Stata’s dates and times.

Quick start
Format daily dates stored in datevar to display as 15mar2005

format datevar %td

Format daily dates stored in datevar to display as 3/15/05
format datevar %tdnn/DD/YY

Format daily dates stored in datevar to display as Tue Mar. 15
format datevar %tdDay_Mon._DD

Format dates and times stored in timevar to display as 15mar2005 14:30:00
format timevar %tc

Format dates and times stored in timevar to display as 14:30
format timevar %tcHH:MM

Format dates and times stored in timevar to display as 2:30 PM
format timevar %tchh:mm_AM
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Syntax
The formats for displaying Stata dates and times are

Stata date type Display format

datetime/c %tc[ details ]
datetime/C %tC[ details ]

date %td[ details ]

weekly date %tw[ details ]
monthly date %tm[ details ]
quarterly date %tq[ details ]
half-yearly date %th[ details ]
yearly date %ty[ details ]

The optional details allows you to control how results appear and is composed of a sequence of the

following codes:

Code Meaning Output

CC century-1 01–99

cc century-1 1–99

YY 2-digit year 00–99

yy 2-digit year 0–99

JJJ day within year 001–366

jjj day within year 1–366

Mon month Jan, Feb, . . . , Dec

Month month January, February, . . . , December

mon month jan, feb, . . . , dec

month month january, february, . . . , december

NN month 01–12

nn month 1–12

DD day within month 01–31

dd day within month 1–31

DAYNAME day of week Sunday, Monday, . . . (aligned)

Dayname day of week Sunday, Monday, . . . (unaligned)

Day day of week Sun, Mon, . . .

Da day of week Su, Mo, . . .

day day of week sun, mon, . . .

da day of week su, mo, . . .
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h half 1–2

q quarter 1–4

WW week 01–52

ww week 1–52

HH hour 00–23

Hh hour 00–12

hH hour 0–23

hh hour 0–12

MM minute 00–59

mm minute 0–59

SS second 00–60 (sic, due to leap seconds)

ss second 0–60 (sic, due to leap seconds)

.s tenths .0–.9

.ss hundredths .00–.99

.sss thousandths .000–.999

am show am or pm am or pm

a.m. show a.m. or p.m. a.m. or p.m.

AM showAM or PM AM or PM

A.M. showA.M. or P.M. A.M. or P.M.

. display period .

, display comma ,

: display colon :

- display hyphen -

display space

/ display slash /
\ display backslash \
!c display character c

+ separator (see note)

Note: + displays nothing; it may be used to separate one code from the next to make the
format more readable. + is never necessary. For instance, %tchh:MM+am and %tchh:MMam
have the same meaning, as does %tc+hh+:+MM+am.
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When details is not specified, it is equivalent to specifying

Format Implied (fully specified) format

%tC %tCDDmonCCYY HH:MM:SS
%tc %tcDDmonCCYY HH:MM:SS

%td %tdDDmonCCYY

%tw %twCCYY!www
%tm %tmCCYY!mnn
%tq %tqCCYY!qq
%th %thCCYY!hh
%ty %tyCCYY

That is, typing

. format mytimevar %tc

has the same effect as typing

. format mytimevar %tcDDmonCCYY_HH:MM:SS

Format %tcDDmonCCYY HH:MM:SS is interpreted as

% t c DDmonCCYY HH:MM:SS
| | | |

all formats it is a variable formatting codes

start with % datetime format coded in specify how to

milliseconds display value

Remarks and examples
Remarks are presented under the following headings:

Specifying display formats
Times are truncated, not rounded, when displayed

Specifying display formats
Rather than using the default format 20jan2010, you could display the daily date in one of these

formats:

2010.01.20

January 20, 2010

1/20/10

Likewise, rather than displaying the datetime/c variable in the default format 20jan2010 15:15:30,

you could display it in one of these formats:

2010.01.20 15:15

January 20, 2010 3:15 pm

Wed Jan 20 15:15:30 2010
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Here is how to do it:

1. 2010.01.20

format mytdvar %tdCCYY.NN.DD

2. January 20, 2010

format mytdvar %tdMonth dd, CCYY

3. 1/20/10

format mytdvar %tdnn/dd/YY

4. 2010.01.20 15:15

format mytcvar %tcCCYY.NN.DD HH:MM

5. January 20, 2010 3:15 pm

format mytcvar %tcMonth dd, CCYY hh:MM am
Code am at the end indicates that am or pm should be displayed, as appropriate.

6. Wed Jan 20 15:15:30 2010

format mytcvar %tcDay Mon DD HH:MM:SS CCYY

In examples 1 to 3, the formats each begin with %td, and in examples 4 to 6, the formats begin with
%tc. It is important that you specify the opening correctly—namely, as % + t + third character. The

third character indicates the particular encoding type, which is to say, how the numeric value is to be

interpreted. You specify %tc. . . for datetime/c variables, %tC. . . for datetime/C, %td. . . for date, and so
on.

The default format for datetime/c and datetime/C variables omits the fraction of seconds; 15:15:30.000

is displayed as 15:15:30. If you wish to see the fractional seconds, specify the format

%tcDDmonCCYY HH:MM:SS.sss

or

%tCDDmonCCYY HH:MM:SS.sss

as appropriate.

Times are truncated, not rounded, when displayed
Consider the time 11:32:59.999. Other, less precise, ways of writing that time are

11:32:59.99

11:32:59.9

11:32:59

11:32

That is, when you suppress the display of more-detailed components of the time, the parts that are

displayed are not rounded. Stata displays time just as a digital clock would; the time is 11:32 right up

until the instant that it becomes 11:33.
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Also see
[D] Datetime — Date and time values and variables

[D] Datetime business calendars — Business calendars

[D] Datetime conversion — Converting strings to Stata dates

[D] Datetime durations — Obtaining and working with durations

[D] Datetime relative dates — Obtaining dates and date information from other dates

[D] Datetime values from other software — Date and time conversion from other software
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Description Quick start Syntax Remarks and examples Reference Also see

Description
This entry describes functions that calculate durations, such as the number of years between two dates

(for example, a person’s age). These functions account for leap years and leap days and produce results

that are more consistent than simply taking arithmetic differences of numerical dates and converting to

another unit.

This entry also describes functions that convert durations from one unit (for example, milliseconds)

to another (for example, hours).

Quick start
Calculate age of a subject in integer years on the date of a survey based on a numerically encoded Stata

date dob that gives the subject’s date of birth and a numerically encoded Stata date date of survey
generate subject_age = age(dob, date_of_survey)

Same as above, but calculate the age as a noninteger; that is, include the fractional part

generate subject_fage = age_frac(dob, date_of_survey)

Calculate age on date d for persons born on 29feb as having their birthday on 28feb in nonleap years

(rather than the default of 01mar)

generate celebrate = age(dob, d, ”28feb”)

Calculate the difference in number of months, rounded down to an integer, between two Stata dates, d1
and d2

generate diff_months = datediff(d1, d2, ”month”)

Same as above, but include the fractional part of the difference

generate diff_fmonths = datediff_frac(d1, d2, ”month”)

Calculate the difference in number of hours, rounded down to an integer, between two Stata datetime/c

variables, t1 and t2
generate diff_hours = clockdiff(t1, t2, ”hour”)

Same as above, but include the fractional part of the difference

generate diff_fhours = clockdiff_frac(t1, t2, ”hour”)

Same as above, but use a conversion function to calculate hours with a fractional part

generate diff_fhours2 = hours(t2 - t1)

Calculate the difference in number of minutes, rounded down to an integer, between two Stata datetime/C

variables, tvar1 and tvar2
generate diff_minutes = Clockdiff(tvar1, tvar2, ”minute”)

Calculate the number of days since the previous Monday relative to Stata date d
generate ndays = dayssinceweekday(d, ”Monday”)
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Syntax
Syntax is presented under the following headings:

Functions for calculating durations
Functions for converting units of a duration

Functions for calculating durations

Description Function Value returned

age age(𝑒𝑑 DOB
,𝑒𝑑[ ,𝑠𝑛𝑙 ]) years rounded down to an integer

age with fraction age frac(𝑒𝑑 DOB
,𝑒𝑑[ ,𝑠𝑛𝑙 ]) years with fractional part

datetime/C difference Clockdiff(𝑒𝑡𝐶1,𝑒𝑡𝐶2,𝑠𝑡𝑢) integer (rounded down)

datetime/c difference clockdiff(𝑒𝑡𝑐1,𝑒𝑡𝑐2,𝑠𝑡𝑢) integer (rounded down)

datetime/C difference Clockdiff frac(𝑒𝑡𝐶1,𝑒𝑡𝐶2,𝑠𝑡𝑢) floating point
with fraction

datetime/c difference clockdiff frac(𝑒𝑡𝑐1,𝑒𝑡𝑐2,𝑠𝑡𝑢) floating point
with fraction

date difference datediff(𝑒𝑑1,𝑒𝑑2,𝑠𝑑𝑢[ ,𝑠𝑛𝑙 ]) integer (rounded down)

date difference with datediff frac(𝑒𝑑1,𝑒𝑑2,𝑠𝑑𝑢[ ,𝑠𝑛𝑙 ]) floating point
fraction

days since previous dayssinceweekday(𝑒𝑑,𝑑) integers 1 to 7
day of week or dayssincedow(𝑒𝑑,𝑑)

days until next daysuntilweekday(𝑒𝑑,𝑑) integers 1 to 7
day of week or daysuntildow(𝑒𝑑,𝑑)

𝑒𝑑, 𝑒𝑑 DOB
, 𝑒𝑑1, and 𝑒𝑑2 are Stata dates.

𝑒𝑡𝐶1 and 𝑒𝑡𝐶2 are Stata datetime/C values.

𝑒𝑡𝑐1 and 𝑒𝑡𝑐2 are Stata datetime/c values.

𝑠𝑛𝑙 is a string specifying nonleap-year birthdays or anniversaries of 29feb and may be

”01mar”, ”1mar”, ”mar01”, or ”mar1” (the default); or
”28feb” or ”feb28” (case insensitive).

𝑠𝑡𝑢 is a string specifying time units:

”day” or ”d” for day;
”hour” or ”h” for hour;
”minute”, ”min”, or ”m” for minute;
”second”, ”sec”, or ”s” for second; or
”millisecond” or ”ms” for millisecond (case insensitive).

𝑠𝑑𝑢 is a string specifying date units:

”day” or ”d” for day;
”month”, ”mon”, or ”m” for month; or
”year” or ”y” for year (case insensitive).

𝑑 is a numeric day of week (0=Sunday, 1=Monday, . . . , 6=Saturday); alternatively,

it is a string specifying the first two or more letters of the day of week (case insensitive).
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Notes:

1. The string 𝑠𝑛𝑙 specifying nonleap-year birthdays or anniversaries is an optional

argument. It rarely needs to be specified. See example 3 below.

2. When 𝑒𝑑 < 𝑒𝑑 DOB
, age(𝑒𝑑 DOB

,𝑒𝑑[ ,𝑠𝑛𝑙 ]) and age frac(𝑒𝑑 DOB
,𝑒𝑑[ ,𝑠𝑛𝑙 ]) return

missing (.).

3. Clockdiff(𝑒𝑡𝐶1,𝑒𝑡𝐶2,𝑠𝑡𝑢) = −Clockdiff(𝑒𝑡𝐶2,𝑒𝑡𝐶1,𝑠𝑡𝑢).
clockdiff(), Clockdiff frac(), clockdiff frac(), datediff(), and
datediff frac() have the same anticommutative property.

Functions for converting units of a duration
Desired conversion Function Value returned

milliseconds to hours hours(ms) ms/(60 × 60 × 1000)
milliseconds to minutes minutes(ms) ms/(60 × 1000)
milliseconds to seconds seconds(ms) ms/1000
hours to milliseconds msofhours(h)* h × 60 × 60 × 1000

minutes to milliseconds msofminutes(m)* m × 60 × 1000

seconds to milliseconds msofseconds(s)* s × 1000

* Stata datetime values are in milliseconds and must be stored as doubles. When using millisecond

results to add to or subtract from a Stata datetime, store the results as doubles.

Remarks and examples
Remarks are presented under the following headings:

Calculating ages and differences of dates
Calculating differences of datetimes

We assume you have read [D] Datetime and are familiar with how Stata stores dates and datetimes.

String dates and times must be converted into numeric values to become Stata dates and datetimes.

Stata date and time values are durations (positive or negative) from 01jan1960. Stata date values record

the number of days from 01jan1960. Stata datetime/c values record the number of milliseconds from

01jan1960 00:00:00. Stata datetime/C is the same as datetime/c, except that it accounts for leap seconds

and encodes Coordinated Universal Time (UTC).

There are other types of Stata date and time values, ones for weeks, months, quarters, half years, and

years, but the functions described here are intended for use with daily dates or datetimes.

Calculating ages and differences of dates
The age() function calculates age just as one would expect. Typing

. generate subject_age = age(date_of_birth, current_date)

produces integers that are a person’s age in years on current date given birthdate date of birth.
The variables date of birth and current date must be Stata dates.
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The arguments of age() need not be variables, but they must be Stata date values, which are numeric.
To get Stata date values for literal dates, we can use the date pseudofunction td() and use its results as
arguments to age(). For example,

. display age(td(05feb1927), td(24may2006))
79

shows that an individual born on 05feb1927 was 79 years old on 24may2006.

age frac() returns age including the fractional part. For example, let’s use age frac() with the
dates we specified above:

. display age_frac(td(05feb1927), td(24may2006))
79.29589

The datediff() and datediff frac() functions produce results in units of years, months, or days.
For example, to determine the number of months between 05feb1927 and 24may2006, first as an integer

(rounded down) and as a number including the fractional part, we type

. display datediff(td(05feb1927), td(24may2006), ”month”)
951
. display datediff_frac(td(05feb1927), td(24may2006), ”month”)
951.6129

The optional last argument, 𝑠𝑛𝑙, for age(), age frac(), datediff(), and datediff frac() was
not specified in any of the above examples. It applies only to a date of birth (or starting date) on 29feb

when the ending date is not in a leap year. The argument controls whether to use 01mar (the default) or

28feb as the birthday (or anniversary) in nonleap years. Setting this argument is important only when the

data you are using have a set rule for determining the age of persons born on 29feb. For example, you

might have data on the dates when people first get their driver’s licenses. You would want the argument

to match the legal rule for the data. See example 3.

The functions age() and age frac() are based on datediff() and datediff frac(),
respectively,

age(𝑒𝑑 DOB
,𝑒𝑑,𝑠𝑛𝑙) = datediff(𝑒𝑑 DOB

,𝑒𝑑,”year”,𝑠𝑛𝑙)

and

age frac(𝑒𝑑 DOB
,𝑒𝑑,𝑠𝑛𝑙) = datediff frac(𝑒𝑑 DOB

,𝑒𝑑,”year”,𝑠𝑛𝑙)

when 𝑒𝑑 ≥ 𝑒𝑑 DOB
. When 𝑒𝑑 < 𝑒𝑑 DOB

, age() and age frac() return missing (.).

datediff(. . .,”year”,. . .) and datediff frac(. . .,”year”,. . .) calculate the number of years
between two dates just as one would expect. The only wrinkles are leap days and leap years. SeeMethods

and formulas in [FN] Date and time functions for details.

The usefulness of these functions is solely in the way they handle leap days and leap years. Sup-

pose, for example, you are doing an analysis of age of onset of some disorder. If you use values from

age frac() as time in a survival model, these times will match up perfectly with recorded ages (or ages
from age() of course). If instead you used

. generate time_years = (onset_date - date_of_birth)/365.25

as your time variable, there would be minor discrepancies between this time and ages at birthdays. See

examples below.
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datediff(. . .,”month”,. . .) and datediff frac(. . .,”month”,. . .) calculate the number of

months between two dates as one would expect for starting days 1–28. For example, a starting date

on the 28th of the month will have month anniversaries on the 28th of all other months. When the day

of the starting date is 29, 30, or 31, other months may not have this day of the month. The last day of

February will be 28 or 29. When the starting date is on the 31st, the months ending on the 30th obviously

do not have a 31st. In these cases, the first day of the next month is considered the month anniversary.

(This is consistent with the default handling of 29feb start dates when calculating year anniversaries in

nonleap years; the nonleap year anniversaries are on 01mar.)

Fractional months are also a bit tricky because lengths of months vary. There is an example below,

and see Methods and formulas in [FN] Date and time functions for how they are calculated.

Note that datediff(...,”year”,...), datediff frac(...,”year”,...), datediff(...,
”month”,...), and datediff frac(. . .,”month”,. . .) all match up. That is, on an ending

date on which datediff(. . .,”year”,. . .) increases by one from the previous day, the value of

datediff frac(. . .,”year”,. . .) is exactly an integer and equal to datediff(. . .,”year”,. . .). On
this ending date, datediff frac(. . .,”month”,. . .) is also an integer and equal to 12 times the year
difference.

datediff(𝑒𝑑1,𝑒𝑑2,”day”,𝑠𝑛𝑙) and datediff frac(𝑒𝑑1,𝑒𝑑2,”day”,𝑠𝑛𝑙) have no complications
in how they are calculated. Both are equal to 𝑒𝑑2 − 𝑒𝑑1 and are always integers. The optional argument

𝑠𝑛𝑙 has no bearing on the calculation and is ignored if specified.

Example 1: Ages
Calculating ages is straightforward, but we do need to show how age frac() calculates the fractional

part of age. Here is an example.

We have a dataset with string dates. Date of birth is recorded in the variable str dob, and the end
date for calculating age is in str end date.

. use https://www.stata-press.com/data/r19/ages
(Fictional data for calculating ages)
. describe
Contains data from https://www.stata-press.com/data/r19/ages.dta
Observations: 5 Fictional data for calculating

ages
Variables: 2 30 Oct 2024 17:35

Variable Storage Display Value
name type format label Variable label

str_dob str9 %9s Date of birth
str_end_date str9 %9s End date

Sorted by:
. list, abbreviate(12)

str_dob str_end_date

1. 28/8/1967 27/8/2019
2. 28/8/1967 28/8/2019
3. 28/8/1967 29/8/2019
4. 28/8/1967 28/8/2020
5. 28/8/1967 29/8/2020



Datetime durations — Obtaining and working with durations 162

We must convert the strings to numeric Stata dates, which we do using the date() function with

a mask of ”DMY” because the date components are in the order day, month, year. We format the new

encoded date variables using format %td, the simplest format specification for daily dates.

. generate dob = date(str_dob, ”DMY”)

. generate end_date = date(str_end_date, ”DMY”)

. format dob end_date %td

. list str_dob dob str_end_date end_date, abbreviate(12)

str_dob dob str_end_date end_date

1. 28/8/1967 28aug1967 27/8/2019 27aug2019
2. 28/8/1967 28aug1967 28/8/2019 28aug2019
3. 28/8/1967 28aug1967 29/8/2019 29aug2019
4. 28/8/1967 28aug1967 28/8/2020 28aug2020
5. 28/8/1967 28aug1967 29/8/2020 29aug2020

This person was born on 28aug1967, and we compute his or her age and age with the fractional part

on the dates in end date.

. generate age = age(dob, end_date)

. generate double fage = age_frac(dob, end_date)

. format fage %12.0g

. list dob end_date age fage

dob end_date age fage

1. 28aug1967 27aug2019 51 51.99726027
2. 28aug1967 28aug2019 52 52
3. 28aug1967 29aug2019 52 52.00273224
4. 28aug1967 28aug2020 53 53
5. 28aug1967 29aug2020 53 53.00273973

Note that the fractional parts on end dates of 29aug2019 and 29aug2020 differ. There are 366 days

between 28aug2019 and 28aug2020 because 2020 is a leap year. So the fractional part for 29aug2019 is

1/366 = 0.00273224. There are 365 days between 28aug2020 and 28aug2021, so the fractional part for

29aug2020 is 1/365 = 0.00273973.

Example 2: Differences in months
Here we show an example of how datediff() and datediff frac() calculate date differences in

units of months.

We load a dataset with Stata date variables start and end. First, we generate months using

datediff(start, end, ”month”) to get the integer difference (rounded down) in months. Then, we
generate fmonths using datediff frac(start, end, ”month”) to get the difference including the
fractional part. We also put datediff(start, end, ”day”) into a variable to get differences in days
to help us see how the fractional parts are calculated.

. use https://www.stata-press.com/data/r19/month_differences, clear
(Fictional data for calculating date differences)
. generate months = datediff(start, end, ”month”)
. generate double fmonths = datediff_frac(start, end, ”month”)
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. generate days = datediff(start, end, ”day”)

. format fmonths %12.0g

. list start end months fmonths days, sepby(start)

start end months fmonths days

1. 15jan2019 15jan2019 0 0 0
2. 15jan2019 16jan2019 0 .0322580645 1
3. 15jan2019 15feb2019 1 1 31
4. 15jan2019 16feb2019 1 1.035714286 32
5. 15jan2019 15mar2019 2 2 59
6. 15jan2019 16mar2019 2 2.032258065 60
7. 15jan2019 15apr2019 3 3 90
8. 15jan2019 16apr2019 3 3.033333333 91

9. 31jan2019 01feb2019 0 .0344827586 1
10. 31jan2019 28feb2019 0 .9655172414 28
11. 31jan2019 01mar2019 1 1 29
12. 31jan2019 02mar2019 1 1.033333333 30
13. 31jan2019 31mar2019 2 2 59
14. 31jan2019 01apr2019 2 2.032258065 60
15. 31jan2019 30apr2019 2 2.967741935 89
16. 31jan2019 01may2019 3 3 90

Let’s first look at the start date 15jan2019. months increases by one on 15feb2019 and then again on
15mar2019 and 15apr2019. On these days, datediff frac(. . ., ”month”) is an integer.

The fractional month difference between 15jan2019 and 16jan2019 is 1/31 = 0.032258. The de-

nominator is 31 because the next month anniversary is 15feb2019, which is 31 days from 15jan2019.

The fractional part of the difference between 15jan2019 and 16feb2019 is 1/28 = 0.035714 because

there are 28 days between the month anniversaries 15feb2019 and 15mar2019. The fractional part of the

difference between 15jan2019 and 16apr2019 is 1/30 = 0.033333 because there are 30 days between

the month anniversaries 15apr2019 and 15may2019.

For the start date 31jan2019, monthly anniversaries are 01mar2019, 31mar2019, and 01may2019.

Fractional differences are calculated based on the number of days between the monthly anniversaries.

For example, there are 29 days between 31jan2019 and 01mar2019, so the fractional difference between

31jan2019 and 01feb2019 is 1/29 = 0.034483.

The optional fourth argument, 𝑠𝑛𝑙, of datediff(𝑒𝑑1,𝑒𝑑2,”month”,𝑠𝑛𝑙) applies only when the start
date, 𝑒𝑑1, falls on 29feb. See the next example for what this option does with ages in years. It works

similarly when units are months.

Example 3: Born on a leap day
If you are a “leapling”—born on 29feb—when do you have a birthday in nonleap years? On 28feb

or 01mar? Or do you not have a birthday at all in nonleap years (Sullivan 1923)?

In the United Kingdom, a leapling legally becomes 18 on 01mar. In Taiwan, it is 28feb. In the United

States, there is no legal statute concerning leap-day birthdates.

The functions age(), age frac(), datediff(), and datediff frac() all have an optional last
argument that sets the day of the birthday (or anniversary) in nonleap years. Here is an example using

age() and age frac().
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We load a dataset with Stata date variables dob (containing date of birth) and end date. We generate

age1 using age()with the ”01mar” argument (which is the default if it is not specified). The age2 vari-
able is generated using ”28feb”. We also generate the variables fage1 and fage2 using age frac()
with different last arguments.

. use https://www.stata-press.com/data/r19/leap_day, clear
(Fictional leapling data)
. generate age1 = age(dob, end_date, ”01mar”)
. generate double fage1 = age_frac(dob, end_date, ”01mar”)
. generate age2 = age(dob, end_date, ”28feb”)
. generate double fage2 = age_frac(dob, end_date, ”28feb”)
. generate year = year(end_date)
. format fage1 fage2 %12.0g
. list dob end_date age1 age2 fage1 fage2, sepby(year)

dob end_date age1 age2 fage1 fage2

1. 29feb2004 27feb2019 14 14 14.99452055 14.99726027
2. 29feb2004 28feb2019 14 15 14.99726027 15
3. 29feb2004 01mar2019 15 15 15 15.00273224

4. 29feb2004 28feb2020 15 15 15.99726027 15.99726776
5. 29feb2004 29feb2020 16 16 16 16
6. 29feb2004 01mar2020 16 16 16.00273224 16.00273973

Changes in age1 and age2 (that is, birthdays) in nonleap years occur on the day specified by the

last argument to age(). Note that birthdays in leap years are, of course, on 29feb regardless of the

last argument. Fractional parts from age frac() differ because they are based on the number of days
between birthdays on either side of end date, which will be 365 or 366. So fractional parts are multiples
of 1/365 or 1/366.

It is worth mentioning again that age(), age frac(), datediff(), and datediff frac() all

match up sensibly, but if there are leaplings, the last argument must be the same (or not be specified)

for them to match up. See Methods and formulas in [FN] Date and time functions.

Calculating differences of datetimes
The clockdiff() function calculates differences of datetime/c values in units of days, hours, min-

utes, seconds, or milliseconds, with the result rounded down to an integer. The Clockdiff() function
does the same, except it calculates differences for datetime/C values (UTC times with leap seconds).

The clockdiff frac() and Clockdiff frac() functions calculate the corresponding differences
for datetime/c and datetime/C values, respectively, but the fractional part of the difference is also in-

cluded.

Example 4: Differences of datetime/c values
We have a dataset with string datetimes. A start datetime is recorded in the variable str start, and

an end datetime is in str end.
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. use https://www.stata-press.com/data/r19/time_differences, clear
(Fictional data for calculating time differences)
. list, abbreviate(9)

str_start str_end

1. 2015-06-30 00:00:00 2015-06-30 23:59:59
2. 2015-06-30 00:00:00 2015-06-30 23:59:60
3. 2015-06-30 00:00:00 2015-07-01 00:00:00
4. 2015-06-30 00:00:00 2015-07-01 23:59:59
5. 2015-06-30 00:00:00 2015-07-02 00:00:00

We must convert the strings to numeric Stata datetimes, which we do using the clock() function

with a mask of ”YMDhms”. We format the new encoded datetime variables using format %tc, the simplest
format specification for datetime/c.

. generate double cstart = clock(str_start, ”YMDhms”)

. generate double cend = clock(str_end, ”YMDhms”)
(1 missing value generated)
. format cstart cend %tc
. list str_end cend

str_end cend

1. 2015-06-30 23:59:59 30jun2015 23:59:59
2. 2015-06-30 23:59:60 .
3. 2015-07-01 00:00:00 01jul2015 00:00:00
4. 2015-07-01 23:59:59 01jul2015 23:59:59
5. 2015-07-02 00:00:00 02jul2015 00:00:00

One of the string values became missing when it was encoded. It was the value ”2015-06-30
23:59:60”. This is a leap second, which was added to the end of the day on 30jun2015. There is

no encoding for leap seconds in datetime/c. That is why it is missing. We snuck in this leap second to

illustrate a point later about datetime/C.

We now use clockdiff() to calculate differences in seconds and hours between the datetime/c vari-
ables cstart and cend.

. generate csecs = clockdiff(cstart, cend, ”second”)
(1 missing value generated)
. generate chours = clockdiff(cstart, cend, ”hour”)
(1 missing value generated)
. list cstart cend csecs chours

cstart cend csecs chours

1. 30jun2015 00:00:00 30jun2015 23:59:59 86399 23
2. 30jun2015 00:00:00 . . .
3. 30jun2015 00:00:00 01jul2015 00:00:00 86400 24
4. 30jun2015 00:00:00 01jul2015 23:59:59 172799 47
5. 30jun2015 00:00:00 02jul2015 00:00:00 172800 48
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clockdiff() calculates values rounded down to integers, and the results are what we expect. Integer
hours starting at 30jun2015 00:00:00 are 23 hours at 30jun2015 23:59:59. Integer hours become 24 hours

one second later at 01jul2015 00:00:00.

Rather than use clockdiff(), we could take the difference between the datetime/c variables cstart
and cend and use the conversion functions seconds() and hours().

. generate double csecs2 = seconds(cend - cstart)
(1 missing value generated)
. generate double chours2 = hours(cend - cstart)
(1 missing value generated)
. format %12.0g chours2
. list csecs csecs2 chours chours2

csecs csecs2 chours chours2

1. 86399 86399 23 23.99972222
2. . . . .
3. 86400 86400 24 24
4. 172799 172799 47 47.99972222
5. 172800 172800 48 48

The results are consistent with our earlier results. The number of seconds are exactly the same in

csecs and csecs2 because they are integers. Hours in chours2 are not integers, but rounded down to
integers, they agree with hours produced by clockdiff().

If we want to calculate the difference between cstart and cend in hours with the fractional part, we
can use clockdiff frac() as follows:

. generate double fchours = clockdiff_frac(cstart, cend, ”hour”)
(1 missing value generated)
. format %12.0g fchours
. list chours chours2 fchours

chours chours2 fchours

1. 23 23.99972222 23.99972222
2. . . .
3. 24 24 24
4. 47 47.99972222 47.99972222
5. 48 48 48

As expected, fchours is the same as chours2.

Example 5: Differences of datetime/C values
What if we are using datetime/C values, that is, datetimes with leap seconds? Let’s redo

the previous example encoding the strings using Clock() to produce Cstart and Cend as date-

time/C. Then, we generate a variable Csecs using Clockdiff(Cstart, Cend, ”second”), Chours
using clockdiff(Cstart, Cend, ”hour”), and fChours using Clockdiff frac(Cstart, Cend,
”hour”).

. generate double Cstart = Clock(str_start, ”YMDhms”)

. generate double Cend = Clock(str_end, ”YMDhms”)



Datetime durations — Obtaining and working with durations 167

. format Cstart Cend %tC

. generate Csecs = Clockdiff(Cstart, Cend, ”second”)

. generate Chours = Clockdiff(Cstart, Cend, ”hour”)

. generate double fChours = Clockdiff_frac(Cstart, Cend, ”hour”)

. format %12.0g fChours

. list Cstart Cend Csecs Chours fChours

1. Cstart Cend Csecs Chours
30jun2015 00:00:00 30jun2015 23:59:59 86399 23

fChours
23.9994446

2. Cstart Cend Csecs Chours
30jun2015 00:00:00 30jun2015 23:59:60 86400 23

fChours
23.9997223

3. Cstart Cend Csecs Chours
30jun2015 00:00:00 01jul2015 00:00:00 86401 24

fChours
24

4. Cstart Cend Csecs Chours
30jun2015 00:00:00 01jul2015 23:59:59 172800 47

fChours
47.99972222

5. Cstart Cend Csecs Chours
30jun2015 00:00:00 02jul2015 00:00:00 172801 48

fChours
48

In the previous example, the difference between the times of the first observationwas 23.99972222 hours;

now it is 23.99944460 hours. The difference for the first observation in this example is further from 24

hours because there are now two seconds between Cend and 24 hours from Cstart, whereas before there
was only one second because the leap second was treated as if it did not exist.

The other difference is the denominator of the fractional part. From the earlier example using date-

time/c values and clockdiff frac(), we note that 1 − 0.99972222 = 0.00027778 = 1/3600,
where 3,600 is the number of seconds in an hour. In this example using datetime/C values and

Clockdiff frac(), we see that 1− 0.99944460 = 0.00055540 = 2/3601, where 3,601 is the number
of seconds in the hour containing the leap second.
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For the second-to-last observation, the fractional part of the difference is 0.99972222, the same as the

fractional part in the previous example. So in this example, the hour differences with the fractional part

are not evenly spaced, and this would be true even without the second observation with the leap second

in the data. If the lack of uniform spacing is a problem and there are no leap seconds in your data, you

may want to consider converting your datetime/C data to datetime/c.

Reference
Sullivan, A. 1923. The Pirates of Penzance or the Slave of Duty, libretto by W. S. Gilbert. New York: G. Schirmer.

Also see
[D] Datetime — Date and time values and variables

[D] Datetime business calendars — Business calendars

[D] Datetime conversion — Converting strings to Stata dates

[D] Datetime display formats — Display formats for dates and times

[D] Datetime relative dates — Obtaining dates and date information from other dates

[D] Datetime values from other software — Date and time conversion from other software
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Description Quick start Syntax Remarks and examples Also see

Description
This entry describes functions that calculate dates from other dates, such as the date of a birthday in

another year or the next leap year after a given year. It also describes functions that return the current

date and current datetime.

Quick start
Display today’s date

display %td today()

Save the current date and time in a scalar

scalar ctime = now()

Calculate the date of a birthday in the year given by numeric variable y based on a numerically encoded
Stata date variable dob that gives date of birth

generate bday_future = birthday(dob, y)

Same as above, but for persons born on 29feb have their birthdays on 28feb in nonleap years (rather than

the default of 01mar)

generate bday_future = birthday(dob, y, ”28feb”)

Calculate the date of the first birthday after Stata date date today based on date of birth dob
generate next_bday = nextbirthday(dob, date_today)

Calculate the number of days in the year y
generate ndays = cond(isleapyear(y), 366, 365)

Calculate the year of the leap year immediately before the year y
generate yleap = previousleapyear(y)

Calculate the number of days in the month on which the values of Stata date variable d fall
generate ndays = daysinmonth(d)

Calculate the date of the first Friday of month m and year y
generate firstfriday = firstweekdayofmonth(m, y, ”Friday”)

Calculate the date of the previous Saturday relative to Stata date d
generate previous = previousweekday(d, ”sat”)

169
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Syntax
Description Function Value returned

today today() Stata date

current date and time now() Stata datetime/c

birthday in year birthday(𝑒𝑑 DOB
,𝑌[ ,𝑠𝑛𝑙 ]) Stata date

previous birthday previousbirthday(𝑒𝑑 DOB
,𝑒𝑑[ ,𝑠𝑛𝑙 ]) Stata date

next birthday nextbirthday(𝑒𝑑 DOB
,𝑒𝑑[ ,𝑠𝑛𝑙 ]) Stata date

days in month daysinmonth(𝑒𝑑) 28–31

first day of month firstdayofmonth(𝑒𝑑) Stata date

last day of month lastdayofmonth(𝑒𝑑) Stata date

leap year indicator isleapyear(𝑌) 0 or 1

previous leap year previousleapyear(𝑌) year

next leap year nextleapyear(𝑌) year

leap second indicator isleapsecond(𝑒𝑡𝐶) 0 or 1

first day of week of month firstweekdayofmonth(𝑀,𝑌,𝑑) Stata date

or firstdowofmonth(𝑀,𝑌,𝑑)

last day of week of month lastweekdayofmonth(𝑀,𝑌,𝑑) Stata date

or lastdowofmonth(𝑀,𝑌,𝑑)

previous day of week previousweekday(𝑒𝑑,𝑑) Stata date

or previousdow(𝑒𝑑,𝑑)

next day of week nextweekday(𝑒𝑑,𝑑) Stata date

or nextdow(𝑒𝑑,𝑑)

𝑒𝑑 and 𝑒𝑑 DOB
are Stata dates.

𝑒𝑡𝐶 is a Stata datetime/C value (UTC time with leap seconds).

𝑠𝑛𝑙 is a string specifying nonleap-year birthdays of 29feb and may be

”01mar”, ”1mar”, ”mar01”, or ”mar1” (the default); or
”28feb” or ”feb28” (case insensitive).

𝑌 is a numeric year.

𝑑 is a numeric day of week (0=Sunday, 1=Monday, . . . , 6=Saturday); alternatively,

it is a string specifying the first two or more letters of the day of week (case insensitive).

Note: The string 𝑠𝑛𝑙 specifying nonleap-year birthdays is an optional argument. It rarely needs to be

specified. See example 3 in [D] Datetime durations.
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Remarks and examples
Remarks are presented under the following headings:

Current date and time
Birthdays and anniversaries
Months: Number of days, first day, and last day
Determining leap years
Determining leap seconds
Dates of days of week

We assume you have read [D] Datetime and are familiar with how Stata stores and formats dates.

Current date and time
today() and now() return date and datetime/c values for today’s date and the current datetime, re-

spectively. Note that the datetime value returned by now() is not adjusted for leap seconds.

Birthdays and anniversaries
The birthday() function returns a Stata date giving the birthday in a specified year. For example,

suppose date of birth is a variable containing Stata dates and yvar is a numeric variable containing
years; typing

. generate bday = birthday(date_of_birth, yvar)

produces a Stata date variable bday containing birthdays in those years. However, it will not be formatted
as a date variable. If you list bday, you will see numbers, not dates. To see dates, you must give it a date
format, such as

. format bday %td

We used the format %td, the simplest format specification for daily dates.

Of course, birthday() can be used for more than just birthdays. It can be used to give anniversary
dates of any date in different years.

The previousbirthday() and nextbirthday() functions do what their names suggest. Typing

. generate pbday = previousbirthday(date_of_birth, current_date)

. format pbday %td

gives birthdays immediately before current date. Typing

. generate nbday = nextbirthday(date_of_birth, current_date)

. format nbday %td

gives birthdays immediately after current date. Note that if current date is a birthday,

previousbirthday() returns the previous birthday, not the value of current date. Similarly,

nextbirthday() returns the next birthday when the argument is a birthday.

The optional last argument, 𝑠𝑛𝑙, for birthday(), previousbirthday(), and nextbirthday()
applies only to a date of birth on 29feb. The argument controls whether to use 01mar (the default) or

28feb as the birthday in nonleap years. See example 3 in [D]Datetime durations and the example below.
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Example 1: Birthdays in other years
Here we show how to use birthday() and nextbirthday() to calculate birthdays in other years.

We load a dataset with Stata date variables dob and date and a numeric variable year.

. use https://www.stata-press.com/data/r19/birthdays
(Fictional data for calculating birthdays)
. list, sepby(dob)

dob date year

1. Mon 28 Aug 1967 Thu 27 Aug 2020 2020
2. Mon 28 Aug 1967 Sat 28 Aug 2021 2021
3. Mon 28 Aug 1967 Mon 29 Aug 2022 2022

4. Thu 29 Feb 1968 Tue 28 Feb 2023 2023
5. Thu 29 Feb 1968 Thu 29 Feb 2024 2024
6. Thu 29 Feb 1968 Sat 01 Mar 2025 2025

To calculate the birthday in year based on date of birth dob, we type

. generate bday = birthday(dob, year)

. format bday %tdDay_DD_Mon_CCYY

. list dob year bday, sepby(dob)

dob year bday

1. Mon 28 Aug 1967 2020 Fri 28 Aug 2020
2. Mon 28 Aug 1967 2021 Sat 28 Aug 2021
3. Mon 28 Aug 1967 2022 Sun 28 Aug 2022

4. Thu 29 Feb 1968 2023 Wed 01 Mar 2023
5. Thu 29 Feb 1968 2024 Thu 29 Feb 2024
6. Thu 29 Feb 1968 2025 Sat 01 Mar 2025

We see that for a date of birth of 28Aug 1967, the birthday in 2020 is on 28Aug 2020, which is a Friday.

For persons born on leap day 29 Feb 1968, their birthdays in nonleap years will be on 01 Mar. In leap

years, of course, they will be on 29 Feb.

Note that we used the fancy date format %tdDay DD Mon CCYY. The %td at the beginning means it
is a format for daily dates. Day displays the day of the week abbreviated. The underscore ( ) means put

in a space. DD displays the day with a leading zero. Mon displays the month abbreviated. CCYY displays
the year with the century. See [D] Datetime display formats for all the format variants.

For persons born on leap days (“leaplings”), we can change the day of their birthdays in nonleap years

from the default of 01 Mar to 28 Feb by specifying the optional argument ”28feb”. For example,
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. generate abday = birthday(dob, year, ”28feb”)

. format abday %tdDay_DD_Mon_CCYY

. list dob year abday, sepby(dob)

dob year abday

1. Mon 28 Aug 1967 2020 Fri 28 Aug 2020
2. Mon 28 Aug 1967 2021 Sat 28 Aug 2021
3. Mon 28 Aug 1967 2022 Sun 28 Aug 2022

4. Thu 29 Feb 1968 2023 Tue 28 Feb 2023
5. Thu 29 Feb 1968 2024 Thu 29 Feb 2024
6. Thu 29 Feb 1968 2025 Fri 28 Feb 2025

Birthdays of leaplings are now on 28 Feb in nonleap years. Birthdays for nonleaplings are unaffected by

this argument.

Suppose we want a birthday relative to another date. Say we want the date of the first birthday after

date. We can do this by typing

. generate nbday = nextbirthday(dob, date)

. format nbday %tdDay_DD_Mon_CCYY

. list dob date nbday, sepby(dob)

dob date nbday

1. Mon 28 Aug 1967 Thu 27 Aug 2020 Fri 28 Aug 2020
2. Mon 28 Aug 1967 Sat 28 Aug 2021 Sun 28 Aug 2022
3. Mon 28 Aug 1967 Mon 29 Aug 2022 Mon 28 Aug 2023

4. Thu 29 Feb 1968 Tue 28 Feb 2023 Wed 01 Mar 2023
5. Thu 29 Feb 1968 Thu 29 Feb 2024 Sat 01 Mar 2025
6. Thu 29 Feb 1968 Sat 01 Mar 2025 Sun 01 Mar 2026

We see that the first birthday after 27 Aug 2020 for someone born on 28 Aug is 28 Aug 2020. The first

birthday after 28 Aug 2021 (a birthday) for someone born on 28 Aug is the birthday in the next year,

28 Aug 2022.

The first birthday after 29 Feb 2024 for someone born on 29 Feb is 01 Mar 2025. Again, we can

specify the argument ”28feb” to change the nonleap-year birthdays of leaplings to 28 Feb.

. generate anbday = nextbirthday(dob, date, ”28feb”)

. format anbday %tdDay_DD_Mon_CCYY

. list dob date anbday, sepby(dob)

dob date anbday

1. Mon 28 Aug 1967 Thu 27 Aug 2020 Fri 28 Aug 2020
2. Mon 28 Aug 1967 Sat 28 Aug 2021 Sun 28 Aug 2022
3. Mon 28 Aug 1967 Mon 29 Aug 2022 Mon 28 Aug 2023

4. Thu 29 Feb 1968 Tue 28 Feb 2023 Thu 29 Feb 2024
5. Thu 29 Feb 1968 Thu 29 Feb 2024 Fri 28 Feb 2025
6. Thu 29 Feb 1968 Sat 01 Mar 2025 Sat 28 Feb 2026
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Now the first birthday after 29 Feb 2024 for someone born on 29 Feb is 28 Feb 2025.

Months: Number of days, first day, and last day
daysinmonth(𝑒𝑑), firstdayofmonth(𝑒𝑑), and lastdayofmonth(𝑒𝑑) each take a Stata date 𝑒𝑑

as an argument and determine the month of that date. daysinmonth() returns the number of days in
that month. firstdayofmonth() returns the date of the first day of that month. lastdayofmonth()
returns the date of the last day of that month.

For example, for any day in the month of February of leap year 2020 (such as 15feb2020), these

functions return the following:

. display daysinmonth(mdy(2,15,2020))
29
. display %td firstdayofmonth(mdy(2,15,2020))
01feb2020
. display %td lastdayofmonth(mdy(2,15,2020))
29feb2020

Determining leap years
isleapyear(𝑌), previousleapyear(𝑌), and nextleapyear(𝑌) are functions that make it easier

to handle leap years. Each takes a single argument that is a numeric year.

isleapyear(𝑌) returns 1 if 𝑌 is a leap year and 0 otherwise. The argument 𝑌 can be a numeric

variable or a literal value. Here are some examples with literal values:

. display isleapyear(2020)
1
. display isleapyear(2021)
0
. display isleapyear(2100)
0
. display isleapyear(2400)
1

The year 2020 is a leap year, and 2021 is not. The year 2100 is not because it is divisible by 100 and not

by 400. The year 2400 is divisible by 400, so it is a leap year.

previousleapyear(𝑌) returns the leap year immediately before year 𝑌. nextleapyear(𝑌) returns
the first leap year after year 𝑌. Here are examples:

. display previousleapyear(2023)
2020
. display nextleapyear(2023)
2024
. display previousleapyear(2024)
2020
. display nextleapyear(2024)
2028

As you can see, when the argument is a leap year, these functions return the next leap year or previous

leap year and not the leap year argument.
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Determining leap seconds
isleapsecond() takes a datetime/C value (UTC time) as an argument and returns 1 (true) if that

datetime is one of the 1,000 milliseconds of a leap second and 0 (false) otherwise. For example, the

first leap second was introduced on 30jun1972, after the last millisecond of the day. Here is what

isleapsecond() returns at various points in time, including right before the leap second was added

on 30jun1972 (at 23:59.999) and right after the leap second was added on 01jul1972 (at 00:00.000). We

use tC() to create datetime/C values.

. display isleapsecond(tC(30jun1972 23:59:59.999))
0
. display isleapsecond(tC(30jun1972 23:59:60.000))
1
. display isleapsecond(tC(30jun1972 23:59:60.999))
1
. display isleapsecond(tC(01jul1972 00:00:0))
0

isleapsecond() is useful for determining whether datetime/C values can be converted to datetime/c

without any loss of information. Suppose we have a variable admitTime that contains times of patient
admissions as datetime/C values. We can type the following:

. generate anyleapsec = isleapsecond(admitTime)

. tabulate anyleapsec
anyleapsec Freq. Percent Cum.

0 1,064 100.00 100.00

Total 1,064 100.00

anyleapsec is all zero, so no patient was admitted on a leap second, and we can convert admitTime to
datetime/c without any times being altered.

. generate newTime = cofC(admitTime)

Had there been leap seconds in the data, cofC() would have converted the leap-second times to times
one second later. For example,

. display %tc cofC(tC(31dec2016 23:59:60))
01jan2017 00:00:00

Dates of days of week
firstweekdayofmonth(𝑀,𝑌,𝑑) and lastweekdayofmonth(𝑀,𝑌,𝑑) return the Stata date of the

first and last day-of-week 𝑑, respectively, in month 𝑀 of year 𝑌. For example, we can find the first

Monday of January 2000 with the command

. display %td firstweekdayofmonth(1, 2000, ”Monday”)
03jan2000

previousweekday(𝑒𝑑,𝑑) returns the Stata date corresponding to the last day-of-week 𝑑 before the

Stata date 𝑒𝑑. nextweekday(𝑒𝑑,𝑑) returns the Stata date corresponding to the first day-of-week 𝑑 after
the Stata date 𝑒𝑑. For example, the date of the first Saturday after today can be found with the command

. display %td nextweekday(today(), ”sat”)
25mar2023
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Note that day-of-week 𝑑 can be specified as an integer (0 = Sunday, 1 = Monday, . . . , 6 = Saturday)

or as a string with the first two or more letters of the day of the week (case insensitive). For example,

Sunday can be specified as 0 or ”Sunday”, ”Sun”, ”su”, etc.

Also see
[D] Datetime — Date and time values and variables

[D] Datetime business calendars — Business calendars

[D] Datetime conversion — Converting strings to Stata dates

[D] Datetime display formats — Display formats for dates and times

[D] Datetime durations — Obtaining and working with durations

[D] Datetime values from other software — Date and time conversion from other software
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Description Remarks and examples Reference Also see

Description
Most software packages store dates and times numerically as durations from some base date in spec-

ified units, but they differ on the base date and the units. In this entry, we discuss how to convert date

and time values that you have imported from other packages to Stata dates.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Converting SAS dates
Converting SPSS dates
Converting R dates
Converting Excel dates

Example 1: Converting Excel dates to Stata dates
Converting OpenOffice dates
Converting Unix time

Introduction
Different software packages use different base dates for storing dates and times numerically. If you

are using one of the specialized subcommands for importing data from another package, you do not need

to convert your numeric dates after importing them into Stata. import sas, import spss, and import
excel will properly convert those dates to Stata dates. However, if you store data from another package

into a more general format, like a text file, you will need to do one of two things.

1. If you bring the date variable into Stata as a string, you will have to convert it to a numeric

variable.

2. If you import the date variable as a numeric variable, with values representing the underlying

numeric values that the other package used, you will have to convert that value to the numeric

value for a Stata date.

Below, we discuss the date systems for different software packages and how to convert their date and

time values to Stata dates.

Converting SAS dates
If you have data in a SAS-format file, you may want to use the import sas command. If the SAS file

contains numerically encoded dates, import sas will read those dates and properly store them as Stata

dates. You do not need to perform any conversion after importing your data with import sas.

On the other hand, if you import data originally from SAS that have been saved into another format,

such as a text file, dates and datetimes may exist as the underlying numeric values that SAS used. The

discussion below concerns converting those numeric values to Stata dates.

SAS provides dates measured as the number of days since 01jan1960 (positive or negative). This is

the same coding as used by Stata:
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. generate statadate = sasdate

. format statadate %td

SAS provides datetimes measured as the number of seconds since 01jan1960 00:00:00, assuming

86,400 seconds/day. SAS datetimes do not have leap seconds. To convert to a Stata datetime/c variable,

type

. generate double statatime = (sastime*1000)

. format statatime %tc

It is important that variables containing SAS datetimes, such as sastime above, be imported into Stata
as doubles.

Converting SPSS dates
If you have data in an SPSS-format file, you may want to use the import spss command. If the SPSS

file contains numerically encoded dates, import spss will read those dates and properly store them as

Stata dates. You do not need to perform any conversion after importing your data with import spss.

On the other hand, if you import data originally from SPSS that have been saved into another format,

such as a text file, dates and datetimes may exist as the underlying numeric values that SPSS used. The

discussion below concerns converting those numeric values to Stata dates.

SPSS provides dates and datetimes measured as the number of seconds since 14oct1582 00:00:00,

assuming 86,400 seconds/day. SPSS datetimes do not have leap seconds. To convert to a Stata datetime/c

variable, type

. generate double statatime = (spsstime*1000) + tc(14oct1582 00:00)

. format statatime %tc

To convert to a Stata date, type

. generate statadate = dofc((spsstime*1000) + tc(14oct1582 00:00))

. format statadate %td

Converting R dates
R stores dates as days since 01jan1970. To convert to a Stata date, type

. generate statadate = rdate - td(01jan1970)

. format statadate %td

R stores datetimes as the number of UTC-adjusted seconds (that is, with leap seconds) since 01jan1970

00:00:00. To convert to a Stata datetime/C variable, type

. generate double statatime = rtime - tC(01jan1970 00:00)

. format statatime %tC

To convert to a Stata datetime/c variable, type

. generate double statatime = cofC(rtime - tC(01jan1970 00:00))

. format statatime %tc

There are issues of which you need to be aware when working with datetime/C values; see Why

there are two datetime encodings and Advice on using datetime/c and datetime/C, both in [D] Datetime

conversion.
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Converting Excel dates
If you have data in an Excel format file, you may want to use the import excel command. If the

Excel file contains numerically encoded dates, import excel will read those dates and properly store
them as Stata dates. You do not need to perform any conversion after importing your data with import
excel.

On the other hand, if you are not using import excel and you need to manually convert Excel’s

numerically encoded dates to Stata dates, you can refer to the discussion below.

Excel has used different date systems across operating systems. Excel for Windows used the “1900

date system”. Excel for Mac used the “1904 date system”. More recently, Excel has been standardizing

on the 1900 date system on all operating systems.

Regardless of operating system, Excel can use either encoding. See

https://support.microsoft.com/kb/214330 for instructions on converting workbooks between date sys-

tems.

Converted dates will be off by four years if you choose the wrong date system.

Converting Excel 1900 date-system dates:

Excel’s 1900 date system stores dates as days since 31dec1899 (0jan1900), and it treats 1900 as a leap

year, although it was not. Therefore, this date system contains the nonexistent day 29feb1900, which is

not recognized by Stata. You can see http://www.cpearson.com/excel/datetime.htm for more information

on how dates and times are handled in Excel.

Because of this behavior, we need to account for that additional day when converting these numeri-

cally encoded dates to Stata dates. In other words, to convert Excel dates on or after 01mar1900 to Stata

dates, we instead use 30dec1899 as the base.

. generate statadate = exceldate + td(30dec1899)

. format statadate %td

To convert Excel dates on or before 28feb1900 to Stata dates, we use 31dec1899 as the base. For an

example of working with these dates, see the technical note following example 1.

Stata stores date and datetime values differently, with dates recorded as the number of days since

01jan1960 and datetimes recorded as the number of milliseconds from 01jan1960 00:00:00. However,

Excel stores date and time values together in a single number. For datetimes on or after 01mar1900

00:00:00, Excel stores datetimes as days plus fraction of day since 30dec1899 00:00:00, such as

ddddddd.tttttt. The integer records the days, and the fractional part records the number of seconds
from 00:00:00, the beginning of the day, divided by the number of seconds in 24 hours (24*60*60 =

86400).

To convert with a one-second resolution to a Stata datetime, type

. generate double statatime = round((exceltime+td(30dec1899))*86400)*1000

. format statatime %tc

Converting Excel 1904 date-system dates:

For dates on or after 01jan1904, Excel stores dates as days since 01jan1904. To convert to a Stata

date, type

. generate statadate = exceldate + td(01jan1904)

. format statadate %td

https://support.microsoft.com/kb/214330
http://www.cpearson.com/excel/datetime.htm
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For datetimes on or after 01jan1904 00:00:00, Excel stores datetimes as days plus the fraction of the

day since 01jan1904 00:00:00. To convert with a one-second resolution to a Stata datetime, type

. generate double statatime = round((exceltime+td(01jan1904))*86400)*1000

. format statatime %tc

Example 1: Converting Excel dates to Stata dates

We have some Excel 1900 date-system dates saved in a tab-delimited file. The file contains patients’

ID numbers and their dates of birth. The numeric variable bdate contains the numeric values that Excel
used to store those dates.

. clear

. import delimited ”exceldates.txt”
(encoding automatically selected: ISO-8859-1)
(2 vars, 3 obs)
. list

patid bdate

1. 1 33106
2. 2 31305
3. 3 37327

Stata dates measure the number of days since January 1, 1960. For dates on or after March 1, 1900,

Excel’s base date is December 30, 1899. To convert bdate to a Stata date, we need to add the number
of days from January 1, 1960, to December 30, 1899 (which is a negative number of days).

. generate statadate = bdate + td(30dec1899)

. format statadate %td

. list

patid bdate statadate

1. 1 33106 21aug1990
2. 2 31305 15sep1985
3. 3 37327 12mar2002

If you would like to confirm that the conversion has been done properly, you can copy those values

of bdate into an Excel spreadsheet and format them as dates. You will see the same dates as those listed

under statadate.

Technical note
Suppose we were working with data in Excel that contained dates between January 1, 1900, and

February 28, 1900. If we saved these data to a .txt or .csv file and brought in those numerically

encoded dates into Stata, we could not use the conversion function above. The reason these dates are

treated differently is that Excel treats 1900 as a leap year, even though it was not; therefore, Excel behaves

as if 29feb1900 was an actual date. If you are curious, the purpose of this behavior was to be compatible

with a spreadsheet software that was dominant at the time. In short, what this means for us is that if we

are working with these particular dates, we need to modify Excel’s base date.
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Below, we import a text file with dates between January 1, 1900, and February 28, 1900, to demon-

strate.

. clear

. import delimited ”exceldates2.txt”
(encoding automatically selected: ISO-8859-1)
(2 vars, 3 obs)
. list

patid bdate

1. 1 1
2. 2 15
3. 3 43

Instead of using December 30, 1899, as Excel’s base date, as we did previously, we will now use

December 31, 1899.

. generate statadate = bdate + td(31dec1899)

. format statadate %td

. list

patid bdate statadate

1. 1 1 01jan1900
2. 2 15 15jan1900
3. 3 43 12feb1900

Now we have a Stata date recording dates between January 1, 1900, and February 28, 1900.

Converting OpenOffice dates
OpenOffice uses the Excel 1900 date system described above.

Converting Unix time
Unix time is stored as the number of seconds since midnight, 01jan1970. To convert to a Stata date-

time, type

. generate double statatime = unixtime * 1000 + mdyhms(1,1,1970,0,0,0)

To convert to a Stata date, type

. generate statadate = dofc(unixtime * 1000 + mdyhms(1,1,1970,0,0,0))

Reference
Gould, W. W. 2011. Using dates and times from other software. The Stata Blog: Not Elsewhere Classified. https://blog.

stata.com/2011/01/05/using-dates-and-times-from-other-software/.

https://blog.stata.com/2011/01/05/using-dates-and-times-from-other-software/
https://blog.stata.com/2011/01/05/using-dates-and-times-from-other-software/
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Also see
[D] Datetime — Date and time values and variables

[D] Datetime business calendars — Business calendars

[D] Datetime conversion — Converting strings to Stata dates

[D] Datetime display formats — Display formats for dates and times

[D] Datetime durations — Obtaining and working with durations

[D] Datetime relative dates — Obtaining dates and date information from other dates



describe — Describe data in memory or in a file

Description Quick start
Menu Syntax
Options to describe data in memory Options to describe data in a file
Remarks and examples Stored results
References Also see

Description
describe produces a summary of the dataset in memory or of the data stored in a Stata-format dataset.

For a compact listing of variable names, use describe, simple.

Quick start
Describe all variables in the dataset

describe

Describe all variables starting with code
describe code*

Describe properties of the dataset

describe, short

Describe without abbreviating variable names

describe, fullnames

Create a dataset containing variable descriptions

describe, replace

Describe contents of mydata.dta without opening the dataset
describe using mydata

Menu
Data > Describe data > Describe data in memory or in a file
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Syntax
Describe data in memory

describe [ varlist ] [ , memory options ]

Describe data in a file

describe [ varlist ] using filename [ , file options ]

memory options Description

simple display only variable names

short display only general information

fullnames do not abbreviate variable names

numbers display variable number along with name

replace make dataset, not written report, of description

clear for use with replace

varlist store r(varlist) and r(sortlist) in addition to usual stored results;
programmer’s option

varlist does not appear in the dialog box.

file options Description

short display only general information

simple display only variable names

varlist store r(varlist) and r(sortlist) in addition to usual stored results;
programmer’s option

varlist does not appear in the dialog box.

collect is allowed; see [U] 11.1.10 Prefix commands.

Options to describe data in memory
simple displays only the variable names in a compact format. simple may not be combined with other

options.

short suppresses the specific information for each variable. Only the general information (number of
observations, number of variables, and sort order) is displayed.

fullnames specifies that describe display the full names of the variables. The default is to present an
abbreviation when the variable name is longer than 15 characters. describe using always shows
the full names of the variables, so fullnames may not be specified with describe using.

numbers specifies that describe present the variable number with the variable name. If numbers is
specified, variable names are abbreviated when the name is longer than eight characters. The numbers
and fullnames options may not be specified together. numbersmay not be specified with describe
using.
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replace and clear are alternatives to the options above. describe usually produces a written report,
and the options above specify what the report is to contain. If you specify replace, however, no
report is produced; the data in memory are instead replaced with data containing the information that

the report would have presented. Each observation of the new data describes a variable in the original

data; see describe, replace below.

clearmay be specified only when replace is specified. clear specifies that the data in memory be
cleared and replaced with the description information, even if the original data have not been saved

to disk.

The following option is available with describe but is not shown in the dialog box:

varlist, an option for programmers, specifies that, in addition to the usual stored results, r(varlist)
and r(sortlist) be stored, too. r(varlist) will contain the names of the variables in the dataset.
r(sortlist) will contain the names of the variables by which the data are sorted.

Options to describe data in a file
short suppresses the specific information for each variable. Only the general information (number of

observations, number of variables, and sort order) is displayed.

simple displays only the variable names in a compact format. simple may not be combined with other
options.

The following option is available with describe but is not shown in the dialog box:

varlist, an option for programmers, specifies that, in addition to the usual stored results, r(varlist)
and r(sortlist) be stored, too. r(varlist) will contain the names of the variables in the dataset.
r(sortlist) will contain the names of the variables by which the data are sorted.

Because Stata/MP and Stata/SE can create truly large datasets, there might be too many variables in

a dataset for their names to be stored in r(varlist), given the current maximum length of macros,

as determined by set maxvar. Should that occur, describe using will issue the error message “too
many variables”, r(103).

Remarks and examples
Remarks are presented under the following headings:

describe
describe, replace

describe
If describe is typed with no operands, the contents of the dataset currently in memory are described.

The varlist in the describe using syntax differs from standard Stata varlists in two ways. First, you

cannot abbreviate variable names; that is, you have to type displacement rather than displ. However,
you can use the abbreviation character (~) to indicate abbreviations, for example, displ~. Second, you
may not refer to a range of variables; specifying price-trunk is considered an error.
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If you are using frames to work with multiple datasets in memory, you can use frames describe to
describe data from one or more frames. However, you might also want to create alias variables, which

is similar to copying variables across frames but is more memory efficient. When the dataset in memory

contains alias variables, describe tries to report the storage type of the linked variable. If an alias

variable’s linkage is broken, then describe will report unknown for the storage type. In either case,

the storage type text will be a clickable link that runs command fralias describe on the associated
variable. For examples of describe output and behavior with alias variables, see [D] fralias.

For alias variables in filename, describe using reports alias for the storage type.

Example 1
The basic description includes some general information on the number of variables and observations,

along with a description of every variable in the dataset:

. use https://www.stata-press.com/data/r19/states
(State data)
. describe, numbers
Contains data from https://www.stata-press.com/data/r19/states.dta
Observations: 50 State data

Variables: 5 3 Jan 2024 15:17
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

1. state str8 %9s
2. region int %8.0g reg Census Region
3. median~e float %9.0g Median Age
4. marria~e long %12.0g Marriages per 100,000
5. divorc~e long %12.0g Divorces per 100,000

Sorted by: region

In this example, the dataset in memory comes from the file states.dta and contains 50 observations on
5 variables. The dataset is labeled “State data” and was last modified on January 3, 2024, at 15:17 (3:17

p.m.). The “ dta has notes” message indicates that a note is attached to the dataset; see [U] 12.7 Notes

attached to data.

The first variable, state, is stored as a str8 and has a display format of %9s.

The next variable, region, is stored as an int and has a display format of %8.0g. This variable has
associated with it a value label called reg, and the variable is labeled Census Region.

The third variable, which is abbreviated median~e, is stored as a float, has a display format of

%9.0g, has no value label, and has a variable label of Median Age. The variables that are abbreviated
marria~e and divorc~e are both stored as longs and have display formats of %12.0g. These last two
variables are labeled Marriages per 100,000 and Divorces per 100,000, respectively.

The data are sorted by region.

Because we specified the numbers option, the variables are numbered; for example, region is vari-
able 2 in this dataset.
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Example 2
To view the full variable names, we could omit the numbers option and specify the fullnames option.

. describe, fullnames
Contains data from https://www.stata-press.com/data/r19/states.dta
Observations: 50 State data

Variables: 5 3 Jan 2024 15:17
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

state str8 %9s
region int %8.0g reg Census Region
median_age float %9.0g Median Age
marriage_rate long %12.0g Marriages per 100,000
divorce_rate long %12.0g Divorces per 100,000

Sorted by: region

Here we did not need to specify the fullnames option to see the unabbreviated variable names because
the longest variable name is 13 characters. Omitting the numbers option results in 15-character variable
names being displayed.

Technical note
The output from describe allows you to compute the size of the dataset. If you are curious, you can

compute it for this dataset as follows:

(8 + 2 + 4 + 4 + 4) × 50 = 1100

The numbers 8, 2, 4, 4, and 4 are the storage requirements for a str8, int, float, long, and long,
respectively; see [U] 12.2.2 Numeric storage types. Fifty is the number of observations in the dataset.

Example 3
If we specify the short option, only general information about the data is presented:

. describe, short
Contains data from https://www.stata-press.com/data/r19/states.dta
Observations: 50 State data

Variables: 5 3 Jan 2024 15:17
Sorted by: region

If we specify varlist, only the variables in that varlist are described.
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Example 4
Let’s change datasets. The describe varlist command is particularly useful when combined with the

‘*’ wildcard character. For instance, we can describe all the variables whose names start with pop by
typing describe pop*:

. use https://www.stata-press.com/data/r19/census
(1980 Census data by state)
. describe pop*
Variable Storage Display Value

name type format label Variable label

pop long %12.0gc Population
poplt5 long %12.0gc Pop, < 5 year
pop5_17 long %12.0gc Pop, 5 to 17 years
pop18p long %12.0gc Pop, 18 and older
pop65p long %12.0gc Pop, 65 and older
popurban long %12.0gc Urban population

We can describe the variables state, region, and pop18p by specifying them:

. describe state region pop18p
Variable Storage Display Value

name type format label Variable label

state str14 %-14s State
region int %-8.0g cenreg Census region
pop18p long %12.0gc Pop, 18 and older

Typing describe using filename describes the data stored in filename. If an extension is not speci-

fied, .dta is assumed.

Example 5
We can describe the contents of states.dta without disturbing the data that we currently have in

memory by typing

. describe using https://www.stata-press.com/data/r19/states
Contains data State data
Observations: 50 3 Jan 2024 15:17

Variables: 5

Variable Storage Display Value
name type format label Variable label

state str8 %9s
region int %8.0g reg Census Region
median_age float %9.0g Median Age
marriage_rate long %12.0g Marriages per 100,000
divorce_rate long %12.0g Divorces per 100,000

Sorted by: region
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describe, replace
describe with the replace option is rarely used, although you may sometimes find it convenient.

Think of describe, replace as separate from but related to describewithout the replace option.
Rather than producing a written report, describe, replace produces a new dataset that contains the

same information a written report would. For instance, try the following:

. sysuse auto, clear

. describe
(report appears; data in memory unchanged)

. list
(visual proof that data are unchanged)

. describe, replace
(no report appears, but the data in memory are changed!)

. list
(visual proof that data are changed)

describe, replace changes the original data in memory into a dataset containing an observation
for each variable in the original data. Each observation in the new data describes a variable in the original

data. The new variables are

1. position, a variable containing the numeric position of the original variable (1, 2, 3, . . .).

2. name, a variable containing the name of the original variable, such as ”make”, ”price”, ”mpg”,
. . . .

3. type, a variable containing the storage type of the original variable, such as ”str18”, ”int”,
”float”, . . . .

4. isnumeric, a variable equal to 1 if the original variable was numeric and equal to 0 if it was
string.

5. format, a variable containing the display format of the original variable, such as ”%-18s”,
”%8.0gc”, . . . .

6. vallab, a variable containing the name of the value label associated with the original variable,
if any.

7. varlab, a variable containing the variable label of the original variable, such as ”Make and
model”, ”Price”, ”Mileage (mpg)”, . . . .

In addition, the data contain the following characteristics:

dta[d filename], the name of the file containing the original data.

dta[d filedate], the date and time the file was written.

dta[d N], the number of observations in the original data.

dta[d sortedby], the variables on which the original data were sorted, if any.
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Stored results
describe stores the following in r():

Scalars

r(N) number of observations

r(k) number of variables

r(width) width of dataset

r(changed) flag indicating data have changed since last saved

Macros

r(datalabel) dataset label

r(varlist) variables in dataset (if varlist specified)
r(sortlist) variables by which data are sorted (if varlist specified)

describe, replace stores nothing in r().

References
Cox, N. J. 2015. Speaking Stata: A set of utilities for managing missing values. Stata Journal 15: 1174–1185.

Dietz, T., and L. Kalof. 2009. Introduction to Social Statistics: The Logic of Statistical Reasoning. Chichester, UK: Wiley.

Also see
[D] ds — Compactly list variables with specified properties

[D] varmanage — Manage variable labels, formats, and other properties

[D] cf — Compare two datasets

[D] codebook — Describe data contents

[D] compare — Compare two variables

[D] compress — Compress data in memory

[D] format — Set variables’ output format

[D] fralias —Alias variables from linked frames

[D] label — Manipulate labels

[D] lookfor — Search for string in variable names and labels

[D] notes — Place notes in data

[D] order — Reorder variables in dataset

[D] rename — Rename variable

[SVY] svydescribe — Describe survey data

[U] 6 Managing memory

https://www.stata-journal.com/article.html?article=dm0085
https://www.stata.com/bookstore/social-statistics-introduction/
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Description Quick start Menu
Syntax Options for destring Options for tostring
Remarks and examples Acknowledgment References
Also see

Description
destring converts variables in varlist from string to numeric. If varlist is not specified, destring

will attempt to convert all variables in the dataset from string to numeric. Characters listed in ignore()
are removed. Variables in varlist that are already numeric will not be changed. destring treats both
empty strings “ ” and “.” as indicating sysmiss (.) and interprets the strings “.a”, “.b”, . . . , “.z” as
the extended missing values .a, .b, . . . , .z; see [U] 12.2.1 Missing values. destring also ignores any
leading or trailing spaces so that, for example, “ ” is equivalent to “ ” and “ . ” is equivalent to “.”.

tostring converts variables in varlist from numeric to string. The most compact string format pos-

sible is used. Variables in varlist that are already string will not be converted.

Quick start
Convert strg1 from string to numeric, and place result in num1

destring strg1, generate(num1)

Same as above, but ignore the % character in strg1
destring strg1, generate(num1) ignore(%)

Same as above, but return . for observations with nonnumeric characters

destring strg1, generate(num1) force

Convert num2 from numeric to string, and place result in strg2
tostring num2, generate(strg2)

Same as above, but format with a leading zero and 3 digits after the decimal

tostring num2, generate(strg2) format(%09.3f)

Menu
destring
Data > Create or change data > Other variable-transformation commands > Convert variables from string to
numeric

tostring
Data > Create or change data > Other variable-transformation commands > Convert variables from numeric to
string
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Syntax
Convert string variables to numeric variables

destring [ varlist ], { generate(newvarlist) | replace } [ destring options ]

Convert numeric variables to string variables

tostring varlist , { generate(newvarlist) | replace } [ tostring options ]

destring options Description

∗ generate(newvarlist) generate newvar1, . . . , newvar𝑘 for each variable in varlist
∗ replace replace string variables in varlist with numeric variables

ignore(”chars” [ , ignoreopts ]) remove specified nonnumeric characters, as characters or as
bytes, and illegal Unicode characters

force convert nonnumeric strings to missing values

float generate numeric variables as type float
percent convert percent variables to fractional form

dpcomma convert variables with commas as decimals to period-decimal
format

∗ Either generate(newvarlist) or replace is required.

tostring options Description

∗ generate(newvarlist) generate newvar1, . . . , newvar𝑘 for each variable in varlist
∗ replace replace numeric variables in varlist with string variables

force force conversion ignoring information loss

format(format) convert using specified format

usedisplayformat convert using display format

∗ Either generate(newvarlist) or replace is required.

Options for destring
Either generate() or replace must be specified. With either option, if any string variable contains

nonnumeric characters not specified with ignore(), then no corresponding variable will be generated,
nor will that variable be replaced (unless force is specified).

generate(newvarlist) specifies that a new variable be created for each variable in varlist. newvarlist

must contain the same number of new variable names as there are variables in varlist. If varlist is

not specified, destring attempts to generate a numeric variable for each variable in the dataset;

newvarlist must then contain the same number of new variable names as there are variables in the

dataset. Any variable labels or characteristics will be copied to the new variables created.

replace specifies that the variables in varlist be converted to numeric variables. If varlist is not spec-

ified, destring attempts to convert all variables from string to numeric. Any variable labels or

characteristics will be retained.
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ignore(”chars” [ , ignoreopts ]) specifies nonnumeric characters be removed. ignoreopts may be

aschars, asbytes, or illegal. The default behavior is to remove characters as characters, which is
the same as specifying aschars. asbytes specifies removal of all bytes included in all characters in
the ignore string, regardless of whether these bytes form complete Unicode characters. illegal spec-
ifies removal of all illegal Unicode characters, which is useful for removing high-ASCII characters.

illegal may not be specified with asbytes. If any string variable still contains any nonnumeric or
illegal Unicode characters after the ignore string has been removed, no action will take place for that

variable unless force is also specified. Note that to Stata the comma is a nonnumeric character; see
also the dpcomma option below.

force specifies that any string values containing nonnumeric characters, in addition to any specified

with ignore(), be treated as indicating missing numeric values.

float specifies that any new numeric variables be created initially as type float. The default is type
double; see [D] Data types. destring attempts automatically to compress each new numeric vari-

able after creation.

percent removes any percent signs found in the values of a variable, and all values of that variable are
divided by 100 to convert the values to fractional form. percent by itself implies that the percent
sign, “ % ”, is an argument to ignore(), but the converse is not true.

dpcomma specifies that variables with commas as decimal values should be converted to have periods as
decimal values.

Options for tostring
Either generate() or replacemust be specified. If converting any numeric variable to string would

result in loss of information, no variable will be produced unless force is specified. For more details,
see force below.

generate(newvarlist) specifies that a new variable be created for each variable in varlist. newvarlist

must contain the same number of new variable names as there are variables in varlist. Any variable

labels or characteristics will be copied to the new variables created.

replace specifies that the variables in varlist be converted to string variables. Any variable labels or

characteristics will be retained.

force specifies that conversions be forced even if they entail loss of information. Loss of information
means one of two circumstances: 1) The result of real(strofreal(varname, ”format”)) is not

equal to varname; that is, the conversion is not reversible without loss of information; 2) replace
was specified, but a variable has associated value labels. In circumstance 1, it is usually best to

specify usedisplayformat or format(). In circumstance 2, value labels will be ignored in a forced
conversion. decode (see [D] encode) is the standard way to generate a string variable based on value
labels.

format(format) specifies that a numeric format be used as an argument to the strofreal() function,
which controls the conversion of the numeric variable to string. For example, a format of %7.2f spec-
ifies that numbers are to be rounded to two decimal places before conversion to string. See Remarks

and examples below and [FN] String functions and [D] format. format() cannot be specified with
usedisplayformat.

usedisplayformat specifies that the current display format be used for each variable. For example,
this option could be useful when using US Social Security numbers or daily or other dates with some

%d or %t format assigned. usedisplayformat cannot be specified with format().
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Remarks and examples
Remarks are presented under the following headings:

destring
tostring
Saved characteristics
Video example

destring

Example 1
We read in a dataset, but somehow all the variables were created as strings. The variables contain no

nonnumeric characters, and we want to convert them all from string to numeric data types.

. use https://www.stata-press.com/data/r19/destring1

. describe
Contains data from https://www.stata-press.com/data/r19/destring1.dta
Observations: 10

Variables: 5 3 Mar 2024 10:15

Variable Storage Display Value
name type format label Variable label

id str3 %9s
num str3 %9s
code str4 %9s
total str5 %9s
income str5 %9s

Sorted by:
. list

id num code total income

1. 111 243 1234 543 23423
2. 111 123 2345 67854 12654
3. 111 234 3456 345 43658
4. 222 345 4567 57 23546
5. 333 456 5678 23 21432

6. 333 567 6789 23465 12987
7. 333 678 7890 65 9823
8. 444 789 8976 23 32980
9. 444 901 7654 23 18565

10. 555 890 6543 423 19234

. destring, replace
id: all characters numeric; replaced as int
num: all characters numeric; replaced as int
code: all characters numeric; replaced as int
total: all characters numeric; replaced as long
income: all characters numeric; replaced as long
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. describe
Contains data from https://www.stata-press.com/data/r19/destring1.dta
Observations: 10

Variables: 5 3 Mar 2024 10:15

Variable Storage Display Value
name type format label Variable label

id int %10.0g
num int %10.0g
code int %10.0g
total long %10.0g
income long %10.0g

Sorted by:
Note: Dataset has changed since last saved.

. list

id num code total income

1. 111 243 1234 543 23423
2. 111 123 2345 67854 12654
3. 111 234 3456 345 43658
4. 222 345 4567 57 23546
5. 333 456 5678 23 21432

6. 333 567 6789 23465 12987
7. 333 678 7890 65 9823
8. 444 789 8976 23 32980
9. 444 901 7654 23 18565

10. 555 890 6543 423 19234

Example 2
Our dataset contains the variables date, price, and percent. These variables were accidentally read

into Stata as string variables because they contain spaces, dollar signs, commas, and percent signs. We

will leave the date variable as a string so that we can use the date() function to convert it to a numeric
date. For price and percent, we want to remove all of the nonnumeric characters and create new

variables containing numeric values. After removing the percent sign, we want to convert the percent
variable to decimal form.
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. use https://www.stata-press.com/data/r19/destring2, clear

. describe
Contains data from https://www.stata-press.com/data/r19/destring2.dta
Observations: 10

Variables: 3 3 Mar 2024 22:50

Variable Storage Display Value
name type format label Variable label

date str14 %10s
price str11 %11s
percent str3 %9s

Sorted by:
. list

date price percent

1. 1999 12 10 $2,343.68 34%
2. 2000 07 08 $7,233.44 86%
3. 1997 03 02 $12,442.89 12%
4. 1999 09 00 $233,325.31 6%
5. 1998 10 04 $1,549.23 76%

6. 2000 03 28 $23,517.03 35%
7. 2000 08 08 $2.43 69%
8. 1997 10 20 $9,382.47 32%
9. 1998 01 16 $289,209.32 45%

10. 1999 11 12 $8,282.49 1%

. destring price percent, generate(price2 percent2) ignore(”$,%”) percent
price: characters $ , removed; price2 generated as double
percent: character % removed; percent2 generated as double
. describe
Contains data from https://www.stata-press.com/data/r19/destring2.dta
Observations: 10

Variables: 5 3 Mar 2024 22:50

Variable Storage Display Value
name type format label Variable label

date str14 %10s
price str11 %11s
price2 double %10.0g
percent str3 %9s
percent2 double %10.0g

Sorted by:
Note: Dataset has changed since last saved.
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. list

date price price2 percent percent2

1. 1999 12 10 $2,343.68 2343.68 34% .34
2. 2000 07 08 $7,233.44 7233.44 86% .86
3. 1997 03 02 $12,442.89 12442.89 12% .12
4. 1999 09 00 $233,325.31 233325.31 6% .06
5. 1998 10 04 $1,549.23 1549.23 76% .76

6. 2000 03 28 $23,517.03 23517.03 35% .35
7. 2000 08 08 $2.43 2.43 69% .69
8. 1997 10 20 $9,382.47 9382.47 32% .32
9. 1998 01 16 $289,209.32 289209.32 45% .45

10. 1999 11 12 $8,282.49 8282.49 1% .01

tostring
Conversion of numeric data to string equivalents can be problematic. Stata, like most software, holds

numeric data to finite precision and in binary form. See the discussion in [U] 13.12 Precision and

problems therein. If no format() is specified, tostring uses the format %12.0g. This format is, in
particular, sufficient to convert integers held as bytes, ints, or longs to string equivalent without loss of

precision.

However, users will often need to specify a format themselves, especially when the numeric data have

fractional parts and for some reason a conversion to string is required.

Example 3
Our dataset contains a string month variable and numeric year and day variables. We want to convert

the three variables to a %td date.

. use https://www.stata-press.com/data/r19/tostring, clear

. list

id month day year

1. 123456789 jan 10 2001
2. 123456710 mar 20 2001
3. 123456711 may 30 2001
4. 123456712 jun 9 2001
5. 123456713 oct 17 2001

6. 123456714 nov 15 2001
7. 123456715 dec 28 2001
8. 123456716 apr 29 2001
9. 123456717 mar 11 2001

10. 123456718 jul 3 2001

. tostring year day, replace
year was float now str4
day was float now str2
. generate date = month + ”/” + day + ”/” + year
. generate edate = date(date, ”MDY”)
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. format edate %td

. list

id month day year date edate

1. 123456789 jan 10 2001 jan/10/2001 10jan2001
2. 123456710 mar 20 2001 mar/20/2001 20mar2001
3. 123456711 may 30 2001 may/30/2001 30may2001
4. 123456712 jun 9 2001 jun/9/2001 09jun2001
5. 123456713 oct 17 2001 oct/17/2001 17oct2001

6. 123456714 nov 15 2001 nov/15/2001 15nov2001
7. 123456715 dec 28 2001 dec/28/2001 28dec2001
8. 123456716 apr 29 2001 apr/29/2001 29apr2001
9. 123456717 mar 11 2001 mar/11/2001 11mar2001

10. 123456718 jul 3 2001 jul/3/2001 03jul2001

Saved characteristics
Each time the destring or tostring commands are issued, an entry is made in the characteristics

list of each converted variable. You can type char list to view these characteristics.

After example 2, we could use char list to find out what characters were removed by the destring
command.

. char list
price2[destring]: Characters removed were: $ ,
price2[destring_cmd]: destring price percent, generate(price2 percent..
percent2[destring]: Character removed was: %
percent2[destring_cmd]: destring price percent, generate(price2 percent..

Video example
How to convert a string variable to a numeric variable
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dir — Display filenames

Description Quick start Syntax Option Remarks and examples
Also see

Description
dir and ls—they work the same way—list the names of files in the specified directory; the names

of the commands come from names popular on Unix and Windows computers.

Quick start
List the names of all files in the current directory using Stata for Windows

dir

Same as above, but for Mac or Unix

ls

List Stata datasets in the current directory using Stata for Windows

dir *.dta

Same as above, but for Mac or Unix

ls *.dta

List dataset name for all .dta files in the C:\ directory using Stata for Windows

dir C:\*.dta

List dataset name for all .dta files in the home directory using Stata for Windows

dir ~\*.dta

Same as above, but for Mac or Unix

ls ~/*.dta

Syntax
{dir | ls} [”][ filespec ][”] [ , wide ]

filespec is any valid Mac, Unix, or Windows file path or file specification (see [U] 11.6 Filenaming

conventions) and may include “*” to indicate any string of characters.

Note: Double quotes must be used to enclose filespec if the name contains spaces.
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Option
wide under Mac and Windows produces an effect similar to specifying /W with the DOS dir com-

mand—it compresses the resulting listing by placing more than one filename on a line. Under Unix,

it produces the same effect as typing ls -F -C. Without the wide option, ls is equivalent to typing
ls -F -l.

Remarks and examples
Mac and Unix: The only difference between the Stata and Unix ls commands is that piping through

the more(1) or pg(1) filter is unnecessary—Stata always pauses when the screen is full.

Windows: Other than minor differences in presentation format, there is only one difference between

the Stata and DOS dir commands: the DOS /P option is unnecessary, because Stata always pauses when
the screen is full.

Example 1
If you use Stata for Windows and wish to obtain a list of all your Stata-format data files, type

. dir *.dta
3.9k 7/07/15 13:51 auto.dta
0.6k 8/04/15 10:40 cancer.dta
3.5k 7/06/08 17:06 census.dta
3.4k 1/25/08 9:20 hsng.dta
0.3k 1/26/08 16:54 kva.dta
0.7k 4/27/11 11:39 sysage.dta
0.5k 5/09/07 2:56 systolic.dta
10.3k 7/13/08 8:37 Household Survey.dta

You could also include the wide option:

. dir *.dta, wide
3.9k auto.dta 0.6k cancer.dta 3.5k census.dta
3.4k hsng.dta 0.3k kva.dta 0.7k sysage.dta
0.5k systolic.dta 10.3k Household Survey.dta

Unix users will find it more natural to type

. ls *.dta
-rw-r----- 1 roger 2868 Mar 4 15:34 highway.dta
-rw-r----- 1 roger 941 Apr 5 09:43 hoyle.dta
-rw-r----- 1 roger 19312 May 14 10:36 p1.dta
-rw-r----- 1 roger 11838 Apr 11 13:26 p2.dta

but they could type dir if they preferred. Mac users may also type either command.

. dir *.dta
-rw-r----- 1 roger 2868 Mar 4 15:34 highway.dta
-rw-r----- 1 roger 941 Apr 5 09:43 hoyle.dta
-rw-r----- 1 roger 19312 May 14 10:36 p1.dta
-rw-r----- 1 roger 11838 Apr 11 13:26 p2.dta



dir — Display filenames 202

Technical note
There is a macro function named dir that allows you to obtain a list of files in a macro for later

processing. See Macro functions for filenames and file paths in [P] macro.

Also see
[D] cd — Change directory

[D] copy — Copy file from disk or URL

[D] erase — Erase a disk file

[D] mkdir — Create directory

[D] rmdir — Remove directory

[D] shell — Temporarily invoke operating system

[D] type — Display contents of a file

[U] 11.6 Filenaming conventions
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Description Quick start Menu Syntax Options
Remarks and examples Methods and formulas References Also see

Description
drawnorm draws a sample from a multivariate normal distribution with desired means and covariance

matrix. The default is orthogonal data with mean 0 and variance 1. The covariance matrix may be

singular. The values generated are a function of the current random-number seed or the number specified

with set seed(); see [R] set seed.

Quick start
Generate independent variables x and y, where x has mean 2 and standard deviation 0.5 and y has mean

3 and standard deviation 1

drawnorm x y, means(2,3) sds(.5,1)

Same as above, but create dataset of 1,000 observations on x and y with means stored in vector m and
standard deviations stored in vector sd

drawnorm x y, means(m) sds(sd) n(1000)

Same as above, and set the seed for the random-number generator to reproduce results

drawnorm x y, means(m) sds(sd) n(1000) seed(81625)

Sample from bivariate standard normal distribution with covariance between x and y of 0.5 stored in

variance–covariance matrix C
matrix C = (1, .5 \ .5, 1)
drawnorm x y, cov(C)

Sample from a trivariate standard normal distribution with correlation between x and y of 0.4, x and z
of 0.3, and y and z of 0.6 stored in correlation matrix C

matrix C = (1, .4, .3 \ .4, 1, .6 \ .3, .6, 1)
drawnorm x y z, corr(C)

Same as above, but avoid typing full matrix by specifying correlations in vector v treated as a lower

triangular matrix

matrix v = (1, .4, 1, .3, .6, 1)
drawnorm x y z, corr(v) cstorage(lower)

Menu
Data > Create or change data > Other variable-creation commands > Draw sample from normal distribution
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Syntax
drawnorm newvarlist [ , options ]

options Description

Main

clear replace the current dataset

double generate variable type as double; default is float
n(#) generate # observations; default is current number

sds(vector) standard deviations of generated variables

corr(matrix | vector) correlation matrix

cov(matrix | vector) covariance matrix

cstorage(full) store correlation/covariance structure as a symmetric 𝑘×𝑘 matrix
cstorage(lower) store correlation/covariance structure as a lower triangular matrix

cstorage(upper) store correlation/covariance structure as an upper triangular matrix

forcepsd force the covariance/correlation matrix to be positive semidefinite

means(vector) means of generated variables; default is means(0)

Options

seed(#) seed for random-number generator

Options

� � �
Main �

clear specifies that the dataset in memory be replaced, even though the current dataset has not been

saved on disk.

double specifies that the new variables be stored as Stata doubles, meaning 8-byte reals. If double is
not specified, variables are stored as floats, meaning 4-byte reals. See [D] Data types.

n(#) specifies the number of observations to be generated. The default is the current number of obser-
vations. If n(#) is not specified or is the same as the current number of observations, drawnorm adds
the new variables to the existing dataset; otherwise, drawnorm replaces the data in memory.

sds(vector) specifies the standard deviations of the generated variables. sds() may not be specified
with cov().

corr(matrix | vector) specifies the correlation matrix. If neither corr() nor cov() is specified, the

default is orthogonal data.

cov(matrix | vector) specifies the covariance matrix. If neither cov() nor corr() is specified, the de-
fault is orthogonal data.

cstorage(full | lower | upper) specifies the storage mode for the correlation or covariance structure
in corr() or cov(). The following storage modes are supported:

full specifies that the correlation or covariance structure is stored (recorded) as a symmetric 𝑘×𝑘
matrix.
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lower specifies that the correlation or covariance structure is recorded as a lower triangular matrix.
With 𝑘 variables, the matrix should have 𝑘(𝑘 + 1)/2 elements in the following order:

C11 C21 C22 C31 C32 C33 . . . C𝑘1 C𝑘2 . . . C𝑘𝑘

upper specifies that the correlation or covariance structure is recorded as an upper triangular matrix.
With 𝑘 variables, the matrix should have 𝑘(𝑘 + 1)/2 elements in the following order:

C11 C12 C13 . . . C1𝑘 C22 C23 . . .C2𝑘 . . . C(𝑘−1𝑘−1) C(𝑘−1𝑘) C𝑘𝑘

Specifying cstorage(full) is optional if the matrix is square. cstorage(lower) or

cstorage(upper) is required for the vectorized storage methods. See Example 2: Storage modes
for correlation and covariance matrices.

forcepsdmodifies the matrix C to be positive semidefinite (psd), and so be a proper covariance matrix.

If C is not positive semidefinite, it will have negative eigenvalues. By setting negative eigenvalues

to 0 and reconstructing, we obtain the least-squares positive-semidefinite approximation to C. This

approximation is a singular covariance matrix.

means(vector) specifies the means of the generated variables. The default is means(0).

� � �
Options �

seed(#) specifies the initial value of the random-number seed used by the runiform() function. The
default is the current random-number seed. Specifying seed(#) is the same as typing set seed #

before issuing the drawnorm command.

Remarks and examples

Example 1
Suppose that we want to draw a sample of 1,000 observations from a normal distribution 𝑁(M,V),

whereM is the mean matrix and V is the covariance matrix:

. matrix M = 5, -6, 0.5

. matrix V = (9, 5, 2 \ 5 , 4 , 1 \ 2, 1, 1)

. matrix list M
M[1,3]

c1 c2 c3
r1 5 -6 .5
. matrix list V
symmetric V[3,3]

c1 c2 c3
r1 9
r2 5 4
r3 2 1 1
. drawnorm x y z, n(1000) cov(V) means(M)
(obs 1,000)
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. summarize
Variable Obs Mean Std. dev. Min Max

x 1,000 5.0424 3.061953 -5.065592 15.96129
y 1,000 -5.914462 2.012488 -12.25234 .3326397
z 1,000 .5181909 1.017397 -2.59316 3.884182

. correlate, cov
(obs=1,000)

x y z

x 9.37556
y 5.14201 4.05011
z 2.17972 1.07222 1.0351

Technical note
The values generated by drawnorm are a function of the current random-number seed. To reproduce

the same dataset each time drawnorm is run with the same setup, specify the same seed number in the
seed() option.

Example 2: Storage modes for correlation and covariance matrices
The three storage modes for specifying the correlation or covariance matrix in corr2data and

drawnorm can be illustrated with a correlation structure, C, of 4 variables. In full storage mode, this
structure can be entered as a 4 × 4 Stata matrix:

. matrix C = ( 1.0000, 0.3232, 0.1112, 0.0066 \ ///
0.3232, 1.0000, 0.6608, -0.1572 \ ///
0.1112, 0.6608, 1.0000, -0.1480 \ ///
0.0066, -0.1572, -0.1480, 1.0000 )

Elements within a row are separated by commas, and rows are separated by a backslash, \. We use

the input continuation operator /// for convenient multiline input; see [P] comments. In this storage

mode, we probably want to set the row and column names to the variable names:

. matrix rownames C = price trunk headroom rep78

. matrix colnames C = price trunk headroom rep78

This correlation structure can be entered more conveniently in one of the two vectorized storage

modes. In these modes, we enter the lower triangle or the upper triangle of C in rowwise order; these two
storage modes differ only in the order in which the 𝑘(𝑘 + 1)/2 matrix elements are recorded. The lower
storage mode for C comprises a vector with 4(4 + 1)/2 = 10 elements, that is, a 1 × 10 or 10 × 1 Stata

matrix, with one row or column,

. matrix C = ( 1.0000, ///
0.3232, 1.0000, ///
0.1112, 0.6608, 1.0000, ///
0.0066, -0.1572, -0.1480, 1.0000)

or more compactly as

. matrix C = ( 1, 0.3232, 1, 0.1112, 0.6608, 1, 0.0066, -0.1572, -0.1480, 1 )
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C may also be entered in upper storage mode as a vector with 4(4 + 1)/2 = 10 elements, that is, a

1 × 10 or 10 × 1 Stata matrix,

. matrix C = ( 1.0000, 0.3232, 0.1112, 0.0066, ///
1.0000, 0.6608, -0.1572, ///

1.0000, -0.1480, ///
1.0000 )

or more compactly as

. matrix C = ( 1, 0.3232, 0.1112, 0.0066, 1, 0.6608, -0.1572, 1, -0.1480, 1 )

Methods and formulas
Results are asymptotic. The more observations generated, the closer the correlation matrix of the

dataset is to the desired correlation structure.

Let V = A′A be the desired covariance matrix andM be the desired mean matrix. We first generate

X, such that X ∼ 𝑁(0, I). Let Y = A′X + M, then Y ∼ 𝑁(M,V).
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https://www.stata-journal.com/article.html?article=st0382
https://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-without-replacement/
https://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-without-replacement/
https://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawing-with-replacement/
https://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawing-with-replacement/
https://blog.stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/
https://blog.stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/
https://www.stata-journal.com/article.html?article=st0371
https://blog.stata.com/2015/10/22/probit-model-with-sample-selection-by-mlexp/
https://blog.stata.com/2015/10/22/probit-model-with-sample-selection-by-mlexp/
https://blog.stata.com/2015/11/05/using-mlexp-to-estimate-endogenous-treatment-effects-in-a-probit-model/
https://blog.stata.com/2015/11/05/using-mlexp-to-estimate-endogenous-treatment-effects-in-a-probit-model/
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Description Quick start Menu Syntax
Remarks and examples Stored results Also see

Description
drop eliminates variables or observations from the data in memory.

keep works the same way as drop, except that you specify the variables or observations to be kept
rather than the variables or observations to be deleted.

Warning: drop and keep are not reversible. Once you have eliminated observations, you cannot read
them back in again. You would need to go back to the original dataset and read it in again. Instead of

applying drop or keep for a subset analysis, consider using if or in to select subsets temporarily. This
is usually the best strategy. Alternatively, applying preserve followed in due course by restore may
be a good approach. You can also use frame put to place a subset of variables or observations from the

current dataset into another frame; see [D] frame put.

Quick start
Remove v1, v2, and v3 from memory

drop v1 v2 v3

Remove all variables whose name begins with code from memory

drop code*

Remove observations where v1 is equal to 99
drop if v1==99

Also drop observations where v1 equals 88 or v2 is missing
drop if inlist(v1,88,99) | missing(v2)

Keep observations where v3 is not missing
keep if !missing(v3)

Keep the first observation from each cluster identified by cvar
by cvar: keep if _n==1

Menu
Drop or keep variables
Data > Variables Manager

Drop or keep observations
Data > Create or change data > Drop or keep observations
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Syntax
Drop variables

drop varlist

Drop observations

drop if exp

Drop a range of observations

drop in range [ if exp ]

Keep variables

keep varlist

Keep observations that satisfy specified condition

keep if exp

Keep a range of observations

keep in range [ if exp ]

by and collect are allowedwith the second syntax of drop and the second syntax of keep; see [U] 11.1.10 Prefix commands.

Remarks and examples
You can clear the entire dataset by typing drop all without affecting value labels, macros, and

programs. (Also see [U] 12.6 Dataset, variable, and value labels, [U] 18.3 Macros, and [P] program.)
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Example 1
We will systematically eliminate data until, at the end, no data are left in memory. We begin by

describing the data:

. use https://www.stata-press.com/data/r19/census11
(1980 Census data by state)
. describe
Contains data from https://www.stata-press.com/data/r19/census11.dta
Observations: 50 1980 Census data by state

Variables: 15 2 Dec 2024 14:31

Variable Storage Display Value
name type format label Variable label

state str13 %-13s State
state2 str2 %-2s Two-letter state abbreviation
region byte %-8.0g cenreg Census region
pop long %12.0gc Population
poplt5 long %12.0gc Pop, < 5 year
pop5_17 long %12.0gc Pop, 5 to 17 years
pop18p long %12.0gc Pop, 18 and older
pop65p long %12.0gc Pop, 65 and older
popurban long %12.0gc Urban population
medage float %9.2f Median age
death long %12.0gc Number of deaths
marriage long %12.0gc Number of marriages
divorce long %12.0gc Number of divorces
mrgrate float %9.0g Marriage rate
dvcrate float %9.0g Divorce rate

Sorted by: region

We can eliminate all the variables with names that begin with pop by typing drop pop*:
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. drop pop*

. describe
Contains data from https://www.stata-press.com/data/r19/census11.dta
Observations: 50 1980 Census data by state

Variables: 9 2 Dec 2024 14:31

Variable Storage Display Value
name type format label Variable label

state str13 %-13s State
state2 str2 %-2s Two-letter state abbreviation
region byte %-8.0g cenreg Census region
medage float %9.2f Median age
death long %12.0gc Number of deaths
marriage long %12.0gc Number of marriages
divorce long %12.0gc Number of divorces
mrgrate float %9.0g Marriage rate
dvcrate float %9.0g Divorce rate

Sorted by: region
Note: Dataset has changed since last saved.

Let’s eliminate more variables and then eliminate observations:

. drop marriage divorce mrgrate dvcrate

. describe
Contains data from https://www.stata-press.com/data/r19/census11.dta
Observations: 50 1980 Census data by state

Variables: 5 2 Dec 2024 14:31

Variable Storage Display Value
name type format label Variable label

state str13 %-13s State
state2 str2 %-2s Two-letter state abbreviation
region byte %-8.0g cenreg Census region
medage float %9.2f Median age
death long %12.0gc Number of deaths

Sorted by: region
Note: Dataset has changed since last saved.

Next we will drop any observation for which medage is greater than 32.

. drop if medage > 32
(3 observations deleted)

Let’s drop the first observation in each region:

. by region: drop if _n==1
(4 observations deleted)

Now we drop all but the last observation in each region:

. by region: drop if _n!=_N
(39 observations deleted)

Let’s now drop the first 2 observations in our dataset:

. drop in 1/2
(2 observations deleted)
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Finally, let’s get rid of everything:

. drop _all

. describe
Contains data
Observations: 0

Variables: 0
Sorted by:

Typing keep in 10/l is the same as typing drop in 1/9.

Typing keep if x==3 is the same as typing drop if x !=3.

keep is especially useful for keeping a few variables from a large dataset. Typing keep myvar1
myvar2 is the same as typing drop followed by all the variables in the dataset except myvar1 and myvar2.

Technical note
In addition to dropping variables and observations, drop all removes any business calendars; see

[D] Datetime business calendars.

Stored results
drop and keep store the following in r():

Scalars

r(N drop) number of observations dropped

r(k drop) number of variables dropped

Also see
[D] clear — Clear memory

[D] frame put — Copy selected variables or observations to a new frame

[D] varmanage — Manage variable labels, formats, and other properties

[U] 11 Language syntax

[U] 13 Functions and expressions
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Acknowledgments Also see

Description
ds lists variable names of the dataset currently in memory in a compact or detailed format, and lets

you specify subsets of variables to be listed, either by name or by properties (for example, the variables

are numeric). In addition, ds leaves behind in r(varlist) the names of variables selected so that you
can use them in a subsequent command.

ds, typed without arguments, lists all variable names of the dataset currently in memory in a compact
form.

Quick start
List variables in alphabetical order

ds, alpha

List all string variables

ds, has(type string)

List all numeric variables

ds, has(type numeric)

Same as above, but exclude date-formatted variables

ds, not(format %td* type string)

List all variables whose label includes the phrase “my text” regardless of case

ds, has(varlabel ”*my text*”) insensitive

Menu
Data > Describe data > Compactly list variable names
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Syntax
Simple syntax

ds [ , alpha ]

Advanced syntax

ds [ varlist ] [ , options ]

options Description

Main

not list variables not specified in varlist

alpha list variables in alphabetical order

detail display additional details

varwidth(#) display width for variable names; default is varwidth(12)
skip(#) gap between variables; default is skip(2)

Advanced

has(spec) describe subset that matches spec

not(spec) describe subset that does not match spec

insensitive perform case-insensitive pattern matching

indent(#) indent output; seldom used

collect is allowed; see [U] 11.1.10 Prefix commands.

insensitive and indent(#) are not shown in the dialog box.

spec Description

type typelist specified types

format patternlist display format matching patternlist

varlabel [ patternlist ] variable label or variable label matching patternlist

char [ patternlist ] characteristic or characteristic matching patternlist

vallabel [ patternlist ] value label or value label matching patternlist

linkname namelist link name matching namelist
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typelist used in has(type typelist) and not(type typelist) is a list of one or more types, each of which
may be alias, unknown, numeric, string, str#, strL, byte, int, long, float, or double or

may be a numlist such as 1/8 to mean “str1 str2 . . . str8”. Examples include

has(type alias) was created by fralias add; see [D] fralias
has(type unknown) is type alias, but the link is broken

has(type int) is of type int
has(type byte int long) is of integer type
not(type int) is not of type int
not(type byte int long) is not of the integer types
has(type numeric) is a numeric variable

not(type string) is not a string (str# or strL) variable (same as above)
has(type 1/40) is str1, str2, . . . , str40
has(type str#) is str1, str2, . . . , str2045 but not strL
has(type strL) is of type strL but not str#
has(type numeric 1/2) is numeric or str1 or str2

patternlist used in, for instance, has(format patternlist), is a list of one or more patterns. A pattern is

the expected text with the addition of the characters * and ?. * indicates 0 or more characters go here,
and ? indicates exactly 1 character goes here. Examples include

has(format *f) format is %#.#f
has(format %t*) has time or date format

has(format %-*s) is a left-justified string

has(varl *weight*) variable label includes word weight
has(varl *weight* *Weight*) variable label has weight or Weight

To match a phrase, enclose the phrase in quotes.

has(varl ”*some phrase*”) variable label has some phrase

If instead you used has(varl *some phrase*), then only variables having labels ending in some or

starting with phrase would be listed.

namelist used in, for instance, has(linkname namelist) is a list of one or more names. linkname refers
to the linkage variables used to create alias variables; see [D] fralias. Abbreviations in namelist are

not supported.

Options

� � �
Main �

not specifies that the variables in varlist not be listed. For instance, ds pop*, not specifies that all

variables not starting with the letters pop be listed. The default is to list all the variables in the dataset
or, if varlist is specified, the variables specified.

alpha specifies that the variables be listed in alphabetical order. If the variable contains Unicode char-
acters other than plain ASCII, the sort order is determined strictly by the underlying byte order. See

[U] 12.4.2.5 Sorting strings containing Unicode characters.

detail specifies that detailed output identical to that of describe be produced. If detail is specified,
varwidth(), skip(), and indent() are ignored.
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varwidth(#) specifies the display width of the variable names; the default is varwidth(12).

skip(#) specifies the number of spaces between variable names, where all variable names are assumed
to be the length of the longest variable name; the default is skip(2).

� � �
Advanced �

has(spec) and not(spec) select from the dataset (or from varlist) the subset of variables that meet or

fail the specification spec. Selection may be made on the basis of storage type, variable label, value

label, display format, or characteristics. Only one not, has(), or not() option may be specified.

has(type string) selects all string variables. Typing ds, has(type string) would list all string
variables in the dataset, and typing ds pop*, has(type string)would list all string variables whose
names begin with the letters pop.

has(format patternlist) specifies variables whose format matches any of the patterns in patternlist.
has(format *f) would select all variables with formats ending in f, which presumably would be all
%#.#f, %0#.#f, and %-#.#f formats. has(format *f *fc) would select all variables with formats
ending in f or fc. not(format %t* %-t*) would select all variables except those with date or time-
series formats.

has(varlabel) selects variables with defined variable labels. has(varlabel *weight*) selects
variables with variable labels including theword “weight”. not(varlabel)would select all variables
with no variable labels.

has(char) selects all variables with defined characteristics. has(char problem) selects all vari-
ables with a characteristic named problem.

has(vallabel) selects variables with defined value labels. has(vallabel yesno) selects variables
whose value label is yesno. has(vallabel *no) selects variables whose value label ends in the

letters no.

has(linkname) selects variables to create alias variables; see [D] fralias.

The following options are available with ds but are not shown in the dialog box:

insensitive specifies that the matching of the pattern in has() and not() be case insensitive. Note
that the case insensitivity applies only to ASCII characters.

indent(#) specifies the amount the lines are indented.

Remarks and examples
If ds is typed without any operands, then a compact list of the variable names for the data currently

in memory is displayed.

Example 1
ds can be especially useful if you have a dataset with over 1,000 variables, but you may find it con-

venient even if you have considerably fewer variables.
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. use https://www.stata-press.com/data/r19/educ3
(ccdb46, 52-54)
. ds
fips popcol medhhinc tlf emp clfbls z
crimes perhspls medfinc clf empmanuf clfuebls adjinc
pcrimes perclpls state clffem emptrade famnw perman
crimrate prcolhs division clfue empserv fam2w pertrade
pop25pls medage region empgovt osigind famwsamp perserv
pophspls perwhite dc empself osigindp pop18pls perother

Example 2
You might wonder why you would ever specify varlist with this command. Remember that varlist

understands the ‘*’ abbreviation character and the ‘-’ dash notation; see [U] 11.4 varname and varlists.

. ds p*
pcrimes pophspls perhspls prcolhs pop18pls pertrade perother
pop25pls popcol perclpls perwhite perman perserv
. ds popcol-clfue
popcol perclpls medage medhhinc state region tlf clffem
perhspls prcolhs perwhite medfinc division dc clf clfue

Example 3
Because the primary use of ds is to inspect the names of variables, it is sometimes useful to let ds

display the variable names in alphabetical order.

. ds, alpha
adjinc crimes empmanuf famwsamp osigindp perserv pophspls
clf crimrate empself fips pcrimes pertrade prcolhs
clfbls dc empserv medage perclpls perwhite region
clffem division emptrade medfinc perhspls pop18pls state
clfue emp fam2w medhhinc perman pop25pls tlf
clfuebls empgovt famnw osigind perother popcol z

Stored results
ds stores the following in r():

Macros

r(varlist) the varlist of found variables

Acknowledgments
ds was originally written by StataCorp. It was redesigned and rewritten by Nicholas J. Cox of the

Department of Geography at Durham University, UK, who is coeditor of the Stata Journal and author

of Speaking Stata Graphics. The purpose was to include the selection options not, has(), and not();
to produce better-formatted output; and to be faster. Cox thanks Richard Goldstein, William Gould,

Kenneth Higbee, Jay Kaufman, Jean Marie Linhart, and Fred Wolfe for their helpful suggestions on

previous versions.

https://www.stata-journal.com/
https://www.stata-press.com/books/speaking-stata-graphics/


ds — Compactly list variables with specified properties 218

Also see
[D] cf — Compare two datasets

[D] codebook — Describe data contents

[D] compare — Compare two variables

[D] compress — Compress data in memory

[D] describe — Describe data in memory or in a file

[D] format — Set variables’ output format

[D] fralias —Alias variables from linked frames

[D] label — Manipulate labels

[D] lookfor — Search for string in variable names and labels

[D] notes — Place notes in data

[D] order — Reorder variables in dataset

[D] rename — Rename variable
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Acknowledgments References Also see

Description
duplicates reports, displays, lists, tags, or drops duplicate observations, depending on the subcom-

mand specified. Duplicates are observations with identical values either on all variables if no varlist is

specified or on a specified varlist.

duplicates report produces a table showing observations that occur as one or more copies and

indicating how many observations are “surplus” in the sense that they are the second (third, . . .) copy of

the first of each group of duplicates.

duplicates examples lists one example for each group of duplicated observations. Each example
represents the first occurrence of each group in the dataset.

duplicates list lists all duplicated observations.

duplicates tag generates a variable representing the number of duplicates for each observation.

This will be 0 for all unique observations.

duplicates drop drops all but the first occurrence of each group of duplicated observations. The
word drop may not be abbreviated.

Any observations that do not satisfy specified if and/or in conditions are ignored when you use

report, examples, list, or drop. The variable created by tag will have missing values for such

observations.

Quick start
Report the total number of observations and the number of duplicates

duplicates report

Same as above, but only check for duplicates jointly by v1, v2, and v3
duplicates report v1 v2 v3

Generate newv equal to the number of duplicate observations or 0 for unique observations
duplicates tag, generate(newv)

List all duplicate observations

duplicates list

Same as above, but determine duplicates by v1, v2, and v3 and separate list by values of v1
duplicates list v1 v2 v3, sepby(v1)

Drop duplicate observations

duplicates drop

Force dropping observations with duplicates for v1, v2, and v3 if observations are unique by other vari-
ables

duplicates drop v1 v2 v3, force
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Menu
duplicates report, duplicates examples, and duplicates list

Data > Data utilities > Report and list duplicated observations

duplicates tag
Data > Data utilities > Tag duplicated observations

duplicates drop
Data > Data utilities > Drop duplicated observations

Syntax
Report duplicates

duplicates report [ varlist ] [ if ] [ in ]

List one example for each group of duplicates

duplicates examples [ varlist ] [ if ] [ in ] [ , options ]

List all duplicates

duplicates list [ varlist ] [ if ] [ in ] [ , options ]

Tag duplicates

duplicates tag [ varlist ] [ if ] [ in ] , generate(newvar)

Drop duplicates

duplicates drop [ if ] [ in ]

duplicates drop varlist [ if ] [ in ] , force
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options Description

Main

compress compress width of columns in both table and display formats

nocompress use display format of each variable

fast synonym for nocompress; no delay in output of large datasets
abbreviate(#) abbreviate variable names to # characters; default is ab(8)
string(#) truncate string variables to # characters; default is string(10)

Options

table force table format

display force display format

header display variable header once; default is table mode

noheader suppress variable header

header(#) display variable header every # lines

clean force table format with no divider or separator lines

divider draw divider lines between columns

separator(#) draw a separator line every # lines; default is separator(5)
sepby(varlist) draw a separator line whenever varlist values change

nolabel display numeric codes rather than label values

Summary

mean[(varlist)] add line reporting the mean for each of the (specified) variables

sum[(varlist)] add line reporting the sum for each of the (specified) variables

N[(varlist)] add line reporting the number of nonmissing values for each of the
(specified) variables

labvar(varname) substitute Mean, Sum, or N for value of varname in last row of table

Advanced

constant[(varlist)] separate and list variables that are constant only once

notrim suppress string trimming

absolute display overall observation numbers when using by varlist:
nodotz display numerical values equal to .z as field of blanks
subvarname substitute characteristic for variable name in header

linesize(#) columns per line; default is linesize(79)

collect is allowed with all duplicates commands; see [U] 11.1.10 Prefix commands.

Options
Options are presented under the following headings:

Options for duplicates examples and duplicates list
Option for duplicates tag
Option for duplicates drop

Options for duplicates examples and duplicates list

� � �
Main �

compress, nocompress, fast, abbreviate(#), string(#); see [D] list.
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� � �
Options �

table, display, header, noheader, header(#), clean, divider, separator(#),
sepby(varlist), nolabel; see [D] list.

� � �
Summary �

mean[(varlist)], sum[(varlist)], N[(varlist)], labvar(varname); see [D] list.

� � �
Advanced �

constant[(varlist)], notrim, absolute, nodotz, subvarname, linesize(#); see [D] list.

Option for duplicates tag
generate(newvar) is required and specifies the name of a new variable that will tag duplicates.

Option for duplicates drop
force specifies that observations duplicated with respect to a named varlist be dropped. The force

option is required when such a varlist is given as a reminder that information may be lost by dropping

observations, given that those observations may differ on any variable not included in varlist.

Remarks and examples
Current data management and analysis may hinge on detecting (and sometimes dropping) duplicate

observations. In Stata terms, duplicates are observations with identical values, either on all variables if

no varlist is specified or on a specified varlist; that is, 2 or more observations that are identical on all

specified variables form a group of duplicates. When the specified variables are a set of explanatory

variables, such a group is often called a covariate pattern or a covariate class.

Linguistic purists will point out that duplicate observations are strictly only those that occur in pairs,

and they might prefer a more literal term, although the most obvious replacement, “replicates”, already

has another statistical meaning. However, the looser term appears in practice to be much more frequently

used for this purpose and to be as easy to understand.

Observations may occur as duplicates through some error; for example, the same observations might

have been entered more than once into your dataset. In contrast, some researchers deliberately enter a

dataset twice. Each entry is a check on the other, and all observations should occur as identical pairs,

assuming that one or more variables identify unique records. If there is just one copy, or more than two

copies, there has been an error in data entry.

Or duplicate observationsmay also arise simply because some observations just happen to be identical,

which is especially likely with categorical variables or large datasets. In this second situation, consider

whether contract, which automatically produces a count of each distinct set of observations, is more
appropriate for your problem. See [D] contract.

Observations unique on all variables in varlist occur as single copies. Thus there are no surplus ob-

servations in the sense that no observation may be dropped without losing information about the contents

of observations. (Information will inevitably be lost on the frequency of such observations. Again, if

recording frequency is important to you, contract is the better command to use.) Observations that are
duplicated twice or more occur as copies, and in each case, all but one copy may be considered surplus.
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This command helps you produce a dataset, usually smaller than the original, in which each observa-

tion is unique (literally, each occurs only once) and distinct (each differs from all the others). If you are

familiar with Unix systems, or with sets of Unix utilities ported to other platforms, you will know the

uniq command, which removes duplicate adjacent lines from a file, usually as part of a pipe.

Example 1
Suppose that we are given a dataset in which some observations are unique (no other observation is

identical on all variables) and other observations are duplicates (in each case, at least 1 other observation

exists that is identical). Imagine dropping all but 1 observation from each group of duplicates, that is,

dropping the surplus observations. Now all the observations are unique. This example helps clarify the

difference between 1) identifying unique observations before dropping surplus copies and 2) identifying

unique observations after dropping surplus copies (whether in truth or merely in imagination). codebook
(see [D] codebook) reports the number of unique values for each variable in this second sense.

Suppose that we have typed in a dataset for 200 individuals. However, a simple describe or count
shows that we have 202 observations in our dataset. We guess that we may have typed in 2 observations

twice. duplicates report gives a quick report of the occurrence of duplicates:

. use https://www.stata-press.com/data/r19/dupxmpl

. duplicates report
Duplicates in terms of all variables

Copies Observations Surplus

1 198 0
2 4 2

Our hypothesis is supported: 198 observations are unique (just 1 copy of each), whereas 4 occur

as duplicates (2 copies of each; in each case, 1 may be dubbed surplus). We now wish to see which

observations are duplicates, so the next step is to ask for a duplicates list.

. duplicates list
Duplicates in terms of all variables

Group Obs id x y

1 42 42 0 2
1 43 42 0 2
2 145 144 4 4
2 146 144 4 4
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The records for id 42 and id 144 were evidently entered twice. Satisfied, we now issue duplicates
drop.

. duplicates drop
Duplicates in terms of all variables
(2 observations deleted)

The report, list, and drop subcommands of duplicates are perhaps the most useful, especially
for a relatively small dataset. For a larger dataset with many duplicates, a full listing may be too long to

be manageable, especially as you see repetitions of the same data. duplicates examples gives you a
more compact listing in which each group of duplicates is represented by just 1 observation, the first to

occur.

A subcommand that is occasionally useful is duplicates tag, which generates a new variable con-

taining the number of duplicates for each observation. Thus unique observations are tagged with value

0, and all duplicate observations are tagged with values greater than 0. For checking double data entry,

in which you expect just one surplus copy for each individual record, you can generate a tag variable and

then look at observations with tag not equal to 1 because both unique observations and groups with two

or more surplus copies need inspection.

. duplicates tag, gen(tag)
Duplicates in terms of all variables

As of Stata 11, the browse subcommand is no longer available. To open duplicates in the Data

Browser, use the following commands:

. duplicates tag, generate(newvar)

. browse if newvar > 0

See [D] edit for details on the browse command.

Video example
How to identify and remove duplicate observations

Stored results
duplicates report, duplicates examples, duplicates list, duplicates tag, and

duplicates drop store the following in r():

Scalars

r(N) number of observations

duplicates report also stores the following in r():

Scalars

r(unique value) number of unique observations

duplicates drop also stores the following in r():

Scalars

r(N drop) number of observations dropped

https://www.youtube.com/watch?v=433GzdIwZN8
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dyngen — Dynamically generate new values of variables

Description Menu Syntax Option Remarks and examples Also see

Description
dyngen replaces the value of variables when two or more variables depend on each other’s lagged

values. Use dyngen when the values for the whole set of variables must be computed for an observation
before moving to the next observation.

Menu
Data > Create or change data > Dynamically generate new values

Syntax
dyngen {

update varname1 = exp [ if ] [ , missval(#) ]

⋮

update varname𝑁 = exp [ if ] [ , missval(#) ]

} [ if ] [ in ]
varname𝑛, 𝑛 = 1, . . . , 𝑁, must already exist in the dataset and cannot be an alias variable; see [D] frunalias.

exp must be a valid expression and may include time-series operators; see [U] 11.4.4 Time-series varlists.

Option
missval(#) specifies the value to use in place of missing values when performing calculations. This

option is particularly useful when referring to lags that exist prior to the data.

Remarks and examples
Like replace, dyngen modifies the contents of existing variables. However, dyngen works obser-

vation by observation. If you are doing a computation only on a single variable that relies only on its own

lagged values or those of other variables, you do not need dyngen because generate and replacework
their way through the data sequentially. Use dyngen when you need to modify two or more variables at
the same time.
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The examples in this entry use the following data:

. input time x1 x2
time x1 x2

1. 1 3 1
2. 2 4 4
3. 3 5 2
4. 4 5 1
5. 5 2 1
6. end

Example 1: Using dyngen
We want to update our values of x1 and x2 such that x1 depends on its current value and the previous

value of x2, and x2 depends on previous values of x1 and x2. We will be using these same values of x1
and x2 in subsequent examples, so we do not want to overwrite their values. We create a copy of each in

the variables d1 and d2, where the d prefix is used to remind us that these variables contain dynamically
updated values.

. generate d1=x1

. generate d2=x2

Because we are using previous values, we need to specify a value for dyngen to substitute in place of
missings; in this case, we use the means.

. summarize d1 d2
Variable Obs Mean Std. dev. Min Max

d1 5 3.8 1.30384 2 5
d2 5 1.8 1.30384 1 4

Within the dyngen command, we specify an update statement for d1 and d2. We also use observation

subscripts to indicate the previous values as needed; see [U] 13.7 Explicit subscripting. With time-series

data, we could also use time-series operators; see example 3 for an illustration.

. dyngen {

. update d1 = .4*d1 + .1*d2[_n-1], missval(3.8)

. update d2 = .2*d1[_n-1] + .3*d2[_n-1], missval(1.8)

. }

. list x1 x2 d*

x1 x2 d1 d2

1. 3 1 3.8 1.8
2. 4 4 1.78 1.3
3. 5 2 2.13 .746
4. 5 1 2.0746 .6498
5. 2 1 .86498 .60986

In observation 1, dyngen has substituted 3.8 for d1 and 1.8 for d2, values that would otherwise be
missing because there are no data preceding the first observation. In observation 2, the updated value of

d1 is 0.4 × 4 + 0.1 × 1.8 = 1.78 and that of d2 is 0.2 × 3.8 + 0.3 × 1.8 = 1.3, and so on.
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Example 2: Distinction between dyngen and replace
We can compare the results from example 1 with those from replace to see how dyngen operates

differently.

As in example 1, we create two new variables, r1 and r2, that will hold values we update using

replace. There is no automatic way to handle missing values with replace, so we need to set the first
values to the means “by hand” to avoid missing values later. We then have a replace command for each
variable, restricted to observations 2 through 5.

. generate r1=x1

. generate r2=x2

. replace r1 = 3.8 in 1
(1 real change made)
. replace r2 = 1.8 in 1
(1 real change made)
. replace r1 = .4*r1 + .1*r2[_n-1] in 2/5
(4 real changes made)
. replace r2 = .2*r1[_n-1] + .3*r2[_n-1] in 2/5
(4 real changes made)

Now, we can compare the results side by side.

. list x* d* r*

x1 x2 d1 d2 r1 r2

1. 3 1 3.8 1.8 3.8 1.8
2. 4 4 1.78 1.3 1.78 1.3
3. 5 2 2.13 .746 2.4 .746
4. 5 1 2.0746 .6498 2.2 .7038
5. 2 1 .86498 .60986 .9 .65114

For the first two observations, the inputs are exactly the same, so there is no difference in the outcome.

We see differences starting in the third row.

At the time that replace is updating the value of r1 in observation 3, it is making the calculation

0.4 × 5 + 0.1 × 4 = 2.4

because the value of r2 is still 4, the original value of x2. Compare this with the results of dyngen,
which uses

0.4 × 5 + 0.1 × 1.3 = 2.13

That is, the key distinction is dyngen has fully updated observation 2 before moving on to observation 3.
replace will make a full pass through r1 before moving on to r2.
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Example 3: Processing if conditions
Each update statement within the dyngen command can take an if condition. To illustrate, we

replace d1 and d2 with the original values of x1 and x2 and update them again, this time restricting the

updated observations to just those observations where time ≥ 3.

. replace d1=x1
(5 real changes made)
. replace d2=x2
(5 real changes made)

Here, we tsset the data and use the lag operator instead of subscripting observations, but that is not
required.

. tsset time
Time variable: time, 1 to 5

Delta: 1 unit
. dyngen {
. update d1 = .4*d1 + .1*L.d2 if time>=3
. update d2 = .2*L.d1 + .3*L.d2 if time>=3
. }
. list x* d*

x1 x2 d1 d2

1. 3 1 3 1
2. 4 4 4 4
3. 5 2 2.4 2
4. 5 1 2.2 1.08
5. 2 1 .908 .764

When the same if condition is specified on all update statements, the results are equivalent to specifying
one if condition on the entire dyngen block. We used the same if statement on both update statements
above, so typing the following produces the same results as the code above.

dyngen {
update d1 = .4*d1 + .1*L.d2
update d2 = .2*L.d1 + .3*L.d2

} if time>=3

You may also specify an in qualifier with the dyngen command. If you specify an if or in qualifier,
dyngen loops over the observations that meet the if condition or in range but will reference values

outside that range if needed.

Also see
[D] frunalias — Change storage type of alias variables

[D] generate — Create or change contents of variable

[U] 12 Data

[U] 13 Functions and expressions



edit — Browse or edit data with Data Editor

Description Quick start Menu Syntax
Option Remarks and examples Also see

Description
edit brings up a spreadsheet-style data editor for entering new data and editing existing data. edit

is a better alternative to input; see [D] input.

browse is similar to edit, except that modifications to the data by editing in the grid are not permitted.
browse is a convenient alternative to list; see [D] list.

See [GS] 6 Using the Data Editor (GSM, GSU, or GSW) for a tutorial discussion of the Data Editor.

This entry provides the technical details.

Quick start
Open dataset in the Data Editor for entering new data or editing existing data

edit

Same as above, but include only v1, v2, and v3
edit v1 v2 v3

Same as above, but only for observations where v3 is missing
edit v1 v2 v3 if v3 >= .

Open dataset in the Data Editor with no ability to edit data

browse

Same as above, but include only v1, v2, and v3 and suppress value labels
browse v1 v2 v3, nolabel

Menu
edit
Data > Data Editor > Data Editor (Edit)

browse
Data > Data Editor > Data Editor (Browse)
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Syntax
Edit using Data Editor

edit [ varlist ] [ if ] [ in ] [ , nolabel ]

Browse using Data Editor

browse [ varlist ] [ if ] [ in ] [ , nolabel ]

Option
nolabel causes the underlying numeric values, rather than the label values (equivalent strings), to be

displayed for variables with value labels; see [D] label.

Remarks and examples
Remarks are presented under the following headings:

Modes
The current observation and current variable
Assigning value labels to variables
Changing values of existing cells
Adding new variables
Adding new observations
Copying and pasting
Logging changes
Advice

Clicking on Stata’s Data Editor (Edit) button is equivalent to typing edit by itself. Clicking on

Stata’s Data Editor (Browse) button is equivalent to typing browse by itself.

edit, typed by itself, opens the Data Editor with all observations on all variables displayed. If you
specify varlist, only the specified variables are displayed in the Editor. If you specify one or both of in
range and if exp, only the observations specified are displayed.

Modes
We will refer to the Data Editor in the singular with edit and browse referring to two of its three

modes.

Full-edit mode. This is the Editor’s mode that you enter when you type edit or type edit followed by
a list of variables. All features of the Editor are turned on.

Filtered mode. This is the Editor’s mode that you enter when you use edit with or without a list of

variables but include in range, if exp, or both, or if you filter the data from within the Editor. A few

of the Editor’s features are turned off, most notably, the ability to sort data and the ability to paste data

into the Editor.

Browse mode. This is the Editor’s mode that you enter when you use browse or when you change the
Editor’s mode to Browse after you start the Editor. The ability to type in the Editor, thereby changing

data, is turned off, ensuring that the data cannot accidentally be changed. One feature that is left on

may surprise you: the ability to sort data. Sorting, in Stata’s mind, is not really a change to the dataset.

On the other hand, if you enter using browse and specify in range or if exp, sorting is not allowed.

You can think of this as restricted-browse mode.
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Actually, the Editor does not set its mode to filtered just because you specify an in range or if exp.

It sets its mode to filtered if you specify in or if and if this restriction is effective, that is, if the in
or if would actually cause some data to be omitted. For instance, typing edit if x>0 would result in
unrestricted full-edit mode if x were greater than zero for all observations.

The current observation and current variable
The Data Editor looks much like a spreadsheet, with rows and columns corresponding to observations

and variables, respectively. At all times, one of the cells is highlighted. This is called the current cell.

The observation (row) of the current cell is called the current observation. The variable (column) of the

current cell is called the current variable.

You change the current cell by clicking with the mouse on another cell or by using the arrow keys.

To help distinguish between the different types of variables in the Editor, string values are displayed

in red, value labels are displayed in blue, and all other values are displayed in black. You can change

the colors for strings and value labels by right-clicking on the Data Editor window and selecting Prefer-

ences....

Assigning value labels to variables
You can assign a value label to a nonstring variable by right-clicking any cell on the variable column,

choosing the Data > Value Labels menu, and selecting a value label from the Attach Value Label to

Variable ‘varname’ menu. You can define a value label by right-clicking on the Data Editor window

and selecting Data > Value Labels > Manage Value Labels.... You can also accomplish these tasks by

using the Properties pane; see [GS] 6 Using the Data Editor (GSM, GSU, or GSW) for details.

Changing values of existing cells
Make the cell youwish to change the current cell. Type the new value, and press Enter. When updating

string variables, do not type double quotes around the string. For variables that have a value label, you

can right-click on the cell to display a list of values for the value label. You can assign a new value to

the cell by selecting a value from the list.

Technical note
Stata experts will wonder about storage types. Say that variable mpg is stored as an int and you want

to change the fourth observation to contain 22.5. The Data Editor will change the storage type of the

variable. Similarly, if the variable is a str4 and you type alpha, it will be changed to str5.

The Editor will not, however, change numeric variable types to strings (unless the numeric variable

contains only missing values). This is intentional, as such a change could result in a loss of data and is

probably the result of a mistake.

Technical note
Stata can store long strings in the strL storage type. Although the strL type can hold very long

strings, these strings may only be edited if they are 2045 characters or less. Similarly, strLs that hold
binary data may not be edited. For more information on storage types, see [D] Data types.
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Adding new variables
Go to the first empty column, and begin entering your data. The first entry that you make will create

the variable and determine whether that variable is numeric or string. The variable will be given a name

like var1, but you can rename it by using the Properties pane.

Technical note
Stata experts: The storage type will be determined automatically. If you type a number, the created

variable will be numeric; if you type a string, it will be a string. Thus if you want a string variable, be sure

that your first entry cannot be interpreted as a number. Away to achieve this is to use surrounding quotes

so that ”123” will be taken as the string ”123”, not the number 123. If you want a numeric variable, do
not worry about whether it is byte, int, float, etc. If a byte will hold your first number but you need
a float to hold your second number, the Editor will recast the variable later.

Technical note
If you do not type in the first empty column but instead type in one to the right of it, the Editor will

create variables for all the intervening columns.

Adding new observations
Go to the first empty row, and begin entering your data. As soon as you add one cell below the last

row of the dataset, an observation will be created.

Technical note
If you do not enter data in the first empty row but, instead, enter data in a row below it, the Data Editor

will create observations for all the intervening rows.

Copying and pasting
You can copy and paste data between Stata’s Data Editor and other applications.

First, select the data you wish to copy. In Stata, click on a cell and drag the mouse across other cells

to select a range of cells. If you want to select an entire column, click once on the variable name at the

top of that column. If you want to select an entire row, click once on the observation number at the left

of that row. You can hold down the mouse button after clicking and drag to select multiple columns or

rows.

Once you have selected the data, copy the data to the Clipboard. In Stata, right-click on the selected

data, and select Copy.

You can copy data to the Clipboard from Stata with or without the variable names at the top of each

column by right-clicking on the Data Editor window, selecting Preferences..., and checking or uncheck-

ing Include variable names on copy to Clipboard.
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You can choose to copy either the value labels or the underlying numeric values associated with

the selected data by right-clicking on the Data Editor window, selecting Preferences..., and checking

or unchecking Copy value labels instead of numbers. For more information about value labels, see

[U] 12.6.3 Value labels and [D] label.

After you have copied data to the Clipboard from Stata’s Data Editor or another spreadsheet, you

can paste the data into Stata’s Data Editor. First, select the top-left cell of the area into which you wish

to paste the data by clicking on it once. Then right-click on the cell and select Paste. Stata will paste

the data from the Clipboard into the Editor, overwriting any data below and to the right of the cell you

selected as the top left of the paste area. If the Data Editor is in filtered mode or in browse mode, Paste

will be disabled, meaning that you cannot paste into the Data Editor. You can have more control over

how data are pasted by selecting Paste Special....

Technical note
If you attempt to paste one or more string values into numeric variables, the original numeric values

will be left unchanged for those cells. Stata will display a message box to let you know that this has

happened: “You attempted to paste one or more string values into numeric variables. The contents of

these cells, if any, are unchanged.”

If you see this message, you should look carefully at the data that you pasted into Stata’s Data Editor

to make sure that you pasted into the area that you intended. We recommend that you take a snapshot of

your data before pasting into Stata’s Data Editor so that you can restore the data from the snapshot if you

make a mistake. See [GS] 6 Using the Data Editor (GSM, GSU, or GSW) to read about snapshots.

Logging changes
When you use edit to enter new data or change existing data, you will find output in the Stata Results

window documenting the changes that you made. For example, a line of this output might be

. replace mpg = 22.5 in 5

The Editor submits a command to Stata for everything you do in it except pasting. If you are logging

your results, you will have a permanent record of what you did in the Editor.

Advice
• People who care about data integrity know that editors are dangerous—it is too easy to make changes

accidentally. Never use edit when you want to browse.

• Protect yourself when you edit existing data by limiting exposure. If you need to change mpg and

need to see model to know which value of mpg to change, do not click on the Data Editor button.
Instead, type edit model mpg. It is now impossible for you to change (damage) variables other than

model and mpg. Furthermore, if you know that you need to change mpg only if it is missing, you can
reduce your exposure even more by typing ‘edit model mpg if mpg>=.’.

• Stata’s Data Editor is safer than most because it logs changes to the Results window. Use this fea-

ture—look at the log afterward, and verify that the changes you made are the changes you wanted to

make.
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Also see
[D] import — Overview of importing data into Stata

[D] input — Enter data from keyboard

[D] list — List values of variables

[D] save — Save Stata dataset

[GSM] 6 Using the Data Editor

[GSW] 6 Using the Data Editor

[GSU] 6 Using the Data Editor
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Description Quick start Menu Syntax
Remarks and examples Acknowledgments References Also see

Description
egen creates a new variable of the optionally specified storage type equal to the given function based

on arguments of that function. The functions are specifically written for egen, as documented below or

as written by users.

Quick start
Generate newv1 for distinct groups of v1 and v2, and create and apply value label mylabel

egen newv1 = group(v1 v2), label(mylabel)

Generate newv2 equal to the minimum of v1, v2, and v3 for each observation
egen newv2 = rowmin(v1 v2 v3)

Generate newv3 equal to the overall sum of v1
egen newv3 = total(v1)

Same as above, but calculate total within each level of catvar
egen newv3 = total(v1), by(catvar)

Generate newv4 equal to the number of nonmissing numeric values across v1, v2, and v3 for each ob-
servation

egen newv4 = rownonmiss(v1 v2 v3)

Same as above, but allow string values

egen newv4 = rownonmiss(v1 v2 v3), strok

Generate newv5 as the concatenation of numeric v1 and string v4 separated by a space
egen newv5 = concat(v1 v4), punct(” ”)

Menu
Data > Create or change data > Create new variable (extended)

236
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Syntax
egen [ type ] newvar = fcn(arguments) [ if ] [ in ] [ , options ]

by is allowed with some of the egen functions, as noted below.

Depending on fcn, arguments refers to an expression, varlist, or numlist, and the options are also fcn

dependent. fcn and its dependencies are listed below.

anycount(varlist), values(integer numlist)
may not be combined with by. It returns the number of variables in varlist for which values are

equal to any integer value in a supplied numlist. Values for any observations excluded by either

if or in are set to 0 (not missing). Also see anyvalue(varname) and anymatch(varlist).

anymatch(varlist), values(integer numlist)
may not be combined with by. It is 1 if any variable in varlist is equal to any integer value in a

supplied numlist and 0 otherwise. Values for any observations excluded by either if or in are set
to 0 (not missing). Also see anyvalue(varname) and anycount(varlist).

anyvalue(varname) , values(integer numlist)
may not be combined with by. It takes the value of varname if varname is equal to any in-

teger value in a supplied numlist and is missing otherwise. Also see anymatch(varlist) and

anycount(varlist).

concat(varlist) [ , format(% fmt) decode maxlength(#) punct(pchars) ]
may not be combined with by. It concatenates varlist to produce a string variable. Values of string
variables are unchanged. Values of numeric variables are converted to string, as is, or are converted

using a numeric format under the format(%fmt) option or decoded under the decode option, in
which case maxlength()may also be used to control the maximum label length used. By default,

variables are added end to end: punct(pchars) may be used to specify punctuation, such as a

space, punct(” ”), or a comma, punct(,).

count(exp) (allows by varlist:)
creates a constant (within varlist) containing the number of nonmissing observations of exp. Also

see rownonmiss() and rowmiss().

cut(varname), { at(numlist) | group(#) } [ icodes label ]
may not be combined with by. Either at() or group() must be specified. When at() is speci-
fied, it creates a new categorical variable coded with the left-hand ends of the grouping intervals

specified in the at() option. When group() is specified, groups of roughly equal frequencies are
created.

at(numlist) with numlist in ascending order supplies the breaks for the groups. newvar is set

to missing for observations with varname less than the first number specified in at() and for

observations with varname greater than or equal to the last number specified in at().

group(#) specifies the number of equal-frequency grouping intervals when breaks are not speci-
fied. Specifying this option automatically invokes icodes.

icodes requests that the codes 0, 1, 2, etc., be used in place of the left-hand ends of the intervals.

label requests that the integer-coded values of the grouped variable be labeled with the left-hand
ends of the grouping intervals. Specifying this option automatically invokes icodes.

diff(varlist)
may not be combined with by. It creates an indicator variable equal to 1 if the variables in varlist
are not equal and 0 otherwise.
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ends(strvar) [ , punct(pchars) trim [ head | last | tail ] ]
may not be combined with by. It gives the first “word” or head (with the head option), the last
“word” (with the last option), or the remainder or tail (with the tail option) from string variable

strvar.

head, last, and tail are determined by the occurrence of pchars, which is by default one space
(“ ”).

The head is whatever precedes the first occurrence of pchars, or the whole of the string if it does not

occur. For example, the head of “frog toad” is “frog” and that of “frog” is “frog”. With punct(,),
the head of “frog,toad” is “frog”.

The last word is whatever follows the last occurrence of pchars or is the whole of the string if a

space does not occur. The last word of “frog toad newt” is “newt” and that of “frog” is “frog”.

With punct(,), the last word of “frog,toad” is “toad”.

The remainder or tail is whatever follows the first occurrence of pchars, which will be the empty

string ”” if pchars does not occur. The tail of “frog toad newt” is “toad newt” and that of “frog”
is ””. With punct(,), the tail of “frog,toad” is “toad”.

The trim option trims any leading or trailing spaces.

fill(numlist)
may not be combined with by. It creates a variable of ascending or descending numbers or complex
repeating patterns. numlist must contain at least two numbers and may be specified using standard

numlist notation; see [U] 11.1.8 numlist. if and in are not allowed with fill().

group(varlist) [ , missing autotype label[(lblname[ , replace truncate(#) ]) ] ]
may not be combined with by. It creates one variable taking on values 1, 2, . . . for the groups
formed by varlist. varlist may contain numeric variables, string variables, or a combination of the

two. The order of the groups is that of the sort order of varlist.

missing indicates that missing values in varlist (either . or ””) are to be treated like any other
value when assigning groups. By default, any observation with a missing value is assigned to the

group with newvar equal to missing (.).

autotype specifies that newvar be the smallest type possible to hold the integers generated. The
resulting type will be byte, int, long, or double.

label or label(lblname) creates a value label for newvar. The integers in newvar are la-

beled with the values of varlist or their value labels, if they exist. label(lblname) specifies

lblname as the name of the value label. If label alone is specified, the name of the value label
is newvar. label(..., replace) allows an existing value label to be redefined. label(...,
truncate(#)) truncates the values contributed to the label from each variable in varlist to the

length specified by the integer argument #.

iqr(exp)[ , autotype ] (allows by varlist:)
creates a constant (within varlist) containing the interquartile range of exp. autotype specifies
that newvar be the smallest type possible to hold the result. The resulting type will be byte, int,
long, or double. Also see pctile().

kurt(exp) (allows by varlist:)
returns the kurtosis (within varlist) of exp.

mad(exp) (allows by varlist:)
returns the median absolute deviation from the median (within varlist) of exp.
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max(exp) [ , missing ] (allows by varlist:)
creates a constant (within varlist) containing the maximum value of exp. missing indicates that
missing values be treated like other values.

mdev(exp) (allows by varlist:)
returns the mean absolute deviation from the mean (within varlist) of exp.

mean(exp) (allows by varlist:)
creates a constant (within varlist) containing the mean of exp.

median(exp)[ , autotype ] (allows by varlist:)
creates a constant (within varlist) containing the median of exp. autotype specifies that newvar
be the smallest type possible to hold the result. The resulting type will be byte, int, long, or
double. Also see pctile().

min(exp) [ , missing ] (allows by varlist:)
creates a constant (within varlist) containing the minimum value of exp. missing indicates that
missing values be treated like other values.

mode(varname) [ , minmode maxmode nummode(integer) missing ] (allows by varlist:)
produces the mode (within varlist) for varname, which may be numeric or string. The mode is

the value occurring most frequently. If two or more modes exist or if varname contains all miss-

ing values, the mode produced will be a missing value. To avoid this, the minmode, maxmode,
or nummode() option may be used to specify choices for selecting among the multiple modes.

minmode returns the lowest value, and maxmode returns the highest value. nummode(#) returns
the #th mode, counting from the lowest up. missing indicates that missing values be treated like
other values.

pc(exp) [ , prop ] (allows by varlist:)
returns exp (within varlist) scaled to be a percentage of the total, between 0 and 100. The prop
option returns exp scaled to be a proportion of the total, between 0 and 1.

pctile(exp)[ , p(#) autotype ] (allows by varlist:)
creates a constant (within varlist) containing the #th percentile of exp. If p(#) is not specified, 50
is assumed, meaning medians. autotype specifies that newvar be the smallest type possible to
hold the result. The resulting type will be byte, int, long, or double. Also see median().

rank(exp) [ , field | track | unique ] (allows by varlist:)
creates ranks (within varlist) of exp; by default, equal observations are assigned the average rank.

The field option calculates the field rank of exp: the highest value is ranked 1, and there is no
correction for ties. That is, the field rank is 1 + the number of values that are higher. The track
option calculates the track rank of exp: the lowest value is ranked 1, and there is no correction for

ties. That is, the track rank is 1+ the number of values that are lower. The unique option calculates
the unique rank of exp: values are ranked 1, . . . , #, and values and ties are broken arbitrarily. Two

values that are tied for second are ranked 2 and 3.

rowfirst(varlist)
may not be combined with by. It gives the first nonmissing value in varlist for each observation

(row). If all values in varlist are missing for an observation, newvar is set to missing for that

observation.

rowlast(varlist)
may not be combined with by. It gives the last nonmissing value in varlist for each observation

(row). If all values in varlist are missing for an observation, newvar is set to missing for that

observation.
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rowmax(varlist)
may not be combined with by. It gives the maximum value (ignoring missing values) in varlist

for each observation (row). If all values in varlist are missing for an observation, newvar is set to

missing for that observation.

rowmean(varlist)
may not be combined with by. It creates the (row) means of the variables in varlist, ignoring

missing values. For example, if three variables are specified and, in some observations, one of the

variables is missing, in those observations newvar will contain the mean of the two variables that

do exist. Other observations will contain the mean of all three variables. If all values in varlist are

missing for an observation, newvar is set to missing for that observation.

rowmedian(varlist)
may not be combined with by. It gives the (row) median of the variables in varlist, ignoring

missing values. If all values in varlist are missing for an observation, newvar is set to missing for

that observation. Also see rowpctile().

rowmin(varlist)
may not be combined with by. It gives the minimum value in varlist for each observation (row).

If all values in varlist are missing for an observation, newvar is set to missing for that observation.

rowmiss(varlist)
may not be combined with by. It gives the number of missing values in varlist for each observation
(row).

rownonmiss(varlist)[ , strok ]
may not be combined with by. It gives the number of nonmissing values in varlist for each obser-
vation (row).

String variables may not be specified unless the strok option is also specified. When strok is
specified, varlist may contain a mixture of string and numeric variables.

rowpctile(varlist) [ , p(#) ]
may not be combinedwith by. It gives the #th percentile of the variables in varlist, ignoringmissing
values. If p() is not specified, p(50) is assumed, meaning medians. If all values in varlist are

missing for an observation, newvar is set to missing for that observation. Also see rowmedian().

rowsd(varlist)
may not be combined with by. It creates the (row) standard deviations of the variables in varlist,
ignoring missing values. If all values in varlist are missing for an observation, newvar is set to

missing for that observation.

rowtotal(varlist) [ , missing ]
may not be combined with by. It creates the (row) sum of the variables in varlist, treating missing

values as 0. If missing is specified and all values in varlist are missing for an observation, newvar
is set to missing for that observation.

sd(exp) (allows by varlist:)
creates a constant (within varlist) containing the standard deviation of exp. Also see mean().

seq() [ , from(#) to(#) block(#) ] (allows by varlist:)
returns integer sequences. Values start from from() (default 1) and increase to to() (the default
is the maximum number of values) in blocks (default size 1). If to() is less than the maximum
number, sequences restart at from(). Numbering may also be separate within groups defined by
varlist or decreasing if to() is less than from(). Sequences depend on the sort order of observa-
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tions, following three rules: 1) observations excluded by if or in are not counted; 2) observations
are sorted by varlist, if specified; and 3) otherwise, the order is that when called. No arguments

are specified.

skew(exp) (allows by varlist:)
returns the skewness (within varlist) of exp.

std(exp) [ , mean(#) sd(#) ] (allows by varlist:)
creates the standardized values (within varlist) of exp. The options specify the desired mean and

standard deviation. The default is mean(0) and sd(1), producing a variable with mean 0 and
standard deviation 1 (within each group defined by varlist).

tag(varlist) [ , missing ]
may not be combined with by. It tags just one observation in each distinct group defined by varlist.
When all observations in a group have the same value for a summary variable calculated for the

group, it will be sufficient to use just one value for many purposes. The result will be 1 if the

observation is tagged and never missing, and 0 otherwise. Values for any observations excluded

by either if or in are set to 0 (not missing). Hence, if tag is the variable produced by egen tag
= tag(varlist), the idiom if tag is always safe. missing specifies that missing values of varlist
may be included.

total(exp) [ , missing ] (allows by varlist:)
creates a constant (within varlist) containing the sum of exp treating missing as 0. If missing is
specified and all values in exp are missing, newvar is set to missing. Also see mean().

Remarks and examples
Remarks are presented under the following headings:

Summary statistics
Missing values
Generating patterns
Marking differences among variables
Ranks
Standardized variables
Row functions
Categorical and integer variables
String variables

See Mitchell (2020) for numerous examples using egen.

Summary statistics
The functions count(), iqr(), kurt(), mad(), max(), mdev(), mean(), median(), min(),

mode(), pc(), pctile(), sd(), skew(), and total() create variables containing summary statistics.
These functions take a by ...: prefix and, if specified, calculate the summary statistics within each

by-group.
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Example 1: Without the by prefix
Without the by prefix, the result produced by these functions is a constant for every observation in

the data. For instance, we have data on cholesterol levels (chol) and wish to have a variable that, for
each patient, records the deviation from the average across all patients:

. use https://www.stata-press.com/data/r19/egenxmpl

. egen avg = mean(chol)

. generate deviation = chol - avg

Example 2: With the by prefix
These functions are most useful when the by prefix is specified. For instance, assume that our dataset

includes dcode, a hospital–patient diagnostic code, and los, the number of days that the patient remained
in the hospital. We wish to obtain the deviation in length of stay from the median for all patients having

the same diagnostic code:

. use https://www.stata-press.com/data/r19/egenxmpl2, clear

. by dcode, sort: egen medstay = median(los)

. generate deltalos = los - medstay

Example 3: sum() function and egen total()
Distinguish carefully between Stata’s sum() function and egen’s total() function. Stata’s sum()

function creates the running sum, whereas egen’s total() function creates a constant equal to the overall
sum, for example,

. clear

. set obs 5
Number of observations (_N) was 0, now 5.
. generate a = _n
. generate sum1 = sum(a)
. egen sum2 = total(a)
. list

a sum1 sum2

1. 1 1 15
2. 2 3 15
3. 3 6 15
4. 4 10 15
5. 5 15 15

Definitions of egen summary functions

The definitions and formulas used by egen summary functions are the same as those used by

summarize; see [R] summarize. For comparison with summarize, mean() and sd() correspond to the
mean and standard deviation. total() is the numerator of the mean, and count() is its denominator.



egen — Extensions to generate 243

min() and max() correspond to the minimum and maximum. median()—or, equally well, pctile()
with p(50)—is the median. pctile() with p(5) refers to the 5th percentile, and so on. iqr() is the
difference between the 75th and 25th percentiles.

The mode is the most common value of a dataset, whether it contains numeric or string variables.

It is perhaps most useful for categorical variables (whether defined by integers or strings) or for other

integer-valued values, but mode() can be applied to variables of any type. Nevertheless, the modes of
continuous (or nearly continuous) variables are perhaps better estimated either from inspection of a graph

of a frequency distribution or from the results of some density estimation (see [R] kdensity).

Missing values need special attention. egen newvar = mode(varname) calculates the mode of all

nonmissing observations, and the variable newvar containing the mode is filled in for all observations,

even those for which varname is missing (except for observations excluded using an if or in statement).
This allows use of mode() as a simple way to impute categorical variables.

Missing values are by default excluded from the determination of modes (whether missing is defined

by the period [.] or extended missing values [.a, .b, . . . , .z] for numeric variables or the empty string
[””] for string variables). However, missing may be the most common value in a variable, and you want
mode() to report this value as the mode. To include missing values as possible values for the mode, use
the missing option. See Missing values below for more on missing values.

mad() and mdev() produce alternative measures of spread. The median absolute deviation from the

median and even the mean deviation will both be more resistant than the standard deviation to heavy

tails or outliers, in particular from distributions with heavier tails than the normal or Gaussian. The first

measure was named the MAD by Andrews et al. (1972) but was already known to K. F. Gauss in 1816,

according to Hampel et al. (1986). For more historical and statistical details, see David (1998) and

Wilcox (2003, 72–73).

Missing values
Missing values in the argument to egen functions (typically, varname, an expression, or varlist) are

generally handled in one of three ways. Functions that calculate a single statistic for varname or an

expression (for example, mean() and total()) fill in the result for all observations, including those for
which varname or the expression is missing.

Functions that calculate results that potentially differ observation by observation (for example,

group() and rank()) generally generate missing values for the result for observations where varname
or the expression is missing.

Functions that take varlist (for example, rowmean()) generally generate a missing value for the result
only when every variable in varlist is missing for that observation.
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Example 4: How missing values are handled
Here’s an example of how mean() handles missing values.

. use https://www.stata-press.com/data/r19/egenxmpl1, clear

. egen y = mean(x)

. list x y

x y

1. 0 3
2. 5 3
3. 2 3
4. 5 3
5. 3 3

6. . 3
7. .a 3

The result y is filled in for all observations, including the 6th and 7th observations where x is missing.
If you do not want this behavior, you can explicitly exclude missing values using an if statement.

. egen z = mean(x) if !missing(x)
(2 missing values generated)
. list x z

x z

1. 0 3
2. 5 3
3. 2 3
4. 5 3
5. 3 3

6. . .
7. .a .

Other functions, such as group(), by default exclude missing values. If you want to treat missing
values just like other values and let them be part of the enumerated groups as well, use the missing
option.

. egen g1 = group(x)
(2 missing values generated)
. egen g2 = group(x), missing
. list x g1 g2

x g1 g2

1. 0 1 1
2. 5 4 4
3. 2 2 2
4. 5 4 4
5. 3 3 3

6. . . 5
7. .a . 6
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With the missing option, the missing values “.” and “.a” are placed in two distinct groups, the 5th and
6th groups, in the result g2.

Here’s an example of how rowmean() and rowtotal() handle missing values.

. egen m = rowmean(x1 x2 x3 x4)
(1 missing value generated)
. egen t1 = rowtotal(x1 x2 x3 x4)
. egen t2 = rowtotal(x1 x2 x3 x4), missing
(1 missing value generated)
. list x1 x2 x3 x4 m t1 t2

x1 x2 x3 x4 m t1 t2

1. 2 6 4 8 5 20 20
2. 9 . 0 3 4 12 12
3. . .a .b 2 2 2 2
4. . .a 3 6 4.5 9 9
5. 4 5 5 2 4 16 16

6. 7 8 4 5 6 24 24
7. .b .a . . . 0 .

rowmean() uses all the nonmissing values to calculate themean of a row, ignoring anymissing values.
In the first row, all four variables are nonmissing, so the result is the mean of these four values. In the

second row, three variables are nonmissing, and the result is the mean of these three values. In the third

row, only one variable is nonmissing, and the result is simply the mean of this one value, that is, the value

itself.

rowtotal() is similar to rowmean(), except that by default the total is 0 when all four variables are
missing. See the 7th observation in this example. The result t1 is 0 in this case. If you want rowtotal()
to behave like rowmean(), use the missing option. The result t2 is produced with this option, and you
can see it is missing for the 7th observation, just like the rowmean() result.

Several egen functions have a missing option. See Syntax for the description of what missing does
with each function that has this option—or better yet create a simple example, and run the function with

and without the missing option.

Generating patterns
To create a sequence of numbers, simply “show” the fill() function how the sequence should look.

It must be a linear progression to produce the expected results. Stata does not understand geometric

progressions. To produce repeating patterns, you present fill() with the pattern twice in the numlist.

Example 5: Sequences produced by fill( )
Here are some examples of ascending and descending sequences produced by fill():

. clear

. set obs 12
Number of observations (_N) was 0, now 12.
. egen i = fill(1 2)
. egen w = fill(100 99)
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. egen x = fill(22 17)

. egen y = fill(1 1 2 2)

. egen z = fill(8 8 8 7 7 7)

. list, sep(4)

i w x y z

1. 1 100 22 1 8
2. 2 99 17 1 8
3. 3 98 12 2 8
4. 4 97 7 2 7

5. 5 96 2 3 7
6. 6 95 -3 3 7
7. 7 94 -8 4 6
8. 8 93 -13 4 6

9. 9 92 -18 5 6
10. 10 91 -23 5 5
11. 11 90 -28 6 5
12. 12 89 -33 6 5

Example 6: Patterns produced by fill( )
Here are examples of patterns produced by fill():

. clear

. set obs 12
Number of observations (_N) was 0, now 12.
. egen a = fill(0 0 1 0 0 1)
. egen b = fill(1 3 8 1 3 8)
. egen c = fill(-3(3)6 -3(3)6)
. egen d = fill(10 20 to 50 10 20 to 50)
. list, sep(4)

a b c d

1. 0 1 -3 10
2. 0 3 0 20
3. 1 8 3 30
4. 0 1 6 40

5. 0 3 -3 50
6. 1 8 0 10
7. 0 1 3 20
8. 0 3 6 30

9. 1 8 -3 40
10. 0 1 0 50
11. 0 3 3 10
12. 1 8 6 20
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Example 7: seq( )
seq() creates a new variable containing one or more sequences of integers. It is useful mainly for

quickly creating observation identifiers or automatically numbering levels of factors or categorical vari-

ables.

. clear

. set obs 12

In the simplest case,

. egen a = seq()

is just equivalent to the common idiom

. generate a = _n

a may also be obtained from

. range a 1 _N

(the actual value of N may also be used).

In more complicated cases, seq() with option calls is equivalent to calls to the versatile functions
int and mod.

. egen b = seq(), b(2)

produces integers in blocks of 2, whereas

. egen c = seq(), t(6)

restarts the sequence after 6 is reached.

. egen d = seq(), f(10) t(12)

shows that sequences may start with integers other than 1, and

. egen e = seq(), f(3) t(1)

shows that they may decrease.

The results of these commands are shown by

. list, sep(4)

a b c d e

1. 1 1 1 10 3
2. 2 1 2 11 2
3. 3 2 3 12 1
4. 4 2 4 10 3

5. 5 3 5 11 2
6. 6 3 6 12 1
7. 7 4 1 10 3
8. 8 4 2 11 2

9. 9 5 3 12 1
10. 10 5 4 10 3
11. 11 6 5 11 2
12. 12 6 6 12 1
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All of these sequences could have been generated in one line with generate and with the use of the
int and mod functions. The variables b through e are obtained with

. gen b = 1 + int((_n - 1)/2)

. gen c = 1 + mod(_n - 1, 6)

. gen d = 10 + mod(_n - 1, 3)

. gen e = 3 - mod(_n - 1, 3)

Nevertheless, seq()may save users from puzzling out such solutions or from typing in the needed values.

In general, the sequences produced depend on the sort order of observations, following three rules:

1. observations excluded by if or in are not counted;

2. observations are sorted by varlist, if specified; and

3. otherwise, the order is that specified when seq() is called.

The fill() and seq() functions are alternatives. In essence, fill() requires a minimal example
that indicates the kind of sequence required, whereas seq() requires that the rule be specified through
options. There are sequences that fill() can produce that seq() cannot, and vice versa. fill() cannot
be combined with if or in, in contrast to seq(), which can.

Marking differences among variables

Example 8: diff( )
We have three measures of respondents’ income obtained from different sources. We wish to create

the variable differ equal to 1 for disagreements:
. use https://www.stata-press.com/data/r19/egenxmpl3, clear
. egen byte differ = diff(inc*)
. list if differ==1

inc1 inc2 inc3 id differ

10. 42,491 41,491 41,491 110 1
11. 26,075 25,075 25,075 111 1
12. 26,283 25,283 25,283 112 1
78. 41,780 41,780 41,880 178 1
100. 25,687 26,687 25,687 200 1

101. 25,359 26,359 25,359 201 1
102. 25,969 26,969 25,969 202 1
103. 25,339 26,339 25,339 203 1
104. 25,296 26,296 25,296 204 1
105. 41,800 41,000 41,000 205 1

134. 26,233 26,233 26,133 234 1

Rather than typing diff(inc*), we could have typed diff(inc1 inc2 inc3).
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Ranks

Example 9: rank( )
Most applications of rank() will be to one variable, but the argument exp can be more general,

namely, an expression. In particular, rank(-varname) reverses ranks from those obtained by rank(var-
name).

The default ranking and those obtained by using one of the track, field, and unique options differ
principally in their treatment of ties. The default is to assign the same rank to tied values such that the

sum of the ranks is preserved. The track option assigns the same rank but resembles the convention in
track events; thus, if one person had the lowest time and three persons tied for second-lowest time, their

ranks would be 1, 2, 2, and 2, and the next person(s) would have rank 5. The field option acts similarly
except that the highest is assigned rank 1, as in field events in which the greatest distance or height wins.

The unique option breaks ties arbitrarily: its most obvious use is assigning ranks for a graph of ordered
values. See also group() for another kind of “ranking”.

. use https://www.stata-press.com/data/r19/auto, clear
(1978 automobile data)
. keep in 1/10
(64 observations deleted)
. egen rank = rank(mpg)
. egen rank_r = rank(-mpg)
. egen rank_f = rank(mpg), field
. egen rank_t = rank(mpg), track
. egen rank_u = rank(mpg), unique
. egen rank_ur = rank(-mpg), unique
. sort rank_u
. list mpg rank*

mpg rank rank_r rank_f rank_t rank_u rank_ur

1. 15 1 10 10 1 1 10
2. 16 2 9 9 2 2 9
3. 17 3 8 8 3 3 8
4. 18 4 7 7 4 4 7
5. 19 5 6 6 5 5 6

6. 20 6.5 4.5 4 6 6 5
7. 20 6.5 4.5 4 6 7 4
8. 22 8.5 2.5 2 8 8 3
9. 22 8.5 2.5 2 8 9 2

10. 26 10 1 1 10 10 1
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Standardized variables

Example 10: std( )
We have a variable called age recording the median age in the 50 states. We wish to create the

standardized value of age and verify the calculation:

. use https://www.stata-press.com/data/r19/states1, clear
(State data)
. egen stdage = std(age)
. summarize age stdage

Variable Obs Mean Std. dev. Min Max

age 50 29.54 1.693445 24.2 34.7
stdage 50 6.41e-09 1 -3.153336 3.047044

. correlate age stdage
(obs=50)

age stdage

age 1.0000
stdage 1.0000 1.0000

summarize shows that the new variable has a mean of approximately zero; 10−9 is the precision of a

float and is close enough to zero for all practical purposes. If we wanted, we could have typed egen
double stdage = std(age), making stdage a double-precision variable, and the mean would have

been 10−16. In any case, summarize also shows that the standard deviation is 1. correlate shows that
the new variable and the original variable are perfectly correlated.

We may optionally specify the mean and standard deviation for the new variable. For instance,

. egen newage1 = std(age), sd(2)

. egen newage2 = std(age), mean(2) sd(4)

. egen newage3 = std(age), mean(2)

. summarize age newage1-newage3
Variable Obs Mean Std. dev. Min Max

age 50 29.54 1.693445 24.2 34.7
newage1 50 1.28e-08 2 -6.306671 6.094089
newage2 50 2 4 -10.61334 14.18818
newage3 50 2 1 -1.153336 5.047044

. correlate age newage1-newage3
(obs=50)

age newage1 newage2 newage3

age 1.0000
newage1 1.0000 1.0000
newage2 1.0000 1.0000 1.0000
newage3 1.0000 1.0000 1.0000 1.0000
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Row functions

Example 11: rowtotal( )
generate’s sum() function creates the vertical, running sum of its argument, whereas egen’s

total() function creates a constant equal to the overall sum. egen’s rowtotal() function, however,
creates the horizontal sum of its arguments. They all treat missing as zero. However, if the missing
option is specified with total() or rowtotal(), then newvar will contain missing values if all values
of exp or varlist are missing.

. use https://www.stata-press.com/data/r19/egenxmpl4, clear

. egen hsum = rowtotal(a b c)

. generate vsum = sum(hsum)

. egen sum = total(hsum)

. list

a b c hsum vsum sum

1. . 2 3 5 5 63
2. 4 . 6 10 15 63
3. 7 8 . 15 30 63
4. 10 11 12 33 63 63

Example 12: rowmean( ), rowmedian( ), rowpctile( ), rowsd( ), and rownonmiss( )
summarize displays the mean and standard deviation of a variable across observations; program writ-

ers can access the mean in r(mean) and the standard deviation in r(sd) (see [R] summarize). egen’s
rowmean() function creates the means of observations across variables. rowmedian() creates the medi-
ans of observations across variables. rowpctile() returns the #th percentile of the variables specified in
varlist. rowsd() creates the standard deviations of observations across variables. rownonmiss() creates
a count of the number of nonmissing observations, the denominator of the rowmean() calculation:

. use https://www.stata-press.com/data/r19/egenxmpl4, clear

. egen avg = rowmean(a b c)

. egen median = rowmedian(a b c)

. egen pct25 = rowpctile(a b c), p(25)

. egen std = rowsd(a b c)

. egen n = rownonmiss(a b c)

. list

a b c avg median pct25 std n

1. . 2 3 2.5 2.5 2 .7071068 2
2. 4 . 6 5 5 4 1.414214 2
3. 7 8 . 7.5 7.5 7 .7071068 2
4. 10 11 12 11 11 10 1 3
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Example 13: rowmiss( )
rowmiss() returns 𝑘 − rownonmiss(), where 𝑘 is the number of variables specified. rowmiss()

can be especially useful for finding casewise-deleted observations caused by missing values.

. use https://www.stata-press.com/data/r19/auto3, clear
(1978 automobile data)
. correlate price weight mpg
(obs=70)

price weight mpg

price 1.0000
weight 0.5309 1.0000

mpg -0.4478 -0.7985 1.0000

. egen excluded = rowmiss(price weight mpg)

. list make price weight mpg if excluded~=0

make price weight mpg

5. Buick Electra . 4,080 15
12. Cad. Eldorado 14,500 3,900 .
40. Olds Starfire 4,195 . 24
51. Pont. Phoenix . 3,420 .

Example 14: rowmin( ), rowmax( ), rowfirst( ), and rowlast( )
rowmin(), rowmax(), rowfirst(), and rowlast() return the minimum, maximum, first, or last

nonmissing value, respectively, for the specified variables within an observation (row).

. use https://www.stata-press.com/data/r19/egenxmpl5, clear

. egen min = rowmin(x y z)
(1 missing value generated)
. egen max = rowmax(x y z)
(1 missing value generated)
. egen first = rowfirst(x y z)
(1 missing value generated)
. egen last = rowlast(x y z)
(1 missing value generated)
. list, sep(4)

x y z min max first last

1. -1 2 3 -1 3 -1 3
2. . -6 . -6 -6 -6 -6
3. 7 . -5 -5 7 7 -5
4. . . . . . . .

5. 4 . . 4 4 4 4
6. . . 8 8 8 8 8
7. . 3 7 3 7 3 7
8. 5 -1 6 -1 6 5 6
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Categorical and integer variables

Example 15: anyvalue( ), anymatch( ), and anycount( )
anyvalue(), anymatch(), and anycount() are for categorical or other variables taking integer val-

ues. If we define a subset of values specified by an integer numlist (see [U] 11.1.8 numlist), anyvalue()
extracts the subset, leaving every other value missing; anymatch() defines an indicator variable (1 if
in subset, 0 otherwise); and anycount() counts occurrences of the subset across a set of variables.

Therefore, with just one variable, anymatch(varname) and anycount(varname) are equivalent.

With the auto dataset, we can generate a variable containing the high values of rep78 and a variable
indicating whether rep78 has a high value:

. use https://www.stata-press.com/data/r19/auto, clear
(1978 automobile data)
. egen hirep = anyvalue(rep78), v(3/5)
(15 missing values generated)
. egen ishirep = anymatch(rep78), v(3/5)

Here it is easy to produce the same results with official Stata commands:

. generate hirep = rep78 if inlist(rep78,3,4,5)

. generate byte ishirep = inlist(rep78,3,4,5)

However, as the specification becomes more complicated or involves several variables, the egen func-
tions may be more convenient.

Example 16: group( )
group() maps the distinct groups of a varlist to a categorical variable that takes on integer values

from 1 to the total number of groups. order of the groups is that of the sort order of varlist. The varlist

may be of numeric variables, string variables, or a mixture of the two. The resulting variable can be

useful for many purposes, including stepping through the distinct groups easily and systematically and

cleaning up an untidy ordering. Suppose that the actual (and arbitrary) codes present in the data are 1, 2,

4, and 7, but we desire equally spaced numbers, as when the codes will be values on one axis of a graph.

group() maps these to 1, 2, 3, and 4.

We have a variable agegrp that takes on the values 24, 40, 50, and 65, corresponding to age groups
18–24, 25–40, 41–50, and 51 and above. Perhaps we created this coding using the recode() function
(see [U] 13.3 Functions and [U] 26Working with categorical data and factor variables) from another

age-in-years variable:

. generate agegrp=recode(age,24,40,50,65)

We now want to change the codes to 1, 2, 3, and 4:

. egen agegrp2 = group(agegrp)
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Example 17: group( ) with missing values
We have two categorical variables, race and sex, which may be string or numeric. We want to use

ir (see [R] Epitab) to create a Mantel–Haenszel weighted estimate of the incidence rate. ir, however,
allows only one variable to be specified in its by() option. We type

. use https://www.stata-press.com/data/r19/egenxmpl6, clear

. egen racesex = group(race sex)
(2 missing values generated)
. ir deaths smokes pyears, by(racesex)
(output omitted )

The new numeric variable, racesex, will be missing wherever race or sex is missing (meaning . for

numeric variables and ”” for string variables), so missing values will be handled correctly. When we list

some of the data, we see

. list race sex racesex in 1/7, sep(0)

race sex racesex

1. White Female 1
2. White Male 2
3. Black Female 3
4. Black Male 4
5. Black Male 4
6. . Female .
7. Black . .

group() began by putting the data in the order of the grouping variables and then assigned the numeric
codes. Observations 6 and 7 were assigned to racesex = . because, in one case, race was not known,
and in the other, sex was not known. (These observations were not used by ir.)

If we wanted the unknown groups to be treated just as any other category, we could have typed

. egen rs2 = group(race sex), missing

. list race sex rs2 in 1/7, sep(0)

race sex rs2

1. White Female 1
2. White Male 2
3. Black Female 3
4. Black Male 4
5. Black Male 4
6. . Female 6
7. Black . 5
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The resulting variable from group() does not have value labels. Therefore, the values carry no

indication of meaning. Interpretation requires comparison with the original varlist. To get value labels,

we specify the option label.

. egen rs3 = group(race sex), missing label

. list race sex rs3 in 1/7, sep(0)

race sex rs3

1. White Female White Female
2. White Male White Male
3. Black Female Black Female
4. Black Male Black Male
5. Black Male Black Male
6. . Female . Female
7. Black . Black .

The numeric values of the generated variable rs3 are the same as rs2, but rs3 has a value label that
indicates the categories of race and sex that define the groups. The value label created by group()
uses the actual values of the categorical variables or their value labels, if they exist. In this case, the

categorical variables race and sex are numeric variables with value labels, so their value labels were
used to create the value label for rs3.

String variables
Concatenation of string variables is provided in Stata. In context, Stata understands the addition sym-

bol + as specifying concatenation or adding strings end to end. ”soft” + ”ware” produces ”software”,
and given string variables s1 and s2, s1 + s2 indicates their concatenation.

The complications that may arise in practice include wanting 1) to concatenate the string versions

of numeric variables and 2) to concatenate variables, together with some separator such as a space or a

comma. Given numeric variables n1 and n2,
. generate newstr = s1 + string(n1) + string(n2) + s2

shows how numeric values may be converted to their string equivalents before concatenation, and

. generate newstr = s1 + ” ” + s2 + ” ” + s3

shows how spaces may be added between variables. Stata will automatically assign the most appropriate

data type for the new string variables.

Example 18: concat( )
concat() allows us to do everything in one line concisely.

. egen newstr = concat(s1 n1 n2 s2)

carries with it an implicit instruction to convert numeric values to their string equivalents, and the appro-

priate string data type is worked out within concat() by Stata’s automatic promotion. Moreover,

. egen newstr = concat(s1 s2 s3), p(” ”)

specifies that spaces be used as separators. (The default is to have no separation of concatenated strings.)
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As an example of punctuation other than a space, consider

. egen fullname = concat(surname forename), p(”, ”)

Noninteger numerical values can cause difficulties, but

. egen newstr = concat(n1 n2), format(%9.3f) p(” ”)

specifies the use of format %9.3f. This is equivalent to

. generate str1 newstr = ””

. replace newstr = string(n1,”%9.3f”) + ” ” + string(n2,”%9.3f”)

See [FN] String functions for more about string().

As a final flourish, the decode option instructs concat() to use value labels. With that option, the

maxlength() option may also be used. For more details about decode, see [D] encode. Unlike the
decode command, however, concat() uses string(varname), not ””, whenever values of varname
are not associated with value labels, and the format() option, whenever specified, applies to this use of
string().

Example 19: ends( )
The ends(strvar) function is used for subdividing strings. The approach is to find specified separators

by using the strpos() string function and then to extract what is desired, which either precedes or

follows the separators, using the substr() string function.

By default, substrings are considered to be separated by individual spaces, so we will give definitions

in those terms and then generalize.

The head of the string is whatever precedes the first space or is the whole of the string if no space

occurs. This could also be called the first “word”. The tail of the string is whatever follows the first

space. This could be nothing or one or more words. The last word in the string is whatever follows the

last space or is the whole of the string if no space occurs.

To clarify, let’s look at some examples. The quotation marks here just mark the limits of each string

and are not part of the strings.

head tail last

”frog” ”frog” ”” ”frog”
”frog toad” ”frog” ”toad” ”toad”

”frog toad newt” ”frog” ”toad newt” ”newt”
”frog toad newt” ”frog” ” toad newt” ”newt”
”frog toad newt” ”frog” ”toad newt” ”newt”

The main subtlety is that these functions are literal, so the tail of ”frog toad newt”, in which two
spaces follow ”frog”, includes the second of those spaces, and is thus ” toad newt”. Therefore, you
may prefer to use the trim option to trim the result of any leading or trailing spaces, producing ”toad
newt” in this instance.

The punct(pchars) option may be used to specify separators other than spaces. The general defini-
tions of the head, tail, and last options are therefore interpreted in terms of whatever separator has
been specified; that is, they are relative to the first or last occurrence of the separator in the string value.
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Thus, with punct(,) and the string ”Darwin, Charles Robert”, the head is ”Darwin”, and the tail
and the last are both ” Charles Robert”. Note again the leading space in this example, which may be
trimmed with trim. The punctuation (here the comma, “,”) is discarded, just as it is with one space.

pchars, the argument of punct(), will usually, but not always, be one character. If two or more

characters are specified, these must occur together; for example, punct(:;) would mean that words are
separated by a colon followed by a semicolon (that is, :;). It is not implied, in particular, that the colon
and semicolon are alternatives. To do that, you would have to modify the programs presented here or

resort to first principles by using split; see [D] split.

With personal names, the head or last option might be applied to extract surnames if strings were
similar to ”Darwin, Charles Robert” or ”Charles Robert Darwin”, with the surname coming first or
last. What then happens with surnames like ”von Neumann” or ”de la Mare”? ”von Neumann, John”
is no problem, if the comma is specified as a separator, but the last option is not intelligent enough to
handle ”Walter de la Mare” properly.
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encode — Encode string into numeric and vice versa

Description Quick start Menu Syntax
Options for encode Options for decode Remarks and examples References
Also see

Description
encode creates a new variable named newvar based on the string variable varname, creating, adding

to, or just using (as necessary) the value label newvar or, if specified, name. Do not use encode if

varname contains numbers that merely happen to be stored as strings; instead, use generate newvar

= real(varname) or destring; see [U] 24.2 Categorical string variables, [FN] String functions, and
[D] destring.

decode creates a new string variable named newvar based on the “encoded” numeric variable var-

name and its value label.

Quick start
Generate numeric newv1 from string v1, using the values of v1 to create a value label that is applied to

newv1
encode v1, generate(newv1)

Same as above, but name the value label mylabel1
encode v1, generate(newv1) label(mylabel1)

Same as above, but refuse to encode v1 if values exist in v1 that are not present in preexisting value label
mylabel1

encode v1, generate(newv1) label(mylabel1) noextend

Convert numeric v2 to string newv2 using the value label applied to v2 to generate values of newv2
decode v2, generate(newv2)

Menu
encode
Data > Create or change data > Other variable-transformation commands > Encode value labels from string
variable

decode
Data > Create or change data > Other variable-transformation commands > Decode strings from labeled numeric
variable

259
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Syntax
String variable to numeric variable

encode varname [ if ] [ in ] , generate(newvar) [ label(name) noextend ]

Numeric variable to string variable

decode varname [ if ] [ in ] , generate(newvar) [ maxlength(#) ]

Options for encode
generate(newvar) is required and specifies the name of the variable to be created.

label(name) specifies the name of the value label to be created or used and added to if the named value
label already exists. If label() is not specified, encode uses the same name for the label as it does
for the new variable.

noextend specifies that varname not be encoded if there are values contained in varname that are not

present in label(name). By default, any values not present in label(name) will be added to that
label.

Options for decode
generate(newvar) is required and specifies the name of the variable to be created.

maxlength(#) specifies how many bytes of the value label to retain; # must be between 1 and 32,000.

The default is maxlength(32000).

Remarks and examples
Remarks are presented under the following headings:

encode
decode
Video example

encode
encode is most useful in making string variables accessible to Stata’s statistical routines, most of

which can work only with numeric variables. encode is also useful in reducing the size of a dataset. If
you are not familiar with value labels, read [U] 12.6.3 Value labels.

The maximum number of associations within each value label is 65,536. Each association in a value

label maps a string of up to 32,000 bytes to a number. For plainASCII text, the number of bytes is equal to

the number of characters. If your string has other Unicode characters, the number of bytes is greater than

the number of characters. See [U] 12.4.2 Handling Unicode strings. If your variable contains string

values longer than 32,000 bytes, then only the first 32,000 bytes are retained and assigned as a value

label to a number.
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Example 1
We have a dataset on high blood pressure, and among the variables is sex, a string variable containing

either “male” or “female”. Wewish to run a regression of high blood pressure on race, sex, and age group.

We type regress hbp race sex age grp and get the message “no observations”.

. use https://www.stata-press.com/data/r19/hbp2

. regress hbp sex race age_grp
no observations
r(2000);

Stata’s statistical procedures cannot directly deal with string variables; as far as they are concerned,

all observations on sex are missing. encode provides the solution:

. encode sex, gen(gender)

. regress hbp gender race age_grp
Source SS df MS Number of obs = 1,121

F(3, 1117) = 15.15
Model 2.01013476 3 .67004492 Prob > F = 0.0000

Residual 49.3886164 1,117 .044215413 R-squared = 0.0391
Adj R-squared = 0.0365

Total 51.3987511 1,120 .045891742 Root MSE = .21027

hbp Coefficient Std. err. t P>|t| [95% conf. interval]

gender .0394747 .0130022 3.04 0.002 .0139633 .0649861
race -.0409453 .0113721 -3.60 0.000 -.0632584 -.0186322

age_grp .0241484 .00624 3.87 0.000 .0119049 .0363919
_cons -.016815 .0389167 -0.43 0.666 -.093173 .059543

encode looks at a string variable and makes an internal table of all the values it takes on, here “male”
and “female”. It then alphabetizes that list and assigns numeric codes to each entry. Thus 1 becomes

“female” and 2 becomes “male”. It creates a new int variable (gender) and substitutes a 1 where sex
is “female”, a 2 where sex is “male”, and a missing (.) where sex is null (””). It creates a value label
(also named gender) that records the mapping 1 ↔ female and 2 ↔ male. Finally, encode labels the
values of the new variable with the value label.

Example 2
It is difficult to distinguish the result of encode from the original string variable. For instance, in our

last two examples, we typed encode sex, gen(gender). Let’s compare the two variables:

. list sex gender in 1/4

sex gender

1. female female
2. .
3. male male
4. male male

They look almost identical, although you should notice the missing value for gender in the second ob-

servation.
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The difference does show, however, if we tell list to ignore the value labels and show how the data

really appear:

. list sex gender in 1/4, nolabel

sex gender

1. female 1
2. .
3. male 2
4. male 2

We could also ask to see the underlying value label:

. label list gender
gender:

1 female
2 male

gender really is a numeric variable, but because all Stata commands understand value labels, the variable
displays as “male” and “female”, just as the underlying string variable sex would.

Example 3
Wecan drastically reduce the size of our dataset by encoding strings and then discarding the underlying

string variable. We have a string variable, sex, that records each person’s sex as “male” and “female”.
Because female has six characters, the variable is stored as a str6.

We can encode the sex variable and use compress to store the variable as a byte, which takes only
1 byte. Because our dataset contains 1,130 people, the string variable takes 6,780 bytes, but the encoded

variable will take only 1,130 bytes.

. use https://www.stata-press.com/data/r19/hbp2, clear

. describe
Contains data from https://www.stata-press.com/data/r19/hbp2.dta
Observations: 1,130

Variables: 7 3 Mar 2024 06:47

Variable Storage Display Value
name type format label Variable label

id str10 %10s Record identification number
city byte %8.0g City
year int %8.0g Year
age_grp byte %8.0g agefmt Age group
race byte %8.0g racefmt Race
hbp byte %8.0g yn High blood pressure
sex str6 %9s Sex

Sorted by:
. encode sex, generate(gender)
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. list sex gender in 1/5

sex gender

1. female female
2. .
3. male male
4. male male
5. female female

. drop sex

. rename gender sex

. compress
variable sex was long now byte
(3,390 bytes saved)

. describe
Contains data from https://www.stata-press.com/data/r19/hbp2.dta
Observations: 1,130

Variables: 7 3 Mar 2024 06:47

Variable Storage Display Value
name type format label Variable label

id str10 %10s Record identification number
city byte %8.0g City
year int %8.0g Year
age_grp byte %8.0g agefmt Age group
race byte %8.0g racefmt Race
hbp byte %8.0g yn High blood pressure
sex byte %8.0g gender Sex

Sorted by:
Note: Dataset has changed since last saved.

The size of our dataset has fallen from 24,860 bytes to 19,210 bytes.

Technical note
In the examples above, the value label did not exist before encode created it, because that is not

required. If the value label does exist, encode uses your encoding as far as it can and adds newmappings

for anything not found in your value label. For instance, if you wanted “female” to be encoded as 0
rather than 1 (possibly for use in linear regression), you could type

. label define gender 0 ”female”

. encode sex, gen(gender)

You can also specify the name of the value label. If you do not, the value label is assumed to have the

same name as the newly created variable. For instance,

. label define sexlbl 0 ”female”

. encode sex, gen(gender) label(sexlbl)
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decode
decode is used to convert numeric variables with associated value labels into true string variables.

Example 4
We have a numeric variable named female that records the values 0 and 1. female is associated with

a value label named sexlbl that says that 0 means male and 1 means female:
. use https://www.stata-press.com/data/r19/hbp3, clear
. describe female
Variable Storage Display Value

name type format label Variable label

female byte %8.0g sexlbl Female
. label list sexlbl
sexlbl:

0 Male
1 Female

We see that female is stored as a byte. It is a numeric variable. Nevertheless, it has an associated value
label describing what the numeric codes mean, so if we tabulate the variable, for instance, it appears
to contain the strings “male” and “female”:

. tabulate female
Female Freq. Percent Cum.

Male 695 61.61 61.61
Female 433 38.39 100.00

Total 1,128 100.00

We can create a real string variable from this numerically encoded variable by using decode:

. decode female, gen(sex)

. describe sex
Variable Storage Display Value

name type format label Variable label

sex str6 %9s Female

We have a new variable called sex. It is a string, and Stata automatically created the shortest possible
string. The word “female” has six characters, so our new variable is a str6. female and sex appear
indistinguishable:

. list female sex in 1/4

female sex

1. Female Female
2. .
3. Male Male
4. Male Male



encode — Encode string into numeric and vice versa 265

But when we add nolabel, the difference is apparent:

. list female sex in 1/4, nolabel

female sex

1. 1 Female
2. .
3. 0 Male
4. 0 Male

Example 5
decode is most useful in instances when we wish to match-merge two datasets on a variable that has

been encoded inconsistently.

For instance, we have two datasets on individual states in which one of the variables (state) takes on
values such as “CA” and “NY”. The state variable was originally a string, but along the way the variable

was encoded into an integer with a corresponding value label in one or both datasets.

We wish to merge these two datasets, but either 1) one of the datasets has a string variable for state

and the other an encoded variable or 2) although both are numeric, we are not certain that the codings

are consistent. Perhaps “CA” has been coded 5 in one dataset and 6 in another.

Because decode will take an encoded variable and turn it back into a string, decode provides the

solution:
use first (load the first dataset)
decode state, gen(st) (make a string state variable)
drop state (discard the encoded variable)
sort st (sort on string)
save first, replace (save the dataset)
use second (load the second dataset)
decode state, gen(st) (make a string variable)
drop state (discard the encoded variable)
sort st (sort on string)
merge 1:1 st using first (merge the data)

Video example
How to convert categorical string variables to labeled numeric variables
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Also see
[D] compress — Compress data in memory

[D] destring — Convert string variables to numeric variables and vice versa

[D] generate — Create or change contents of variable

[U] 12.6.3 Value labels

[U] 24.2 Categorical string variables
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Description Quick start Syntax Remarks and examples Also see

Description
The erase command erases files stored on disk. rm is a synonym for erase for the convenience of

Mac and Unix users.

Stata forMac users: erase is permanent; the file is notmoved to theTrash but is immediately removed
from the disk.

Stata for Windows users: erase is permanent; the file is not moved to the Recycle Bin but is imme-
diately removed from the disk.

Quick start
Delete mylog.smcl from current directory in Stata for Windows

erase mylog.smcl

Same as above for Mac and Unix

rm mylog.smcl

Delete mydata.dta from current directory in Stata for Windows

erase mydata.dta

Same as above for Mac and Unix

rm mydata.dta

Delete mylog.smcl from C:\my dir\my folder in Stata for Windows

erase ”c:\my dir\my folder\mylog.smcl”

Same as above for Mac and Unix

rm ”~/my dir/my folder/mylog.smcl”

Syntax
{ erase | rm } [”] filename[”]

Note: Double quotes must be used to enclose filename if the name contains spaces.

Remarks and examples
The only difference between Stata’s erase (rm) command and the Windows command prompt DEL

or Unix rm(1) command is that we may not specify groups of files. Stata requires that we erase files one
at a time.

Mac users may prefer to discard files by dragging them to the Trash.

Windows users may prefer to discard files by dragging them to the Recycle Bin.
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Example 1
Stata provides seven operating system equivalent commands: cd, copy, dir, erase, mkdir, rmdir,

and type, or, from the Unix perspective, cd, copy, ls, rm, mkdir, rmdir, and cat. These commands are
provided for Mac users, too. Stata users can also issue any operating system command by using Stata’s

shell command, so you should never have to exit Stata to perform some housekeeping detail.

Suppose that we have the file mydata.dta stored on disk and we wish to permanently eliminate it:

. erase mydata
file mydata not found
r(601);
. erase mydata.dta
.

Our first attempt, erase mydata, was unsuccessful. Although Stata ordinarily supplies the file extension
for you, it does not do so when you type erase. You must be explicit. Our second attempt eliminated
the file. Unix users could have typed rm mydata.dta if they preferred.

Also see
[D] cd — Change directory

[D] copy — Copy file from disk or URL

[D] dir — Display filenames

[D] mkdir — Create directory

[D] rmdir — Remove directory

[D] shell — Temporarily invoke operating system

[D] type — Display contents of a file

[U] 11.6 Filenaming conventions
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Description Quick start Menu Syntax
Option Remarks and examples References Also see

Description
expand replaces each observation in the dataset with n copies of the observation, where n is equal to

the required expression rounded to the nearest integer. If the expression is less than 1 or equal to missing,

it is interpreted as if it were 1, and the observation is retained but not duplicated.

Quick start
Duplicate each observation 3 times, resulting in the original and 2 copies

expand 3

Duplicate each observation the number of times stored in v
expand v

Same as above, but flag duplicated observations using generated newv
expand v, generate(newv)

Same as above, but only duplicate observations where catvar equals 4
expand v if catvar==4, generate(newv)

Menu
Data > Create or change data > Other variable-transformation commands > Duplicate observations
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Syntax
expand [ = ]exp [ if ] [ in ][ , generate(newvar) ]

Option
generate(newvar) creates new variable newvar containing 0 if the observation originally appeared in

the dataset and 1 if the observation is a duplicate. For instance, after an expand, you could revert to
the original observations by typing keep if newvar==0.

Remarks and examples

Example 1
expand is, admittedly, a strange command. It can, however, be useful in tricky programs or for

reformatting data for survival analysis (see examples in [R] Epitab). Here is a silly use of expand:

. use https://www.stata-press.com/data/r19/expandxmpl

. list

n x

1. -1 1
2. 0 2
3. 1 3
4. 2 4
5. 3 5

. expand n
(1 negative count ignored; observation not deleted)
(1 zero count ignored; observation not deleted)
(3 observations created)
. list

n x

1. -1 1
2. 0 2
3. 1 3
4. 2 4
5. 3 5

6. 2 4
7. 3 5
8. 3 5

The new observations are added to the end of the dataset. expand informed us that it created 3 obser-
vations. The first 3 observations were not replicated because n was less than or equal to 1. n is 2 in the
fourth observation, so expand created one replication of this observation, bringing the total number of
observations of this type to 2. expand created two replications of observation 5 because n is 3.

Because there were 5 observations in the original dataset and because expand adds new observations

onto the end of the dataset, we could now undo the expansion by typing drop in 6/l.
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References
Cox, N. J. 2013. Stata tip 114: Expand paired dates to pairs of dates. Stata Journal 13: 217–219.

———. 2014. Stata tip 119: Expanding datasets for graphical ends. Stata Journal 14: 230–235.

Huber, C. 2014. How to simulate multilevel/longitudinal data. The Stata Blog: Not Elsewhere Classified. https://blog.

stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/.

Also see
[D] contract — Make dataset of frequencies and percentages

[D] expandcl — Duplicate clustered observations

[D] fillin — Rectangularize dataset

https://www.stata-journal.com/article.html?article=dm0068
https://www.stata-journal.com/article.html?article=gr0058
https://blog.stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/
https://blog.stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/


expandcl — Duplicate clustered observations

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
expandcl duplicates clusters of observations and generates a new variable that identifies the clusters

uniquely.

expandcl replaces each cluster in the dataset with n copies of the cluster, where n is equal to the

required expression rounded to the nearest integer. The expression is required to be constant within

cluster. If the expression is less than 1 or equal to missing, it is interpreted as if it were 1, and the cluster

is retained but not duplicated.

Quick start
Duplicate each set of observations on clusters identified by cvar 3 times, and store new cluster identifier

in newcv
expandcl 3, cluster(cvar) generate(newcv)

Duplicate each cluster of observations the number of times stored in v
expandcl v, cluster(cvar) generate(newcv)

Menu
Data > Create or change data > Other variable-transformation commands > Duplicate clustered observations
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Syntax
expandcl [ = ]exp [ if ] [ in ], cluster(varlist) generate(newvar)

Options
cluster(varlist) is required and specifies the variables that identify the clusters before expanding the

data.

generate(newvar) is required and stores unique identifiers for the duplicated clusters in newvar. new-
var will identify the clusters by using consecutive integers starting from 1.

Remarks and examples

Example 1
We will show how expandcl works by using a small dataset with five clusters. In this dataset, cl

identifies the clusters, x contains a unique value for each observation, and n identifies how many copies

we want of each cluster.

. use https://www.stata-press.com/data/r19/expclxmpl

. list, sepby(cl)

cl x n

1. 10 1 -1
2. 10 2 -1

3. 20 3 0
4. 20 4 0

5. 30 5 1
6. 30 6 1

7. 40 7 2.7
8. 40 8 2.7

9. 50 9 3
10. 50 10 3

11. 60 11 .
12. 60 12 .

. expandcl n, generate(newcl) cluster(cl)
(2 missing counts ignored; observations not deleted)
(2 noninteger counts rounded to integer)
(2 negative counts ignored; observations not deleted)
(2 zero counts ignored; observations not deleted)
(8 observations created)
. sort newcl cl x
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. list, sepby(newcl)

cl x n newcl

1. 10 1 -1 1
2. 10 2 -1 1

3. 20 3 0 2
4. 20 4 0 2

5. 30 5 1 3
6. 30 6 1 3

7. 40 7 2.7 4
8. 40 8 2.7 4

9. 40 7 2.7 5
10. 40 8 2.7 5

11. 40 7 2.7 6
12. 40 8 2.7 6

13. 50 9 3 7
14. 50 10 3 7

15. 50 9 3 8
16. 50 10 3 8

17. 50 9 3 9
18. 50 10 3 9

19. 60 11 . 10
20. 60 12 . 10

The first three clusters were not replicated because n was less than or equal to 1. n is 2.7 in the fourth
cluster, so expandcl created two replications (2.7 was rounded to 3) of this cluster, bringing the total
number of clusters of this type to 3. expandcl created two replications of cluster 50 because n is 3.

Finally, expandcl did not replicate the last cluster because n was missing.

Also see
[D] expand — Duplicate observations

[R] bsample — Sampling with replacement
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Description Remarks and examples Also see

Description
This entry provides a quick reference for determining which method to use for exporting Stata data

from memory to other formats.

Remarks and examples
Remarks are presented under the following headings:

Summary of the different methods
export excel
export delimited
jdbc
odbc
outfile
export sasxport5 and export sasxport8
export spss
export dbase

Summary of the different methods

export excel

∘ export excel creates Microsoft Excel worksheets in .xls and .xlsx files.

∘ Entire worksheets can be exported, or custom cell ranges can be overwritten.

∘ See [D] import excel.

export delimited

∘ export delimited creates comma-separated or tab-delimited files that many other programs can

read.

∘ A custom delimiter may also be specified.

∘ The first line of the file can optionally contain the names of the variables.

∘ See [D] import delimited.

jdbc

∘ Java Database Connectivity (JDBC) is an application programming interface for the programming

language Java. The jdbc command allows you to connect to, load data from, insert data into, and
execute queries on a database using JDBC.

∘ See [D] jdbc.
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odbc

∘ ODBC, an acronym for Open DataBase Connectivity, is a standard for exchanging data between pro-

grams. Stata supports the ODBC standard for exporting data via the odbc command and can write to
any ODBC data source on your computer.

∘ See [D] odbc.

outfile

∘ outfile creates text-format datasets.

∘ The data can be written in space-separated or comma-separated format.

∘ Alternatively, the data can be written in fixed-column format.

∘ See [D] outfile.

export sasxport5 and export sasxport8

∘ export sasxport5 saves SAS XPORT Version 5 Transport format files.

∘ export sasxport5 can also write value-label information to a formats.xpf XPORT file.

∘ export sasxport8 saves SAS XPORT Version 8 Transport format files.

∘ export sasxport8 can also write value-label information to a SAS command (.sas) file.

∘ See [D] import sasxport5 and [D] import sasxport8.

export spss

∘ export spss saves an IBM SPSS Statistics (.sav) file.

∘ See [D] import spss.

export dbase

∘ export dbase saves version IV dBase (.dbf) files.

∘ See [D] import dbase.

Also see
[D] import — Overview of importing data into Stata

[M-5] docx*( ) — Generate Office Open XML (.docx) file

[M-5] xl( ) — Excel file I/O class

[RPT] dyndoc — Convert dynamic Markdown document to HTML or Word (.docx) document

[RPT] putdocx intro — Introduction to generating Office Open XML (.docx) files

[RPT] putexcel — Export results to an Excel file

[RPT] putpdf intro — Introduction to generating PDF files



filefilter — Convert ASCII or binary patterns in a file

Description Quick start Syntax Options
Remarks and examples Stored results Reference Also see

Description
filefilter reads an input file, searching for oldpattern. Whenever a matching pattern is found, it

is replaced with newpattern. All resulting data, whether matching or nonmatching, are then written to

the new file.

Because of the buffering design of filefilter, arbitrarily large files can be converted quickly.

filefilter is also useful when traditional editors cannot edit a file, such as when unprintable ASCII

characters are involved. In fact, converting end-of-line characters between Macintosh, Windows, and

Unix is convenient with the EOL codes.

Unicode is not directly supported, but UTF-8 encoded files can be operated on by using byte-sequence

methods in some cases.

Although it is not mandatory, you may want to use quotes to delimit a pattern, protecting the pattern

from Stata’s parsing routines. A pattern that contains blanks must be in quotes.

Quick start
Create newfile.txt from oldfile.txt by replacing all tabs with semicolons

filefilter oldfile.txt newfile.txt, from(\t) to(”;”)

Create newfile.txt from oldfile.txt by replacing all instances of “The” with “the”
filefilter oldfile.txt newfile.txt, from(”The”) to(”the”)
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Syntax
filefilter oldfile newfile ,

{ from(oldpattern) to(newpattern) | ascii2ebcdic | ebcdic2ascii } [ options ]

where oldpattern and newpattern for ASCII characters are

”string” or string

string := [char[char[char[ . . . ]]]]
char := regchar | code
regchar := ASCII 32–91, 93–127, or

extended ASCII 128, 161–255; excludes ‘\’
code := \BS backslash

\r carriage return

\n newline

\t tab

\M Classic Mac EOL, or \r
\W Windows EOL, or \r\n
\U Unix or Mac EOL, or \n
\LQ left single quote, ‘

\RQ right single quote, ’

\Q double quote, ”

\$ dollar sign, $

\###d 3-digit [0–9] decimal ASCII

\##h 2-digit [0–9, A–F] hexadecimal ASCII

options Description

∗ from(oldpattern) find oldpattern to be replaced
∗ to(newpattern) use newpattern to replace occurrences of from()
∗ ascii2ebcdic convert file from ASCII to EBCDIC
∗ ebcdic2ascii convert file from EBCDIC to ASCII

replace replace newfile if it already exists

∗ Both from(oldpattern) and to(newpattern) are required, or ascii2ebcdic or ebcdic2ascii is required.
collect is allowed; see [U] 11.1.10 Prefix commands.

Options
from(oldpattern) specifies the pattern to be found and replaced. It is required unless ascii2ebcdic or

ebcdic2ascii is specified.

to(newpattern) specifies the pattern used to replace occurrences of from(). It is required unless

ascii2ebcdic or ebcdic2ascii is specified.

ascii2ebcdic specifies that characters in the file be converted from ASCII coding to EBCDIC coding.

from(), to(), and ebcdic2ascii are not allowed with ascii2ebcdic.

ebcdic2ascii specifies that characters in the file be converted from EBCDIC coding to ASCII coding.

from(), to(), and ascii2ebcdic are not allowed with ebcdic2ascii.

replace specifies that newfile be replaced if it already exists.
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Remarks and examples
Convert Classic Mac-style EOL characters to Windows-style

. filefilter macfile.txt winfile.txt, from(\M) to(\W) replace

Convert left quote (‘) characters to the string “left quote”

. filefilter auto1.csv auto2.csv, from(\LQ) to(”left quote”)

Convert the character with hexidecimal code 60 to the string “left quote”

. filefilter auto1.csv auto2.csv, from(\60h) to(”left quote”)

Convert the character with decimal code 96 to the string “left quote”

. filefilter auto1.csv auto2.csv, from(\096d) to(”left quote”)

Convert strings beginning with hexidecimal code 6B followed by “Text” followed by decimal character

100 followed by “Text” to an empty string (remove them from the file)

. filefilter file1.txt file2.txt, from(”\6BhText\100dText”) to(””)

Convert file from EBCDIC to ASCII encoding

. filefilter ebcdicfile.txt asciifile.txt, ebcdic2ascii

Technical note
Unicode is not directly supported, but you can try to operate on a UTF-8 encoded Unicode file by

working on the byte sequence representation of the UTF-8 encoded Unicode character. For example, the

Unicode character é, the Latin small letter “e” with an acute accent (Unicode code point \u00e9), has
the byte sequence representation (195,169). You can obtain the byte sequence by using tobytes(”é”).
Although youmay use 195 and 169 in regchar and code, they will be treated as two separate bytes instead

of one character é (195 followed by 169). In short, this goes beyond the original design of the command
and is technically unsupported. If you try to use filefilter in this way, you might encounter problems.

Stored results
filefilter stores the following in r():
Scalars

r(occurrences) number of oldpattern found

r(bytes from) # of bytes represented by oldpattern

r(bytes to) # of bytes represented by newpattern

Reference
Riley, A. R. 2008. Stata tip 60: Making fast and easy changes to files with filefilter. Stata Journal 8: 290–292.

Also see
[P] file — Read and write text and binary files

[D] changeeol — Convert end-of-line characters of text file

[D] hexdump — Display hexadecimal report on file

https://www.stata-journal.com/article.html?article=pr0039


fillin — Rectangularize dataset

Description Quick start Menu Syntax
Remarks and examples References Also see

Description
fillin adds observations with missing data so that all interactions of varlist exist, thus making a

complete rectangularization of varlist. fillin also adds the variable fillin to the dataset. fillin
is 1 for observations created by using fillin and 0 for previously existing observations.

Quick start
Add observations so that all possible interactions of v1 and v2 exist and flag new observations with

fillin = 1

fillin v1 v2

Same as above, but also include interactions with v3
fillin v1 v2 v3

Menu
Data > Create or change data > Other variable-transformation commands > Rectangularize dataset

Syntax
fillin varlist

varlist may not contain strLs or alias variables.
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Remarks and examples

Example 1
We have data on something by sex, race, and age group. We suspect that some of the combinations

of sex, race, and age do not exist, but if so, we want them to exist with whatever remaining variables

there are in the dataset set to missing. For example, rather than having a missing observation for black

females aged 20–24, we want to create an observation that contains missing values:

. use https://www.stata-press.com/data/r19/fillin1

. list

sex race age_gr~p x1 x2

1. female white 20-24 20393 14.5
2. male white 25-29 32750 12.7
3. female black 30-34 39399 14.2

. fillin sex race age_group

. list, sepby(sex)

sex race age_gr~p x1 x2 _fillin

1. female white 20-24 20393 14.5 0
2. female white 25-29 . . 1
3. female white 30-34 . . 1
4. female black 20-24 . . 1
5. female black 25-29 . . 1
6. female black 30-34 39399 14.2 0

7. male white 20-24 . . 1
8. male white 25-29 32750 12.7 0
9. male white 30-34 . . 1

10. male black 20-24 . . 1
11. male black 25-29 . . 1
12. male black 30-34 . . 1

References
Baum, C. F. 2016. An Introduction to Stata Programming. 2nd ed. College Station, TX: Stata Press.

Cox, N. J. 2005. Stata tip 17: Filling in the gaps. Stata Journal 5: 135–136.

Also see
[D] cross — Form every pairwise combination of two datasets

[D] expand — Duplicate observations

[D] frunalias — Change storage type of alias variables

[D] joinby — Form all pairwise combinations within groups

[D] save — Save Stata dataset

https://www.stata-press.com/books/introduction-stata-programming/
https://www.stata-journal.com/article.html?article=dm0011


format — Set variables’ output format

Description Quick start Menu Syntax
Option Remarks and examples References Also see

Description
format varlist % fmt and format % fmt varlist are the same commands. They set the display format

associated with the variables specified. The default formats are a function of the type of the variable:

byte %8.0g
int %8.0g
long %12.0g
float %9.0g
double %10.0g
str# %#s
strL %9s

set dp sets the symbol that Stata uses to represent the decimal point. The default is period, meaning
that one and a half is displayed as 1.5.

format [ varlist ] displays the current formats associated with the variables. format by itself lists

all variables that have formats too long to be listed in their entirety by describe. format varlist lists

the formats for the specified variables regardless of their length. format * lists the formats for all the
variables.

Quick start
Show 10-digit v1 as whole numbers with commas

format v1 %15.0gc

Same as above

format %15.0gc v1

Left-align string variable v2 of type str20
format v2 %-20s

Show 3-digit v3 with 1 digit after the decimal
format v3 %4.1f

Left-align v4 and v5, and show with leading zeros if less than 4 digits in length

format v4 v5 %-04.0f

Show v6 in Stata default date format like 19jun2014
format v6 %td

Same as above, but show v6 in a date format like 06/14/2014
format v6 %tdNN/DD/CCYY

Menu
Data > Variables Manager
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Syntax
Set formats

format varlist % fmt

format % fmt varlist

Set style of decimal point

set dp { comma | period } [ , permanently ]

Display long formats

format [ varlist ]

where % fmt can be a numerical, date, business calendar, or string format.

Numerical % fmt Description Example

right-justified
%#.#g general %9.0g
%#.#f fixed %9.2f
%#.#e exponential %10.7e
%21x hexadecimal %21x
%16H binary, hilo %16H
%16L binary, lohi %16L
%8H binary, hilo %8H
%8L binary, lohi %8L

right-justified with commas
%#.#gc general %9.0gc
%#.#fc fixed %9.2fc

right-justified with leading zeros
%0#.#f fixed %09.2f

left-justified
%-#.#g general %-9.0g
%-#.#f fixed %-9.2f
%-#.#e exponential %-10.7e

left-justified with commas
%-#.#gc general %-9.0gc
%-#.#fc fixed %-9.2fc

You may substitute comma (,) for period (.) in any
of the above formats to make comma the decimal point. In

%9,2fc, 1000.03 is 1.000,03. Or you can set dp comma.
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date % fmt Description Example

right-justified
%tc date/time %tc
%tC date/time %tC
%td date %td
%tw week %tw
%tm month %tm
%tq quarter %tq
%th half-year %th
%ty year %ty
%tg generic %tg

left-justified
%-tc date/time %-tc
%-tC date/time %-tC
%-td date %-td
etc.

There are many variations allowed. See [D] Datetime display formats.

business calendar % fmt Description Example

%tbcalname a business %tbsimple
[ :datetime-specifiers ] calendar defined in

calname.stbcal

See [D] Datetime business calendars.

string % fmt Description Example

right-justified
%#s string %15s

left-justified
%-#s string %-20s

centered
%~#s string %~12s

The centered format is for use with display only.

Option
permanently specifies that, in addition to making the change right now, the dp setting be remembered

and become the default setting when you invoke Stata.
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Remarks and examples
Remarks are presented under the following headings:

Setting formats
Setting European formats
Details of formats

The %f format
The %fc format
The %g format
The %gc format
The %e format
The %21x format
The %16H and %16L formats
The %8H and %8L formats
The %t format
The %s format

Other effects of formats
Displaying current formats
Video example

Setting formats
See [U] 12.5 Formats: Controlling how data are displayed for an explanation of % fmt. To review:

Stata’s three numeric formats are denoted by a leading percent sign, %, followed by the string w.d (or w,d
for European format), wherew and d stand for two integers. The first integer, w, specifies the width of the

format. The second integer, d, specifies the number of digits that are to follow the decimal point; d must

be less than w. Finally, a character denoting the format type (e, f, or g) is appended. For example, %9.2f
specifies the f format that is nine characters wide and has two digits following the decimal point. For f
and g, a cmay also be suffixed to indicate comma formats. Other “numeric” formats known collectively
as the %t formats are used to display dates and times; see [D] Datetime display formats. String formats

are denoted by %ws, where w indicates the width of the format.

Example 1
We have census data by region and state on median age and population in 1980.

. use https://www.stata-press.com/data/r19/census10
(1980 Census data by state)
. describe
Contains data from https://www.stata-press.com/data/r19/census10.dta
Observations: 50 1980 Census data by state

Variables: 4 9 Apr 2024 08:05

Variable Storage Display Value
name type format label Variable label

state str14 %14s State
region int %8.0g cenreg Census region
pop long %11.0g Population
medage float %9.0g Median age

Sorted by:
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. list in 1/8

state region pop medage

1. Alabama South 3893888 29.3
2. Alaska West 401851 26.1
3. Arizona West 2718215 29.2
4. Arkansas South 2286435 30.6
5. California West 23667902 29.9

6. Colorado West 2889964 28.6
7. Connecticut NE 3107576 32
8. Delaware South 594338 29.8

The state variable has a display format of %14s. To left-align the state data, we type

. format state %-14s

. list in 1/8

state region pop medage

1. Alabama South 3893888 29.3
2. Alaska West 401851 26.1
3. Arizona West 2718215 29.2
4. Arkansas South 2286435 30.6
5. California West 23667902 29.9

6. Colorado West 2889964 28.6
7. Connecticut NE 3107576 32
8. Delaware South 594338 29.8

Although it seems like region is a string variable, it is really a numeric variable with an attached

value label. You do the same thing to left-align a numeric variable as you do a string variable: insert a

negative sign.

. format region %-8.0g

. list in 1/8

state region pop medage

1. Alabama South 3893888 29.3
2. Alaska West 401851 26.1
3. Arizona West 2718215 29.2
4. Arkansas South 2286435 30.6
5. California West 23667902 29.9

6. Colorado West 2889964 28.6
7. Connecticut NE 3107576 32
8. Delaware South 594338 29.8
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The pop variable would probably be easier to read if we inserted commas by appending a ‘c’:

. format pop %11.0gc

. list in 1/8

state region pop medage

1. Alabama South 3,893,888 29.3
2. Alaska West 401,851 26.1
3. Arizona West 2,718,215 29.2
4. Arkansas South 2,286,435 30.6
5. California West 23667902 29.9

6. Colorado West 2,889,964 28.6
7. Connecticut NE 3,107,576 32
8. Delaware South 594,338 29.8

Look at the value of pop for observation 5. There are no commas. This number was too large for Stata
to insert commas and still respect the current width of 11. Let’s try again:

. format pop %12.0gc

. list in 1/8

state region pop medage

1. Alabama South 3,893,888 29.3
2. Alaska West 401,851 26.1
3. Arizona West 2,718,215 29.2
4. Arkansas South 2,286,435 30.6
5. California West 23,667,902 29.9

6. Colorado West 2,889,964 28.6
7. Connecticut NE 3,107,576 32
8. Delaware South 594,338 29.8

Finally, medage would look better if the decimal points were vertically aligned.

. format medage %8.1f

. list in 1/8

state region pop medage

1. Alabama South 3,893,888 29.3
2. Alaska West 401,851 26.1
3. Arizona West 2,718,215 29.2
4. Arkansas South 2,286,435 30.6
5. California West 23,667,902 29.9

6. Colorado West 2,889,964 28.6
7. Connecticut NE 3,107,576 32.0
8. Delaware South 594,338 29.8

Display formats are permanently attached to variables by the format command. If we save the data,
the next time we use it, statewill still be formatted as %-14s, regionwill still be formatted as %-8.0g,
etc.
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Example 2
Suppose that we have an employee identification variable, empid, and that we want to retain the

leading zeros when we list our data. format has a leading-zero option that allows this.

. use https://www.stata-press.com/data/r19/fmtxmpl, clear

. describe empid
Variable Storage Display Value

name type format label Variable label

empid float %9.0g
. list empid in 83/87

empid

83. 98
84. 99
85. 100
86. 101
87. 102

. format empid %05.0f

. list empid in 83/87

empid

83. 00098
84. 00099
85. 00100
86. 00101
87. 00102

Technical note
The syntax of the format command allows varlist and not just one variable name. Thus you can

attach the %9.2f format to the variables myvar, thisvar, and thatvar by typing

. format myvar thisvar thatvar %9.2f

Example 3
We have employee data that includes hiredate and login and logout times. hiredate is stored

as a float, but we were careful to store login and logout as doubles. We need to attach a date format

to these three variables.

. use https://www.stata-press.com/data/r19/fmtxmpl2, clear

. format hiredate login logout
Variable name Display format

hiredate %9.0g
login %10.0g
logout %10.0g
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. format login logout %tcDDmonCCYY_HH:MM:SS.ss

. list login logout in 1/5

login logout

1. 08nov2006 08:16:42.30 08nov2006 05:32:23.53
2. 08nov2006 08:07:20.53 08nov2006 05:57:13.40
3. 08nov2006 08:10:29.48 08nov2006 06:17:07.51
4. 08nov2006 08:30:02.19 08nov2006 05:42:23.17
5. 08nov2006 08:29:43.25 08nov2006 05:29:39.48

. format hiredate %td

. list hiredate in 1/5

hiredate

1. 24jan1986
2. 10mar1994
3. 29sep2006
4. 14apr2006
5. 03dec1999

We remember that the project manager requested that hire dates be presented in the same form as they

were previously.

. format hiredate %tdDD/NN/CCYY

. list hiredate in 1/5

hiredate

1. 24/01/1986
2. 10/03/1994
3. 29/09/2006
4. 14/04/2006
5. 03/12/1999

Setting European formats
Do you prefer that one and one half be written as 1,5 and that one thousand one and a half be written

as 1.001,5? Stata will present numbers in that format if, when you set the format, you specify ‘,’ rather
than ‘.’ as follows:

. use https://www.stata-press.com/data/r19/census10, clear
(1980 Census data by state)
. format pop %12,0gc
. format medage %9,2f
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. list in 1/8

state region pop medage

1. Alabama South 3.893.888 29,30
2. Alaska West 401.851 26,10
3. Arizona West 2.718.215 29,20
4. Arkansas South 2.286.435 30,60
5. California West 23.667.902 29,90

6. Colorado West 2.889.964 28,60
7. Connecticut NE 3.107.576 32,00
8. Delaware South 594.338 29,80

You can also leave the formats just as they were and instead type set dp comma. That tells Stata to
interpret all formats as if you had typed the comma instead of the period:

. format pop %12.0gc (put the formats back as they were)

. format medage %9.2f

. set dp comma (tell Stata to use European format)

. list in 1/8
(same output appears as above)

set dp comma affects all Stata output, so if you run a regression, display summary statistics, or make a
table, commas will be used instead of periods in the output:

. tabulate region [fw=pop]
Census
region Freq. Percent Cum.

NE 49135283 21,75 21,75
N Cntrl 58865670 26,06 47,81
South 74734029 33,08 80,89
West 43172490 19,11 100,00

Total 225907472 100,00

You can return to using periods by typing

. set dp period

Setting a variable’s display format to European affects how the variable’s values are displayed by

list and in a few other places. Setting dp to comma affects every bit of Stata.

Also, set dp comma affects only how Stata displays output, not how it gets input. When you need to

type one and a half, you must type 1.5 regardless of context.

Technical note
set dp comma makes drastic changes inside Stata, and we mention this because some older, user-

written programs may not be able to deal with those changes. If you are using an older, user-written

program, you might set dp comma only to find that the program does not work and instead presents

some sort of syntax error.

If, using any program, you get an unanticipated error, try setting dp back to period.
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Even with set dp comma, you might still see some output with the decimal symbol shown as a period
rather than a comma. There are two places in Stata where Stata ignores set dp comma because the

features are generally used to produce what will be treated as input, and set dp comma does not affect
how Stata inputs numbers. First,

local x = sqrt(2)

stores the string “1.414213562373095” in x and not “1,414213562373095”, so if some program were

to display ‘x’ as a string in the output, the period would be displayed. Most programs, however, would

use ‘x’ in subsequent calculations or, at the least, when the time came to display what was in ‘x’, would
display it as a number. They would code

display ... ‘x’ ...

and not

display ... ”‘x’” ...

so the output would be

... 1,4142135 ...

The other place where Stata ignores set dp comma is the string() function. If you type

. generate res = string(numvar)

new variable res will contain the string representation of numeric variable numvar, with the decimal
symbol being a period, even if you have previously set dp comma. Of course, if you explicitly ask that
string() use European format,

. generate res = string(numvar,”%9,0g”)

then string() honors your request; string() merely ignores the global set dp comma.

Details of formats

The %f format
In %w.df, w is the total output width, including sign and decimal point, and d is the number of digits

to appear to the right of the decimal point. The result is right-justified.

The number 5.139 in %12.2f format displays as
----+----1--

5.14

When d = 0, the decimal point is not displayed. The number 5.14 in %12.0f format displays as

----+----1--
5

%-w.df works the same way, except that the output is left-justified in the field. The number 5.139 in
%-12.2f displays as

----+----1--
5.14
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The %fc format
%w.dfc works like %w.df except that commas are inserted to make larger numbers more readable.

w records the total width of the result, including commas.

The number 5.139 in %12.2fc format displays as

----+----1--
5.14

The number 5203.139 in %12.2fc format displays as

----+----1--
5,203.14

As with %f, if d = 0, the decimal point is not displayed. The number 5203.139 in %12.0fc format
displays as

----+----1--
5,203

As with %f, a minus sign may be inserted to left justify the output. The number 5203.139 in %-12.0fc
format displays as

----+----1--
5,203

The %g format
In %w.dg, w is the overall width, and d is usually specified as 0, which leaves up to the format the

number of digits to be displayed to the right of the decimal point. If d ≠ 0 is specified, then not more

than d digits will be displayed. As with %f, a minus sign may be inserted to left-justify results.

%g differs from %f in that 1) it decides how many digits to display to the right of the decimal point,

and 2) it will switch to a %e format if the number is too large or too small.

The number 5.139 in %12.0g format displays as

----+----1--
5.139

The number 5231371222.139 in %12.0g format displays as

----+----1--
5231371222

The number 52313712223.139 displays as

----+----1--
5.23137e+10

The number 0.0000029394 displays as

----+----1--
2.93940e-06

The %gc format
%w.dgc is %w.dg with commas. It works in the same way as the %g and %fc formats.
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The %e format
%w.de displays numeric values in exponential format. w records the width of the format. d records

the number of digits to be shown after the decimal place. w should be greater than or equal to d+7 or, if

3-digit exponents are expected, d+8.

The number 5.139 in %12.4e format is

----+----1--
5.1390e+00

The number 5.139 × 10220 is

----+----1--
5.1390e+220

The %21x format
The %21x format is for those, typically programmers, who wish to analyze routines for numerical

roundoff error. There is no better way to look at numbers than how the computer actually records them.

The number 5.139 in %21x format is

----+----1----+----2-
+1.48e5604189375X+002

The number 5.125 is

----+----1----+----2-
+1.4800000000000X+002

Reported is a signed, base-16 number with base-16 point, the letter X, and a signed, 3-digit base-16
integer. Call the two numbers f and e. The interpretation is f × 2𝑒.

The %16H and %16L formats
The %16H and %16L formats show the value in the IEEE floating point, double-precision form. %16H

shows the value in most-significant-byte-first (hilo) form. %16L shows the number in least-significant-
byte-first (lohi) form.

The number 5.139 in %16H is

----+----1----+-
40148e5604189375

The number 5.139 in %16L is

----+----1----+-
75931804568e1440

The format is sometimes used by programmers who are simultaneously studying a hexadecimal dump

of a binary file.

The %8H and %8L formats
%8H and %8L are similar to %16H and %16L but show the number in IEEE single-precision form.

The number 5.139 in %8H is

----+---
40a472b0
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The number 5.139 in %8L is

----+---
b072a440

The %t format
The %t format displays numerical variables as dates and times. See [D] Datetime display formats.

The %s format
The %ws format displays a string in a right-justified field of width w. %-ws displays the string left-

justified.

“Mary Smith” in %16s format is

----+----1----+-
Mary Smith

“Mary Smith” in %-16s format is

----+----1----+-
Mary Smith

Also, in some contexts, particularly display (see [P] display), %~ws is allowed, which centers the
string. “Mary Smith” in %~16s format is

----+----1----+-
Mary Smith

Other effects of formats
You have data on the age of employees, and you type summarize age to obtain the mean and standard

deviation. By default, Stata uses its default g format to provide as much precision as possible.
. use https://www.stata-press.com/data/r19/fmtxmpl, clear
. summarize age

Variable Obs Mean Std. dev. Min Max

age 204 30.18627 10.38067 18 66

If you attach a %9.2f format to the variable and specify the format option, Stata uses that specification
to format the results:

. format age %9.2f

. summarize age, format
Variable Obs Mean Std. dev. Min Max

age 204 30.19 10.38 18.00 66.00

Displaying current formats
format varlist is not often used to display the formats associated with variables because using

describe (see [D] describe) is easier and provides more information. The exceptions are date vari-

ables. Unless you use the default %tc, %tC, . . . formats (and most people do), the format specifier itself
can become very long, such as

. format admittime %tcDDmonCCYY_HH:MM:SS.sss
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Such formats are too long for describe to display, so it gives up. In such cases, you can use format
to display the format:

. format admittime
variable name display format

admittime %tcDDmonCCYY_HH:MM:SS.sss

Type format * to see the formats for all the variables.

Video example
How to change the display format of a variable
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Description Quick start Syntax Options
Remarks and examples Stored results Also see

Description
fralias add defines variable aliases, names that reference variables in a linked frame. An alias

defined by fralias add is a variable that behaves like a copy of a variable from a linked frame, which

you could obtain from frget. Unlike a copy, however, an alias uses very little memory, and you cannot
modify its observations. Almost all of Stata’s statistical and data-management commands allow you to

specify an alias just as you would specify the name of a variable in the current frame.

fralias describe produces a summary of the alias variables in the current frame.

See [D] frames intro if you do not know what a frame is.

Quick start
Define aliases for variables v1, v2, and v3 from another frame linked by lnk

fralias add v1 v2 v3, from(lnk)

Define aliases newv4 and newv5 for variables v4 and v5 linked via lnk
fralias add newv4=v4 newv5=v5, from(lnk)

Define aliases for all variables in linkage lnk, prefixing them with l
fralias add *, from(lnk) prefix(l_)

Define aliases for all variables via linkage lnk, excluding those matching pattern ind*
fralias add *, from(lnk) exclude(ind*)

Report on all the alias variables in the current frame

fralias describe

Report on the alias variables starting with l
fralias describe l *

296
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Syntax
Add alias variables

fralias add varlist, from(linkname) [ rename options ] (1)

fralias add newalias1 = varname1
[ newalias2 = varname2 [ . . . ] ] , from(linkname) (2)

Describe alias variables

fralias describe [ varlist ]

linkname is the name of a linkvar in the current frame that was created by frlink; see [D] frlink.

rename options Description

prefix(string) prefix new alias names with string

suffix(string) suffix new alias names with string

exclude(varlist) exclude specified variables

collect is allowed; see [U] 11.1.10 Prefix commands.

Syntax 1 defines aliases for the variable names specified by varlist from the frame linked by linkname.

Syntax 2 defines alias newalias1 in the current frame to be a reference to varname1 from the frame linked

by linkname. Similarly, alias newalias2 is a reference to varname2 and so on.

Options
from(linkname) specifies the identity of the linked frame from which variables are aliased. Linkages to

frames are created by the frlink command. Linkages are usually named for the frame to which they
link. Linkage counties links to frame counties, and so you specify from(counties). If linkage
c links to frame counties, you specify from(c). from() is required.

prefix(string) specifies a string to be prefixed to the names of the new aliases created in the current

frame. Say that you type

. fralias add inc*, from(counties)

to define aliases for variables income and income family. If variable income already exists in the
current frame, the command would issue an error message to that effect and alias neither variable. To

alias the two variables, you could type

. fralias add inc*, from(counties) prefix(c_)

Then the new aliases would be named c income and c income family.

suffix(string) works like prefix(string), the difference being that the string is suffixed rather than
prefixed to the alias names. Both options may be specified if you wish.

exclude(varlist) specifies variables that are not to be aliased. An example of the option is

. fralias add *, from(counties) exclude(emp*)

All variables except variables starting with emp would get an alias. More correctly, all variables

except emp*, *, and the match variables would be aliased because fralias add always omits the
underscore and match variables. See the explanation below.
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Remarks and examples
Remarks are presented under the following headings:

Overview
Everything you need to know about fralias add
Where are alias variables not allowed
Breaking alias variables

Rename or drop the linked variable
Rename or drop the linkage variable
Rename or drop a matching variable
Rename or drop the linked frame
Change sort order in the linked frame

Overview
You have data on people and data on counties. You loaded the datasets and created a linkage named

uscounties by typing

. use people

. frame create uscounties

. frame uscounties: use uscounties

. frlink m:1 countyid, frame(uscounties)

See example 1 in [D] frlink for details.

Among the variables in uscounties.dta is median income. Instead of copying the variable into
the current frame, you could define an alias for the variable by typing either of the following:

. fralias add median_income, from(uscounties)

. fralias add medinc = median_income, from(uscounties)

The first command defines an alias named median income in the current frame. The second names it
medinc.

Everything you need to know about fralias add
Here is everything you need to know in outline form:

1. What it means to alias a linked variable

2. fralias add can define aliases one at a time
3. fralias add allows variable names to be abbreviated
4. fralias add can define groups of aliases
5. fralias add works with all the variables specified, or none of them
6. fralias add ignores repeated variables
7. How to define aliases for all the variables 1: fralias add *

8. How to define aliases for all the variables 2: fralias add *, prefix()

We make two assumptions in what follows:

A1. The current frame contains data on people. A frame named uscounties contains data on

counties. That is, we assume

. use people

. frame create uscounties

. frame uscounties: use uscounties
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A2. The frames are linked on the match variable countyid, which appears in both datasets. The
linkage between the frames is named uscounties, the same name as the frame being linked.
That is, we assume

. frlink m:1 countyid, frame(uscounties)

1. What it means to alias a linked variable

When you type

. fralias add median_income, from(uscounties)

fralias add defines an alias named median income in the current frame that references vari-
able median income from frame uscounties. This allows you to use median income as if
it were a variable in the current frame. It is like a copy of the original variable, but it uses much

less memory, and you cannot modify its observations.

2. fralias add can define aliases one at a time

To define alias median income of variable median income from linked frame uscounties,
type

. fralias add median_income, from(uscounties)

To instead define alias medinc of variable median income from the same linked frame, type

. fralias add medinc=median_income, from(uscounties)

3. fralias add allows variable names to be abbreviated

fralias add allows abbreviations if you have not set varabbrev off. If median income
is the only variable beginning with median in the linked frame, you can type

. fralias add median, from(uscounties)

The new alias will be named median income.

When using fralias add’s newvar=varname syntax, you can abbreviate the variable being
copied that appears to the right of the equals sign:

. fralias add medinc=median, from(uscounties)

4. fralias add can define groups of aliases

fralias add allows you to specify a varlist. Even though you type fralias add in the current
frame, the varlist is interpreted in the linked frame. You can type

. fralias add emp*, from(uscounties)

. fralias add emp* median_income, from(uscounties)

. fralias add emp* median, from(uscounties)

. fralias add emp* m*, from(uscounties)

. fralias add *, from(uscounties)

When you specify a varlist, fralias add automatically omits the match variable or variables
and any variables starting with an underscore ( ). First, we will tell you why, and then, we will

tell you a workaround.
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We start with a match variable. The match variable in our example is match variable countyid.
The variable has the same name in both frames. Pretend for a moment that fralias add did not
exclude match variables. Then, if you tried to alias countyid, that would be an error because
fralias add will not overwrite an existing variable with a new alias. That seems reasonable

until you realize that it would also mean that fralias add would issue an error if you typed

. fralias add c*, from(uscounties)

or even if you typed

. fralias add *, from(uscounties)

fralias add would issue errors because c* and * would include countyid, which, being the
match variable, already exists in the current frame. fralias add automatically omits match
variables so that you can type fralias add c* and fralias add * and get aliases for all the
other variables.

fralias add omits * variables because they tend to be Stata system variables that are valid

only in the dataset in which they appear. You do not want them.

What if you need to get one of these variables? Use the newvar=varname syntax. Type, for
instance,

. fralias add _myvar=_myvar, frame(uscounties)

Automatic omission is not applied to this syntax.

5. fralias add works with all the variables specified, or none of them

fralias addwill not replace existing variables with aliases. If just one variable in the specified
list already exists in the current frame, fralias add issues an error.

. fralias add emp* m*, from(uscounties)
variable mvalues already exists
r(110);

If you want all the m* variables except mvalues, use the exclude() option:

. fralias add emp* m*, from(uscounties) exclude(mvalues)

If you also want mvalues to have alias mvals in the current frame, type

. fralias add mvals=mvalues, from(uscounties)

6. fralias add ignores repeated variables

It is not an error to type

. fralias add employment employment, from(uscounties)

We specified employment twice, but fralias add ignores that and defines the alias once. This
is convenient because variables can be inadvertently repeated, as in

. fralias add m* employment-larea, from(uscounties)

Although you cannot see it, variable mds is repeated in the example. m* contains mds, and so
does employment-larea because mds is among the variables stored between them.

When variables are repeated using the newvar=varname syntax, fralias add does not ignore
repetition. It defines an alias for each variable that you specify:

. fralias add medinc=income inc=income, from(uscounties)
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7. How to define aliases for all the variables 1: fralias add *

To define an alias for all the variables, try typing

. fralias add *, from(uscounties)

This sometimes works. Other times it does not because some of the variables in uscounties
already exist in the current frame. When it does not work, fralias add lists the variable names
that exist in both frames and, even better, stores them in r(dups). Thus, if you are willing to
exclude those variables, you can type

. fralias add *, from(uscounties) exclude(‘r(dups)’)

8. How to define aliases for all the variables 2: fralias add *, prefix()

Another way to define aliases for all the variables in a linked frame is to type

. fralias add *, from(uscounties) prefix(c_)

This defines aliases for all the variables in the linked frame, using their original names but pre-

fixed with c . The variable mvalues in the linked frame, for instance, is aliased to c mvalues.

Another advantage of this approach is how easily you can drop the aliases from the data should

you desire to do so. Type

. drop c_*

You can choose your own prefix. If you prefer suffixing them, type

. fralias add *, from(uscounties) suffix(_c)

This names the aliases mvalues1 c, mvalues2 c, etc. These names aremore like the originals,
at least if you use tab completion for typing them. Type the first characters of the original

name, and press Tab. And if you wish, you can later drop the suffixed variables just as easily

as prefixed ones. Type

. drop *_c

Where are alias variables not allowed
The following commands change the values in variables they operate on, so by their very nature,

they cannot work with alias variables: cross, dyngen, fillin, the icd suite of commands, recode,
reshape, stack, xpose, the mi suite of commands, and snapspan.

The error message they produce, when they detect alias variables, will mention using frunalias to work
around this restriction.

. xpose, clear
alias variables not allowed

Alias variables detected: var1 and var2.
You could use command frunalias to recast these variables to avoid this
error message.

r(109);
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Breaking alias variables
We can break the linkages that alias variables depend on. In the following, we cover the various ways

this can happen.

We use the datasets and linkage described in Example 1: A typical m:1 linkage of [D] frlink for our

setup. Recall that persons.dta contains data on people and txcounty.dta contains data on Texas

counties, and we link the two using variable countyid.
. use https://www.stata-press.com/data/r19/persons
. frame create txcounty
. frame txcounty: webuse txcounty
(Median income in Texas counties)
. frlink m:1 countyid, frame(txcounty)
(all observations in frame default matched)

Let’s create an alias for each variable in the linked frame.

. fralias add *, from(txcounty)
(variable not aliased from linked frame: countyid)
(1 variable aliased from linked frame)

fralias add informed us that it added 1 alias variable.

For alias variables, describe will try to report the storage type of the linked variable. If the link

is broken, then describe will report unknown for the storage type. In either case, describe will note
when it detects alias variables. The note indicates that alias variables have a clickable type.

. describe
Contains data from https://www.stata-press.com/data/r19/persons.dta
Observations: 20

Variables: 5 16 Apr 2024 13:36
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

personid byte %9.0g Person ID
countyid byte %9.0g County ID
income float %9.0g Household income
txcounty byte %10.0g
median_income float %9.0g Household median income

Sorted by:
Note: Alias variables have clickable types.
Note: Dataset has changed since last saved.

Clicking on the storage type link (float) in Stata will run the fralias describe command on the
associated variable.

. fralias describe median_income

Alias Type Target Link Frame

median_income float median_income txcounty txcounty
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Rename or drop the linked variable

Let’s break the link in our alias variable by renaming the linked variable median income to medinc.
describe now reports unknown for the storage type of our alias variable.

. frame txcounty: rename median_income medinc

. describe
Contains data from https://www.stata-press.com/data/r19/persons.dta
Observations: 20

Variables: 5 16 Apr 2024 13:36
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

personid byte %9.0g Person ID
countyid byte %9.0g County ID
income float %9.0g Household income
txcounty byte %10.0g
median_income unknown %9.0g Household median income

Sorted by:
Note: Alias variables have clickable types.
Note: Dataset has changed since last saved.

Clicking on the link (unknown) shows the same information as before, except the target type is

(unknown).

. fralias describe median_income

Alias Type Target Link Frame

median_income (unknown) median_income txcounty txcounty

If we try to use this broken alias variable in a calculation, Stata will exit with an informative errormessage.

. summarize median_income
variable median_income not found in frame txcounty

You created alias variable median_income using the fralias command. When
you did that, you specified median_income as the target variable and
txcounty as the link variable for frame txcounty. The target variable
median_income no longer exists in frame txcounty. Without it, the alias
variable median_income is broken. If you renamed the target variable in
frame txcounty, rename it back to median_income.

r(111);

We did rename median income, so let’s rename back to the original and try summarize again.

. frame txcounty: rename medinc median_income

. summarize median_income
Variable Obs Mean Std. dev. Min Max

median_inc~e 20 56182.1 12207.6 43788 72785

Rename or drop the linkage variable

Renaming or dropping a linkage variable will break all the alias variables that depend on it. A linkage

variable is the variable created by frlink. In our example, this is the variable named txcounty. If we
rename txcounty to txcnty, describe reports unknown for the storage type of our alias variable.
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. rename txcounty txcnty

. describe
Contains data from https://www.stata-press.com/data/r19/persons.dta
Observations: 20

Variables: 5 16 Apr 2024 13:36
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

personid byte %9.0g Person ID
countyid byte %9.0g County ID
income float %9.0g Household income
txcnty byte %10.0g
median_income unknown %9.0g Household median income

Sorted by:
Note: Alias variables have clickable types.
Note: Dataset has changed since last saved.

Now, if we try to use this broken alias variable in a calculation, Stata will exit with another informative

error message.

. summarize median_income
variable txcounty not found

You created alias variable median_income using the fralias command. When
you did that, you specified txcounty as the link variable. The link
variable txcounty no longer exists. Without it, the alias variable
median_income is broken. If you renamed the link variable, rename it back
to txcounty.

r(111);
. rename txcnty txcounty

Here, we simply renamed the linkage variable back to the original.

Rename or drop a matching variable

Renaming or dropping the variables used to link the frames will break alias variables that depend on

that link. In our example, variable countyid is used to link our frames. After we rename countyid to
cnty in frame txcounty, describe reports unknown for the storage type of our alias variable.

. frame txcounty: rename countyid cnty

. describe
Contains data from https://www.stata-press.com/data/r19/persons.dta
Observations: 20

Variables: 5 16 Apr 2024 13:36
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

personid byte %9.0g Person ID
countyid byte %9.0g County ID
income float %9.0g Household income
txcounty byte %10.0g
median_income unknown %9.0g Household median income

Sorted by:
Note: Alias variables have clickable types.
Note: Dataset has changed since last saved.
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Now, if we try to use this broken alias variable in a calculation, Stata will exit with a different infor-

mative error message.

. summarize median_income
variable countyid not found in frame txcounty

You created the link variable txcounty using the frlink command. When you
did that, you specified variable countyid as the link variable, or as one
of them. That variable no longer exists in frame txcounty. Without it,
the frames can no longer be linked. If you renamed the variable in the
frame, rename it back to countyid.

r(111);
. frame txcounty: rename cnty countyid

Renaming cnty back to countyid in frame txcounty resolves this problem.

Rename or drop the linked frame

Renaming or dropping a linked frame will break alias variables linked to that frame. Let’s rename

frame txcounty to county. As before, describe now reports unknown for the storage type of our alias

variable.

. frame rename txcounty county

. describe
Contains data from https://www.stata-press.com/data/r19/persons.dta
Observations: 20

Variables: 5 16 Apr 2024 13:36
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

personid byte %9.0g Person ID
countyid byte %9.0g County ID
income float %9.0g Household income
txcounty byte %10.0g
median_income unknown %9.0g Household median income

Sorted by:
Note: Alias variables have clickable types.
Note: Dataset has changed since last saved.

Now, if we try to use this broken alias variable in a calculation, Stata will exit with another informative

error message.

. summarize median_income
frame txcounty not found

You created the link variable txcounty using the frlink command with
txcounty specified in option frame(). That frame no longer exists.
Without it, the frames can no longer be linked. If you renamed the frame,
rename it back to txcounty.

r(111);
. frame rename county txcounty

Renaming the frame back to txcounty again resolves this issue.
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Change sort order in the linked frame

Changing the sort order in the linked frame will break alias variables linked to that frame. Let’s sort

frame txcounty on median income. As evidence that the link is broken, describe reports unknown
for the storage type of our alias variable.

. frame txcounty: sort median_income

. describe
Contains data from https://www.stata-press.com/data/r19/persons.dta
Observations: 20

Variables: 5 16 Apr 2024 13:36
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

personid byte %9.0g Person ID
countyid byte %9.0g County ID
income float %9.0g Household income
txcounty byte %10.0g
median_income unknown %9.0g Household median income

Sorted by:
Note: Alias variables have clickable types.
Note: Dataset has changed since last saved.

Now, if we try to use this broken alias variable in a calculation, Stata will exit with another informative

error message.

. summarize median_income
data in frame txcounty not sorted

Type frlink describe txcounty. frlink describe will sort the data in the
frame, thus correcting the problem, and it will verify that the link
variable is otherwise still valid. If it is not, frlink describe will
tell you how to fix the problem.

r(5);
. quietly frlink describe txcounty

Using frlink describe restores the original sort order.
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Stored results
fralias add stores the following in r():

Scalars

r(k) number of aliases created

Macros

r(newlist) new aliases in the current frame

r(srclist) variables aliased from linked frame

r(excluded) variables not aliased from linked frame

r(dups) variables already present in the current frame

r(notfound) variables not found in the linked frame

r(dups) is present only if fralias add exits with an error message because a prospective new alias

name already exists in the current frame.

r(notfound) is present only for syntax 2 when fralias add exits with an error message because a
varname is not found in the linked frame.

fralias describe stores the following in r():

Macros

r(varlist) alias variables in the current frame

Also see
[D] frlink — Link frames

[D] frget — Copy variables from linked frame

[D] frunalias — Change storage type of alias variables

[D] frames intro — Introduction to frames

[D] merge — Merge datasets

[M-5] st addalias( ) —Add alias variable to current Stata dataset

[M-5] st isalias( ) — Properties of alias variable
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Description Remarks and examples References Also see

Description
Frames, also known as data frames, allow you to simultaneously store multiple datasets in memory.

The datasets in memory are stored in frames, and Stata allows multiple frames. You can switch between

them and even link data in them to data in other frames. How this works is presented below.

Remarks and examples
Remarks are presented under the following headings:

What frames can do for you
Use frames to multitask
Use frames to perform tasks integral to your work
Use frames to work with separate datasets simultaneously
Use frames to record statistics gathered from simulations
Frames make Stata (preserve/restore) faster
Other uses will occur to you that we should have listed

Learning frames
The current frame
Creating new frames
Type frame or frames, it does not matter
Switching frames
Copying frames
Dropping frames
Resetting frames
Frame prefix command
Linking frames
Ignore the frval() function
Posting new observations to frames
Saving, modifying, loading, and describing a set of frames

Programming with frames
Ado-programming with frames
Mata programming with frames

What frames can do for you
Frames let you have multiple datasets in memory simultaneously. Here are a few ways you can use

them.

Use frames to multitask

You can create a new frame, load another dataset into it, perform some task, switch back, and discard

the frame.

308
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You are working. The phone rings. Something has to be handled right now.

. frame create interruption // you create new frame ...

. frame change interruption // and switch to it

. use another_dataset // you load a dataset

. // you do what needs doing

. frame change default // you switch back

. frame drop interruption // you delete the new frame

You are back to work just as if you had never been interrupted.

Use frames to perform tasks integral to your work

You need to calculate a value from the data and add it to the data. This is troublesome because making

the calculation requires modifying the data, the same data that need to be unmodified and have the result

added to them.

You have loaded yourdata.dta into memory and have already made some updates to it. You have
not yet saved those changes. You set about calculating the troublesome value.

. frame copy default subtask // create & copy current data to new frame

. frame change subtask // switch to the new frame

. sort weight foreign // begin result calculation

. omitted steps

. keep if mark1 | mark2 // drop observations!

. omitted steps

. regress dmpg dw if mod(_n,2) // calculate troublesome value

. frame change default // switch back to previous frame

. gen dwc = cond(foreign,_b[dw],0) // save result in yourdata.dta

. frame drop subtask // drop new frame

You could have used preserve and restore to perform this task. Using frames, however, is usually

more convenient, if for no other reason than you can switch back and forth between them. You cannot

do that with a preserved dataset and the modified copy in memory.

If you look carefully at the code above, you will notice that the troublesome value we needed to

calculate and store was b[dw]. b[dw] was calculated from data in frame subtask and stored in Stata
for subsequent use no matter which frame is current.

It is dataset values that are stored in frames. Programmatic values such as b[ ], r(), e(), and s()
are stored in Stata and available across frames.

Use frames to work with separate datasets simultaneously

Whenwe say working with datasets simultaneously, wemean datasets that are linked. Linked datasets

are an alternative to merged datasets.

You have two datasets. persons.dta contains data on people. uscounties.dta contains data on
counties. You want to analyze the people in persons.dta and the counties in which they live. There
are issues in combining the two datasets:

1. Some of the people in persons.dta live in the same county.

2. There are counties in uscounties.dta that are irrelevant to your analysis because nobody in
persons.dta lives in them.
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3. You are not certain that uscounties.dta is complete. There might be some people in

persons.dta that live in counties not recorded in uscounties.dta.

4. And beyond that, only some of the variables in uscounties.dta are needed for your analysis.

The frames solution to all of these problems is to link the two datasets. You start by loading

persons.dta into one frame and uscounties.dta into another:
. use persons
. frame create uscounties
. frame uscounties: use uscounties

To link the datasets in the two frames, you type

. frlink m:1 countyid, frame(uscounties)

This matches the observations in persons.dta to those in uscounties.dta based on equal values
of variable countyid. The data are not merged, they are linked. No variables from uscounties.dta
are copied to persons.dta, but how the variables would be copied has been worked out.

You copy variables to the person data as you need them, one at a time, or in groups, using the frget
command:

. frget med_income nschools, from(uscounties)

You can perform the desired analysis using persons.dta, the dataset in the current frame:

. regress income med_income nschools educ age

Use frames to record statistics gathered from simulations

Simulations involve repeating a task—performing a simulation—each step of which produces statis-

tics that are somehow recorded. After that, you analyze the recorded statistics.

The frames solution to the simulation problem is to collect the statistics in another frame. We will

name that frame results. You start by creating a new frame and the variables in it to record the statistics,

such as b1coverage and b2coverage:
new frame’s
name

\
. frame create results b1coverage b2coverage

/
new variables in it

The new frame contains zero observations at this point.

You will next write a do-file to create the values to be stored after each iteration. At the end of each

iteration, the do-file will contain the line

frame’s name
\

. frame post results (exp1) (exp2)

/
values for

b1coverage and b2coverage

frame post adds an observation to the data in results. exp1 and exp2 are expressions.
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When the do-file finishes, the completed set of results will be found in frame results. You will want
to save them:

. frame results: save filename

You will then switch to the frame and begin your analysis of the statistics:

. frame change results

. summarize

Frames make Stata (preserve/restore) faster

Many programs written in Stata use the commands preserve and restore to temporarily save and
later restore the contents of the data in memory. Programs that use preserve and restore now run

faster if you are using Stata/MP. They run faster because Stata preserves data by copying them to hidden

frames. Those hidden frames are stored in memory. Copying data to frames stored in memory takes a

lot less time than copying data to disk.

More correctly, preserve copies data to hidden frames unless memory is in short supply. If it is,

preserve resorts to storing them on disk. That is temporary because later, as datasets are restored,

memory will again become available and preserve will return to preserving them in hidden frames.

This is all automatic, but you may want to reset the value of max preservemem, which controls this
behavior. When the amount stored in hidden frames would exceed max preservemem, Stata preserves
subsequent datasets on disk. Out of the box, max preservemem is set to 1 gigabyte. Perhaps you or

someone else has already changed that. To find out the current value of max preservemem, type
. query memory

If you want to change max preservemem to 2 gigabytes for the duration of the session, type

. set max_preservemem 2g

You can set the value up or down. You could set it to 4g or 50m. You could even set it to 0, and then
all datasets would be preserved to disk.

If you want to set max preservemem to 2 gigabytes permanently, for this session and future Stata
sessions, type

. set max_preservemem 2g, permanently

Other uses will occur to you that we should have listed

Frames make doing lots of tasks more convenient, and you will find your own uses for them. Frames

make code faster too. Manipulating objects stored in memory takes less computer time thanmanipulating

disk files.

Learning frames
Here is a tutorial on using frames. In the tutorial, we will sometimes show you a syntax diagram. For

example, we might show you

frame copy framename newframename
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When we show syntax diagrams in the tutorial, they are not always the full syntax diagrams. frame
copy, for instance, also allows a replace option, andwemight not only not show it in the syntax diagram

but also not even mention it. You can click on the command to see the full syntax.

The current frame

Everything hinges on the current frame. Stata commands use the data in the current frame. When

you load a dataset,

. sysuse auto
(1978 automobile data)

you are loading it into the current frame. Which frame is that? Type frame to discover its identity:

. frame
(current frame is default)

You can type frame or type pwf, which is a synonym for frame. The letters stand for “print working
frame”. We will type frame in this tutorial, but you may prefer to type pwf because it is shorter. Other
frame commands also have shorter synonyms. We will mention them as we go along.

We just discovered that the current frame is named default. When Stata is launched, that is what

it names the frame it creates for you. You cannot change that, but default is just a name, and you can
rename frames if you wish. You can create other frames too. You can create up to 100 of them.

To rename a frame, use the frame rename command:

frame rename oldname newname

To rename the frame default to genesis, type

. frame rename default genesis

. frame
(current frame is genesis)

Frames can be renamed whether Stata created them or you did. They can be renamed whether they

have data in them or they are empty. Renaming default will not break anything subsequently. Stata
commands operate on the current frame, whatever its name.

Creating new frames

Create new frames using the frame create command:

frame create newframename

We will show you an example in a minute. First, however, if you are going to create a frame with a

new name, you need to know how to find out the names of the frames that currently exist. You do that

using the frames dir command:

frames dir

We recall that we renamed our default frame, but we cannot recall the name that we used. So what

frames are in memory?

. frames dir
genesis 74 x 12; 1978 automobile data
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There is one frame in memory, named genesis. It contains a dataset that is 74 × 12, meaning 74

observations and 12 variables. The dataset has a dataset label “1978 automobile data”, but if it did not,

the dataset’s name, auto.dta, would have appeared in its place in frames dir’s output, unless the data
had never been saved to disk. In that case, nothing would have appeared where “1978 automobile data”

appeared.

Now let’s create a new frame named second:

. frame create second

. frame dir
genesis 74 x 12; 1978 automobile data
second 0 x 0

There are now two frames in memory. The new frame is 0 × 0. It is empty.

By the way, frame create has a shorter synonym, mkf. The letters stand for “make frame”. We

could have typed mkf second to make the new frame.

Type frame or frames, it does not matter

You probably did not notice, but we have used frames dir twice so far, but we typed it differently
the second time. We typed

. frames dir

. frame dir

Stata does not care whether you type frame or frames. This indifference applies to all the

frames/frame commands.

Switching frames

frame change (synonym: cwf for “changeworking frame”) switches the identity of the current frame:

frame change framename

We could make second the current frame and switch back to genesis again:
. frames change second
. count
0

. cwf genesis

. count
74

We used Stata’s count command to demonstrate that the current frame really switched. count without
arguments displays the number of observations.

Copying frames

There are two commands for copying frames:

frame copy framename newframename

frame put varlist, into(newframename)

frame put if , into(newframename)
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frame copy copies the entire dataset.

frame put copies subsets of the dataset.

In either case, the commands create the frame being copied to.

Dropping frames

To drop existing frames, type

frame drop framename [ framename [ . . . ] ]
The current frame cannot be dropped.

Resetting frames

Resetting frames means the following:

1. Drop all the data in all the frames, even if the data have not been saved since they were last

saved.

2. Drop (delete) all the frames.

3. Create a new frame named default, and make it the current frame.

Each of the following commands resets frames:

frames reset

clear frames

clear all

frames reset and clear frames are synonyms.

clear all resets the frames and does more. It returns Stata to as close to just-after-launch status as
possible.

Frame prefix command

The frame prefix command is perhaps the most convenient of the frame commands. Its syntax

command is

frame framename: stata command

The frame prefix command 1) changes the current frame to the frame specified, 2) executes

stata command, and 3) changes the current frame back to what it was.

For instance, say the current frame is default and we have a second frame named second. We type

. frame second: sysuse census, clear

The result would be that frame second would contain census.dta and the current frame would still be
default, just as if we had typed

. frame change second

. sysuse census, clear

. frame change default
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Frame prefix has a second feature too. Imagine that in doing the above, we omitted the clear option
when we use the data. Consider what would have happened if we set about typing the three commands

but the data in second had changed since they were last saved:

. frame change second

. sysuse census
no; dataset in memory has changed since last saved
r(4);

What is the current frame? It is second, of course, because we changed to it. Instead of using the two
previous commands, we could have used the frame prefix approach. (The current frame is default.)

. frame second: sysuse census
no; dataset in memory has changed since last saved
r(4);

Even though an error occurred, the current frame is still default! To recover from the error, we do

not have to change back to the original frame. The frame prefix command did that for us.

frame prefix has another syntax when you have more than one command to be executed:

frame framename {
stata_command
stata_command
.
.

}

This syntax is especially useful in programs.

Linking frames

When we say linking, we mean linking as shown in the earlier example when we had separate datasets

on people and counties and combined them in a merged-data kind of way. Linking can do a lot more than

we showed you.

In [D] frlink, we show you how to create a nested linkage to link students (one dataset) to the schools

they attend (a second dataset) and to the counties (a third dataset) in which their schools are located. We

show you an example of linking a generational dataset with itself, so that adult children are linked to

their parents and grandparents, a total of six simultaneous linkages!

Linkages are created by using the frlink command. Its simplest syntaxes are

frlink m:1 varlist, frame(framename)

frlink 1:1 varlist, frame(framename)

These syntaxes create an m:1 or 1:1 link between the current frame and framename based on observations
having equal values of varlist.

Once a link is created, you can use the frget command to copy the appropriate values of variables
from framename to the current frame. Its syntaxes are

frget varlist, from(linkagename)

frget newvar = varname, from(linkagename)

Alternatively, you can use the fralias add command to add an alias to variables from framename.

The alias variables can be used in the current frame similarly to copies created with frget, but alias
variables require less memory. The syntaxes of fralias add are
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fralias add varlist, from(linkagename)

fralias add newvar = varname, from(linkagename)

You can use the frval() function in expressions to access appropriate observations of variables in
the linked data. Its syntax is

... frval(linkagename,varname) ...

Ignore the frval() function

While we are on the subject of the frval() function, we should warn you. Also available in [FN] Pro-
gramming functions is frval(). Ignore it. frval() is better. frval() is for use by programmers.

Posting new observations to frames

We used posting to perform simulations in an example earlier. That is one use of it. More generally,

posting solves problems that require transferring data or values from one frame to a new observation in

another.

First, you prepare the other frame to receive the data. frame create, which we already discussed,
has a syntax for doing this. We showed you its first syntax, which is

frame create newframename

The second syntax is

frame create newframename newvarlist

This syntax creates the new frame and creates in it a zero-observation dataset of the new variables spec-

ified. newvarlist really is a new varlist, and that means that you can specify variables types and variable

names. You could type

. frame create results strL(rngstate) double(b1coverage b2coverage)

Alternatively, you can use frame create’s first syntax to create the frame, use frame change to

switch to it, and create the zero-observation dataset yourself. Then, you can switch back to what was the

current frame.

frame post adds observations to the second frame. Its syntax is

frame post framename (exp) (exp) . . . (exp)

The expressions are in the same order as the variables in the second frame.

Saving, modifying, loading, and describing a set of frames

You may want to save several frames for later use. We provide commands for saving a set of frames

in a Stata frameset (.dtas) file and loading saved frames back in memory.

frames save allows you to save a set of frames in a .dtas file. The command provides an option to
automatically save frames that are linked through frlink.

frames modify allows you to modify a Stata frameset (.dtas) file by adding or dropping frames.
You can also replace the contents of an existing frame in the frameset.

frames use allows you to load inmemory frames that have been previously saved with frames save.

frames describe produces a summary of frames in memory or in a file.
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Programming with frames
Below we discuss writing Stata programs that deal with multiple frames.

If you are not interested in writing such programs, stop reading.

What follows is not a tutorial. What follows are numbered lists detailing everything you need to know

to write programs that use more than the current frame. That program could implement a command that

does something with frames specified by users. Or it could do something that, as far as users are con-

cerned, uses only the current frame and hidden from them is that your program uses frames to accomplish

certain internal tasks.

We also want to emphasize there still exists a place for programs written in Stata that do not use frames

at all. Perhaps most programs are like that.

Ado-programming with frames

1. tempnames.

Frameswith names created by tempname are automatically dropped (deleted) when the program
generating the temporary name ends.

If the program you write is to create a new frame for the user, give the frame a tempname in your
program, and, at the end, use frame rename to change its name. This way, if an error occurs,
the frame the program may have been in the midst of creating will be dropped automatically.

2. Current frame.

Stata provides the name of the current frame in creturn result c(frame). You can obtain the
name of the current frame by coding

local curframe = c(frame)

Programs that use frames invariably change frames during their execution. Programs need to

ensure the appropriate frame is the current one at the time the program exits. This includes

when the program is successful and when it exits with error.

The successful case is easy enough to handle. At the point your program exits, set the current

frame appropriately. In general, the current frame should be the same as the current frame was

when the program started.

Error cases can be more difficult. Who knows when the user will press break or when the bug

buried in your code will bite? The code could be doing literally anything. Even so, your pro-

gram needs to ensure that the current frame is set appropriately. There is a style of programming

that does this.

Case 1: You are writing new command foo. foo uses frames but in all cases is to leave the
current frame the same as it was initially. The code reads as follows:

program foo
version ...

local curframe = c(frame)
frame ‘curframe’ {

foo_cmd ‘0’
}

end
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Write foo cmd as you usually would. As you write foo cmd, you can ignore the current-frame
problem. You can use frame change freely in foo cmd and its subroutines. No matter what
happens, error or success, the program will end with the current frame unchanged.

Case 2: You are writing new command foo. If foo is successful, the new frame will change.

The code reads as follows:

program foo
version ...

local curframe = c(frame)
frame ‘curframe’ {

foo_cmd ‘0’
}

frame change ‘s(frame)’
end

Write foo cmd as you usually would. If execution is successful, however, foo cmd must

sreturn in s(frame) the name of the frame that is to be the current frame. As with case 1,
you can use frame change freely in foo cmd and all of its subroutines.

3. preserve and restore.

For end users, using frames is sometimes a better alternative to using preserve and restore.
Programmers should not, however, interpret that as preserve and restore are out of date and
not to be used in frame programming. preserve and restore in programming have the same
valid use they have always had.

Before frames existed in Stata, a single program could have at most one active preserve in it.
Active means not canceled by restore or restore, not. A program could preserve, later
restore or restore, not, and then preserve again. It would be odd but allowed.

Nowadays, a single program can have up to one active preserve for each frame. If a pro-

gram deals with frames ‘one’ and ‘two’ and it is necessary, it can preserve both of them.
preserve preserves the current frame. To preserve frames ‘one’ and ‘two’, code,

frame ‘one’: preserve
frame ‘two’: preserve

When frames are automatically restored at the end of the program, both frames will be restored.

If you wish to restore frame ‘one’ early and cancel its automatic restoration when the program
ends, code

frame ‘one’: restore

If you instead wish to restore frame ‘one’ now and still have it restored when the program

ends, code

frame ‘one’: restore, preserve

If you instead wish simply to cancel the restoration of frame ‘one’ when the program ends,

code

frame ‘one’: restore, not

In all three cases, frame ‘two’ will still be restored when the program ends.

Any uncanceled automatic restorations when the program ends will re-create any frames that

have been dropped (deleted). Automatic restoration does not change the identity of the current

frame.
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Mata programming with frames

1. st frame*() functions.

Mata provides a suite of frame-related functions. They can change frames, create frames, drop

frames, etc.

2. st data(), st sdata(), st data(), and st sdata() functions.

Calls to st data() and its associated functions return the data from the current frame. If you

want data from other frames, change to the other frame first using st framecurrent().

3. st view() and st sview() functions.

Views are views onto the frame that was current at the time the view was created by st view()
or st sview(), and they remain that after creation even when the identity of the current frame
changes. If X is a view onto frame default, it remains a view onto frame default even if the
current frame changes.

Views are how data can be copied between frames. Create a view onto the data in one frame.

Create another view onto the data in the other. Use one view to update the other.
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https://blog.stata.com/2019/09/06/fun-with-frames/
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frames — Data frames

Description Menu Syntax Also see

Description
This entry provides a quick reference to each of the individual commands and functions related to

data frames.

If you are new to data frames in Stata, please start by reading [D] frames intro.

Data frames are discussed in detail in [D] frames intro.

There is also a set of Mata functions to work with frames. See [M-5] st frame*( ).

Menu
Data > Frames Manager

Syntax
frame and frames are synonyms. Below, we will use one or the other depending on which one is more
natural given the context.

Display name of current (working) frame

frame pwf (see [D] frame pwf)

frame

pwf

Display names of all frames in memory

frames dir (see [D] frames dir)

Create new, empty frame

frame create newframename (see [D] frame create)

Create new frame with specified variables for use with frame post
frame create newframename newvarlist (see [P] frame post)

Change identity of current (working) frame

frame change framename (see [D] frame change)

cwf framename
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Execute command on data in specified frame

frame framename: stata command (see [D] frame prefix)

frame framename {
commands to execute in context of framename

}

Make a copy of a frame

frame copy frame from frame to [ , replace ] (see [D] frame copy)

Copy subset of variables or observations to a new frame

frame put (see [D] frame put)

Add new observation to frame

frame post framename (exp) (exp) . . . (exp) (see [P] frame post)

Drop (eliminate) frames that are not the current frame

frame drop framename [ framename [ . . . ] ] (see [D] frame drop)

Rename existing frame (which can be the current frame)

frame rename oldframename newframename (see [D] frame rename)

Reestablish initial state of having a single, empty frame named default
frames reset (see [D] frames reset)

Link frames

frlink (see [D] frlink)

Get variables from linked frame

frget (see [D] frget)

Add aliases to variables from linked frame

fralias add (see [D] fralias)

Describe alias variables in current frame

fralias describe (see [D] fralias)

Recast alias variables into copies in the current frame

frunalias (see [D] frunalias)

Functions to access variables in another frame

frval(linkvar, varname) (see frval())

frval(framename, varname, i)
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Saving, modifying, loading, and describing a set of frames

frames save (see [D] frames save)

frames modify (see [D] frames modify)

frames use (see [D] frames use)

frames describe (see [D] frames describe)

Also see
[D] frames intro — Introduction to frames

[M-5] st frame*( ) — Data frame manipulation



frame change — Change identity of current (working) frame

Description Menu Syntax Remarks and examples Also see

Description
frame changemakes the named frame current. This means that any commands you issue after frame

change will run on the data in that frame.

cwf (change working frame) is a synonym for frame change.

Menu
Data > Frames Manager

Syntax
frame change framename

cwf framename

Remarks and examples
frame changemakes the named frame current, or active. After you change to a frame, any commands

you execute work with the data in that frame.

Another way to work with the data in another frame is the frame prefix command. See [D] frame

prefix.

Example 1
Let’s assume we have several frames in memory, including our current frame named default. We

see this by typing frames dir:

. frames dir
cars 74 x 12; 1978 automobile data
default 50 x 13; 1980 Census data by state
work 28534 x 21; National Longitudinal Survey of Young Women, 14-24

years old in 1968

Our next project uses the 1978 automobile data in the cars frame. To change to this frame, we type

. frame change cars
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We can now work with the data in this frame. For instance, we can describe the data by typing

. describe
Contains data from https://www.stata-press.com/data/r19/auto.dta
Observations: 74 1978 automobile data

Variables: 12 13 Apr 2024 17:45
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

make str18 %-18s Make and model
price int %8.0gc Price
mpg int %8.0g Mileage (mpg)
rep78 int %8.0g Repair record 1978
headroom float %6.1f Headroom (in.)
trunk int %8.0g Trunk space (cu. ft.)
weight int %8.0gc Weight (lbs.)
length int %8.0g Length (in.)
turn int %8.0g Turn circle (ft.)
displacement int %8.0g Displacement (cu. in.)
gear_ratio float %6.2f Gear ratio
foreign byte %8.0g origin Car origin

Sorted by: foreign

At any time, we can change back to the default frame by typing

. frame change default

Also see
[D] frames intro — Introduction to frames

[D] frame prefix — The frame prefix command



frame copy — Make a copy of a frame

Description Quick start Menu Syntax
Option Remarks and examples Also see

Description
frame copy copies an existing frame to a frame with a new name or to an existing frame, replacing

its contents. All data and metadata from frame from are copied.

Quick start
Copy the default frame to a frame named fr1

frame copy default fr1

Copy frame fr1 to existing frame fr2, replacing the data
frame copy fr1 fr2, replace

Menu
Data > Frames Manager

Syntax
frame copy frame from frame to [ , replace ]

Option
replace specifies that frame to be replaced if it already exists.

Remarks and examples
frame from must be an existing frame. It may be the current frame. frame to may be the name of a

new frame or an existing frame. If it is an existing frame, replace must be specified.

In a programming context within a do-file or an ado-file, if you obtain a temporary name and copy a

frame to that name, the frame will automatically be removed upon conclusion of the do-file or program.

Example 1
Let’s assume we have a frame named default in memory. We want to copy this frame to a new

frame named counties. To do this, we type

. frame copy default counties
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Later, we decide that we need to copy a frame named uscounties to our existing frame named

counties, replacing it

. frame copy uscounties counties, replace

When programming, we might want to copy a frame to a temporary name. To copy a frame named

counties to a temporary name, we could type the following:

. tempname newframe

. frame copy counties ‘newframe’

Also see
[D] frames intro — Introduction to frames

[D] frame put — Copy selected variables or observations to a new frame

[D] frame rename — Rename existing frame



frame create — Create a new frame

Description Menu Syntax Remarks and examples Also see

Description
frame create creates a new, empty frame.

mkf (make frame) is a synonym for frame create.

frame createwith a newvarlist creates a new frame with the specified variables. This syntax is most

often used in combination with frame post for posting results in a new frame, see [P] frame post.

Menu
Data > Frames Manager

Syntax

Create new, empty frame

frame create newframename

mkf newframename

Create new frame with specified variables

frame create newframename newvarlist (see [P] frame post)

Remarks and examples
frame create creates a new, empty frame. After creation, you might use frame change to switch to

that frame, or you might use the frame prefix with use or import to load data for analysis in that frame.

Example 1
To create a new frame named cars, type

. frame create cars

We can now load our 1978 automobile data into new the new frame:

. frame cars: use https://www.stata-press.com/data/r19/auto.dta

Here we loaded data from the web. More often, we will load data from our computer. If auto.dta
was saved in our current working directory, we could have typed

. frame cars: use auto.dta
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Also see
[D] frames intro — Introduction to frames

[D] frames — Data frames

[P] frame post — Post results to dataset in another frame



frame drop — Drop frames from memory

Description Menu Syntax Remarks and examples Also see

Description
frame drop eliminates frommemory the specified frames, including any data that are in those frames.

Menu
Data > Frames Manager

Syntax
frame drop framename [ framename [ . . . ] ]

Remarks and examples
frame drop eliminates, or removes from memory, the specified frames. Any data in the frames are

dropped when the frames are dropped. The current frame cannot be dropped.

To eliminate all frames frommemory, including the current frame, use frames reset. See [D] frames

reset.

frame drop supports wildcards * and ? in framename: * matches zero or more characters, and ?
matches exactly one character.

Example 1
To drop a frame named cars, type

. frame drop cars

Example 2
To drop all frames with name starting with auto, type

. frame drop auto*

Example 3
To drop all frames with name starting with f followed by exactly three characters, type

. frame drop f???

Also see
[D] frames intro — Introduction to frames

[D] frames — Data frames

[D] frames reset — Drop all frames from memory
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Description Quick start Syntax Remarks and examples Also see

Description
The frame prefix allows you to execute one or more Stata commands in another frame, leaving the

current frame unchanged.

Quick start
Describe the data in frame fr1

frame fr1: describe

Execute a series of commands in frame fr2
frame fr2 {
use mydata
summarize
codebook

}

Syntax
frame framename: stata command

frame framename {
commands to execute in context of framename

}

Remarks and examples
Remarks are presented under the following headings:

Example of interactive use
Example of use in programs

Example of interactive use
You have data in two frames. In your current frame you have data containing detailed information on

sales for your company across four regions. A colleague just sent you an email with a summary dataset

named sales.dta, which is supposed to contain the total sales for each region. You want to make sure
the summary dataset was created from the same base sales information as the detailed dataset.

In your current dataset, you know from summarize that the total sales for the South region were

$532,399 and the total cost of the goods sold was $330,499. You check that the dataset you just received

matches these totals:

. frame create summary

. frame summary: use sales

. frame summary: list if region==”South”
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The frame prefix command allowed you to load a dataset in frame summary and run a command on
that data without affecting anything in your current frame.

Example of use in programs
The frame prefix can be used for one-liners, such as above, or it can be used to execute a whole series

of commands on the data in another frame. The nice thing in either case is that no matter what happens

when those commands are executed, whether they complete successfully or exit with error, the current

frame will come back to what it was before you called the frame prefix command. In programs, this
means that you do not have to hold on to the current frame name and change back to it after working in

another frame.

You are writing a program that takes a subset of the current data, performs some manipulations on

that subset, and then graphs the result. The required manipulations would damage the original dataset.

One way to do this would be to

1. create a temporary frame:

tempname tmpframe

2. put a subset of data into it:

frame put if ..., into(‘tmpframe’)

3. perform the needed manipulations and graph the result:

frame ‘tmpframe’ {
some commands which manipulate the data
graph twoway ...

}

At the end of this block of code, any commands that appear next will work against the original frame,

not ‘tmpframe’. You could add a line to drop ‘tmpframe’, but there is no need. Because it has a

temporary name, the frame and the data in it will automatically be dropped when your program or do-file

completes.

An alternative workflow for the above would be to first preserve your data, then manipulate them
in place and obtain your graph. You could then restore the original data. Whether you should use the

frame prefix approach or the preserve and restore approach is up to you. The frame approach is
often faster, but if your dataset in memory is extremely large, you may not want to make another entire

copy of it in memory, even temporarily, and thus, the second approach may be better in such a case.

Also see
[D] frames intro — Introduction to frames

[D] frames — Data frames



frame put — Copy selected variables or observations to a new frame

Description Quick start Menu Syntax Remarks and examples Also see

Description
frame put copies a subset of variables or observations from the current frame to the specified frame.

It works much like Stata’s keep command (see [D] drop), except that the data in the current frame are
left unchanged, while the selected variables or observations are copied to a new frame.

Quick start
Put variables v1, v2, and v3 from the current frame into new frame fr1

frame put v1 v2 v3, into(fr1)

Put all variables whose name begins with v into new frame fr2
frame put v*, into(fr2)

Put all observations where v1 is not missing into new frame fr3
frame put if !missing(v1), into(fr3)

Put the first observation from each cluster identified by cvar into new frame fr4
by cvar: frame put if _n==1, into(fr4)

Menu
Data > Frames Manager

Syntax
Copy selected variables from the current frame to a new frame

frame put varlist, into(newframename)

Copy observations that satisfy specified condition from the current frame to a new frame

frame put [ varlist ] if , into(newframename)

Copy a range of observations from the current frame to a new frame

frame put [ varlist ] in [ if ], into(newframename)

by is allowed with the second syntax of frame put; see [D] by.
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Remarks and examples
There are three main workflows for operating on a subset of data you already have in memory. One is

to make use of Stata’s if and in qualifiers with your commands to restrict the observations to be used.
Another is to use preserve to make a temporary copy of the data in memory, then use keep and drop to
make a subset of those data for analysis, and then to use restore to bring the original data back. Finally,
you can leave the data in memory unchanged and use frame put to place a subset of the data in another
frame for analysis. That frame can then be dropped, saved, or left in memory for further analysis.

frame put copies all variable and value labels, characteristics, and notes for any variables copied to
the new frame.

Example 1
To demonstrate frame put, we start with data from the 1980 US Census.

. use https://www.stata-press.com/data/r19/census
(1980 Census data by state)
. describe
Contains data from https://www.stata-press.com/data/r19/census.dta
Observations: 50 1980 Census data by state

Variables: 13 6 Apr 2024 15:43

Variable Storage Display Value
name type format label Variable label

state str14 %-14s State
state2 str2 %-2s Two-letter state abbreviation
region int %-8.0g cenreg Census region
pop long %12.0gc Population
poplt5 long %12.0gc Pop, < 5 year
pop5_17 long %12.0gc Pop, 5 to 17 years
pop18p long %12.0gc Pop, 18 and older
pop65p long %12.0gc Pop, 65 and older
popurban long %12.0gc Urban population
medage float %9.2f Median age
death long %12.0gc Number of deaths
marriage long %12.0gc Number of marriages
divorce long %12.0gc Number of divorces

Sorted by:
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We put data from several variables for all states with a population greater than 5,000,000 into new

frame pop5.

. frame put state region pop* medage death if pop > 5000000, into(pop5)

. frame pop5: describe
Contains data
Observations: 14 1980 Census data by state

Variables: 10

Variable Storage Display Value
name type format label Variable label

state str14 %-14s State
region int %-8.0g cenreg Census region
pop long %12.0gc Population
poplt5 long %12.0gc Pop, < 5 year
pop5_17 long %12.0gc Pop, 5 to 17 years
pop18p long %12.0gc Pop, 18 and older
pop65p long %12.0gc Pop, 65 and older
popurban long %12.0gc Urban population
medage float %9.2f Median age
death long %12.0gc Number of deaths

Sorted by:
Note: Dataset has changed since last saved.

Also see
[D] frames intro — Introduction to frames

[D] frames — Data frames

[D] drop — Drop variables or observations

[D] frame copy — Make a copy of a frame

[P] frame post — Post results to dataset in another frame



frame pwf — Display name of current (working) frame

Description
frame pwf displays the name of the current frame, also known as the working frame. frame by itself

and pwf (print working frame) by itself are synonyms for frame pwf.

Menu
Data > Frames Manager

Syntax
frame pwf

frame

pwf

collect is allowed with frame pwf; see [U] 11.1.10 Prefix commands.

Remarks and examples
You can type any of frame pwf, frame, or pwf to see what the current (working) frame is.

. sysuse auto
(1978 automobile data)
. frame pwf
(current frame is default)

. frame create cars

. frame change cars

. pwf
(current frame is cars)

Stored results
frame pwf stores the following in r():

Macros

r(currentframe) name of current (working) frame

Also see
[D] frames intro — Introduction to frames

[D] frames — Data frames
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Description
frame rename changes the name of an existing frame. You can even rename the current frame.

Menu
Data > Frames Manager

Syntax
frame rename oldframename newframename

Remarks and examples
oldframename must be an existing frame. It may be the current frame. newframename must not be

an existing frame.

Example 1
Let’s assume we have several frames in memory, including a frame named default. We see this by

typing frames dir:

. frames dir
cars 74 x 12; 1978 automobile data
default 50 x 13; 1980 Census data by state
work 28534 x 21; National Longitudinal Survey of Young Women, 14-24

years old in 1968

We want to rename the default frame to a new frame named census:

. frame rename default census

We also want to rename the existing frame cars to automobiles:

. frame rename cars automobiles

We can then check the changes with frames dir:

. frames dir
automobiles 74 x 12; 1978 automobile data
census 50 x 13; 1980 Census data by state
work 28534 x 21; National Longitudinal Survey of Young Women, 14-24

years old in 1968

Also see
[D] frames intro — Introduction to frames

[D] frames — Data frames

[D] frame copy — Make a copy of a frame
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
frames describe produces a summary of frames in memory or in a Stata frameset (.dtas) file.

Quick start
Describe all frames in memory

frames describe

Describe frames in file myframeset.dtas
frames describe using myframeset

Describe variable var1 in frames A and B in memory
frames describe var1, frames(A B)

Menu
Data > Frames Manager
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Syntax
Describe frames in memory

frames describe [ varlist ] [ , memory options ]

Describe frames in a file

frames describe [ varlist ] using filename [ , file options ]

If filename is specified without an extension, .dtas is assumed. If filename contains embedded spaces
or other special characters, enclose it in double quotes.

memory options Description

frames(framelist) list of frames to describe

simple display only variable names

short display only general information

fullnames do not abbreviate variable names

numbers display variable number along with name

file options Description

frames(framelist) list of frames to describe

simple display only variable names

short display only general information

Options
Options are presented under the following headings:

Options to describe frames in memory
Options to describe frames in a file

Options to describe frames in memory
frames(framelist) specifies the list of frames to describe.

simple displays only the variable names in a compact format. simple may not be combined with other
options, except for frames().

short suppresses the specific information for each variable. Only the general information (number of
observations, number of variables, and sort order) is displayed.

fullnames specifies that frames describe display the full names of the variables. The default is to
present an abbreviation when the variable name is longer than 15 characters. fullnames may not be
specified with numbers.

numbers specifies that frames describe present the variable number with the variable name. If

numbers is specified, variable names are abbreviated when the name is longer than eight characters.
numbers may not be specified with fullnames.
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Options to describe frames in a file
frames(framelist) specifies the list of frames to describe.

simple displays only the variable names in a compact format. simple may not be combined with other
options, except for frames().

short suppresses the specific information for each variable. Only the general information (number of
observations, number of variables, and sort order) is displayed.

Remarks and examples
frames describe, with no operands, describes the frames in memory in alphabetical order.

frames describe with the usingmodifier describes frames on disk in the order they were specified
in framelist when saved with frames save, frames(framelist). This ordering is reflected in stored

result r(frames) after frames describe using.

Example 1: Describe frames in memory
After loading multiple datasets in memory with data frames, you can use frames describe to get

a summary of the data in each frame. To demonstrate, below we create one frame with demographic

information from the 1980 census (census.dta) and another with housing data (hsng.dta) from the

same census.

. clear frames

. sysuse census
(1980 Census data by state)
. frame rename default census
. frame create housing
. frame change housing
. use https://www.stata-press.com/data/r19/hsng
(1980 Census housing data)
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By simply typing frames describe, we get detailed information about the data in each frame, such
as the number of observations and details about all the variables:

. frames describe

Frame: census
Contains data from C:\Program Files\Stata19\ado\base\c\census.dta
Observations: 50 1980 Census data by state

Variables: 13 6 Apr 2024 15:43

Variable Storage Display Value
name type format label Variable label

state str14 %-14s State
state2 str2 %-2s Two-letter state abbreviation
region int %-8.0g cenreg Census region
pop long %12.0gc Population
poplt5 long %12.0gc Pop, < 5 year
pop5_17 long %12.0gc Pop, 5 to 17 years
pop18p long %12.0gc Pop, 18 and older
pop65p long %12.0gc Pop, 65 and older
popurban long %12.0gc Urban population
medage float %9.2f Median age
death long %12.0gc Number of deaths
marriage long %12.0gc Number of marriages
divorce long %12.0gc Number of divorces

Sorted by:

Frame: housing
Contains data from https://www.stata-press.com/data/r19/hsng.dta
Observations: 50 1980 Census housing data

Variables: 12 3 Feb 2024 16:22

Variable Storage Display Value
name type format label Variable label

state str14 %14s State
division int %8.0g division Census division
region int %8.0g region Census region
pop long %10.0g Population in 1980
popgrow float %6.1f Pop. growth 1970-80
popden int %6.1f Pop/sq. mile
pcturban float %8.1f Percent urban
faminc long %8.2f Median family inc., 1979
hsng long %10.0g Hsng units 1980
hsnggrow float %8.1f % housing growth
hsngval long %9.2f Median hsng value
rent long %6.2f Median gross rent

Sorted by: state

In the census data frame, we have information for each state about the median age and the numbers
of children and teens, adults, and senior citizens. In the housing data frame, we have information about
the housing units, median family income, and median housing value.

frames describe describes the frames in memory in alphabetical order. Therefore, we first get a
summary of the census frame and then a summary of the housing frame.
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If we are interested only in certain variables, we can list them. Below, we describe the variables state
and region, as well as all variables whose names begin with pop, for all frames in memory:

. frames describe state region pop*

Frame: census
Variable Storage Display Value

name type format label Variable label

state str14 %-14s State
region int %-8.0g cenreg Census region
pop long %12.0gc Population
poplt5 long %12.0gc Pop, < 5 year
pop5_17 long %12.0gc Pop, 5 to 17 years
pop18p long %12.0gc Pop, 18 and older
pop65p long %12.0gc Pop, 65 and older
popurban long %12.0gc Urban population

Frame: housing
Variable Storage Display Value

name type format label Variable label

state str14 %14s State
region int %8.0g region Census region
pop long %10.0g Population in 1980
popgrow float %6.1f Pop. growth 1970-80
popden int %6.1f Pop/sq. mile

Furthermore, if we are interested only in describing the data for certain frames, we can list the names

with the frames() option. Below, we are interested in the population variables in the housing frame:

. frames describe pop*, frames(housing)

Frame: housing
Variable Storage Display Value

name type format label Variable label

pop long %10.0g Population in 1980
popgrow float %6.1f Pop. growth 1970-80
popden int %6.1f Pop/sq. mile

We can also skip the variable information altogether with the short option:

. frames describe, frames(housing) short

Frame: housing
Contains data from https://www.stata-press.com/data/r19/hsng.dta
Observations: 50 1980 Census housing data

Variables: 12 3 Feb 2024 16:22
Sorted by: state
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Example 2: Describe frames in a file
In example 1, we created two frames with different information from the 1980 census. Let’s save

these frames into a file called censuses.dtas:

. frames save censuses, frames(housing census) replace
(file censuses.dtas not found)
file censuses.dtas saved

Now suppose that we are working in a new Stata session and we wish to describe the frames from the

censuses.dtas file:

. clear all

. frames describe using censuses

Frame: housing
Contains data 1980 Census housing data
Observations: 50 28 Mar 2025 19:42

Variables: 12

Variable Storage Display Value
name type format label Variable label

state str14 %14s State
division int %8.0g division Census division
region int %8.0g region Census region
pop long %10.0g Population in 1980
popgrow float %6.1f Pop. growth 1970-80
popden int %6.1f Pop/sq. mile
pcturban float %8.1f Percent urban
faminc long %8.2f Median family inc., 1979
hsng long %10.0g Hsng units 1980
hsnggrow float %8.1f % housing growth
hsngval long %9.2f Median hsng value
rent long %6.2f Median gross rent

Sorted by: state
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Frame: census
Contains data 1980 Census data by state
Observations: 50 28 Mar 2025 19:42

Variables: 13

Variable Storage Display Value
name type format label Variable label

state str14 %-14s State
state2 str2 %-2s Two-letter state abbreviation
region int %-8.0g cenreg Census region
pop long %12.0gc Population
poplt5 long %12.0gc Pop, < 5 year
pop5_17 long %12.0gc Pop, 5 to 17 years
pop18p long %12.0gc Pop, 18 and older
pop65p long %12.0gc Pop, 65 and older
popurban long %12.0gc Urban population
medage float %9.2f Median age
death long %12.0gc Number of deaths
marriage long %12.0gc Number of marriages
divorce long %12.0gc Number of divorces

Sorted by:

Note that when we describe frames from a file, the first frame listed in the frames save command
will be the first one described. Therefore, we now see the housing frame described first.

You can issue the return list command after frames describe using to see the order in which
the frames were saved.

Stored results
frames describe stores the following in r():

Scalars

r(complevel) compression level (with option using only)

Macros

r(frames) list of frames described

r(first) first frame in r(frames) (with option using only)
r(N) number of observations in each frame

r(k) number of variables in each frame

r(width) width of frames

r(changed) 1 or 0 for each frame in memory: 1 means the data in the frame have changed since last save; 0
means they have not changed

Also see
[D] frames save — Save a set of frames on disk

[D] frames use — Load a set of frames from disk

[D] frames — Data frames

[D] describe — Describe data in memory or in a file
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Description Menu Syntax Remarks and examples Stored results Also see

Description
frames dir lists all frames in memory, along with the dimensions of the data, the label of the data in

each (if any), and an indicator of whether the data in the frame have changed since last saved.

Menu
Data > Frames Manager

Syntax
frames dir

collect is allowed; see [U] 11.1.10 Prefix commands.

Remarks and examples
frames dir shows you at a glance information about all frames in memory.

The first column shows an asterisk if the data in a given frame have changed since they were last

saved. If you try to exit Stata and there are unsaved data in one or more frames, you will receive an error

warning you. You can type frames dir to see frames with unsaved data.

The third column shows the number of observations and variables along with the data label, if any,

for each frame. If there is not a data label, the dataset filename, if there is one, will be displayed.

Example 1
We have been working with data in multiple frames. We now want to see all the frames currently in

memory. To do this, we type

. frames dir
* afewcars 74 x 3; Subset of auto.dta
default 74 x 12; 1978 automobile data

* work 3142 x 10; National Longitudinal Survey of Young Women, 14-24
years old in 1968

Note: Frames marked with * contain unsaved data.

We are reminded of the names and contents of the three frames in memory. We also see that the data

in frames afewcars and work have changed, but those changes have not been saved.
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Stored results
frames dir stores the following in r():

Macros

r(frames) names of frames in memory

r(changed) 1 or 0 for each frame in memory: 1 means the data in the frame have changed since last save; 0
means they have not changed

Also see
[D] frames intro — Introduction to frames

[D] frames — Data frames

[D] save — Save Stata dataset



frames modify — Modify a set of frames on disk

Description Quick start Menu Syntax Options
Remarks and examples Stored results Also see

Description
frames modify modifies a frameset (.dtas) file by adding frames, dropping frames, or replacing

the content of existing frames in the file.

Quick start
Add frames A, B, and C to file myframeset.dtas

frames modify using myframeset, add(A B C)

Drop frames A and B from file myframeset.dtas
frames modify using myframeset, drop(A B)

Menu
Data > Frames Manager

Syntax
Add frames to a frameset on disk

frames modify using filename, add(framelist [ , replace ]) [ options ]

Drop frames from a frameset on disk

frames modify using filename, drop(framelist)

If filename is specified without an extension, .dtas is assumed. If filename contains embedded spaces
or other special characters, enclose it in double quotes.

options Description

nolabel omit value labels from the added frames

orphans save value labels in added frames, even if they are not attached to a variable

emptyok add specified frames even if they have zero observations and zero
variables
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Options
add(framelist[ , replace ]) specifies the frames in memory to be added to the frameset. framelist is

a list of frame names separated by a space. To add all frames in memory to the frameset, specify

add( all). Either add() or drop(), but not both, must be specified.

replace permits frames modify to overwrite frames that already exist in the frameset.

drop(framelist) specifies the frames to be dropped from the frameset. framelist is a list of frame names

separated by a space. Either drop() or add(), but not both, must be specified.

nolabel specifies that value labels be omitted when adding frames to the frameset.

orphans specifies that all value labels be saved with the frames to be added, including those not attached
to any variable.

emptyok specifies that frames be added to the frameset even if they contain zero observations and zero
variables.

Remarks and examples
frames modify allows you to conveniently modify a frameset (.dtas) file. You can add a list of

frames to the frameset, or drop a list of frames from the frameset, without loading the entire frameset

into memory.

frames modify is useful when you have already saved a set of frames with frames save but wish to
modify its contents. However, frames modify has the potential to break linkages, if they exist, between
frames in the frameset. Adding a frame that does not previously exist in the frameset will not affect any

existing links in the frameset. However, if a frame in the frameset was saved with links to other frames,

the linkages will be dropped if you replace the frame without reestablishing the link. If you are not sure

about existing linkages, you should load the frameset with frames use and examine linkages before

using frames modify.

Example 1: Modify an existing frame in the frameset
In frames save, we saved frames census and housing in myframeset.dtas. Below, we re-create

that file:

. frame create census

. frame change census

. sysuse census
(1980 Census data by state)
. frame create housing
. frame change housing
. webuse hsng
(1980 Census housing data)
. frlink 1:1 state, frame(census)
(all observations in frame housing matched)
. frames save myframeset, frames(housing) linked
file myframeset.dtas saved



frames modify — Modify a set of frames on disk 348

Suppose that we wish to modify the contents of the housing frame. This is the current frame. Below,
we drop two variables that we are not interested in, and then we replace the contents of the housing
frame in myframeset.dtas.

. drop popden popgrow

. frames modify using myframeset, add(housing, replace)
frame housing replaced
file myframeset.dtas saved

frames modify reports that the housing frame was replaced and that the frameset file

myframeset.dtas has been saved.

Stored results
frames modify stores the following in r():

Scalars

r(complevel) compression level

r(compsize) size, in bytes, of compressed file

r(compratio) compression ratio, defined as the ratio of compressed size to uncompressed size

Macros

r(fn) pathname of modified frameset file

r(frames) list of frames in the modified frameset

r(added) list of frames added, if add() specified
r(replaced) list of frames replaced

r(dropped) list of frames dropped, if drop() specified

Also see
[D] frames save — Save a set of frames on disk

[D] frames use — Load a set of frames from disk

[D] frames — Data frames
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Description Menu Syntax Remarks and examples Also see

Description
frames reset eliminates from memory all frames, including any data in them. It restores Stata to its

initial state of having a single, empty frame named default. clear frames is a synonym for frames
reset.

Menu
Data > Frames Manager

Syntax
frames reset

clear frames

Remarks and examples
frames reset eliminates, or removes from memory, all frames. It then creates a single, empty frame

named default. This is the same as Stata’s initial state when it first starts.

To drop frames, use frame drop. See [D] frame drop.

To drop results, programs, matrices, etc. in addition to frames, use the clear command. See [D] clear.

Example 1
We have numerous frames in memory:

. frames dir
cars 74 x 12; 1978 automobile data
default 50 x 13; 1980 Census data by state
work 28534 x 21; National Longitudinal Survey of Young Women, 14-24

years of age in 1968
(output omitted )

We want to drop all the frames. We do this by typing

. frames reset

We now have the empty frame named default.

. frames dir
default 0 x 0
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Also see
[D] frames intro — Introduction to frames

[D] frames — Data frames

[D] frame drop — Drop frames from memory

[D] clear — Clear memory



frames save — Save a set of frames on disk

Description Quick start Menu Syntax Options
Remarks and examples Stored results Also see

Description
frames save saves a set of frames as a Stata frameset (.dtas) file.

Quick start
Save frames A, B, and C in file myframeset.dtas

frames save myframeset, frames(A B C)

Save, in file myframeset.dtas, frames A and B as well as all frames linked, through frlink, to A and B
frames save myframeset, frames(A B) linked

Menu
Data > Frames Manager

Syntax
frames save filename, frames(framelist) [ options ]

If filename is specified without an extension, .dtas is assumed. If filename contains embedded spaces
or other special characters, enclose it in double quotes.

options Description

∗ frames(framelist) specify frames to be saved

replace overwrite existing .dtas file
linked save frames linked to those in framelist

relaxed ignore missing linked frames

complevel(#) specify compression level; default is complevel(1)
nolabel omit value labels from the saved frames

orphans save all value labels, even if they are not attached to a variable

emptyok save specified frames even if they have zero observations and zero variables

all save e(sample) with the frames in which it exists; programmer’s option
∗frames(framelist) is required.
all does not appear in the dialog box.
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Options
frames(framelist) specifies the frames to be saved. framelist is a list of frame names separated by a

space. To save all frames in memory, specify frames( all). frames() is required.

replace permits frames save to overwrite filename if it already exists.

linked specifies that all frames linked to those in framelist are also saved. Linkages are established

by the frlink command. Note that if frame A is linked to frame B through frlink, and frame B is
similarly linked to frame C, then saving frame A with the linked option will also save frames B and
C, as well as other frames linked to B and C, and so forth.

relaxed is allowed only with the linked option. relaxed specifies that an error message not be issued
if a linked frame does not exist.

complevel(#) specifies the compression level to be used. #may be any integer from 0 to 9; the default

is complevel(1). complevel(0) means no compression; a larger # means more compression. The
compression level can also be set with set dtascomplevel; type help set dtascomplevel to learn
more. complevel() overrides the dtascomplevel setting.

nolabel specifies that value labels from the saved frames are omitted.

orphans specifies that all value labels be saved, including those not attached to any variable.

emptyok specifies that the frames be saved even if they contain zero observations and zero variables.

The following option is available with frames save but is not shown in the dialog box:

all specifies that e(sample) be saved with the frames in which it exists. all is a programmer’s option.

Remarks and examples
Data frames allow you to work with multiple datasets in memory and to access variables across those

datasets. frames save allows you to save the data from multiple frames into a single file; the resulting

file is referred to as a Stata frameset and uses the .dtas extension. You can simply specify the list of
frames you want to save or specify that the listed frames and those linked to them be saved.

Example 1: Save multiple frames
Suppose that we have two frames in memory and we want to save data from both in a single file. To

demonstrate, we first create a frame named census and load a dataset with population data by state:

. clear all

. frame create census

. frame change census

. sysuse census
(1980 Census data by state)

Next we create a frame named housing in which we load housing data by state:

. frame create housing

. frame change housing

. webuse hsng
(1980 Census housing data)
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Now we save both frames, census and housing, into a file called myframeset.dtas:

. frames save myframeset, frames(census housing) replace
(file myframeset.dtas not found)
file myframeset.dtas saved

Whenever we wish to load the data frames from myframeset.dtas, we can use frames use.

Example 2: Save linked frames
One advantage of working with data frames is that you can access values from one frame in another

by linking the two frames. Furthermore, when you save data from a frame, you may wish to save data

from the frames it is linked to, which we demonstrate below.

Continuing with our frames from example 1, we can use frame pwf to check which frame is the

working frame:

. frame pwf
(current frame is housing)

Our current frame is housing. We now use frlink to link frame census to frame housing, matching
observations on values of state:

. frlink 1:1 state, frame(census)
(all observations in frame housing matched)

The message indicates that all observations in frame housing matched those in frame census. We can

use frames describe to get a summary of the data in each frame:

. frames describe

Frame: census
Contains data from C:\Program Files\Stata19\ado\base\c\census.dta
Observations: 50 1980 Census data by state

Variables: 13 28 Mar 2025 19:42

Variable Storage Display Value
name type format label Variable label

state str14 %-14s State
state2 str2 %-2s Two-letter state abbreviation
region int %-8.0g cenreg Census region
pop long %12.0gc Population
poplt5 long %12.0gc Pop, < 5 year
pop5_17 long %12.0gc Pop, 5 to 17 years
pop18p long %12.0gc Pop, 18 and older
pop65p long %12.0gc Pop, 65 and older
popurban long %12.0gc Urban population
medage float %9.2f Median age
death long %12.0gc Number of deaths
marriage long %12.0gc Number of marriages
divorce long %12.0gc Number of divorces

Sorted by: state
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Frame: default
Contains data
Observations: 0

Variables: 0
Sorted by:

Frame: housing
Contains data from https://www.stata-press.com/data/r19/hsng.dta
Observations: 50 1980 Census housing data

Variables: 13 28 Mar 2025 19:42

Variable Storage Display Value
name type format label Variable label

state str14 %14s State
division int %8.0g division Census division
region int %8.0g region Census region
pop long %10.0g Population in 1980
popgrow float %6.1f Pop. growth 1970-80
popden int %6.1f Pop/sq. mile
pcturban float %8.1f Percent urban
faminc long %8.2f Median family inc., 1979
hsng long %10.0g Hsng units 1980
hsnggrow float %8.1f % housing growth
hsngval long %9.2f Median hsng value
rent long %6.2f Median gross rent
census byte %10.0g

Sorted by: state
Note: Dataset has changed since last saved.

We can see that frame housing has a variable named census; this is the variable that frlink created
to store the information needed to link the frames. We can also see that the default frame is empty

because we have not loaded a dataset into that frame.

We can now save frame housing and all frames linked to it by typing the following:

. frames save myframeset, frames(housing) linked replace
file myframeset.dtas saved

This saves frame housing, as well as frame census, because it is linked to frame housing. The
replace option replaces file myframeset.dtas if it already exists.

We now drop frame census using frame drop:

. frame drop census

Note that if we try to save frame housing and the frames linked to it, we get an error message:

. frames save myframeset, frames(housing) linked replace
linked frame does not exist

Frame census is linked from frame housing, but frame census does not
exist. Use option relaxed if you wish to ignore this error and proceed
anyway.

r(111);
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Stata is attempting to save frame census because it is linked to frame housing, but it does not exist.
To save the frames we specified, and any existing frames linked to them, we can use the relaxed option
to ignore any linked frame that does not exist:

. frames save datasets, frames(housing) linked replace relaxed
(file datasets.dtas not found)
file datasets.dtas saved

We no longer get an error message, but because frame census does not exist, only frame housing gets
saved.

Stored results
frames save stores the following in r():

Scalars

r(complevel) compression level

r(compsize) size, in bytes, of compressed file

r(compratio) compression ratio, defined as the ratio of compressed size to uncompressed size

Macros

r(fn) pathname of saved frameset file

r(frames) list of frames saved, listed in the same order as in option frames(); if frames( all) is used,
then the working frame is listed first, followed by the remaining frames in alphabetical order

r(first) first frame in r(frames)

Also see
[D] frames describe — Describe frames in memory or in a file

[D] frames modify — Modify a set of frames on disk

[D] frames use — Load a set of frames from disk

[D] frames — Data frames

[D] save — Save Stata dataset



frames use — Load a set of frames from disk

Description Quick start Menu Syntax Options
Remarks and examples Stored results Also see

Description
frames use loads into memory a set of frames from a Stata frameset (.dtas) file previously saved

by frames save.

Quick start
Load all frames in file myframeset.dtas

frames use myframeset

Load frames A and B in file myframeset.dtas
frames use myframeset, frames(A B)

Menu
Data > Frames Manager

Syntax
frames use filename [ , options ]

If filename is specified without an extension, .dtas is assumed. If filename contains embedded spaces
or other special characters, it has to be enclosed in double quotes.

options Description

frames(framelist) specify frames to be used

clear clear all frames in memory and replace them with the frames from disk

replace overwrite existing frames in memory with frames of the same name from
filename
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Options
frames(framelist) specifies the frames to be loaded into memory. framelist is a list of frame names

separated by a space. If frames() is not specified, all frames are loaded. The frames() option does
not change the current working frame; to change the working frame after frames use, use frame
change.

clear clears all frames in memory and replaces them with frames from disk. The new working frame

will be the first frame that was specified in the frames(framelist) option with frames save.

If both clear and frames(framelist) are specified with frames use, the new working frame will be

the first one listed in framelist.

replace replaces frames in memory with frames from filename if the frame names are the same. This

option does not drop from memory existing frames with different names.

Remarks and examples
frames use is used to load a frameset previously saved with frames save. A frameset is a single file

with data from multiple frames. By loading a frameset with frames use, you can resume the work you
were doing with the frames saved with frames save.

frames use will load all the data frames stored in the .dtas file, unless you specify a list with the
frames() option. Additionally, when no other options are specified, the frames will be loaded into

memory, but the current working frame will not be changed, even if it is empty. When frames use is
specified with both the frames() and clear options, the new working frame will be the first frame

listed in the frames() option. When frames use is specified with the clear option but without the
frames() option, the new working frame will be the first frame that was specified in the frames()
option with frames save. Note that the first frame of a .dtas file is stored in r(first) after the

frameset is described with frames describe using.

Example 1
To demonstrate how to load a frameset, we first need to create a frameset. Below, we create frames

census and housing with data from the 1980 census. We then use frames save to store both of these
frames in a file named myframeset.dtas.

. clear frames

. sysuse census
(1980 Census data by state)
. frame rename default census
. frame create housing
. frame change housing
. webuse hsng
(1980 Census housing data)
. frames save myframeset, frames(census housing) replace
(file myframeset.dtas not found)
file myframeset.dtas saved
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Suppose that at a later time we would like to load the frames in myframeset.dtas. We first clear

any data and frames and then use frames use.

. clear all

. frames use myframeset
census 50 x 13; 1980 Census data by state
housing 50 x 12; 1980 Census housing data

We see in the output above that both frames were loaded into memory. If there is no dataset in memory,

frames use loads the frames from the .dtas file, but the default frame remains the current working
frame, as shown below:

. pwf
(current frame is default)

The output from pwf shows that the current frame is default. frames describe below lists the

frames in alphabetical order and shows that the default frame (labeled Frame: default) is empty:

. frames describe

Frame: census
Contains data
Observations: 50 1980 Census data by state

Variables: 13 28 Mar 2025 19:42

Variable Storage Display Value
name type format label Variable label

state str14 %-14s State
state2 str2 %-2s Two-letter state abbreviation
region int %-8.0g cenreg Census region
pop long %12.0gc Population
poplt5 long %12.0gc Pop, < 5 year
pop5_17 long %12.0gc Pop, 5 to 17 years
pop18p long %12.0gc Pop, 18 and older
pop65p long %12.0gc Pop, 65 and older
popurban long %12.0gc Urban population
medage float %9.2f Median age
death long %12.0gc Number of deaths
marriage long %12.0gc Number of marriages
divorce long %12.0gc Number of divorces

Sorted by:

Frame: default
Contains data
Observations: 0

Variables: 0
Sorted by:
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Frame: housing
Contains data
Observations: 50 1980 Census housing data

Variables: 12 28 Mar 2025 19:42

Variable Storage Display Value
name type format label Variable label

state str14 %14s State
division int %8.0g division Census division
region int %8.0g region Census region
pop long %10.0g Population in 1980
popgrow float %6.1f Pop. growth 1970-80
popden int %6.1f Pop/sq. mile
pcturban float %8.1f Percent urban
faminc long %8.2f Median family inc., 1979
hsng long %10.0g Hsng units 1980
hsnggrow float %8.1f % housing growth
hsngval long %9.2f Median hsng value
rent long %6.2f Median gross rent

Sorted by: state

If there are frames in memory, frames census and housing in myframeset.dtaswill be loaded into
memory, in addition to the frames already in memory. If there is already a frame in memory with the

same name as the frame you are loading, frames use issues an error message. For example, below we

rename the default frame to census and then run our frames use command once more:

. clear frames

. sysuse census, clear
(1980 Census data by state)
. frame rename default census
. frames use myframeset.dtas
frames in memory are in conflict with frames on disk

Frame census is already in memory. Specify option clear to clear all
frames or option replace to replace only the frames in conflict.

r(4);

To successfully load the frames from myframeset.dtas, we can either use the clear option to clear
all frames from memory,

. frames use myframeset, clear

or use the replace option to replace the frames in conflict:

. frames use myframeset, replace

Stored results
frames use stores the following in r():
Macros

r(fn) pathname of frameset

r(frames) list of frames loaded
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Also see
[D] frames describe — Describe frames in memory or in a file

[D] frames modify — Modify a set of frames on disk

[D] frames save — Save a set of frames on disk

[D] frames — Data frames

[D] sysuse — Use shipped dataset

[D] use — Load Stata dataset

[D] webuse — Use dataset from Stata website
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Description Quick start Syntax Options
Remarks and examples Stored results Also see

Description
frget copies variables and their associated metadata from the data in the linked frame to the data in

the current frame. Copymeans copying the relevant observations from the linked frame to the appropriate

observations in the current frame. If youwould like to refer to a variable in another framewithout copying

that variable into the current frame, see [D] fralias.

See [D] frames intro if you do not know what a frame is.

Quick start
Obtain variables v1, v2, and v3 from another frame linked to by linkage lnk

frget v1 v2 v3, from(lnk)

Obtain variables v4 and v5 via linkage lnk, naming them newv4 and newv5 in the current frame
frget newv4=v4 newv5=v5, from(lnk)

Obtain all variables via linkage lnk, prefixing them with l
frget *, from(lnk) prefix(l_)

Obtain all variables via linkage lnk, excluding those matching pattern ind*
frget *, from(lnk) exclude(ind*)

Syntax
frget varlist, from(linkname) [ rename options ] (1)

frget newvar1 = varname1 [ newvar2 = varname2 [ . . . ] ], from(linkname) (2)

linkname is the name of a linkvar in the current frame that was created by frlink; see [D] frlink.

rename options Description

prefix(string) prefix new variable names with string

suffix(string) suffix new variable names with string

exclude(varlist) exclude specified variables

collect is allowed; see [U] 11.1.10 Prefix commands.

Syntax 1 copies the variable names specified by varlist from the frame linked by linkname to the current

frame.

Syntax 2 copies varname1 from the frame linked by linkname to newvar1 in the current frame. Similarly,

varname2 is copied to newvar2 and so on.

Copy means copy and clone. Display formats, variable labels, value labels, notes, and characteristics

are also copied.
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Options
from(linkname) specifies the identity of the linked frame from which variables are copied. Linkages to

frames are created by the frlink command. Linkages are usually named for the frame to which they
link. Linkage counties links to frame counties, and so you specify from(counties). If linkage
c links to frame counties, you specify from(c). from() is required.

prefix(string) specifies a string to be prefixed to the names of the new variables created in the current

frame. Say that you type

. frget inc*, from(counties)

to request that variables income and income family be copied to the current frame. If variable

income already exists in the current frame, the command would issue an error message to that effect
and copy neither variable. To copy the two variables, you could type

. frget inc*, from(counties) prefix(c_)

Then the variables would be copied to variables named c income and c income family.

suffix(string) works like prefix(string), the difference being that the string is suffixed rather than
prefixed to the variable names. Both options may be specified if you wish.

exclude(varlist) specifies variables that are not to be copied. An example of the option is

frget *, from(counties) exclude(emp*)

All variables except variables starting with emp would be copied.

More correctly, all variables except emp*, *, and the match variables would be copied because frget
always omits the underscore and match variables. See the explanation below.

Remarks and examples
Remarks are presented under the following headings:

Overview
Everything you need to know about frget

Overview
You have data on people and data on counties. You loaded the datasets and created a linkage named

uscounties by typing

. use people

. frame create uscounties

. frame uscounties: use uscounties

. frlink m:1 countyid, frame(uscounties)

See example 1 in [D] frlink for details.

Among the variables in uscounties.dta is median income. You could copy the variable to the
person data in the current frame by typing either of the following:

. frget median_income, from(uscounties)

. frget medinc = median_income, from(uscounties)

The first command names the copy median income in the current frame. The second names it medinc.
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Everything you need to know about frget
Here is everything you need to know in outline form:

1. What it means to copy a linked variable

2. frget can copy variables one at a time
3. frget allows variable names to be abbreviated
4. frget can bring over groups of variables
5. frget copies all the variables specified, or none of them
6. frget ignores repeated variables
7. How to get all the variables 1: frget *

8. How to get all the variables 2: frget *, prefix()
9. How to create new variables

10. frget copies and clones variables

We make two assumptions in what follows:

A1. The current frame contains data on people. A frame named uscounties contains data on

counties. That is, we assume

. use people

. frame create uscounties

. frame uscounties: use uscounties

A2. The frames are linked on the match variable countyid, which appears in both datasets. The
linkage between the frames is named uscounties, the same name as the frame being linked.
That is, we assume

. frlink m:1 countyid, frame(uscounties)

1. What it means to copy a linked variable

When you type

. frget median_income, from(uscounties)

frget copies variable median income from frame uscounties to the current frame. Well,

we say it copies the variable, but the process is more complicated than that. frget copies the
relevant observations of median income from frame uscounties to the appropriate obser-

vations in the current frame. In the process, frget duplicates some observations and ignores
others.

If the person in observation 1 lives in county 401, then the median income recorded for county

401 in the uscounties frame is copied to observation 1 in the current frame.

If the people in observations 2, 33, and 65 in the current frame reside in county 207, then the

median income recorded for county 207 is duplicated in observations 2, 33, and 65 of the current

frame.

If the person in observation 3 lives in county 599 and there is no county 599 in the uscounties
frame, then missing value . or ”” is stored in observation 3.

A copy of a variable from a linked frame is a copy of the relevant observations of the variable

to the appropriate observations in the current frame when relevant observations exist.

2. frget can copy variables one at a time

To copy variable median income from frame uscounties to the current frame, type

. frget median_income, from(uscounties)
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To instead copy median income to a new variable named medinc in the current frame, type

. frget medinc=median_income, from(uscounties)

3. frget allows variable names to be abbreviated

frget allows abbreviations if you have not set varabbrev off. If median income is the

only variable beginning with median in the linked frame, you can type

. frget median, from(uscounties)

Variable median income will be copied, and the new variable in the current frame will be

named median income.

When using frget’s newvar=varname syntax, you can abbreviate the variable being copied
that appears to the right of the equals sign:

. frget medinc=median, from(uscounties)

4. frget can bring over groups of variables

frget allows you to specify a varlist. Even though you type frget in the current frame, the
varlist is interpreted in the linked frame. You can type

. frget emp*, from(uscounties)

. frget emp* median_income, from(uscounties)

. frget emp* median, from(uscounties)

. frget emp* m*, from(uscounties)

. frget *, from(uscounties)

When you specify a varlist, frget automatically omits the match variable or variables and any
variables starting with an underscore ( ). First, we will tell you why, and then, we will tell you

a workaround.

We start with a match variable. The match variable(s) in our example is match variable

countyid. The variable has the same name in both frames. Pretend for a moment that frget
did not exclude match variables. Then, if you tried to copy countyid, that would be an error
because frget will not overwrite existing variables. That seems reasonable until you realize
that it would also mean that frget would issue an error if you typed

. frget c*, from(uscounties)

or even if you typed

. frget *, from(uscounties)

frget would issue errors because c* and * would include countyid, which, being the match
variable, already exists in the current frame. frget automatically omits match variables so that
you can type frget c* and frget * and get all the other variables.

frget omits * variables because they tend to be Stata system variables that are valid only in

the dataset in which they appear. You do not want them.

What if you need to get one of these variables? Use the newvar=varname syntax. Type, for
instance,

. frget _myvar=_myvar, frame(uscounties)

Automatic omission is not applied to this syntax.
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5. frget copies all the variables specified, or none of them

frget will not overwrite existing variables. If just one variable in the specified list already

exists in the current frame, frget copies none of the variables. It issues an error.

. frget emp* m*, from(uscounties)
variable mvalues already exists
r(110);

If you want all the m* variables except mvalues, use the exclude() option:

. frget emp* m*, from(uscounties) exclude(mvalues)

If you also want mvalues copied to mvals in the current frame, type

. frget mvals=mvalues, from(uscounties)

6. frget ignores repeated variables

It is not an error to type

. frget employment employment, from(uscounties)

We specified employment twice, but frget ignores that and copies the variable once. This is
convenient because variables can be inadvertently repeated, as in

. frget m* employment-larea, from(uscounties)

Although you cannot see it, variable mds is repeated in the example. m* contains mds, and so
does employment-larea because mds is among the variables stored between them.

When variables are repeated using the newvar=varname syntax, frget does not ignore repeti-
tion. It copies the variables you specify to each of the new variables that you specify:

. frget medinc=income inc=income, from(uscounties)

7. How to get all the variables 1: frget *

To get all the variables, try typing

. frget *, from(uscounties)

This sometimes works. Other times it does not because some of the variables in uscounties
already exist in the current frame. When it does not work, frget lists the variable names that
exist in both frames and, even better, stores them in r(dups). Thus, if you are willing to

exclude those variables, you can type

. frget *, from(uscounties) exclude(‘r(dups)’)

8. How to get all the variables 2: frget *, prefix()

Another way to get all the variables is to type

. frget *, from(uscounties) prefix(c_)

This brings in all the variables under their original names but prefixed with c . The variable

mvalues in the linked frame, for instance, is copied to c mvalues.

Another advantage of this approach is how easily you can drop the copies from the data should

you desire to do so. Type

. drop c_*
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You can choose your own prefix. If you prefer suffixing them, type

. frget *, from(uscounties) suffix(_c)

This names the copies mvalues c, etc. These names are more like the originals, at least if you
use tab completion for typing them. Type the first characters of the original name and press tab.

And if you wish, you can later drop the suffixed variables just as easily as prefixed ones. Type

. drop *_c

9. How to create new variables

Assume that the uscounties frame contains variables total income and population. You
need avg income in the current frame.

One solution would be

. frget total_income population, from(uscounties)

. generate avg_income = total_income/population

Another solution would be to use the frval() function to make the calculation directly:

. generate avg_income =
> frval(uscounties, total_income)/frval(uscounties, population)

Here, however, is perhaps the best solution:

. frame uscounties: generate avg_income = total_income/population

. frget avg_income, from(uscounties)

It is not often that one has the opportunity to save computer time and memory. The gist of this

approach is to create county-level variables in the uscounties frame and then use frget to
get the ones you need.

10. frget copies and clones variables

When frget copies variables, it also copies their display formats, variable labels, value labels,
notes, and characteristics.

The new variables are not just copies. They are clones.

Stored results
frget stores the following in r():

Scalars

r(k) number of variables copied from linked frame

Macros

r(newlist) new variables in the current frame

r(srclist) variables copied from linked frame

r(excluded) variables not copied from linked frame

r(dups) variables already present in the current frame

r(notfound) variables not found in the linked frame

r(dups) is present only if frget exits with an error message because a prospective new variable

name already exists in the current frame.

r(notfound) is present only for syntax 2 when frget exits with an error message because a varname
is not found in the linked frame.
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Also see
[D] frlink — Link frames

[D] fralias —Alias variables from linked frames

[D] frames intro — Introduction to frames

[D] merge — Merge datasets
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Description Quick start Syntax Options
Remarks and examples Stored results Also see

Description
frlink creates and helps manage links between datasets in different frames. A link allows the vari-

ables in one frame to be accessed by another. See [D] frames intro if you do not know what a frame

is.

Quick start
Create 1-to-1 linkage to frame fr2 and match on variable matchvar

frlink 1:1 matchvar, frame(fr2)

Create many-to-1 linkage to frame fr3, matching variables v1 and v2 in the current frame to variables
x1 and x2 in frame fr3, naming the linkage lnk

frlink m:1 v1 v2, frame(fr3 x1 x2) generate(lnk)

List names of linkages in current frame

frlink dir

Show details for linkage lnk
frlink describe lnk

Attempt to re-create linkage lnk after data have changed
frlink rebuild lnk

Eliminate linkage lnk
drop lnk

368
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Syntax
Create linkage between current frame and another

frlink { 1:1 | m:1 } varlist1, frame(frame2 [ varlist2 ]) [ generate(linkvar1) ]

List names of existing linkages

frlink dir

List details about existing linkage, and verify it is still valid

frlink describe linkvar2

Re-create existing linkage when data have changed or frames are renamed

frlink rebuild linkvar2 [ , frame(frame3) ]

Drop existing linkage (dropping the variable eliminates the linkage)

drop linkvar2

1:1 and m:1 indicate how observations are to be matched.

varlist1 contains the match variables in the current frame, which we will call frame 1.

linkvar1 is the name to be given to the new variable that frlink creates. The variable is added to the
dataset in frame 1. The variable contains all the information needed to link the frames.

You specify the name for linkvar1 using the generate(linkvar1) option, or you let frlink name it
for you. If frlink() chooses the name, the variable is given the same name as frame2.

linkvar2 is the name of an existing link variable.

collect is allowed with frlink dir and frlink rebuild; see [U] 11.1.10 Prefix commands.

Options
Options are presented under the following headings:

Options for frlink 1:1 and frlink m:1
Options for frlink rebuild

Options for frlink 1:1 and frlink m:1
frame(frame2 [ varlist2 ]) specifies the name of the frame, frame2, to which a linkage is created and

optionally the names of variables in varlist2 on which to match. If varlist2 is not specified, the match

variables are assumed to have the same names in both frames. frame() is required.

To create a link to a frame named counties, you can type

. frlink m:1 countyid, frame(counties)
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This example omits specification of varlist2, and it works when the match variable countyid has the
same name in both frames. If the variable were named cntycode, however, in the other frame, you
type

. frlink m:1 countyid, frame(counties cntycode)

The rule for matching observations is thus that countyid in the current frame equals cntycode in
the other frame.

You can specify multiple match variables when necessary. For example, you want to match on county

names in US data. County names repeat across the states, so you match on the combined county and

state names by typing

. frlink m:1 countyname statename, frame(counties)

If the match variables had different names in frame counties, such as county and state, you type

. frlink m:1 countyname statename, frame(counties county state)

generate(linkvar1) specifies the name of the new variable that will contain all the information needed

to link the frames. This variable is added to the dataset in frame 1. This option is rarely used.

If this option is not specified, the link variable will then be named the same as the frame name specified

in the frame() option.

Options for frlink rebuild
frame(frame3) specifies a frame name that differs from the existing linkage. frame3 is the new name

of a frame linked by linkvar2.

For instance, yesterday, you created a linkage named george to the data in the frame named george
by typing

. frlink m:1 countyname statename, frame(george)

Today, you loaded the linked data into a frame named counties. To rebuild the linkage so that linkage
george links to the data in frame counties, type

. frlink rebuild george, frame(counties)

If you also wish to rename the linkage to be counties, type

. rename george counties

Then you would have a linkage named counties to the data in the frame named counties.

Remarks and examples
Remarks are presented under the following headings:

Overview of the frlink command
Everything you need to know about linkages
Example 1: A typical m:1 linkage
How link variables work

Advanced examples
Example 2: A complex m:1 linkage
Example 3: A 1:1 linkage, a simple solution to a hard problem
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Overview of the frlink command
frlink 1:1 and frlink m:1 create linkages between the current frame and another frame you specify.

This adds a new variable to the current frame, known as the link variable. You can use the frget
command to copy variables from the linked frame to the current frame and use the frval() function to
use the other frame’s variables in expressions. You can use the fralias add command to define aliases
of variables from the linked frame in the current frame. An alias is a reference to a variable in another

frame, similar to a copy, but uses very little memory. You cannot modify the observations in a alias

variable.

Linkages are said to be named, but the name is in fact the name of the link variable that frlink
creates.

frlink dir lists the names of existing linkages.

frlink describe linkvar displays details about the specified linkage. It also checks the validity of

the link variable and, if there are problems, tells you how to fix it.

frlink rebuild linkvar re-creates the specified linkvar. If linkvar is invalid, frlink rebuild will
fix it.

Type drop linkvar to delete linkages.

Everything you need to know about linkages
Here is everything you need to know in outline form:

1. A linkage connects one frame to another. Here are the advantages.

1.1 The frval() function.
1.2 The frget command.
1.3 The fralias add command.

2. The frlink command creates linkages.
3. Linkages are named.

4. A linkage is variable added to the data.

5. Drop the link variable, remove the link.

6. Do not modify the contents of the link variable.

7. Linkages are formed based on equality of the match variables.

8. You can specify more than one match variable.

9. Match variables can be named differently in the two frames.

10. Match type: One-to-one or many-to-one matching.

11. Linking can result in unmatched observations.

12. Linkages are directional.

13. How to create nested linkages.

14. Saving and using linked frames.

15. Do’s and don’ts.

What follows will turn you into an expert.

1. A linkage connects one frame to another. Here are the advantages.

Create a linkage and you can access the variables in another frame using the frval() function
and the commands frget and fralias add.
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1.1 The frval() function. You can type

. generate rel_income = income / frval(counties, median_income)

frval(counties, median income) returns the value of the median income vari-
able in frame counties. If the current frame contained data on people and the county
frame contained data on counties (linked to with link variable counties in the current
frame), the above would produce person income divided by the median income of the

county in which he or she resides. See frval() in [FN] Programming functions.

1.2 The frget command. You can type

(1) . frget median_income, from(counties)
(2) . frget medinc = median_income, from(counties)
(3) . frget median_income pop, from(counties)
(4) . frget median_income pop attr*, from(counties)
(5) . frget median_income pop attr*, from(counties) prefix(c_)

and more . . .

(1) copies median income from frame counties into the data in the current frame.

(2) does the same but names the variable medinc.

(3) copies two variables.

(4) copies lots of variables.

(5) copies lots of variables and renames them to start with c .

This is only a smattering of what frget can do. See [D] frget.

1.3 The fralias add command. You can type

(1) . fralias add median_income, from(counties)
(2) . fralias add medinc = median_income, from(counties)
(3) . fralias add median_income pop, from(counties)
(4) . fralias add median_income pop attr*, from(counties)
(5) . fralias add median_income pop attr*, from(counties) prefix(c_)

and more . . .

(1) alias median income from frame counties so that you can use its observations
in the current frame.

(2) does the same but names the alias variable medinc.

(3) aliases two variables.

(4) aliases lots of variables.

(5) aliases lots of variables and renames them to start with c .

This is only a smattering of what fralias add can do. See [D] fralias.

2. The frlink command creates linkages.

frlink creates a linkage from the current frame to the frame you specify.

. frlink ..., frame(counties)
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3. Linkages are named.

The command

. frlink ..., frame(counties)

creates a linkage named counties to the frame named counties.

You can specify option generate() to give the linkage a different name. To create a linkage
named c to the frame counties, type

. frlink ..., frame(counties) generate(c)

4. A linkage is a variable added to the data.

The entire physical manifestation of a linkage is the addition of a single variable to the dataset

in the current frame. Typing

. frlink ..., frame(counties)

adds new variable counties to the dataset in the current frame.

. frlink ..., frame(counties) generate(c)

adds new variable c to the dataset in the current frame.

The added variable is known as the “link variable”, or linkvar.

5. Drop the link variable, remove the link.

Because linkages are just a variable, if you drop the variable, you remove the link.

. drop counties

. drop c

6. Do not modify the contents of the link variable.

If you modify the link variable’s contents, you invalidate the linkage. If you are lucky, the next

time you use the frget or fralias add command or the frval() function, they will detect
the problem and issue an error. If not, they will simply produce incorrect results.

. replace counties = ... // Do not do this

. replace c = ... // Do not do this

If you accidentally modify the link variable’s contents, use frlink rebuild to repair it.

. frlink rebuild counties

. frlink rebuild c

7. Linkages are formed based on equality of match variables.

To construct a link to frame counties, type

. frlink ..., frame(counties)

The complete command would have the dots filled in. Part of what needs to appear in place of

the dots are the match variables. Amore complete version of the command is

. frlink ... countyid, frame(counties)

We specified one match variable, countyid.

Linkages are formed by matching observations in the current frame to observations in the other

frame when their match variables are equal.
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In the example, the match variables are countyid in the current frame and countyid in the
county frame. Observations are matched when the countyid variables are equal.

Let’s unravel that. The data in the current frame are on people. countyid in the current frame
records the county in which each person resides.

Meanwhile, the data in the county frame contains information on counties, such as a county’s

median income. Variable countyid in this frame records the county each observation de-

scribes.

Observations in the two frames are matched when the county in which a person resides equals

the county being described. Once we have formed the linkage by typing

. frlink ... countyid, frame(counties)

if we then type

. generate rel_income = income / frval(counties, median_income)

we obtain the ratio of each person’s income to the median income in the county in which he or

she resides.

8. You can specify more than one match variable.

We just considered the case of one match variable—countyid—in each of the frames:

. frlink ... countyid, frame(counties)

Let’s imagine that instead of containing countyid, the datasets contain countyname. Substi-
tuting countyname for countyid might be insufficient to form the desired linkage:

. frlink ... countyname, frame(counties)

County names in the United States are repeated across states. Monroe County, for instance,

exists in Florida, Mississippi, Texas, and other states. To link the frames, we need to match on

both county and state names:

. frlink ... countyname statename, frame(counties)

Because county and state names, taken together, uniquely identify the locations, the order in

which we specify them is irrelevant:

. frlink ... statename countyname, frame(counties)

9. Match variables can be named differently in the two frames.

When we type

. frlink ... countyname statename, frame(counties)

we are stating the variables countyname and statename appear in both frames. If the names
are different in the two frames, specify the names used in the current frame following the

frlink command, and specify the names used in the other frame in the frame() option, after
the frame’s name:

. frlink ... countyname statename, frame(counties cnty usstate)

countyname and statename are the variable names used in the current frame. The variables
corresponding to them in frame counties are named cnty and usstate.
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10. Match type: One-to-one or many-to-one matching.

Consider the linkage created by

. frlink ... countyid, frame(counties)

The current frame contains data on persons, and the other frame—counties—contains data

on counties.

All that is needed to turn the above into a complete command is to replace the dots with a

match type, which can be 1:1 or m:1. In this case, the match type should be m:1, and the full
command is

. frlink m:1 countyid, frame(counties)

m:1 stands for many-to-one matching. m:1 means that is okay if more than one observation in
the current frame matches the same observation in the other frame. We specify m:1 because it is
possible that multiple people in the current frame reside in the same county. If five people live

in county 207, all five will match to the observation in frame counties that describes county
207.

The alternative 1:1 means that at most one observation in the current frame can match an

observation in the other frame. Specifying 1:1 would be appropriate for matching person data
in the current frame with more data on him or her in the other frame. If persons were to be

matched on personid and if the other frame were named person2, we type

. frlink 1:1 personid, frame(person2)

Matched would be persons in the current frame who also appeared in the second frame.

If you think about it, 1:1 is a special case of m:1. 1:1means at most one observation matches.
m:1 means one or more observations match. This means that, if

. frlink 1:1 personid, frame(morepersons)

forms the linkage you want, so will

. frlink m:1 personid, frame(morepersons)

So why specify 1:1? We specify 1:1 so that frlink can issue an error message if the result is
not 1:1. When matching people’s data to more data on the same people, if two people in the

first frame matched the same observation in the second, that means

P1. there is an error in the first dataset: the same person appears more than once in it; or

P2. there is an error in variable personid in the first dataset: the personid variable

contains the wrong value; or

P3. we are not thinking clearly and should have specified m:1 instead of 1:1.

You specify 1:1 so that the software can flag situations where the reality is different from your

expectations. Then you fix your data or your thinking.

11. Linking can result in unmatched observations.

Imagine that you have successfully executed

. frlink m:1 countyid, frame(counties)
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The result will be that each observation in the current frame will be matched or unmatched.

Observations in the current frame are matched when the values of countyid are found in frame
counties. The remaining observations, if any, are unmatched. Unmatched observations are
not an error; they are a characteristic and perhaps a shortcoming of your datasets.

frlink tells you how many unmatched observations there are when you create the linkage.

Function frval() will subsequently return missing values for the unmatched observations. If
you type

. generate relative_income = income/frval(linkvar, median_income)

variable relative income would be missing (.) for the unmatched observations, the same
as if unmatched observations were matched but contained median income==..

frget and alias variables created by fralias add behave similarly. frget sets the unmatched
observations equal to missing in the copied variable. Alias variables return missing values for

unmatched observations.

. frget median_income, from(counties)

. fralias add median_income, from(counties) prefix(a_)

In addition, the link variable in the current frame contains missing values for the unmatched

observations. This is useful. How many observations in the current frame are unmatched? If

you do not remember, type

. count if counties==.

You can look at the data for the unmatched observations.

. browse if counties==.

You can analyze the unmatched data.

. summarize if counties==.

If observations will be useful to you only when they are matched with county data, you can

keep just the matched data by typing

. keep if counties!=.

12. Linkages are directional.

We say that we link the current frame to another frame, but it’s really the other way around.

Data flow to the current frame from the other frame. If you have created the linkage

. frlink m:1 countyid, frame(counties)

then you can access data in frame counties from the current frame, but you cannot access data

in the current frame from frame counties.

13. How to create nested linkages.

Consider separate frames containing data on students, the schools they attend, and the counties

in which the schools are located. Here is the setup:

Current frame: students.dta containing variables for each student’s ID, the ID of

the schools he or she attends, and student characteristics.

Frame schools: schools.dta containing each school’s ID, the ID of the counties in

which the schools are located, and school characteristics.
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Frame counties: us counties.dta containing each county’s ID and county char-

acteristics.

Here is how you load the datasets into the frames:

. frame create schools

. frame create counties

. use students

. frame schools: use schools

. frame counties: use us_counties

Here is how you link the frames:

. frlink m:1 schoolid, frame(schools)

. frget countyid, from(schools)

. frlink m:1 countyid, frame(counties)

The first command links students with the schools they attend.

The second command copies variable countyid from frame schools to the current frame.

The third command links students with the counties in which their schools are located.

The command that copied countyid into the current frame was necessary so that the students
in the current frame could be linked to the county frame.

Said generically, if you have data in frames A, B, and C, you link frame A to B and link frame

A to C to access all the data from A.

Said negatively, linkages are not transitive. Linking frame A to B and B to C is not sufficient to

allow frame A to access all the data.

14. Saving and using linked frames.

You have created students-linked-to-county data:

. use students

. frame create counties

. frame counties: use us_counties

. frlink m:1 countyid, frame(counties)

To save the datasets so that you can use them later, you need only type

. save students, replace

It is necessary to save students.dta because it has a new variable in it, namely, the linkage

variable counties. It is not necessary to save us counties.dta because it has not changed.

That said, you might still wish to save both files:

. save students, replace

. frame counties: save us_counties, replace

The data in frame counties were not changed, but the sort order of the data changed. Linking
sorts the linked-to frame on its match variables. We recommend you save both datasets.

To later load the data, you type

. use students

. frame create counties

. frame counties: use us_counties
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You might want to put these lines in a do-file. You could call it usestudents.do. Then,

whenever you wanted to load the data, all you need to do is type

. do usestudents

15. Do’s and don’ts.

We start with the don’ts. There are only three:

Do not modify the contents of the link variable,

. . . but if you do, use frlink rebuild to fix it.

Do not rename the match variables in either frame,

. . . but if you do, drop the link variable, and use frlink m:1 or 1:1 to link the
frames again.

Do not drop the match variables from either frame,

. . . and if you do, we cannot help you.

Everything else is a do, but they come in two flavors. The first is do without qualifications.

The second is also a do, but do it only if you follow it by typing frlink rebuild.

Here are the do’s without qualifications:

Do drop the link variable. That’s how you eliminate the link.

Do rename the link variable.

Do drop observations in the current frame.

Do add new variables in either frame.

Do modify or rename variables in either frame, with the exception of the link and the

match variables.

And here are the do’s with qualification, which is always the same: Type frlink rebuild
afterward.

Do rebuild after adding observations in either or both frames.

Do rebuild after dropping observations in the linked frame.

Do rebuild after modifying the contents of thematch variables in either or both frames.

And remember a rule that always applies:

It is always safe to type frlink rebuild.

If there is no problem, it will do nothing.

If there is a problem, it will fix it unless it cannot,

. . . then it explains why and do nothing to your data.

You are now an expert on linked frames.

Example 1: A typical m:1 linkage
File persons.dta contains data on people. Among its variables is countyid, containing the county

code where each person resides.
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File txcounty.dta contains data on Texas counties. Among its variables is countyid, the county
code for the county that each observation describes.

Here is how we load and link the datasets:

. use https://www.stata-press.com/data/r19/persons

. frame create txcounty

. frame txcounty: use https://www.stata-press.com/data/r19/txcounty
(Median income in Texas counties)
. frlink m:1 countyid, frame(txcounty)
(all observations in frame default matched)

Linkages are for situations where you want to analyze the data in the current frame using variables

from both frames.

Below, we create new variable relative income in the current frame equal to income (in the current
frame) divided by median income (from the county frame):

. generate relative_income = income / frval(txcounty, median_income)

. summarize relative_income
Variable Obs Mean Std. dev. Min Max

relative_i~e 20 .5501545 .1090887 .352133 .7038001

If we wanted to use median income from the county frame in a linear regression, we would use the

frget command to add median income to the current frame’s data:

. frget median_income, from(txcounty)

. regress income ... median_income ...

We will not do that because persons.dta contains fictional values and is not worth the bother. But
realize what would be possible if these datasets were real and contained more variables:

Get a variable:

frget median_income, from(txcounty)

Get a variable, but change its name:

frget medinc = median_income, from(txcounty)

Get a lot of variables:

frget median* nbus-pop, from(txcounty)

Get a lot of variables, but change their names to begin with c :

frget median* nbus-pop, prefix(c_) from(txcounty)

See [D] frget.

A more memory-efficient option is to use fralias add to create aliases instead of copies. See

[D] fralias.

How link variables work
frlink performs two actions when it creates a link:

1. It adds the link variable to the dataset in the current frame.

2. It sorts the dataset in the other frame by its match variables.
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In the example above, this means that

1. frlink adds variable txcounty to the data in the current frame.

2. frlink sorts the data in frame txcounty by countyid. (It literally executes frame
txcounty: sort countyid.)

Look at variable txcounty in the first observations of persons.dta in the current frame:
. list in 1/5

personid countyid income txcounty relati~e

1. 1 5 30818 5 .7038001
2. 2 3 30752 3 .4225046
3. 3 2 29673 2 .5230381
4. 4 3 32115 3 .441231
5. 5 2 31189 2 .5497603

Each observation of variable txcounty contains the observation number in frame txcounty that

matches the current observation. The above list says that

obs. 5 of frame txcounty matches obs. 1 of the current frame

obs. 3 of frame txcounty matches obs. 2 of the current frame

obs. 2 of frame txcounty matches obs. 3 of the current frame

obs. 3 of frame txcounty matches obs. 4 of the current frame

obs. 2 of frame txcounty matches obs. 5 of the current frame

. . . assuming the data in frame txcounty are sorted on countyid

Frame txcounty is the other frame. It is the other frame that must be sorted, not the data in the current
frame.

Even so, the assumption is iffy. It is true after frlink creates the linkage because frlink itself sorts
the data. And fralias add, frget, and frval() check the sort order before using the other frame’s
data so that accidents do not happen.

The only way things can go wrong are 1) if you change the contents of the link variable txcounty or
2) you drop or modify the match variable countyid. So do not do that.

Advanced examples
Example 1 showed you how linkages are usually used. We linked person data to county data. We

could show you another example that links student data to school data and student data to county data,

but it amounts to nothing more than example 1, done twice.

We have two more examples to show you, but we admit that they are advanced and abstruse.

The first is an example in which linkage shines, but the solution is seldom useful beyond the particular

example shown.
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The second concerns 1:1 linkages. If 1:1 is appropriate for your problem, you probably want to

merge the datasets, not link them. You probably want to use merge, not frlink. On occasion, however,
a situation arises where linkage is a better solution. We show you one and provide guidelines on how to

identify other such situations.

Example 2: A complex m:1 linkage
We have a dataset on families and the file is named, naturally enough, family.dta. The dataset

contains information on variables of interest, as all datasets do, but that is not what makes this dataset

interesting, so the variables are simply named x1, x2, . . . , x5. What makes this dataset interesting is that

it contains observations on related adult people. It contains adult children, parents, and grandparents.

Such data are notoriously difficult to process and analyze.

In the dataset, every person is identified by a person ID, called a “pid”. The data also contain the

variables pid m and pid f, which are the pids for the person’s mother and father, if they too are in the
data. The oldest generation in the data has pid m==. and pid f==..

One person in the data is person number 14982. Here are the values of ID variables for 14982:

. list pid* if pid==14982

pid pid_m pid_f

8. 14982 695966 933335

Variables pid m and pid f are the IDs of 14982’s mother and father. The mother is 695966 and the
father, 933335.

Here are the recorded ID variables for 695966, 14982’s mother:

. list pid* if pid==695966

pid pid_m pid_f

431. 695966 186484 238126

14982’s maternal grandmother is 186484 and maternal grandfather, 238126.

Let’s stay with the maternal side of the family. Here are the ID variables for 186484, 14982’s maternal

grandmother:

. list pid* if pid==186484

pid pid_m pid_f

100. 186484 . .

The grandmother’s variables have missing values for her mother’s and father’s ID, so we cannot con-

tinue back further. Nonetheless, there are other people in this dataset just like 14982, people on whom

we have their data, their parents’ data, and their parents’ parents’ data.
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frlink can link the data so that we have access to all of them. To do that, we will create six linkages,
named

linkage name meaning linkage to

f father

m mother

mm mother’s mother

mf mother’s father

fm father’s mother

ff father’s father

Once we have these six linkages, we will be able to access variables for the person, his or her parents,

and their parents. We will be able to do that using the frval() function or the fralias add and frget
commands.

If we wanted to access x1 using function frval(), we would do so with the following:

value of x1 desired type

own value x1
mother’s value frval(m, x1)
father’s value frval(f, x1)
mother’s mother’s value frval(mm, x1)
mother’s father’s value frval(mf, x1)
father’s mother’s value frval(fm, x1)
father’s father’s value frval(ff, x1)

If we wanted to copy all five variables of interest to the current frame, prefixed by their relationship,

we would do so with the following:

value of x1-x5 desired type

own value x1-x5
mother’s variables frget x1-x5, from(m) prefix(m)
father’s variables frget x1-x5, from(f) prefix(f)
mother’s mother’s variables frget x1-x5, from(mm) prefix(mm)
mother’s father’s variables frget x1-x5, from(mf) prefix(mf)
father’s mother’s variables frget x1-x5, from(fm) prefix(fm)
father’s father’s variables frget x1-x5, from(ff) prefix(ff)
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Instead, we can alias all five variables of interest to the current frame, prefixed by their relationship,

with the following:

value of x1-x5 desired type

own value x1-x5
mother’s variables fralias add x1-x5, from(m) prefix(m)
father’s variables fralias add x1-x5, from(f) prefix(f)
mother’s mother’s variables fralias add x1-x5, from(mm) prefix(mm)
mother’s father’s variables fralias add x1-x5, from(mf) prefix(mf)
father’s mother’s variables fralias add x1-x5, from(fm) prefix(fm)
father’s father’s variables fralias add x1-x5, from(ff) prefix(ff)

If we combined all 5 variables of interest from all 7 sources, we would have a total of 35 variables

of interest. We could form that dataset by typing just six commands. Before we can do any of this, we

must build the linkages.

To build them, we start in the usual way. We load the data of interest into the current frame and load

into the other frame the data we want to link:

. clear all

. use https://www.stata-press.com/data/r19/family
(Fictional family linkage data)
. frame create family
. frame family: use https://www.stata-press.com/data/r19/family // yes, the same data
(Fictional family linkage data)

We are in fact going to link family.dta to itself, but frlink requires that linkages be made from
the current frame to the other frame. Nonetheless, we will be able to create all six linkages to that single

frame.

To create the first two linkages, we type

. frlink m:1 pid_m, frame(family pid) generate(m)
(355 observations in frame default unmatched)
. frlink m:1 pid_f, frame(family pid) generate(f)
(355 observations in frame default unmatched)

Because we are linking people to people, your natural inclination might be that the matching needs

to be 1:1. That was our inclination too, but when we tried, frlink complained that the data were m:1
and refused. It took us a minute to realize why. Some of the people in the data have the same mother or

father.

We have shown you the commands to build the first two linkages. Four remain to be built. What is

different about these four is that the current frame does not contain the necessary match variable. Think

about forming the mm linkage, which is the maternal grandmother of a person in the current frame. We

need a variable containing the ID of the current person’s mother’s mother or frval(m, pid m). We

could call the variable pid mm, and construct it and the related match variables by typing
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. generate pid_mm = frval(m, pid_m)
(539 missing values generated)
. generate pid_mf = frval(m, pid_f)
(539 missing values generated)
. generate pid_fm = frval(f, pid_m)
(539 missing values generated)
. generate pid_ff = frval(f, pid_f)
(539 missing values generated)

Alternatively, we could have obtained them by using the frget command:

frget pid_mm = pid_m, from(m)
frget pid_mf = pid_f, from(m)
frget pid_fm = pid_m, from(f)
frget pid_ff = pid_f, from(f)

It does not matter which we use.

Once we have the match variables, we can form the linkages:

. frlink m:1 pid_mm, frame(family pid) generate(mm)
(539 observations in frame default unmatched)
. frlink m:1 pid_mf, frame(family pid) generate(mf)
(539 observations in frame default unmatched)
. frlink m:1 pid_fm, frame(family pid) generate(fm)
(539 observations in frame default unmatched)
. frlink m:1 pid_ff, frame(family pid) generate(ff)
(539 observations in frame default unmatched)

At this point, we are basically done. We are interested, however, in the sample of people for whom

data on their parents and grandparents are available. We can drop the other people from the data in the

current frame.

. drop if pid_m ==. | pid_f ==.
(355 observations deleted)
. drop if pid_mm==. | pid_mf==.
(184 observations deleted)
. drop if pid_fm==. | pid_ff==.
(0 observations deleted)
. count // number of observations remaining
100

We now have our data ready for analysis.

What are the chances that an even 100 people would be left? They would be nil if this were real data.

We manufactured these data, however, so there is no reason to continue to analyze variables x1 through
x5. They contain fictional values, and random.

Example 3: A 1:1 linkage, a simple solution to a hard problem
Most 1:1 cases are better handled by merge. Here is an exception.

You are working with hospital patient data, file discharge1.dta. The file contains vari-

able patientid among other variables, and you receive additional data on the same patients, file

discharge2.dta. Loading the two datasets into separate frames and linking them is easy to do.
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. use https://www.stata-press.com/data/r19/discharge1, clear

. frame create discharge2

. frame discharge2: use https://www.stata-press.com/data/r19/discharge2

. frlink 1:1 patientid, frame(discharge2)

But should we be doing this at all? Would it not be better to merge discharge1.dta with

discharge2.dta? It usually would be. It would be if you received the following note from George:

Kathy: Here are new data on the 1,980 patients. The data contain the five variables that

were previously omitted. – George.

merge will allow you to add these five new variables. Use it.

The note you received from George, however, reads

Kathy: Here are the data on the 1,980 patients. You’re not going to believe this, but even

though they said there are five values that needed to be updated, they sent all the data

again! Verify their claim, and tell me which variables they updated. – George.

This is a case for linking because you will not have to rename the 19 variables so that you can verify

their claim. The link solution of handling George’s request is easier:

. use https://www.stata-press.com/data/r19/discharge1, clear
(Fictional WA hospital discharges)
. frame create discharge2
. frame discharge2: use https://www.stata-press.com/data/r19/discharge2
(Fictional WA hospital discharges)
. frlink 1:1 patientid, frame(discharge2)
(all observations in frame default matched)
. foreach v of varlist patientid-proc3code {
2. quietly count if ‘v’ != frval(discharge2, ‘v’, discharge2)
3. if (r(N)!=0) {
4. display ”‘v’: ” r(N) ” value(s) changed”
5. }
6. }

sex: 1 value(s) changed
los: 1 value(s) changed
billed: 1 value(s) changed
diag1code: 1 value(s) changed
diag2code: 1 value(s) changed

It turns out that the updated data are just as it was represented to be.

These data had two features that made them a candidate for linking rather than merging:

1. The sample of interest was the observations in the original data, the data in the current frame,

and

2. lots of variables in the two datasets had the same names, and we were interested in both sets of

values.

Let’s now think about other examples. Only some 1:1 problems will have feature 1. 1:1 matches
in which you will subsequently analyze the merged data— merge==3 in merge speak—will all have

feature 1.

Feature 2 arises less often. In the example, the new data updated the old. Linkages make comparing

values easier when the names are the same. Linkages in general make it easier when variable names are

the same, even when there is no reason to compare them. Imagine that both datasets contain a variable

called income, but they are different measures of income. In the combined result, you want them both,
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so you need to rename one of them. Now imagine that there are hundreds of variables and a handful

share the same names across datasets even though they contain different concepts of whatever is being

measured. Linkages make renaming them easy.

First, link the data:

. frlink personid, frame(newdata)

Then, try to copy all the variables:

. frget *, from(newdata)

The command will either work or tell you the variables that have the same name in both frames.

Imagine that frget lists income and six other variables. You want to copy income, so you rename the
variable:

. frame newdata: rename income farmincome

Now try again:

. frget *, from(newdata)

Of course the command does nothing but repeat the six variables that still have the same names in both

frames. You review the list one last time and decide that you still do not care about those six variables.

Then you type

. frget *, from(newdata) exclude(‘r(dups)’)

This time it works! When variables have the same name, in addition to listing them, frget saves

their names in r(dups). That is why we typed frget *, from(newdata) when we knew we had not

yet resolved all the duplicate names. We wanted frget to set r(dups) so that we could next tell frget
to copy all the variables, except exclude(‘r(dups)’).

Now that we have gotten the variables of interest, we break the link:

. drop newdata

. frame drop newdata

The data in memory are now the same data that we could have coaxed merge into producing had we
done everything right.

Stored results
frlink m:1 and frlink 1:1 store the following in r()
Scalars

r(unmatched) # of observations in the current frame unable to be matched

frlink dir stores the following in r():
Scalars

r(n vars) # of link variables

Macros

r(vars) space-separated list of link-variable names

frlink describe stores nothing in r().

frlink rebuild stores the following in r():
Scalars

r(unmatched) # of observations in the current frame unable to be matched
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Also see
[D] fralias —Alias variables from linked frames

[D] frget — Copy variables from linked frame

[D] frames intro — Introduction to frames

[D] merge — Merge datasets
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Description Quick start Syntax Remarks and examples Also see

Description
frunalias changes the storage type of alias variables identified in varlist to that of the variable they

reference in another frame. If varlist is not specified, then all alias variables are changed.

frunalias ignores variables that do not have storage type alias.

Quick start
Recast alias variables v1, v2, and v3 to be copies of the variables they reference in another frame

frunalias v1 v2 v3

Recast all alias variables in the current dataset

frunalias

Syntax
frunalias [ varlist ]

Remarks and examples
If x is an alias variable, linked to a type variable in another frame, then

frunalias x

will recast x to be a type variable. This effectively makes x a copy of the variable from the linked frame.

The following commands change the values in variables they operate on, so by their very nature,

they cannot work with alias variables: cross, dyngen, fillin, the icd suite of commands, recode,
reshape, stack, xpose, the mi suite of commands, and snapspan.

The error message they produce, when they detect alias variables, will mention using frunalias to work
around this restriction.

. xpose, clear
alias variables not allowed

Alias variables detected: var1 and var2.
You could use command frunalias to recast these variables to avoid this
error message.

r(109);

As this message indicates, we could now type

frunalias var1 var2

to make a copy of var1 and var2 in the current frame. Then we can proceed with the xpose command.

388
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Also see
[D] fralias —Alias variables from linked frames

[D] frlink — Link frames

[D] frames intro — Introduction to frames

[D] merge — Merge datasets

[M-5] st addalias( ) —Add alias variable to current Stata dataset

[M-5] st isalias( ) — Properties of alias variable
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Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description
generate creates a new variable. The values of the variable are specified by = exp.

If no type is specified, the new variable type is determined by the type of result returned by =exp.
A float variable (or a double, according to set type) is created if the result is numeric, and a string
variable is created if the result is a string. In the latter case, if the string variable contains values greater

than 2,045 characters or contains values with a binary 0 (\0), a strL variable is created. Otherwise, a
str# variable is created, where # is the smallest string that will hold the result.

If a type is specified, the result returned by =exp must be a string or numeric according to whether
type is string or numeric. If str is specified, a strL or a str# variable is created using the same rules
as above.

See [D] egen for extensions to generate.

replace changes the contents of an existing variable. Because replace alters data, the command
cannot be abbreviated.

set type specifies the default storage type assigned to new variables (such as those created by

generate) when the storage type is not explicitly specified.

Quick start
Create numeric variable newv1 equal to v1 + 2

generate newv1 = v1 + 2

Same as above, but use type byte and label the values of newv1 with value label mylabel
generate byte newv1:mylabel = v1 + 2

String variable newv2 equal to “my text”
generate newv2 = ”my text”

Variable newv3 equal to the observation number
generate newv3 = _n

Replace newv3 with observation number within each value of catvar
by catvar: replace newv3 = _n

Binary indicator for first observation within each value of catvar after sorting on v2
bysort catvar (v2): generate byte first = _n==1

Same as above, but for last observation

bysort catvar (v2): generate byte last = _n==_N

Combined datetime variable newv4 from %td formatted date and %tc formatted time
generate double newv4 = cofd(date) + time

390
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Menu
generate

Data > Create or change data > Create new variable

replace
Data > Create or change data > Change contents of variable

Syntax
Create new variable

generate [ type ] newvar[ :lblname ] = exp [ if ] [ in ]

[ , before(varname) | after(varname) ]

Replace contents of existing variable

replace oldvar = exp [ if ] [ in ] [ , nopromote ]

Specify default storage type assigned to new variables

set type { float | double } [ , permanently ]

type is one of byte | int | long | float | double | str | str1 | str2 | . . . | str2045.
See Description below for an explanation of str. For the other types, see [U] 12 Data.
by is allowed with generate and replace; see [D] by.

Options
before(varname) or after(varname)may be used with generate to place the newly generated vari-

able in a specific position within the dataset. These options are primarily used by the Data Editor

and are of limited use in other contexts. A more popular alternative for most users is order (see

[D] order).

nopromote prevents replace from promoting the variable type to accommodate the change. For in-

stance, consider a variable stored as an integer type (byte, int, or long), and assume that you

replace some values with nonintegers. By default, replace changes the variable type to a floating
point (float or double) and thus correctly stores the changed values. Similarly, replace promotes
byte and int variables to longer integers (int and long) if the replacement value is an integer but is
too large in absolute value for the current storage type. replace promotes strings to longer strings.
nopromote prevents replace from doing this; instead, the replacement values are truncated to fit

into the current storage type.

permanently specifies that, in addition to making the change right now, the new limit be remembered

and become the default setting when you invoke Stata.
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Remarks and examples
Remarks are presented under the following headings:

generate and replace
set type
Video examples

generate and replace
generate and replace are used to create new variables and to modify the contents of existing vari-

ables, respectively. You can do anything with replace that you can do with generate. The only differ-
ence between the commands is that replace requires that the variable already exist, whereas generate
requires that the variable be new. Because Stata is an interactive system, we force a distinction between

replacing existing values and generating new ones so that you do not accidentally replace valuable data

while thinking that you are creating a new piece of information.

Detailed descriptions of expressions are given in [U] 13 Functions and expressions.

Also see [D] edit.

See [D] fralias for creating alias variables that reference other variables in a linked frame. replace
may notmake changes to alias variables; see [D] frunalias for advice on how to get around this restriction.

Example 1
We have a dataset containing the variable age2, which we have previously defined as age^2 (that is,

age2). We have changed some of the age data and now want to correct age2 to reflect the new values:

. use https://www.stata-press.com/data/r19/genxmpl1
(Wages of women)
. generate age2=age^2
variable age2 already defined
r(110);

When we attempt to re-generate age2, Stata refuses, telling us that age2 is already defined. We could

drop age2 and then re-generate it, or we could use the replace command:

. replace age2=age^2
(204 real changes made)

When we use replace, we are informed of the number of actual changes made to the dataset.

You can explicitly specify the storage type of the new variable being created by putting the type, such

as byte, int, long, float, double, or str8, in front of the variable name. For example, you could type
generate double revenue = qty * price. Not specifying a type is equivalent to specifying float
if the variable is numeric, or, more correctly, it is equivalent to specifying the default type set by the

set type command; see below. If the variable is alphanumeric, not specifying a type is equivalent to
specifying str#, where # is the length of the largest string in the variable.

You may also specify a value label to be associated with the new variable by including “:lblname”
after the variable name. This is seldom done because you can always associate the value label later by

using the label values command; see [U] 12.6.3 Value labels.
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Example 2
Among the variables in our dataset is name, which contains the first and last name of each person. We

wish to create a new variable called lastname, which we will then use to sort the data. name is a string
variable.

. use https://www.stata-press.com/data/r19/genxmpl2, clear

. list name

name

1. Johanna Roman
2. Dawn Mikulin
3. Malinda Vela
4. Kevin Crow
5. Zachary Bimslager

. generate lastname=word(name,2)

. describe
Contains data from https://www.stata-press.com/data/r19/genxmpl2.dta
Observations: 5

Variables: 2 18 Jan 2024 12:24

Variable Storage Display Value
name type format label Variable label

name str17 %17s
lastname str9 %9s

Sorted by:
Note: Dataset has changed since last saved.

Stata is smart. Even though we did not specify the storage type in our generate statement, Stata knew to

create a str9 lastname variable, because the longest last name is Bimslager, which has nine characters.

Example 3
We wish to create a new variable, age2, that represents the variable age squared. We realize that

because age is an integer, age2will also be an integer and will certainly be less than 32,740. We therefore

decide to store age2 as an int to conserve memory:

. use https://www.stata-press.com/data/r19/genxmpl3, clear

. generate int age2=age^2
(9 missing values generated)

Preceding age2 with int told Stata that the variable was to be stored as an int. After creating the new
variable, Stata informed us that nine missing values were generated. generate informs us whenever it
produces missing values.

See [U] 13 Functions and expressions and [U] 26 Working with categorical data and factor vari-

ables for more information and examples. Also see [D] recode for a convenient way to recode categorical

variables.
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Technical note
If you specify the if or in qualifier, the = exp is evaluated only for those observations that meet the

specified condition or are in the specified range (or both, if both if and in are specified). The other

observations of the new variable are set to missing:

. use https://www.stata-press.com/data/r19/genxmpl3, clear

. generate int age2=age^2 if age>30
(290 missing values generated)

Example 4
replace can be used to change just one value, as well as to make sweeping changes to our data. For

instance, say that we enter data on the first five odd and even positive integers and then discover that we

made a mistake:

. use https://www.stata-press.com/data/r19/genxmpl4, clear

. list

odd even

1. 1 2
2. 3 4
3. -8 6
4. 7 8
5. 9 10

The third observation is wrong; the value of odd should be 5, not −8. We can use replace to correct
the mistake:

. replace odd=5 in 3
(1 real change made)

We could also have corrected the mistake by typing replace odd=5 if odd==-8.

set type
When you create a new numeric variable and do not specify the storage type for it, say, by typing

generate y=x+2, the new variable is made a float if you have not previously issued the set type
command. If earlier in your session you typed set type double, the new numeric variable would be

made a double.

Video examples
How to create a new variable that is calculated from other variables

How to identify and replace unusual data values

https://www.youtube.com/watch?v=E_wCh0rf4p8
https://www.youtube.com/watch?v=jIiHb0gsyVo
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Also see
[D] compress — Compress data in memory

[D] corr2data — Create dataset with specified correlation structure

[D] drawnorm — Draw sample from multivariate normal distribution

[D] dyngen — Dynamically generate new values of variables
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[D] egen — Extensions to generate

[D] encode — Encode string into numeric and vice versa

[D] fralias —Alias variables from linked frames

[D] frunalias — Change storage type of alias variables

[D] label — Manipulate labels

[D] recode — Recode categorical variables

[D] rename — Rename variable

[U] 12 Data

[U] 13 Functions and expressions
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gsort — Ascending and descending sort

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
gsort arranges observations to be in ascending or descending order of the specified variables and so

differs from sort in that sort produces ascending-order arrangements only; see [D] sort.

Each varname can be numeric or a string.

The observations are placed in ascending order of varname if + or nothing is typed in front of the

name and are placed in descending order if - is typed.

Quick start
Sort dataset in memory by ascending values of v1, equivalent to sort

gsort v1

Sort dataset in memory by descending values of v1
gsort -v1

Sort dataset by ascending values of v1 and descending values of v2
gsort v1 -v2

Create newv for use in subsequent by operations
gsort v1 -v2, generate(newv)

Place missing values of descending-order v2 at the top of the dataset instead of the end
gsort v1 -v2, mfirst

Menu
Data > Sort
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Syntax
gsort [ + | - ] varname [ [ + | - ] varname . . . ] [ , generate(newvar) mfirst ]

Options
generate(newvar) creates newvar containing 1, 2, 3, . . . for each group denoted by the ordered data.

This is useful when using the ordering in a subsequent by operation; see [U] 11.5 by varlist: construct
and examples below.

mfirst specifies that missing values be placed first in descending orderings rather than last.

Remarks and examples
gsort is almost a plug-compatible replacement for sort, except that you cannot specify a general

varlist with gsort. For instance, sort alpha-gammameans to sort the data in ascending order of alpha,
within equal values of alpha; sort on the next variable in the dataset (presumably beta), within equal
values of alpha and beta; etc. gsort alpha-gamma would be interpreted as gsort alpha -gamma,
meaning to sort the data in ascending order of alpha and, within equal values of alpha, in descending
order of gamma.

Example 1
The difference in varlist interpretation aside, gsort can be used in place of sort. To list the 10

lowest-priced cars in the data, we might type

. use https://www.stata-press.com/data/r19/auto

. gsort price

. list make price in 1/10

or, if we prefer,

. gsort +price

. list make price in 1/10

To list the 10 highest-priced cars in the data, we could type

. gsort -price

. list make price in 1/10

gsort can also be used with string variables. To list all the makes in reverse alphabetical order, we
might type

. gsort -make

. list make

Example 2
gsort can be used with multiple variables. Given a dataset on hospital patients with multiple obser-

vations per patient, typing
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. use https://www.stata-press.com/data/r19/bp3

. gsort id time

. list id time bp

lists each patient’s blood pressures in the order the measurements were taken. If we typed

. gsort id -time

. list id time bp

then each patient’s blood pressures would be listed in reverse time order.

Technical note
Say that we wished to attach to each patient’s records the lowest and highest blood pressures observed

during the hospital stay. The easier way to achieve this result is with egen’s min() and max() functions:

. egen lo_bp = min(bp), by(id)

. egen hi_bp = max(bp), by(id)

See [D] egen. Here is how we could do it with gsort:

. use https://www.stata-press.com/data/r19/bp3, clear

. gsort id bp

. by id: generate lo_bp = bp[1]

. gsort id -bp

. by id: generate hi_bp = bp[1]

. list, sepby(id)

This works, even in the presence of missing values of bp, because such missing values are placed last
within arrangements, regardless of the direction of the sort.

Technical note
Assume that we have a dataset containing x for which we wish to obtain the forward and reverse

cumulatives. The forward cumulative is defined as 𝐹(𝑋) = the fraction of observations such that

x ≤ 𝑋. Again let’s ignore the easier way to obtain the forward cumulative, which would be to use

Stata’s cumul command,

. set obs 100

. generate x = rnormal()

. cumul x, gen(cum)

(see [R] cumul). Eschewing cumul, we could type

. sort x

. by x: generate cum = _N if _n==1

. replace cum = sum(cum)

. replace cum = cum/cum[_N]

That is, we first place the data in ascending order of x; we used sort but could have used gsort. Next,
for each observed value of x, we generated cum containing the number of observations that take on that
value (you can think of this as the discrete density). We summed the density, obtaining the distribution,

and finally normalized it to sum to 1.
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The reverse cumulative 𝐺(𝑋) is defined as the fraction of data such that x ≥ 𝑋. To obtain this, we

could try simply reversing the sort:

. gsort -x

. by x: generate rcum = _N if _n==1

. replace rcum = sum(rcum)

. replace rcum = rcum/rcum[_N]

This would work, except for one detail: Stata will complain that the data are not sorted in the second

line. Stata complains because it does not understand descending sorts (gsort is an ado-file). To remedy
this problem, gsort’s generate() option will create a new grouping variable that is in ascending order

(thus satisfying Stata’s narrow definition) and that is, in terms of the groups it defines, identical to that

of the true sort variables:

. gsort -x, gen(revx)

. by revx: generate rcum = _N if _n==1

. replace rcum = sum(rcum)

. replace rcum = rcum/rcum[_N]

Also see
[D] sort — Sort data



hexdump — Display hexadecimal report on file

Description Syntax Options
Remarks and examples Stored results Also see

Description
hexdump displays a hexadecimal dump of a file or, optionally, a report analyzing the dump.

Syntax
hexdump filename [ , options ]

options Description

analyze display a report on the dump rather than the dump itself

tabulate display a full tabulation of the ASCII and extended ASCII characters in the
analyze report

noextended do not display printable extended ASCII characters

results store results containing the frequency with which each character code was
observed; programmer’s option

from(#) dump or analyze first byte of the file; default is to start at first byte, from(0)
to(#) dump or analyze last byte of the file; default is to continue to the end of the file

Options
analyze specifies that a report on the dump, rather than the dump itself, be presented.

tabulate specifies in the analyze report that a full tabulation of theASCII and extendedASCII characters
also be presented.

noextended specifies that hexdump not display printable extended ASCII characters, characters in the

range 161–254 or, equivalently, 0xa1–0xfe. (hexdump does not display characters 128–160 and 255.)

results is for programmers. It specifies that, in addition to other stored results, hexdump store r(c0),
r(c1), . . . , r(c255), containing the frequency with which each character code was observed.

from(#) specifies the first byte of the file to be dumped or analyzed. The default is to start at the first
byte of the file, from(0).

to(#) specifies the last byte of the file to be dumped or analyzed. The default is to continue to the end
of the file.

Remarks and examples
hexdump is useful when you are having difficulty reading a file with infile, infix, or import

delimited. Sometimes, the reason for the difficulty is that the file does not contain what you think it
contains, or that it does contain the format you have been told, and looking at the file in text mode is

either not possible or not revealing enough.

400
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Pretend that we have the file myfile.raw containing

Datsun 210 4589 35 5 1
VW Scirocco 6850 25 4 1
Merc. Bobcat 3829 22 4 0
Buick Regal 5189 20 3 0
VW Diesel 5397 41 5 1
Pont. Phoenix 4424 19 . 0
Merc. Zephyr 3291 20 3 0
Olds Starfire 4195 24 1 0
BMW 320i 9735 25 4 1

We will use myfile.raw with hexdump to produce output that looks like the following:

. hexdump myfile.raw
character

hex representation representation
address 0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef

0 4461 7473 756e 2032 3130 2020 2020 2034 Datsun 210 4
10 3538 3920 2033 3520 2035 2020 310a 5657 589 35 5 1.VW
20 2053 6369 726f 6363 6f20 2020 2036 3835 Scirocco 685
30 3020 2032 3520 2034 2020 310a 4d65 7263 0 25 4 1.Merc

40 2e20 426f 6263 6174 2020 2033 3832 3920 . Bobcat 3829
50 2032 3220 2034 2020 300a 4275 6963 6b20 22 4 0.Buick
60 5265 6761 6c20 2020 2035 3138 3920 2032 Regal 5189 2
70 3020 2033 2020 300a 5657 2044 6965 7365 0 3 0.VW Diese

80 6c20 2020 2020 2035 3339 3720 2034 3120 l 5397 41
90 2035 2020 310a 506f 6e74 2e20 5068 6f65 5 1.Pont. Phoe
a0 6e69 7820 2034 3432 3420 2031 3920 202e nix 4424 19 .
b0 2020 300a 4d65 7263 2e20 5a65 7068 7972 0.Merc. Zephyr

c0 2020 2033 3239 3120 2032 3020 2033 2020 3291 20 3
d0 300a 4f6c 6473 2053 7461 7266 6972 6520 0.Olds Starfire
e0 2034 3139 3520 2032 3420 2031 2020 300a 4195 24 1 0.
f0 424d 5720 3332 3069 2020 2020 2020 2039 BMW 320i 9
100 3733 3520 2032 3520 2034 2020 310a 735 25 4 1.
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hexdump can also produce output that looks like the following:

. hexdump myfile.raw, analyze
Line-end characters Line length (tab=1)
\r\n (Windows) 0 minimum 29
\r by itself (Mac) 0 maximum 29
\n by itself (Unix) 9

Space/separator characters Number of lines 9
[blank] 99 EOL at EOF? yes
[tab] 0
[comma] (,) 0 Length of first 5 lines

Control characters Line 1 29
binary 0 0 Line 2 29
CTL excl. \r, \n, \t 0 Line 3 29
DEL 0 Line 4 29
Extended (128-159,255) 0 Line 5 29

ASCII printable
A-Z 20
a-z 61 File format ASCII
0-9 77
Special (!@#$ etc.) 4
Extended (160-254) 0

Total 270
Observed were:

\n blank . 0 1 2 3 4 5 6 7 8 9 B D M O P R S V W Z a b c d e f g h i k l
n o p r s t u x y

Of the two forms of output, the second is often the more useful because it summarizes the file, and the

length of the summary is not a function of the length of the file. Here is the summary for a file that is

just over 4 MB long:

. hexdump bigfile.raw, analyze
Line-end characters Line length (tab=1)
\r\n (Windows) 147,456 minimum 29
\r by itself (Mac) 0 maximum 30
\n by itself (Unix) 2

Space/separator characters Number of lines 147,458
[blank] 1,622,039 EOL at EOF? yes
[tab] 0
[comma] (,) 0 Length of first 5 lines

Control characters Line 1 30
binary 0 0 Line 2 30
CTL excl. \r, \n, \t 0 Line 3 30
DEL 0 Line 4 30
Extended (128-159,255) 0 Line 5 30

ASCII printable
A-Z 327,684
a-z 999,436 File format ASCII
0-9 1,261,587
Special (!@#$ etc.) 65,536
Extended (160-254) 0

Total 4,571,196
Observed were:

\n \r blank . 0 1 2 3 4 5 6 7 8 9 B D M O P R S V W Z a b c d e f g h i
k l n o p r s t u x y
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Here is the same file but with a subtle problem:

. hexdump badfile.raw, analyze
Line-end characters Line length (tab=1)
\r\n (Windows) 147,456 minimum 30
\r by itself (Mac) 0 maximum 90
\n by itself (Unix) 0

Space/separator characters Number of lines 147,456
[blank] 1,622,016 EOL at EOF? yes
[tab] 0
[comma] (,) 0 Length of first 5 lines

Control characters Line 1 30
binary 0 8 Line 2 30
CTL excl. \r, \n, \t 4 Line 3 30
DEL 0 Line 4 30
Extended (128-159,255) 24 Line 5 30

ASCII printable
A-Z 327,683
a-z 999,426 File format BINARY
0-9 1,261,568
Special (!@#$ etc.) 65,539
Extended (160-254) 16

Total 4,571,196
Observed were:

\0 ^C ^D ^G \n \r ^U blank & . 0 1 2 3 4 5 6 7 8 9 B D E M O P R S U V W
Z a b c d e f g h i k l n o p r s t u v x y } ~ E^A E^C E^I E^M E^P
ë é ö 255

In the above, the line length varies between 30 and 90 (we were told that each line would be 30 characters

long). Also the file contains what hexdump, analyze labeled control characters. Finally, hexdump,
analyze declared the file to be BINARY rather than ASCII.

We created the second file by removing two valid lines from bigfile.raw (60 characters) and sub-
stituting 60 characters of binary junk. We would defy you to find the problem without using hexdump,
analyze. You would succeed, but only after much work. Remember, this file has 147,456 lines, and
only two of them are bad. If you print 1,000 lines at random from the file, your chances of listing the bad

part are only 0.013472. To have a 50% chance of finding the bad lines, you would have to list 52,000

lines, which is to say, review about 945 pages of output. On those 945 pages, each line would need to

be drawn at random. More likely, you would list lines in groups, and that would greatly reduce your

chances of encountering the bad lines.

The situation is not as dire as we make it out to be because, were you to read badfile.raw by using
infile, it would complain, and here it would tell you exactly where it was complaining. Still, at that
point you might wonder whether the problem was with how you were using infile or with the data.
Moreover, our 60 bytes of binary junk experiment corresponds to transmission error. If the problem were

instead that the person who constructed the file constructed two of the lines differently, infile might
not complain, but later you would notice some odd values in your data (because obviously you would

review the summary statistics, right?). Here hexdump, analyzemight be the only way you could prove
to yourself and others that the raw data need to be reconstructed.
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Technical note
In the full hexadecimal dump,

. hexdump myfile.raw
character

hex representation representation
address 0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef

0 4461 7473 756e 2032 3130 2020 2020 2034 Datsun 210 4
10 3538 3920 2033 3520 2035 2020 310d 0a56 589 35 5 1..V
20 5720 5363 6972 6f63 636f 2020 2020 3638 W Scirocco 68
30 3530 2020 3235 2020 3420 2031 0d0a 4d65 50 25 4 1..Me

(output omitted)

addresses (listed on the left) are listed in hexadecimal. Above, 10 means decimal 16, 20 means decimal
32, and so on. Sixteen characters are listed across each line.

In some other dump, you might see something like

. hexdump myfile2.raw
character

hex representation representation
address 0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef

0 4461 7473 756e 2032 3130 2020 2020 2034 Datsun 210 4
10 3538 3920 2033 3520 2035 2020 3120 2020 589 35 5 1
20 2020 2020 2020 2020 2020 2020 2020 2020
*

160 2020 2020 2020 0a56 5720 5363 6972 6f63 .VW Sciroc
170 636f 2020 2020 3638 3530 2020 3235 2020 co 6850 25

(output omitted)

The * in the address field indicates that the previous line is repeated until we get to hexadecimal address
160 (decimal 352).
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Stored results
hexdump, analyze and hexdump, results store the following in r():

Scalars

r(Windows) number of \r\n
r(Mac) number of \r by itself
r(Unix) number of \n by itself
r(blank) number of blanks

r(tab) number of tab characters

r(comma) number of comma (,) characters

r(ctl) number of binary 0s; A–Z, excluding \r, \n, \t; DELs; and 128–159, 255
r(uc) number of A–Z

r(lc) number of a–z

r(digit) number of 0–9

r(special) number of printable special characters (!@#, etc.)

r(extended) number of printable extended characters (160–254)

r(filesize) number of characters

r(lmin) minimum line length

r(lmax) maximum line length

r(lnum) number of lines

r(eoleof) 1 if EOL at EOF, 0 otherwise

r(l1) length of 1st line

r(l2) length of 2nd line

r(l3) length of 3rd line

r(l4) length of 4th line

r(l5) length of 5th line

r(c0) number of binary 0s (results only)
r(c1) number of binary 1s (^A) (results only)
r(c2) number of binary 2s (^B) (results only)
. . . . . .

r(c255) number of binary 255s (results only)

Macros

r(format) ASCII, EXTENDED ASCII, or BINARY

Also see
[D] filefilter — Convert ASCII or binary patterns in a file

[D] type — Display contents of a file
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Description Remarks and examples References Also see

Description
This entry provides a brief introduction to the basic concepts of the International Classification of

Diseases (ICD). If you are not familiar with ICD terminology, we recommend that you read this entry

before proceeding to the individual command entries.

This entry also provides an overview of the format of the codes from each coding system that Stata’s

icd commands support. Stata supports 9th revision codes (ICD-9) and 10th revision codes (ICD-10). For
ICD-9, Stata uses codes from the United States’s Clinical Modification, the ICD-9-CM. For ICD-10, Stata

uses the World Health Organization’s (WHO’s) codes for international morbidity and mortality reporting

and the United States’s Clinical Modification (ICD-10-CM) and Procedure Coding System (ICD-10-PCS).

We encourage you to read this entry to ensure that you choose the correct command and that your data

are properly formatted for using the icd suite of commands.

Finally, this entry provides information about using the icd commands with multiple diagnosis or

procedure codes at one time. None of the commands accepts a varlist, so we illustrate methods for

working with multiple codes.

If you are familiar with ICD coding and the icd commands in Stata, you may want to skip to the

command-specific entries for details about syntax and examples.

Commands for ICD-9 codes

icd9 ICD-9-CM diagnosis codes

icd9p ICD-9-CM procedure codes

Commands for ICD-10 codes

icd10 ICD-10 diagnosis codes

icd10cm ICD-10-CM diagnosis codes

icd10pcs ICD-10-PCS procedure codes

Remarks and examples
Remarks are presented under the following headings:

Introduction to ICD coding
Terminology
Diagnosis codes
Procedure codes
Working with multiple codes

Introduction to ICD coding
The icd commands in Stata work with four different diagnosis and procedure coding systems: ICD-

9-CM, ICD-10, ICD-10-CM, and ICD-10-PCS.

406
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The International Classification of Diseases (ICD) coding systemwas developed by and is copyrighted

by the World Health Organization (WHO). The ICD coding system is used for standardized mortality re-

porting and, by many countries, for reporting of morbidity and coding of diagnoses during healthcare

encounters. Since 1999, the ICD system has been under its 10th revision, ICD-10 (World Health Organi-

zation 2011). These codes provide information only about diagnoses, not about procedures.

The United States and some other countries have also developed country-specific coding systems

that are extensions of WHO’s system. These systems are used for coding information about healthcare

encounters. In the United States, the coding system is referred to as the International Classification of

Diseases, Clinical Modification. These codes are maintained and distributed by the National Center for

Health Statistics (NCHS) at the US Centers for Disease Control and Prevention (CDC) and by the Centers

for Medicare and Medicaid Services (CMS).

Terminology
The icd9 and icd10 entries assume knowledge of common terminology used in the ICD-9-CM doc-

umentation from the NCHS or CMS or in the ICD-10 revision manuals from WHO. The following brief

definitions are provided as a reference.

edition. The ICD-9-CM and ICD-10 each have editions, which represent major periodic changes. ICD-9-CM

is currently in its sixth edition (National Center for Health Statistics 2011). ICD-10 is currently in its

fifth edition (World Health Organization 2011).

version. In the ICD-9-CM coding system, the version number is a sequential number assigned by CMS

that is updated each Federal Fiscal Year when new codes are released. The last version was 32, which

was published on October 1, 2014. In ICD-10-CM/PCS, the version corresponds to the Federal Fiscal

Year.

update. In the ICD-10 coding system, an update may occur each year. The update is not issued with a

number but may be identified by the year in which it occurred.

category code. A category code is the portion of the ICD code that precedes the period. It may represent

a single disease or a group of related diseases or conditions.

valid code. Avalid code is one that may be used for reporting in the current version of the ICD-10-CM/PCS

or current update to the ICD-10 edition. What constitutes a valid code changes over time.

defined code. A defined code is any code that is currently valid, was valid at a previous time, or has

meaning as a grouping of codes. See [D] icd9, [D] icd9p, [D] icd10, [D] icd10cm, and [D] icd10pcs

for information about how the individual commands treat defined codes.

Diagnosis codes
Let’s begin with the diagnostic codes processed by icd9. An ICD-9-CM diagnosis code may have one

of two formats. Most use the format

{0–9,V}{0–9}{0–9}[ . ][ 0–9[ 0–9 ] ]

while E-codes have the format

E{0–9}{0–9}{0–9}[ . ][ 0–9 ]

where braces, { }, indicate required items and brackets, [ ], indicate optional items.
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ICD-9-CM codes begin with a digit from 0 to 9, the letter V, or the letter E. E-codes are always followed
by three digits and may have another digit in the fifth place. All other codes are followed by two digits

and may have up to two more digits.

The format of an ICD-10 diagnosis code is

{A–T,V–Z}{0–9}{0–9}[ . ][ 0–9 ]

Each ICD-10 code begins with a single letter followed by two digits. It may have an additional third

digit after the period.

ICD-10-CM diagnosis codes have up to seven characters; otherwise, the format is like that for ICD-10

codes. Each ICD-10-CM code begins with a single letter followed by a digit. However, ICD-10-CM permits

the third character to be a digit, the letter A, or the letter B. This forms the category code. The fourth and

fifth characters may be used to make up any potential subcategory code. For certain diagnoses, there exist

only three-, four- or five-character codes, so the diagnosis code and (sub)category code are equivalent.

Finally, the sixth and seventh characters provide additional detail. A peculiarity of the ICD-10-CM cod-

ing system is that it is not strictly hierarchical. The letter X is used as a placeholder if a subcategory has

not been defined at a particular level. For example, the code J09 indicates influenza due to an identi-

fied virus. There is no subcategory for J09, so the fourth character is an X, and additional detail about

complications is provided in the fifth character.

Codes in ICD-10-CM may have up to four more alpha-numeric characters after the period. Only codes

with the finest level of detail under a category code are considered valid.

Diagnosis codes must be stored in a string variable (see [D] Data types). For codes from either

revision, the period separating the category code from the other digits is treated as implied if it is not

present.

Technical note
There are defined five- and six-character ICD-10 codes. However, these codes are not part of the

standard four-character system codified byWHO for international morbidity and mortality reporting and

are not considered valid by icd10. See [D] icd10 for additional details about these codes and options for
using icd10 with them.

Technical note
ICD-10 codes U00–U49 are reserved for use by WHO for provisional assignment of new diseases.

Codes U50–U99 may be used for research to identify subjects with specific conditions under study for

which there is no defined ICD-10 code (World Health Organization 2011).

If you are working in one of these specialized cases, see the technical note in Creating new variables

under Remarks and examples of [D] icd10.

Procedure codes
The ICD-9-CM coding system also includes procedure codes. The format of ICD-9-CM procedure codes

is

{0–9}{0–9}[ . ][ 0–9[ 0–9 ] ]
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The general format of an ICD-10-PCS procedure code is a three-character category code followed by

four alpha-numeric characters after an (implied) period. The full codes are always seven characters long

and may be any combination of letters and numbers.

Procedure codes must be stored in a string variable.

Working with multiple codes
Oftentimes, multiple diagnoses or procedures are recorded for each observation. None of the icd

commands accepts a varlist, but you can still work with multiple diagnosis or multiple procedure records.

To use the icd commands with more than one diagnosis or procedure variable at a time, you must either
first reshape your data or use a loop; see [D] reshape and [P] forvalues.

Example 1: Summarizing information from multiple variables
In example 1 of [D] icd9, we add a variable indicating whether each diagnosis code was invalid or

undefined. Here we use the same extract from the National Hospital Discharge Survey (NHDS).

It is often more useful to add a single variable that summarizes the results from several diagnosis

or procedure variables. For example, we may wish to add a variable indicating whether a particular

diagnosis code or range of codes appeared in any field. Summary variables can be created from the

results of the check subcommand with option generate() or the generate subcommand with option
range() or option category().

Suppose that we want a single variable that contains the number of improperly formatted or undefined

codes that each discharge had. To illustrate, we use the nhds2010 dataset, keeping the variables for

discharge identifier (recid), patient age, and patient sex, as well as the three diagnosis variables. We

list the first ten observations below.

. use https://www.stata-press.com/data/r19/nhds2010
(Adult same-day discharges, 2010)
. keep recid age sex dx1 dx2 dx3
. list in 1/10, noobs

age sex dx1 dx2 dx3 recid

85 Female 4414 99811 14275 84
23 Male 25013 3572 -2506 105
63 Male 51909 1489 -V146 255
43 Female 9678 E8528 8 651
25 Female V271 64421 16564 696

57 Female 5409 V1582 2V106 779
61 Female 27651 V1087 7V436 814
60 Male 9951 462 -2724 826
22 Male 42789 5409 -2780 833
49 Male 5770 29181 14255 863
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The data are in wide form, so we specify reshape longwith stub dx because our diagnosis codes are
in dx1, dx2, and dx3. The observation identifier, recid, is specified in i(). reshape creates the new
variable dxnum for us.

. reshape long dx, i(recid) j(dxnum)
(j = 1 2 3)
Data Wide -> Long

Number of observations 2,210 -> 6,630
Number of variables 6 -> 5
j variable (3 values) -> dxnum
xij variables:

dx1 dx2 dx3 -> dx

The output shows that dxnum has 3 values, so we know that all three diagnosis variables were recognized

by reshape.

. list in 1/9, sepby(recid) noobs

recid dxnum dx age sex

84 1 4414 85 Female
84 2 99811 85 Female
84 3 14275 85 Female

105 1 25013 23 Male
105 2 3572 23 Male
105 3 -2506 23 Male

255 1 51909 63 Male
255 2 1489 63 Male
255 3 -V146 63 Male

Notice that our data on recid, age, and sex are retained and duplicated for each new observation. If

you are working with a large dataset, you may wish to drop variables other than a merge key and your

diagnosis (or procedure) variables to conserve space and speed up reshape.

After we reshape, we create prob using icd9 check, an indicator for whether there was a problem
with a given diagnosis code. We then use egen to create anyprob, the total number of codes that had a
problem within each recid. See [D] egen for information about summary functions.

. icd9 check dx, generate(prob)
(dx contains 358 missing values)
dx contains invalid codes:

1. Invalid placement of period 0
2. Too many periods 0
3. Code too short 177
4. Code too long 0
5. Invalid 1st char (not 0-9, E, or V) 875
6. Invalid 2nd char (not 0-9) 128
7. Invalid 3rd char (not 0-9) 0
8. Invalid 4th char (not 0-9) 0
9. Invalid 5th char (not 0-9) 36

10. Code not defined 778

Total 1,994
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. generate anyprob=prob>0

. by recid, sort: egen numprobs=total(anyprob)

. list recid dxnum dx anyprob numprobs in 1/9, sepby(recid) noobs

recid dxnum dx anyprob numprobs

84 1 4414 0 1
84 2 99811 0 1
84 3 14275 1 1

105 1 25013 0 1
105 2 3572 0 1
105 3 -2506 1 1

255 1 51909 0 1
255 2 1489 0 1
255 3 -V146 1 1

Before we reshape, we drop prob and anyprob because they are specific to diagnosis variables. By
construction, numprobs is constant within recid, so we do not specify it when we reshape.

. drop prob anyprob

. reshape wide dx, i(recid) j(dxnum)
(j = 1 2 3)
Data Long -> Wide

Number of observations 6,630 -> 2,210
Number of variables 6 -> 7
j variable (3 values) dxnum -> (dropped)
xij variables:

dx -> dx1 dx2 dx3

. list in 1/3, noobs

recid dx1 dx2 dx3 age sex numprobs

84 4414 99811 14275 85 Female 1
105 25013 3572 -2506 23 Male 1
255 51909 1489 -V146 63 Male 1

The three diagnosis variables are restored to the dataset. We have added a single variable showing

the total number of codes with problems for each record.

Example 2: Adding multiple variables from ICD codes
Now suppose that rather than creating a summary variable flagging any problem as we did in exam-

ple 1, we want a new variable for each diagnosis variable indicating whether there is a coding problem. In

example 1 of [D] icd9, we icd9 check each diagnosis variable separately, which requires us to type the
command three times. While this is not burdensome for 3 variables, the full NHDS includes 14 diagnosis

variables, for which we almost certainly would not want to type separate commands.
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The easiest way to accomplish this is with a loop. We use forvalues because our codes all end in a
number.

. use https://www.stata-press.com/data/r19/nhds2010, clear
(Adult same-day discharges, 2010)
. forvalues i=1/3 {
2. icd9 check dx‘i’, generate(dx‘i’_prob)
3. }

(dx1 contains defined ICD-9-CM codes; no missing values)
(dx2 contains defined ICD-9-CM codes; 179 missing values)
(dx3 contains 179 missing values)
dx3 contains invalid codes:

1. Invalid placement of period 0
2. Too many periods 0
3. Code too short 177
4. Code too long 0
5. Invalid 1st char (not 0-9, E, or V) 875
6. Invalid 2nd char (not 0-9) 128
7. Invalid 3rd char (not 0-9) 0
8. Invalid 4th char (not 0-9) 0
9. Invalid 5th char (not 0-9) 36

10. Code not defined 778

Total 1,994

This is exactly what we obtain in example 1 of [D] icd9.

If our variables had not been numbered sequentially, we could have either renamed them or used

foreach; see [P] foreach.

The methods shown above will work for any of the icd9, icd9p, icd10, icd10cm, or icd10pcs data
management commands.

References
Baum, C. F., and N. J. Cox. 2007. Stata tip 45: Getting those data into shape. Stata Journal 7: 268–271.

Centers for Disease Control and Prevention. 2016. ICD-10-CM Official Guidelines for Coding and Reporting FY 2017

(October 1, 2016 - September 30, 2017). https://www.cdc.gov/nchs/data/icd/10cmguidelines 2017 final.pdf.

Gallacher, D., and F. Achana. 2018. Assessing the health economic agreement of different data source. Stata Journal 18:

223–233.

Juul, S., and M. Frydenberg. 2021. An Introduction to Stata for Health Researchers. 5th ed. College Station, TX: Stata

Press.

National Center for Health Statistics. 2011. International Classification of Diseases, Ninth Revision, Clinical Modifica-

tion. https://ftp.cdc.gov/pub/Health Statistics/NCHS/Publications/ICD9-CM/2011/.

———. 2012. National Hospital Discharge Survey: 2010 Public Use Data File Documentation.

https://ftp.cdc.gov/pub/Health Statistics/NCHS/Dataset Documentation/NHDS/NHDS 2010 Documentation.pdf.

World Health Organization. 2011. International Statistical Classification of Diseases and Related Health Problems. Vol. 2,

2016 Edition. Instruction manual. https://www.who.int/publications/m/item/international-statistical-classification-of-

diseases-and-related-health-problems---volume-2.

https://www.stata-journal.com/article.html?article=dm0031
https://www.cdc.gov/nchs/data/icd/10cmguidelines_2017_final.pdf
https://www.stata-journal.com/article.html?article=st0521
https://www.stata-press.com/books/introduction-stata-health-researchers/
https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Publications/ICD9-CM/2011/
https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/NHDS/NHDS_2010_Documentation.pdf
https://www.who.int/publications/m/item/international-statistical-classification-of-diseases-and-related-health-problems---volume-2
https://www.who.int/publications/m/item/international-statistical-classification-of-diseases-and-related-health-problems---volume-2


icd — Introduction to ICD commands 413

Also see
[D] icd9 — ICD-9-CM diagnosis codes

[D] icd9p — ICD-9-CM procedure codes

[D] icd10 — ICD-10 diagnosis codes

[D] icd10cm — ICD-10-CM diagnosis codes

[D] icd10pcs — ICD-10-PCS procedure codes
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Description Quick start Menu Syntax Options
Remarks and examples Stored results References Also see

Description
icd9 is a suite of commands for working with ICD-9-CM diagnosis codes from the 16th version

(effective October 1998) to the 32nd version. To see the current version of the ICD-9-CM diagnosis codes

and any changes that have been applied, type icd9 query.

icd9 check, icd9 clean, and icd9 generate are datamanagement commands. icd9 check verifies
that a variable contains defined ICD-9-CM diagnosis codes and provides a summary of any problems

encountered. icd9 clean standardizes the format of the codes. icd9 generate can create a binary

indicator variable for whether the code is in a specified set of codes, a variable containing a corresponding

higher-level code, or a variable containing the description of the code.

icd9 lookup and icd9 search are interactive utilities. icd9 lookup displays descriptions of the
codes specified on the command line. icd9 search looks for relevant ICD-9-CM diagnosis codes from

keywords given on the command line.

Quick start
Determine whether ICD-9-CM diagnosis codes in diag1 are invalid, and store reasons in invalid

icd9 check diag1, generate(invalid)

Standardize display of codes in diag2 to remove all periods, and align codes by padding with spaces
icd9 clean diag2, pad

Create descr3 as the diagnosis code prepended to short description of diagnosis code in diag3
icd9 generate descr3 = diag3, description long

Create diabetes as an indicator for a diabetes diagnosis in diag4 using ICD-9-CM codes 250.xx

icd9 generate diabetes = diag4, range(25000/25093)

Look up descriptions for ICD-9-CM diagnosis codes E827.0 to E828.9

icd9 lookup E8270/E8289

Menu
Data > ICD codes > ICD-9

414
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Syntax
Verify that variable contains defined codes

icd9 check varname [ if ] [ in ] [ , any list generate(newvar) ]

Clean variable and verify format of codes

icd9 clean varname [ if ] [ in ] [ , dots pad ]

Generate new variable from existing variable

icd9 generate newvar = varname [ if ] [ in ] , category

icd9 generate newvar = varname [ if ] [ in ] , description [ long end ]

icd9 generate newvar = varname [ if ] [ in ] , range(codelist)

Display code descriptions

icd9 lookup codelist

Search for codes from descriptions

icd9 search [ ” ]text[ ” ] [[ ” ]text[ ” ] ...] [ , or ]

Display ICD-9 code source

icd9 query

codelist is
icd9code (the particular code)

icd9code* (all codes starting with)

icd9code/icd9code (the code range)

or any combination of the above, such as 001* 018/019 E* 018.02. icd9codes must be typed with

leading 0s. For example, type 001; typing 1 will result in an error.

collect is allowed with icd9 check, icd9 clean, and icd9 lookup; see [U] 11.1.10 Prefix commands.

The icd9 suite of commands does not allow alias variables; see [D] frunalias for advice on how to get around this restriction.
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Options
Options are presented under the following headings:

Options for icd9 check
Options for icd9 clean
Options for icd9 generate
Option for icd9 search

Options for icd9 check
any tells icd9 check to verify that the codes fit the format of ICD-9-CM diagnosis codes but not to check

whether the codes are defined.

list specifies that icd9 check list the observation number, the invalid or undefined ICD-9-CM diagnosis

code, and the reason the code is invalid or whether it is an undefined code.

generate(newvar) specifies that icd9 check create a new variable containing, for each observation,

0 if the observation contains a defined code or is missing. Otherwise, it contains a number from 1

to 10. The positive numbers indicate the kind of problem and correspond to the listing produced by

icd9 check.

Options for icd9 clean
dots specifies that the period be included in the final format. If dots is not specified, then all periods

are removed.

pad specifies that icd9 clean pad the codes with spaces, front and back, to make the (implied) dots

align vertically in listings. Specifying padmakes the resulting codes look better when used with most
other Stata commands.

Options for icd9 generate
category, description, and range(codelist) specify the contents of the new variable that icd9

generate is to create. You do not need to icd9 clean varname before using icd9 generate; it
will accept any supported format or combination of formats.

category creates a new variable that contains ICD-9-CM diagnosis category codes. The resulting

variable may be used with the other icd9 subcommands. For diagnosis codes, the category code
is the first three characters, except for E-codes, when it is the first four characters.

description creates newvar containing descriptions of the ICD-9-CM diagnosis codes.

long is for use with description. It specifies that the code be prepended to the text describing
the code.

end modifies long (specifying end implies long) and places the code at the end of the string.

range(codelist) creates a new indicator variable equal to 1 when the ICD-9-CM diagnosis code is in

the range specified, equal to 0 when the ICD-9-CM diagnosis code is not in the range, and equal to

missing when varname is missing.

Option for icd9 search
or specifies that ICD-9-CM diagnosis codes be searched for descriptions that contain any word specified

with icd9 search. The default is to list only descriptions that contain all the words specified.
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Remarks and examples
Remarks are presented under the following headings:

Using icd9 and icd9p
Verifying and cleaning variables
Interactive utilities
Creating new variables

If you have not yet read Introduction to ICD coding in [D] icd, please do so before using the icd9
commands.

Using icd9 and icd9p
The ICD-9-CM coding system includes diagnosis and procedure codes. Some examples of diagnosis

codes are 552.3 (Diaphragmatic hernia with obstruction) and E871.0 (Foreign object left in body during

surgical operation). Some example of procedure codes are 01.2 (Craniotomy and craniectomy) and 55.23

(Closed renal biopsy).

Many datasets record (and some people write) codes without the period; for example, diagnosis code

550.1 may appear as 5501. The icd9 commands understand both ways of recording codes. The com-
mands are also insensitive to codes recorded with or without leading and trailing blanks. For E-codes

and V-codes, the icd9 commands are case insensitive. All the following codes are acceptable formats.

diagnosis procedure
001 27.62
001. 72

00581 32.6
552.3 97.11
E800.2 872

e8002 5523
v82.2 08.51

Important note: What constitutes a valid code changes between versions. For the rest of this entry, a

defined code is any code that is currently valid, was valid at some point since version 16 (V16, effective

1 October 1998), or has meaning as a grouping of codes. The list of valid codes and their associated

descriptions is from the US Centers for Medicare and Medicaid Services (CMS). These codes are jointly

maintained and distributed by the US Centers for Disease Control and Prevention’s National Center for

Health Statistics and by CMS (Centers for Disease Control and Prevention 2013).

In icd9, descriptions that end with an asterisk (*) are used to denote codes that are invalid for medical
coding purposes but are defined as a category code or a subcategory code that has been further subdivided.

For example, diagnosis code 001 (Cholera) is invalid without a fourth digit but is defined as a category

code, so its description appears as cholera*. CMS does not distribute short descriptions of category and

subcategory codes that are defined but not valid for coding. To ensure that Stata reports that these codes

are defined, we added them to the dataset icd9 uses with a description of *.

Codes that were valid in the past, but no longer are, have descriptions that end with a hash mark (#).
For example, the diagnosis code 645.01 was deleted between V16 and V18. It remains a defined code,

and its description appears as prolonged preg-delivered#.
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To view the current version of ICD-9-CM diagnosis codes in Stata, its source, and a log of changes that

have been made to the list of ICD-9-CM codes since the icd9 commands were implemented, type

. icd9 query
ICD9 Diagnostic Code Mapping Data for use with Stata, History

(output omitted )

V32
Dataset obtained 26aug2014 from

<http://www.cms.gov/Medicare/Coding/ICD9ProviderDiagnosticCodes/
> codes.html>, by selecting the ’Version 32...’ file. Can be gotten
directly via
<http://www.cms.gov/Medicare/Coding/ICD9ProviderDiagnosticCodes/
> Downloads/ICD-9-CM-v32-master-descriptions.zip>. After unzipping, the
useful file name is ”CMS32_DESC_SHORT_DX.txt (there are other files we
did not use).”

09oct2014: V32 put into Stata distribution
BETWEEN V31 and V32: There were no additional codes.
BETWEEN V31 and V32: 0 codes were deleted.
BETWEEN V31 and V32: There were no description changes.
(output omitted )

Throughout the remainder of this entry, we use nhds2010.dta, an extract of adult same-day dis-
charges from the 2010 National Hospital Discharge Survey (NHDS). Below we describe the data and
list the first five observations for the diagnosis and procedure code variables.

. use https://www.stata-press.com/data/r19/nhds2010
(Adult same-day discharges, 2010)
. describe
Contains data from https://www.stata-press.com/data/r19/nhds2010.dta
Observations: 2,210 Adult same-day discharges, 2010

Variables: 15 30 Jan 2024 15:03
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

ageu byte %8.0g ageu Units for age
age byte %8.0g Age
sex byte %8.0g sex Sex
race byte %8.0g race Race
month byte %8.0g Discharge month
status byte %8.0g status Discharge status
region byte %8.0g region Region
atype byte %8.0g atype Type of admission
dx1 str5 %9s Diagnosis 1
dx2 str5 %9s Diagnosis 2
dx3 str5 %9s Diagnosis 3 (imported incorrectly)
dx3corr str5 %9s Diagnosis 3 (corrected)
pr1 str4 %9s Procedure 1
wgt int %12.0g Frequency weight
recid float %9.0g Order of record (raw data)

Sorted by: recid
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. list recid dx1 dx2 dx3 pr1 in 1/5

recid dx1 dx2 dx3 pr1

1. 84 4414 99811 14275 3834
2. 105 25013 3572 -2506
3. 255 51909 1489 -V146
4. 651 9678 E8528 8
5. 696 V271 64421 16564 7359

Verifying and cleaning variables
icd9 check verifies that varname contains defined ICD-9-CM codes and, if not, provides a full report

on the problems. It is a good idea to begin with this command and fix any potential problems before

proceeding to other icd9 commands. However, the check subcommand is also useful for tracking down
problems when any of the other icd9 commands tell you that the “variable does not contain ICD-9 codes”.

icd9 clean modifies the variable to ensure consistency and to make subsequent output look better.
This is not strictly necessary because all icd9 commands work equally well with cleaned or uncleaned
codes. icd9 clean also can be used to verify that the codes in a variable conform with the ICD-9-CM

diagnosis format, without checking to see whether the codes are defined.

Example 1: Checking the validity of a variable
We noticed when we listed our data that dx3 appears to be padded with dashes instead of spaces. As a

preemptive step, we replace the dashes with spaces by using the subinstr() function because the icd9
commands ignore spaces.

. replace dx3=subinstr(dx3,”-”,” ”,.)
(1,009 real changes made)
. list recid dx1 dx2 dx3 pr1 in 1/5

recid dx1 dx2 dx3 pr1

1. 84 4414 99811 14275 3834
2. 105 25013 3572 2506
3. 255 51909 1489 V146
4. 651 9678 E8528 8
5. 696 V271 64421 16564 7359

Now that we have replaced the characters we know will be a problem, we can icd9 check the diag-
nosis variables. We add the generate() option so that we can identify any observations with invalid
codes.

. icd9 check dx1, generate(prob1)
(dx1 contains defined ICD-9-CM codes; no missing values)
. icd9 check dx2, generate(prob2)
(dx2 contains defined ICD-9-CM codes; 179 missing values)
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. icd9 check dx3, generate(prob3)
(dx3 contains 277 missing values)
dx3 contains invalid codes:

1. Invalid placement of period 0
2. Too many periods 0
3. Code too short 79
4. Code too long 0
5. Invalid 1st char (not 0-9, E, or V) 0
6. Invalid 2nd char (not 0-9) 128
7. Invalid 3rd char (not 0-9) 0
8. Invalid 4th char (not 0-9) 0
9. Invalid 5th char (not 0-9) 0

10. Code not defined 793

Total 1,000

We see that all codes in dx1 are valid and all discharges have a primary diagnosis recorded. Likewise,
all codes in dx2 are defined, and we see that 179 observations did not have a second diagnosis.

However, icd9 check reports that 1,000 of the 2,210 observations on dx3 have some sort of prob-
lem: 79 codes are too short, 128 have an invalid second character, and 793 are undefined. After some

investigation, we discover that when we imported the data, we started reading from the wrong position

in the file. Hereafter, we use the correctly imported variable, dx3corr.

. icd9 check dx3corr
(dx3corr contains defined ICD-9-CM codes; 356 missing values)

Rather than typing the icd9 check command once for each variable, we could have checked all three
simultaneously. See Working with multiple codes in [D] icd.

Example 2: Standardizing the format of codes
If we plan to do any reporting with these codes later, we may want to make them more readable.

Suppose we want to report the primary diagnosis and procedure for each discharge. We can use icd9
clean with the dots and pad options to add the period between the category code and any subsequent
digits and to align the periods.

. icd9 clean dx1, dots pad
(2210 changes made)

Using icd9 cleanwith undefined codes will not result in an error message. So if you are using codes
from a country other than the United States, the clean subcommand can still be used to standardize the
format of your codes and check for correct placement of the period.

Interactive utilities
icd9 search looks for relevant ICD-9-CM diagnosis codes from the description given on the command

line, and icd9 lookup lists the descriptions of codes given on the command line. The two commands
complement each other.
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Example 3: Finding diagnosis codes
Suppose that we want to identify the observations for which the primary diagnosis is congestive heart

failure (CHF). As part of a quick exploratory analysis, we can use icd9 search to find ICD-9-CM codes

that we may want to use to define our study population. We use the terms “heart failure” and “chf”. We

enclose “heart failure” in quotation marks and use the or option so that icd9 search looks for either
term.

. icd9 search ”heart failure” chf, or
5 matches found:

398.91 rheumatic heart failure
428 heart failure*
428.0 chf nos
428.1 left heart failure
428.9 heart failure nos

Because the descriptions are abbreviated, we are concerned that some of the 428 codes may be left

out. So we use icd9 lookup to list a range of codes.

. icd9 lookup 428*
19 matches found:

428 heart failure*
428.0 chf nos
428.1 left heart failure
428.2 *
428.20 systolic hrt failure nos
428.21 ac systolic hrt failure
428.22 chr systolic hrt failure
428.23 ac on chr syst hrt fail
428.3 *
428.30 diastolc hrt failure nos
428.31 ac diastolic hrt failure
428.32 chr diastolic hrt fail
428.33 ac on chr diast hrt fail
428.4 *
428.40 syst/diast hrt fail nos
428.41 ac syst/diastol hrt fail
428.42 chr syst/diastl hrt fail
428.43 ac/chr syst/dia hrt fail
428.9 heart failure nos

The same result could be found by typing

. icd9 lookup 428/4289

if we knew that 428.9 was the last code in the 428 category.

Creating new variables
icd9 generate produces new variables based on existing variables containing (cleaned or uncleaned)

ICD-9-CM diagnosis codes. icd9 generate, category creates newvar containing the category code that
corresponds to the code in the existing variable. icd9 generate, description creates newvar con-
taining the abbreviated textual description of the ICD-9-CM diagnosis code. icd9 generate, range()
produces numeric newvar containing 1 if varname records an ICD-9-CM diagnosis code in the range listed

and containing 0 otherwise.
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Example 4: Creating an indicator variable
We review the list of codes we found in example 3 and decide that we will use 398.91 and all of

the 428 codes in our definition of a CHF diagnosis. Now we can use icd9 generate with the range()
option to create an indicator variable.

. icd9 generate chf = dx1, range(398.91 428*)

. tabulate chf [fweight=wgt]
chf Freq. Percent Cum.

0 563,048 97.88 97.88
1 12,192 2.12 100.00

Total 575,240 100.00

After tabulating the results, we see that about 2.1% of all same-day discharges were for CHF in 2010.

Technical note
The dataset that supports icd9 includes all codes that were added or deleted between V16 and the last

version (V32). However, the descriptions were updated with each new version. If you are using icd9
generate with option description for codes from a version other than 32, please review the icd9
query log for any changes to descriptions between the version you are using and version 32.

Example 5: Combining commands for reporting
The icd9 generate commands are useful in isolation, but their real power comes when they are

combined. For example, suppose that we want to make a graph showing the number of discharges in

each diagnosis category for ICD-9-CM chapter 4, “Diseases of Blood and Blood-Forming Organs”. We

could use several generate commands and string functions, but icd9 generate greatly reduces our

work.

First, we extract the category code from the detailed diagnosis code. Then, because the icd9 com-
mands work equally well with complete codes or category codes, we can use icd9 generate with the
range(280/289) option to create an indicator variable for whether the discharge had a primary diagnosis
in chapter 4.

. icd9 generate dx1cat = dx1, category

. icd9 generate ch4 = dx1cat, range(280/289)

Next, we create a variable with the descriptions of the category codes in chapter 4.

. icd9 generate ch4des = dx1cat if ch4==1, description long

Finally, we use graph hbar to make a horizontal bar graph showing the frequencies of same-day

discharges by diagnosis category.
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. graph hbar (count) [fweight=wgt], over(ch4des) ytitle(Discharges)
> title(Diseases of Blood and Blood-Forming Organs, span)
> subtitle(Same-day Discharges (2010), span)

0 1,000 2,000 3,000
Discharges

 289    other blood disease*

 288    wbc disorders*

 287    purpura & oth hemor cond*

 285    anemia nec/nos*

 284    aplastic anemia*

 283    acq hemolytic anemia*

 282    heredit hemolytic anemia*

 281    other deficiency anemia*

 280    iron deficiency anemias*

Same-day Discharges (2010)

Diseases of Blood and Blood-Forming Organs

See [G-2] graph bar for information about customizing the graph above. For more information about

graphing results, see [G-2] graph.

Stored results
icd9 check stores the following in r():

Scalars

r(e#) number of errors of type #

r(esum) total number of errors

icd9 clean stores the following in r():

Scalars

r(N) number of changes

icd9 lookup stores the following in r():

Scalars

r(N) number of codes found
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Also see
[D] icd — Introduction to ICD commands

[D] icd9p — ICD-9-CM procedure codes

[D] icd10cm — ICD-10-CM diagnosis codes

[D] frunalias — Change storage type of alias variables



icd9p — ICD-9-CM procedure codes

Description Quick start Menu Syntax Options
Remarks and examples Stored results References Also see

Description
icd9p is a suite of commands for working with ICD-9-CM procedure codes from the 16th version

(effective October 1998) to the 32nd version. To see the current version of the ICD-9-CM procedure codes

and any changes that have been applied, type icd9p query.

icd9p check, icd9p clean, and icd9p generate are data management commands. icd9p check
verifies that a variable contains defined ICD-9-CM procedure codes and provides a summary of any prob-

lems encountered. icd9p clean standardizes the format of the codes. icd9p generate can create

a binary indicator variable for whether the code is in a specified set of codes, a variable containing a

corresponding higher-level code, or a variable containing the description of the code.

icd9p lookup and icd9p search are interactive utilities. icd9p lookup displays descriptions of
the codes specified on the command line. icd9p search looks for relevant ICD-9-CM procedure codes

from keywords given on the command line.

Quick start
Determine whether ICD-9-CM procedure codes in proc1 are invalid, and store reasons in invalid

icd9p check proc1, generate(invalid)

Standardize display of codes in proc2 to remove all periods
icd9p clean proc2

Create descr3 as the procedure code prepended to short description of procedure code in proc3
icd9p generate descr3 = proc3, description long

Create eye as an indicator for eye surgery in proc4 using ICD-9-CM procedure codes 16.1 through 16.99

icd9p generate eye = proc4, range(16*)

Look up descriptions for ICD-9-CM procedure codes 25.0 through 25.4 and 25.9 through 25.99

icd9p lookup 25.0/25.4 25.9*

Menu
Data > ICD codes > ICD-9

425
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Syntax
Verify that variable contains defined codes

icd9p check varname [ if ] [ in ] [ , any list generate(newvar) ]

Clean variable and verify format of codes

icd9p clean varname [ if ] [ in ] [ , dots pad ]

Generate new variable from existing variable

icd9p generate newvar = varname [ if ] [ in ] , category

icd9p generate newvar = varname [ if ] [ in ] , description [ long end ]

icd9p generate newvar = varname [ if ] [ in ] , range(codelist)

Display code descriptions

icd9p lookup codelist

Search for codes from descriptions

icd9p search [ ” ]text[ ” ] [[ ” ]text[ ” ] ...] [ , or ]

Display ICD-9 code source

icd9p query

codelist is
icd9code (the particular code)

icd9code* (all codes starting with)

icd9code/icd9code (the code range)

or any combination of the above, such as 50.21 37.7* 88.71/88.79. icd9codes must be typed with
leading 0s. For example, type 01; typing 1 will result in an error.

collect is allowed with icd9p check, icd9p clean, and icd9p lookup; see [U] 11.1.10 Prefix commands.

The icd9p suite of commands does not allow alias variables; see [D] frunalias for advice on how to get around this restriction.
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Options
Options are presented under the following headings:

Options for icd9p check
Options for icd9p clean
Options for icd9p generate
Option for icd9p search

Options for icd9p check
any tells icd9p check to verify that the codes fit the format of ICD-9-CM procedure codes but not to

check whether the codes are defined.

list specifies that icd9p check list the observation number, the invalid or undefined ICD-9-CM proce-

dure code, and the reason the code is invalid or whether it is an undefined code.

generate(newvar) specifies that icd9p check create a new variable containing, for each observation,

0 if the observation contains a defined code or is missing. Otherwise, it contains a number from 1

to 10. The positive numbers indicate the kind of problem and correspond to the listing produced by

icd9p check.

Options for icd9p clean
dots specifies that the period be included in the final format. If dots is not specified, then all periods

are removed.

pad specifies that icd9p clean pad the codes with spaces, front and back, to make the (implied) dots
align vertically in listings. Specifying padmakes the resulting codes look better when used with most
other Stata commands.

Options for icd9p generate
category, description, and range(codelist) specify the contents of the new variable that icd9p

generate is to create. You do not need to icd9p clean varname before using icd9p generate; it
will accept any supported format or combination of formats.

category creates a new variable that contains ICD-9-CM procedure category codes. The resulting

variable may be used with the other icd9p subcommands. For procedure codes, the category code
is the first two characters.

description creates newvar containing descriptions of the ICD-9-CM procedure codes.

long is for use with description. It specifies that the code be prepended to the text describing
the code.

end modifies long (specifying end implies long) and places the code at the end of the string.

range(codelist) creates a new indicator variable equal to 1 when the ICD-9-CM procedure code is in

the range specified, equal to 0 when the ICD-9-CM procedure code is not in the range, and equal to

missing when varname is missing.

Option for icd9p search
or specifies that ICD-9-CM procedure codes be searched for descriptions that contain any word specified

with icd9p search. The default is to list only descriptions that contain all the words specified.
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Remarks and examples
Remarks are presented under the following headings:

Verifying and cleaning variables
Interactive utilities
Creating new variables

If you have not yet read Introduction to ICD coding in [D] icd, please do so before using the icd9p
commands. Please also seeUsing icd9 and icd9p in [D] icd9 for information about Stata’s implementation

of the ICD-9 coding system.

Throughout the remainder of this entry, we use nhds2010.dta, an extract of adult same-day dis-
charges from the 2010 National Hospital Discharge Survey (NHDS). Below we describe the data.

. use https://www.stata-press.com/data/r19/nhds2010
(Adult same-day discharges, 2010)
. describe
Contains data from https://www.stata-press.com/data/r19/nhds2010.dta
Observations: 2,210 Adult same-day discharges, 2010

Variables: 15 30 Jan 2024 15:03
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

ageu byte %8.0g ageu Units for age
age byte %8.0g Age
sex byte %8.0g sex Sex
race byte %8.0g race Race
month byte %8.0g Discharge month
status byte %8.0g status Discharge status
region byte %8.0g region Region
atype byte %8.0g atype Type of admission
dx1 str5 %9s Diagnosis 1
dx2 str5 %9s Diagnosis 2
dx3 str5 %9s Diagnosis 3 (imported incorrectly)
dx3corr str5 %9s Diagnosis 3 (corrected)
pr1 str4 %9s Procedure 1
wgt int %12.0g Frequency weight
recid float %9.0g Order of record (raw data)

Sorted by: recid

Verifying and cleaning variables
icd9p check verifies that varname contains defined ICD-9-CM procedure codes and, if not, provides

a full report on the problems. It is a good idea to begin with this command and fix any potential problems

before proceeding to other icd9p commands. However, the check subcommand is also useful for track-
ing down problems when any of the other icd9p commands tell you that the “variable does not contain
ICD-9 codes”.

icd9p clean modifies the variable to ensure consistency and to make subsequent output look better.
This is not strictly necessary because all icd9p commands work equally well with cleaned or uncleaned
codes. icd9p clean also can be used to verify that the codes in a variable conform with the ICD-9-CM

procedure format, without checking to see whether the codes are defined.
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Example 1: Standardizing the format of codes
If we plan to do any reporting with the codes in our data, we may want to make them more readable.

Suppose we want to report the primary procedure for each discharge. We can use icd9p clean with the
dots option to add the period between the category code and any subsequent digits.

. icd9p clean pr1, dots pad
(821 changes made)
. list recid pr1 in 1/5

recid pr1

1. 84 38.34
2. 105
3. 255
4. 651
5. 696 73.59

Using icd9p cleanwith undefined codeswill not result in an errormessage. So if you are using codes
from a country other than the United States, the clean subcommand can still be used to standardize the
format of your codes and check for correct placement of the period.

Interactive utilities
icd9p search looks for relevant ICD-9-CM procedure codes from the description given on the com-

mand line, and icd9p lookup lists the descriptions of codes given on the command line. The two com-
mands complement each other.

Example 2: Finding procedure code descriptions
If we wanted to find the corresponding abbreviated description for procedure code 38.34, we would

type

. icd9p lookup 38.34
1 match found:

38.34 aorta resection & anast

If you are curious, the cryptic result translates into resection with anastomosis of the aorta.

To find a list of other procedure codes for resection with anastomosis and their descriptions, we could

type icd9p lookup 38.3*. Or if we were interested in finding codes for procedures on the aorta, we
could type

. icd9p search aorta
(output omitted )

Creating new variables
icd9p generate produces new variables based on existing variables containing (cleaned or un-

cleaned) ICD-9-CM procedure codes. icd9p generate, category creates newvar containing the cat-

egory code that corresponds to the code in the existing variable. icd9p generate, description
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creates newvar containing the abbreviated textual description of the ICD-9-CM procedure code. icd9p
generate, range() produces numeric newvar containing 1 if varname records an ICD-9-CM procedure

code in the range listed and containing 0 otherwise.

Example 3: Adding descriptions to codes
In example 4 of [D] icd9, we created an indicator variable for whether a patient had congestive heart

failure (CHF). We may want to know what procedures were performed for patients with CHF. We check

the procedure codes in pr1 and then generate a new variable with their descriptions. We include the long
option so that we can see the ICD-9-CM procedure code as well.

. icd9p check pr1
(pr1 contains defined ICD-9-CM procedure codes; 1389 missing values)
. icd9p generate pr1descr = pr1, description long
. tabulate pr1descr [fweight=wgt] if chf==1, missing sort

label for pr1 Freq. Percent Cum.

7,185 58.93 58.93
37.22 left heart cardiac cath 1,906 15.63 74.57
92.05 c-vasc scan/isotop funct 1,027 8.42 82.99

88.72 dx ultrasound-heart 776 6.36 89.35
03.31 spinal tap 498 4.08 93.44

39.95 hemodialysis 388 3.18 96.62
34.91 thoracentesis 138 1.13 97.75

99.60 cardiopulm resuscita nos 112 0.92 98.67
37.94 implt/repl carddefib tot 110 0.90 99.57
89.44 cardiac stress test nec 52 0.43 100.00

Total 12,192 100.00

We see that the majority of same-day discharges (58.9%) did not involve any procedure. When a proce-

dure was performed, the most common was left heart cardiac catheterization (15.6%).

Technical note
The dataset that supports icd9p includes all codes that were added or deleted between V16 and the

last version (V32). However, the descriptions were updated with each new version. If you are using

icd9p generate with option description for codes from a version other than 32, please review the

icd9p query log for any changes to descriptions between the version you are using and version 32.
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Stored results
icd9p check stores the following in r():

Scalars

r(e#) number of errors of type #

r(esum) total number of errors

icd9p clean stores the following in r():

Scalars

r(N) number of changes

icd9p lookup stores the following in r():

Scalars

r(N) number of codes found
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Description
icd10 is a suite of commands for working with the World Health Organization’s (WHO’s) ICD-10

diagnosis codes from the second edition (2003) to the sixth edition (2019). To see the current version of

the ICD-10 diagnosis codes and any changes that have been applied, type icd10 query.

icd10 check, icd10 clean, and icd10 generate are data management commands. icd10 check
verifies that a variable contains defined ICD-10 diagnosis codes and provides a summary of any problems

encountered. icd10 clean standardizes the format of the codes. icd10 generate can create a binary
indicator variable for whether the code is in a specified set of codes, a variable containing a corresponding

higher-level code, or a variable containing the description of the code.

icd10 lookup and icd10 search are interactive utilities. icd10 lookup displays descriptions of
the codes specified on the command line. icd10 search looks for relevant ICD-10 diagnosis codes from
keywords given on the command line.

Quick start
Determine whether ICD-10 diagnosis codes in diag1 are invalid, and store reasons in invalid

icd10 check diag1, generate(invalid)

Standardize display of codes in diag2 to add a period and left-align codes
icd10 clean diag2, replace

Generate descr3 as descriptions of the diagnosis codes in diag3
icd10 generate descr3 = diag3, description

Generate binary indicator for malignant or benign neoplasm, as indicated by an ICD-10 code beginning

with C or D in diag4
icd10 generate cancer = diag4, range(C* D*)

Look up current descriptions for ICD-10 diagnosis codesW70 throughW79

icd10 lookup W70/W79

Look up codes where the description contains the words “delivery” or “birth”

icd10 search delivery birth, or

Menu
Data > ICD codes > ICD-10

432
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Syntax
Verify that variable contains defined codes

icd10 check varname [ if ] [ in ] [ , checkopts ]

Clean variable and verify format of codes

icd10 clean varname [ if ] [ in ], {generate(newvar) | replace} [ cleanopts ]

Generate new variable from existing variable

icd10 generate newvar = varname [ if ] [ in ], {category | short} [ check ]

icd10 generate newvar = varname [ if ] [ in ], description [ genopts ]

icd10 generate newvar = varname [ if ] [ in ], range(codelist) [ check ]

Display code descriptions

icd10 lookup codelist [ , version(#) ]

Search for codes from descriptions

icd10 search [ ” ]text[ ” ] [[ ” ]text[ ” ] ...] [ , searchopts ]

Display ICD-10 version

icd10 query

codelist is one of the following:

icd10code (the particular code)

icd10code* (all codes starting with)

icd10code/icd10code (the code range)

or any combination of the above, such as A27.0 G40* Y60/Y69.9.

checkopts Description

fmtonly check only format of the codes

summary frequency of each invalid or undefined code

list list observations with invalid or undefined ICD-10 codes

generate(newvar) create new variable marking invalid codes

version(#) year to check codes against; default is version(2019)
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cleanopts Description

∗ generate(newvar) create new variable containing cleaned codes
∗ replace replace existing codes with the cleaned codes

check check that variable contains ICD-10 codes before cleaning

nodots format codes without a period

pad add space to the right of three-character codes

∗ Either generate() or replace is required.

genopts Description

addcode(begin | end) add code to the beginning or end of the description

pad add spaces to the right of the code; must specify addcode(begin)
nodots format codes without a period; must specify addcode()
check check that variable contains ICD-10 codes before generating new variable

version(#) select description from year #; default is version(2019)

searchopts Description

or match any keyword

matchcase match case of keywords

version(#) search description from year #; default is all

collect is allowed with icd10 check and icd10 clean; see [U] 11.1.10 Prefix commands.

The icd10 suite of commands does not allow alias variables; see [D] frunalias for advice on how to get around this restriction.

Options
Options are presented under the following headings:

Options for icd10 check
Options for icd10 clean
Options for icd10 generate
Option for icd10 lookup
Options for icd10 search

Warning: The option descriptions are brief and use jargon. Please read Introduction to ICD coding in

[D] icd before using the icd10 command.

Options for icd10 check
fmtonly tells icd10 check to verify that the codes fit the format of ICD-10 diagnosis codes but not to

check whether the codes are defined.

summary specifies that icd10 check should report the frequency of each invalid or undefined code that
was found in the data. Codes are displayed in descending order by frequency. summary may not be
combined with list.

list specifies that icd10 check list the observation number, the invalid or undefined ICD-10 diagnosis

code, and the reason the code is invalid or whether it is an undefined code. listmay not be combined
with summary.
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generate(newvar) specifies that icd10 check create a new variable containing, for each observation,

0 if the observation contains a defined code. Otherwise, it contains a number from 1 to 8 if the code is

invalid, 99 if the code is undefined, or missing if the code is missing. The positive numbers indicate

the kind of problem and correspond to the listing produced by icd10 check.

version(#) specifies the version of the codes that icd10 check should reference. # may be any value
between 2003, which is the second edition of ICD-10 without any updates applied, and 2019, which is

the sixth edition of ICD-10. The appropriate value of # should be determined from the data source.

The default is version(2019).

Options for icd10 clean
generate(newvar) and replace specify how the formatted values of varname are to be handled. You

must specify either generate() or replace.

generate() specifies that the cleaned values be placed in the new variable specified in newvar.

replace specifies that the existing values of varname be replaced with the formatted values.

check specifies that icd10 clean should first check that varname contains codes that fit the format of
ICD-10 diagnosis codes. Specifying the check option will slow down icd10 clean.

nodots specifies that the period be removed in the final format.

pad specifies that spaces be added to the end of the codes to make the (implied) dots align vertically in
listings. The default is to left-align codes without adding spaces.

Options for icd10 generate
category, short, description, and range(codelist) specify the contents of the new variable that

icd10 generate is to create. You do not need to icd10 clean varname before using icd10
generate; it will accept any supported format or combination of formats.

category and short generate a new variable that also contains ICD-10 diagnosis codes. The resulting

variable may be used with the other icd10 subcommands.

category specifies to extract the three-character category code from the ICD-10 diagnosis code.

short is designed for users who have data with greater specificity than the standard four-character
ICD-10 codes. short will reduce five- and six-character codes to their first four characters.

Three- and four-character codes are left as they are.

description creates newvar containing descriptions of the ICD-10 diagnosis codes.

range(codelist) creates a new indicator variable equal to 1 when the ICD-10 diagnosis code is in the

range specified, equal to 0 when the ICD-10 diagnosis code is not in the range, and equal to missing

when varname is missing.

addcode(begin | end) specifies that the code should be includedwith the text describing the code. Spec-
ifying addcode(begin) will prepend the code to the text. Specifying addcode(end) will append
the code to the text.

pad specifies that the code that is to be added to the description should be padded spaces to the right of
the code so that the start of description text is aligned for all codes. pad may be specified only with
addcode(begin).
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nodots specifies that the code that is added to the description should be formatted without a period.

nodots may be specified only if addcode() is also specified.

check specifies that icd10 generate should first check that varname contains codes that fit the format
of ICD-10 diagnosis codes. Specifying the check option will slow down the generate subcommand.

version(#) specifies the version of the codes that icd10 generate should reference. # may be any
value between 2003, which is the second edition of ICD-10 without any updates applied, and 2019,

which is the sixth edition of ICD-10. The appropriate value of # should be determined from the data

source. The default is version(2019).

Option for icd10 lookup
version(#) specifies the version of the codes that icd10 lookup should reference. #may be any value

between 2003, which is the second edition of ICD-10 without any updates applied, and 2019, which is

the sixth edition of ICD-10. The appropriate value of # should be determined from the data source.

The default is version(2019).

Options for icd10 search
or specifies that ICD-10 diagnosis codes be searched for descriptions that contain any word specified with

icd10 search. The default is to list only descriptions that contain all the words specified.

matchcase specifies that icd10 search should match the case of the keywords given on the command
line. The default is to perform a case-insensitive search.

version(#) specifies the version of the codes that icd10 search should reference. #may be any value
between 2003, which is the second edition of ICD-10 without any updates applied, and 2019, which is

the sixth edition of ICD-10.

By default, descriptions for all versions are searched, meaning that codes that changed descriptions

and that have descriptions in multiple versions that contain the search terms will be duplicated. To

ensure a list of unique code values, specify the version number.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Managing datasets with ICD-10 codes
Creating new variables

If you have not yet read Introduction to ICD coding in [D] icd, please do so before using the icd10
commands.

Introduction
The general format of an ICD-10 diagnosis code is

{A–Z}{0–9}{0–9}[ . ][0–9]

The code begins with a single letter followed by two digits. It may have an additional third digit after

the period.
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For example, in the ICD-10 coding system, E11.0 (Type 2 diabetes mellitus: With coma) and C56

(Malignant neoplasm of ovary) are diagnosis codes, although some datasets record (and some people

write) E110 rather than E11.0. The icd10 commands understand both ways of recording codes. The

commands are also insensitive to codes recorded with or without leading and trailing blanks and are case

insensitive.

All the following are acceptable formats to record codes in Stata.

N94.0
M32

K12
F102
x40

The list of defined codes and their associated descriptions is provided under license from the World

Health Organization (WHO); see [R]Copyright ICD-10. To view the current license and a log of changes

that WHO has made to the list of ICD-10 codes since the icd10 commands were implemented in Stata,
type

. icd10 query
ICD-10 Version and Change Log

License agreement
ICD-10 codes used by permission of the World Health Organization (WHO),

from: International Statistical Classification of Diseases and
Related Health Problems, Tenth Revision (ICD-10) 2010 Edition. Vols.
1-3. Geneva, World Health Organization, 2011.

See copyright icd10 for the ICD-10 copyright notification.
Edition 2019
The ICD-10 data were obtained from WHO on 27feb2023.
All updates scheduled for implementation through 01jan2023 have been

applied.
Between 2016 and 2019:

137 codes added, 23 codes deleted, 58 code descriptions changed.
(output omitted )

Technical note
Codes can have up to two more digits to form five- and six-character codes. Supplemental subdivi-

sions of ICD-10 codes may occur at the fifth and sixth characters. These supplemental subdivisions are

primarily used to indicate anatomical site and additional information about the diagnosis, for example,

whether a fracture was open or closed (World Health Organization 2011). However, these codes are

not part of the standard four-character system codified byWHO for international morbidity and mortality

reporting and are not considered valid by icd10.

If your data contain these longer codes, you can use icd10 generate with option short to shorten
your codes to the relevant four-character subcategory code. Any existing three- and four-character codes

in the data are left as they were originally.



icd10 — ICD-10 diagnosis codes 438

Managing datasets with ICD-10 codes
The icd10 suite of commands has three data management commands. icd10 check verifies that the

ICD-10 codes in varname are valid. icd10 clean standardizes the format of ICD-10 codes in varname.

And icd10 generate produces a new variable from an existing variable containing ICD-10 codes. It will

create a variable containing the associated category code, a description of the code, or a binary indicator

for whether the code is in a specified set of codes.

Example 1: Checking the validity of a variable
Although not necessary, a good place to start is with icd10 check. The commands in the icd10 suite

will return an error message if the codes in your data are not valid. Running icd10 check is a good way
to avoid error messages later.

australia10.dta contains total deaths in 2010 for males and females from Australia, taken from

theWHOMortality Database . Below we list the first 10 observations.
. use https://www.stata-press.com/data/r19/australia10
(Australian mortality data, 2010)
. list in 1/10, sepby(cause) noobs

cause sex deaths

A020 Male 1
A020 Female 4

A021 Male 3
A021 Female 1

A047 Male 16
A047 Female 25

A048 Female 4

A049 Male 1
A049 Female 1

A063 Male 1

Wewill specify the generate() option to create a new variable called prob that will indicate that the
code in cause is valid (prob = 0) or will indicate a value of 1 through 8 for the reason the code is not

valid. icd10 check also creates a value of 99, which indicates that the code is not defined but otherwise
conforms to the formatting requirements for ICD-10 codes.
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. icd10 check cause, generate(prob)
(cause contains no missing values)
cause contains undefined codes:

1. Invalid placement of period 0
2. Too many periods 0
3. Code too short 0
4. Code too long 0
5. Invalid 1st char (not A-Z) 0
6. Invalid 2nd char (not 0-9) 0
7. Invalid 3rd char (not 0-9) 0
8. Invalid 4th char (not 0-9) 0

77. Valid only for previous versions 9
88. Valid only for later versions 0
99. Code not defined 0

Total 9

icd10 check reports that there are six observations with undefined codes. In this case, this is because
we failed to specify that the data were reported using the ICD-10 codes from 2010.

. drop prob

. icd10 check cause, generate(prob) year(2010)
(cause contains defined codes; no missing values)

We see now that there are no errors in our dataset.

Example 2: Standardizing the format of codes
If we plan to do any reporting with these codes later, we may want to make them more readable, so

we use icd10 clean. This command will automatically add a dot after the third character and change
the display format of the diagnosis variable so that it is left aligned. We specify replace so that the

standardized codes are placed in the existing cause variable.

When we listed our data before, they were sorted by cause of death and showed very few deaths

assigned to the first several codes. It might be more interesting to see the most frequent causes of death.

So before we list the data this time, we sort them in descending order with gsort.
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. icd10 clean cause, replace
variable cause was str4 now str5
(2,921 real changes made)
. gsort -deaths
. list cause sex deaths in 1/10, sepby(cause)

cause sex deaths

1. I21.9 Male 5,057
2. I21.9 Female 4,885

3. C34.9 Male 4,859

4. I25.9 Male 3,805
5. I25.9 Female 3,636

6. F03 Female 3,517

7. C61 Male 3,236

8. I64 Female 3,204

9. C34.9 Female 3,130

10. C50.9 Female 2,842

Now it is clear that we have a mix of three- and four-character codes.

Example 3: Looking up a single code
In example 2, we see that the highest number of reported deaths for men and women is for code I21.9.

If we were curious about what this code is, we could type

. icd10 lookup I21.9
I21.9 Acute myocardial infarction, unspecified

and we would see that these are deaths from acute myocardial infarction, commonly known as heart

attacks. Because the icd10 commands are case insensitive and do not care whether we use the dot, we
could have typed i21.9, I219, or i219, and Stata would have returned the same results.

Creating new variables
We now proceed to create new variables for later use.

Example 4: Creating an indicator variable
Suppose that after watching several high-action nature shows on television, we now believe that death

due to shark attack is common in Australia. It did not show up in our top-ten list above, but we would

like to see how many deaths we have in our data. We can look up the code usingWHO’s interactive web

utility (http://apps.who.int/classifications/icd10/browse/2010/en/) and then use icd10 generate with

the range() option to create an indicator for whether death occurred by shark bite (shark).

http://apps.who.int/classifications/icd10/browse/2010/en/
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. icd10 generate shark=cause, range(W56)

. tabulate shark [fweight=deaths]
shark Freq. Percent Cum.

0 143,472 100.00 100.00
1 1 0.00 100.00

Total 143,473 100.00

Reality was not nearly as exciting as television—there was only one death with a code relating to shark

bite in Australia in 2010.

If we wanted to study something less sensational, we could expand the icd10rangelist to a more

complex list of codes. For example, perhaps we want to study the number of deaths from myocardial

infarction (MI) and complications that occurred afterward. We might pick codes I21.0 through I21.9,

I22.0 through I22.9, and I23.0 through I23.8. We could create the variable mi by typing

. icd10 generate mi=cause, range(I210/I219 I220/I229 I230/I238)

. tabulate mi [fweight=deaths]
mi Freq. Percent Cum.

0 133,522 93.06 93.06
1 9,951 6.94 100.00

Total 143,473 100.00

We see that 9,951 deaths were from MI or complications thereof, which equates to about 6.9% of all

deaths in Australia in 2010. It appears that hearts are far more dangerous than sharks.

Technical note
WHO reserves codes in categories U00 through U49 for the provisional assignment of new diseases

and designates codes U50 through U99 for research purposes (World Health Organization 2011).

In general, codes in categories U50 through U99 are treated as undefined. This means that you do

not need to take any special steps as long as your codes fit within the accepted four-character format.

However, if you wish to exclude U codes from the commands, you can use the if qualifier.

With the exception of icd10 generate with the description option, the icd10 commands will

continue to work as normal with undefined U codes. As a rule, icd10 generate with the description
option will return missing values for codes U50 through U99. Note that some of these codes, however,

are defined and considered valid by icd10 becauseWHO has distributed descriptions for them. For these

codes, icd10 generate with option description will return results. The affected codes vary by year.
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Stored results
icd10 check stores the following in r():

Scalars

r(e#) number of errors of type #

r(esum) total number of errors

r(miss) number of missing values

r(N) number of nonmissing values

icd10 clean stores the following in r():

Scalars

r(N) number of changes

icd10 lookup and icd10 search store the following in r():

Scalars

r(N codes) number of codes found
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Description Quick start Menu Syntax Options
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Description
icd10cm is a suite of commands for working with ICD-10-CM diagnosis codes from US federal fiscal

year 2016 to the present. To see the current version of the ICD-10-CM diagnosis codes and any changes

that have been applied, type icd10cm query.

icd10cm check, icd10cm clean, and icd10cm generate are data management commands.

icd10cm check verifies that a variable contains defined ICD-10-CM diagnosis codes and provides a sum-

mary of any problems encountered. icd10cm clean standardizes the format of the codes. icd10cm
generate can create a binary indicator variable for whether the code is in a specified set of codes, a

variable containing a corresponding higher-level code, or a variable containing the description of the

code.

icd10cm lookup and icd10cm search are interactive utilities. icd10cm lookup displays descrip-
tions of the codes specified on the command line. icd10cm search looks for relevant ICD-10-CM diag-

nosis codes from keywords given on the command line.

Quick start
Determine whether ICD-10-CM diagnosis codes in diag1 are invalid, and store reasons in invalid

icd10cm check diag1, generate(invalid)

Standardize display of codes in diag2 to add a period and left-align codes
icd10cm clean diag2, replace

Generate descr3 as the diagnosis code prepended to the short description of diagnosis code in diag3
icd10cm generate descr3 = diag3, description addcode(begin)

Generate mhypertn as an indicator for a maternal hypertension diagnosis in diag4 using ICD-10-CM

codes O16.1 through O16.5 or O16.9

icd10cm generate mhypertn = diag4, range(O161/O165 O169)

Look up descriptions for ICD-10-CM diagnosis codes T46.1X1, T46.1X1A, T46.1X1D, and T46.1X1S

icd10cm lookup T46.1X1*

Look up codes where the description contains the words “delivery” or “birth”

icd10cm search delivery birth, or

Menu
Data > ICD codes > ICD-10-CM

443
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Syntax
Verify that variable contains defined codes

icd10cm check varname [ if ] [ in ] [ , checkopts ]

Clean variable and verify format of codes

icd10cm clean varname [ if ] [ in ], {generate(newvar) | replace} [ cleanopts ]

Generate new variable from existing variable

icd10cm generate newvar = varname [ if ] [ in ], category [ check ]

icd10cm generate newvar = varname [ if ] [ in ], description [ genopts ]

icd10cm generate newvar = varname [ if ] [ in ], range(codelist) [ check ]

Display code descriptions

icd10cm lookup codelist [ , version(#) ]

Search for codes from descriptions

icd10cm search [ ” ]text[ ” ] [[ ” ]text[ ” ] ...] [ , searchopts ]

Display ICD-10-CM version

icd10cm query

codelist is one of the following:

icd10code (the particular code)

icd10code* (all codes starting with)

icd10code/icd10code (the code range)

or any combination of the above, such as A27.0 G40* Y60/Y69.9.

checkopts Description

fmtonly check only format of the codes

summary frequency of each invalid or undefined code

list list observations with invalid or undefined ICD-10-CM codes

generate(newvar) create new variable marking invalid codes

version(#) fiscal year to check codes against; default is the current year
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cleanopts Description

∗ generate(newvar) create new variable containing cleaned codes
∗ replace replace existing codes with the cleaned codes

check check that variable contains ICD-10-CM codes before cleaning

nodots format codes without a period

pad add space to the right of codes shorter than seven characters

∗ Either generate() or replace is required.

genopts Description

addcode(begin | end) add code to the beginning or end of the description

pad add spaces to the right of the code; must specify addcode(begin)
nodots format codes without a period; must specify addcode()
check check that variable contains ICD-10-CM codes before generating new

variable

long use long description rather than short

version(#) select description from fiscal year #; default is the current year

searchopts Description

or match any keyword

matchcase match case of keywords

version(#) search description from fiscal year #; default is all

collect is allowed with icd10cm check and icd10cm clean; see [U] 11.1.10 Prefix commands.

The icd10cm suite of commands does not allow alias variables; see [D] frunalias for advice on how to get around this
restriction.

Options
Options are presented under the following headings:

Options for icd10cm check
Options for icd10cm clean
Options for icd10cm generate
Option for icd10cm lookup
Options for icd10cm search

Options for icd10cm check
fmtonly tells icd10cm check to verify that the codes fit the format of ICD-10-CM diagnosis codes but

not to check whether the codes are defined.

summary specifies that icd10cm check should report the frequency of each invalid or undefined code
that was found in the data. Codes are displayed in descending order by frequency. summary may not
be combined with list.

list specifies that icd10cm check list the observation number, the invalid or undefined ICD-10-CM

diagnosis code, and the reason the code is invalid or whether it is an undefined code. list may not
be combined with summary.



icd10cm — ICD-10-CM diagnosis codes 446

generate(newvar) specifies that icd10cm check create a new variable containing, for each observa-

tion, 0 if the observation contains a defined code. Otherwise, it contains a number from 1 to 11 if the

code is invalid, 77 if the code is valid only for a previous version, 88 if the code is valid only for a

later version, 99 if the code is undefined, or missing if varname is missing.. The positive numbers

indicate the kind of problem and correspond to the listing produced by icd10cm check.

version(#) specifies the version of the codes that icd10cm check should reference. # indicates the

federal fiscal year for the codes. For example, use 2016 for federal fiscal year 2016 (FFY-2016),

which is October 1, 2015 to September 30, 2016. icd10cm supports all years after the United States
officially adopted ICD-10-CM. The appropriate value of # should be determined from the data source.

The default is the current year.

Warning: The default value of version() will change over time so that the most recent codes are
used. Using the default value rather than specifying a specific version may change results after a new

version of the codes is introduced.

Options for icd10cm clean
generate(newvar) and replace specify how the formatted values of varname are to be handled. You

must specify either generate() or replace.

generate() specifies that the cleaned values be placed in the new variable specified in newvar.

replace specifies that the existing values of varname be replaced with the formatted values.

check specifies that icd10cm clean should first check that varname contains codes that fit the format
of ICD-10-CM diagnosis codes. Specifying the check option will slow down icd10cm clean.

nodots specifies that the period be removed in the final format.

pad specifies that spaces be added to the end of the codes to make the (implied) dots align vertically in
listings. The default is to left-align codes without adding spaces.

Options for icd10cm generate
category, description, and range(codelist) specify the contents of the new variable that icd10cm

generate is to create. You do not need to icd10cm clean varname before using icd10cm generate;
it will accept any supported format or combination of formats.

category specifies to extract the three-character category code from the ICD-10-CM diagnosis code.

The resulting variable may be used with the other icd10cm subcommands.

description creates newvar containing descriptions of the ICD-10-CM diagnosis codes.

range(codelist) creates a new indicator variable equal to 1 when the ICD-10-CM diagnosis code is in

the range specified, equal to 0 when the ICD-10-CM diagnosis code is not in the range, and equal to

missing when varname is missing.

addcode(begin | end) specifies that the code should be includedwith the text describing the code. Spec-
ifying addcode(begin) will prepend the code to the text. Specifying addcode(end) will append
the code to the text.

pad specifies that the code that is to be added to the description should be padded spaces to the right of
the code so that the start of description text is aligned for all codes. pad may be specified only with
addcode(begin).
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nodots specifies that the code that is added to the description should be formatted without a period.

nodots may be specified only if addcode() is also specified.

check specifies that icd10cm generate should first check that varname contains codes that fit the for-
mat of ICD-10-CM diagnosis codes. Specifying the check option will slow down the generate sub-
command.

long specifies that the long description of the code be used rather than the short (abbreviated) descrip-
tion.

version(#) specifies the version of the codes that icd10cm generate should reference. # indicates
the federal fiscal year for the codes. For example, use 2016 for federal fiscal year 2016 (FFY-2016),
which is October 1, 2015 to September 30, 2016. icd10cm supports all years after the United States
officially adopted ICD-10-CM. The appropriate value of # should be determined from the data source.

The default is the current year.

Warning: The default value of version() will change over time so that the most recent codes are
used. Using the default value rather than specifying a specific version may change results after a new

version of the codes is introduced.

Option for icd10cm lookup
version(#) specifies the version of the codes that icd10cm lookup should reference. # indicates the

federal fiscal year for the codes. For example, use 2016 for federal fiscal year 2016 (FFY-2016),

which is October 1, 2015 to September 30, 2016. icd10cm supports all years after the United States
officially adopted ICD-10-CM. The appropriate value of # should be determined from the data source.

The default is the current year.

Warning: The default value of version() will change over time so that the most recent codes are
used. Using the default value rather than specifying a specific version may change results after a new

version of the codes is introduced.

Options for icd10cm search
or specifies that ICD-10-CM diagnosis codes be searched for descriptions that contain any word specified

with icd10cm search. The default is to list only descriptions that contain all the words specified.

matchcase specifies that icd10cm search should match the case of the keywords given on the com-
mand line. The default is to perform a case-insensitive search.

version(#) specifies the version of the codes that icd10cm search should reference. # indicates the
federal fiscal year for the codes. For example, use 2016 for federal fiscal year 2016 (FFY-2016),

which is October 1, 2015 to September 30, 2016. icd10cm supports all years after the United States
officially adopted ICD-10-CM.

By default, descriptions for all versions are searched, meaning that codes that changed descriptions

and that have descriptions in multiple versions that contain the search terms will be duplicated. To

ensure a list of unique code values, specify the version number.
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Remarks and examples
Remarks are presented under the following headings:

Introduction
Managing datasets with ICD-10-CM codes
Interactive utilities

If you have not yet read Introduction to ICD coding in [D] icd, please do so before using the icd10cm
commands.

Introduction
The general format of an ICD-10-CM diagnosis code is a three-character category code followed by up

to four characters after an (implied) period. The first character is always a letter and the second character

is always a number, but the remaining characters may be any combination of letters and numbers.

Some examples of ICD-10-CM diagnosis codes are B69 (cysticercosis) and W20.0XXA (struck by

falling object in cave-in, initial encounter). Many datasets record (and some people write) codes without

the period; for example, the code I74.3 may appear as I743. The icd10cm commands understand both
ways of recording codes. The commands are also insensitive to codes recorded with or without leading

and trailing blanks and are case insensitive.

All the following are acceptable formats to record codes in Stata:

T37.0X3A
A25.1

C52
a80.0
z8261

Important note: What constitutes a valid code changes between versions. For the rest of this entry, a

defined code is any code that is currently valid, was valid at some point since the ICD-10-CM coding system

was introduced, or has a meaning as a grouping of codes. The list of valid codes and their associated

descriptions is from the US Centers for Disease Control and Prevention’s National Center for Health

Statistics (Centers for Disease Control and Prevention 2013). The ICD-10-CM is a licensed adaptation of

the ICD-10, which is copyrighted by the World Health Organization (WHO); see [R] Copyright ICD-10.

To view the current version of the ICD-10-CM diagnosis codes in Stata, its source, and a log of changes

that have been made to the list of ICD-10-CM diagnosis codes since the icd10cm commands were imple-
mented, type

. icd10cm query
ICD-10-CM Diagnosis Code Version and Change Log

Note
The ICD-10 coding system is copyrighted by the World Health Organization.

The ICD-10-CM is the WHO’s authorized adaptation for use in the
United States. It is maintained by the National Center for Health
Statistics (NCHS), at the Center for Disease Control and Prevention.
Stata obtains the ICD-10-CM data from the NCHS website.

See copyright icd10 for the ICD-10 copyright notification.
(output omitted )
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Managing datasets with ICD-10-CM codes
The icd10cm suite of commands has three data management commands. icd10cm check verifies that

the ICD-10-CM diagnosis codes in varname are valid. icd10cm clean standardizes the format of ICD-10-
CM diagnosis codes in varname. And icd10cm generate produces a new variable from an existing

variable containing ICD-10-CM diagnosis codes.

Examples in this section use hosp2015.dta, a fictional sample of inpatient hospital discharges

in Washington State from July 2015 to December 2015. The data were simulated based on the

Comprehensive Hospital Abstract Reporting System (CHARS); see https://www.doh.wa.gov/Dataand

StatisticalReports/HealthcareinWashington/HospitalandPatientData/HospitalDischargeDataCHARS.

Examples analyzing the procedure codes for this dataset may be found in [D] icd10pcs.

. use https://www.stata-press.com/data/r19/hosp2015
(Fictional WA hospital discharges)
. describe
Contains data from https://www.stata-press.com/data/r19/hosp2015.dta
Observations: 3,935 Fictional WA hospital discharges

Variables: 18 6 Apr 2024 13:10

Variable Storage Display Value
name type format label Variable label

hospid str5 %9s Hospital ID
age byte %11.0g age Age (years)
sex byte %8.0g sex Sex
ins byte %9.0g ins Insurance type
los byte %19.0g los Length of stay (days)
atype byte %9.0g admtype Admission type
asource byte %18.0g admsrc Admission source
aday byte %8.0g day Admission day of week
dmonth int %tm Discharge month
dstatus byte %22.0g status Discharge status
died byte %8.0g Patient died (1=yes)
diag1 str7 %9s Diagnosis 1
diag2 str7 %9s Diagnosis 2
diag3 str7 %9s Diagnosis 3
proc1 str7 %9s Procedure 1
proc2 str7 %9s Procedure 2
proc3 str7 %9s Procedure 3
billed float %8.2fc Amount billed ($1,000s)

Sorted by: hospid dmonth

Although not necessary, it is a good idea to begin with icd10cm check and fix any potential problems
before proceeding to other icd10cm commands. By default, it verifies that varname contains defined
ICD-10-CM diagnosis codes and, if not, tabulates the type of problems encountered.

Example 1: Checking the validity of a variable
We want to verify that the primary diagnosis code (diag1) contains only valid ICD-10-CM diagno-

sis codes. Because any discharges that use ICD-10-CM diagnosis codes in our data will be from Octo-

ber 1, 2015 to December 31, 2015, we use version(2016) to specify the FFY-2016 version of ICD-10-CM.
If there are invalid or undefined codes in our data, we want to see what the codes are, their frequency,

and the reason they were not valid, so we add the summary option.

https://www.doh.wa.gov/DataandStatisticalReports/HealthcareinWashington/HospitalandPatientData/HospitalDischargeDataCHARS
https://www.doh.wa.gov/DataandStatisticalReports/HealthcareinWashington/HospitalandPatientData/HospitalDischargeDataCHARS
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. icd10cm check diag1, version(2016) summary
(diag1 contains no missing values)
diag1 contains invalid codes:

1. Invalid placement of period 0
2. Too many periods 0
3. Code too short 0
4. Code too long 0
5. Invalid 1st char (not A-Z) 1,916
6. Invalid 2nd char (not 0-9) 0
7. Invalid 3rd char (not 0-9 A or B) 0
8. Invalid 4th char (not 0-9 or A-Z) 0
9. Invalid 5th char (not 0-9 or A-Z) 0

10. Invalid 6th char (not 0-9 or A-Z) 0
11. Invalid 7th char (not 0-9 or A-Z) 0
77. Valid only for previous versions 0
88. Valid only for later versions 0
99. Code not defined 32

Total 1,948
Summary of invalid and undefined codes

diag1 Count Problem

0389 91 Invalid 1st char
65421 57 Invalid 1st char
64511 45 Invalid 1st char
71536 33 Invalid 1st char
66411 31 Invalid 1st char
(output omitted )
4940 1 Invalid 1st char
4270 1 Invalid 1st char
1570 1 Invalid 1st char
53550 1 Invalid 1st char
64413 1 Invalid 1st char

It looks like the records with problems used ICD-9-CM codes instead of ICD-10-CM codes. We could

confirm our suspicion by using icd9 check or icd9 lookup to see whether the codes are defined in the
ICD-9-CM coding system.

Because our data span the date the US switched to ICD-10-CM (October 1, 2015), we create an indicator

for whether the record should use ICD-10-CM based on the date of discharge (dmonth). We then run

icd10cm check again for only these records.

. generate use10 = (dmonth>=tm(2015m10))

. icd10cm check diag1 if use10==1, version(2016)
(diag1 contains defined codes; no missing values)

All the problems in diag1 are before the switch, so we proceed without concern about our data.

In the generate command above, we used the tm() function, which lets us easily provide date values
to Stata in string form; see [D] Datetime for more information about working with dates.

If we wanted to check codes in more than one diagnosis variable, we could use a foreach loop or
reshape our data; see Working with multiple codes in [D] icd. Also, additional options for icd10cm
check help you identify the source of any errors. For example, you can obtain a list of observations that
have invalid codes. See Options for icd10cm check.
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icd10cm clean formats the variable to ensure consistency and to make subsequent output from other

commands such as list and tabulate look better. icd10cm clean also can be used to verify that

the codes in a variable conform to the ICD-10-CM format, without checking to see whether the codes are

defined.

Example 2: Creating a variable with standardized codes
We would like to find the frequency of each primary diagnosis in our dataset. We can use tabulate

with the sort option to see the most common primary diagnoses first.

So that the codes in diag1 are more readable in the tabulate output, we first use icd10cm clean.
This adds a period after the three-character category code. We specify the pad option to make sure our
codes align and store the result in the new variable pdx.

. icd10cm clean diag1 if use10==1, pad generate(pdx)
(1,955 missing values generated)
. tabulate pdx, sort

pdx Freq. Percent Cum.

A41.9 105 5.30 5.30
O48.0 40 2.02 7.32
I21.4 37 1.87 9.19
O70.1 36 1.82 11.01
M17.11 33 1.67 12.68
O34.21 28 1.41 14.09
J96.01 21 1.06 15.15
M16.11 21 1.06 16.21
J18.9 20 1.01 17.22
O70.0 20 1.01 18.23

(output omitted )

Total 1,980 100.00

Notice that we used if with the use10 variable we created in example 1 to restrict icd10cm clean to
just those diagnosis codes where the ICD-10-CM coding system should have been applied.

Aside from validating values of codes, the icd10cm command is primarily used to create inputs for
other Stata commands. For example, in example 5 of [D] icd9, we show how to graph the frequency of

category codes with descriptions, and in example 3 of [D] icd10pcs, we calculate average billed amounts

over different procedures.

Example 3: Creating a variable indicating diagnosis
In example 2, we found that the most common primary diagnosis code in our data is A41.9, a code

for a type of sepsis (a complication of infection).

Suppose we are interested in differences in length of stay (los) for discharges with and without a
primary diagnosis of sepsis. We can use icd10cm generate with the range() option to search records
for other diagnosis codes starting with A40, A41, and A42, which also indicate a sepsis diagnosis.

. icd10cm generate sepsis=diag1 if use10==1, range(A40* A41* A42*)

An informal way to examine differences is to plot the average length of stay for discharges with and

without a sepsis diagnosis. We first label the values of our sepsis variable so that it displays nicely in
the graph.
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. label define sepsis 0 ”No sepsis” 1 ”Sepsis”

. label values sepsis sepsis

. graph hbar los, over(sepsis) ytitle(”Average length of stay (days)”)

0 2 4 6
Average length of stay (days)

Sepsis

No sepsis

More formally, we could include the new sepsis indicator as a factor variable in a regression model.

Interactive utilities
icd10cm lookup and icd10cm search are interactive tools. You can use them without having any

ICD-10-CM diagnosis data in memory.

icd10cm lookup lists the descriptions of codes given on the command line, and icd10cm search
looks for relevant ICD-10-CM diagnosis codes from the specified keywords. The two commands comple-

ment each other.

Example 4: Finding diagnosis codes from descriptions
In example 3, we specified codes for sepsis as any code starting with A40, A41, or A42. Suppose we

want to look for other relevant codes. We can search the descriptions of the ICD-10-CM codes to locate

codes of interest.

. icd10cm search sepsis, version(2016)
A02.1 Salmonella sepsis
A22.7 Anthrax sepsis
A26.7 Erysipelothrix sepsis
A32.7 Listerial sepsis
(output omitted )

Note that icd10cm search is case insensitive. If you want icd10cm search to respect the case of
the search terms you type, specify the matchcase option.

Using icd10cm lookup is similar to icd10pcs lookup. See example 4 in [D] icd10pcs.
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Stored results
icd10cm check stores the following in r():

Scalars

r(e#) number of errors of type #

r(esum) total number of errors

r(miss) number of missing values

r(N) number of nonmissing values

icd10cm clean stores the following in r():

Scalars

r(N) number of changes

icd10cm lookup and icd10cm search store the following in r():

Scalars

r(N codes) number of codes found
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Description
icd10pcs is a suite of commands for working with ICD-10-PCS procedure codes from US federal fiscal

year 2016 to the present. To see the current version of the ICD-10-PCS procedure codes and any changes

that have been applied, type icd10pcs query.

icd10pcs check, icd10pcs clean, and icd10pcs generate are data management commands.

icd10pcs check verifies that a variable contains defined ICD-10-PCS procedure codes and provides

a summary of any problems encountered. icd10pcs clean standardizes the format of the codes.

icd10pcs generate can create a binary indicator variable for whether the code is in a specified set

of codes, a variable containing a corresponding higher-level code, or a variable containing the descrip-

tion of the code.

icd10pcs lookup and icd10pcs search are interactive utilities. icd10pcs lookup displays de-
scriptions of the codes specified on the command line. icd10pcs search looks for relevant ICD-10-PCS
procedure codes from keywords given on the command line.

Quick start
Determine whether ICD-10-PCS procedure codes in proc1 are invalid, and store reasons in invalid

icd10pcs check proc1, generate(invalid)

Standardize display of codes in proc2 to add a period and left-align codes
icd10pcs clean proc2, replace

Check that the codes in proc3 conform to ICD-10-PCS formatting rules, and if so, create main as the

corresponding three-character category code

icd10pcs generate main = proc3, category check

Generate descr4 as the current short description of procedure code in proc4
icd10pcs generate descr4 = proc4, description

Look up current descriptions for procedure codes 081.23J4 through 081.Y3Z3

icd10pcs lookup 081.23J4/081.Y3Z3

Look up codes where the description from FFY-2016 contains the word “foot”

icd10pcs search foot, version(2016)

Menu
Data > ICD codes > ICD-10-PCS

454



icd10pcs — ICD-10-PCS procedure codes 455

Syntax
Verify that variable contains defined codes

icd10pcs check varname [ if ] [ in ] [ , checkopts ]

Clean variable and verify format of codes

icd10pcs clean varname [ if ] [ in ], {generate(newvar) | replace} [ cleanopts ]

Generate new variable from existing variable

icd10pcs generate newvar = varname [ if ] [ in ], category [ check ]

icd10pcs generate newvar = varname [ if ] [ in ], description [ genopts ]

icd10pcs generate newvar = varname [ if ] [ in ], range(codelist) [ check ]

Display code descriptions

icd10pcs lookup codelist [ , version(#) ]

Search for codes from descriptions

icd10pcs search [ ” ]text[ ” ] [[ ” ]text[ ” ] ...] [ , searchopts ]

Display ICD-10-PCS version

icd10pcs query

codelist is one of the following:

icd10code (the particular code)

icd10code* (all codes starting with)

icd10code/icd10code (the code range)

or any combination of the above, such as 041.E09P 2W3* BQ2L/BQ2LZZZ.

checkopts Description

fmtonly check only format of the codes

summary frequency of each invalid or undefined code

list list observations with invalid or undefined ICD-10-PCS codes

generate(newvar) create new variable marking invalid codes

version(#) fiscal year to check codes against; default is the current year
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cleanopts Description

∗ generate(newvar) create new variable containing cleaned codes
∗ replace replace existing codes with the cleaned codes

check check that variable contains ICD-10-PCS codes before cleaning

nodots format codes without a period

∗ Either generate() or replace is required.

genopts Description

addcode(begin | end) add code to the beginning or end of the description

nodots format codes without a period; must specify addcode()
check check that variable contains ICD-10-PCS codes before generating new

variable

long use long description rather than short

version(#) select description from fiscal year #; default is the current year

searchopts Description

or match any keyword

matchcase match case of keywords

version(#) search description from fiscal year #; default is all

collect is allowed with icd10pcs check and icd10pcs clean; see [U] 11.1.10 Prefix commands.

The icd10pcs suite of commands does not allow alias variables; see [D] frunalias for advice on how to get around this
restriction.

Options
Options are presented under the following headings:

Options for icd10pcs check
Options for icd10pcs clean
Options for icd10pcs generate
Option for icd10pcs lookup
Options for icd10pcs search

Options for icd10pcs check
fmtonly tells icd10pcs check to verify that the codes fit the format of ICD-10-PCS procedure codes but

not to check whether the codes are defined.

summary specifies that icd10pcs check should report the frequency of each invalid or undefined code
that was found in the data. Codes are displayed in descending order by frequency. summary may not
be combined with list.

list specifies that icd10pcs check list the observation number, the invalid or undefined ICD-10-PCS

procedure code, and the reason the code is invalid or whether it is an undefined code. list may not
be combined with summary.
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generate(newvar) specifies that icd10pcs check create a new variable containing, for each observa-

tion, 0 if the observation contains a defined code. Otherwise, it contains a number from 1 to 11 if

the code is invalid, 77 if the code is valid only for a previous version, 88 if the code is valid only for

a later version, 99 if the code is undefined, or missing if the code is missing. The positive numbers

indicate the kind of problem and correspond to the listing produced by icd10pcs check.

version(#) specifies the version of the codes that icd10pcs check should reference. # indicates the
federal fiscal year for the codes. For example, use 2016 for federal fiscal year 2016 (FFY-2016),

which is October 1, 2015 to September 30, 2016. icd10pcs supports all years after the United States
officially adopted ICD-10-PCS. The appropriate value of # should be determined from the data source.

The default is the current year.

Warning: The default value of version() will change over time so that the most recent codes are
used. Using the default value rather than specifying a specific version may change results after a new

version of the codes is introduced.

Options for icd10pcs clean
generate(newvar) and replace specify how the formatted values of varname are to be handled. You

must specify either generate() or replace.

generate() specifies that the cleaned values be placed in the new variable specified in newvar.

replace specifies that the existing values of varname be replaced with the formatted values.

check specifies that icd10pcs clean should first check that varname contains codes that fit the format
of ICD-10-PCS procedure codes. Specifying the check option will slow down icd10pcs clean.

nodots specifies that the period be removed in the final format.

Options for icd10pcs generate
category, description, and range(codelist) specify the contents of the new variable that icd10pcs

generate is to create. You do not need to icd10pcs clean varname before using icd10pcs
generate; it will accept any supported format or combination of formats.

category specifies to extract the three-character category code from the ICD-10-PCS procedure code.

The resulting variable may be used with the other icd10pcs subcommands.

description creates newvar containing descriptions of the ICD-10-PCS procedure codes.

range(codelist) creates a new indicator variable equal to 1 when the ICD-10-PCS procedure code is in

the range specified, equal to 0 when the ICD-10-PCS procedure code is not in the range, and equal

to missing when varname is missing.

addcode(begin | end) specifies that the code should be includedwith the text describing the code. Spec-
ifying addcode(begin) will prepend the code to the text. Specifying addcode(end) will append
the code to the text.

nodots specifies that the code that is added to the description should be formatted without a period.

nodots may be specified only if addcode() is also specified.

check specifies that icd10pcs generate should first check that varname contains codes that fit the

format of ICD-10-PCS procedure codes. Specifying the check option will slow down the generate
subcommand.
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long specifies that the long description of the code be used rather than the short (abbreviated) descrip-
tion.

version(#) specifies the version of the codes that icd10pcs generate should reference. # indicates
the federal fiscal year for the codes. For example, use 2016 for federal fiscal year 2016 (FFY-2016),
which is October 1, 2015 to September 30, 2016. icd10pcs supports all years after the United States
officially adopted ICD-10-PCS. The appropriate value of # should be determined from the data source.

The default is the current year.

Warning: The default value of version() will change over time so that the most recent codes are
used. Using the default value rather than specifying a specific version may change results after a new

version of the codes is introduced.

Option for icd10pcs lookup
version(#) specifies the version of the codes that icd10pcs lookup should reference. # indicates

the federal fiscal year for the codes. For example, use 2016 for federal fiscal year 2016 (FFY-2016),
which is October 1, 2015 to September 30, 2016. icd10pcs supports all years after the United States
officially adopted ICD-10-PCS. The appropriate value of # should be determined from the data source.

The default is the current year.

Warning: The default value of version() will change over time so that the most recent codes are
used. Using the default value rather than specifying a specific version may change results after a new

version of the codes is introduced.

Options for icd10pcs search
or specifies that ICD-10-PCS procedure codes be searched for descriptions that contain any word specified

with icd10pcs search. The default is to list only descriptions that contain all the words specified.

matchcase specifies that icd10pcs search should match the case of the keywords given on the com-
mand line. The default is to perform a case-insensitive search.

version(#) specifies the version of the codes that icd10pcs search should reference. # indicates

the federal fiscal year for the codes. For example, use 2016 for federal fiscal year 2016 (FFY-2016),
which is October 1, 2015 to September 30, 2016. icd10pcs supports all years after the United States
officially adopted ICD-10-PCS.

By default, descriptions for all versions are searched, meaning that codes that changed descriptions

and that have descriptions in multiple versions that contain the search terms will be duplicated. To

ensure a list of unique code values, specify the version number.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Managing datasets with ICD-10-PCS codes
Interactive utilities

If you have not yet read Introduction to ICD coding in [D] icd, please do so before using the icd10pcs
commands.
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Introduction
The general format of an ICD-10-PCS procedure code is a three-character category code followed by

four alpha-numeric characters after an (implied) period. The full codes are always seven characters long

and may be any combination of letters and numbers.

Some examples of ICD-10-PCS procedure codes are 081 (Eye, Bypass) and 0GT.D0ZZ (Resection of

Aortic Body, Open Approach). Many datasets record (and some people write) codes without the period;

for example, the code 090.KXZZ may appear as 090KXZZ. The icd10pcs commands understand both
ways of recording codes. The commands are also insensitive to codes recorded with or without leading

and trailing blanks and are case insensitive.

All the following are acceptable formats to record codes in Stata:

03R
0jj

00f53zz
0TL.C0ZZ
091

Important note: What constitutes a valid code changes between versions. For the rest of this entry, a

defined code is any code that is currently valid, was valid at some point since the ICD-10-CM/PCS coding

system was introduced, or has a meaning as a grouping of codes. The list of valid codes and their

associated descriptions is from the US Centers for Medicare and Medicaid Services (CMS).

To view the current version of the ICD-10-PCS procedure codes in Stata, its source, and a log of changes

that have been made to the list of ICD-10-PCS procedure codes since the icd10pcs commands were

implemented, type

. icd10pcs query
ICD-10-PCS Procedure Code Version and Change Log

Note
Stata obtains the ICD-10-PCS dataset from the Centers for Medicare and

Medicaid Services website.
(output omitted )

Managing datasets with ICD-10-PCS codes
The icd10pcs suite of commands has three data management commands. icd10pcs check verifies

that the ICD-10-PCS procedure codes in varname are valid. icd10pcs clean standardizes the format of
ICD-10-PCS procedure codes in varname. And icd10pcs generate produces a new variable from an

existing variable containing ICD-10-PCS procedure codes.

Examples in this section use hosp2015.dta, a fictional sample of inpatient hospital discharges

in Washington state from July 2015 to December 2015. The data were simulated based on the

Comprehensive Hospital Abstract Reporting System (CHARS); see https://www.doh.wa.gov/Dataand

StatisticalReports/HealthcareinWashington/HospitalandPatientData/HospitalDischargeDataCHARS.

Examples analyzing the diagnosis codes for this dataset can be found in [D] icd10cm.

. use https://www.stata-press.com/data/r19/hosp2015
(Fictional WA hospital discharges)

icd10pcs check is the primary subcommand for validating ICD-10-PCS procedure codes. However,

if you just want to verify that the codes conform to the formatting rules for ICD-10-PCS procedure, you

can use the check option with icd10pcs clean or icd10pcs generate.

https://www.doh.wa.gov/DataandStatisticalReports/HealthcareinWashington/HospitalandPatientData/HospitalDischargeDataCHARS
https://www.doh.wa.gov/DataandStatisticalReports/HealthcareinWashington/HospitalandPatientData/HospitalDischargeDataCHARS
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Example 1: Checking for valid code values
You use icd10pcs check just like you do icd10cm check. Because the data are from federal fiscal

year 2016, we specify version(2016).

In example 1 of [D] icd10cm, we found that we needed to account for the date of the admission when

we used the icd10cm commands. The same is true of the icd10pcs commands because the two systems
were implemented simultaneously. We preemptively exclude records before October 2015 here.

. drop if dmonth < tm(2015m10)
(1,955 observations deleted)
. icd10pcs check proc1, version(2016)
(proc1 contains defined codes; 594 missing values)

We find that there are no errors in the coding of the proc1 variable and that 594 records in our dataset
did not have any procedure at all.

If we wanted to check codes in more than one procedure variable, we could use a foreach loop or
reshape our data; see Working with multiple codes in [D] icd. With large datasets, it is generally faster

to use a loop.

It is a good idea to begin with icd10pcs check and fix any potential problems before proceeding

to other icd10pcs commands. The icd10pcs check command with the generate() or list option
is also useful for tracking down problems when any of the other icd10pcs commands tell you that the
variable “contains invalid codes”.

icd10pcs clean formats the variable to ensure consistency and to make subsequent output from

other commands such as list and tabulate look better. icd10pcs clean also can be used to verify
that the codes in a variable conform to the ICD-10-CM format, without checking to see whether the codes

are defined.

Example 2: Cleaning an existing variable
We standardize all the ICD-10-PCS procedure codes in proc1 to include a period after the third char-

acter. We specify the replace option rather than the generate() option so that the values in proc1 are
replaced with their formatted values.

. icd10pcs clean proc1, replace
variable proc1 was str7 now str8
(1,980 real changes made)

icd10pcs clean reports that 1,980 values were replaced. If we wanted to standardize to a format
without the period, we could have specified the nodots option.

Aside from validating values of codes, the icd10pcs command is primarily used to create inputs for
other Stata commands. For example, in example 5 of [D] icd9, we show how to graph the frequency of

category codes with descriptions, and in example 3 of [D] icd10cm, we show how to graph summary

statistics by diagnosis.

Example 3: Creating an indicator for common procedures
If we use tabulate on the primary procedure code (proc1) the same way we did for the primary

diagnosis in example 2, we find that the three most frequent primary procedure codes in our data are

10E0XZZ, 10D00Z1, and 0SRC0J9. Suppose we want to know the average billed amount (billed) for
all admissions that had one of these procedure codes in the primary procedure field.
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Our first step is to create an indicator for whether one of these codes is present in proc1. Then, we
summarize billed over the three top values of proc1 by using tabulate; see [R] tabulate, summa-

rize().

. icd10pcs generate top3 = proc1, range(10E0XZZ 10D00Z1 0SRC0J9)

. tabulate proc1 if top3==1, summarize(billed) freq means
Summary of Amount
billed ($1,000s)

Procedure 1 Mean Freq.

0SR.C0J9 60.62 40
10D.00Z1 27.55 92
10E.0XZZ 14.05 180

Total 24.00 312

We find that the highest average billed amount for the top three codes is for ICD-10-PCS procedure

code 0SR.C0J9. There are 40 discharges in our dataset with this code as their principal procedure, and

their average billed amount is about $60,620.

Interactive utilities
icd10pcs lookup and icd10pcs search are interactive tools. You can use themwithout having any

ICD-10-PCS procedure data in memory.

icd10pcs lookup lists the descriptions of codes given on the command line, and icd10pcs search
looks for relevant ICD-10-PCS procedure codes from the specified keywords. The two commands com-

plement each other.

Example 4: Finding procedure code descriptions
Suppose we wanted to find the short descriptions of the most frequent codes in our dataset. We can

supply icd10pcs lookup with the same list of codes we used in example 3.
. icd10pcs lookup 10E0XZZ 10D00Z1 0SRC0J9, version(2016)

0SR.C0J9 Replace of R Knee Jt with Synth Sub, Cement, Open Approach
10D.00Z1 Extraction of POC, Low Cervical, Open Approach
10E.0XZZ Delivery of Products of Conception, External Approach

We see, for example, that ICD-10-PCS procedure code 0SR.C0J9 is for a type of knee replacement

surgery.

Using icd10pcs search is similar to using icd10cm search. See example 4 in [D] icd10cm.
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Stored results
icd10pcs check stores the following in r():

Scalars

r(e#) number of errors of type #

r(esum) total number of errors

r(miss) number of missing values

r(N) number of nonmissing values

icd10pcs clean stores the following in r():

Scalars

r(N) number of changes

icd10pcs lookup and icd10pcs search store the following in r():

Scalars

r(N codes) number of codes found
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Description Remarks and examples References Also see

Description
This entry provides a quick reference for determining which method to use for reading non-Stata data

into memory. See [U] 22 Entering and importing data for more details.

Remarks and examples
Remarks are presented under the following headings:

Summary of the different methods
import excel
import delimited
jdbc
odbc
infile (free format)—infile without a dictionary
infix (fixed format)
infile (fixed format)—infile with a dictionary
import sas
import sasxport5 and import sasxport8
import spss
import fred
import haver (Windows only)
import haverdirect (Windows only)
import dbase
spshape2dta

Examples
Video example

Summary of the different methods

import excel

∘ import excel reads worksheets from Microsoft Excel (.xls and .xlsx) files.

∘ Entire worksheets can be read, or custom cell ranges can be read.

∘ See [D] import excel.

import delimited

∘ import delimited reads text-delimited files.

∘ The data can be tab-separated or comma-separated. A custom delimiter may also be specified.

∘ An observation must be on only one line.

∘ The first line in the file can optionally contain the names of the variables.

∘ See [D] import delimited.

463
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jdbc

∘ Java Database Connectivity (JDBC) is an application programming interface for the programming

language Java. The jdbc command allows you to connect to, load data from, insert data into, and
execute queries on a database using JDBC.

∘ See [D] jdbc.

odbc

∘ ODBC, an acronym for Open DataBase Connectivity, is a standard for exchanging data between pro-

grams. Stata supports the ODBC standard for importing data via the odbc command and can read from
any ODBC data source on your computer.

∘ See [D] odbc.

infile (free format)—infile without a dictionary

∘ The data can be space-separated, tab-separated, or comma-separated.

∘ Strings with embedded spaces or commas must be enclosed in quotes (even if tab- or comma-

separated).

∘ An observation can be on more than one line, or there can even be multiple observations per line.

∘ See [D] infile (free format).

infix (fixed format)

∘ The data must be in fixed-column format.

∘ An observation can be on more than one line.

∘ infix has simpler syntax than infile (fixed format).

∘ See [D] infix (fixed format).

infile (fixed format)—infile with a dictionary

∘ The data may be in fixed-column format.

∘ An observation can be on more than one line.

∘ ASCII or EBCDIC data can be read.

∘ infile (fixed format) has the most capabilities for reading data.

∘ See [D] infile (fixed format).

import sas

∘ import sas reads Version 7 SAS (.sas7bdat) files.

∘ import sas will also read value-label information from a .sas7bcat file.

∘ See [D] import sas.



import — Overview of importing data into Stata 465

import sasxport5 and import sasxport8

∘ import sasxport5 reads SAS XPORT Version 5 Transport format files.

∘ import sasxport5 will also read value-label information from a formats.xpf XPORT file.

∘ import sasxport8 reads SAS XPORT Version 8 Transport format files.

∘ See [D] import sasxport5 and [D] import sasxport8.

import spss

∘ import spss reads IBM SPSS Statistics (.sav and .zsav) files.

∘ See [D] import spss.

import fred

∘ import fred reads Federal Reserve Economic Data.

∘ To use import fred, you must have a valid API key obtained from the St. Louis Federal Reserve.

∘ See [D] import fred.

import haver (Windows only)

∘ import haver reads data from Haver Analytics (https://www.haver.com/) databases.

∘ See [D] import haver.

import haverdirect (Windows only)

∘ import haverdirect reads data from Haver Analytics (https://www.haver.com/) cloud servers.

∘ See [D] import haverdirect.

import dbase

∘ import dbase reads a version III or version IV dBase (.dbf) file.

∘ See [D] import dbase.

spshape2dta

∘ spshape2dta translates the .dbf and .shp files of a shapefile into two Stata datasets.

∘ See [SP] spshape2dta.

Examples

Example 1: Tab-separated data
begin example1.raw

1 0 1 John Smith m
0 0 1 Paul Lin m
0 1 0 Jan Doe f
0 0 . Julie McDonald f

end example1.raw

https://www.haver.com/
https://www.haver.com/
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contains tab-separated data. The type command with the showtabs option shows the tabs:

. type example1.raw, showtabs
1<T>0<T>1<T>John Smith<T>m
0<T>0<T>1<T>Paul Lin<T>m
0<T>1<T>0<T>Jan Doe<T>f
0<T>0<T>.<T>Julie McDonald<T>f

It could be read in by

. import delimited a b c name gender using example1

Example 2: Comma-separated data
begin example2.raw

a,b,c,name,gender
1,0,1,John Smith,m
0,0,1,Paul Lin,m
0,1,0,Jan Doe,f
0,0,,Julie McDonald,f

end example2.raw

could be read in by

. import delimited using example2

Example 3: Tab-separated data with double-quoted strings
begin example3.raw

1 0 1 ”John Smith” m
0 0 1 ”Paul Lin” m
0 1 0 ”Jan Doe” f
0 0 . ”Julie McDonald” f

end example3.raw

contains tab-separated data with strings in double quotes.

. type example3.raw, showtabs
1<T>0<T>1<T>”John Smith”<T>m
0<T>0<T>1<T>”Paul Lin”<T>m
0<T>1<T>0<T>”Jan Doe”<T>f
0<T>0<T>.<T>”Julie McDonald”<T>f

It could be read in by

. infile byte (a b c) str15 name str1 gender using example3

or

. import delimited a b c name gender using example3

or

. infile using dict3
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where the dictionary dict3.dct contains

begin dict3.dct
infile dictionary using example3 {

byte a
byte b
byte c
str15 name
str1 gender

}
end dict3.dct

Example 4: Space-separated data with double-quoted strings
begin example4.raw

1 0 1 ”John Smith” m
0 0 1 ”Paul Lin” m
0 1 0 ”Jan Doe” f
0 0 . ”Julie McDonald” f

end example4.raw

could be read in by

. infile byte (a b c) str15 name str1 gender using example4

or

. infile using dict4

where the dictionary dict4.dct contains

begin dict4.dct
infile dictionary using example4 {

byte a
byte b
byte c
str15 name
str1 gender

}
end dict4.dct

Example 5: Fixed-column format
begin example5.raw

101mJohn Smith
001mPaul Lin
010fJan Doe
00 fJulie McDonald

end example5.raw

could be read in by

. infix a 1 b 2 c 3 str gender 4 str name 5-19 using example5

or

. infix using dict5a
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where dict5a.dct contains

begin dict5a.dct
infix dictionary using example5 {

a 1
b 2
c 3

str gender 4
str name 5-19

}
end dict5a.dct

or

. infile using dict5b

where dict5b.dct contains

begin dict5b.dct
infile dictionary using example5 {

byte a %1f
byte b %1f
byte c %1f
str1 gender %1s
str15 name %15s

}
end dict5b.dct

Example 6: Fixed-column format with headings
begin example6.raw

line 1 : a heading
There are a total of 4 lines of heading.
The next line contains a useful heading:
----+----1----+----2----+----3----+----4----+-
1 0 1 m John Smith
0 0 1 m Paul Lin
0 1 0 f Jan Doe
0 0 f Julie McDonald

end example6.raw

could be read in by

. infile using dict6a

where dict6a.dct contains

begin dict6a.dct
infile dictionary using example6 {
_firstline(5)

byte a
byte b

_column(17) byte c %1f
str1 gender

_column(33) str15 name %15s
}

end dict6a.dct

or could be read in by

. infix 5 first a 1 b 9 c 17 str gender 25 str name 33-46 using example6
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or could be read in by

. infix using dict6b

where dict6b.dct contains

begin dict6b.dct
infix dictionary using example6 {
5 first

a 1
b 9
c 17

str gender 25
str name 33-46

}
end dict6b.dct

Example 7: Fixed-column format with observations spanning multiple lines
begin example7.raw

a b c gender name
1 0 1
m
John Smith
0 0 1
m
Paul Lin
0 1 0
f
Jan Doe
0 0
f
Julie McDonald

end example7.raw

could be read in by

. infile using dict7a

where dict7a.dct contains

begin dict7a.dct
infile dictionary using example7 {
_firstline(2)

byte a
byte b
byte c

_line(2)
str1 gender

_line(3)
str15 name %15s

}
end dict7a.dct

or, if we wanted to include variable labels,

. infile using dict7b
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where dict7b.dct contains

begin dict7b.dct
infile dictionary using example7 {
_firstline(2)

byte a ”Question 1”
byte b ”Question 2”
byte c ”Question 3”

_line(2)
str1 gender ”Gender of subject”

_line(3)
str15 name %15s

}
end dict7b.dct

infix could also read these data,

. infix 2 first 3 lines a 1 b 3 c 5 str gender 2:1 str name 3:1-15 using example7

or the data could be read in by

. infix using dict7c

where dict7c.dct contains

begin dict7c.dct
infix dictionary using example7 {
2 first

a 1
b 3
c 5

str gender 2:1
str name 3:1-15

}
end dict7c.dct

or the data could be read in by

. infix using dict7d

where dict7d.dct contains

begin dict7d.dct
infix dictionary using example7 {
2 first

a 1
b 3
c 5

/
str gender 1

/
str name 1-15

}
end dict7d.dct
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Video example
Copy/paste data from Excel into Stata
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Description Quick start Menu Syntax
Options for import dbase Options for export dbase Remarks Stored results
Also see

Description
import dbase reads into memory a version III or version IV dBase (.dbf) file. export dbase ex-

ports data in memory to a version IV dBase (.dbf) file.

Stata has other commands for importing data. If you are not sure that import dbase will do what
you are looking for, see [D] import and [U] 22 Entering and importing data.

Quick start
Load the contents of the dBase file called mydata.dbf

import dbase mydata

Write data in memory to a version IV dBase file called mydata.dbf
export dbase mydata

Same as above, but export only variables v1 and v2
export dbase v1 v2 using mydata

Menu
import dbase
File > Import > dBase (*.dbf)

export dbase
File > Export > dBase (*.dbf)

472
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Syntax
Load a dBase file

import dbase [ using ] filename [ , clear case(preserve | lower | upper) ]

Save data in memory to a dBase file

export dbase [ using ] filename [ if ] [ in ] [ , datafmt replace ]

Save subset of variables in memory to a dBase file

export dbase [ varlist ] using filename [ if ] [ in ] [ , datafmt replace ]

If filename is specified without an extension, .dbf is assumed for both import dbase and export
dbase. If filename contains embedded spaces, enclose it in double quotes.

collect is allowed with import dbase; see [U] 11.1.10 Prefix commands.

Options for import dbase
clear specifies that it is okay to replace the data in memory, even though the current data have not been

saved to disk.

case(preserve | lower | upper) specifies the case of the variable names after import. The default is
case(preserve).

Options for export dbase
datafmt specifies that all variables be exported using their display format. For example, the number

1000 with a display format of %7.2f would export as 1000.00, not 1000. The default is to use the
raw, unformatted value when exporting.

replace specifies that filename be replaced if it already exists.

Remarks
import dbase reads into memory a version III or version IV dBase (.dbf) file. If the dBase file is

not version III or IV, import dbase will issue an error. dBase files are often paired with shapefiles for
storing geometric location data. To import a shapefile, see [SP] spshape2dta.

export dbase exports data in memory to a version IV dBase (.dbf) file. dBase version IV has

several file limitations when exporting.

1. Unicode is not supported.

2. Data cannot be more than 2 GB in size.

3. Data in memory must be less than 1,000,000,000 observations.

4. Data in memory must have less than 255 variables.

5. Variable names cannot exceed 10 characters in length.
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6. Maximum string variable length is 255 characters.

7. Data width must be less than 4,000.

If your data in memory exceed any of these limits, export dbase will issue an error when trying to

export the data.

To demonstrate the use of import dbase and export dbase, we will first load autornd.dta and
export it as a dBase file named auto.dbf.

. use https://www.stata-press.com/data/r19/autornd
(1978 automobile data)
. export dbase auto.dbf
file auto.dbf saved

To import the data back into Stata, we need only to specify the filename. import dbase assumes an

extension of .dbf.

. import dbase auto, clear
(3 vars, 74 obs)

We could verify that our data loaded correctly by using list or browse.

Stored results
import dbase stores the following in r():

Scalars

r(N) number of observations imported

r(k) number of variables imported

Also see
[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

[SP] spshape2dta — Translate shapefile to Stata format
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Description Quick start Menu
Syntax Options for import delimited Options for export delimited
Remarks and examples Stored results Also see

Description
import delimited reads into memory a text file in which there is one observation per line and the

values are separated by commas, tabs, or some other delimiter. The two most common types of text

data to import are comma-separated values (.csv) text files and tab-separated text files, often .txt files.
Similarly, export delimited writes Stata’s data to a text file.

Stata has other commands for importing data. If you are not sure that import delimited will do

what you are looking for, see [D] import and [U] 22 Entering and importing data.

Quick start
Load comma-delimited mydata.csv with the variable names on the first row

import delimited mydata

Same as above, but with variable names in row 5 and an ignorable header in the first 4 rows

import delimited mydata, varnames(5)

Load only columns 2 to 300 and the first 1,000 rows with variable names in row 1

import delimited mydata, colrange(2:300) rowrange(:1000)

Load tab-delimited data from mydata.txt
import delimited mydata.txt, delimiters(tab)

Load semicolon-delimited data from mydata.txt
import delimited mydata.txt, delimiters(”;”)

Force columns 2 to 6 to be read as string to preserve leading zeros

import delimited mydata, stringcols(2/6)

Load comma-delimited mydata2.csv without variable names in row 1 and with two variables to be

named v1 and v2
import delimited v1 v2 using mydata

Export data in memory to mydata.csv
export delimited mydata

Same as above, but export only v1 and v2
export delimited v1 v2 using mydata

Same as above, but output numeric values for variables with value labels

export delimited v1 v2 using mydata, nolabel
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Menu
import delimited
File > Import > Text data (delimited, *.csv, ...)

export delimited

File > Export > Text data (delimited, *.csv, ...)

Syntax
Load a delimited text file

import delimited [ using ] filename [ , import delimited options ]

Rename specified variables from a delimited text file

import delimited extvarlist using filename [ , import delimited options ]

Save data in memory to a delimited text file

export delimited [ using ] filename [ if ] [ in ] [ , export delimited options ]

Save subset of variables in memory to a delimited text file

export delimited [ varlist ] using filename [ if ] [ in ] [ , export delimited options ]

If filename is specified without an extension, .csv is assumed for both import delimited and export
delimited. If filename contains embedded spaces, enclose it in double quotes.

extvarlist specifies variable names of imported columns.
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import delimited options Description

delimiters(”chars”[ , collapse | asstring ]) use chars as delimiters

varnames(# | nonames) treat row # of data as variable names or the
data do not have variable names

case(preserve | lower | upper) preserve the case or read variable names as
lowercase (the default) or uppercase

asfloat import all floating-point data as floats
asdouble import all floating-point data as doubles
encoding(encoding) specify the encoding of the text file being

imported

emptylines(skip | include) specify how to handle empty lines in data;
default is emptylines(skip)

stripquotes(yes | no | default) remove or keep double quotes in data

bindquotes(loose | strict | nobind) specify how to handle double quotes in data

maxquotedrows(# | unlimited) number of rows of data allowed inside a quoted
string when bindquote(strict) is specified

rowrange([ start ][ :end ]) row range of data to load

colrange([ start ][ :end ]) column range of data to load

parselocale(locale) specify the locale to use for interpreting
numbers in the text file being imported

decimalseparator(character) character to use for the decimal separator when
parsing numbers

groupseparator(character) character to use for the grouping separator when
parsing numbers

numericcols(numlist | all) force specified columns to be numeric

stringcols(numlist | all) force specified columns to be string

clear replace data in memory

favorstrfixed favor storing string variables as str# rather
than strL

collect is allowed with import delimited; see [U] 11.1.10 Prefix commands.

favorstrfixed does not appear in the dialog box.

export delimited options Description

Main

delimiter(”char” | tab) use char as delimiter

novarnames do not write variable names on the first line

nolabel output numeric values (not labels) of labeled
variables

datafmt use the variables’ display format upon export

quote always enclose strings in double quotes

replace overwrite existing filename
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Options for import delimited
delimiters(”chars”[ , collapse | asstring ]) allows you to specify other separation characters. For

instance, if values in the file are separated by a semicolon, specify delimiters(”;”). By default,
import delimited will check if the file is delimited by tabs or commas based on the first line of

data. Specify delimiters(”\t”) to use a tab character, or specify delimiters(”whitespace”)
to use whitespace as a delimiter.

collapse forces import delimited to treat multiple consecutive delimiters as just one delimiter.

asstring forces import delimited to treat chars as one delimiter. By default, each character in
chars is treated as an individual delimiter.

varnames(# | nonames) specifies where or whether variable names are in the data. By default, import
delimited tries to determine whether the file includes variable names. import delimited trans-
lates the names in the file to valid Stata variable names. The original names from the file are stored

unmodified as variable labels.

varnames(#) specifies that the variable names are in row # of the data; any data before row # should

not be imported.

varnames(nonames) specifies that the variable names are not in the data.

case(preserve | lower | upper) specifies the case of the variable names after import. The default is
case(lowercase).

asfloat imports floating-point data as type float. The default storage type of the imported variables
is determined by set type.

asdouble imports floating-point data as type double. The default storage type of the imported variables
is determined by set type.

encoding(encoding) specifies the encoding of the text file to be read. If encoding() is not spec-

ified, the file will be scanned to try to automatically determine the correct encoding. import
delimited uses encodings available in Java, a list of which can be found at https://www.oracle.

com/java/technologies/javase/jdk11-suported-locales.html.

Option charset() is a synonym for encoding().

emptylines(skip | include) specifies how import delimited handles empty lines in data. skip
(the default) specifies that empty lines to be processed as observations should be skipped. include
specifies that empty lines to be processed as observations should be included. The resulting observa-

tions in Stata will simply contain missing values.

stripquotes(yes | no | default) tells import delimited how to handle double quotes. yes causes
all double quotes to be stripped. no leaves double quotes in the data unchanged. default automat-
ically strips quotes that can be identified as binding quotes. default also will identify two adjacent
double quotes as a single double quote because some software encodes double quotes that way.

bindquotes(loose | strict | nobind) specifies how import delimited handles double quotes in

data. Specifying loose (the default) tells import delimited that it must have a matching open

and closed double quote on the same line of data. strict tells import delimited that once it finds
one double quote on a line of data, it should keep searching through the data for the matching double

quote even if that double quote is on another line. Specifying nobind tells import delimited to

ignore double quotes for binding.

https://www.oracle.com/java/technologies/javase/jdk11-suported-locales.html
https://www.oracle.com/java/technologies/javase/jdk11-suported-locales.html
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maxquotedrows(# | unlimited) specifies the number of rows allowed inside a quoted string when

parsing the file to import. The default is maxquotedrows(20). If this option is specified without
bindquote(strict), then maxquotedrows() will be ignored.

Option maxquotedrows(0) is a synonym for maxquotedrows(unlimited).

rowrange([ start ][ :end ]) specifies a range of rows within the data to load. start and end are integer

row numbers.

colrange([ start ][ :end ]) specifies a range of variables within the data to load. start and end are integer
column numbers.

parselocale(locale) specifies the locale to use for interpreting numbers in the text file being imported.
This option invokes an alternative parsing method and can result in slightly different behavior than

not specifying this option. The default is to not use a locale when parsing numbers where the behavior

is to treat . as the decimal separator. A list of available locales can be found at https://www.oracle.

com/technetwork/java/javase/java8locales-2095355.html.

decimalseparator(character) specifies the character to use for interpreting the decimal separator

when parsing numbers. This option implicitly invokes option parselocale() with your system’s
default locale. parselocale(locale) can be specified to override the default system locale.

groupseparator(character) specifies the character to use for interpreting the grouping separator when
parsing numbers. This option implicitly invokes option parselocale() with your system’s default
locale. parselocale(locale) can be specified to override the default system locale.

numericcols(numlist | all) forces the data type of the column numbers in numlist to be numeric.

Specifying all will import all data as numeric.

stringcols(numlist | all) forces the data type of the column numbers in numlist to be string. Spec-
ifying all will import all data as strings.

clear specifies that it is okay to replace the data in memory, even though the current data have not been
saved to disk.

The following option is available with import delimited but is not shown in the dialog box:

favorstrfixed forces import delimited to favor storing strings as a str#.

By default, import delimitedwill attempt to save space by importing string data as a strL if doing
so will save space. The favorstrfixed option prevents the space-saving calculation from occurring,

causing strings to be stored as a str# unless the string is larger than a str# can hold. In that case,
strL must be used. See [R] Limits for details about the maximum size of a str#.

Options for export delimited

� � �
Main �

delimiter(”char” | tab) allows you to specify other separation characters. For instance, if you want
the values in the file to be separated by a semicolon, specify delimiter(”;”). The default delimiter
is a comma.

delimiter(tab) specifies that a tab character be used as the delimiter.

novarnames specifies that variable names not be written in the first line of the file; the file is to contain
data values only.

https://www.oracle.com/technetwork/java/javase/java8locales-2095355.html
https://www.oracle.com/technetwork/java/javase/java8locales-2095355.html
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nolabel specifies that the numeric values of labeled variables be written into the file rather than the

label associated with each value.

datafmt specifies that all variables be exported using their display format. For example, the number
1000 with a display format of %4.2f would export as 1000.00, not 1000. The default is to use the
raw, unformatted value when exporting.

quote specifies that string variables always be enclosed in double quotes. The default is to only double
quote strings that contain spaces or the delimiter.

replace specifies that filename be replaced if it already exists.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Importing a text file

Using other delimiters
Specifying variable types

Exporting to a text file
Video example

Introduction
import delimited reads into memory a text file in which there is one observation per line and the

values are separated by commas, tabs, or some other delimiter. The two most common types of text

data to import are comma-separated values (.csv) text files and tab-separated text files, often .txt files.
import delimited will automatically detect either a comma or a tab as the delimiter.

Similarly, export delimited writes Stata data to a text file. By default, export delimited uses a
comma as the delimiter, but you may specify another delimiter.

Imported string data containing ASCII or UTF-8 will always display correctly in the Data Editor and

Results window. Imported string data containing extended ASCII may not display correctly unless you

specify the character encoding using the encoding() option to convert the extended ASCII to UTF-8.

Exported text files are UTF-8 encoded.

If you are not sure that import delimited will do what you are looking for, see [D] import and

[U] 22 Entering and importing data for information about Stata’s other commands for importing data.
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Importing a text file
Suppose we have a .csv data file such as the following auto.csv, which contains variable names

and data for different cars.

. copy https://www.stata.com/examples/auto.csv auto.csv

. type auto.csv
make,price,mpg,rep78,foreign
”AMC Concord”,4099,22,3,”Domestic”
”AMC Pacer”,4749,17,3,”Domestic”
”AMC Spirit”,3799,22,,”Domestic”
”Buick Century”,4816,20,3,”Domestic”
”Buick Electra”,7827,15,4,”Domestic”
”Buick LeSabre”,5788,18,3,”Domestic”
”Buick Opel”,4453,26,,”Domestic”
”Buick Regal”,5189,20,3,”Domestic”
”Buick Riviera”,10372,16,3,”Domestic”
”Buick Skylark”,4082,19,3,”Domestic”

We would like to import these data into Stata for subsequent analysis.

Example 1: Importing all data
To import the complete dataset, we need to specify only the filename. import delimited assumes

an extension of .csv. If our data were stored in a .txt file instead, we would need to specify the file
extension. Here we enclose auto in double quotes (” ”). We do this to remind you to use quotes for

filenames with spaces, but it is not necessary here.

. import delimited ”auto”
(encoding automatically selected: ISO-8859-1)
(5 vars, 10 obs)

We can verify that our data loaded correctly by using list or browse.

. list

make price mpg rep78 foreign

1. AMC Concord 4099 22 3 Domestic
2. AMC Pacer 4749 17 3 Domestic
3. AMC Spirit 3799 22 . Domestic
4. Buick Century 4816 20 3 Domestic
5. Buick Electra 7827 15 4 Domestic

6. Buick LeSabre 5788 18 3 Domestic
7. Buick Opel 4453 26 . Domestic
8. Buick Regal 5189 20 3 Domestic
9. Buick Riviera 10372 16 3 Domestic

10. Buick Skylark 4082 19 3 Domestic

Notice that import delimited automatically assigned the variable names such as make and price
based on the first row of the data. If the variable names were located on, for example, line 3, we would

have specified varnames(3), and import delimited would have ignored the first two rows. If our file
did not contain any variable names, we would have specified varnames(nonames).
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Example 2: Importing a subset of the data
import delimited also allows you to import a subset of the text data by using the rowrange()

and colrange() options. Use rowrange() to specify which observations you want to import and

colrange() to specify which variables you want to import.

Suppose that we want only cars that were manufactured by AMC. We can use the drop command to
drop the cars manufactured by Buick after we import the data. If we know the rows in which AMC cars

are located, we can also restrict our import to just those rows. Because foreign is constant, we also
want to skip the last column.

To import rows 1 through 3 of the data in auto.csv, we need to specify rowrange(2:4) because
the first row of the file contains the variable names. To import the first four columns, we need to also

specify colrange(1:4).

. clear

. import delimited ”auto”, rowrange(2:4) colrange(1:4)
(encoding automatically selected: ISO-8859-1)
(4 vars, 3 obs)
. list

make price mpg rep78

1. AMC Concord 4099 22 3
2. AMC Pacer 4749 17 3
3. AMC Spirit 3799 22 .

import delimited still used the first line of the file to obtain the variable names even though we did
not start our rowrange() specification with 1. rowrange() controls only which rows are read as data
to be imported into Stata.

Using other delimiters

Many delimited files use commas or tabs; other common delimiters are semicolons and whitespace.

import delimited detects commas and tabs by default but can handle other characters. Suppose that
you had the auto.txt file, which contains the following data.

”AMC Concord” 4099 22 3 ”Domestic”
”AMC Pacer” 4749 17 3 ”Domestic”
”AMC Spirit” 3799 22 NA ”Domestic”
”Buick Century” 4816 20 3 ”Domestic”
”Buick Electra” 7827 15 4 ”Domestic”
”Buick LeSabre” 5788 18 3 ”Domestic”
”Buick Opel” 4453 26 NA ”Domestic”
”Buick Regal” 5189 20 3 ”Domestic”
”Buick Riviera” 10372 16 3 ”Domestic”
”Buick Skylark” 4082 19 3 ”Domestic”

These data are whitespace delimited. If you use import delimited without any options, you will
not get the results you expect.

. clear

. import delimited ”auto.txt”
(encoding automatically selected: ISO-8859-1)
(1 var, 10 obs)
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When import delimited tries to read data that have no tabs or commas, it is fooled into thinking
that the data contain just one variable.

Example 3: Changing the delimiter
We can use the delimiters() option to import the data correctly. delimiters(” ”) tells import

delimited to use spaces (“ ”) as the delimiter. Adding the collapse suboption will treat multiple

consecutive space delimiters as one delimiter.

. clear

. import delimited ”auto.txt”, delimiters(” ”, collapse)
(encoding automatically selected: ISO-8859-1)
(5 vars, 10 obs)
. describe
Contains data
Observations: 10

Variables: 5

Variable Storage Display Value
name type format label Variable label

v1 str13 %13s
v2 int %8.0g
v3 byte %8.0g
v4 str2 %9s
v5 str8 %9s

Sorted by:
Note: Dataset has changed since last saved.

The data that were imported now contain the correct number of variables and observations.

Because import delimited did not find variable names in the first row of auto.txt, Stata assigned
default names of v# to the imported variables. If we wanted to specify our own names, we could have
instead submitted

. clear

. import delimited make price mpg rep78 foreign using auto.txt,
> delimiters(” ”, collapse)
(encoding automatically selected: ISO-8859-1)
(5 vars, 10 obs)

Specifying variable types

The data in a file may contain a combination of string and numeric variables. import delimited
will generally determine the correct data type for each variable. However, you may want to force a

different data type by using the numericcols() or stringcols() option. For example, string values
may be used to indicate missing values in a numeric variable, or you may want to import numeric values

as strings to preserve leading zeros.

Another common case where you want to control the import type is when your data contain identifiers

or other large numeric values. In this case, you should specify the asdouble option to avoid introducing
duplicate values or losing values after the import.
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Example 4: Specify the storage type
Continuing with example 3, we know that the fourth variable, rep78, should be a numeric variable.

But it was imported as a string because the value NA was used for missing values.

. list

make price mpg rep78 foreign

1. AMC Concord 4099 22 3 Domestic
2. AMC Pacer 4749 17 3 Domestic
3. AMC Spirit 3799 22 NA Domestic
4. Buick Century 4816 20 3 Domestic
5. Buick Electra 7827 15 4 Domestic

6. Buick LeSabre 5788 18 3 Domestic
7. Buick Opel 4453 26 NA Domestic
8. Buick Regal 5189 20 3 Domestic
9. Buick Riviera 10372 16 3 Domestic

10. Buick Skylark 4082 19 3 Domestic

To force rep78 to have a numeric storage type, we can use the numericcols(4) option.

. clear

. import delimited make price mpg rep78 foreign using ”auto.txt”,
> delimiters(” ”, collapse) numericcols(4)
(encoding automatically selected: ISO-8859-1)
(5 vars, 10 obs)
. describe
Contains data
Observations: 10

Variables: 5

Variable Storage Display Value
name type format label Variable label

make str13 %13s
price int %8.0g
mpg byte %8.0g
rep78 int %8.0g
foreign str8 %9s

Sorted by:
Note: Dataset has changed since last saved.
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. list

make price mpg rep78 foreign

1. AMC Concord 4099 22 3 Domestic
2. AMC Pacer 4749 17 3 Domestic
3. AMC Spirit 3799 22 . Domestic
4. Buick Century 4816 20 3 Domestic
5. Buick Electra 7827 15 4 Domestic

6. Buick LeSabre 5788 18 3 Domestic
7. Buick Opel 4453 26 . Domestic
8. Buick Regal 5189 20 3 Domestic
9. Buick Riviera 10372 16 3 Domestic

10. Buick Skylark 4082 19 3 Domestic

rep78 is now stored as an int variable, and the NA values are replaced by ., the system missing value

for numeric variables.

Exporting to a text file
export delimited creates text files from the Stata dataset in memory. A comma-separated .csv file

is created by default, but you can change the delimiter by specifying the delimiter() option and the
file extension by specifying it with the filename.

Example 5: Export all data
We want to export the data from example 4 to myauto.csv. We can use the type command to see

the contents of the file.

. export delimited ”myauto”
file myauto.csv saved
. type ”myauto.csv”
make,price,mpg,rep78,foreign
AMC Concord,4099,22,3,Domestic
AMC Pacer,4749,17,3,Domestic
AMC Spirit,3799,22,,Domestic
Buick Century,4816,20,3,Domestic
Buick Electra,7827,15,4,Domestic
Buick LeSabre,5788,18,3,Domestic
Buick Opel,4453,26,,Domestic
Buick Regal,5189,20,3,Domestic
Buick Riviera,10372,16,3,Domestic
Buick Skylark,4082,19,3,Domestic

Example 6: Export a subset of the data
You can also export a subset of the data inmemory by typing a variable list, specifying an if condition,

specifying a range with an in condition, or a combination of the three. For example, here we export only
the first 5 observations of the make, mpg, and rep78 variables.

. export delimited make mpg rep78 in 1/5 using ”myauto”, replace
file myauto.csv saved
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If you open myauto.csv, you will see that only the 5 observations shown in example 5 appear in the
file. We specified the replace option because we previously exported data to myauto.csv. If we had
not specified replace, we would have received an error message.

Video example
Importing delimited data

Stored results
import delimited stores the following in r():

Scalars

r(N) number of observations imported

r(k) number of variables imported

Macros

r(delimiter) delimiters used when importing the file

r(encoding) encoding used when importing the file

Also see
[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

https://www.youtube.com/watch?v=60RBNsqzL6I&feature=youtu.be
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Description Quick start Menu Syntax
Options for import excel Options for export excel Remarks and examples Stored results
References Also see

Description
import excel loads an Excel file, also known as a workbook, into Stata. import excel filename,

describe lists available sheets and ranges of an Excel file. export excel saves data in memory to an
Excel file. Excel 1997/2003 (.xls) files and Excel 2007/2010 (.xlsx) files can be imported, exported,
and described using import excel, export excel, and import excel, describe.

import excel and export excel are supported on Windows, Mac, and Linux.

import excel and export excel look at the file extension, .xls or .xlsx, to determine which

Excel format to read or write.

For performance, import excel imposes a size limit of 40 MB for Excel 2007/2010 (.xlsx) files.
Be warned that importing large .xlsx files can severely affect your machine’s performance.

import excel auto first looks for auto.xls and then looks for auto.xlsx if auto.xls is not found
in the current directory.

The default file extension for export excel is .xlsx if a file extension is not specified.

Quick start
Check the contents of Excel file mydata.xls before importing

import excel mydata, describe

Same as above, but for mydata.xlsx
import excel mydata.xlsx, describe

Load data from mydata.xls
import excel mydata

Same as above, but load data from cells A1:G10 of mysheet
import excel mydata, cellrange(A1:G10) sheet(mysheet)

Read first row as lowercase variable names

import excel mydata, firstrow case(lower)

Import only v1 and v2
import excel v1 v2 using mydata

Save data in memory to mydata.xlsx
export excel mydata

Same as above, but export variables v1, v2, and v3
export excel v1 v2 v3 using mydata

487
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Menu
import excel
File > Import > Excel spreadsheet (*.xls;*.xlsx)

export excel
File > Export > Data to Excel spreadsheet (*.xls;*.xlsx)

Syntax
Load an Excel file

import excel [ using ] filename [ , import excel options ]

Load subset of variables from an Excel file

import excel extvarlist using filename [ , import excel options ]

Describe contents of an Excel file

import excel [ using ] filename, describe

Save data in memory to an Excel file

export excel [ using ] filename [ if ] [ in ] [ , export excel options ]

Save subset of variables in memory to an Excel file

export excel [ varlist ] using filename [ if ] [ in ] [ , export excel options ]

import excel options Description

sheet(”sheetname”) Excel worksheet to load

cellrange([ start ][ :end ]) Excel cell range to load

firstrow treat first row of Excel data as variable names

case(preserve | lower | upper) preserve the case (the default) or read variable names
as lowercase or uppercase when using firstrow

allstring[ (”format”) ] import all Excel data as strings; optionally, specify the
numeric display format

clear replace data in memory

locale(”locale”) specify the locale used by the workbook; has no
effect on Microsoft Windows

allstring(”format”) and locale() do not appear in the dialog box.
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export excel options Description

Main

sheet(”sheetname”[ , modify | replace]) save to Excel worksheet

cell(start) start (upper-left) cell in Excel to begin saving to

firstrow(variables | varlabels) save variable names or variable labels to first row

nolabel export values instead of value labels

keepcellfmt when writing data, preserve the cell style and
format of existing worksheet

replace overwrite Excel file

Advanced

datestring(”datetime format”) save dates as strings with a datetime format

missing(”repval”) save missing values as repval

locale(”locale”) specify the locale used by the workbook; has no
effect on Microsoft Windows

collect is allowed with import excel; see [U] 11.1.10 Prefix commands.

locale() does not appear in the dialog box.

extvarlist specifies variable names of imported columns. An extvarlist is one or more of any of the

following:

varname

varname=columnname

Example: import excel make mpg weight price using auto.xlsx, clear imports columns A,

B, C, and D from the Excel file auto.xlsx.

Example: import excel make=A mpg=B price=D using auto.xlsx, clear imports columns A,

B, and D from the Excel file auto.xlsx. Column C and any columns after D are skipped.

Options for import excel
sheet(”sheetname”) imports the worksheet named sheetname in the workbook. The default is to import

the first worksheet.

cellrange([ start ][ :end ]) specifies a range of cells within the worksheet to load. start and end are

specified using standard Excel cell notation, for example, A1, BC2000, and C23.

firstrow specifies that the first row of data in the Excel worksheet consists of variable names. This

option cannot be used with extvarlist. firstrow uses the first row of the cell range for variable

names if cellrange() is specified. import excel translates the names in the first row to valid Stata

variable names. The original names in the first row are stored unmodified as variable labels.

case(preserve | lower | upper) specifies the case of the variable names readwhen using the firstrow
option. The default is case(preserve), meaning to preserve the variable name case. Only theASCII
letters in names are changed to lowercase or uppercase. Unicode characters beyond ASCII range are

not changed.

allstring[ (”format”) ] forces import excel to import all Excel data as string data. You can specify
the numeric display format used to convert the numeric data to string using the optional argument

format. See [D] format.
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clear clears data in memory before loading data from the Excel workbook.

The following option is available with import excel but is not shown in the dialog box:

locale(”locale”) specifies the locale used by the workbook. You might need this option when working
with extended ASCII character sets. This option has no effect on Microsoft Windows. The default

locale is UTF-8.

Options for export excel

� � �
Main �

sheet(”sheetname”[ , modify | replace]) saves to the worksheet named sheetname. If there is no

worksheet named sheetname in the workbook, a new sheet named sheetname is created. If this option

is not specified, the first worksheet of the workbook is used. If sheetname does exist in the workbook,

you can either modify or replace the worksheet.

modify exports data to the worksheet without changing the cells outside the exported range. This

option cannot be specified with replace, nor when overwriting the Excel workbook.

replace clears the worksheet before the data are exported to it. replace cannot be specified with
modify, nor when overwriting the Excel workbook.

cell(start) specifies the start (upper-left) cell in the Excel worksheet to begin saving to. By default,
export excel saves starting in the first row and first column of the worksheet.

firstrow(variables | varlabels) specifies that the variable names or the variable labels be saved in
the first row in the Excel worksheet. The variable name is used if there is no variable label for a given

variable.

nolabel exports the underlying numeric values instead of the value labels.

keepcellfmt specifies that, when writing data, export excel should preserve the existing worksheet’s
cell style and format. By default, export excel does not preserve a cell’s style or format.

replace overwrites an existing Excel workbook. replace cannot be specified when modifying

or replacing a given worksheet: export excel ..., sheet(””, modify) or export excel ...
sheet(””, replace).

� � �
Advanced �

datestring(”datetime format”) exports all datetime variables as strings formatted by date-

time format. See [D] Datetime display formats.

missing(”repval”) exports missing values as repval. repval can be either string or numeric. Without

specifying this option, export excel exports the missing values as empty cells.

The following option is available with export excel but is not shown in the dialog box:

locale(”locale”) specifies the locale used by the workbook. You might need this option when working
with extended ASCII character sets. The default locale is UTF-8.
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Remarks and examples
To demonstrate the use of import excel and export excel, we will first load auto.dta and export

it as an Excel file named auto.xlsx:

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. export excel auto, firstrow(variables)
file auto.xlsx saved

Now we can import from the auto.xlsx file we just created, telling Stata to clear the current data
from memory and to treat the first row of the worksheet in the Excel file as variable names:

. import excel auto.xlsx, firstrow clear
(12 vars, 74 obs)
. describe
Contains data
Observations: 74

Variables: 12

Variable Storage Display Value
name type format label Variable label

make str17 %17s make
price int %10.0gc price
mpg byte %10.0g mpg
rep78 byte %10.0g rep78
headroom double %10.0g headroom
trunk byte %10.0g trunk
weight int %10.0gc weight
length int %10.0g length
turn byte %10.0g turn
displacement int %10.0g displacement
gear_ratio double %14.2f gear_ratio
foreign str8 %9s foreign

Sorted by:
Note: Dataset has changed since last saved.

We can also import a subrange of the cells in the Excel file:

. import excel auto.xlsx, cellrange(:D70) firstrow clear
(4 vars, 69 obs)
. describe
Contains data
Observations: 69

Variables: 4

Variable Storage Display Value
name type format label Variable label

make str17 %17s make
price int %10.0gc price
mpg byte %10.0g mpg
rep78 byte %10.0g rep78

Sorted by:
Note: Dataset has changed since last saved.
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Both .xls and .xlsx files are supported by import excel and export excel. If a file extension
is not specified with export excel, .xlsx is assumed, because this format is more common and is

compatible with more applications that also can read from Excel files. To save the data in memory as a

.xls file, specify the extension:

. use https://www.stata-press.com/data/r19/auto, clear
(1978 automobile data)
. export excel auto.xls
file auto.xls saved

To export a subset of variables and overwrite the existing auto.xlsx Excel file, specify a variable
list and the replace option:

. export excel make mpg weight using auto, replace
file auto.xlsx saved

For additional examples illustrating import excel and export excel, see Mitchell (2020,

chap. 2–3).

Technical note: Excel data size limits
For an Excel .xls-type workbook, the worksheet size limits are 65,536 rows by 256 columns. The

string size limit is 255 characters.

For an Excel .xlsx-type workbook, the worksheet size limits are 1,048,576 rows by 16,384 columns.
The string size limit is 32,767 characters.

Technical note: Dates and times
Excel has two different date systems, the “1900 Date System” and the “1904 Date System”. Excel

stores a date and time as an integer representing the number of days since a start date plus a fraction of

a 24-hour day.

In the 1900 Date System, the start date is 00Jan1900; in the 1904 Date System, the start date is

01Jan1904. In the 1900 Date System, there is another artificial date, 29feb1900, besides 00Jan1900.

import excel translates 29feb1900 to 28feb1900 and 00Jan1900 to 31dec1899.

See Converting Excel dates in [D] Datetime values from other software for a discussion of the

relationship between Stata datetimes and Excel datetimes.

Technical note: Mixed data types
Because Excel’s data type is cell based, import excel may encounter a column of cells with mixed

data types. In such a case, the following rules are used to determine the variable type in Stata of the

imported column.

• If the column contains at least one cell with nonnumerical text, the entire column is imported as a

string variable.

• If an all-numerical column contains at least one cell formatted as a date or time, the entire column

is imported as a Stata date or datetime variable. import excel imports the column as a Stata date
if all date cells in Excel are dates only; otherwise, a datetime is used.
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Video example
Import Excel data into Stata

Stored results
import excel filename, describe stores the following in r():

Scalars

r(N worksheet) number of worksheets in the Excel workbook

Macros

r(worksheet #) name of worksheet # in the Excel workbook

r(range #) available cell range for worksheet # in the Excel workbook

References
Crow, K. 2012. Using import excel with real world data. The Stata Blog: Not Elsewhere Classified. https://blog.stata.

com/2012/06/25/using-import-excel-with-real-world-data/.

Jeanty, P. W. 2013. Dealing with identifier variables in data management and analysis. Stata Journal 13: 699–718.

Mitchell, M. N. 2020. Data Management Using Stata: A Practical Handbook. 2nd ed. College Station, TX: Stata Press.

Also see
[D] Datetime — Date and time values and variables

[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

[M-5] docx*( ) — Generate Office Open XML (.docx) file

[M-5] xl( ) — Excel file I/O class

[RPT] putexcel — Export results to an Excel file

https://www.youtube.com/watch?v=N5ZFgzN2_7c
https://blog.stata.com/2012/06/25/using-import-excel-with-real-world-data/
https://blog.stata.com/2012/06/25/using-import-excel-with-real-world-data/
https://www.stata-journal.com/article.html?article=dm0071
https://www.stata-press.com/books/data-management-using-stata/
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Description Quick start Menu Syntax Options
Remarks and examples Stored results References Also see

Description
import fred imports data from the Federal Reserve Economic Data (FRED) into Stata. import fred

supports data on FRED as well as historical vintage data on Archival FRED (ALFRED). freddescribe
and fredsearch provide tools to describe series in the database and to search FRED for data based on

keywords and tags.

Quick start
Before running any of the commands below, you will need to obtain a FRED key and set it using set
fredkey.

Import series code1 and code2 from FRED

import fred code1 code2

Import vintage series code1 and code2 as available on September 15, 2008, and September 15, 2009,
from FRED

import fred code1 code2, vintage(2008-9-15 2009-9-15)

Display metadata describing series code1 and code2
freddescribe code1 code2

Search FRED for series matching keywords “investment” and “share” and tagged with “pwt” and “usa”

fredsearch investment share, tags(pwt usa)

Menu
File > Import > Federal Reserve Economic Data (FRED)

494



import fred — Import data from Federal Reserve Economic Data 495

Syntax
Set FRED key

set fredkey key [ , permanently ]

Import FRED data

import fred series list [ , options ]

or

import fred, serieslist(filename) [ options ]

Describe series

freddescribe series list [ , detail realtime(start end) ]

Search series

fredsearch keyword list [ , search options ]

key is a valid API key, which is provided by the St. Louis Federal Reserve and may be obtained from

https://research.stlouisfed.org/docs/api/api key.html.

series list is a list of FRED codes, for example, FEDFUNDS.

keyword list is a list of keywords.

options Description

∗ serieslist(filename) specify series IDs using a file

daterange(start end) restrict to only observations within specified date range

aggregate(frequency[ , method ]) specify the aggregation level and aggregation type

realtime(start end) import historical vintages between specified dates

vintage(datespec) import historical data by vintage dates

nrobs import only new and revised observations

initial import only first value for each observation in a series

long import data in long format

nosummary suppress summary table

clear clear data in memory before importing FRED series

∗ serieslist() is required if series list is not specified.

collect is allowed with fredsearch; see [U] 11.1.10 Prefix commands.

clear does not appear in the dialog box.

If start and end are provided as dates, they must be daily dates using notation of the form 31Jan2016,
2016-01-31, 2016/01/31, or 01/31/2016.

datespec may be
date a daily date

date1 date2 . . . date𝑛 a list of daily dates

all all available dates

https://research.stlouisfed.org/docs/api/api_key.html
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search options Description

idonly require keywords to appear in series IDs only

tags(tag list) search by tag list

taglist list tags present in current search results

sort(sortby[ , sortorder ]) list matched series in order specified by sortby

detail list full metainformation for each search result

saving(filename[ , replace ]) save series information to filename.dta

saving() does not appear in the dialog box.

Options
Options are presented under the following headings:

Option for set fredkey
Options for import fred
Options for freddescribe
Options for fredsearch

Option for set fredkey
permanently specifies that, in addition to setting the key for the current Stata session, the key be re-

membered and become the default key when you invoke Stata.

Options for import fred
serieslist(filename) allows you to import the series specified in filename. The series file must contain

a variable called seriesid that contains the IDs of the series you wish to import. serieslist() is
required if series list is not specified.

daterange(start end) specifies that only observations between the start date and end date should

be imported. start and end must be specified as either a daily date or a missing value (.).
Use daterange(. end) to import all observations from the first available through end. Use

daterange(start .) to import from start through the most recently available date.

aggregate(frequency[ , method ]) specifies that the data should be imported at a lower frequency than
the series’ native frequency along with an optional method of aggregation.

frequency may be daily, weekly, biweekly, monthly, quarterly, semiannual, annual,
weekly ending friday, weekly ending thursday, weekly ending wednesday, weekly
ending tuesday, weekly ending monday, weekly ending sunday, weekly ending
saturday, biweekly ending wednesday, or biweekly ending monday.

method may be avg (the within-period average), sum (the within-period sum), or eop (the end-of-

period value). The default is avg.

realtime(start end) specifies a real-time period betweenwhich all vintages for each series are imported.
The vintage available on start is imported, as are all vintages released between start and end. Either

of start or end may be replaced by a missing value (.). If start is a missing value, then all vintages
from the first available up through end are imported. If end is a missing value, then all vintages from

start up through the most recent available are imported. realtime() may not be combined with

vintage().
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vintage(datespec) imports historical vintage data according to datespec. datespec may either be a list
of daily dates or all. When datespec is a list of dates, the specified series are imported as they were

available on the dates in datespec. When datespec is all, all vintages of the specified series are
imported. vintage() may not be combined with realtime().

nrobs specifies that only observations that are new or revised in each vintage be imported. Old and

unrevised observations are imported as the missing value .u.

initial specifies that only the first value for each observation of the series be imported. This option
may not be combined with nrobs.

long specifies that each series be imported in long format.

nosummary suppresses the summary table.

The following option is available with import fred but is not shown in the dialog box:

clear specifies that the data in memory should be replaced with the imported FRED data.

Options for freddescribe
detail displays full metainformation available about series list.

realtime(start end) provides historical vintage information about series list during the real-time pe-

riod specified by start and end. Either start or end may be replaced by a missing value (.). If start
is a missing value, then all vintages from the first available up through end are described. If end is a

missing value, then all vintages from start up through the most recent available are described.

Options for fredsearch
idonly specifies that the keywords in keyword list be found in series IDs rather than elsewhere in the

metadata.

tags(tag list) searches for series that have all the tags specified in tag list. The complete list of avail-

able tags is provided by FRED. Tags form a space-separated list. Tags are case-sensitive and all FRED

tags are in lowercase.

taglist lists all the tags present in the current search results.

sort(sortby[ , sortorder ]) lists the search results in the order specified by sortby.
When searching series, sortby may be popularity, id, title, lastupdated, frequency,
obsstart, obsend, units, or seasonaladj. By default, popularity is used.

When searching with the taglist option, sortby may be name or series count. name means the
tag name, and series count is the count of series associated with the tag in the search results. By
default, series count is used.

You can optionally change the order of the search results from descending (descending) to as-

cending (ascending) order. The default order when searching by popularity, lastupdated, or
series count is descending; otherwise, the default sort order is ascending.

detail lists full metainformation for each series that appears in the search results.
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The following option is available with fredsearch but is not shown in the dialog box:

saving(filename[ , replace ]) saves the search results to a file. The filename may then be specified in
the serieslist() option of import fred to import the series located by the search. The optional
replace specifies that filename be overwritten if it exists.

Remarks and examples
Remarks are presented under the following headings:

Introduction and setup
The FRED interface
Advanced imports using the import fred command
Importing historical vintage data
Searching, saving, and retrieving series information
Describing series

Introduction and setup
import fred imports data from the Federal Reserve Economic Data (FRED) into Stata. FRED is main-

tained by the Economic Research Division of the Federal Reserve Bank of St. Louis and contains hun-

dreds of thousands of economic and financial time series. FRED includes data from a variety of sources,

including the Federal Reserve, the Penn World Table, Eurostat, the World Bank, and US statistical agen-

cies, among others. import fred extends freduse discussed in Drukker (2006).

Series in FRED are updated and revised over time as new observations are added and as older obser-

vations are revised in light of more complete source information. The series are updated on an annual,

quarterly, monthly, weekly, or daily basis, depending on the series. Each time a series is updated or

revised, a new “vintage” is created. The archived data, or historical vintage data, are data in their unre-

vised form as they would have been available on a particular date in history. These data are fromArchival

FRED, or ALFRED. import fred can import data from either FRED or ALFRED.

FRED data can be imported using the import fred command or using the FRED interface. If you are

exploring FRED, learning the names of series, or importing series occasionally, we recommend using the

FRED interface. If you already know the names of the series that you would like to import or if you

repeatedly download series as they are updated, we recommend using the import fred command. You
may also use the FRED interface to learn series names that you subsequently specify in import fred
commands. See The FRED interface below to learn more about using this tool.

Whether you plan to use the FRED interface or the import fred command, you must first have a valid
API key. API keys are provided by the St. Louis Federal Reserve and may be obtained from https://re-

search.stlouisfed.org/docs/api/api key.html. The key will be a 32-character alphanumeric string. You

will be prompted to enter this key the first time you open the FRED interface. Alternatively, you can type

. set fredkey key, permanently

where key is your API key.

Example 1: A basic search and import
Suppose we want monthly data on the exchange rate between the US dollar and the Japanese Yen. We

can use fredsearch to find the name of this series in FRED.

https://research.stlouisfed.org/docs/api/api_key.html
https://research.stlouisfed.org/docs/api/api_key.html
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. fredsearch us dollar yen exchange rate monthly

Series ID Title Data range Frequency

EXJPUS Japanese Yen to U.... 1971-01-01 to 2025-02-01 Monthly

Total: 1

The output says that EXJPUS is the name that FRED uses for this series. When we performed this

search, 2025-02-01 was the last available observation. More data will be available when you type this

command, so the endpoint of the data range will be more recent.

Having learned from the output that EXJPUS is the name that FRED uses for this series, we use import
fred to import it.

. import fred EXJPUS
Summary

Series ID Nobs Date range Frequency

EXJPUS 650 1971-01-01 to 2025-02-01 Monthly

# of series imported: 1
highest frequency: Monthly
lowest frequency: Monthly

The output says that 650 monthly observations on EXJPUS were imported.

To clarify what we imported, we can describe the imported data and list the first five observations.

. describe
Contains data
Observations: 650

Variables: 3

Variable Storage Display Value
name type format label Variable label

datestr str10 %-10s observation date
daten int %td numeric (daily) date
EXJPUS float %9.0g Japanese Yen to U.S. Dollar Spot

Exchange Rate

Sorted by: datestr
Note: Dataset has changed since last saved.

. list datestr daten EXJPUS in 1/5

datestr daten EXJPUS

1. 1971-01-01 01jan1971 358.02
2. 1971-02-01 01feb1971 357.545
3. 1971-03-01 01mar1971 357.5187
4. 1971-04-01 01apr1971 357.5032
5. 1971-05-01 01may1971 357.413

Each series in FRED is paired with a string variable that records the daily date for each observation.

import fred imports this daily date variable as the string variable datestr, and it creates daten, which
is a Stata datetime variable that encodes the date in datestr. EXJPUS contains the observations on the
FRED series EXJPUS.
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Each series has metadata associated with it that is stored in the characteristics and may be viewed

with the char list command. We now list out the metadata on EXJPUS.

. char list EXJPUS[]
EXJPUS[Title]: Japanese Yen to U.S. Dollar Spot Exchange Rate
EXJPUS[Series_ID]: EXJPUS
EXJPUS[Source]: Board of Governors of the Federal Reserve Syste..
EXJPUS[Release]: G.5 Foreign Exchange Rates
EXJPUS[Seasonal_Adjustment]:

Not Seasonally Adjusted
EXJPUS[Date_Range]: 1971-01-01 to 2025-02-01
EXJPUS[Frequency]: Monthly
EXJPUS[Units]: Japanese Yen to One U.S. Dollar
EXJPUS[Last_Updated]: 2025-03-03 15:19:41-06
EXJPUS[Notes]: Averages of daily figures. Noon buying rates in..

See [P] char for more about characteristics.

The FRED interface
The names of FRED series are not predictable. The FRED interface makes it easy to find series, to

import series, and to explore the thousands of series by keyword searches or by browsing by category,

release type, source, or release date.

Selecting

File > Import > Federal Reserve Economic Data (FRED)

from the menu opens the FRED interface.
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In the top left-hand corner, the drop-down menu defaults to Search FRED, which searches for se-
ries by keywords that appear in those series’ metadata. From this menu, we can also select Browse by
category, Browse by release, Browse by source, and Search by release date.

Browse by category finds series by browsing through FRED defined categories, such as Production
& Business Activity.

Browse by release finds series by browsing through FRED defined release types, such as the BEA
Regions Employment and Unemployment and the Consumer Price Index.

Browse by source finds series by browsing through sources, such as the Bank of England, the US
Bureau of the Census, and the University of Pennsylvania.

Search by release date finds regularly released series that were updated in a specified date range.

Example 2: Finding and importing series with the FRED interface
Suppose we want to import series measuring the real gross domestic product (GDP) in the US and the

three-month Treasury bill interest rate, known as the Federal Funds Rate. We can use a keyword search

and a then browse by category to find and select them for import.

After selecting

File > Import > Federal Reserve Economic Data (FRED)

to open the control panel, we type real gross domestic product us in the Keywords field and click
on the Search button, which produces
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Clicking on GDPC1 and then on theAdd button adds GDPC1 to list of series to import.
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Now, we want to add the interest rate series. We select Browse by category from the drop-down

menu in the top left-hand corner.
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We double-click on Money, Banking, & Finance to get a list of subcategories.
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Next, we double-click on Interest Rates to get a list of interest-rate categories. Scrolling down,
we find Treasury Bills.
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We double-click on Treasury Bills to produce a list of interest-rate series. We click on TB3MS and
then on theAdd button to add it the list of series to be imported.

Clicking on import brings up a dialog box that allows us to restrict the imported observations.
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We click OK to import all available observations.

The output from the command issued by the control panel was

. import fred GDPC1 TB3MS
Summary

Series ID Nobs Date range Frequency

GDPC1 312 1947-01-01 to 2024-10-01 Quarterly
TB3MS 1094 1934-01-01 to 2025-02-01 Monthly

# of series imported: 2
highest frequency: Monthly
lowest frequency: Quarterly

The number of observations and the date ranges will differ when you follow these same steps using

the FRED interface, because more data have been made available.
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Example 3: Refining a search using tags
Suppose that we want to find and import data on the median income in each US state and the District of

Columbia for each available year. After opening the control panel, typing median household income
in the Keywords box, and clicking on the Search button, we see
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This keyword search finds thousands more series than the 51 we want. To filter the found series by

the tag state, we expand the Geography Types category, click on state, and then click on theAdd to
filters button, which produces

There are still too many series. To filter the series by the tag real, we expand the Concepts category,
click on real, and then click on theAdd to filters button, which produces the desired 51 series.
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After selecting the 51 series, we add them to the import list by clicking on theAdd button. We could

now import them by clicking on the Import button.

Advanced imports using the import fred command
FRED data users commonly import series of different frequencies.

Example 4: Importing series with different frequencies
Suppose we wish to import current data on US real GDP, the price level, and the interest rate. These

data are stored in FRED with the series IDs “GDPC1”, “GDPDEF”, and “FEDFUNDS”, so we supply those

names to import fred.
. import fred GDPC1 GDPDEF FEDFUNDS
Summary

Series ID Nobs Date range Frequency

GDPC1 312 1947-01-01 to 2024-10-01 Quarterly
GDPDEF 312 1947-01-01 to 2024-10-01 Quarterly
FEDFUNDS 848 1954-07-01 to 2025-02-01 Monthly

# of series imported: 3
highest frequency: Monthly
lowest frequency: Quarterly

FEDFUNDS is a monthly series, while GDPC1 and GDPDEF are quarterly series. To further illustrate, we
list the observations on each variable from 1959 using the list command.
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. list if year(daten)==1959, separator(3)

datestr daten GDPC1 GDPDEF FEDFUNDS

85. 1959-01-01 01jan1959 3352.129 15.224 2.48
86. 1959-02-01 01feb1959 . . 2.43
87. 1959-03-01 01mar1959 . . 2.8

88. 1959-04-01 01apr1959 3427.667 15.248 2.96
89. 1959-05-01 01may1959 . . 2.9
90. 1959-06-01 01jun1959 . . 3.39

91. 1959-07-01 01jul1959 3430.057 15.307 3.47
92. 1959-08-01 01aug1959 . . 3.5
93. 1959-09-01 01sep1959 . . 3.76

94. 1959-10-01 01oct1959 3439.832 15.367 3.98
95. 1959-11-01 01nov1959 . . 4
96. 1959-12-01 01dec1959 . . 3.99

FRED provides all series in daily date format, and each observation is recorded as existing on the first

day of the period. For example, a monthly series records the observation in 1959 January as existing

on 01Jan1959; a quarterly series records the observation in 1959 Q1 as existing on 01Jan1959. When

importing series of different frequencies, the lower-frequency series will appear to contain gaps; these

gaps are filled with missing values.

Example 5: Importing series at a desired frequency
Continuing with example 4, at times you may wish to import a high-frequency series at a particular

lower frequency. This is accomplished with the aggregate() option. There are three aggregation meth-
ods available: you may take the within-period average, the sum, or the end-of-period value. The default

is to take the within-period average.

. import fred GDPC1 GDPDEF FEDFUNDS, aggregate(quarterly) clear
Summary

Series ID Nobs Date range Frequency

GDPC1 312 1947-01-01 to 2024-10-01 Quarterly
GDPDEF 312 1947-01-01 to 2024-10-01 Quarterly
FEDFUNDS 282 1954-07-01 to 2024-10-01 Quarterly

# of series imported: 3
highest frequency: Quarterly
lowest frequency: Quarterly

. list if year(daten)==1959, separator(4)

datestr daten GDPC1 GDPDEF FEDFUNDS

49. 1959-01-01 01jan1959 3352.129 15.224 2.57
50. 1959-04-01 01apr1959 3427.667 15.248 3.08
51. 1959-07-01 01jul1959 3430.057 15.307 3.58
52. 1959-10-01 01oct1959 3439.832 15.367 3.99
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The monthly series FEDFUNDS has been reduced to quarterly frequency. The value of FEDFUNDS for

the first quarter of 1959, 2.57, is the average of its values for the three months in that quarter. The date

variable daten now stores the first date of each quarter.

Example 6: Importing a subset of observations
The daterange() option causes import fred to restrict importing of data to only observations

within the specified beginning and ending dates. daterange() takes two arguments, both of which

must be either daily dates or missing (.). If a missing value is used for the first date, then all observa-
tions from the beginning up to the end date are imported. If a missing value is used for the second date,

then all observations from the first date through the most current are imported.

Returning to example 4, wemay wish to import only data between 1984 and 2005 for GDPC1, GDPDEF,

and FEDFUNDS.

. import fred GDPC1 GDPDEF FEDFUNDS, daterange(1984-01-15 2005-12-31) clear
Summary

Series ID Nobs Date range Frequency

GDPC1 88 1984-01-01 to 2005-10-01 Quarterly
GDPDEF 88 1984-01-01 to 2005-10-01 Quarterly
FEDFUNDS 264 1984-01-01 to 2005-12-01 Monthly

# of series imported: 3
highest frequency: Monthly
lowest frequency: Quarterly

Note that GDPC1 and GDPDEF now have 88 observations rather than 278; similarly, FEDFUNDS has

264 observations rather than 745.

Importing historical vintage data
In example 1, we imported monthly data on the exchange rate between the USDollar and the Japanese

Yen. The observations on EXJPUS listed in that example were observed end-of-day values. In contrast,

the values in many FRED series, like the US real gross domestic product series (GDPC1), are estimates.
The values of observed series do not change over time. The values of estimated series change over time

because the rules that define them change over time. A set of rules is known as a vintage.

FRED contains the most recent vintage of a given series. At times, you may wish to import prior

vintages or to view the series as it would have been seen on a particular date in history. ALFRED contains

prior vintages of economic data and allows you to import data as they were seen on a particular date in

history. For example, you may import the real GDP series that you would have had access to on October

15, 2008.

By default, import fred imports data from the current vintage. The vintage() and realtime()
options allow you to import data from prior vintages. You can request a single date, multiple dates, all

vintages between two dates in history, or the complete revision history.
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Example 7: Importing vintages by date
We wish to import the gross national product (GNP) series as it would have been available on Septem-

ber 16, 2008 and September 16, 2009, so we specify these dates in the vintage() option. We also use

the daterange() option to import only observations since 2006:

. import fred GNPC96, vintage(2008-09-16 2009-09-16) daterange(2006-01-01 .)
> clear
Summary

Series ID Nobs Date range Frequency

GNPC96_20080916 10 2006-01-01 to 2008-04-01 Quarterly
GNPC96_20090916 14 2006-01-01 to 2009-04-01 Quarterly

# of series imported: 2
highest frequency: Quarterly
lowest frequency: Quarterly

. list, separator(4) abbreviate(16)

datestr daten GNPC96_20080916 GNPC96_20090916

1. 2006-01-01 01jan2006 11286.5 12994.2
2. 2006-04-01 01apr2006 11365.1 13035.4
3. 2006-07-01 01jul2006 11370.8 13025.1
4. 2006-10-01 01oct2006 11426.5 13129.5

5. 2007-01-01 01jan2007 11419.1 13160.5
6. 2007-04-01 01apr2007 11541.7 13275.9
7. 2007-07-01 01jul2007 11719.9 13451.5
8. 2007-10-01 01oct2007 11758.3 13563.3

9. 2008-01-01 01jan2008 11760.9 13525.4
10. 2008-04-01 01apr2008 11835.9 13533.7
11. 2008-07-01 01jul2008 . 13470.7
12. 2008-10-01 01oct2008 . 13240.5

13. 2009-01-01 01jan2009 . 13018.1
14. 2009-04-01 01apr2009 . 12991.6

We specified one series and two vintage dates, so we have imported two series. Each vintage is named

with the series requested and the date that it was requested. For example, the series GNPC96 20080916
reports real GNP as it was available on 16 September 2008. Note that the series is appended with the date

requested, not the date the vintage was released.

These two vintages of GNPC96 differ dramatically because they are on different scales. The output
also illustrates that, as of 16 September 2008, data on GNPC96 were only available through 1April 2008.

Example 8: Importing vintages by real-time period
You may also wish to obtain the complete vintage history of a series between two dates. For example,

we import all the vintages of real GNP from December 2007 through July 2010 by specifying this date

range in the realtime() option.
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. import fred GNPC96, realtime(2007-12-01 2010-07-31) clear
Summary

Series ID Nobs Date range Frequency

GNPC96_20071201 243 1947-01-01 to 2007-07-01 Quarterly
GNPC96_20071220 243 1947-01-01 to 2007-07-01 Quarterly
GNPC96_20080327 244 1947-01-01 to 2007-10-01 Quarterly
GNPC96_20080529 245 1947-01-01 to 2008-01-01 Quarterly
GNPC96_20080626 245 1947-01-01 to 2008-01-01 Quarterly
GNPC96_20080731 245 1947-01-01 to 2008-01-01 Quarterly
GNPC96_20080828 246 1947-01-01 to 2008-04-01 Quarterly
GNPC96_20080926 246 1947-01-01 to 2008-04-01 Quarterly
GNPC96_20081125 247 1947-01-01 to 2008-07-01 Quarterly
GNPC96_20081223 247 1947-01-01 to 2008-07-01 Quarterly
GNPC96_20090326 248 1947-01-01 to 2008-10-01 Quarterly
GNPC96_20090529 249 1947-01-01 to 2009-01-01 Quarterly
GNPC96_20090625 249 1947-01-01 to 2009-01-01 Quarterly
GNPC96_20090731 249 1947-01-01 to 2009-01-01 Quarterly
GNPC96_20090817 249 1947-01-01 to 2009-01-01 Quarterly
GNPC96_20090827 250 1947-01-01 to 2009-04-01 Quarterly
GNPC96_20090930 250 1947-01-01 to 2009-04-01 Quarterly
GNPC96_20091124 251 1947-01-01 to 2009-07-01 Quarterly
GNPC96_20091222 251 1947-01-01 to 2009-07-01 Quarterly
GNPC96_20100326 252 1947-01-01 to 2009-10-01 Quarterly
GNPC96_20100527 253 1947-01-01 to 2010-01-01 Quarterly
GNPC96_20100625 253 1947-01-01 to 2010-01-01 Quarterly
GNPC96_20100730 253 1947-01-01 to 2010-01-01 Quarterly
GNPC96_20100731 253 1947-01-01 to 2010-01-01 Quarterly

# of series imported: 24
highest frequency: Quarterly
lowest frequency: Quarterly

Each series contains the data from a vintage, and each series’ name is appended with the date that the

vintage was released.

Different vintages of a series may not be directly comparable. For example, the units of a series may

change over time. The different vintages must be converted to a common unit before they are analyzed,

and it is crucial that you be aware of the units of the vintages you are analyzing.

Note that there is slightly different behavior depending on whether you specify vintage dates or import

all vintages within a real-time period. If you specify a list of dates, then each vintage will be named

series date. On the other hand, if you import every vintage between two dates using the realtime()
option, then each vintagewill be named series vintage date. This behavior follows FRED’s behavior
when handling vintages.

Searching, saving, and retrieving series information
fredsearch finds series that match keywords or tags. Around 5,000 tags are supplied by FRED. You

can also search by keywords, which will search for the keyword anywhere in the metadata of a series.

You can save the names of the series found by a search to a file and then import these series. The

following example uses tags in combination with keywords to import median income per capita for states

in the United States.
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Example 9: Using the search engine
Suppose we wish to import median income per capita for each state. This requires us to identify 51

series, one for each state and the District of Columbia. The series IDs may follow some pattern, but it is

not immediately obvious what those IDs are. We could use the FRED interface, as in example 3, or we

could use fredsearch to search for the relevant series, save the IDs to a file, and use that file to load the
correct series. This example takes the latter approach.

The fredsearch command invokes the search engine. fredsearch keywords allows you to search

for keywords anywhere in the series metadata. The tags() option allows you to filter the search results
using some of FRED’s 5,000 designated tags.

. fredsearch median household income, tags(state real)

Series ID Title Data range Frequency

MEHOINUSNYA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSCAA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSTXA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSMIA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSFLA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSMNA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSDCA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSAZA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSMAA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSUTA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSPAA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSALA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSOHA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSINA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSILA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSNJA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSCTA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSCOA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSVAA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSKYA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSOKA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSNCA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSMOA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSWIA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSRIA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSWAA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSHIA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSGAA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSMSA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSARA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSIAA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSWVA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSSCA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSNEA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSNHA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
(output omitted )

Total: 51

In the above search command, we searched FRED for all series containing “median”, “household”,

and “income” somewhere in their metadata, and restricted the search to series with the tags “state” (for

states) and “real” (for inflation-adjusted series). The result is 51 series, one for each state and the District

of Columbia.
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fredsearch provides information about series but does not import them. We can save the search

results to a file, then import all series that matched our search results:

. fredsearch median household income, tags(state real) saving(myfile.dta)
(51 series added to myfile.dta)
. import fred, serieslist(myfile.dta) clear
Summary

Series ID Nobs Date range Frequency

MEHOINUSNYA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSCAA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSTXA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSMIA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSFLA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSMNA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSDCA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSAZA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSMAA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSUTA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSPAA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSALA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSOHA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSINA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSILA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSNJA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSCTA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSCOA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSVAA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSKYA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSOKA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSNCA672N 40 1984-01-01 to 2023-01-01 Annual
(output omitted )

# of series imported: 51
highest frequency: Annual
lowest frequency: Annual

This example showed how to quickly import 51 series formedian household income by state. Asimilar

procedure can quickly isolate and import the roughly 200 series that report data on infant mortality by

country or the roughly 200 series that report the investment share of GDP by country.

Describing series
freddescribe provides facilities to describe series based on their metadata. freddescribe se-

ries list provides a brief summary of series list. The series are only described, not imported.

With the detail option, detailed series metadata are displayed, including the full title of the series,
the source agency, the source data release, seasonal adjustment, date range for which observations exist,

frequency of observations, units, date and time that the series was last updated, and notes, which contain

FRED’s notes about the series. Finally, the full metadata includes a list of all vintage dates associated

with the series.

Specifying the realtime(start end) option on freddescribe provides information about a se-

ries by a real-time period. This option allows you to see how a series’ units have changed over time.

freddescribe will display the series description for each vintage between the specified start and end
dates.
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freddescribe, realtime(. end) describes all vintages from the first available vintage up to that

of end. Similarly, freddescribe,realtime(start .) describes all vintages from start up through the

most current vintage available.

Example 10: Describing series
Suppose we wish to knowwhat vintages are available for real GDP, whose FRED series name is GDPC1.

We use freddescribe with the detail option to list all the vintages.
. freddescribe GDPC1, detail

GDPC1

Title: Real Gross Domestic Product
Source: U.S. Bureau of Economic Analysis
Release: Gross Domestic Product
Seasonal adjustment: Seasonally Adjusted Annual Rate
Date range: 1947-01-01 to 2024-10-01
Frequency: Quarterly
Units: Billions of Chained 2017 Dollars
Last updated: 2025-03-27 08:03:25-05
Notes: BEA Account Code: A191RX Real gross domestic product i...
Vintage dates: 1991-12-04 1991-12-20 1992-01-29 1992-02-28 1992-03-26

1992-04-28 1992-05-29 1992-06-25 1992-07-30 1992-08-27
1992-09-24 1992-10-27 1992-11-25 1992-12-22 1993-01-28
1993-02-26 1993-03-26 1993-04-29 1993-05-28 1993-06-23
1993-07-29 1993-08-31 1993-09-29 1993-10-28 1993-12-01
1993-12-22 1994-01-28 1994-03-01 1994-03-31 1994-04-28
1994-05-27 1994-06-29 1994-07-29 1994-08-26 1994-09-29
1994-10-28 1994-11-30 1994-12-22 1995-01-27 1995-03-01
1995-03-31 1995-04-28 1995-05-31 1995-06-30 1995-07-28
1995-08-30 1995-09-29 1995-10-27 1996-01-19 1996-02-23

(output omitted )

Total: 1

Vintages since 1991 are available for download. If we had not specified detail, only the series name,
start and end date, and frequency would have been displayed.
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Example 11: Obtaining historical descriptions
Information for real GNP in the United States is contained in FRED series GNPC96. Real GNP is ex-

pressed in the units of some base year, and over time the base year changes. In this example, we will

examine how the units for GNPC96 have changed over time by requesting a description of all vintages up
through December 31, 2015 using the realtime() option.

. freddescribe GNPC96, realtime(. 2015-12-31)

Series ID Real time Units

GNPC96 1958-12-21 to 1959-02-18 Billions of 1957 Dollars
GNPC96 1959-02-19 to 1965-08-18 Billions of 1954 Dollars
GNPC96 1965-08-19 to 1976-01-15 Billions of 1958 Dollars
GNPC96 1976-01-16 to 1985-12-19 Billions of 1972 Dollars
GNPC96 1985-12-20 to 1991-12-03 Billions of 1982 Dollars
GNPC96 1991-12-04 to 1996-01-18 Billions of 1987 Dollars
GNPC96 1996-01-19 to 1999-10-28 Billions of Chained 1992 Dollars
GNPC96 1999-10-29 to 2003-12-09 Billions of Chained 1996 Dollars
GNPC96 2003-12-10 to 2009-07-30 Billions of Chained 2000 Dollars
GNPC96 2009-07-31 to 2013-07-30 Billions of Chained 2005 Dollars
GNPC96 2013-07-31 to 2015-12-31 Billions of Chained 2009 Dollars

Total: 11

Vintages for this series begin in 1958. Anew row signifies a change in units. There are 11 total changes

in units in GNPC96. Every vintage of GNPC96 between 2009-07-31 and 2013-07-30, for example, is in the
units “Billions of chained 2005 dollars”. Meanwhile, vintages since 2013-07-30 are in units “Billions of

chained 2009 dollars”. Real GNP vintages from 2010 and 2014 will not be immediately comparable due

to the difference in units; they should be converted into a common unit before analysis.
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Additional information by real-time period can be obtained by specifying the detail option. We can

inspect the details of vintages since 2008:

. freddescribe GNPC96, detail realtime(2007-12-31 2013-01-15)

GNPC96 2007-12-31 to 2009-07-30

Title: Real Gross National Product
Source: U.S. Bureau of Economic Analysis
Release: Gross Domestic Product
Seasonal adjustment: Seasonally Adjusted Annual Rate
Date range: 1947-01-01 to 2009-01-01
Frequency: Quarterly
Units: Billions of Chained 2000 Dollars
Last updated: 2009-06-25 10:47:06-05
Notes: BEA Account Code: A001RX1 A Guide to the National Inco...
Vintage dates: 2008-03-27 2008-05-29 2008-06-26 2008-07-31 2008-08-28

2008-09-26 2008-11-25 2008-12-23 2009-03-26 2009-05-29
2009-06-25

GNPC96 2009-07-31 to 2013-01-15

Title: Real Gross National Product
Source: U.S. Bureau of Economic Analysis
Release: Gross Domestic Product
Seasonal adjustment: Seasonally Adjusted Annual Rate
Date range: 1947-01-01 to 2012-07-01
Frequency: Quarterly
Units: Billions of Chained 2005 Dollars
Last updated: 2012-12-20 08:17:16-06
Notes: BEA Account Code: A001RX1 A Guide to the National Inco...
Vintage dates: 2009-07-31 2009-08-17 2009-08-27 2009-09-30 2009-11-24

2009-12-22 2010-03-26 2010-05-27 2010-06-25 2010-07-30
2010-08-27 2010-09-30 2010-11-23 2010-12-22 2011-03-25
2011-05-26 2011-06-24 2011-07-29 2011-08-26 2011-09-29
2011-11-22 2011-12-22 2012-03-29 2012-05-31 2012-06-28
2012-07-27 2012-08-29 2012-09-27 2012-11-29 2012-12-20

Total: 2

The detail option provides much of the same information as it did without realtime(), but now a

new detail block is provided for each vintage where the details themselves change. Most of the details

remain constant across vintages, but in this example, “Units” and “Date range” are different for each

block.

The vintage list is now separated, with each vintage falling into the appropriate describe block. For
example, all vintages of GNPC96 in 2010 have metainformation corresponding to the block that describes

vintages from 2009-07-31 to 2013-01-15.

Stored results
fredsearch stores the following in r():

Scalars

r(series ids) list of series IDs contained in the search results



import fred — Import data from Federal Reserve Economic Data 520

References
Drukker, D. M. 2006. Importing Federal Reserve economic data. Stata Journal 6: 384–386.

Schenck, D. 2017. Importing data with import fred. The Stata Blog: Not Elsewhere Classified. https://blog.stata.com/

2017/08/08/importing-data-with-import-fred/.

Also see
[D] import — Overview of importing data into Stata

[D] import delimited — Import and export delimited text data

[D] import haver — Import data from Haver Analytics databases

[D] odbc — Load, write, or view data from ODBC sources

[TS] tsset — Declare data to be time-series data

https://www.stata-journal.com/article.html?article=st0110
https://blog.stata.com/2017/08/08/importing-data-with-import-fred/
https://blog.stata.com/2017/08/08/importing-data-with-import-fred/
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
Haver Analytics (https://www.haver.com) provides economic and financial databases to which you

can purchase access. The import haver command allows you to use those databases with Stata. The
import haver command is provided only with Stata for Windows.

import haver seriesdblist loads data from one or more Haver databases into Stata’s memory.

import haver seriesdblist, describe describes the contents of one or more Haver databases.

If a database is specified without a suffix, then the suffix .dat is assumed.

import haver accesses Haver Analytics databases that reside on your local network. For access-

ing Haver Analytics cloud databases, see [D] import haverdirect. The two commands employ a near-

identical syntax.

Quick start
Describe available time span, frequency of measurement, and source of series E for net fixed assets and

consumer durables from the Haver Analytics CAPSTOCK database

import haver E@CAPSTOCK, describe

Load all available observations for quarterly series ASACX and ASAHS from the US1PLUS database

import haver (ASACX ASAHS)@US1PLUS

Same as above, but restrict data to the first quarter of 2000 through the fourth quarter of 2010

import haver (ASACX ASAHS)@US1PLUS, fin(2000q1,2010q4)

Menu
File > Import > Haver Analytics database
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Syntax
Load Haver data

import haver seriesdblist [ , load options ]

Load Haver data using a dataset of Haver series descriptions stored in memory

import haver, frommemory [ load options ]

Describe contents of Haver database

import haver seriesdblist, describe [ describe options ]

Specify the directory where the Haver databases are stored

set haverdir ”path” [ , permanently ]

load options Description

fin([ datestring ], [ datestring ]) load data within specified date range

fwithin([ datestring ], [ datestring ]) same as fin() but exclude the endpoints of range
tvar(varname) create time variable varname

case(lower | upper) read variable names as lowercase or uppercase

hmissing(misval) record missing values as misval

aggmethod(strict | relaxed | force) set how temporal aggregation calculations deal with
missing data

frommemory load data using file in memory

clear clear data in memory before loading Haver database

frommemory and clear do not appear in the dialog box.

describe options Description

∗ describe describe contents of seriesdblist

detail list full-series information table for each series

saving(filename[ , verbose replace ]) save series information to filename.dta
frame(framename[ , verbose replace ]) save series information to framename

∗describe is required.

collect is allowed with import haver; see [U] 11.1.10 Prefix commands.

seriesdblist is one or more of the following:

dbfile

series@dbfile

(series series . . .)@dbfile



import haver — Import data from Haver Analytics databases 523

dbfile is the name of a Haver Analytics database and series contains a Haver Analytics series. Wildcards

? and * are allowed in series. series and dbfile are not case sensitive.

Example: import haver gdp@usecon
Import series GDP from the USECON database.

Example: import haver gdp@usecon c1*@ifs
Import series GDP from the USECON database, and import any series that starts with c1 from the IFS

database.

Note: You must specify a path to the database if you did not use the set haverdir command.

Example: import haver gdp@”C:\data\usecon” c1*@”C:\data\ifs”

If you do not specify a path to the database and you did not set haverdir, then import haverwill look
in the current working directory for the database.

Options
Options are presented under the following headings:

Options for import haver
Options for import haver, describe
Option for set haverdir

Options for import haver
fin([ datestring ], [ datestring ]) specifies the date range of the data to be loaded. datestring must

adhere to the Stata default for the different frequencies. See [D] Datetime display formats. Exam-

ples are 23mar2012 (daily and weekly), 2000m1 (monthly), 2003q4 (quarterly), and 1998 (annually).

fin(1jan1999, 31dec1999)would mean from and including 1 January 1999 through 31 December

1999. Note that weekly data must be specified as daily data because Haver-week data are conceptually

different from Stata-week data.

fin() also determines the aggregation frequency. If you want to retrieve data in a frequency that is
lower than the one in which the data are stored, specify the dates in option fin() accordingly. For
example, to retrieve series that are stored in quarterly frequency into an annual dataset, you can type

fin(1980,2010).

If the first datestring is not specified, the first date in the series is used as the start of the date range.

If the second datestring is not specified, the last date in the series is used as the end of the date range.

fwithin([ datestring ], [ datestring ]) functions the same as fin(), except that the endpoints of the
range will be excluded in the loaded data.

tvar(varname) specifies the name of the time variable Stata will create. The default is tvar(time).
The tvar() variable is the name of the variable that you would use to tsset the data after loading,
although doing so is unnecessary because import haver automatically tssets the data for you.

case(lower | upper) specifies the case of the variable names after import. The default is case(lower).
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hmissing(misval) specifies which of Stata’s 27 missing values (., .a, . . . , .z) to record when there are
missing values in the Haver database.

Two kinds of missing values can be distinguished. The first occurs when Haver has recorded a Haver

missing value within the time span covered by a series; by default, these are stored as . by Stata, but

you can use hmissing() to specify that a different extended missing-value code be used. The second
occurs when nothing is recorded because the data do not span the entire range; these missing values

are always stored as . by Stata. The hmissing() option does not apply to these observations.

See [U] 12.2.1 Missing values for more information on extended missing values.

aggmethod(strict | relaxed | force) specifies a method of temporal aggregation in the presence of
missing observations. aggmethod(strict) is the default aggregation method.

Most Haver series of higher-than-annual frequency have an aggregation type that determines how

data can be aggregated. The three aggregation types are average (AVG), sum (SUM), and end of period

(EOP). Each aggregation method behaves differently for each aggregation type.

An aggregated span is a time period expressed in the original frequency. The goal is to aggregate

the data in an aggregation span to a single observation in the (lower) target frequency. For example,

1973m1–1973m3 is an aggregated span for quarterly aggregation to 1973q1.

strict aggregation method:

1) (Average) The aggregated value is the average value if no observation in the aggregated span

is missing; otherwise, the aggregated value is missing.

2) (Sum) The aggregated value is the sum if no observation in the aggregated span is missing;

otherwise, the aggregated value is missing.

3) (End of period) The aggregated value is the series value in the last period in the aggregated

span, be it missing or not.

relaxed aggregation method:

1) (Average) The aggregated value is the average value as long as there is one nonmissing data

point in the aggregated span; otherwise, the aggregated value is missing.

2) (Sum) The aggregated value is the sum if no observation in the aggregated span is missing;

otherwise, the aggregated value is missing.

3) (End of period) The aggregated value is the last available nonmissing data point in the aggre-

gated span; otherwise, the aggregated value is missing. For the last aggregated span of the

series, the strict aggregation method is applied.

force aggregation method:

1) (Average) The aggregated value is the average value as long as there is one nonmissing data

point in the aggregated span; otherwise, the aggregated value is missing.

2) (Sum) The aggregated value is the sum if there is at least one nonmissing data point in the

aggregated span; otherwise, the aggregated value is missing.

3) (End of period) The aggregated value is the last available nonmissing data point in the aggre-

gated span; otherwise, the aggregated value is missing. This rule is also applied to the last

aggregated span of the series.
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The following options are available with import haver but are not shown in the dialog box:

frommemory specifies that each observation of the dataset in memory specify the information for a Haver
series to be imported. The dataset in memory must contain variables named path, file, and series.
The observations in path specify paths to Haver databases, the observations in file specify Haver
databases, and the observations in series specify the series to import.

clear clears the data in memory before loading the Haver database.

Options for import haver, describe
describe describes the contents of one or more Haver databases.

detail specifies that a detailed report of all the information available on the variables be presented.

saving(filename[ , verbose replace ]) saves the series meta-information to a Stata dataset. By de-
fault, the series meta-information is not displayed to the Results window, but you can use the verbose
suboption to display it. replace specifies that filename be overwritten if it exists.

saving() saves a Stata dataset that can subsequently be used with the frommemory option.

frame(framename[ , verbose replace ]) stores the series meta-information to a Stata frame. By de-
fault, the series meta-information is not displayed to the Results window, but you can use the verbose
suboption to display it. replace specifies that framename be overwritten if it exists.

frame() stores a Stata frame that can subsequently be used with the frommemory option. You must
frame change to the specified framename before using import haver with the frommemory option
to load the data.

Option for set haverdir
permanently specifies that in addition to making the change right now, the haverdir setting be re-

membered and become the default setting when you invoke Stata.

Remarks and examples
Remarks are presented under the following headings:

Installation
Setting the path to Haver databases
Download example Haver databases
Determining the contents of a Haver database
Loading a Haver database
Loading a Haver database from a describe file
Temporal aggregation
Daily and weekly data

Installation
Haver Analytics (https://www.haver.com) provides more than 200 economic and financial databases

in the form of .dat files to which you can purchase access. The import haver command provides easy
access to those databases from Stata. import haver is provided only with Stata for Windows.

https://www.haver.com
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Setting the path to Haver databases
If you want to retrieve data from HaverAnalytics databases, you must discover the directory in which

the databases are stored. This will most likely be a network location. If you do not know the directory,

contact your technical support staff or Haver Analytics (https://www.haver.com). Once you have deter-

mined the directory location—for example, H:\haver files—you can save it by using the command

. set haverdir ”H:\haver_files\”, permanently

Using the permanently option will preserve the Haver directory information between Stata sessions.
Once the Haver directory is set, you can start retrieving data. For example, if you are subscribing to the

USECON database, you can type

. import haver gdp@usecon

to load the GDP series into Stata. If you did not use set haverdir, you would type

. import haver gdp@”H:\haver_files\usecon”

The directory path passed to set haverdir is saved in the creturn value c(haverdir). You can
view it by typing

. display ”‘c(haverdir)’”

Download example Haver databases
There are three example Haver databases you can download to your working directory. Run the copy

commands below to download HAVERD, HAVERW, and HAVERMQA.

. copy https://www.stata.com/haver/HAVERD.DAT haverd.dat

. copy https://www.stata.com/haver/HAVERD.IDX haverd.idx

. copy https://www.stata.com/haver/HAVERW.DAT haverw.dat

. copy https://www.stata.com/haver/HAVERW.IDX haverw.idx

. copy https://www.stata.com/haver/HAVERMQA.DAT havermqa.dat

. copy https://www.stata.com/haver/HAVERMQA.IDX havermqa.idx

To use these files, you need to make sure your Haver directory is not set:

. set haverdir ””

https://www.haver.com
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Determining the contents of a Haver database
import haver seriesdblist, describe displays the contents of a Haver database. If no series is

specified, then all series are described. Below, we describe the Haver database haverd.dat, which we
already have on our computer and in our current directory.

. import haver haverd, describe
Dataset: haverd

Variable Description Time span Frequency Source

FXTWB Nominal Broad Trade-W.. 03jan2005-02mar2012 Daily FRB
FXTWM Nominal Trade-Weighte.. 03jan2005-02mar2012 Daily FRB
FXTWOTP Nominal Trade-Weighte.. 03jan2005-02mar2012 Daily FRB

Summary

Number of series described: 3
Series not found: 0

By default, each line of the output corresponds to one Haver series. Specifying detail displays more
information about each series, and specifying seriesname@ allows us to restrict the output to the series
that interests us:

. import haver FXTWB@haverd, describe detail

FXTWB Nominal Broad Trade-Weighted Exchange Value of the US$ (1/97=100)

Frequency: Daily Time span: 03jan2005-02mar2012
Number of observations: 1870 Date modified: 07mar2012 11:27:33
Aggregation type: AVG Decimal precision: 4
Difference type: 0 Magnitude: 0
Data type: INDEX Group: R03
Primary geography code: 111 Secondary geography code:
Source: FRB Source description: Federal Reserv..

Summary

Number of series described: 1
Series not found: 0

You can describe multiple Haver databases with one command:

. import haver haverd haverw, describe
(output omitted )

To restrict the output to the series that interest us for each database, you could type

. import haver (FXTWB FXTWOTP)@haverd FARVSN@haverw, describe
(output omitted )
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Loading a Haver database
import haver seriesdblist loads Haver databases. If no series is specified, then all series are loaded.

. import haver haverd, clear
Summary

Haver data retrieval: 10 Jul 2024 11:59:42
Number of series requested: 3
Number of database(s) used: 1 (HAVERD)

All series have been successfully retrieved.
Frequency

Highest Haver frequency: Daily
Lowest Haver frequency: Daily

Frequency of Stata dataset: Daily

The table produced by import haver seriesdblist displays a summary of the loaded data and fre-

quency information about the loaded data. For other queries, there may be additional output about query

errors and query notes; this is shown only if needed.

The dataset now contains a time variable and three variables retrieved from the HAVERD database:

. describe
Contains data
Observations: 1,870

Variables: 4

Variable Storage Display Value
name type format label Variable label

time double %td
fxtwb_haverd double %10.0g Nominal Broad Trade-Weighted

Exchange Value of the US$
(1/97=100)

fxtwm_haverd double %10.0g Nominal Trade-Weighted Exch Value
of US$ vs Major Currencies
(3/73=100)

fxtwotp_haverd double %10.0g Nominal Trade-Weighted Exchange
Value of US$ vs OITP (1/97=100)

Sorted by: time
Note: Dataset has changed since last saved.
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Haver databases include the followingmeta-information about each variable, although the information

available will vary depending on the series:

HaverDB database name

Series series name

DateTimeMod date and time the series was last modified

Frequency frequency of series (from daily to annual) as it is stored in the Haver database

Magnitude magnitude of the data

DecPrecision number of decimals to which the variable is recorded

DifType relevant within Haver software only: if equal to 1, percentage calculations are not allowed
AggType temporal aggregation type (one of AVG, SUM, or EOP; or, if not defined, one of NA or

NA ANNUAL)
DataType type of data (for example, ratio, index, US$, or percentage)

Group Haver series group to which the variable belongs

Geography1 primary geography code

Geography2 secondary geography code (missing if not applicable)

StartDate start date for data as it is stored in the Haver database

EndDate end date for data as it is stored in the Haver database

Source Haver code associated with the source for the data

SourceDescription description of Haver code associated with the source for the data

When a variable is loaded, this meta-information is stored in variable characteristics (see [P] char).

Those characteristics can be viewed using char list:

. char list fxtwb_haverd[]
fxtwb_haverd[HaverDB]: HAVERD
fxtwb_haverd[Series]: FXTWB
fxtwb_haverd[DateTimeMod]: 07mar2012 11:27:33
fxtwb_haverd[Frequency]: Daily
fxtwb_haverd[Magnitude]: 0
fxtwb_haverd[DecPrecision]: 4
fxtwb_haverd[DifType]: 0
fxtwb_haverd[AggType]: AVG
fxtwb_haverd[DataType]: INDEX
fxtwb_haverd[Group]: R03
fxtwb_haverd[Geography1]: 111
fxtwb_haverd[StartDate]: 03jan2005
fxtwb_haverd[EndDate]: 02mar2012
fxtwb_haverd[Source]: FRB
fxtwb_haverd[SourceDescription]:

Federal Reserve Board

You can load multiple Haver databases/series with one command. To load the series FXTWB and

FXTWOTP from the HAVERD database and all series that start with V from the HAVERMQA database, you

would type

. import haver (FXTWB FXTWOTP)@haverd V*@havermqa, clear
(output omitted )

import haver automatically tssets the data for you. You can issue tsset to see how the data are

currently set.

Loading a Haver database from a describe file
You often need to search through the series information of a Haver database or databases to see which

series you would like to load. You can do this by saving the output of import haver, describe to a
Stata dataset with the saving(filename) option. The dataset created can be used by import haver,
frommemory to load data from the described Haver databases. For example, here we search through the

series information of database HAVERMQA.
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. import haver havermqa, describe saving(my_desc_file)
(output omitted )

. use my_desc_file, clear

. describe
Contains data from my_desc_file.dta
Observations: 161

Variables: 8 10 Jul 2024 11:59

Variable Storage Display Value
name type format label Variable label

path str1 %-9s Path to Haver file
file str8 %-9s Haver filename
series str7 %-9s Series name
description str80 %-80s Series description
startdate str7 %-9s Start date
enddate str7 %-9s End date
frequency str9 %-9s Frequency
source str3 %-9s Source

Sorted by:

The resulting dataset contains information on the 164 series in HAVERMQA. Suppose that we want

to retrieve all monthly series whose description includes the word “Yield”. We need to keep only the

observations from our dataset where the frequency variable equals “Monthly” and where the description

variable contains “Yield”.

. keep if frequency==”Monthly” & strpos(description,”Yield”)
(152 observations deleted)

To load the selected series into Stata, we type

. import haver, frommemory clear

Note: We must clear the described data in memory to load the selected series. If you do not want
to lose the changes you made to the description dataset, you must save it before using import haver,
frommemory.

The frame(framename) option works similarly to the saving(filename) option, but instead of sav-
ing a file to disk, frame() stores the metadata in a frame. See [D] frames for more information on data

frames.

Temporal aggregation
If you request series with different frequencies, the higher-frequency data will be aggregated to the

lowest frequency. For example, if you request a monthly and a quarterly series, the monthly series will be

aggregated. In rare cases, a series cannot be aggregated to a lower frequency and so will not be retrieved.

A list of these series will be stored in r(noaggtype).

The options fin() and fwithin() are useful for aggregating series by hand.
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Daily and weekly data
Daily and weekly queries require additional explanations because these frequencies are implemented

differently in Haver databases than in Stata datasets. A Haver daily series refers to a business daily

frequency, which is five days per week and counts only Monday through Friday as observations. An

exact match for Haver daily is Stata’s business daily frequency (%tb), which uses a business-day calendar
that excludes weekends and includes all weekdays throughout the year. Stata’s daily frequency (%td),
by contrast, counts all seven days of a week. This frequency is called 7-daily in Haver databases.

The implementations of the weekly frequency also differ between Haver and Stata. Haver’s imple-

mentation counts one week after another, without any reference to the calendar year, thereby allowing

for years that mostly have 52 observations but sometimes have 53 observations. Each Haver weekly data

series has a value set for its controlling-day-of-week (CDOW) property. This is typically the weekday on

which the data are released by the source. This information is preserved in a Stata characteristic called

cdow. For example, the cdow characteristic for series SP100@WEEKLY is Friday.

Stata’s %tw frequency counts weeks from the beginning of the year and caps the week number at 52.

There are two ways in which Haver’s weekly frequency can be exactly matched in Stata: either in Stata’s

daily frequency (%td) in combination with a delta of seven days (see [TS] tsset) or in a datetime business
calendar (%tb), which here should count only one particular weekday as a valid business day.

The above discrepancies in frequency implementations are resolved in import haver in the following
way: any query that exclusively consists of one or more of Haver 7-daily, Haver daily, or Haver weekly

series results in a Stata dataset of Stata daily frequencies (%td). In that dataset,

Haver 7-daily series receive rows for all seven days of the week covered by their span.

Haver daily series receive rows for five days of the week (Monday through Friday) covered by

their span.

Haver weekly series are assigned dates that correspond to their CDOW. For example, se-

ries SP100@WEEKLY has a CDOW of Friday and, at the time of writing, covers the time span

06jan1989–31may2024. Thus, in the Stata dataset, SP100@WEEKLY receives rows with dates 06jan1989,
13jan1989, . . . , 24may2024, 31may2024 (these are all Fridays).

Note that if a query combines Haver 7-daily series and Haver daily series with one or more Haver

weekly series, aggregation to weekly values is performed. For Haver 7-daily series, the values Monday

through Sunday are aggregated to a single value, and the resulting (Haver weekly) series receives a CDOW

of Sunday, with corresponding (Sunday) rows in the dataset. Similarly, for Haver daily series, the values

Monday through Friday are aggregated to a single value, and the resulting (Haver weekly) series receives

a CDOW of Friday, with corresponding (Friday) rows in the dataset.

Once you have queried your daily and weekly series, you may want to use Stata’s tsset or business
calendar features to further tailor the dataset toward your needs. Several ways for you to do this were

indicated above.

When you aggregate Haver daily and Haver weekly series to lower frequencies (for example,

monthly), the above considerations are not relevant. Another issue with these data is Haver aggregation

modes. Haver daily and Haver weekly series often contain missing values due to events such as national

holidays. When you aggregate to a lower frequency under the default aggregation mode strict, such
missing values then result in aggregated values that are also set to missing. In such cases, you may want

to consider using aggregation modes relaxed or force. See option aggmethod() for more details.
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Stored results
import haver stores the following in r():

Scalars

r(k requested) number of series requested

r(k noaggtype) number of series dropped because of invalid aggregation type

r(k nodisagg) number of series dropped because their frequency is lower than that of the output dataset

r(k notinrange) number of series dropped because data were out of the date range specified in fwithin()
or fin()

r(k notfound) number of series not found in the database

Macros

r(dbnamelist) list of Haver databases used in command

r(noaggtype) list of series dropped because of invalid aggregation type

r(nodisagg) list of series dropped because their frequency is lower than that of the output dataset

r(notinrange) list of series dropped because data were out of the date range specified in fwithin() or
fin()

r(notfound) list of series not found in the database

import haver, describe stores the following in r():

Scalars

r(k described) number of series described

r(k notfound) number of series not found in the database

Macros

r(notfound) list of series not found in the database

Also see
[D] import — Overview of importing data into Stata

[D] import delimited — Import and export delimited text data

[D] import fred — Import data from Federal Reserve Economic Data

[D] import haverdirect — Import data from Haver Analytics cloud servers

[D] jdbc — Load, write, or view data from a database with a Java API

[D] odbc — Load, write, or view data from ODBC sources

[TS] tsset — Declare data to be time-series data
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Description Quick start Syntax Options
Remarks and examples Stored results Also see

Description
Haver Analytics (https://www.haver.com) provides economic and financial databases to which you

can purchase access. The import haverdirect command allows you to use those databases with Stata
from Haver Analytics cloud servers. The import haverdirect command is provided only with Stata
for Windows.

import haverdirect seriesdblist loads data from one or more Haver databases into Stata’s memory.

import haverdirect seriesdblist, describe describes the contents of one or more Haver

databases.

import haverdirect accesses Haver Analytics cloud databases. For accessing locally stored

databases, see [D] import haver. The two commands employ a near-identical syntax.

Quick start
Describe available time span, frequency of measurement, and source for all foreign exchange rates from

the Haver Analytics FXRATES database

import haverdirect FXRATES, describe

Load all available observations for quarterly series YCP and YCTL from the USECON database

import haverdirect (YCP YCTL)@USECON

Same as above, but restrict data to the first quarter of 2020 through the fourth quarter of 2023

import haverdirect (YCP YCTL)@USECON, fin(2020q1,2023q4)

533
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Syntax
Authenticate with Haver Analytics cloud servers

import haverdirect, authenticate

Load Haver data

import haverdirect seriesdblist [ , load options ]

Load Haver data using a dataset of Haver series descriptions stored in memory

import haverdirect, frommemory [ load options ]

Describe contents of Haver database

import haverdirect seriesdblist, describe [ describe options ]

load options Description

fin([ datestring ], [ datestring ]) load data within specified date range

fwithin([ datestring ], [ datestring ]) same as fin() but exclude the endpoints of range
tvar(varname) create time variable varname

case(lower | upper) read variable names as lowercase or uppercase

hmissing(misval) record missing values as misval

aggmethod(strict | relaxed | force) set how temporal aggregation calculations deal with
missing data

frommemory load data using file in memory

clear clear data in memory before loading Haver database

describe options Description

∗ describe describe contents of seriesdblist

detail list full-series information table for each series

saving(filename[ , verbose replace ]) save series information to filename.dta
frame(framename[ , verbose replace ]) save series information to framename

∗describe is required.

collect is allowed with import haverdirect; see [U] 11.1.10 Prefix commands.

seriesdblist is one or more of the following:

dbfile

series@dbfile
(series series . . .)@dbfile
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dbfile is the name of a Haver Analytics database and series contains a Haver Analytics series. Wildcards

? and * are allowed in series. series and dbfile are not case sensitive.

Example: import haverdirect gdp@usecon
Import series GDP from the USECON database.

Example: import haverdirect gdp@usecon c1*@ifs
Import series GDP from the USECON database, and import any series that starts with c1 from the IFS

database.

Options
Options are presented under the following headings:

Options for import haverdirect
Options for import haverdirect, describe

Options for import haverdirect
fin([ datestring ], [ datestring ]) specifies the date range of the data to be loaded. datestring must

adhere to the Stata default for the different frequencies. See [D] Datetime display formats. Exam-

ples are 23mar2012 (daily and weekly), 2000m1 (monthly), 2003q4 (quarterly), and 1998 (annually).

fin(1jan1999, 31dec1999)would mean from and including 1 January 1999 through 31 December

1999. Note that weekly data must be specified as daily data because Haver-week data are conceptually

different from Stata-week data.

fin() also determines the aggregation frequency. If you want to retrieve data in a frequency that is
lower than the one in which the data are stored, specify the dates in option fin() accordingly. For
example, to retrieve series that are stored in quarterly frequency into an annual dataset, you can type

fin(1980,2010).

If the first datestring is not specified, the first date in the series is used as the start of the date range.

If the second datestring is not specified, the last date in the series is used as the end of the date range.

fwithin([ datestring ], [ datestring ]) functions the same as fin(), except that the endpoints of the
range will be excluded in the loaded data.

tvar(varname) specifies the name of the time variable Stata will create. The default is tvar(time).
The tvar() variable is the name of the variable that you would use to tsset the data after loading,
although doing so is unnecessary because import haverdirect automatically tssets the data for
you.

case(lower | upper) specifies the case of the variable names after import. The default is case(lower).
hmissing(misval) specifies which of Stata’s 27 missing values (., .a, . . . , .z) to record when there are

missing values in the Haver database.

Two kinds of missing values can be distinguished. The first occurs when Haver has recorded a Haver

missing value within the time span covered by a series; by default, these are stored as . by Stata, but

you can use hmissing() to specify that a different extended missing-value code be used. The second
occurs when nothing is recorded because the data do not span the entire range; these missing values

are always stored as . by Stata. The hmissing() option does not apply to these observations.

See [U] 12.2.1 Missing values for more information on extended missing values.
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aggmethod(strict | relaxed | force) specifies a method of temporal aggregation in the presence of
missing observations. aggmethod(strict) is the default aggregation method.

Most Haver series of higher-than-annual frequency have an aggregation type that determines how

data can be aggregated. The three aggregation types are average (AVG), sum (SUM), and end of period

(EOP). Each aggregation method behaves differently for each aggregation type.

An aggregated span is a time period expressed in the original frequency. The goal is to aggregate

the data in an aggregation span to a single observation in the (lower) target frequency. For example,

1973m1–1973m3 is an aggregated span for quarterly aggregation to 1973q1.

strict aggregation method:

1) (Average) The aggregated value is the average value if no observation in the aggregated span

is missing; otherwise, the aggregated value is missing.

2) (Sum) The aggregated value is the sum if no observation in the aggregated span is missing;

otherwise, the aggregated value is missing.

3) (End of period) The aggregated value is the series value in the last period in the aggregated

span, be it missing or not.

relaxed aggregation method:

1) (Average) The aggregated value is the average value as long as there is one nonmissing data

point in the aggregated span; otherwise, the aggregated value is missing.

2) (Sum) The aggregated value is the sum if no observation in the aggregated span is missing;

otherwise, the aggregated value is missing.

3) (End of period) The aggregated value is the last available nonmissing data point in the aggre-

gated span; otherwise, the aggregated value is missing. For the last aggregated span of the

series, the strict aggregation method is applied.

force aggregation method:

1) (Average) The aggregated value is the average value as long as there is one nonmissing data

point in the aggregated span; otherwise, the aggregated value is missing.

2) (Sum) The aggregated value is the sum if there is at least one nonmissing data point in the

aggregated span; otherwise, the aggregated value is missing.

3) (End of period) The aggregated value is the last available nonmissing data point in the aggre-

gated span; otherwise, the aggregated value is missing. This rule is also applied to the last

aggregated span of the series.

frommemory specifies that each observation of the dataset in memory specify the information for a Haver
series to be imported. The dataset in memory must contain variables named database and series.
The observations in database specify Haver databases, and the observations in series specify the
series to import.

clear clears the data in memory before loading the Haver database.

Options for import haverdirect, describe
describe describes the contents of one or more Haver databases.

detail specifies that a detailed report of all the information available on the variables be presented.
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saving(filename[ , verbose replace ]) saves the series meta-information to a Stata dataset. By de-
fault, the series meta-information is not displayed to the Results window, but you can use the verbose
suboption to display it. replace specifies that filename be overwritten if it exists.

saving() saves a Stata dataset that can subsequently be used with the frommemory option.

frame(framename[ , verbose replace ]) stores the series meta-information to a Stata frame. By de-
fault, the series meta-information is not displayed to the Results window, but you can use the verbose
suboption to display it. replace specifies that framename be overwritten if it exists.

frame() stores a Stata frame that can subsequently be used with the frommemory option. You must
frame change to the specified framename before using import haverdirectwith the frommemory
option to load the data.

Remarks and examples
Remarks are presented under the following headings:

Installation
Authentication
Determining the contents of a Haver database
Loading a Haver database
Loading a Haver database from a describe file
Temporal aggregation
Daily and weekly data

Installation
Haver Analytics (https://www.haver.com) provides more than 200 economic and financial databases.

The import haverdirect command provides easy access to those databases from Stata. To use this

command, you must subscribe to HaverAnalytics services to access HaverAnalytics cloud servers. Also,

HaverAnalytics DLXVG3Direct software must be installed on your system for authentication with Haver

Analytics cloud servers.

import haverdirect is provided only for Stata for Windows.

Authentication
If you want to retrieve data from HaverAnalytics cloud servers, you must authenticate with the cloud

servers. import haverdirect requires that the Haver Analytics DLXVG3 Direct client software be in-
stalled on your system for authentication when accessing Haver Analytics cloud servers.

By default, import haverdirect will try to authenticate using the DLXVG3 Direct client software.

If you do not have an authentication token, you will be prompted for a email and password to receive an

emailed login code. Once you have completed authentication using DLXVG3 Direct software, you can

use import haverdirect. There might be cases where your authentication token expires while Stata is
open. In these rare cases, type

import haverdirect, authenticate

For more information on the authentication process, please contact Haver Analytics.

https://www.haver.com
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Determining the contents of a Haver database
import haverdirect seriesdblist, describe displays the contents of a Haver database. If no series

is specified, then all series are described. Below, we describe the Haver database FXRATES.
. import haverdirect FXRATES, describe
Dataset: FXRATES

Variable Description Time span Frequency Source

A023 Synthetic Euro calcul.. 1980m1-2024m6 Monthly FRB
A112 Foreign Exchange Rate.. 1947m1-2024m6 Monthly FRB
A122 Synthetic Euro calcul.. 1980m1-2024m6 Monthly FRB
A124 Synthetic Euro calcul.. 1980m1-2024m6 Monthly FRB
(output omitted )

By default, each line of the output corresponds to one Haver series. Specifying detail displays more
information about each series, and specifying seriesname@ allows us to restrict the output to the series
that interests us:

. import haverdirect A228@FXRATES, describe detail

A228 Chile: Exchange Rate: Market or Par (Average, Peso/US$)

Frequency: Monthly Time span: 1957m4-2024m6
Number of observations: 807 Date modified: 28jun2024 15:01:00
Aggregation type: AVG Decimal precision: 3
Difference type: 0 Magnitude: 0
Data type: LC/US$ Group: N29
Primary geography code: 228 Secondary geography code: 111
Source: IMF Source description: International ..

Summary

Number of series described: 1
Series not found: 0

Data are regularly added to Haver databases, so output such as the endpoint of the time span may differ

when you run this command.

You can describe multiple Haver databases with one command:

. import haverdirect USARC23 FXRATES, describe
(output omitted )

To restrict the output to the series that interest us for each database, you could type

. import haverdirect (A223 A228)@FXRATES ZDLAM@USECON, describe
(output omitted )

Note: Whether you have access to the USARC23 or USECON database depends on your subscription

with Haver Analytics.
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Loading a Haver database
import haverdirect seriesdblist loads Haver databases. If no series is specified, then all series are

loaded.

. import haverdirect (A223 A228)@FXRATES, clear
Summary

Haver data retrieval: 10 Jul 2024 11:59:52
Number of series requested: 2
Number of database(s) used: 1 (FXRATES)

All series have been successfully retrieved.
Frequency

Highest Haver frequency: Monthly
Lowest Haver frequency: Monthly

Frequency of Stata dataset: Monthly

The table produced by import haverdirect seriesdblist displays a summary of the loaded data and
frequency information about the loaded data. For other queries, there may be additional output about

query errors and query notes; this is shown only if needed.

The dataset now contains a time variable and two variables retrieved from the FXRATES database:

. describe
Contains data
Observations: 807

Variables: 3

Variable Storage Display Value
name type format label Variable label

time double %tm
a223_fxrates double %10.0g Foreign Exchange Rate: Brazil

(Real/US$)
a228_fxrates double %10.0g Chile: Exchange Rate: Market or

Par (Average, Peso/US$)

Sorted by: time
Note: Dataset has changed since last saved.
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Haver databases include the followingmeta-information about each variable, although the information

available will vary depending on the series:

HaverDB database name

Series series name

Path DLX Direct software

DateTimeMod date and time the series was last modified

Frequency frequency of series (from daily to annual) as it is stored in the Haver database

Magnitude magnitude of the data (for example, 0 for an index, 6 for millions)
DecPrecision number of decimals to which the variable is recorded

DifType relevant within Haver software only: if equal to 1, percentage calculations are not allowed
AggType temporal aggregation type (one of AVG, SUM, or EOP; or, if not defined, one of NA or

NA ANNUAL)
DataType type of data (for example, ratio, index, US$, or percentage)

Group Haver series group to which the variable belongs

Geography1 primary geography code

Geography2 secondary geography code (missing if not applicable)

StartDate start date for data as it is stored in the Haver database

EndDate end date for data as it is stored in the Haver database

Source Haver code associated with the source for the data

SourceDescription description of Haver code associated with the source for the data

When a variable is loaded, this meta-information is stored in variable characteristics (see [P] char).

Those characteristics can be viewed using char list.

You can load multiple Haver databases and series with one command. To load the series UYMSPT and

UYOEE from the USARC23 database and all series that start with A22 from the FXRATES database, you

would type

. import haverdirect (UYMSPT UYOEE)@USARC23 A22*@FXRATES, clear
(output omitted )

import haverdirect automatically tssets the data for you. You can issue tsset to see how the

data are currently set.
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Loading a Haver database from a describe file
You often need to search through the series information of a Haver database or databases to see

which series you would like to load. You can do this by saving the output of import haverdirect,
describe to a Stata dataset with the saving(filename) option. The dataset created can be used by

import haverdirect, frommemory to load data from the described Haver databases. For example,

here we search through the series information of database USARC23. Because the database contains more

than 20,000 series, fetching its metadata may take up to a minute.

. import haverdirect USARC23, describe saving(my_desc_file)
(output omitted )

. use my_desc_file, clear

. describe
Contains data from my_desc_file.dta
Observations: 21,409

Variables: 8 10 Jul 2024 12:00

Variable Storage Display Value
name type format label Variable label

path str19 %-19s Path to Haver file
file str7 %-9s Haver filename
series str8 %-9s Series name
description str80 %-80s Series description
startdate str9 %-9s Start date
enddate str9 %-9s End date
frequency str9 %-9s Frequency
source str8 %-9s Source

Sorted by:

The resulting dataset contains information on the 21,409 series in USARC23. Suppose that we want

to retrieve all quarterly series whose description includes the word “Goods”. We need to keep only the

observations from our dataset where the frequency variable equals “Quarterly” and where the description

variable contains “Goods”.

. keep if frequency==”Quarterly” & strpos(description,”Goods”)
(21,059 observations deleted)

To load the selected series into Stata, we type

. import haverdirect, frommemory clear

Note: We must clear the described data in memory to load the selected series. If you do not

want to lose the changes you made to the description dataset, you must save it before using import
haverdirect, frommemory.

The frame(framename) option works similarly to the saving(filename) option, but instead of sav-
ing a file to disk, frame() stores the metadata in a frame. See [D] frames for more information on data

frames.
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Temporal aggregation
If you request series with different frequencies, the higher-frequency data will be aggregated to the

lowest frequency. For example, if you request a monthly and a quarterly series, the monthly series will be

aggregated. In rare cases, a series cannot be aggregated to a lower frequency and so will not be retrieved.

A list of these series will be stored in r(noaggtype).

The options fin() and fwithin() are useful for aggregating series by hand.

Daily and weekly data
Daily and weekly queries require additional explanations because these frequencies are implemented

differently in Haver databases than in Stata datasets. A Haver daily series refers to a business daily

frequency, which is five days per week and counts only Monday through Friday as observations. An

exact match for Haver daily is Stata’s business daily frequency (%tb), which uses a business-day calendar
that excludes weekends and includes all weekdays throughout the year. Stata’s daily frequency (%td),
by contrast, counts all seven days of a week. This frequency is called 7-daily in Haver databases.

The implementations of the weekly frequency also differ between Haver and Stata. Haver’s imple-

mentation counts one week after another, without any reference to the calendar year, thereby allowing

for years that mostly have 52 observations but sometimes have 53 observations. Each Haver weekly data

series has a value set for its controlling-day-of-week (CDOW) property. This is typically the weekday on

which the data are released by the source. This information is preserved in a Stata characteristic called

cdow. For example, the cdow characteristic for series SP100@WEEKLY is Friday.

Stata’s %tw frequency counts weeks from the beginning of the year and caps the week number at 52.

There are two ways in which Haver’s weekly frequency can be exactly matched in Stata: either in Stata’s

daily frequency (%td) in combination with a delta of seven days (see [TS] tsset) or in a datetime business
calendar (%tb), which here should count only one particular weekday as a valid business day.

The above discrepancies in frequency implementations are resolved in import haverdirect in the
following way: any query that exclusively consists of one or more of Haver 7-daily, Haver daily, or

Haver weekly series results in a Stata dataset of Stata daily frequencies (%td). In that dataset,

Haver 7-daily series receive rows for all seven days of the week covered by their span.

Haver daily series receive rows for five days of the week (Monday through Friday) covered by

their span.

Haver weekly series are assigned dates that correspond to their CDOW. For example, se-

ries SP100@WEEKLY has a CDOW of Friday and, at the time of writing, covers the time span

06jan1989–31may2024. Thus, in the Stata dataset, SP100@WEEKLY receives rows with dates 06jan1989,
13jan1989, . . . , 24may2024, 31may2024 (these are all Fridays).

Note that if a query combines Haver 7-daily series and Haver daily series with one or more Haver

weekly series, aggregation to weekly values is performed. For Haver 7-daily series, the values Monday

through Sunday are aggregated to a single value, and the resulting (Haver weekly) series receives a CDOW

of Sunday, with corresponding (Sunday) rows in the dataset. Similarly, for Haver daily series, the values

Monday through Friday are aggregated to a single value, and the resulting (Haver weekly) series receives

a CDOW of Friday, with corresponding (Friday) rows in the dataset.

Once you have queried your daily and weekly series, you may want to use Stata’s tsset or business
calendar features to further tailor the dataset toward your needs. Several ways for you to do this were

indicated above.
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When you aggregate Haver daily and Haver weekly series to lower frequencies (for example,

monthly), the above considerations are not relevant. Another issue with these data is Haver aggregation

modes. Haver daily and Haver weekly series often contain missing values due to events such as national

holidays. When you aggregate to a lower frequency under the default aggregation mode strict, such
missing values then result in aggregated values that are also set to missing. In such cases, you may want

to consider using aggregation modes relaxed or force. See option aggmethod() for more details.

Stored results
import haverdirect stores the following in r():

Scalars

r(k requested) number of series requested

r(k noaggtype) number of series dropped because of invalid aggregation type

r(k nodisagg) number of series dropped because their frequency is lower than that of the output dataset

r(k notinrange) number of series dropped because data were out of the date range specified in fwithin()
or fin()

r(k notfound) number of series not found in the database

Macros

r(dbnamelist) list of Haver databases used in command

r(noaggtype) list of series dropped because of invalid aggregation type

r(nodisagg) list of series dropped because their frequency is lower than that of the output dataset

r(notinrange) list of series dropped because data were out of the date range specified in fwithin() or
fin()

r(notfound) list of series not found in the database

import haverdirect, describe stores the following in r():

Scalars

r(k described) number of series described

r(k notfound) number of series not found in the database

Macros

r(notfound) list of series not found in the database

Also see
[D] import — Overview of importing data into Stata

[D] import delimited — Import and export delimited text data

[D] import fred — Import data from Federal Reserve Economic Data

[D] import haver — Import data from Haver Analytics databases

[D] jdbc — Load, write, or view data from a database with a Java API

[D] odbc — Load, write, or view data from ODBC sources

[TS] tsset — Declare data to be time-series data
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
import sas reads into memory a version 7 or higher SAS (.sas7bdat) file. It can also import SAS

value labels from a .sas7bcat file. import sas can import up to 32,766 variables at one time (up to
2,048 variables in Stata/BE). If your SAS file contains more variables than this, you can break up the SAS

file into multiple Stata datasets. You can also import SAS value labels from a .sas7bcat file.

Quick start
Import the SAS file myfile.sas7bdat into Stata

import sas myfile

Same as above, but replace the data in memory

import sas myfile, clear

Same as above, but import only variables x1 and x2
import sas x1 x2 using myfile, clear

Import data from SAS file myfile and value labels from file labels.sas7bcat
import sas myfile, bcat(labels)

Menu
File > Import > SAS data (*.sas7bdat)

544
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Syntax
Load a SAS file (*.sas7bdat)

import sas [ using ] filename [ , options ]

Load a subset of a SAS file (*.sas7bdat)

import sas [ namelist ] [ if ] [ in ] using filename [ , options ]

If filename is specified without an extension, .sas7bdat is assumed. If filename contains embedded

spaces, enclose it in double quotes.

namelist specifies SAS variable names to be imported.

options Description

bcat(filename𝑣𝑙) load value labels defined in filename𝑣𝑙 into memory

case(lower | upper | preserve) read variable names as lowercase or uppercase;
the default is to preserve the case

clear replace data in memory

encoding(”encoding”) specify the file encoding; see help encodings

collect is allowed; see [U] 11.1.10 Prefix commands.

encoding() does not appear in the dialog box.

Options
bcat(filename𝑣𝑙) specifies that the value labels defined in filename𝑣𝑙 be loaded into memory along with

the dataset. If filename𝑣𝑙 is specified without an extension, .sas7bcat is assumed. If filename𝑣𝑙
contains embedded spaces, enclose it in double quotes.

SAS does not assign value labels to variables; therefore, you must use the label values command
to assign the value labels to specific variables after importing them.

case(lower | upper | preserve) specifies the case of the variable names after import. The default is
case(preserve).

clear specifies that it is okay to replace the data in memory, even though the current data have not been
saved to disk.

The following option is available with import sas but is not shown in the dialog box:

encoding(”encoding”) specifies the encoding of the file. If your file has an incorrect encoding specified
in the file header, you can use this option to specify the correct encoding. See help encodings for
details.

Remarks and examples
import sas reads into memory version 7 or higher SAS (.sas7bdat) files. If a SAS variable name

from the file does not conform to a Stata variable name, a generic v# name will be assigned, and the
original variable name will be stored as a characteristic for the variable. If a SAS variable label is too long,

it will be truncated to 80 characters. The original variable label will be stored as a variable characteristic.

If a SAS data label is too long, it will be truncated to 80 characters, and the original label will be stored

as a data characteristic.
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Example 1: Importing a SAS file into Stata
We can import SAS files into Stata, either by selecting the entire file or by selecting subsets of the data,

with import sas. For example, we have the SAS file auto.sas7bdat, which contains data on automo-
biles, and we have value labels for these data stored in formats.sas7bcat. Below, we demonstrate
how to import these data into Stata. To follow along, download these files to your working directory by

typing the copy commands below:

. copy https://www.stata.com/sampledata/auto.sas7bdat auto.sas7bdat

. copy https://www.stata.com/sampledata/formats.sas7bcat formats.sas7bcat

To load the file auto.sas7bdat into Stata’s memory, we type

. import sas auto.sas7bdat
(12 vars, 74 obs)

We can instead import only the variables make, weight, and foreign from auto.sas7bdat. We use

the bcat() option to add the value labels defined in the formats.sas7bcat file and the clear option
to replace the data in memory without saving them.

. import sas make weight foreign using auto, bcat(formats) clear
(3 vars, 74 obs)
. list in 1/5

make weight foreign

1. AMC Concord 2930 0
2. AMC Pacer 3350 0
3. AMC Spirit 2640 0
4. Buick Century 3250 0
5. Buick Electra 4080 0

We list the value labels that we imported using label list

. label list
ORIGIN:

0 Domestic
1 Foreign

ORIGIN contains value labels for the variable foreign. We need to use the label values command
to apply this label to foreign. Then, we save the data with these labels attached.

. label values foreign ORIGIN

. list in 1/5

make weight foreign

1. AMC Concord 2930 Domestic
2. AMC Pacer 3350 Domestic
3. AMC Spirit 2640 Domestic
4. Buick Century 3250 Domestic
5. Buick Electra 4080 Domestic

. save myauto
file myauto.dta saved
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Stored results
import sas stores the following in r():

Scalars

r(N) number of observations imported

r(k) number of variables imported

Also see
[D] import sasxport5 — Import and export data in SAS XPORT Version 5 format

[D] import sasxport8 — Import and export data in SAS XPORT Version 8 format

[D] import — Overview of importing data into Stata



import sasxport5 — Import and export data in SAS XPORT Version 5 format

Description Quick start
Menu Syntax
Options for import sasxport5 Options for export sasxport5
Remarks and examples Stored results
Technical appendix Also see

Description
import sasxport5 and export sasxport5 convert data from and to SASXPORTVersion 5 Transport

format. The US Food and Drug Administration uses this SAS XPORT Transport format as the format for

datasets submitted with new drug and new device applications (NDAs).

export sasxport5 saves the data in memory as a SAS XPORT Transport (.xpt) file. If needed, this
command also creates formats.xpf—an additional XPORT file—containing the value-label definitions.

These files can be easily read into SAS.

import sasxport5 reads into memory data from a SASXPORTTransport (.xpt) file. When available,

this command also reads the value-label definitions stored in formats.xpf or FORMATS.xpf.

import sasxport5, describe describes the contents of a SAS XPORT Version 5 Transport file.

Quick start
Describe the contents of SAS XPORT Version 5 Transport file mydata.xpt

import sasxport5 mydata, describe

Load the contents of mydata.xpt into memory
import sasxport5 mydata

Same as above, and ignore the accompanying SAS formats file formats.xpf
import sasxport5 mydata, novallabels

Save data in memory to mydata.xpt
export sasxport5 mydata

Same as above, but rename variables to meet SAS XPORT restrictions

export sasxport5 mydata, rename

Same as above, and do not save value labels

export sasxport5 mydata, rename replace vallabfile(none)

Save v1, v2, and v3 to mydata.xpt, where time variable tvar is equal to 2010
export sasxport5 v1 v2 v3 using mydata if tvar==2010

548
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Menu
import sasxport5
File > Import > SAS XPORT Version 5 (*.xpt)

export sasxport5
File > Export > SAS XPORT Version 5 (*.xpt)

Syntax
Import SAS XPORT Version 5 Transport file into Stata

import sasxport5 filename [ , import options ]

Describe contents of SAS XPORT Version 5 Transport file

import sasxport5 filename, describe [ member(mbrname) ]

Export data in memory to a SAS XPORT Version 5 Transport file

export sasxport5 filename [ if ] [ in ] [ , export options ]
export sasxport5 varlist using filename [ if ] [ in ] [ , export options ]

If filename is specified without an extension, .xpt is assumed. If filename contains embedded spaces,
enclose it in double quotes.

import options Description

clear replace data in memory

novallabels ignore accompanying formats.xpf file if it exists
member(mbrname) member to use; seldom used

collect is allowed with import sasxport5; see [U] 11.1.10 Prefix commands.

export options Description

Main

rename rename variables and value labels to meet SAS XPORT restrictions

replace overwrite files if they already exist

vallabfile(xpf) save value labels in formats.xpf
vallabfile(sascode) save value labels in SAS command file

vallabfile(both) save value labels in formats.xpf and in a SAS command file
vallabfile(none) do not save value labels
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Options for import sasxport5
describe describes the contents of the SASXPORTVersion 5 Transport file. This option can be combined

only with member().

clear specifies that it is okay to replace the data in memory, even though the current data have not been
saved to disk.

novallabels specifies that value-label definitions stored in formats.xpf or FORMATS.xpf not be

looked for or loaded. By default, if variables are labeled in filename.xpt, then import sasxport5
looks for formats.xpf to obtain and load the value-label definitions. If the file is not found, Stata
looks for FORMATS.xpf. If that file is not found, a warning message is issued.

import sasxport5 can use only a formats.xpf or FORMATS.xpf file to obtain value-label defini-
tions. import sasxport5 cannot understand value-label definitions from a SAS command file.

member(mbrname) specifies a member of the .xpt file. Although no longer often used, the original

XPORT definition allowed multiple datasets to be placed in one file. The member() option allows you
to read these old files, selecting only specific datasets (members) to be used by import sasxport5.
You can obtain a list of member names by using import sasxport5, describe. By default, only
the first member is used, unless describe is specified, in which case all members are described.

Because it is rare for an XPORT file to have more than one member, this option is seldom used.

Options for export sasxport5

� � �
Main �

rename specifies that export sasxport5 may rename variables and value labels to attempt to meet the
SAS XPORT restrictions, which are that names be no more than eight bytes long and that there be no

distinction between uppercase and lowercase letters. Note that rename does not remove characters
beyond the normal ASCII range, such as most Unicode characters and all extended ASCII characters.

SAS may or may not support such characters in variable labels and value labels.

We recommend specifying the rename option. If this option is specified, any name violating the

restrictions is changed to a different but related name in the file. The name changes are listed. The

new names are used only in the file; the names of the variables and value labels in memory remain

unchanged.

If rename is not specified and one or more names violate the XPORT restrictions, an error message

will be issued and no file will be saved. The alternative to the rename option is that you can rename
variables yourself with the rename command:

. rename mylongvariablename myname

See [D] rename. Renaming value labels yourself is more difficult. The easiest way to rename value

labels is to use label save, edit the resulting file to change the name, execute the file by using do,
and reassign the new value label to the appropriate variables by using label values:

. label save mylongvaluelabel using myfile.do

. doedit myfile.do (change mylongvaluelabel to, say, mlvlab)

. do myfile.do

. label values myvar mlvlab

See [D] label and [R] do for more information about renaming value labels.
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replace permits export sasxport5 to overwrite existing filename.xpt, formats.xpf, and file-

name.sas files.

vallabfile(xpf | sascode | both | none) specifies whether and how value labels are to be stored. SAS

XPORT Transport files do not really have value labels. Value-label definitions can be preserved in one

of two ways:

1. In an additional SAS XPORT Version 5 Transport file whose data contain the value-label defini-

tions

2. In a SAS command file that will create the value labels

export sasxport5 can create either or both of these files.

vallabfile(xpf), the default, specifies that value labels be written into a separate SASXPORTTrans-
port file named formats.xpf. Thus, export sasxport5 creates two files: filename.xpt, containing
the data, and formats.xpf, containing the value labels. No formats.xpf file is created if there are
no value labels.

SAS users can easily use the resulting .xpt and .xpf XPORT files.

See https://www.sas.com/govedu/fda/macro.html, and click on the FDA Submission Standards tab.

Then, click on the Processing Data Sets Code tab that appears below the “FDA and SAS Technology”

text for SAS-providedmacros for reading the XPORT files. The SASmacro fromexp() reads the XPORT
files into SAS. The SAS macro toexp() creates XPORT files. When obtaining the macros, remember

to save the macros at SAS’s webpage as a plain text file and to remove the examples at the bottom.

If the SAS macro file is saved as C:\project\macros.mac and the files mydat.xpt and

formats.xpf created by export sasxport5 are in C:\project\, the following SAS commands

would create the corresponding SAS dataset and format library and list the data:

SAS commands

%include ”C:\project\macros.mac” ;
%fromexp(C:\project, C:\project) ;
libname library ’C:\project’ ;
data _null_ ; set library.mydat ; put _all_ ; run ;
proc print data = library.mydat ;
quit ;

vallabfile(sascode) specifies that the value labels be written into a SAS command file, file-

name.sas, containing SAS proc format and related commands. Thus, export sasxport5 creates
two files: filename.xpt, containing the data, and filename.sas, containing the value labels. SAS

users may wish to edit the resulting filename.sas file to change the “libname datapath” and “libname
xptfile xport” lines at the top to correspond to the location that they desire. export sasxport5 sets
the location to the current working directory at the time export sasxport5 was issued. No .sas
file will be created if there are no value labels.

vallabfile(both) specifies that both the actions described above be taken and that three files be
created: filename.xpt, containing the data; formats.xpf, containing the value labels in XPORT for-

mat; and filename.sas, containing the value labels in SAS command-file format.

vallabfile(none) specifies that value-label definitions not be saved. Only one file is created:

filename.xpt, which contains the data.

https://www.sas.com/govedu/fda/macro.html
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Remarks and examples
All users, of course, may use these commands to transfer data between SAS and Stata, but there are

limitations in the SAS XPORT Transport format, such as the eight-character limit on the names of vari-

ables (specifying export sasxport5’s rename option works around that). For a complete listing of

limitations and issues concerning the SAS XPORT Transport format and an explanation of how export
sasxport5 and import sasxport5 work around these limitations, see Technical appendix below.

Remarks are presented under the following headings:

Saving XPORT files for transferring to SAS
Determining the contents of XPORT files received from SAS
Using XPORT files received from SAS

Saving XPORT files for transferring to SAS

Example 1: Exporting data to XPORT files
To demonstrate, we first load auto.dta. To save only variables make, mpg, and weight in

auto sub.xpt, we type
. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. export sasxport5 make mpg weight using auto_sub
file auto_sub.xpt saved

We can save all the variables in the data to auto.xpt and save the value labels in formats.xpf.
We specify the rename option to rename variable names and value labels that are too long or are case
sensitive.

. export sasxport5 auto, rename
the following variable(s) were renamed in the output file:

displacement -> DISPLACE
gear_ratio -> GEAR_RAT

file auto.xpt saved
file formats.xpf saved

Alternatively, we can save the data in auto.xpt and save the value labels to a formats.xpf file and
in a SAS command file auto.sas. We include the replace option to allow replacement of the files we

created with our previous command.

. export sasxport5 auto, rename replace vallabfile(both)
the following variable(s) were renamed in the output file:

displacement -> DISPLACE
gear_ratio -> GEAR_RAT

file auto.xpt saved
file auto.sas saved
file formats.xpf saved

If we instead wanted to save the value labels only in the SAS command file, we could have typed

. export sasxport5 auto, rename replace vallabfile(sas)

If we did not want to save the value labels at all, thus creating only auto.xpt, we could have typed

. export sasxport5 typed, rename replace vallabfile(none)
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Determining the contents of XPORT files received from SAS

Example 2: Describing XPORT files
To investigate the contents of the auto.xpt file we created above, we can type

. import sasxport5 auto, describe
data from auto.xpt, member(auto)
obs: 74 28mar25:19:45:21

vars: 12 (date shown exactly as recorded in file)
size: 8,140

variable variable value
name type label variable label

make str18 Make and model
price numeric Price
mpg numeric Mileage (mpg)
rep78 numeric Repair record 1978
headroom numeric Headroom (in.)
trunk numeric Trunk space (cu. ft.)
weight numeric Weight (lbs.)
length numeric Length (in.)
turn numeric Turn circle (ft.)
displace numeric Displacement (cu. in.)
gear_rat numeric Gear ratio
foreign numeric origin Car origin

Using XPORT files received from SAS

Example 3: Importing XPORT files
To read data from auto.xpt and obtain value labels from formats.xpf, we can type

. import sasxport5 auto, clear

Stored results
import sasxport5, describe stores the following in r():

Scalars

r(N) number of observations

r(k) number of variables

r(size) size of data

r(n members) number of members

Macros

r(members) names of members
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Technical appendix
Technical details concerning the SAS XPORTVersion 5 Transport format and how export sasxport5

and import sasxport5 handle issues regarding the format are presented under the following headings:
A1. Overview of SAS XPORT Transport format
A2. Implications for writing XPORT datasets from Stata
A3. Implications for reading XPORT datasets into Stata

A1. Overview of SAS XPORT Transport format
A SAS XPORT Transport file may contain one or more separate datasets, known as members. It is

rare for a SAS XPORT Transport file to contain more than one member. See https://support.sas.com/tech-

sup/technote/ts140.pdf for the SAS technical document describing the layout of the SAS XPORT Transport

file.

A SAS XPORT dataset (member) is subject to certain restrictions:

1. The dataset may contain only 9,999 variables.

2. The names of the variables and value labels may not be longer than eight characters and are

case insensitive; for example, myvar, Myvar, MyVar, and MYVAR are all the same name.

3. Variable labels may not be longer than 40 characters.

4. The contents of a variable may be numeric or string:

a. Numeric variables may be integer or floating but may not be smaller than 5.398e–79

or greater than 9.046e+74, absolutely. Numeric variables may contain missing, which

may be ., . , .a, .b, . . . , .z.

b. String variables may not exceed 200 characters. String variables are recorded in a

“padded” format, meaning that, when variables are read, it cannot be determined

whether the variable had trailing blanks.

5. Value labels are not written in the XPORT dataset. Suppose that you have variable sex in the
data with values 0 and 1 and that the values are labeled for gender (0 = male, and 1 = female).

When the dataset is written in SAS XPORT Transport format, you can record that the variable

label gender is associated with the sex variable, but you cannot record the association with
the value labels male and female.

Value-label definitions are typically stored in a second XPORT dataset or in a text file containing

SAS commands. You can use the vallabfile() option of export sasxport5 to produce these
datasets or files.

https://support.sas.com/techsup/technote/ts140.pdf
https://support.sas.com/techsup/technote/ts140.pdf
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Value labels and formats are recorded in the same position in an XPORT file, meaning that names

corresponding to formats used in SAS cannot be used. Thus, value labels may not be named

best, binary, comma, commax, d, date, datetime, dateampm, day, ddmmyy,
dollar, dollarx, downame, e, eurdfdd, eurdfde, eurdfdn, eurdfdt, eurdfdwn,
eurdfmn, eurdfmy, eurdfwdx, eurdfwkx, float, fract, hex, hhmm, hour, ib,
ibr, ieee, julday, julian, percent, minguo, mmddyy, mmss, mmyy, monname,
month, monyy, negparen, nengo, numx, octal, pd, pdjulg, pdjuli, pib, pibr, pk,
pvalue, qtr, qtrr, rb, roman, s370ff, s370fib, s370fibu, s370fpd, s370fpdu,
s370fpib, s370frb, s370fzd, s370fzdl, s370fzds, s370fzdt, s370fzdu, ssn,
time, timeampm, tod, weekdate, weekdatx, weekday, worddate, worddatx,
wordf, words, year, yen, yymm, yymmdd, yymon, yyq, yyqr, z, zd, or any upper-
case variation of these.

We refer to this as the “Known Reserved Word List” in this documentation. Other words may

also be reserved by SAS; the technical documentation for the SAS XPORT Transport format pro-

vides no guidelines. This list was created by examining the formats defined in SAS Language

Reference: Dictionary, Version 8. If SAS adds new formats, the list will grow.

6. A flaw in the XPORT design can make it impossible, in rare instances, to determine the exact

number of observations in a dataset. This problem can occur only if 1) all variables in the dataset

are string and 2) the sum of the lengths of all the string variables is less than 80. Actually, the

above is the restriction, assuming that the code for reading the dataset is written well. If it is

not, the flaw could occur if 1) the last variable or variables in the dataset are string and 2) the

sum of the lengths of all variables is less than 80.

To prevent stumbling over this flaw, make sure that the last variable in the dataset is not a string

variable. This is always sufficient to avoid the problem.

7. There is no provision for saving the Stata concepts notes and characteristics.

A2. Implications for writing XPORT datasets from Stata
Stata datasets for the most part fit well into the SASXPORTTransport format. With the same numbering

scheme as above,

1. Stata refuses to write the dataset if it contains more than 9,999 variables.

2. Stata issues an error message if any variable or label name violates the naming restrictions, or

if the rename option is specified, Stata fixes any names that violate the restrictions.

Whether or not rename is specified, names will be recorded without regard to case: you do not
have to name all your variables with all lowercase or all uppercase letters. Stata verifies that

ignoring case does not lead to problems, complaining or, if option rename is specified, fixing
them.

3. Stata truncates variable labels to 40 characters to fit within the XPORT limit.

4. Stata treats variable contents as follows:

a. If a numeric variable records a value greater than 9.046e+74 in absolute value, Stata

issues an error message. If a variable records a value less than 5.398e–79 in absolute

value, 0 is written.
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b. If you have string variables longer than 200 characters, Stata issues an error message.

Also, if any string variable has trailing blanks, Stata issues an error message. To

remove trailing blanks from string variable s, you can type

. replace s = rtrim(s)

To remove leading and trailing blanks, type

. replace s = trim(s)

5. Value-label names are written in the XPORT dataset. The contents of the value label are not writ-

ten in the same XPORT dataset. By default, formats.xpf, a second XPORT dataset, is created

containing the value-label definitions.

SAS recommends creating a formats.xpf file containing the value-label definitions (what SAS
calls format definitions). They have provided SAS macros, making the reading of .xpt and

formats.xpf files easy. See https://www.sas.com/govedu/fda/macro.html for details.

Alternatively, a SAS command file containing the value-label definitions can be produced. The

vallabfile() option of export sasxport5 is used to indicate which, if any, of the formats
to use for recording the value-label definitions.

If a value-label name matches a name on the Known Reserved Word List, and the rename
option is not specified, Stata issues an error message.

If a variable has no value label, the following format information is recorded:

Stata format SAS format

%td. . . MMDDYY10.
%-td. . . MMDDYY10.
%#s $CHAR#.
%-#s $CHAR#.
% #s $CHAR#.
all other BEST12.

6. If you have a dataset that could provoke the XPORT design flaw, a warning message is issued.

Remember, the best way to avoid this flaw is to ensure that the last variable in the dataset is

numeric. This is easily done. You could, for instance, type

. generate ignoreme = 0

. export sasxport ...

7. Because the XPORT file format does not support notes and characteristics, Stata ignores them

when it creates the XPORT file. You may wish to incorporate important notes into the documen-

tation that you provide to the user of your XPORT file.

https://www.sas.com/govedu/fda/macro.html
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A3. Implications for reading XPORT datasets into Stata
Reading SAS XPORTVersion 5 Transport format files into Stata is easy, but sometimes there are issues

to consider:

1. If there are too many variables, Stata issues an error message. If you are using Stata/MP or

Stata/SE, you can increase the maximum number of variables with the set maxvar command;
see [D] memory.

2. The XPORT variable-naming restrictions are more restrictive than those of Stata, so no problems

should arise. However, Stata reserves the following names:

all, b, byte, coef, cons, double, float, if, in, int, long, n, N, pi,
pred, rc, skip, str#, strL, using, with

If the XPORT file contains variables with any of these names, Stata issues an error message.

Also, the error message

. import sasxport5 ...
________ already defined
r(110);

indicates that the XPORT file was incorrectly prepared by some other software and that two or

more variables share the same name.

3. The XPORT variable-label-length limit is more restrictive than that of Stata, so no problems can

arise.

4. Variable contents may cause problems:

a. The range of numeric variables in anXPORT dataset is a subset of that allowed by Stata,

so no problems can arise. All variables are brought back as doubles; we recommend
that you run compress after loading the dataset:

. import sasxport5 ...

. compress

See [D] compress.

Stata has no missing-value code corresponding to . . If any value records . , then

.u is stored.

b. String variables are brought back as recorded but with all trailing blanks stripped.

5. Value-label names are read directly from the XPORT dataset. Any value-label definitions are

obtained from a separate XPORT dataset, if available. If a value-label name matches any in the

Known Reserved Word List, no value-label name is recorded, and instead, the variable display

format is set to %9.0g, %10.0g, or %td.

The %td Stata format is used when the following SAS formats are encountered:

DATE, EURDFDN, JULDAY, MONTH, QTRR, YEAR, DAY, EURDFDWN, JULIAN, MONYY,
WEEKDATE, YYMM, DDMMYY, EURDFMN, MINGUO, NENGO, WEEKDATX, YYMMDD, DOWNAME,
EURDFMY, MMDDYY, PDJULG, WEEKDAY, YYMON, EURDFDD, EURDFWDX, MMYY, PDJULI,
WORDDATE, YYQ, EURDFDE, EURDFWKX, MONNAME, QTR, WORDDATX, YYQR

If the XPORT file indicates that one or more variables have value labels, import sasxport5
looks for the value-label definitions in formats.xpf, another XPORT file. If it does not find this
file, it looks for FORMATS.xpf. If this file is not found, import sasxport5 issues a warning
message unless the novallabels option is specified.
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Stata does not allow value-label ranges or string variables with value labels. If the .xpt file or
formats.xpf file contains any of these, an error message is issued. The novallabels option
allows you to read the data, ignoring all value labels.

6. If a dataset is read that provokes the all-stringsXPORT design flaw, the dataset with theminimum

number of possible observations is returned, and a warning message is issued. This duplicates

the behavior of SAS.

7. SAS XPORT format does not allow notes or characteristics, so no issues can arise.

Also see
[D] import sas — Import SAS files

[D] import sasxport8 — Import and export data in SAS XPORT Version 8 format

[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata
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Description Quick start Menu
Syntax Options for import sasxport8 Options for export sasxport8
Remarks and examples Stored results Also see

Description
import sasxport8 and export sasxport8 import and export data from and to SAS XPORTVersion

8 Transport format.

To import and export datasets from and to SAS XPORT Version 5 Transport format, see [D] import

sasxport5.

Quick start
Load the contents of mydata.v8xpt into memory, replacing the data in memory

import sasxport8 mydata, clear

Same as above, but read variable names as lowercase

import sasxport8 mydata, clear case(lower)

Save data in memory to mydata.v8xpt, replacing the existing file
export sasxport8 mydata, replace

Save v1 and v2 to mydata.v8xpt, and save their corresponding value labels in a SAS command file,

mydata.sas
export sasxport8 v1 v2 using mydata, replace vallabfile

Menu
import sasxport8
File > Import > SAS XPORT Version 8 (*.v8xpt)

export sasxport8
File > Export > SAS XPORT Version 8 (*.v8xpt)
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Syntax
Import SAS XPORT Version 8 Transport file into Stata

import sasxport8 filename [ , import options ]

Export data in memory to a SAS XPORT Version 8 Transport file

export sasxport8 filename [ if ] [ in ] [ , export options ]
export sasxport8 varlist using filename [ if ] [ in ] [ , export options ]

If filename is specified without an extension, .v8xpt is assumed. If filename contains embedded spaces,
enclose it in double quotes.

import options Description

case(lower | upper | preserve) read variable names as lowercase or uppercase;
the default is to preserve the case

clear replace data in memory

collect is allowed with import sasxport8; see [U] 11.1.10 Prefix commands.

export options Description

Main

replace overwrite files if they already exist

vallabfile save value labels in SAS command file

Options for import sasxport8
case(lower | upper | preserve) specifies the case of the variable names after import. The default is

case(preserve).

clear specifies that it is okay to replace the data in memory, even though the current data have not been
saved to disk.

Options for export sasxport8

� � �
Main �

replace permits export sasxport8 to overwrite the existing filename.v8xpt.

vallabfile specifies that the value labels be written into a SAS command file, filename.sas, con-
taining SAS proc format and related commands. Thus, export sasxport8 creates two files: file-
name.v8xpt, containing the data, and filename.sas, containing the value labels. SAS users may wish
to edit the resulting filename.sas file to change the “libname datapath” and “libname xptfile xport”
lines at the top to correspond to the location that they desire. export sasxport8 sets the location to
the current working directory at the time export sasxport8was issued. No .sas file will be created
if there are no value labels.
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Remarks and examples
To save the data in memory as a SAS XPORT Version 8 Transport file, type

. export sasxport8 filename

To read a SAS XPORT Version 8 Transport file into Stata, type

. import sasxport8 filename

Stata will read into memory the XPORT file filename.v8xpt containing the data.

To demonstrate the use of export sasxport8 and import sasxport8, we will first load auto.dta
and export these data to a SAS V8XPORT named auto.v8xpt:

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. export sasxport8 auto
file auto.v8xpt saved

We can export a subset of the data that includes only the variables make, mpg, and weight to a file
named auto sub.v8xpt.

. export sasxport8 make mpg weight using auto_sub
file auto_sub.v8xpt saved

Now, we import the data from auto sub.v8xpt that we just created.

. import sasxport8 auto_sub, clear
(3 vars, 74 obs)
. describe
Contains data
Observations: 74 1978 automobile data

Variables: 3

Variable Storage Display Value
name type format label Variable label

make str17 %17s Make and model
mpg byte %10.0g Mileage (mpg)
weight int %15.4g Weight (lbs.)

Sorted by:
Note: Dataset has changed since last saved.

Stored results
import sasxport8 stores the following in r():

Scalars

r(N) number of observations imported

r(k) number of variables imported
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Also see
[D] import sas — Import SAS files

[D] import sasxport5 — Import and export data in SAS XPORT Version 5 format

[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata
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Description Quick start Menu
Syntax Options for import spss Option for export spss
Remarks and examples Stored results Also see

Description
import spss reads into memory a version 16 or higher IBM SPSS Statistics (.sav) file or a version 21

or higher compressed IBM SPSS Statistics (.zsav) file. import spss can import up to 32,766 variables
at one time (up to 2,048 in Stata/BE). If your SPSS file contains more variables than this, you can break

up the SPSS file into multiple Stata datasets.

export spss writes Stata’s data to an IBM SPSS Statistics (.sav) file.

Quick start
Import the IBM SPSS Statistics file myfile.sav into Stata

import spss myfile

Same as above, but replace the data in memory

import spss myfile, clear

Same as above, but import only variables x1 and x4
import spss x1 x4 using myfile, clear

Import the compressed IBM SPSS Statistics file compfile.zsav into Stata
import spss compfile, zsav

Same as above, but read variable names as lowercase

import spss compfile, zsav case(lower)

Export data in memory to mydata.sav
export spss mydata

Same as above, but export only variables v1 and v2
export spss v1 v2 using mydata

Menu
import spss
File > Import > SPSS data (*.sav)

export spss
File > Export > SPSS data (*.sav)
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Syntax
Load an IBM SPSS Statistics file (*.sav)

import spss [ using ] filename [ , options ]

Load a compressed IBM SPSS Statistics file (*.zsav)

import spss [ using ] filename, zsav [ options ]

Load a subset of an IBM SPSS Statistics file (*.sav)

import spss [ namelist ] [ if ] [ in ] using filename [ , options ]

Load a subset of a compressed IBM SPSS Statistics file (*.zsav)

import spss [ namelist ] [ if ] [ in ] using filename, zsav [ options ]

Save data in memory to an IBM SPSS Statistics file (*.sav)

export spss [ using ] filename [ if ] [ in ] [ , replace ]

Save subset of variables in memory to an IBM SPSS Statistics file (*.sav)

export spss [ varlist ] using filename [ if ] [ in ] [ , replace ]

If filename is specified without an extension, .sav is assumed unless you specify the zsav option, in
which case extension .zsav is assumed. If filename contains embedded spaces, enclose it in double
quotes.

namelist specifies SPSS variable names to be imported.

options Description

case(lower | upper | preserve) read variable names as lowercase or uppercase;
the default is to preserve the case

clear replace data in memory

encoding(”encoding”) specify the file encoding; see help encodings

collect is allowed with import spss; see [U] 11.1.10 Prefix commands.

encoding() does not appear in the dialog box.
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Options for import spss
zsav indicates the file to load is a compressed IBM SPSS Statistics file.

case(lower | upper | preserve) specifies the case of the variable names after import. The default is
case(preserve).

clear specifies that it is okay to replace the data in memory, even though the current data have not been
saved to disk.

The following option is available with import spss but is not shown in the dialog box:

encoding(”encoding”) specifies the encoding of the file. If your file has an incorrect encoding specified
in the file header, you can use this option to specify the correct encoding. See help encodings for
details.

Option for export spss
replace specifies that filename be replaced if it already exists.

Remarks and examples
import spss reads into memory a version 16 or higher IBM SPSS Statistics (.sav) file or a version 21

or higher compressed IBM SPSS Statistics (.zsav) file. If an SPSS variable name from the file does not

conform to a Stata variable name, a generic v# name will be assigned, and the original variable name will
be stored as a characteristic for the variable. If an SPSS variable label is too long, it will be truncated to 80

characters, and the original variable label will be stored as a variable characteristic. All value labels for

string variables will be ignored. Value labels for numeric variables will be named labels# and attached
to the corresponding variable.

export spss exports the Stata dataset in memory, or a subset of the dataset, to an IBM SPSS Statistics

(.sav) file.
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Example 1: Importing an SPSS file into Stata
We can import SPSS files into Stata, either by selecting the entire file or by selecting subsets of the data,

with import spss. For example, we have the SPSS file auto.sav, which contains data on automobiles.
Below, we demonstrate how to import these data into Stata. To follow along, download this file to your

working directory by typing the copy command below:

. copy https://www.stata.com/sampledata/auto.sav auto.sav

We first load the entire auto.sav file into Stata by typing

. import spss auto
(12 vars, 74 obs)
. describe
Contains data
Observations: 74

Variables: 12

Variable Storage Display Value
name type format label Variable label

make str17 %17s
price int %5.0f
mpg byte %2.0f
rep78 byte %1.0f
headroom double %3.1f
trunk byte %2.0f
weight int %4.0f
length int %3.0f
turn byte %2.0f
displacement int %3.0f
gear_ratio double %4.2f
foreign byte %1.0f

Sorted by:
Note: Dataset has changed since last saved.
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We can instead import only variables make and weight into memory from auto.sav. We include

the clear option to replace the data in memory without saving them.

. import spss make weight using auto, clear
(2 vars, 74 obs)
. describe
Contains data
Observations: 74

Variables: 2

Variable Storage Display Value
name type format label Variable label

make str17 %17s
weight int %4.0f

Sorted by:
Note: Dataset has changed since last saved.

Example 2: Export all Stata data to an SPSS file
We have a data on food consumption. The data is currently in the Stata .dta format. We would like

to export the data to an IBM SPSS Statistics file. We first load the Stata dataset and then export the data

to a file named food consumption.sav:

. use https://www.stata-press.com/data/r19/food_consumption, clear
(Food consumption)
. export spss food_consumption
file food_consumption.sav saved

Stored results
import spss stores the following in r():

Scalars

r(N) number of observations imported

r(k) number of variables imported

Also see
[D] import — Overview of importing data into Stata

[D] export — Overview of exporting data from Stata



infile (fixed format) — Import text data in fixed format with a dictionary

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
infile using reads a dataset that is stored in text form. infile using does this by first reading

dfilename—a “dictionary” that describes the format of the data file—and then reads the file containing

the data. The dictionary is a file you create with the Do-file Editor or an editor outside Stata.

Strings containing plain ASCII or UTF-8 are imported correctly. Strings containing extended ASCII

will not be imported (that is, displayed) correctly; you can use Stata’s replace command with the

ustrfrom() function to convert extended ASCII to UTF-8. If ebcdic is specified, the data will be con-
verted from EBCDIC to ASCII as they are imported. The dictionary in all cases must be ASCII.

If using filename is not specified, the data are assumed to begin on the line following the closing

brace. If using filename is specified, the data are assumed to be located in filename.

The data may be in the same file as the dictionary or in another file. infile with a dictionary can
import both numeric and string data. Individual strings may be up to 100,000 bytes long. Strings longer

than 2,045 bytes are imported as strLs (see [U] 12.4.8 strL).

Another variation on infile omits the intermediate dictionary; see [D] infile (free format). This

variation is easier to use but will not read fixed-format files. On the other hand, although infile with a
dictionary will read free-format files, infile without a dictionary is even better at it.

An alternative to infile using for reading fixed-format files is infix; see [D] infix (fixed format).

infix provides fewer features than infile using but is easier to use.

Stata has other commands for reading data. If you are not certain that infile using will do what
you are looking for, see [D] import and [U] 22 Entering and importing data.

Quick start
For dictionary file mydata.dct that reads int-type v1 and str10-type v2

dictionary {
int v1
str10 v2

}

Import data from mydata.raw with instructions for reading the data contained in dictionary file

mydata.dct
infile using mydata.dct, using(mydata.raw)

Same as above

infile using mydata, using(mydata)

Same as above, but import data from mydata.txt
infile using mydata, using(mydata.txt)

568
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Same as above, but read only the first 10 observations

infile using mydata in 1/10, using(mydata.txt)

Read only observations where catvar is equal to 4 or 5
infile using mydata if catvar==4 | catvar==5, using(mydata.txt)

Menu
File > Import > Text data in fixed format with a dictionary

Syntax
infile using dfilename [ if ] [ in ] [ , options ]

If dfilename is specified without an extension, .dct is assumed. If dfilename contains embedded spaces,
remember to enclose it in double quotes.

options Description

Main

using(filename) text dataset filename

clear replace data in memory

Options

automatic create value labels from nonnumeric data

ebcdic treat text dataset as EBCDIC

A dictionary is a text file that is created with the Do-file Editor or an editor outside Stata. This file

specifies how Stata should read fixed-format data from a text file. The syntax for a dictionary is

begin dictionary file
[infile] dictionary [using filename] {

* comments may be included freely
_lrecl(#)
_firstlineoffile(#)
_lines(#)
_line(#)
_newline[(#)]
_column(#)

_skip[(#)]
[type] varname [:lblname] [% infmt] [”variable label”]

}
(your data might appear here)

end dictionary file

where % infmt is { %[#[.#] ]{f|g|e} | %[#]s | %[#]S }
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Options

� � �
Main �

using(filename) specifies the name of a file containing the data. If using() is not specified, the data
are assumed to follow the dictionary in dfilename, or if the dictionary specifies the name of some

other file, that file is assumed to contain the data. If using(filename) is specified, filename is used
to obtain the data, even if the dictionary says otherwise. If filename is specified without an extension,

.raw is assumed.

If filename contains embedded spaces, remember to enclose it in double quotes.

clear specifies that it is okay for the new data to replace what is currently in memory. To ensure that

you do not lose something important, infile using will refuse to read new data if other data are

already in memory. clear allows infile using to replace the data in memory. You can also drop
the data yourself by typing drop all before reading new data.

� � �
Options �

automatic causes Stata to create value labels from the nonnumeric data it reads. It also automatically

widens the display format to fit the longest label.

ebcdic specifies that the data be stored using EBCDIC character encoding rather than the default ASCII

encoding and that the data be converted from EBCDIC to ASCII as they are imported.

Dictionary directives
*marks comment lines. Wherever you wish to place a comment, begin the line with a *. Comments can

appear many times in the same dictionary.

lrecl(#) is used only for reading datasets that do not have end-of-line delimiters (carriage return,

line feed, or some combination of these). Such files are often produced by mainframe computers and

are either coded in EBCDIC or have been translated from EBCDIC into ASCII. lrecl() specifies the
logical record length. lrecl() requests that infile act as if a line ends every # bytes.

lrecl() appears only once, and typically not at all, in a dictionary.

firstlineoffile(#) (abbreviation first()) is also rarely specified. It states the line of the file
where the data begin. You do not need to specify first()when the data follow the dictionary; Stata

can figure that out for itself. However, you might specify first() when reading data from another

file in which the first line does not contain data because of headers or other markers.

first() appears only once, and typically not at all, in a dictionary.

lines(#) states the number of lines per observation in the file. Simple datasets typically have

lines(1). Large datasets often have many lines (sometimes called records) per observation.

lines() is optional, even when there is more than one line per observation because infile can

sometimes figure it out for itself. Still, if lines(1) is not right for your data, it is best to specify the
correct number through lines(#).

lines() appears only once in a dictionary.

line(#) tells infile to jump to line # of the observation. line() is not the same as lines().
Consider a file with lines(4), meaning four lines per observation. line(2) says to jump to the
second line of the observation. line(4) says to jump to the fourth line of the observation. You
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may jump forward or backward. infile does not care, and there is no inefficiency in going forward
to line(3), reading a few variables, jumping back to line(1), reading another variable, and

jumping forward again to line(3).

You need not ensure that, at the end of your dictionary, you are on the last line of the observation.

infile knows how to get to the next observation because it knows where you are and it knows

lines(), the total number of lines per observation.

line() may appear many times in a dictionary.

newline[(#)] is an alternative to line(). newline(1), which may be abbreviated newline, goes
forward one line. newline(2) goes forward two lines. We do not recommend using newline()
because line() is better. If you are currently on line 2 of an observation and want to get to line 6,
you could type newline(4), but your meaning is clearer if you type line(6).

newline() may appear many times in a dictionary.

column(#) jumps to column # (in bytes) of the current line. You may jump forward or backward within
a line. column() may appear many times in a dictionary.

skip[(#)] jumps forward # columns on the current line. skip() is just an alternative to column().
skip() may appear many times in a dictionary.

[type] varname [:lblname] [% infmt] [”variable label”] instructs infile to read a variable. The simplest
form of this instruction is the variable name itself: varname.

At all times, infile is on some column of some line of an observation. infile starts on column 1 of
line 1, so pretend that is where we are. Given the simplest directive, ‘varname’, infile goes through
the following logic:

If the current column is blank, it skips forward until there is a nonblank column (or until the end of

the line). If it just skipped all the way to the end of the line, it stores a missing value in varname. If it

skipped to a nonblank column, it begins collecting what is there until it comes to a blank column or

the end of the line. These are the data for varname. Then it sets the current column to wherever it is.

The logic is a bit more complicated. For instance, when skipping forward to find the data, infile
might encounter a quote. If so, it then collects the characters for the data by skipping forward until

it finds the matching quote. If you specified a % infmt, then infile skips the skipping-forward step
and simply collects the specified number of bytes. If you specified a %S infmt, then infile does not
skip leading or trailing blanks. Nevertheless, the general logic is (optionally) skip, collect, and reset.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Reading free-format files
Reading fixed-format files
Numeric formats
String formats
Specifying column and line numbers
Examples of reading fixed-format files
Reading fixed-block files
Reading EBCDIC files
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Introduction
infile using follows a two-step process to read your data. You type something like infile using

descript, and

1. infile using reads the file descript.dct, which tells infile about the format of the data; and

2. infile using then reads the data according to the instructions recorded in descript.dct.

descript.dct (the file could be named anything) is called a dictionary, and descript.dct is just a
text file that you create with the Do-file Editor or an editor outside Stata.

As for the data, they can be in the same file as the dictionary or in a different file. It does not matter.

Reading free-format files
Another variation of infile for reading free-format files is described in [D] infile (free format). We

will refer to this variation as infile without a dictionary. The distinction between the two variations is
in the treatment of line breaks. infile without a dictionary does not consider them significant. infile
with a dictionary does.

A line, also known as a record, physical record, or physical line (as opposed to observations, logical

records, or logical lines), is a string of characters followed by the line terminator. If you were to type the

file, a line is what would appear on your screen if your screen were infinitely wide. Your screen would

have to be infinitely wide so that there would be no possibility that one line could take more than one

line of your screen, thus fooling you into thinking that there are multiple lines when there is only one.

A logical line, on the other hand, is a sequence of one or more physical lines that represent one

observation of your data. infile with a dictionary does not spontaneously go to new physical lines; it

goes to a new line only between observations and when you tell it to. infilewithout a dictionary, on the
other hand, goes to a new line whenever it needs to, which can be right in the middle of an observation.

Thus consider the following little bit of data, which is for three variables:

5 4
1 9 3
2

How do you interpret these data?

Here is one interpretation: There are 3 observations. The first is 5, 4, and missing. The second is 1,

9, and 3. The third is 2, missing, and missing. That is the interpretation that infile with a dictionary
makes.

Here is another interpretation: There are 2 observations. The first is 5, 4, and 1. The second is 9, 3,

and 2. That is the interpretation that infile without a dictionary makes.

Which is right? You would have to ask the person who entered these data. The question is, are the

line breaks significant? Do they mean anything? If the line breaks are significant, you use infile with
a dictionary. If the line breaks are not significant, you use infile without a dictionary.

The other distinction between the two infiles is that infile with a dictionary does not process

comma-separated–value format. If your data are comma-separated, tab-separated, or otherwise delim-

ited, see [D] import delimited or [D] infile (free format).
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Example 1: A simple dictionary with data
Outside Stata, we have typed into the file highway.dct information on the accident rate per million

vehicle miles along a stretch of highway, the speed limit on that highway, and the number of access points

(on-ramps and off-ramps) per mile. Our file contains

begin highway.dct, example 1
infile dictionary {

acc_rate spdlimit acc_pts
}
4.58 55 4.6
2.86 60 4.4
1.61 . 2.2
3.02 60 4.7

end highway.dct, example 1

This file can be read by typing the commands below. Stata displays the dictionary and reads the data:

. infile using highway
infile dictionary {

acc_rate spdlimit acc_pts
}
(4 observations read)
. list

acc_rate spdlimit acc_pts

1. 4.58 55 4.6
2. 2.86 60 4.4
3. 1.61 . 2.2
4. 3.02 60 4.7

Example 2: Specifying variable labels
We can include variable labels in a dictionary so that after we infile the data, the data will be fully

labeled. We could change highway.dct to read

begin highway.dct, example 2
infile dictionary {
* This is a comment and will be ignored by Stata
* You might type the source of the data here.

acc_rate ”Acc. Rate/Million Miles”
spdlimit ”Speed Limit (mph)”
acc_pts ”Access Pts/Mile”

}
4.58 55 4.6
2.86 60 4.4
1.61 . 2.2
3.02 60 4.7

end highway.dct, example 2

Now when we type infile using highway, Stata not only reads the data but also labels the variables.

Example 3: Specifying variable storage types
We can indicate the variable types in the dictionary. For instance, if we wanted to store acc rate as

a double and spdlimit as a byte, we could change highway.dct to read
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begin highway.dct, example 3
infile dictionary {
* This is a comment and will be ignored by Stata
* You might type the source of the data here.
double acc_rate ”Acc. Rate/Million Miles”
byte spdlimit ”Speed Limit (mph)”

acc_pts ”Access Pts/Mile”
}
4.58 55 4.6
2.86 60 4.4
1.61 . 2.2
3.02 60 4.7

end highway.dct, example 3

Because we do not indicate the variable type for acc pts, it is given the default variable type float (or
the type specified by the set type command).

Example 4: Reading string variables
By specifying the types, we can read string variables as well as numeric variables. For instance,

begin emp.dct
infile dictionary {
* data on employees
str20 name ”Name”

age ”Age”
int sex ”Sex coded 0 male 1 female”

}
”Lisa Gilmore” 25 1
Branton 32 1
’Bill Ross’ 27 0

end emp.dct

The strings can be delimited by single or double quotes, and quotes may be omitted altogether if the

string contains no blanks or other special characters.

Example 5: Specifying value labels
You may attach value labels to variables in the dictionary by using the colon notation:

begin emp2.dct
infile dictionary {
* data on name, sex, and age
str16 name ”Name”

sex:sexlbl ”Sex”
int age ”Age”

}
”Arthur Doyle” Male 22
”Mary Hope” Female 37
”Guy Fawkes” Male 48
”Karen Cain” Female 25

end emp2.dct

If you want the value labels to be created automatically, you must specify the automatic option on the
infile command. These data could be read by typing infile using emp2, automatic, assuming the
dictionary and data are stored in the file emp2.dct.
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Example 6: Separate the dictionary and data files
The data need not be in the same file as the dictionary. We might leave the highway data in

highway.raw and write a dictionary called highway.dct describing the data:

begin highway.dct, example 4
infile dictionary using highway {
* This dictionary reads the file highway.raw. If the
* file were called highway.txt, the first line would
* read ”dictionary using highway.txt”

acc_rate ”Acc. Rate/Million Miles”
spdlimit ”Speed Limit (mph)”
acc_pts ”Access Pts/Mile”

}
end highway.dct, example 4

Example 7: Ignoring the top of a file
The firstlineoffile() directive allows us to ignore lines at the top of the file. Consider the

following raw dataset:

begin mydata.raw
The following data were entered by Marsha Martinez. It was checked by
Helen Troy.
id income educ sex age
1024 25000 HS Male 28
1025 27000 C Female 24

end mydata.raw

Our dictionary might read

begin mydata.dct
infile dictionary using mydata {

_first(4)
int id ”Identification Number”
income ”Annual income”
str2 educ ”Highest educ level”
str6 sex
byte age

}
end mydata.dct

Example 8: Data spread across multiple lines
The line() and lines() directives tell Stata how to read our data when there are multiple records

per observation. We have the following in mydata2.raw:
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begin mydata2.raw
id income educ sex age
1024 25000 HS
Male
28
1025 27000 C
Female
24
1035 26000 HS
Male
32
1036 25000 C
Female
25

end mydata2.raw

We can read this with a dictionary mydata2.dct, which we will just let Stata list as it simultaneously
reads the data:

. infile using mydata2, clear
infile dictionary using mydata2 {

_first(2) * Begin reading on line 2
_lines(3) * Each observation takes 3 lines.
int id ”Identification Number” * Since _line is not specified, Stata
income ”Annual income” * assumes that it is 1.
str2 educ ”Highest educ level”
_line(2) * Go to line 2 of the observation.
str6 sex * (values for sex are located on line 2)
_line(3) * Go to line 3 of the observation.
int age * (values for age are located on line 3)

}
(4 observations read)
. list

id income educ sex age

1. 1024 25000 HS Male 28
2. 1025 27000 C Female 24
3. 1035 26000 HS Male 32
4. 1036 25000 C Female 25

Here is the really good part: we read these variables in order, but that was not necessary. We could just

as well have used the dictionary:

begin mydata2p.dct
infile dictionary using mydata2 {

_first(2)
_lines(3)
_line(1) int id ”Identification number”

income ”Annual income”
str2 educ ”Highest educ level”

_line(3) int age
_line(2) str6 sex

}
end mydata2p.dct

We would have obtained the same results just as quickly, the only difference being that our variables in

the final dataset would be in the order specified: id, income, educ, age, and sex.
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Technical note
You can use newline to specify where breaks occur, if you prefer:

begin highway.dct, example 5
infile dictionary {

acc_rate ”Acc. Rate/Million Miles”
spdlimit ”Speed Limit (mph)”

_newline acc_pts ”Access Pts/Mile”
}
4.58 55
4.6
2.86 60
4.4
1.61 .
2.2
3.02 60
4.7

end highway.dct, example 5

The line reading ‘1.61 .’ could have been read 1.61 (without the period), and the results would have
been unchanged. Because dictionaries do not go to new lines automatically, a missing value is assumed

for all values not found in the record.

Reading fixed-format files
Values in formatted data are sometimes packed one against the other with no intervening blanks. For

instance, the highway data might appear as

begin highway.raw, example 6
4.58554.6
2.86604.4
1.61 2.2
3.02604.7

end highway.raw, example 6

The first four columns of each record represent the accident rate; the next two columns, the speed limit;

and the last three columns, the number of access points per mile.

To read these data, you must specify the % infmt in the dictionary. Numeric % infmts are denoted by
a leading percent sign (%) followed optionally by a string of the form 𝑤 or 𝑤.𝑑, where 𝑤 and 𝑑 stand

for two integers. The first integer, 𝑤, specifies the width of the format. The second integer, 𝑑, specifies
the number of digits that are to follow the decimal point. 𝑑 must be less than or equal to 𝑤. Finally, a
character denoting the format type (f, g, or e) is appended. For example, %9.2f specifies an f format
that is nine characters wide and has two digits following the decimal point.

Numeric formats
The f format indicates that infile is to attempt to read the data as a number. When you do not

specify the % infmt in the dictionary, infile assumes the %f format. The width, 𝑤, being missing means
that infile is to attempt to read the data in free format.

As it starts reading each observation, infile reads a record into its buffer and sets a column pointer
to 1, indicating that it is currently on the first column. When infile processes a %f format, it moves the
column pointer forward through white space. It then collects the characters up to the next occurrence of
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white space and attempts to interpret those characters as a number. The column pointer is left at the first

occurrence of white space following those characters. If the next variable is also free format, the logic

repeats.

When you explicitly specify the field width 𝑤, as in %𝑤f, infile does not skip leading white space.
Instead, it collects the next 𝑤 characters starting at the column pointer and attempts to interpret the result

as a number. The column pointer is left at the old value of the column pointer plus 𝑤, that is, on the first
character following the specified field.

Example 9: Specifying the width of fields
If the data above were stored in highway.raw, we could create the following dictionary to read the

data:

begin highway.dct, example 6
infile dictionary using highway {

acc_rate %4f ”Acc. Rate/Million Miles”
spdlimit %2f ”Speed Limit (mph)”
acc_pts %3f ”Access Pts/Mile

}
end highway.dct, example 6

When we explicitly indicate the field width, infile does not skip intervening characters. The first four
columns are used for the variable acc rate, the next two for spdlimit, and the last three for acc pts.

Technical note
The 𝑑 specification in the %𝑤.𝑑f indicates the number of implied decimal places in the data. For

instance, the string 212 read in a %3.2f format represents the number 2.12. Do not specify 𝑑 unless your
data have elements of this form. The 𝑤 alone is sufficient to tell infile how to read data in which the

decimal point is explicitly indicated.

When you specify 𝑑, Stata takes it only as a suggestion. If the decimal point is explicitly indicated in
the data, that decimal point always overrides the 𝑑 specification. Decimal points are also not implied if

the data contain an E, e, D, or d, indicating scientific notation.

Fields are right-justified before implying decimal points. Thus ‘2 ’, ‘ 2 ’, and ‘ 2’ are all read as 0.2
by the %3.1f format.

Technical note
The g and e formats are the same as the f format. You can specify any of these letters interchangeably.

The letters g and e are included as a convenience to those familiar with Fortran, in which the e format
indicates scientific notation. For example, the number 250 could be indicated as 2.5E+02 or 2.5D+02.
Fortran programmers would refer to this as an E7.5 format, and in Stata, this format would be indicated
as %7.5e. In Stata, however, you need specify only the field width 𝑤, so you could read this number by
using %7f, %7g, or %7e.

The g format is really a Fortran output format that indicates a freer format than f. In Stata, the two
formats are identical.

Throughout this section, you may freely substitute the g or e formats for the f format.
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Technical note
Be careful to distinguish between % fmts and % infmts. % fmts are also known as display formats—they

describe how a variable is to look when it is displayed; see [U] 12.5 Formats: Controlling how data

are displayed. % infmts are also known as input formats—they describe how a variable looks when you

input it. For instance, there is an output date format, %td, but there is no corresponding input format.
(See [U] 25 Working with dates and times for recommendations on how to read dates.) For the other

formats, we have attempted to make the input and output definitions as similar as possible. Thus we

include g, e, and f % infmts, even though they all mean the same thing, because g, e, and f are also

% fmts.

String formats
The s and S formats are used for reading strings. The syntax is %𝑤s or %𝑤S, where the 𝑤 is optional.

If you do not specify the field width, your strings must either be enclosed in quotes (single or double) or

not contain any characters other than letters, numbers, and “ ”.

This may surprise you, but the s format can be used for reading numeric variables, and the f format
can be used for reading string variables! When you specify the field width, 𝑤, in the %𝑤f format, all
embedded blanks in the field are removed before the result is interpreted. They are not removed by the

%𝑤s format.
For instance, the %3f format would read “- 2”, “-2 ”, or “ -2” as the number −2. The %3s format

would not be able to read “- 2” as a number, because the sign is separated from the digit, but it could read

“ -2” or “-2 ”. The %𝑤f format removes blanks; datasets written by some Fortran programs separate the
sign from the number.

There are, however, some side effects of this practice. The string “2 2” will be read as 22 by a %3f
format. Most Fortran compilers would read this number as 202. The %3s format would issue a warning
and store a missing value.

Now consider reading the string “a b” into a string variable. Using a %3s format, Stata will store it as
it appears: a b. Using a %3f format, however, it will be stored as ab—the middle blank will be removed.

%𝑤S is a special case of %𝑤s. A string read with %𝑤s will have leading and trailing blanks removed,
but a string read with %𝑤S will not have them removed.

Examples using the %s format are provided below, after we discuss specifying column and line num-
bers.

Specifying column and line numbers
column() jumps to the specified column. For instance, the documentation of some dataset indicates

that the variable age is recorded as a two-digit number in column 47. You could read this by coding
column(47) age %2f

After typing this, you are now at column 49, so if immediately following age there were a one-digit

number recording sex as 0 or 1, you could code

column(47) age %2f
sex %1f
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or, if you wanted to be explicit about it, you could instead code

column(47) age %2f
column(49) sex %1f

It makes no difference. If at column 50 there were a one-digit code for race and you wanted to read it
but skip reading the sex code, you could code

column(47) age %2f
column(50) race %1f

You could equivalently skip forward using skip():

column(47) age %2f
skip(1) race %1f

One advantage of column() over skip is that it lets you jump forward or backward in a record. If you
wanted to read race and then age, you could code

column(50) race %1f
column(47) age %2f

If the data you are reading have multiple lines per observation (sometimes said as multiple records

per observation), you can tell infile how many lines per record there are by using lines():

lines(4)

lines() appears only once in a dictionary. Good style says that it should be placed near the top of the
dictionary, but Stata does not care.

When you want to go to a particular line, include the line() directive. In our example, let’s assume
that race, sex, and age are recorded on the second line of each observation:

lines(4)
line(2)

column(47) age %2f
column(50) race %1f

Let’s assume that id is recorded on line 1.

lines(4)
line(1)

column(1) id %4f
line(2)

column(47) age %2f
column(50) race %1f

line() works like column() in that you can jump forward or backward, so these data could just as
well be read by

lines(4)
line(2)

column(47) age %2f
column(50) race %1f

line(1)
column(1) id %4f

Remember that this dataset has four lines per observation, and yet we have never referred to line(3) or
line(4). That is okay. Also, at the end of our dictionary, we are on line 1, not line 4. That is okay, too.
infile will still get to the next observation correctly.
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Technical note
Another way to move between records is newline(). newline() is to line() as skip() is to

column(), which is to say, newline() can only go forward. There is one difference: skip() has
its uses, whereas newline() is useful only for backward capability with older versions of Stata.

skip() has its uses because sometimes we think in columns and sometimes we think in widths.

Some data documentation might include the sentence, “At column 54 are recorded the answers to the

25 questions, with one column allotted to each.” If we want to read the answers to questions 1 and 5, it

would indeed be natural to code

column(54) q1 %1f
skip(3)

q5 %1f

Nobody has ever read data documentation with the statement, “Demographics are recorded on record

2, and two records after that are the income values.” The documentation would instead say, “Record

2 contains the demographic information and record 4, income.” The newline() way of thinking is

based on what is convenient for the computer, which does, after all, have to move past a certain number

of records. That, however, is no reason for making you think that way.

Before that thought occurred to us, Stata users specified newline() to go forward a number of

records. They still can, so their old dictionaries will work. When you use newline() and do not specify
lines(), you must move past the correct number of records so that, at the end of the dictionary, you
are on the last record. In this mode, when Stata reexecutes the dictionary to process the next observation,

it goes forward one record.

Examples of reading fixed-format files

Example 10: A file with two lines per observation
In this example, each observation occupies two lines. The first 2 observations in the dataset are

John Dunbar 10001 101 North 42nd Street
1010111111
Sam K. Newey Jr. 10002 15663 Roustabout Boulevard
0101000000

The first observation tells us that the name of the respondent is John Dunbar; that his ID is 10001; that

his address is 101 North 42nd Street; and that his answers to questions 1–10 were yes, no, yes, no, yes,

yes, yes, yes, yes, and yes.

The second observation tells us that the name of the respondent is Sam K. Newey Jr.; that his ID is

10002; that his address is 15663 Roustabout Boulevard; and that his answers to questions 1–10 were no,

yes, no, yes, no, no, no, no, no, and no.

To see the layout within the file, we can temporarily add two rulers to show the appropriate columns:

----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
John Dunbar 10001 101 North 42nd Street
1010111111
Sam K. Newey Jr. 10002 15663 Roustabout Boulevard
0101000000
----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
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Each observation in the data appears in two physical lines within our text file. We had to check in our

editor to be sure that there really were new-line characters (for example, “hard returns”) after the address.

This is important because some programs will wrap output for you so that one line may appear as many

lines. The two seemingly identical files will differ in that one has a hard return and the other has a soft

return added only for display purposes.

In our data, the name occupies columns 1–32; a person identifier occupies columns 33–37; and the

address occupies columns 40–80. Our worksheet revealed that the widest address ended in column 80.

The text file containing these data is called fname.txt. Our dictionary file looks like this:

begin fname.dct
infile dictionary using fname.txt {
*
* Example reading in data where observations extend across more
* than one line. The next line tells infile there are 2 lines/obs:
*
_lines(2)
*

str50 name %32s ”Name of respondent”
_column(33) long id %5f ”Person id”
_skip(2) str50 addr %41s ”Address”
_line(2)
_column(1) byte q1 %1f ”Question 1”

byte q2 %1f ”Question 2”
byte q3 %1f ”Question 3”
byte q4 %1f ”Question 4”
byte q5 %1f ”Question 5”
byte q6 %1f ”Question 6”
byte q7 %1f ”Question 7”
byte q8 %1f ”Question 8”
byte q9 %1f ”Question 9”
byte q10 %1f ”Question 10”

}
end fname.dct

Up to five pieces of information may be supplied in the dictionary for each variable: the location of

the data, the storage type of the variable, the name of the variable, the input format, and the variable

label.

Thus the str50 line says that the first variable is to be given a storage type of str50, called name,
and is to have the variable label “Name of respondent”. The %32s is the input format, which tells Stata
how to read the data. The s tells Stata not to remove any embedded blanks; the 32 tells Stata to go across
32 columns when reading the data.

The next line says that the second variable is to be assigned a storage type of long, named id, and
be labeled “Person id”. Stata should start reading the information for this variable in column 33. The f
tells Stata to remove any embedded blanks, and the 5 says to read across five columns.

The third variable is to be given a storage type of str50, called addr, and be labeled “Address”. The
skip(2) directs Stata to skip two columns before beginning to read the data for this variable, and the
%41s instructs Stata to read across 41 columns and not to remove embedded blanks.

line(2) instructs Stata to go to line 2 of the observation.

The remainder of the data is 0/1 coded, indicating the answers to the questions. It would be convenient

if we could use a shorthand to specify this portion of the dictionary, but wemust supply explicit directives.



infile (fixed format) — Import text data in fixed format with a dictionary 583

Technical note
In the preceding example, there were two pieces of information about location: where the data begin

for each variable (the column(), skip(), line()) and how many columns the data span (the %32s,
%5f, %41s, %1f). In our dictionary, some of this information was redundant. After reading name, Stata
had finished with 32 columns of information. Unless instructed otherwise, Stata would proceed to the

next column—column 33—to begin reading information about id. The column(33)was unnecessary.

The skip(2) was necessary, however. Stata had read 37 columns of information and was ready to
look at column 38. Although the address information does not begin until column 40, columns 38 and

39 contain blanks. Because these are leading blanks instead of embedded blanks, Stata would just ignore

them without any trouble. The problem is with the %41s. If Stata begins reading the address information
from column 38 and reads 41 columns, Stata would stop reading in column 78 (78 − 41 + 1 = 38), but

the widest address ends in column 80. We could have omitted the skip(2) if we had specified an input
format of %43s.

The line(2) was necessary, although we could have read the second line by coding newline
instead.

The column(1) could have been omitted. After the line(), Stata begins in column 1.

See the next example for a dataset in which both pieces of location information are required.

Example 11: Manipulating the column pointer
The following file contains six variables in a variety of formats. In the dictionary, we read the variables

fifth and sixth out of order by forcing the column pointer.

begin example.dct
infile dictionary {

first %3f
double second %2.1f

third %6f
_skip(2) str4 fourth %4s
_column(21) sixth %4.1f
_column(18) fifth %2f

}
1.2125.7e+252abcd 1 .232
1.3135.7 52efgh2 5
1.41457 52abcd 3 100.
1.5155.7D+252efgh04 1.7
16 16 .57 52abcd 5 1.71

end example.dct

Assuming that the above is stored in a file called example.dct, we can infile and list it by typing

. infile using example
infile dictionary {

first %3f
double second %2.1f

third %6f
_skip(2) str4 fourth %4s
_column(21) sixth %4.1f
_column(18) fifth %2f

}
(5 observations read)
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. list

first second third fourth sixth fifth

1. 1.2 1.2 570 abcd .232 1
2. 1.3 1.3 5.7 efgh .5 2
3. 1.4 1.4 57 abcd 100 3
4. 1.5 1.5 570 efgh 1.7 4
5. 16 1.6 .57 abcd 1.71 5

Reading fixed-block files

Technical note
The lrecl(#) directive is used for reading datasets that do not have end-of-line delimiters (carriage

return, line feed, or some combination of these). Such datasets are typical of IBM mainframes, where

they are known as fixed block, or FB. The abbreviation LRECL is IBMmainframe jargon for logical record

length.

In a fixed-block dataset, each # characters are to be interpreted as a record. For instance, consider the

data

1 21
2 42
3 63

In fixed-block format, these data might be recorded as

begin mydata.ibm
1 212 423 63

end mydata.ibm

and you would be told, on the side, that the LRECL is 4. If you then pass along that information to infile,
it can read the data:

begin mydata.dct
infile dictionary using mydata.ibm {

_lrecl(4)
int id
int age

}
end mydata.dct

When you do not specify the lrecl(#) directive, infile assumes that each line ends with the

standard text EOL delimiter (which can be a line feed, a carriage return, a line feed followed by a carriage

return, or a carriage return followed by a line feed). When you specify lrecl(#), infile reads the
data in blocks of # characters and then acts as if that is a line.

A common mistake in processing fixed-block datasets is to use an incorrect LRECL value, such as 160

when it is really 80. To understand what can happen, pretend that you thought the LRECL in your data

was 6 rather than 4. Taking the characters in groups of 6, the data appear as

1 212
423 63
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Stata cannot verify that you have specified the correct LRECL, so if the data appear incorrect, verify that

you have the correct number.

The maximum LRECL infile allows is 524,275.

Reading EBCDIC files
In the previous section, we discussed the lrecl(#) directive that is often necessary for files that

originated on mainframes and do not have end-of-line delimiters.

Such files sometimes are not even plain text files. Sometimes, these files have an alternate character

encoding known as extended binary coded decimal interchange code (EBCDIC). The EBCDIC encoding

was created in the 1960s by IBM for its mainframes.

Because EBCDIC is a different character encoding, we cannot even show you a printed example; it

would be unreadable. Nevertheless, Stata can convert EBCDIC files to ASCII (see [D] filefilter) and can

read data from EBCDIC files.

If you have a data file encoded with EBCDIC, you undoubtedly also have a description of it from which

you can create a dictionary that includes the LRECL of the file (EBCDIC files do not typically have end-of-

line delimiters) and the character positions of the fields in the file. You create a dictionary for an EBCDIC

file just as you would for a plain text file, using the Do-file Editor or another text editor, and being sure to

use the lrecl() directive in the dictionary to specify the LRECL. You then simply specify the ebcdic
option for infile, and Stata will convert the characters in the file from EBCDIC to ASCII on the fly:

. infile using mydict, ebcdic

Also see
[D] infile (free format) — Import unformatted text data

[D] infix (fixed format) — Import text data in fixed format

[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

[U] 22 Entering and importing data
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Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
infile reads into memory from a disk a dataset that is not in Stata format.

Here we discuss using infile to read free-format data, meaning datasets in which Stata does not

need to know the formatting information. Another variation on infile allows reading fixed-format

data; see [D] infile (fixed format). Yet another alternative is import delimited, which is easier to use
if your data are tab- or comma-separated and contain 1 observation per line. Stata has other commands

for reading data, too. If you are not certain that infile will do what you are looking for, see [D] import

and [U] 22 Entering and importing data.

After the data are read into Stata, they can be saved in a Stata-format dataset; see [D] save.

Quick start
Import unformatted text data from mydata1.raw, and name the imported float variables v1, v2, and

v3
infile v1 v2 v3 using mydata1

Same as above, but skip 1 variable in the original file between v1 and v2
infile v1 _skip(1) v2 v3 using mydata1

Same as above, and indicate that v1 is a byte variable, v2 is a string variable of length 30, and v3 is a
double variable

infile byte v1 _skip(1) str30 v2 double v3 using mydata1

Also read v4 as a double
infile byte v1 _skip(1) str30 v2 double(v3 v4) using mydata1

Import unformatted text data from mydata2.raw where 74 observations on v1, v2, and v3 are stored in
rows instead of columns

infile v1 v2 v3 using mydata2, byvariable(74)

Same as above, but import mydata2.csv
infile v1 v2 v3 using mydata2.csv, byvariable(74)

Menu
File > Import > Unformatted text data

586
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Syntax
infile varlist [ skip[(#) ] [ varlist [ skip[(#) ] . . . ] ] ] using filename [ if ] [ in ]

[ , options ]

If filename is specified without an extension, .raw is assumed. If filename contains embedded spaces,
remember to enclose it in double quotes.

options Description

Main

clear replace data in memory

Options

automatic create value labels from nonnumeric data

byvariable(#) organize external file by variables; # is number of observations

Options

� � �
Main �

clear specifies that it is okay for the new data to replace the data that are currently in memory. To ensure

that you do not lose something important, infile will refuse to read new data if data are already in

memory. clear allows infile to replace the data in memory. You can also drop the data yourself
by typing drop all before reading new data.

� � �
Options �

automatic causes Stata to create value labels from the nonnumeric data it reads. It also automatically

widens the display format to fit the longest label.

byvariable(#) specifies that the external data file is organized by variables rather than by observa-

tions. All the observations on the first variable appear, followed by all the observations on the second

variable, and so on. Time-series datasets sometimes come in this format.

Remarks and examples
This section describes infile features for reading data in free or comma-separated–value format.

Remarks are presented under the following headings:

Reading free-format data
Reading comma-separated data
Specifying variable types
Reading string variables
Skipping variables
Skipping observations
Reading time-series data
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Reading free-format data
In free format, data are separated by one or more white-space characters—blanks, tabs, or new lines

(carriage return, line feed, or carriage-return/line feed combinations). Thus one observation may span

any number of lines.

Numeric missing values are indicated by single periods (“.”).

Example 1
In the file highway.raw, we have information on the accident rate per million vehicle miles along

a stretch of highway, the speed limit on that highway, and the number of access points (on-ramps and

off-ramps) per mile. Our file contains

begin highway.raw, example 1
4.58 55 4.6
2.86 60 4.4
1.61 . 2.2
3.02 60
4.7

end highway.raw, example 1

We can read these data by typing

. infile acc_rate spdlimit acc_pts using highway
(4 observations read)
. list

acc_rate spdlimit acc_pts

1. 4.58 55 4.6
2. 2.86 60 4.4
3. 1.61 . 2.2
4. 3.02 60 4.7

The spacing of the numbers in the original file is irrelevant.

Technical note
Missing values need not be indicated by one period. The third observation on the speed limit is missing

in example 1. The raw data file indicates this by recording one period. Let’s assume, instead, that the

missing value was indicated by the word unknown. Thus the raw data file appears as

begin highway.raw, example 2
4.58 55 4.6
2.86 60 4.4
1.61 unknown 2.2
3.02 60
4.7

end highway.raw, example 2

Here is the result of infiling these data:

. infile acc_rate spdlimit acc_pts using highway
’unknown’ cannot be read as a number for spdlimit[3]
(4 observations read)
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infile warned us that it could not read the word unknown, stored a missing, and then continued to read
the rest of the dataset. Thus aside from the warning message, results are unchanged.

Because not all packages indicatemissing data in the sameway, this feature can be useful when reading

data. Whenever infile sees something that it does not understand, it warns you, records a missing, and
continues. If, on the other hand, the missing values were recorded not as unknown but as, say, 99, Stata
would have had no difficulty reading the number, but it would also have stored 99 rather than missing.

To convert such coded missing values to true missing values, see [D] mvencode.

Reading comma-separated data
In comma-separated–value format, data are separated by commas. You may mix comma-

separated–value and free formats. Missing values are indicated either by single periods or by multiple

commas that serve as placeholders, or both. As with free format, 1 observation may span any number of

input lines.

Example 2
We can modify the format of highway.raw used in example 1 without affecting infile’s ability to

read it. The dataset can be read with the same command, and the results would be the same if the file

instead contained

begin highway.raw, example 3
4.58,55 4.6
2.86, 60,4.4
1.61,,2.2
3.02,60
4.7

end highway.raw, example 3

Specifying variable types
The variable names you type after the word infile are new variables. The syntax for a new variable

is

[ type ] new varname[:label name]

A full discussion of this syntax can be found in [U] 11.4 varname and varlists. As a quick review, new

variables are, by default, of type float. This default can be overridden by preceding the variable name
with a storage type (byte, int, long, float, double, or str#) or by using the set type command. A
list of variables placed in parentheses will be given the same type. For example,

double(first var second var . . . last var)

causes first var second var . . . last var to all be of type double.

There is also a shorthand syntax for variable names with numeric suffixes. The varlist var1-var4 is
equivalent to specifying var1 var2 var3 var4.
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Example 3
In the highway example, we could infile the data acc rate, spdlimit, and acc pts and force

the variable spdlimit to be of type int by typing

. infile acc_rate int spdlimit acc_pts using highway, clear
(4 observations read)

We could force all variables to be of type double by typing

. infile double(acc_rate spdlimit acc_pts) using highway, clear
(4 observations read)

We could call the three variables v1, v2, and v3 and make them all of type double by typing

. infile double(v1-v3) using highway, clear
(4 observations read)

Reading string variables
By explicitly specifying the types, you can read string variables, as well as numeric variables.

Example 4
Typing infile str20 name age sex using myfile would read

begin myfile.raw
”Sherri Holliday” 25 1
Branton 32 1
”Bill Ross” 27,0

end myfile.raw

or even

begin myfile.raw, variation 2
’Sherri Holliday’ 25,1 ”Branton” 32
1,’Bill Ross’, 27,0

end myfile.raw, variation 2

The spacing is irrelevant, and either single or double quotes may be used to delimit strings. The quotes do

not count when calculating the length of strings. Quotes may be omitted altogether if the string contains

no blanks or other special characters (anything other than letters, numbers, or underscores).

Typing

. infile str20 name age sex using myfile, clear
(3 observations read)

makes name a str20 and age and sex floats. We might have typed

. infile str20 name age int sex using myfile, clear
(3 observations read)

to make sex an int or

. infile str20 name int(age sex) using myfile, clear
(3 observations read)

to make both age and sex ints.
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Technical note
infile can also handle nonnumeric data by using value labels. We will briefly review value labels,

but you should see [U] 12.6.3 Value labels for a complete description.

A value label is a mapping from the set of integers to words. For instance, if we had a variable called

sex in our data that represented the sex of the individual, we might code 0 for male and 1 for female. We

could then just remember that every time we see a value of 0 for sex, that observation refers to a male,
whereas 1 refers to a female.

Even better, we could inform Stata that 0 represents males and 1 represents females by typing

. label define sexfmt 0 ”Male” 1 ”Female”

Then we must tell Stata that this coding scheme is to be associated with the variable sex. This is typically
done by typing

. label values sex sexfmt

Thereafter, Stata will print Male rather than 0 and Female rather than 1 for this variable.

Stata has the ability to turn a value label around. It can go not only from numeric codes to words such

as “Male” and “Female” but also from words to numeric codes. We tell infile the value label that goes
with each variable by placing a colon (:) after the variable name and typing the name of the value label.
Before we do that, we use the label define command to inform Stata of the coding.

Let’s assume that we wish to infile a dataset containing the words Male and Female and that we
wish to store numeric codes rather than the strings themselves. This will result in considerable data

compression, especially if we store the numeric code as a byte. We have a dataset named persons.raw
that contains name, sex, and age:

begin persons.raw
”Arthur Doyle” Male 22
”Mary Hope” Female 37
”Guy Fawkes” Male 48
”Carrie House” Female 25

end persons.raw

Here is how we read and encode it at the same time:

. label define sexfmt 0 ”Male” 1 ”Female”

. infile str16 name sex:sexfmt age using persons
(4 observations read)
. list

name sex age

1. Arthur Doyle Male 22
2. Mary Hope Female 37
3. Guy Fawkes Male 48
4. Carrie House Female 25
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The str16 in the infile command applies only to the name variable; sex is a numeric variable, which
we can prove by typing

. list, nolabel

name sex age

1. Arthur Doyle 0 22
2. Mary Hope 1 37
3. Guy Fawkes 0 48
4. Carrie House 1 25

Technical note
When infile is directed to use a value label and it finds an entry in the file that does not match any

of the codings recorded in the label, it prints a warning message and stores missing for the observation.

By specifying the automatic option, you can instead have infile automatically add new entries to the

value label.

Say that we have a dataset containing three variables. The first, region of the country, is a character

string; the remaining two variables, which we will just call var1 and var2, contain numbers. We have

stored the data in a file called geog.raw:

begin geog.raw
”NE” 31.23 87.78
’NCntrl’ 29.52 98.92
South 29.62 114.69
West 28.28 218.92
NE 17.50 44.33
NCntrl 22.51 55.21

end geog.raw

The easiest way to read this dataset is to type

. infile str6 region var1 var2 using geog

making region a string variable. We do not want to do this, however, because we are practicing for

reading a dataset like this containing 20,000 observations. If region were numerically encoded and

stored as a byte, there would be a 5-byte saving per observation, reducing the size of the data by 100,000
bytes. We also do not want to bother with first creating the value label. Using the automatic option,
infile creates the value label automatically as it encounters new regions.

. infile byte region:regfmt var1 var2 using geog, automatic clear
(6 observations read)
. list, sep(0)

region var1 var2

1. NE 31.23 87.78
2. NCntrl 29.52 98.92
3. South 29.62 114.69
4. West 28.28 218.92
5. NE 17.5 44.33
6. NCntrl 22.51 55.21
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infile automatically created and defined a new value label called regfmt. We can use the label list
command to view its contents:

. label list regfmt
regfmt:

1 NE
2 NCntrl
3 South
4 West

The value label need not be undefined before we use infilewith the automatic option. If the value
label regfmt had been previously defined as

. label define regfmt 2 ”West”

the result of label list after the infile would have been

regfmt:
2 West
3 NE
4 NCntrl
5 South

The automatic option is convenient, but there is one reason for using it. Suppose that we had a

dataset containing, among other things, information about an individual’s sex. We know that the sex

variable is supposed to be coded male and female. If we read the data by using the automatic option
and if one of the records contains fmlae, then infile will blindly create a third sex rather than print a
warning.

Skipping variables
Specifying skip instead of a variable name directs infile to ignore the variable in that location.

This feature makes it possible to extract manageable subsets from large disk datasets. A number of

contiguous variables can be skipped by specifying skip(#), where # is the number of variables to

ignore.

Example 5
In the highway example from example 1, the data file contained three variables: acc rate,

spdlimit, and acc pts. We can read the first two variables by typing

. infile acc_rate spdlimit _skip using highway
(4 observations read)

We can read the first and last variables by typing

. infile acc_rate _skip acc_pts using highway, clear
(4 observations read)

We can read the first variable by typing

. infile acc_rate _skip(2) using highway, clear
(4 observations read)

skipmay be specified more than once. If we had a dataset containing four variables—say, a, b, c, and
d—and we wanted to read just a and c, we could type infile a skip c skip using filename.



infile (free format) — Import unformatted text data 594

Skipping observations
Subsets of observations can be extracted by specifying if exp, which also makes it possible to extract

manageable subsets from large disk datasets. Do not, however, use the variable N in exp. Use the in
range qualifier to refer to observation numbers within the disk dataset.

Example 6
Again referring to the highway example, if we type

. infile acc_rate spdlimit acc_pts if acc_rate>3 using highway, clear
(2 observations read)

only observations for which acc rate is greater than 3 will be infiled. We can type

. infile acc_rate spdlimit acc_pts in 2/4 using highway, clear
(eof not at end of obs)
(3 observations read)

to read only the second, third, and fourth observations.

Reading time-series data
If you are dealing with time-series data, you may receive datasets organized by variables rather than

by observations. All the observations on the first variable appear, followed by all the observations on the

second variable, and so on. The byvariable(#) option specifies that the external data file is organized
in this way. You specify the number of observations in the parentheses, because infile needs to know
that number to read the data properly. You can also mark the end of one variable’s data and the beginning

of another’s data by placing a semicolon (“;”) in the raw data file. You may then specify a number larger

than the number of observations in the dataset and leave it to infile to determine the actual number of
observations. This method can also be used to read unbalanced data.

Example 7
We have time-series data on 4 years recorded in the file time.raw. The dataset contains information

on year, amount, and cost, and is organized by variable:

begin time.raw
1980 1981 1982 1983
14 17 25 30
120 135 150
180

end time.raw

We can read these data by typing

. infile year amount cost using time, byvariable(4) clear
(4 observations read)
. list

year amount cost

1. 1980 14 120
2. 1981 17 135
3. 1982 25 150
4. 1983 30 180
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If the data instead contained semicolonsmarking the end of each series and had no information for amount

in 1983, the raw data might appear as

1980 1981 1982 1983 ;
14 17 25 ;
120 135 150
180 ;

We could read these data by typing

. infile year amount cost using time, byvariable(100) clear
(4 observations read)
. list

year amount cost

1. 1980 14 120
2. 1981 17 135
3. 1982 25 150
4. 1983 . 180

Also see
[D] infile (fixed format) — Import text data in fixed format with a dictionary

[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

[U] 22 Entering and importing data
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Description Quick start Menu Syntax Options Remarks and examples Also see

Description
infix reads into memory from a disk dataset that is not in Stata format. infix requires that the

data be in fixed-column format. Note that the column is byte based. The number of columns means the

number of bytes in the file. The text file filename is treated as a stream of bytes, no encoding is assumed.

If string data are encoded as ASCII or UTF-8, they will be imported correctly.

In the first syntax, if using filename2 is not specified on the command line and using filename is not
specified in the dictionary, the data are assumed to begin on the line following the closing brace. infix
reads the data in a two-step process. You first create a disk file describing how the data are recorded.

You tell infix to read that file—called a dictionary—and from there, infix reads the data. The data
can be in the same file as the dictionary or in a different file.

In its second syntax, you tell infix how to read the data right on the command line with no interme-

diate file.

infile and import delimited are alternatives to infix. infile can also read data in fixed for-
mat—see [D] infile (fixed format)—and it can read data in free format—see [D] infile (free format).

Most people think that infix is easier to use for reading fixed-format data, but infile has more fea-
tures. If your data are not fixed format, you can use import delimited; see [D] import delimited.

import delimited allows you to specify the source file’s encoding and then performs a conversion to
UTF-8 encoding during import. If you are not certain that infix will do what you are looking for, see
[D] import and [U] 22 Entering and importing data.

Quick start
Read v1 from columns 1 to 6 and v2 from column 7 using mydata.raw

infix v1 1-6 v2 7 using mydata

Same as above, but read v1 as a string variable
infix str v1 1-6 v2 7 using mydata

Same as above, but for 2-line records with v2 in column 1 of the second line
infix 2 lines 1: v1 1-6 2: v2 1 using mydata

Same as above, but for mydata.txt
infix 2 lines 1: v1 1-6 2: v2 1 using mydata.txt

Same as above, but with data beginning on line 3

infix 3 firstlineoffile 2 lines 1: v1 1-6 2: v2 1 using mydata.txt

Same as above, but with instructions for reading the data contained in dictionary file mydata.dct
infix using mydata, using(mydata.txt)

Menu
File > Import > Text data in fixed format
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Syntax
infix using dfilename [ if ] [ in ] [ , using( filename2) clear ]

infix specifications using filename [ if ] [ in ] [ , clear ]

If dfilename is specified without an extension, .dct is assumed. If dfilename contains embedded spaces,
remember to enclose it in double quotes. dfilename, if it exists, contains

begin dictionary file
infix dictionary [using filename] {

* comments preceded by asterisk may appear freely
specifications

}
(your data might appear here )

end dictionary file

If filename is specified without an extension, .raw is assumed. If filename contains embedded spaces,
remember to enclose it in double quotes.

specifications is

# firstlineoffile
# lines
#:
/
[ byte | int | float | long | double | str ] varlist [#:]#[-#]

Options

� � �
Main �

using( filename2) specifies the name of a file containing the data. If using() is not specified, the data
are assumed to follow the dictionary in dfilename, or if the dictionary specifies the name of some other

file, that file is assumed to contain the data. If using( filename2) is specified, filename2 is used to

obtain the data, even if the dictionary says otherwise. If filename2 is specified without an extension,

.raw is assumed. If filename2 contains embedded spaces, remember to enclose it in double quotes.

clear specifies that it is okay for the new data to replace what is currently in memory. To ensure that you

do not lose something important, infix will refuse to read new data if data are already in memory.

clear allows infix to replace the data in memory. You can also drop the data yourself by typing
drop all before reading new data.

Specifications
# firstlineoffile (abbreviation first) is rarely specified. It states the line of the file at which the

data begin. You need not specify first when the data follow the dictionary; infix can figure that
out for itself. You can specify first when only the data appear in a file and the first few lines of that

file contain headers or other markers.

first appears only once in the specifications.
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# lines states the number of lines per observation in the file. Simple datasets typically have “1 lines”.
Large datasets often have many lines (sometimes called records) per observation. lines is optional,
even when there is more than one line per observation, because infix can sometimes figure it out for
itself. Still, if 1 lines is not right for your data, it is best to specify the appropriate number of lines.

lines appears only once in the specifications.

#: tells infix to jump to line # of the observation. Consider a file with 4 lines, meaning four lines
per observation. 2: says to jump to the second line of the observation. 4: says to jump to the fourth
line of the observation. You may jump forward or backward: infix does not care, and there is no
inefficiency in going forward to 3:, reading a few variables, jumping back to 1:, reading another
variable, and jumping back again to 3:.

You need not ensure that, at the end of your specification, you are on the last line of the observation.

infix knows how to get to the next observation because it knows where you are and it knows lines,
the total number of lines per observation.

#: may appear many times in the specifications.

/ is an alternative to #:. / goes forward one line. // goes forward two lines. We do not recommend

using / because #: is better. If you are currently on line 2 of an observation and want to get to line 6,
you could type ////, but your meaning is clearer if you type 6:.

/ may appear many times in the specifications.

[ byte | int | float | long | double | str ] varlist [#:]#[-#] instructs infix to read a variable or,

sometimes, more than one.

The simplest form of this is varname #, such as sex 20. That says that variable varname be read

from column # of the current line; that variable sex be read from column 20; and that here, sex is a

one-digit number.

varname #-#, such as age 21-23, says that varname be read from the column range specified; that

age be read from columns 21 through 23; and that here, age is a three-digit number.

You can prefix the variablewith a storage type. str name 25-44means to read the string variable name
from columns 25 through 44. Note that the string variable name consists of 44−25+1 = 20 bytes. If

you do not specify str, the variable is assumed to be numeric. You can specify the numeric subtype
if you wish. If you specify str, infix will automatically assign the appropriate string variable type,
str# or strL. Imported strings may be up to 100,000 bytes.

You can specify more than one variable, with or without a type. byte q1-q5 51-55 means read

variables q1, q2, q3, q4, and q5 from columns 51 through 55 and store the five variables as bytes.

Finally, you can specify the line on which the variable(s) appear. age 2:21-23 says that age is to

be obtained from the second line, columns 21 through 23. Another way to do this is to put together

the #: directive with the input-variable directive: 2: age 21-23. There is a difference, but not with
respect to reading the variable age. Let’s consider two alternatives:

1: str name 25-44 age 2:21-23 q1-q5 51-55
1: str name 25-44 2: age 21-23 q1-q5 51-55

The difference is that the first directive says that variables q1 through q5 are on line 1, whereas the
second says that they are on line 2.

When the colon is put in front, it indicates the line on which variables are to be found when we

do not explicitly say otherwise. When the colon is put inside, it applies only to the variable under

consideration.
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Remarks and examples
Remarks are presented under the following headings:

Two ways to use infix
Reading string variables
Reading data with multiple lines per observation
Reading subsets of observations

Two ways to use infix
There are two ways to use infix. One is to type the specifications that describe how to read the

fixed-format data on the command line:

. infix acc_rate 1-4 spdlimit 6-7 acc_pts 9-11 using highway.raw

The other is to type the specifications into a file,

begin highway.dct, example 1
infix dictionary using highway.raw {

acc_rate 1-4
spdlimit 6-7
acc_pts 9-11

}
end highway.dct, example 1

and then, in Stata, type

. infix using highway.dct

The method you use makes no difference to Stata. The first method is more convenient if there are only

a few variables, and the second method is less prone to error if you are reading a big, complicated file.

The second method allows two variations, the one we just showed—where the data are in another

file—and one where the data are in the same file as the dictionary:

begin highway.dct, example 2
infix dictionary {

acc_rate 1-4
spdlimit 6-7
acc_pts 9-11

}
4.58 55 .46
2.86 60 4.4
1.61 2.2
3.02 60 4.7

end highway.dct, example 2

Note that in the first example, the top line of the file read infix dictionary using highway.raw,
whereas in the second, the line reads simply infix dictionary. When you do not say where the data

are, Stata assumes that the data follow the dictionary.

Example 1
So, let’s complete the example we started. We have a dataset on the accident rate per million vehicle

miles along a stretch of highway, the speed limit on that highway, and the number of access points per

mile. We have created the dictionary file, highway.dct, which contains the dictionary and the data:
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begin highway.dct, example 2
infix dictionary {

acc_rate 1-4
spdlimit 6-7
acc_pts 9-11

}
4.58 55 .46
2.86 60 4.4
1.61 2.2
3.02 60 4.7

end highway.dct, example 2

We created this file outside Stata by using an editor or word processor. In Stata, we now read the data.

infix lists the dictionary so that we will know the directives it follows:

. infix using highway
infix dictionary {

acc_rate 1-4
spdlimit 6-7
acc_pts 9-11

}
(4 observations read)
. list

acc_rate spdlimit acc_pts

1. 4.58 55 .46
2. 2.86 60 4.4
3. 1.61 . 2.2
4. 3.02 60 4.7

We simply typed infix using highway rather than infix using highway.dct. When we do not

specify the file extension, infix assumes that we mean .dct.

Reading string variables
When you do not say otherwise in your specification—either in the command line or in the dictio-

nary—infix assumes that variables are numeric. You specify that a variable is a string by placing str
in front of its name:

. infix id 1-6 str name 7-36 age 38-39 str sex 41 using employee.raw

or

begin employee.dct
infix dictionary using employee.raw {

id 1-6
str name 7-36
age 38-39
str sex 40

}
end employee.dct
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Reading data with multiple lines per observation
When a dataset has multiple lines per observation—sometimes called multiple records per observa-

tion—you specify the number of lines per observation by using lines, and you specify the line on which
the elements appear by using #:. For example,

. infix 2 lines 1: id 1-6 str name 7-36 2: age 1-2 str sex 4 using emp2.raw

or

begin emp2.dct
infix dictionary using emp2.raw {

2 lines
1:

id 1-6
str name 7-36

2:
age 1-2
str sex 4

}
end emp2.dct

There are many different ways to do the same thing.

Example 2
Consider the following raw data:

begin mydata.raw
id income educ / sex age / rcode, answers to questions 1-5
1024 25000 HS

Male 28
1 1 9 5 0 3

1025 27000 C
Female 24
0 2 2 1 1 3

1035 26000 HS
Male 32
1 1 0 3 2 1

1036 25000 C
Female 25
1 3 1 2 3 2

end mydata.raw

This dataset has three lines per observation, and the first line is just a comment. One possible method

for reading these data is

begin mydata1.dct
infix dictionary using mydata {

2 first
3 lines
1: id 1-4

income 6-10
str educ 12-13

2: str sex 6-11
int age 13-14

3: rcode 6
q1-q5 7-16

}
end mydata1.dct
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although we prefer

begin mydata2.dct
infix dictionary using mydata {

2 first
3 lines

id 1: 1-4
income 1: 6-10
str educ 1:12-13
str sex 2: 6-11
age 2:13-14
rcode 3: 6
q1-q5 3: 7-16

}
end mydata2.dct

Either method will read these data, so we will use the first and then explain why we prefer the second.

. infix using mydata1
infix dictionary using mydata {

2 first
3 lines
1: id 1-4

income 6-10
str educ 12-13

2: str sex 6-11
int age 13-14

3: rcode 6
q1-q5 7-16

}
(4 observations read)
. list in 1/2

id income educ sex age rcode q1 q2 q3 q4 q5

1. 1024 25000 HS Male 28 1 1 9 5 0 3
2. 1025 27000 C Female 24 0 2 2 1 1 3

What is better about the second is that the location of each variable is completely documented on each

line—the line number and column. Because infix does not care about the order in which we read the
variables, we could take the dictionary and jumble the lines, and it would still work. For instance,

begin mydata3.dct
infix dictionary using mydata {

2 first
3 lines

str sex 2: 6-11
rcode 3: 6
str educ 1:12-13
age 2:13-14
id 1: 1-4
q1-q5 3: 7-16
income 1: 6-10

}
end mydata3.dct
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will also read these data even though, for each observation, we start on line 2, go forward to line 3, jump

back to line 1, and end up on line 1. It is not inefficient to do this because infix does not really jump
to record 2, then record 3, then record 1 again, etc. infix takes what we say and organizes it efficiently.
The order in which we say it makes no difference, except that the order of the variables in the resulting

Stata dataset will be the order we specify.

Here the reordering is senseless, but in real datasets, reordering variables is often desirable. Moreover,

we often construct dictionaries, realize that we omitted a variable, and then go back and modify them.

By making each line complete, we can add new variables anywhere in the dictionary and not worry that,

because of our addition, something that occurs later will no longer read correctly.

Reading subsets of observations
If you wanted to read only the information about males from some raw data file, you might type

. infix id 1-6 str name 7-36 age 38-39 str sex 41 using employee.raw
> if sex==”M”

If your specification was instead recorded in a dictionary, you could type

. infix using employee.dct if sex==”M”

In another dataset, if you wanted to read just the first 100 observations, you could type

. infix 2 lines 1: id 1-6 str name 7-36 2: age 1-2 str sex 4 using emp2.raw
> in 1/100

or if the specification was instead recorded in a dictionary and you wanted observations 101–573, you

could type

. infix using emp2.dct in 101/573

Also see
[D] infile (fixed format) — Import text data in fixed format with a dictionary

[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

[U] 22 Entering and importing data
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Description Quick start Syntax Options
Remarks and examples Reference Also see

Description
input allows you to type data directly into the dataset in memory.

For most users, edit is a better way to add observations to the dataset because it automatically adjusts
the storage type of variables, if required, to accommodate new values.

Quick start
Create numeric v1, v2, and v3, and input data directly into Stata

input v1 v2 v3

Same as above, but create v1 and v2 as type int, v3 as type byte
input int (v1 v2) byte v3

Add data on string v4 of length 10
input str10 v4

Input data for all existing variables

input

Same as above, but add observations by typing strings associated with value labels of existing variables

instead of numeric data

input, label

Syntax
input [ varlist ] [ , automatic label ]

Options
automatic causes Stata to create value labels from the nonnumeric data it encounters. It also automat-

ically widens the display format to fit the longest label. Specifying automatic implies label, even
if you do not explicitly type the label option.

label allows you to type the labels (strings) instead of the numeric values for variables associated with
value labels. New value labels are not automatically created unless automatic is specified.

604
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Remarks and examples
If no data are in memory, you must specify varlist when you type input. Stata will then prompt you

to enter the new observations until you type end.

Example 1
We have data on the accident rate per million vehicle miles along a stretch of highway, along with the

speed limit on that highway. We wish to type these data directly into Stata:

. input
nothing to input
r(104);

Typing input by itself does not provide enough information about our intentions. Stata needs to know
the names of the variables we wish to create.

. input acc_rate spdlimit
acc_rate spdlimit

1. 4.58 55
2. 2.86 60
3. 1.61 .
4. end

.

We typed input acc rate spdlimit, and Stata responded by repeating the variable names and prompt-
ing us for the first observation. We entered the values for the first two observations, pressing Return after

each value was entered. For the third observation, we entered the accident rate (1.61), but we entered

a period (.) for missing because we did not know the corresponding speed limit for the highway. Af-

ter entering data for the fourth observation, we typed end to let Stata know that there were no more

observations.

We can now list the data to verify that we have entered the data correctly:

. list

acc_rate spdlimit

1. 4.58 55
2. 2.86 60
3. 1.61 .

If you have data in memory and type input without varlist, you will be prompted to enter more

information on all the variables. This continues until you type end.

Example 2: Adding observations
We now have another observation that we wish to add to the dataset. Typing input by itself tells

Stata that we wish to add new observations:

. input
acc_rate spdlimit

4. 3.02 60
5. end

.
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Stata reminded us of the names of our variables and prompted us for the fourth observation. We entered

the numbers 3.02 and 60 and pressed Return. Stata then prompted us for the fifth observation. We could

add as many new observations as we wish. Because we needed to add only 1 observation, we typed end.
Our dataset now has 4 observations.

You may add new variables to the data in memory by typing input followed by the names of the new
variables. Stata will begin by prompting you for the first observation, then the second, and so on, until

you type end or enter the last observation.

Example 3: Adding variables
In addition to the accident rate and speed limit, we now obtain data on the number of access points

(on-ramps and off-ramps) per mile along each stretch of highway. We wish to enter the new data.

. input acc_pts
acc_pts

1. 4.6
2. 4.4
3. 2.2
4. 4.7

.

When we typed input acc pts, Stata responded by prompting us for the first observation. There are
4.6 access points per mile for the first highway, so we entered 4.6. Stata then prompted us for the

second observation, and so on. We entered each of the numbers. When we entered the final observation,

Stata automatically stopped prompting us—we did not have to type end. Stata knows that there are 4
observations in memory, and because we are adding a new variable, it stops automatically.

We can, however, type end anytime we wish, and Stata fills the remaining observations on the new
variables with missing. To illustrate this, we enter one more variable to our data and then list the result:

. input junk
junk

1. 1
2. 2
3. end

. list

acc_rate spdlimit acc_pts junk

1. 4.58 55 4.6 1
2. 2.86 60 4.4 2
3. 1.61 . 2.2 .
4. 3.02 60 4.7 .

You can input string variables by using input, but you must remember to indicate explicitly that the
variables are strings by specifying the type of the variable before the variable’s name.

Example 4: Inputting string variables
String variables are indicated by the types str# or strL. For str#, # represents the storage length,

or maximum length, in bytes of the variable. You can create variables up to str2045. You can create
strL variables of arbitrary length.
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For text with only plainASCII characters, the length in bytes is equivalent to the number of characters

displayed. For instance, a str4 variable has a maximum length of 4, meaning that it can contain the

strings a, ab, abc, and abcd, but not abcde. Unicode characters beyond the plain ASCII range take 2,

3, or 4 bytes each. Thus the same str4 variable could contain the strings á, áb, and ábc, but not ábcd
because á takes two bytes to store. If you are using input with strings containing Unicode characters,
you should allow extra room in your str# specification. See [U] 12.4.2 Handling Unicode strings.

Strings shorter than the maximum length can be stored in the variable, but strings longer than the

maximum length cannot.

Although a str80 variable can store strings shorter than 80 characters, you should not make all your
string variables str80 because Stata allocates space for strings on the basis of their maximum length.

Thus doing so would waste the computer’s memory.

Let’s assume that we have no data in memory and wish to enter the following data:

. input str16 name age str6 sex
name age sex

1. ”Arthur Doyle” 22 male
2. ”Mary Hope” 37 ”female”
3. Guy Fawkes 48 male

’Fawkes’ cannot be read as a number
3. ”Guy Fawkes” 48 male
4. ”Kriste Yeager” 25 female
5. end

.

We first typed input str16 name age str6 sex, meaning that name is to be a str16 variable and sex
a str6 variable. Because we did not specify anything about age, Stata made it a numeric variable.

Stata then prompted us to enter our data. On the first line, the name is Arthur Doyle, which we typed

in double quotes. The double quotes are not really part of the string; they merely delimit the beginning

and end of the string. We followed that with Mr. Doyle’s age, 22, and his sex, male. We did not bother

to type double quotes around the word male because it contained no blanks or special characters. For
the second observation, we typed the double quotes around female; it changed nothing.

In the third observation, we omitted the double quotes around the name, and Stata informed us that

Fawkes could not be read as a number and reprompted us for the observation. When we omitted the

double quotes, Stata interpreted Guy as the name, Fawkes as the age, and 48 as the sex. This would have
been okay with Stata, except for one problem: Fawkes looks nothing like a number, so Stata complained
and gave us another chance. This time, we remembered to put the double quotes around the name.

Stata was satisfied, and we continued. We entered the fourth observation and typed end. Here is our
dataset:

. list

name age sex

1. Arthur Doyle 22 male
2. Mary Hope 37 female
3. Guy Fawkes 48 male
4. Kriste Yeager 25 female
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Example 5: Specifying numeric storage types
Just as we indicated the string variables by placing a storage type in front of the variable name, we

can indicate the storage type of our numeric variables as well. Stata has five numeric storage types:

byte, int, long, float, and double. When you do not specify the storage type, Stata assumes that the

variable is a float. See the definitions of numbers in [U] 12 Data.

There are two reasons for explicitly specifying the storage type: to induce more precision or to con-

serve memory. The default type float has plenty of precision for most circumstances because Stata

performs all calculations in double precision, no matter how the data are stored. If you were storing

nine-digit Social Security numbers, however, you would want to use a different storage type, or the last

digit would be rounded. long would be the best choice; double would work equally well, but it would
waste memory.

Sometimes you do not need to store a variable as float. If the variable contains only integers between
−32,767 and 32,740, it can be stored as an int and would take only half the space. If a variable contains
only integers between −127 and 100, it can be stored as a byte, which would take only half again as
much space. For instance, in example 4 we entered data for agewithout explicitly specifying the storage
type; hence, it was stored as a float. It would have been better to store it as a byte. To do that, we
would have typed

. input str16 name byte age str6 sex
name age sex

1. ”Arthur Doyle” 22 male
2. ”Mary Hope” 37 ”female”
3. ”Guy Fawkes” 48 male
4. ”Kriste Yeager” 25 female
5. end

.

Stata understands several shorthands. For instance, typing

. input int(a b) c

allows you to input three variables—a, b, and c—and makes both a and b ints and c a float. Remem-
ber, typing

. input int a b c

would make a an int but both b and c floats. Typing

. input a long b double(c d) e

would make a a float, b a long, c and d doubles, and e a float.

Stata has a shorthand for variable names with numeric suffixes. Typing v1-v4 is equivalent to typing
v1 v2 v3 v4. Thus typing

. input int(v1-v4)

inputs four variables and stores them as ints.

Technical note
The rest of this section deals with using input with value labels. If you are not familiar with value

labels, see [U] 12.6.3 Value labels.
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Value labels map numbers into words and vice versa. There are two aspects to the process. First,

we must define the association between numbers and words. We might tell Stata that 0 corresponds

to Male and 1 corresponds to Female by typing label define sexlbl 0 ”Male” 1 ”Female”. The
correspondences are named, and here we have named the 0↔Male 1↔Female correspondence sexlbl.

Next we must associate this value label with a variable. If we had already entered the data and the

variable were called sex, we would do this by typing label values sex sexlbl. We would have

entered the data by typing 0s and 1s, but at least now when we list the data, we would see the words
rather than the underlying numbers.

We can do better than that. After defining the value label, we can associate the value label with the

variable at the time we input the data and tell Stata to use the value label to interpret what we type:

. label define sexlbl 0 ”Male” 1 ”Female”

. input str16 name byte(age sex:sexlbl), label
name age sex

1. ”Arthur Doyle” 22 male
2. ”Mary Hope” 37 ”female”
3. ”Guy Fawkes” 48 male
4. ”Kriste Yeager” 25 female
5. end

.

After defining the value label, we typed our input command. We added the label option at the end of
the command, and we typed sex:sexlbl for the name of the sex variable. The byte(...) around age
and sex:sexlbl was not really necessary; it merely forced both age and sex to be stored as bytes.

Let’s first decipher sex:sexlbl. sex is the name of the variable we want to input. The :sexlbl
part tells Stata that the new variable is to be associated with the value label named sexlbl. The label
option tells Stata to look up any strings we type for labeled variables in their corresponding value label

and substitute the number when it stores the data. Thus when we entered the first observation of our

data, we typed male for Mr. Doyle’s sex, even though the corresponding variable is numeric. Rather

than complaining that “”male” could not be read as a number”, Stata accepted what we typed, looked up
the number corresponding to male, and stored that number in the data.

That Stata has actually stored a number rather than the words male or female is almost irrelevant.
Whenever we list the data or make a table, Stata will use the words male and female just as if those
words were actually stored in the dataset rather than their numeric codings:

. list

name age sex

1. Arthur Doyle 22 male
2. Mary Hope 37 female
3. Guy Fawkes 48 male
4. Kriste Yeager 25 female

. tabulate sex
sex Freq. Percent Cum.

male 2 50.00 50.00
female 2 50.00 100.00

Total 4 100.00



input — Enter data from keyboard 610

It is only almost irrelevant because we can use the underlying numbers in statistical analyses. For

instance, if we were to ask Stata to calculate the mean of sex by typing summarize sex, Stata would
report 0.5. We would interpret that to mean that one-half of our sample is female.

Value labels are permanently associated with variables, so once we associate a value label with a

variable, we never have to do so again. If we wanted to add another observation to these data, we could

type

. input, label
name age sex

5. ”Mark Esman” 26 male
6. end

.

Technical note
The automatic option automates the definition of the value label. In the previous example, we

informed Stata that male corresponds to 0 and female corresponds to 1 by typing label define sexlbl
0 ”Male” 1 ”Female”. It was not necessary to explicitly specify themapping. Specifying the automatic
option tells Stata to interpret what we type as follows:

First, see if the value is a number. If so, store that number and be done with it. If it is not a number,

check the value label associated with the variable in an attempt to interpret it. If an interpretation exists,

store the corresponding numeric code. If one does not exist, add a new numeric code corresponding to

what was typed. Store that new number and update the value label so that the new correspondence is

never forgotten.

We can use these features to reenter our age and sex data. Before reentering the data, we drop all
and label drop all to prove that we have nothing up our sleeve:

. drop _all

. label drop _all

. input str16 name byte(age sex:sexlbl), automatic
name age sex

1. ”Arthur Doyle” 22 male
2. ”Mary Hope” 37 ”female”
3. ”Guy Fawkes” 48 male
4. ”Kriste Yeager” 25 female
5. end

.

We previously defined the value label sexlbl so that Male corresponded to 0 and Female corresponded
to 1. The label that Stata automatically created is slightly different but is just as good:

. label list sexlbl
sexlbl:

1 Male
2 Female

Reference
Kohler, U. 2005. Stata tip 16: Using input to generate variables. Stata Journal 5: 134.

https://www.stata-journal.com/article.html?article=dm0010
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Also see
[D] edit — Browse or edit data with Data Editor

[D] import — Overview of importing data into Stata

[D] save — Save Stata dataset

[U] 22 Entering and importing data



insobs — Add or insert observations

Description Menu Syntax Options
Remarks and examples Acknowledgment Also see

Description
insobs inserts new observations into the dataset. The number of new observations to insert is speci-

fied by obs. This command is primarily used by the Data Editor and is of limited use in other contexts.

Amore popular alternative for programmers is set obs; see [D] obs.

If option before(inspos) or after(inspos) is specified, the new observations are inserted into the

middle of the dataset, and the insert position is controlled by inspos. Note that inspos must be a posi-

tive integer between 1 and the total number of observations N. If the dataset is empty, before() and
after() may not be specified.

Menu
Data > Create or change data > Add or insert observations

Syntax
Add new observations at the end of the dataset

insobs obs

Insert new observations into the middle of the dataset

insobs obs, before(inspos) | after(inspos)

Options
before(inspos) and after(inspos) inserts new observations before and after, respectively, inspos into

the dataset. These options are primarily used by the Data Editor and are of limited use in other

contexts. A more popular alternative for most users is order; see [D] order.
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Remarks and examples

Example 1
insobs can be useful for creating artificial datasets. For instance, if we wanted to create a new dataset

with 100 observations, we could type

. clear

. insobs 100
(100 observations added)

Example 2
We are using auto.dta, but for our specific example, we need the dataset to have more observations

than those provided in this dataset. To solve this problem, we could type

. sysuse auto, clear
(1978 automobile data)
. insobs 10
(10 observations added)

Typing insobs without an option adds the observations at the end of the dataset. Say that instead of
the end, we wanted to add five new observations before observation 20. We would type

. sysuse auto, clear
(1978 automobile data)
. insobs 5, before(20)
(5 observations added)

Acknowledgment
This commandwas inspired by insob, which was written by Bas Straathof of CPBNetherlands Bureau

for Economic Policy Analysis.

Also see
[D] edit — Browse or edit data with Data Editor

[D] obs — Increase the number of observations in a dataset
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Description Quick start Menu Syntax
Remarks and examples Stored results Also see

Description
The inspect command provides a quick summary of a numeric variable that differs from the sum-

mary provided by summarize or tabulate. It reports the number of negative, zero, and positive values;
the number of integers and nonintegers; the number of unique values; and the number of missing; and it

produces a small histogram. Its purpose is not analytical but is to allow you to quickly gain familiarity

with unknown data.

Quick start
Summary of all numeric variables in the dataset

inspect

Summary of v1 for each level of catvar
bysort catvar: inspect v1

Summary of v1 if v2 is greater than 30
inspect v1 if v2 > 30

Menu
Data > Describe data > Inspect variables

Syntax
inspect [ varlist ] [ if ] [ in ]

by and collect are allowed; see [U] 11.1.10 Prefix commands.

Remarks and examples
Typing inspect by itself produces an inspection for all the variables in the dataset. If you specify a

varlist, an inspection of just those variables is presented.

Example 1
inspect is not a replacement or substitute for summarize and tabulate. It is instead a data man-

agement or information tool that lets us quickly gain insight into the values stored in a variable.
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For instance, we receive data that purport to be on automobiles, and among the variables in the dataset

is one called mpg. Its variable label is Mileage (mpg), which is surely suggestive. We inspect the

variable,

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. inspect mpg
mpg: Mileage (mpg) Number of observations

Total Integers Nonintegers
# Negative - - -
# Zero - - -
# Positive 74 74 -

# #
# # # Total 74 74 -
# # # # . Missing -

12 41 74
(21 unique values)

and we discover that the variable is never missing; all 74 observations in the dataset have some value

for mpg. Moreover, the values are all positive and are all integers, as well. Among those 74 observations

are 21 unique (different) values. The variable ranges from 12 to 41, and we are provided with a small

histogram that suggests that the variable appears to be what it claims.

Example 2
Bob, a coworker, presents us with some census data. Among the variables in the dataset is one called

region, which is labeled Census region and is evidently a numeric variable. We inspect this variable:

. use https://www.stata-press.com/data/r19/bobsdata
(1980 Census data by state)
. inspect region
region: Census region Number of observations

Total Integers Nonintegers
# Negative - - -
# # Zero - - -

# # # Positive 50 50 -
# # # #
# # # # Total 50 50 -
# # # # . Missing -

1 5 50
(5 unique values)

region is labeled but 1 value is NOT documented in the label.

In this dataset something may be wrong. region takes on five unique values. The variable has a value
label, however, and one of the observed values is not documented in the label. Perhaps there is a typo-

graphical error.
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Example 3
There was indeed an error. Bob fixes it and returns the data to us. Here is what inspect produces

now:

. use https://www.stata-press.com/data/r19/census
(1980 Census data by state)
. inspect region
region: Census region Number of observations

Total Integers Nonintegers
# Negative - - -
# Zero - - -

# # # Positive 50 50 -
# # # #
# # # # Total 50 50 -
# # # # Missing -

1 4 50
(4 unique values)

region is labeled and all values are documented in the label.

Example 4
We receive data on the climate in 956 US cities. The variable tempjan records the Average January

temperature in degrees Fahrenheit. The results of inspect are

. use https://www.stata-press.com/data/r19/citytemp
(City temperature data)
. inspect tempjan
tempjan: Average January temperature Number of observations

Total Integers Nonintegers
# Negative - - -
# Zero - - -
# Positive 954 78 876
# # #
# # # Total 954 78 876

. # # # . Missing 2

2.2 72.6 956
(More than 99 unique values)

In two of the 956 observations, tempjan is missing. Of the 954 cities that have a recorded tempjan, all
are positive, and 78 of them are integer values. tempjan varies between 2.2 and 72.6. There are more
than 99 unique values of tempjan in the dataset. (Stata stops counting unique values after 99.)
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Stored results
inspect stores the following in r():

Scalars

r(N) number of observations

r(N neg) number of negative observations

r(N 0) number of observations equal to 0

r(N pos) number of positive observations

r(N negint) number of negative integer observations

r(N posint) number of positive integer observations

r(N unique) number of unique values or . if more than 99

r(N undoc) number of undocumented values or . if not labeled

Also see
[D] codebook — Describe data contents

[D] compare — Compare two variables

[D] describe — Describe data in memory or in a file

[D] ds — Compactly list variables with specified properties

[D] isid — Check for unique identifiers

[R] lv — Letter-value displays

[R] summarize — Summary statistics

[R] table — Table of frequencies, summaries, and command results

[R] tabulate oneway — One-way table of frequencies

[R] tabulate, summarize() — One- and two-way tables of summary statistics

[R] tabulate twoway — Two-way table of frequencies



ipolate — Linearly interpolate (extrapolate) values

Description Quick start Menu Syntax Options
Remarks and examples Methods and formulas References Also see

Description
ipolate creates in newvar a linear interpolation of yvar on xvar for missing values of yvar.

Because interpolation requires that yvar be a function of xvar, yvar is also interpolated for tied values

of xvar. When yvar is not missing and xvar is neither missing nor repeated, the value of newvar is just

yvar.

Quick start
Create y2 containing a linear interpolation of y1 on x for observations with missing values of y1 or tied

values of x
ipolate y1 x, generate(y2)

Same as above, but use interpolation and extrapolation

ipolate y1 x, generate(y2) epolate

Same as above, but perform calculation separately for each level of catvar
by catvar: ipolate y1 x, generate(y2) epolate

Menu
Data > Create or change data > Other variable-creation commands > Linearly interpolate/extrapolate values
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Syntax
ipolate yvar xvar [ if ] [ in ] , generate(newvar) [ epolate ]

by is allowed; see [D] by.

Options
generate(newvar) is required and specifies the name of the new variable to be created.

epolate specifies that values be both interpolated and extrapolated. Interpolation only is the default.

Remarks and examples

Example 1
We have data points on y and x, although sometimes the observations on y are missing. We believe

that y is a function of x, justifying filling in the missing values by linear interpolation:

. use https://www.stata-press.com/data/r19/ipolxmpl1

. list, sep(0)

x y

1. 0 .
2. 1 3
3. 1.5 .
4. 2 6
5. 3 .
6. 3.5 .
7. 4 18

. ipolate y x, gen(y1)
(1 missing value generated)
. ipolate y x, gen(y2) epolate
. list, sep(0)

x y y1 y2

1. 0 . . 0
2. 1 3 3 3
3. 1.5 . 4.5 4.5
4. 2 6 6 6
5. 3 . 12 12
6. 3.5 . 15 15
7. 4 18 18 18
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Example 2
We have a dataset of circulations for 10 magazines from 1980 through 2003. The identity of the

magazines is recorded in magazine, circulation is recorded in circ, and the year is recorded in year.
In a few of the years, the circulation is not known, so we want to fill it in by linear interpolation.

. use https://www.stata-press.com/data/r19/ipolxmpl2, clear

. by magazine: ipolate circ year, gen(icirc)

When the by prefix is specified, interpolation is performed separately for each group.

Methods and formulas
The value 𝑦 at 𝑥 is found by finding the closest points (𝑥0, 𝑦0) and (𝑥1, 𝑦1), such that 𝑥0 < 𝑥 and

𝑥1 > 𝑥 where 𝑦0 and 𝑦1 are observed, and calculating

𝑦 = 𝑦1 − 𝑦0
𝑥1 − 𝑥0

(𝑥 − 𝑥0) + 𝑦0

If epolate is specified and if (𝑥0, 𝑦0) and (𝑥1, 𝑦1) cannot be found on both sides of 𝑥, the two closest
points on the same side of 𝑥 are found, and the same formula is applied.

If there are multiple observations with the same value for 𝑥0, then 𝑦0 is taken as the average of the

corresponding 𝑦 values for those observations. (𝑥1, 𝑦1) is handled in the same way.

References
Cox, N. J. 2023. Speaking Stata: Replacing missing values: The easiest problems. Stata Journal 23: 884–896.

Meijering, E. 2002. A chronology of interpolation: From ancient astronomy to modern signal and image processing.

Proceedings of the IEEE 90: 319–342. https://doi.org/10.1109/5.993400.

Also see
[MI] mi impute — Impute missing values

https://doi.org/10.1177/1536867X231196519
https://doi.org/10.1109/5.993400


isid — Check for unique identifiers

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
isid checks whether the specified variables uniquely identify the observations.

Quick start
Verify that idvar uniquely identifies observations

isid idvar

Verify that idvar uniquely identifies observations within panels identified by pvar
isid idvar pvar

Same as above

isid pvar idvar

Same as above, and indicate that the data should be sorted by pvar and idvar
isid pvar idvar, sort

Verify that idvar uniquely identifies observations in mydata.dta
isid idvar using mydata.dta

Menu
Data > Data utilities > Check for unique identifiers

Syntax
isid varlist [ using filename ] [ , sort missok ]

Options
sort indicates that the dataset be sorted by varlist.

missok indicates that missing values are permitted in varlist.
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Remarks and examples

Example 1
Suppose that we want to check whether the mileage ratings (mpg) uniquely identify the observations

in our auto dataset.

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. isid mpg
variable mpg does not uniquely identify the observations
r(459);

isid returns an error and reports that there are multiple observations with the same mileage rating. We

can locate those observations manually:

. sort mpg

. by mpg: generate nobs = _N

. list make mpg if nobs >1, sepby(mpg)

make mpg

1. Linc. Continental 12
2. Linc. Mark V 12

(output omitted )

68. Dodge Colt 30
69. Mazda GLC 30

72. Subaru 35
73. Datsun 210 35

Example 2
isid is useful for checking a time-series panel dataset. For this type of dataset, we usually need

two variables to identify the observations: one that labels the individual IDs and another that labels the

periods. Before we set the data using tsset, we want to make sure that there are no duplicates with the
same panel ID and time. Suppose that we have a dataset that records the yearly gross investment of 10

companies for 20 years. The panel and time variables are company and year.

. use https://www.stata-press.com/data/r19/grunfeld, clear

. isid company year

isid reports no error, so the two variables company and year uniquely identify the observations. There-
fore, we should be able to tsset the data successfully:

. tsset company year
Panel variable: company (strongly balanced)
Time variable: year, 1935 to 1954

Delta: 1 year
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Technical note
The sort option is a convenient shortcut, especially when combined with using. The command

. isid patient_id date using newdata, sort

is equivalent to

. preserve

. use newdata, clear

. sort patient_id date

. isid patient_id date

. save, replace

. restore

Also see
[D] describe — Describe data in memory or in a file

[D] ds — Compactly list variables with specified properties

[D] duplicates — Report, tag, or drop duplicate observations

[D] lookfor — Search for string in variable names and labels

[D] codebook — Describe data contents

[D] inspect — Display simple summary of data’s attributes
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Description Quick start Syntax Options Remarks and examples
Stored results References Also see

Description
jdbc allows you to load data from a database, execute SQL statements on a database, and insert data

into a database using Java Database Connectivity (JDBC). JDBC is an application programming interface

(API) for the programming language Java and defines how a client (Stata) can access a database. jdbc is
oriented toward relational databases or nonrelational database-management systems that have rectangular

data. NoSQL databases will not work with jdbc.

jdbc connect stores all database connection settings for subsequent jdbc commands.

jdbc add stores database connection settings as a data source name for a Stata session.

jdbc remove removes a stored data source name for a Stata session.

jdbc list displays all stored data source names for a Stata session.

jdbc showdbs produces a list of all databases for a given URL.

jdbc showtables retrieves a list of table names available from a specified database.

jdbc describe lists column names and data types associated with a specified table.

jdbc load reads a database table into Stata’s memory. You can load a table specified in the table()
option or load an ODBC table generated by an SQL SELECT statement specified in the exec() option.

jdbc insert writes data from memory to a database table. The data can be appended to an existing

table or replace an existing table.

jdbc exec allows for most SQL statements to be issued directly to any database. Statements that

produce output, such as SELECT, have their output neatly displayed. By using Stata’s ado-language, you

can also generate SQL commands on the fly to do positional updates or whatever the situation requires.

Quick start
Store connection settings to database myDB

jdbc connect, jar(”mysql-connector-java-5.1.49.jar”) ///
driverclass(”com.mysql.jdbc.Driver”) ///
url(”jdbc:mysql://https://www.stata.com/myDB:3306”) ///
user(”stata”) password(”stata”)

List available table names in database myDB
jdbc showtables

Describe the column names and data types in table MyTable from myDB
jdbc describe ”MyTable”

Load MyTable into memory from myDB
jdbc load, table(”MyTable”)
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Syntax
Store JDBC connection settings for all jdbc commands

jdbc connect {DataSourceName | , connect options }

Add JDBC connection settings as a data source name for the current Stata session

jdbc add DataSourceName, connect options

Remove JDBC connection settings and data source name for the current Stata session

jdbc remove {DataSourceName | all }

List stored data source names and URLs for the current Stata session

jdbc list

List all databases for a given connection

jdbc showdbs

Retrieve available table names from specified data source

jdbc showtables [ ”SearchString” ]

List column names and data types associated with specified table

jdbc describe ”TableName”

Import data from a database

jdbc load, { table(”TableName”) | exec(”SqlStmtList”) } [ load options ]

Export data to a database

jdbc insert [ varlist ] [ if ] [ in ], table(”TableName”) [ insert options ]

Allow SQL statements to be issued directly to a database

jdbc exec ”SqlStmtList”

DataSourceName is a name used to store connection settings.

SearchString is a database table name search string; SQL wildcard characters like % and are allowed.

TableName is the name of a table in the database.

SqlStmtList may be one valid SQL statement or a list of SQL statements separated by semicolons.
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connect options Description

∗ jar(”JarFileName”) JAR file name of JDBC driver
∗ jarpath(”DirectoryName”) directory where the driver JAR file is stored along with driver

dependencies
∗ driverclass(”ClassName”) Java class name for JDBC driver
∗ url(”URL”) database URL
∗ user(”UserID”) user ID of user establishing connection
∗ password(”Password”) password of user establishing connection

connprop(”ConnectionProperty”) driver-specific connection property

clear clear current connection settings from memory;
available only with jdbc connect

∗Either jar(”JarFileName”) or jarpath(”DirectoryName”) and driverclass(”ClassName”), url(”URL”),
user(”UserID”), and password(”Password”) are required with jdbc add. These options are also required with jdbc
connect when DataSourceName is not specified.

load options Description

∗ table(”TableName”) name of table stored in the database
∗ exec(”SqlStmtList”) SQL SELECT statements to generate a table to be read into Stata

rows(#) fetch # result set rows from database; default is rows(10)
clear replace data in memory

case(lower | upper | preserve) import variable names as lowercase or uppercase; the default
is to preserve the case

∗Either table(”TableName”) or exec(”SqlStmtList”) must be specified.

insert options Description

∗ table(”TableName”) name of table stored in the database

rows(#) build memory result set with # of rows; default is rows(1)
overwrite clear data in table before data in memory are written to the

table

∗table(”TableName”) is required.

JarFileName is the name of the JDBC driver JAR file.

ClassName is the Java class name stored in the JDBC driver JAR file.

URL is the database URL.

UserID is the user ID.

Password is the user’s password.

Options
Options are presented under the following headings:

Options for jdbc connect and jdbc add
Options for jdbc load
Options for jdbc insert
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Options for jdbc connect and jdbc add
jar(”JarFileName”) specifies the JDBC driver JAR file installed along your ado-path. Either jar() or

jarpath() is required with jdbc add. Also, if DataSourceName is not specified, either jar() or
jarpath() is required with jdbc connect for jdbc showdbs, jdbc showtables, jdbc describe,
jdbc load, jdbc insert, and jdbc exec to work. jar() may not be combined with jarpath().

jarpath(”DirectoryName”) specifies the directory where the JDBC driver JAR files are installed along
your ado-path. Either jarpath() or jar() is required with jdbc add. Also, if DataSourceName is
not specified, either jarpath() or jar() is required with jdbc connect for jdbc showdbs, jdbc
showtables, jdbc describe, jdbc load, jdbc insert, and jdbc exec to work. jarpath() may
not be combined with jar().

driverclass(”ClassName”) specifies the Java class name stored in the JDBC driver JAR file installed
along your ado-path. driverclass() is required with jdbc add. Also, if DataSourceName is not
specified, driverclass() is required with jdbc connect for jdbc showdbs, jdbc showtables,
jdbc describe, jdbc load, jdbc insert, and jdbc exec to work.

url(”URL”) specifies the URL to the database the user is attempting to establish the connection to.

url() is required with jdbc add. Also, if DataSourceName is not specified, url() is required with
jdbc connect for jdbc showdbs, jdbc showtables, jdbc describe, jdbc load, jdbc insert,
and jdbc exec to work. The driver URL syntax is as follows:

jdbc:Database type://Host:Port/Database name?connection properties

user(”UserID”) specifies the user ID of the user attempting to establish the connection to a database.

user() is required with jdbc add. Also, ifDataSourceName is not specified, user() is required with
jdbc connect for jdbc showdbs, jdbc showtables, jdbc describe, jdbc load, jdbc insert,
and jdbc exec to work.

password(”Password”) specifies the password of the user attempting to establish the connection

to a database. password() is required with jdbc add. Also, if DataSourceName is not spec-

ified, password() is required with jdbc connect for jdbc showdbs, jdbc showtables, jdbc
describe, jdbc load, jdbc insert, and jdbc exec to work.

connprop(”ConnectionProperty”) specifies the driver-specific connection properties. A connection

property is a key value pair that is separated by a colon and delimited by a semicolon. For example,

jdbc connect, ... connprop(”characterEncoding:ISO‑8859-1;”)

These properties can also be set in the url() option.

clear clears the current connection settings from memory. This option may only be specified with jdbc
connect and may not be combined with any other connect options.

Options for jdbc load
table(”TableName”) specifies the name of the table stored in a specified database. Either the table()

option or the exec() option—but not both—is required with the jdbc load command.
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exec(”SqlStmtList”) allows you to issue an SQL SELECT statement to generate a table to be read into

Stata. Multiple SQL statements can be issued, with the last SQL statement being a SELECT. Each

statement should be delimited by a semicolon. For example,

local sql ///
”CREATE TEMPORARY TABLE t(a INT, b INT); INSERT INTO t VALUES (1,2); ///
SELECT * FROM t;”

jdbc load, exec(”‘sql’”)

An error message is returned if the SQL statements are invalid SQL. Either the table() option or the
exec() option—but not both—is required with the jdbc load command.

rows(#) specifies the number of rows to be fetched from the database result set for each network call.

This option may help improve command performance. The default is rows(10). Some drivers do
not support this feature. Note that setting rows() to a large number might require you to change the
amount of heap memory allocated for the JVM with the java set heapmax command.

clear permits the data to be loaded, even if there are data already in memory, and even if that data have
changed since the data were last saved.

case(lower | upper | preserve) specifies the case of the variable names after loading. The default is
case(preserve).

Options for jdbc insert
table(”TableName”) specifies the name of the table stored in a specified database.

rows(#) specifies the number of result set rows to be sent to the database for each network call. This
option may help improve command performance. The default result set size is 1. This option does

not work with datasets that contain strLs. Some drivers do not support this feature. Note that setting
the rows(#) to a large number might require you to change the amount of heap memory allocated for
the JVM with the java set heapmax command.

overwrite allows data to be dropped from a database table before the Stata data in memory are written

to the table. All data from the table are erased, not just the data from the variable columns that will

be replaced.

Remarks and examples
jdbc allows you to connect to, load data from, insert data into, and execute queries on a database

using JDBC. First, you specify the connection settings with jdbc connect, including the URL for the

database you are connecting to and your user ID and password. Thereafter, you can use jdbc showdbs,
jdbc showtables, jdbc describe, jdbc load, jdbc insert, and jdbc exec. These commands al-
low you to execute statements on a database and load data to and from Stata; they will use the connection

information you specified with jdbc connect to open a connection and perform the specified task.

If you will be connecting to multiple databases frequently, you can store the connection settings for

each database under a data source name with jdbc add. Then, whenever you wish to connect to a

database, simply use jdbc connect, and specify the data source name. This avoids having to specify all
the connection information every time you wish to connect to a different database.
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Remarks are presented under the following headings:

JDBC drivers
Connecting to a database
Data source names
Exploring a database
Loading data from a database
Inserting data into a database
Executing SQL on a database

JDBC drivers
To use jdbc, you must first download and install your database vendor JDBC driver JAR file. To see

information on Stata’s current JDBC implementation, click here.

Once you have downloaded the appropriate driver, you must install the driver along Stata’s ado-path.

If the file is compressed, you can use Stata’s unzipfilewith the downloaded file to extract the .jar file.
Once extracted, place the .jar file along your ado-path so Stata can add it to the Java virtual machine
(JVM) class-path. You can use java query to check to see whether Stata has loaded your driver along
the JVM class-path.

Most users should place the .jar files in the PERSONAL directory or the current working directory.
System administrators may wish to place them in the SITE directory if they have a network installation
and want to make them available to all users.

Connecting to a database
jdbc connect stores all database connection settings for commands jdbc showdbs, jdbc

showtables, jdbc describe, jdbc load, jdbc insert, and jdbc exec. Options jar(),
driverclass(), url(), user(), and password() are required, unless you have already saved that

information under a data source name and you are specifying thatDataSourceNamewith jdbc connect.

If you try to use these commands before setting your connection properties, you will receive the

following error message:

. jdbc showtables
Connection failed
JDBC driver class not found
r(681);

Technical note
Storing your database name, user ID, and password in a Stata do-file, ado-file, or log file can be a

security risk. Your database vendor might have software called a wallet that can store this information

securely on your machine.

Example 1: Creating a connection
Below, we create a connection string for the JDBC driver in Stata:

. jdbc connect, jar(”mysql-connector-java-8.0.22.jar”)
> driverclass(”com.mysql.cj.jdbc.Driver”)
> url(”jdbc:mysql://localhost:3306/myDB”)
> user(”stata”) password(”stata_pass”)

https://www.stata.com/support/faqs/data-management/configuring-jdbc/
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Going forward, when we issue the jdbc showdbs, jdbc showtables, jdbc describe, jdbc load,
jdbc insert, or jdbc exec command, each will use this information to connect to the database myDB.

Example 2: Using macros
You can also use macros to make your do-file more readable and easier to change database settings.

. local jar ”mysql-connector-java-8.0.22.jar”

. local driverclass ”com.mysql.cj.jdbc.Driver”

. local url ”jdbc:mysql://localhost:3306/myDB”

. local user ”stata”

. local pass ”stata_pass”

. jdbc connect, jar(”‘jar’”) driverclass(”‘driverclass’”)
> url(”‘url’”) user(”‘user’”) password(”‘pass’”)

Data source names
If you would like to have database connection settings stored and ready for jdbc to use every time

you start a Stata session, you can place jdbc add in your profile.do to store these settings; see

[GSW] B.3 Executing commands every time Stata is started, [GSM] B.1 Executing commands ev-

ery time Stata is started, or [GSU] B.1 Executing commands every time Stata is started.

Use jdbc list to see the current session’s stored connection settings and jdbc remove to remove
stored settings.

Exploring a database
jdbc showdbs, jdbc showtables, and jdbc describe are used, respectively, to list database

names, table names, and table columns of a connection. Use these commands to search for data to

load from your connection.

Example 3: Listing table names
jdbc showtables is used to list table names available from a specified database. To list all the tables

stored in database myDB, type
. jdbc showtables
Database: myDB

Tables

auto
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Example 4: Listing column names and data types
jdbc describe displays the column names and JDBC data types of the table listed. To describe the

auto table, type

. jdbc describe ”auto”
Table: auto

column name column type

make VARCHAR
price INT
mpg INT
rep78 SMALLINT
headroom FLOAT
trunk SMALLINT
weight SMALLINT
length SMALLINT
turn SMALLINT
displacement SMALLINT
gear_ratio FLOAT
domestic VARCHAR

Loading data from a database
jdbc load is used to load a database table into Stata’s memory; this can be an existing table or a

subset of a table created by a series of SQL statements.

Example 5: Loading a table
To load a database table listed in the jdbc showtables output, specify the table name in the table()

option.

. jdbc load, table(”auto”)
74 observations loaded
. describe
Contains data
Observations: 74

Variables: 12

Variable Storage Display Value
name type format label Variable label

make str19 %19s make
price long %12.0g price
mpg long %12.0g mpg
rep78 int %8.0g rep78
headroom float %9.0g headroom
trunk int %8.0g trunk
weight int %8.0g weight
length int %8.0g length
turn int %8.0g turn
displacement int %8.0g displacement
gear_ratio float %9.0g gear_ratio
domestic str18 %18s domestic

Sorted by:
Note: Dataset has changed since last saved.
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Example 6: Loading part of a table
If your database table is large and the memory on your computer is limited, it is a good idea to limit the

amount of data loaded from the database using a SELECT statement in the exec() option. For example,
instead of loading the whole table as we did above, we can just load the mpg column:

. jdbc load, exec(”SELECT mpg FROM auto;”)
74 observations loaded
. describe
Contains data
Observations: 74

Variables: 1

Variable Storage Display Value
name type format label Variable label

mpg long %12.0g mpg

Sorted by:
Note: Dataset has changed since last saved.

Technical note
When Stata loads a table, data are converted from JDBC data types to Stata data types. Stata does

not support all JDBC data types. If the column cannot be read because of incompatible data types, Stata

will issue a note and skip a column. The following table lists the supported JDBC data types and their

corresponding Stata data types:
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JDBC data type Stata data type

BOOLEAN byte
BIT byte
TINYINT byte
SMALLINT int
INTEGER long
ROWID str
BIGINT str
REAL float
FLOAT float
NUMERIC double
DECIMAL double
DOUBLE double
DATE double
TIME double
TIMESTAMP double
TIME WITH TIMEZONE str
TIMESTAMP WITH TIMEZONE str
BINARY strL
VARBINARY strL
LONGVARBINARY strL
BLOB strL
CHAR str/strL
VARCHAR str/strL
LONGVARCHAR str/strL
NCHAR str/strL
NVARCHAR str/strL
LONGNVARCHAR str/strL
NCLOB str/strL
CLOB str/strL
STRUCT skipped
ARRAY skipped
SQLXML skipped
NULL skipped
OTHER skipped
REF CURSOR skipped
JAVA OBJECT skipped
DISTINCT skipped
REF skipped
DATALINK skipped

Stata is a UTF-8 application, so all string data should be encoded as UTF-8. This can be set using a

driver connection property. Check your database vendor or driver documentation to see how your string

data is encoded by default to see whether this property should be set.

. jdbc connect, ... connprop(”characterEncoding:UTF8;”)

Inserting data into a database
jdbc insert inserts data in memory into a database table. The database table and the Stata varlist

must have the same column and variable names, number of columns, and compatible data types for the

insert to work correctly. By default, observations are appended to the database table. When you insert

data, mapping of the data types are the same as jdbc load, with one exception, Stata bytes. Stata bytes
are mapped to SMALLINTs because some database vendors’ (SQLServer) BYTE data type is unsigned.
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Example 7: Inserting data into a table
Below, we insert the data in memory into the table auto.

. jdbc insert, table(auto)
74 rows inserted

To replace the table with the data in memory, use the option overwrite.

. jdbc insert, table(auto) overwrite
74 rows affected
74 rows inserted

Executing SQL on a database
You use jdbc exec to execute SQL commands on the database. If an SQL command returns a result

set, like SELECT, that result set will be displayed in the Stata Results window.

Example 8: Executing SQL commands
To use jdbc insert, you must have a table already created in your database. If you do not, you can

use jdbc exec to create a table in your database. For example, one might create a table in a MySQL

database with the SQL command below:

#delimit ;
local create_table_sql ‘”CREATE TABLE auto (

make varchar(19) NOT NULL,
price int,
mpg int,
rep78 smallint,
headroom float,
trunk smallint,
weight smallint,
length smallint,
turn smallint,
displacement smallint,
gear_ratio float,
domestic varchar(18)

);”’ ;

jdbc exec ”‘create_table_sql’”

If your SQL statement contains double quotes, you must enclose your statement in compound double

quotes, as we did with the statement above.
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Stored results
jdbc showdbs stores the following in r():

Scalars

r(n dbs) number of databases displayed

jdbc showtables stores the following in r():

Scalars

r(n tables) number of tables displayed

jdbc describe stores the following in r():

Scalars

r(k) number of columns displayed

jdbc load stores the following in r():

Scalars

r(k) number of variables loaded

r(N) number of observations loaded

jdbc insert stores the following in r():

Scalars

r(k) number of columns inserted

r(N) number of rows inserted

References
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Description Quick start Menu
Syntax Options Remarks and examples
Acknowledgment References Also see

Description
joinby joins, within groups formed by varlist, observations of the dataset in memory with filename,

a Stata-format dataset. By join we mean to form all pairwise combinations. If filename is specified

without an extension, .dta is assumed.

If varlist is not specified, joinby takes as varlist the set of variables common to the dataset in memory
and in filename.

Observations unique to one or the other dataset are ignored unless unmatched() specifies differently.
Whether you load one dataset and join the other or vice versa makes no difference in the number of

resulting observations.

If there are common variables between the two datasets, however, the combined dataset will contain

the values from the master data for those observations. This behavior can be modified with the update
and replace options.

Quick start
Form pairwise combinations of observations from mydata1.dta in memory with those from

mydata2.dta using all common variables and drop unmatched observations
joinby using mydata2

Same as above, but join on v1, v2, and v3
joinby v1 v2 v3 using mydata2

Same as above, but include unmatched observations only from mydata2.dta and add merge indicating
whether the variable was in both datasets or only the using dataset

joinby v1 v2 v3 using mydata2, unmatched(using)

Same as above, but include unmatched observations only from mydata1.dta
joinby v1 v2 v3 using mydata2, unmatched(master)

Same as above, but name the variable indicating the source of the observation newv
joinby v1 v2 v3 using mydata2, unmatched(master) _merge(newv)

Replace missing data in mydata1.dta with values from mydata2.dta
joinby v1 v2 v3 using mydata2, update

Replace missing and conflicting data in mydata1.dta with values from mydata2.dta
joinby v1 v2 v3 using mydata2, update replace

Menu
Data > Combine datasets > Form all pairwise combinations within groups

636
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Syntax
joinby [ varlist ] using filename [ , options ]

options Description

Options

When observations match:

update replace missing data in memory with values from filename

replace replace all data in memory with values from filename

When observations do not match:

unmatched(none) ignore all; the default

unmatched(both) include from both datasets

unmatched(master) include from data in memory

unmatched(using) include from data in filename

merge(varname) varname marks source of resulting observation; default is merge
nolabel do not copy value-label definitions from filename

varlist may not contain strLs.

Options

� � �
Options �

update varies the action that joinby takes when an observation is matched. By default, values from the

master data are retained when the same variables are found in both datasets. If update is specified,
however, the values from the using dataset are retained where the master dataset contains missing.

replace, allowed with update only, specifies that nonmissing values in the master dataset be replaced
with corresponding values from the using dataset. A nonmissing value, however, will never be re-

placed with a missing value.

unmatched(none | both | master | using) specifies whether observations unique to one of the datasets
are to be kept, with the variables from the other dataset set to missing. Valid values are

none ignore all unmatched observations (default)

both include unmatched observations from the master and using data

master include unmatched observations from the master data

using include unmatched observations from the using data

merge(varname) specifies the name of the variable that will mark the source of the resulting obser-
vation. The default name is merge( merge). To preserve compatibility with earlier versions of
joinby, merge is generated only if unmatched is specified.

nolabel prevents Stata from copying the value-label definitions from the dataset on disk into the dataset

inmemory. Even if you do not specify this option, label definitions from the disk dataset do not replace

label definitions already in memory.
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Remarks and examples
The following, admittedly artificial, example illustrates joinby.

Example 1
We have two datasets: child.dta and parent.dta. Both contain a family id variable, which

identifies the people who belong to the same family.

. use https://www.stata-press.com/data/r19/child
(Data on Children)
. describe
Contains data from https://www.stata-press.com/data/r19/child.dta
Observations: 5 Data on Children

Variables: 4 11 Dec 2024 21:08

Variable Storage Display Value
name type format label Variable label

family_id int %8.0g Family ID number
child_id byte %8.0g Child ID number
x1 byte %8.0g
x2 int %8.0g

Sorted by: family_id
. list

family~d child_id x1 x2

1. 1025 3 11 320
2. 1025 1 12 300
3. 1025 4 10 275
4. 1026 2 13 280
5. 1027 5 15 210

. use https://www.stata-press.com/data/r19/parent
(Data on Parents)
. describe
Contains data from https://www.stata-press.com/data/r19/parent.dta
Observations: 6 Data on Parents

Variables: 4 11 Dec 2024 03:06

Variable Storage Display Value
name type format label Variable label

family_id int %8.0g Family ID number
parent_id float %9.0g Parent ID number
x1 float %9.0g
x3 float %9.0g

Sorted by:
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. list, sep(0)

family~d parent~d x1 x3

1. 1030 10 39 600
2. 1025 11 20 643
3. 1025 12 27 721
4. 1026 13 30 760
5. 1026 14 26 668
6. 1030 15 32 684

We want to join the information for the parents and their children. The data on parents are in memory,

and the data on children are posted at https://www.stata-press.com.

. joinby family_id using https://www.stata-press.com/data/r19/child

. describe
Contains data
Observations: 8 Data on Parents

Variables: 6

Variable Storage Display Value
name type format label Variable label

family_id int %8.0g Family ID number
parent_id float %9.0g Parent ID number
x1 float %9.0g
x3 float %9.0g
child_id byte %8.0g Child ID number
x2 int %8.0g

Sorted by:
Note: Dataset has changed since last saved.

. list, sepby(family_id) abbrev(12)

family_id parent_id x1 x3 child_id x2

1. 1025 11 20 643 3 320
2. 1025 11 20 643 4 275
3. 1025 11 20 643 1 300
4. 1025 12 27 721 1 300
5. 1025 12 27 721 3 320
6. 1025 12 27 721 4 275

7. 1026 13 30 760 2 280
8. 1026 14 26 668 2 280

1. family id of 1027, which appears only in child.dta, and family id of 1030, which appears only
in parent.dta, are not in the combined dataset. Observations for which the matching variables are
not in both datasets are omitted.

https://www.stata-press.com
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2. The x1 variable is in both datasets. Values for this variable in the joined dataset are the values from
parent.dta—the dataset in memory when we issued the joinby command. If we had child.dta
in memory and parent.dta on disk when we requested joinby, the values for x1 would have been
those from child.dta. Values from the dataset in memory take precedence over the dataset on disk.

Acknowledgment
joinby was written by Jeroen Weesie of the Department of Sociology at Utrecht University, The

Netherlands.
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Description Quick start Menu Syntax Options
Remarks and examples Stored results References Also see

Description
label data attaches a label (up to 80 characters) to the dataset in memory. Dataset labels are dis-

played when you use the dataset and when you describe it. If no label is specified, any existing label
is removed.

label variable attaches a label (up to 80 characters) to a variable. If no label is specified, any

existing variable label is removed.

label define creates a value label named lblname, which is a set of individual numeric values and
their corresponding labels. lblname can contain up to 65,536 individual labels; each individual label can

be up to 32,000 characters long.

label values attaches a value label to varlist. If . is specified instead of lblname, any existing value

label is detached from that varlist. The value label, however, is not deleted. The syntax label values
varname (that is, nothing following the varname) acts the same as specifying the ..

label dir lists the names of value labels stored in memory.

label list lists the names and contents of value labels stored in memory.

label copy makes a copy of an existing value label.

label drop eliminates value labels.

label save saves value label definitions in a do-file. This is particularly useful for value labels that
are not attached to a variable because these labels are not saved with the data. By default, .do is the

filename extension used.

See [D] label language for information on the label language command.

Quick start
Label the dataset “My data”

label data ”My data”

Label v1 “First variable”
label variable v1 ”First variable”

Define value label named mylabel1
label define mylabel1 1 ”Value 1” 2 ”Value 2”

Add labels for values 0 and 3 to mylabel1
label define mylabel1 0 ”Value 0” 3 ”Value 3”, add

Copy mylabel1 to mylabel2
label copy mylabel1 mylabel2

Redefine value 0 in mylabel2 to mean “Null”
label define mylabel2 0 ”Null”, modify
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Apply value label mylabel1 to v1
label values v1 mylabel1

Save all currently defined value labels to mylabels.do for use with other datasets
label save using mylabels.do

List names and contents of all value labels

label list

Drop all value labels

label drop _all

Menu
label data
Data > Data utilities > Label utilities > Label dataset

label variable
Data > Variables Manager

label define
Data > Variables Manager

label values
Data > Variables Manager

label list
Data > Data utilities > Label utilities > List value labels

label copy
Data > Data utilities > Label utilities > Copy value labels

label drop
Data > Variables Manager

label save
Data > Data utilities > Label utilities > Save value labels as do-file
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Syntax
Label dataset

label data [ ”label” ]

Label variable

label variable varname [ ”label” ]

Define value label

label define lblname # ”label” [ # ”label” [ . . . ] ] [ , add modify replace nofix ]

Assign value label to variables

label values varlist lblname [ , nofix ]

Remove value labels

label values varlist [ . ]

List names of value labels

label dir

List names and contents of value labels

label list [ lblname [ lblname [ . . . ] ] ]

Copy value label

label copy lblname lblname [ , replace ]

Drop value labels

label drop { lblname [ lblname [ . . . ] ] | all }

Save value labels in do-file

label save [ lblname [ lblname [ . . . ] ] ] using filename [ , replace ]

Labels for variables and values in multiple languages

label language . . . (see [D] label language)

where # is an integer or an extended missing value (.a, .b, . . . , .z).

collect is allowed with label dir, label language, and label list; see [U] 11.1.10 Prefix commands.
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Options
add allows you to add #↔ label correspondences to lblname. If add is not specified, you may create

only new lblnames. If add is specified, you may create new lblnames or add new entries to existing

lblnames.

modify allows you to modify or delete existing #↔ label correspondences and add new correspon-

dences. Specifying modify implies add, even if you do not type the add option.

replace, with label define, allows an existing value label to be redefined. replace, with label
copy, allows an existing value label to be copied over. replace, with label save, allows filename
to be replaced.

nofix prevents display formats from being widened according to the maximum length of the value label.

Consider label values myvar mylab, and say that myvar has a %9.0g display format right now. Say
that the maximum length of the strings in mylab is 12 characters. label values would change the
format of myvar from %9.0g to %12.0g. nofix prevents this.

nofix is also allowed with label define, but it is relevant only when you are modifying an existing
value label. Without the nofix option, label define finds all the variables that use this value label
and considers widening their display formats. nofix prevents this.

Remarks and examples
See [U] 12.6 Dataset, variable, and value labels for a complete description of labels. This entry

deals only with details not covered there.

Remarks are presented under the following headings:

Overview
Video examples

Overview
Value labels save us the trouble of having to remember how our variables are coded. For example,

if we have a variable recording the region where people live, we might not remember if a value of 1

referred to east or west. We can use label define to create a value label attaching the labels east and
west to numeric values 1 and 2. We can then attach these codings to our region variable with label
values so that our labels will be displayed in the output of certain summary statistics and estimation
commands instead of their corresponding numeric values. The suite of label commands makes it easy
to create and manipulate these labels.

Example 1: Creating a value label
Although describe shows the names of the value labels, those value labels may not exist. Stata

does not consider it an error to label the values of a variable with a nonexistent label. When this occurs,

Stata still shows the association on describe but otherwise acts as if the variable’s values are unlabeled.
This way, you can associate a value label name with a variable before creating the corresponding label.

Similarly, you can define labels that you have not yet used.
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. use https://www.stata-press.com/data/r19/hbp4

. describe
Contains data from https://www.stata-press.com/data/r19/hbp4.dta
Observations: 1,130

Variables: 7 22 Jan 2024 11:12

Variable Storage Display Value
name type format label Variable label

id str10 %10s Record identification number
city byte %8.0g
year int %8.0g
age_grp byte %8.0g
race byte %8.0g
hbp byte %8.0g
female byte %8.0g sexlbl

Sorted by:

The dataset is using the value label sexlbl. Let’s define the value label yesno:

. label define yesno 0 ”No” 1 ”Yes”

label dir shows you the value labels that you have actually defined:

. label dir
yesno
sexlbl

We have two value labels stored in memory: yesno and sexlbl.

We can display the contents of a value label with the label list command:

. label list yesno
yesno:

0 No
1 Yes

The value label yesno labels the values 0 as no and 1 as yes.

If you do not specify the name of the value label on the label list command, Stata lists all the value
labels:

. label list
yesno:

0 No
1 Yes

sexlbl:
0 Male
1 Female

You can add new codings to an existing value label by using the add option with the label define
command. You can modify existing codings by using the modify option. You can redefine a value label
by specifying the replace option.
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Example 2: Modifying a value label
The value label yesno codes 0 as no and 1 as yes. You might wish later to add a third coding: 2 as

maybe. Typing label define with no options results in an error:

. label define yesno 2 maybe
label yesno already defined
r(110);

If you do not specify the add, modify, or replace options, label define can be used only to create
new value labels. The add option lets you add codings to an existing value label:

. label define yesno 2 maybe, add

. label list yesno
yesno:

0 No
1 Yes
2 maybe

Perhaps you have accidentally mislabeled a value. For instance, 2 may not mean “maybe” but may

instead mean “don’t know”. add does not allow you to change an existing label:

. label define yesno 2 ”Don’t know”, add
invalid attempt to modify label
r(180);

Instead, you would specify the modify option:

. label define yesno 2 ”Don’t know”, modify

. label list yesno
yesno:

0 No
1 Yes
2 Don’t know

In this way, Stata attempts to protect you from yourself. If you type label define with no options,
you can only create a new value label—you cannot accidentally change an existing one. If you specify

the add option, you can add new labels to an existing value label, but you cannot accidentally change

any existing label. If you specify the modify option, which you may not abbreviate, you can change any
existing label.

You can even use the modify option to eliminate existing labels. To do this, you map the numeric
code to a null string, that is, ””:

. label define yesno 2 ””, modify

. label list yesno
yesno:

0 No
1 Yes

You can eliminate entire value labels by using the label drop command.
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Example 3: Dropping value labels
We currently have two value labels stored in memory—sexlbl and yesno—as shown by the label

dir command:

. label dir
yesno
sexlbl

The dataset that we have in memory uses only one of the labels—sexlbl. describe reports that yesno
is not being used:

. describe
Contains data from https://www.stata-press.com/data/r19/hbp4.dta
Observations: 1,130

Variables: 7 22 Jan 2024 11:12

Variable Storage Display Value
name type format label Variable label

id str10 %10s Record identification number
city byte %8.0g
year int %8.0g
age_grp byte %8.0g
race byte %8.0g
hbp byte %8.0g
female byte %8.0g sexlbl

Sorted by:
Note: Dataset has changed since last saved.

We can eliminate the value label yesno by typing

. label drop yesno

. label dir
sexlbl

We could eliminate all the value labels in memory by typing

. label drop _all

. label dir
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The value label sexlbl, which no longer exists, was associated with the variable female. Even after
dropping the value label, sexlbl is still associated with the variable:

. describe
Contains data from https://www.stata-press.com/data/r19/hbp4.dta
Observations: 1,130

Variables: 7 22 Jan 2024 11:12

Variable Storage Display Value
name type format label Variable label

id str10 %10s Record identification number
city byte %8.0g
year int %8.0g
age_grp byte %8.0g
race byte %8.0g
hbp byte %8.0g
female byte %8.0g sexlbl

Sorted by:
Note: Dataset has changed since last saved.

If we wanted to disassociate this nonexistent value label from the variable it was attached to, we could

issue the label values command without specifying a value label name.

Example 4: Copying a value label
label copy is useful when you want to create a new value label that is similar to an existing value

label. For example, assume that we currently have the value label yesno in memory:

. label list yesno
yesno:

1 Yes
2 No

Assume that we have some variables in our dataset coded with 1 and 2 for “yes” and “no” and that
we have some other variables coded with 1 for “yes”, 2 for “no”, and 3 for “maybe”.

We could make a copy of value label yesno and then add the new coding to that copy:

. label copy yesno yesnomaybe

. label define yesnomaybe 3 ”Maybe”, add

. label list
yesnomaybe:

1 Yes
2 No
3 Maybe

yesno:
1 Yes
2 No

Example 5: Saving value labels
Data and variable labels are automatically stored with your dataset when you save it. You might

have more value labels stored in memory than are actually used in the dataset, but only those value

labels that are attached to variables will be stored with a dataset unless you use save’s orphans option.
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Conversely, the use command drops all in-memory labels before loading the new dataset along with any

labels it might contain. You might want to store a value label not currently in use or move a value label

from one dataset to another. The label save command allows you to do this.

For example, assume that we currently have the value label yesnomaybe in memory:

. label list yesnomaybe
yesnomaybe:

1 Yes
2 No
3 Maybe

We have a dataset stored on disk called survey.dta to which we wish to add this value label. We

might use survey and then retype the label define yesnomaybe command. Retyping the label would
not be too tedious here but if the value label in memory mapped, say, the 50 states of the United States,

retyping it would be irksome. label save provides an alternative:

. label save yesnomaybe using ynfile
file ynfile.do saved

Typing label save yesnomaybe using ynfile caused Stata to create a do-file called ynfile.do con-
taining the definition of the yesnomaybe value label. Because we did not specify an extension for our
file, .dowas assumed. Also, if we had not specified a value label name, all value labels would have been
stored in ynfile.do.

To see the contents of the file, we can use the type command:

. type ynfile.do
label define yesnomaybe 1 ‘”Yes”’, modify
label define yesnomaybe 2 ‘”No”’, modify
label define yesnomaybe 3 ‘”Maybe”’, modify

We can now use our new dataset, survey.dta:

. use survey, clear
(Household survey data)
. label dir

Using the new dataset causes Stata to eliminate all value labels stored in memory. The label yesnomaybe
is now gone. Because we saved it in the file ynfile.do, however, we can get it back by typing either
do ynfile or run ynfile. If we type do, we will see the commands in the file execute. If we type run,
the file will execute silently:

. run ynfile

. label dir
yesnomaybe

The value label is now restored just as if we had typed it from the keyboard.

Technical note
You can also use the label save command to more easily edit value labels. You can save a label in

a file, leave Stata and use your word processor or editor to edit the label, and then return to Stata. Using

do or run, you can load the edited values.
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Video examples
How to label variables

How to label the values of categorical variables

Stored results
label list stores the following in r():

Scalars

r(k) number of mapped values, including missings

r(min) minimum nonmissing value label

r(max) maximum nonmissing value label

r(hasemiss) 1 if extended missing values labeled, 0 otherwise

label dir stores the following in r():

Macros

r(names) names of value labels

References
Bjärkefur, K., L. Cardoso de Andrade, and B. Daniels. 2020. iefieldkit: Commands for primary data collection and

cleaning. Stata Journal 20: 892–915.
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Weesie, J. 2005a. Value label utilities: labeldup and labelrename. Stata Journal 5: 154–161.
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Also see
[D] label language — Labels for variables and values in multiple languages

[D] labelbook — Label utilities

[D] encode — Encode string into numeric and vice versa

[D] varmanage — Manage variable labels, formats, and other properties

[U] 12.6 Dataset, variable, and value labels
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Description Quick start Menu Syntax
Option Remarks and examples Stored results Methods and formulas
References Also see

Description
label language lets you create and use datasets that contain different sets of data, variable, and

value labels. A dataset might contain one set in English, another in German, and a third in Spanish. A

dataset may contain up to 100 sets of labels.

We will write about the different sets as if they reflect different spoken languages, but you need not

use the multiple sets in this way. You could create a dataset with one set of long labels and another set

of shorter ones.

One set of labels is in use at any instant, but a dataset may contain multiple sets. You can choose

among the sets by typing

. label language languagename

When other Stata commands produce output (such as describe and tabulate), they use the currently
set language. When you define or modify the labels by using the other label commands (see [D] label),
you modify the current set.

label language (without arguments)
lists the available languages and the name of the current one. The current language refers to the

labels you will see if you used, say, describe or tabulate. The available languages refer to the
names of the other sets of previously created labels. For instance, you might currently be using

the labels in en (English), but labels in de (German) and es (Spanish) may also be available.

label language languagename

changes the labels to those of the specified language. For instance, if label language revealed
that en, de, and eswere available, typing label language dewould change the current language
to German.

label language languagename, new
allows you to create a new set of labels and collectively name them languagename. You may name

the set as you please, as long as the name does not exceed 24 characters. If the labels correspond to

spoken languages, we recommend that you use the language’s ISO 639-1 two-letter code, such as

en for English, de for German, and es for Spanish. A list of codes for popular languages is listed

in the appendix below. For a complete list, see

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes.

label language languagename, rename
changes the name of the label set currently in use. If the label set in use were named default and
you now wanted to change that to en, you could type label language en, rename.

Our choice of the name default in the example was not accidental. If you have not yet used

label language to create a new language, the dataset will have one language, named default.

label language languagename, delete
deletes the specified label set. If languagename is also the current language, one of the other

available languages becomes the current language.
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Quick start
Name unnamed default language en for English

label language en, rename

Create new set of labels in French named fr
label language fr, new

Change current label language from English to French

label language fr

List defined languages

label language

Delete English label set

label language en, delete

Menu
Data > Data utilities > Label utilities > Set label language

Syntax
List defined languages

label language

Change labels to specified language name

label language languagename

Create new set of labels with specified language name

label language languagename, new [ copy ]

Rename current label set

label language languagename, rename

Delete specified label set

label language languagename, delete

collect is allowed; see [U] 11.1.10 Prefix commands.

Option
copy is used with label language, new and copies the labels from the current language to the new

language.
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Remarks and examples
Remarks are presented under the following headings:

Creating labels in the first language
Creating labels in the second and subsequent languages
Creating labels from a clean slate
Creating labels from a previously existing language
Switching languages
Changing the name of a language
Deleting a language
Appendix: Selected ISO 639-1 two-letter codes

Creating labels in the first language
You can begin by ignoring the label language command. You create the data, variable, and value

labels just as you would ordinarily; see [D] label.

. label data ”1978 automobile data”

. label variable foreign ”Car type”

. label values foreign origin

. label define origin 0 ”Domestic” 1 ”Foreign”

At some point—at the beginning, the middle, or the end—rename the language appropriately. For

instance, if the labels you defined were in English, type

. label language en, rename

label language, rename simply changes the name of the currently set language. You may change
the name as often as you wish.

Creating labels in the second and subsequent languages
After creating the first language, you can create a new language by typing

. label language newlanguagename, new

or by typing the two commands

. label language existinglanguagename

. label language newlanguagename, new copy

In the first case, you start with a clean slate: no data, variable, or value labels are defined. In the

second case, you start with the labels from existinglanguagename, and you can make the changes from

there.

Creating labels from a clean slate
To create new labels in the language named de, type

. label language de, new

If you were now to type describe, you would find that there are no data, variable, or value labels.
You can define new labels in the usual way:

. label data ”1978 automobil daten”

. label variable foreign ”Art auto”

. label values foreign origin_de

. label define origin_de 0 ”Innen” 1 ”Ausländisch”
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Creating labels from a previously existing language
It is sometimes easier to start with the labels from a previously existing language, which you can then

translate:

. label language en

. label language de, new copy

If you were now to type describe, you would see the English-language labels, even though the new
language is named de. You can then work to translate the labels:

. label data ”1978 automobil daten”

. label variable foreign ”Art auto”

Typing describe, you might also discover that the variable foreign has the value label origin. Do
not change the contents of the value label. Instead, create a new value label:

. label define origin_de 0 ”Innen” 1 ”Ausländisch”

. label values foreign origin_de

Creating value labels with the copy option is no different from creating them from a clean slate, except

that you start with an existing set of labels from another language. Using describe can make it easier
to translate them.

Switching languages
You can discover the names of the previously defined languages by typing

. label language

You can switch to a previously defined language—say, to en—by typing

. label language en

Changing the name of a language
To change the name of a previously defined language make it the current language and then specify

the rename option:
. label language de
. label language German, rename

You may rename a language as often as you wish:

. label language de, rename

Deleting a language
To delete a previously defined language, such as de, type

. label language de, delete

The delete option deletes the specified language and, if the language was also the currently set

language, resets the current language to one of the other languages or to default if there are none.
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Appendix: Selected ISO 639-1 two-letter codes
You may name languages as you please. You may name German labels Deutsch, German, Aleman,

or whatever else appeals to you. For consistency across datasets, if the language you are creating is a

spoken language, we suggest that you use the ISO 639-1 two-letter codes. Some of them are listed below,

and the full list can be found at https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes.

Two-letter English name of

code language

ar Arabic

bn Bengali

cs Czech

de German

do Danish

el Greek

en English

es Spanish; Castillian

fa Persian

fi Finnish

fr French

ga Irish

he Hebrew

hi Hindi

is Icelandic

it Italian

ja Japanese

ko Korean

lt Lithuanian

lv Latvian

nl Dutch; Flemish

no Norwegian

pa Punjabi

pl Polish

pt Portuguese

ro Romanian; Moldavian

ru Russian

sk Slovak

sr Serbian

sv Swedish

te Telugu

tr Turkish

uk Ukrainian

ur Urdu

zh Chinese

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
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Stored results
label language without arguments stores the following in r():

Scalars

r(k) number of languages defined

Macros

r(languages) list of languages, listed one after the other

r(language) name of current language

Methods and formulas
This section is included for programmers who wish to access or extend the services label language

provides.

Language sets are implemented using [P] char. The names of the languages and the name of the

current language are stored in

dta[ lang list] list of defined languages

dta[ lang c] currently set language

If these characteristics are undefined, results are as if each contained the word “default”. Do not
change the contents of the above two macros except by using label language.

For each language languagename except the current language, data, variable, and value labels are

stored in

dta[ lang v languagename] data label

varname[ lang v languagename] variable label

varname[ lang l languagename] value-label name

References
Golbe, D. L. 2010. Stata tip 83: Merging multilingual datasets. Stata Journal 10: 152–156.

Weesie, J. 2005. Multilingual datasets. Stata Journal 5: 162–187.

Also see
[D] label — Manipulate labels

[D] labelbook — Label utilities

[D] codebook — Describe data contents
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Acknowledgments
References Also see

Description
labelbook displays information for the value labels specified or, if no labels are specified, all the

labels in the data.

For multilingual datasets (see [D] label language), labelbook lists the variables to which value labels
are attached in all defined languages.

numlabel prefixes numeric values to value labels. For example, a value mapping of 2 ->
”catholic” will be changed to 2 -> ”2. catholic”. See option mask() for the different formats.

Stata commands that display the value labels also show the associated numeric values. Prefixes are

removed with the remove option.

uselabel is a programmer’s command that reads the value-label information from the currently

loaded dataset or from an optionally specified filename.

uselabel creates a dataset in memory that contains only that value-label information. The new

dataset has four variables named label, lname, value, and trunc; is sorted by lname value; and has
1 observation per mapping. Value labels can be longer than the maximum string length in Stata; see

[R] Limits. The new variable trunc contains 1 if the value label is truncated to fit in a string variable in
the dataset created by uselabel.

uselabel complements label, save, which produces a text file of the value labels in a format that
allows easy editing of the value-label texts.

Specifying no list or all is equivalent to specifying all value labels. Value-label names may not be
abbreviated or specified with wildcards.

Quick start
Codebook of all currently defined value labels

labelbook

Same as above, but only include labels mylabel1, mylabel2, and mylabel3
labelbook mylabel1 mylabel2 mylabel3

Same as above, and check that value labels are unique to the first 8 characters

labelbook mylabel1 mylabel2 mylabel3, length(8)

Prefix numeric values to mylabel1 with the number separated from the text by a hyphen

numlabel mylabel1, add mask(”# - ”)

Remove a prefixed numeric value from a value label when the “# -” mask was used

numlabel mylabel1, remove mask(”# - ”)

657
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Menu
labelbook
Data > Data utilities > Label utilities > Produce codebook of value labels

numlabel
Data > Data utilities > Label utilities > Prepend values to value labels

uselabel
Data > Data utilities > Label utilities > Create dataset from value labels

Syntax
Produce a codebook describing value labels

labelbook [ lblname-list ] [ , labelbook options ]

Prefix numeric values to value labels

numlabel [ lblname-list ] , { add | remove } [ numlabel options ]

Make dataset containing value-label information

uselabel [ lblname-list ] [ using filename ] [ , clear var ]

labelbook options Description

alpha alphabetize label mappings

length(#) check if value labels are unique to length #; default is length(12)
list(#) list maximum of # mappings; default is list(32000)
problems describe potential problems in a summary report

detail do not suppress detailed report on variables or value labels

collect is allowed with labelbook; see [U] 11.1.10 Prefix commands.

numlabel options Description

∗ add prefix numeric values to value labels
∗ remove remove numeric values from value labels

mask(str) mask for formatting numeric labels; default mask is ”#. ”
force force adding or removing of numeric labels

detail provide details about value labels, where some labels are prefixed with
numbers and others are not

∗ Either add or remove must be specified.

Options
Options are presented under the following headings:

Options for labelbook
Options for numlabel
Options for uselabel
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Options for labelbook
alpha specifies that the list of value-label mappings be sorted alphabetically on label. The default is to

sort the list on value.

length(#) specifies the minimum length that labelbook checks to determine whether shortened value
labels are still unique. It defaults to 12, the width used by most Stata commands. labelbook also
reports whether value labels are unique at their full length.

list(#) specifies the maximum number of value-label mappings to be listed. If a value label defines

more mappings, a random subset of # mappings is displayed. By default, labelbook displays all

mappings. list(0) suppresses the listing of the value-label definitions.

problems specifies that a summary report be produced describing potential problems that were diag-

nosed:

1. Value label has gaps in mapped values (for example, values 0 and 2 are labeled, while 1 is not)

2. Value label strings contain leading or trailing blanks

3. Value label contains duplicate labels, that is, there are different values that map into the same string

4. Value label contains duplicate labels at length 12

5. Value label contains numeric → numeric mappings

6. Value label contains numeric → null string mappings

7. Value label is not used by variables

detail may be specified only with problems. It specifies that the detailed report on the variables or
value labels not be suppressed.

Options for numlabel
add specifies that numeric values be prefixed to value labels. Value labels that are already numlabeled

(using the same mask) are not modified.

remove specifies that numeric values be removed from the value labels. If you added numeric values by

using a nondefault mask, you must specify the same mask to remove them. Value labels that are not

numlabeled or are numlabeled using a different mask are not modified.

mask(str) specifies a mask for formatting the numeric labels. In the mask, # is replaced by the numeric
label. The default mask is ”#. ” so that numeric value 3 is shown as ”3. ”. Spaces are relevant. For
the mask ”[#]”, numeric value 3 would be shown as ”[3]”.

force specifies that adding or removing numeric labels be performed, even if some value labels are

numlabeled using the mask and others are not. Here only labels that are not numlabeled will be
modified.

detail specifies that details be provided about the value labels that are sometimes, but not always,

numlabeled using the mask.

Options for uselabel
clear permits the dataset to be created, even if the dataset already in memory has changed since it was

last saved.

var specifies that the varlists using value label vl be returned in r(vl).
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Remarks and examples
Remarks are presented under the following headings:

labelbook
Diagnosing problems
numlabel
uselabel

labelbook
labelbook produces a detailed report of the value labels in your data. You can restrict the report to

a list of labels, meaning that no abbreviations or wildcards will be allowed. labelbook is a companion
command to [D] codebook, which describes the data, focusing on the variables.

For multilingual datasets (see [D] label language), labelbook lists the variables to which value labels
are attached in any of the languages.

Example 1
We request a labelbook report for value labels in a large dataset on the internal organization of

households. We restrict output to three value labels: agree5 (used for five-point Likert-style items),

divlabor (division of labor between husband and wife), and noyes for simple no-or-yes questions.

. use https://www.stata-press.com/data/r19/labelbook1

. labelbook agree5 divlabor noyes

Value label agree5

Values Labels
Range: [1,5] String length: [8,11]

N: 5 Unique at full length: yes
Gaps: no Unique at length 12: yes

Missing .*: 0 Null string: no
Leading/trailing blanks: no

Numeric -> numeric: no
Definition

1 -- disagree
2 - disagree
3 indifferent
4 + agree
5 ++ agree

Variables: rs056 rs057 rs058 rs059 rs060 rs061 rs062 rs063 rs064 rs065
rs066 rs067 rs068 rs069 rs070 rs071 rs072 rs073 rs074 rs075
rs076 rs077 rs078 rs079 rs080 rs081
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Value label divlabor

Values Labels
Range: [1,7] String length: [7,16]

N: 7 Unique at full length: yes
Gaps: no Unique at length 12: yes

Missing .*: 0 Null string: no
Leading/trailing blanks: yes

Numeric -> numeric: no
Definition

1 wife only
2 wife >> husband
3 wife > husband
4 equally
5 husband > wife
6 husband >> wife
7 husband only

Variables: hm01_a hm01_b hm01_c hm01_d hm01_e hn19 hn21 hn25_a hn25_b
hn25_c hn25_d hn25_e hn27_a hn27_b hn27_c hn27_d hn27_e hn31
hn36 hn38 hn42 hn46_a hn46_b hn46_c hn46_d hn46_e ho01_a ho01_b
ho01_c ho01_d ho01_e

Value label noyes

Values Labels
Range: [1,2] String length: [2,16]

N: 4 Unique at full length: yes
Gaps: no Unique at length 12: yes

Missing .*: 2 Null string: no
Leading/trailing blanks: no

Numeric -> numeric: no
Definition

1 no
2 yes

.a not applicable

.b ambiguous answer
Variables: hb12 hd01_a hd01_b hd03 hd04_a hd04_b he03_a he03_b hlat hn09_b

hn24_a hn34 hn49 hu05_a hu06_1c hu06_2c hx07_a hx08 hlat2
hfinish rh02 rj10_01 rk16_a rk16_b rl01 rl03 rl08_a rl08_b
rl09_a rs047 rs048 rs049 rs050 rs051 rs052 rs053 rs054 rs093
rs095 rs096 rs098

The report is largely self-explanatory. Extended missing values are denoted by “.*”. In the definition
of the mappings, the leading 12 characters of longer value labels are underlined to make it easier to check

that the value labels still make sense after truncation. The following example emphasizes this feature.

The option alpha specifies that the value-label mappings be sorted in alphabetical order by the label

strings rather than by the mapped values.
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. use https://www.stata-press.com/data/r19/labelbook2

. labelbook sports, alpha

Value label sports

Values Labels
Range: [1,5] String length: [16,23]

N: 4 Unique at full length: yes
Gaps: yes Unique at length 12: no

Missing .*: 0 Null string: no
Leading/trailing blanks: no

Numeric -> numeric: no
Definition

5 college baseball
4 college basketball
2 professional baseball
1 professional basketball

Variables: active passive

The report includes information about potential problems in the data. These are discussed in greater

detail in the next section.

Diagnosing problems
labelbook can diagnose a series of potential problems in the value-label mappings. labelbook

produces warning messages for a series of problems:

1. Gaps in the labeled values (for example, values 0 and 2 are labeled, whereas 1 is not) may occur when

value labels of the intermediate values have not been defined.

2. Leading or trailing blanks in the value labels may distort Stata output.

3. Stata allows you to define blank labels, that is, the mapping of a number to the empty string. Below

we give you an example of the unexpected output that may result. Blank labels are most often the

result of a mistaken value-label definition, for instance, the expansion of a nonexisting macro in the

definition of a value label.

4. Stata does not require that the labels within each value label consist of unique strings, that is, that

different values be mapped into different strings. For instance, you might accidentally define the

value label gender as
label define gender 1 female 2 female

You will probably catch most of the problems, but in more complicated value labels, it is easy to miss

the error. labelbook finds such problems and displays a warning.

5. Stata allows long value labels (32,000 characters), so labels can be long. However, some commands

may need to display truncated value labels, typically at length 12. Consequently, even if the value

labels are unique, the truncated value labels may not be, which can cause problems. labelbookwarns
you for value labels that are not unique at length 12.

6. Stata allows value labels that can be interpreted as numbers. This is sometimes useful, but it can

cause highly misleading output. Think about tabulating a variable for which the associated value

label incorrectly maps 1 into “2”, 2 into “3”, and 3 into “1”. labelbook looks for such problematic
labels and warns you if they are found.
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7. In Stata, value labels are defined as separate objects that can be associatedwithmore than one variable:

label define labname # str # str ...
label value varname1 labname
label value varname2 labname
...

If you forget to associate a variable label with a variable, Stata considers the label unused and drops

its definition. labelbook reports unused value labels so that you may fix the problem.

The related command codebook reports on two other potential problems concerning value labels:

a. A variable is value labeled, but some values of the variable are not labeled. You may have

forgotten to define a mapping for some values, or you generated a variable incorrectly; for

example, your sex variable has an unlabeled value 3, and you are not working in experimental
genetics!

b. A variable has been associated with an undefined value label.

labelbook can also be invoked with the problems option, specifying that only a report on potential
problems be displayed without the standard detailed description of the value labels.

Technical note
The following two examples demonstrate some features of value labels that may be difficult to un-

derstand. In the first example, we encode a string variable with blank strings of various sizes; that is,
we turn a string variable into a value-labeled numeric variable. Then we tabulate the generated variable.

. clear all

. set obs 5
Number of observations (_N) was 0, now 5.
. generate str10 horror = substr(” ”, 1, _n)
. encode horror, gen(Ihorror)
. tabulate horror

horror Freq. Percent Cum.

1 20.00 20.00
1 20.00 40.00
1 20.00 60.00
1 20.00 80.00
1 20.00 100.00

Total 5 100.00

It may look as if you have discovered a bug in Stata because there are no value labels in the first column

of the table. This happened because we encoded a variable with only blank strings, so the associated value

label maps integers into blank strings.

. label list Ihorror
Ihorror:

1
2
3
4
5

In the first column of the table, tabulate displayed the value-label texts, just as it should. Because
these texts are all blank, the first column is empty. As illustrated below, labelbook would have warned
you about this odd value label.
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Our second example illustrates what could go wrong with numeric values stored as string values. We

want to turn this into a numeric variable, but we incorrectly encode the variable rather than using the
appropriate command, destring.

. generate str10 horror2 = string(_n+1)

. encode horror2, gen(Ihorror2)

. tabulate Ihorror2
Ihorror2 Freq. Percent Cum.

2 1 20.00 20.00
3 1 20.00 40.00
4 1 20.00 60.00
5 1 20.00 80.00
6 1 20.00 100.00

Total 5 100.00
. tabulate Ihorror2, nolabel

Ihorror2 Freq. Percent Cum.

1 1 20.00 20.00
2 1 20.00 40.00
3 1 20.00 60.00
4 1 20.00 80.00
5 1 20.00 100.00

Total 5 100.00
. label list Ihorror2
Ihorror2:

1 2
2 3
3 4
4 5
5 6

labelbook skips the detailed descriptions of the value labels and reports only the potential problems
in the value labels if the problems option is specified. This report would have alerted you to the problems
with the value labels we just described.

. use https://www.stata-press.com/data/r19/data_in_trouble, clear

. labelbook, problem
Potential problems in dataset https://www.stata-press.com/data/r19/

> data_in_trouble.dta
Potential problem Value labels

Numeric -> numeric Ihorror2
Leading or trailing blanks Ihorror

Numeric -> null str Ihorror

Running labelbook, problems and codebook, problems on new data might catch a series of an-

noying problems.
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numlabel
The numlabel command allows you to prefix numeric codes to value labels. The reason you might

want to do this is best seen in an example using the automobile data. First, we create a value label for

the variable rep78 (repair record in 1978),
. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. label define repair 1 ”very poor” 2 ”poor” 3 ”medium” 4 good 5 ”very good”
. label values rep78 repair

and tabulate it.

. tabulate rep78
Repair

record 1978 Freq. Percent Cum.

very poor 2 2.90 2.90
poor 8 11.59 14.49

medium 30 43.48 57.97
good 18 26.09 84.06

very good 11 15.94 100.00

Total 69 100.00

Suppose that we want to recode the variable by joining the categories poor and very poor. To do this,

we need the numerical codes of the categories, not the value labels. However, Stata does not display

both the numeric codes and the value labels. We could redisplay the table with the nolabel option. The
numlabel command provides a simple alternative: it modifies the value labels so that they also contain
the numeric codes.

. numlabel, add

. tabulate rep78
Repair

record 1978 Freq. Percent Cum.

1. very poor 2 2.90 2.90
2. poor 8 11.59 14.49

3. medium 30 43.48 57.97
4. good 18 26.09 84.06

5. very good 11 15.94 100.00

Total 69 100.00

If you do not like the way the numeric codes are formatted, you can use numlabel to change the

formatting. First, we remove the numeric codes again:

. numlabel repair, remove

In this example, we specified the name of the label. If we had not typed it, numlabel would have
removed the codes from all the value labels. We can include the numeric codes while specifying a mask:
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. numlabel, add mask(”[#] ”)

. tabulate rep78
Repair record

1978 Freq. Percent Cum.

[1] very poor 2 2.90 2.90
[2] poor 8 11.59 14.49

[3] medium 30 43.48 57.97
[4] good 18 26.09 84.06

[5] very good 11 15.94 100.00

Total 69 100.00

numlabel prefixes rather than postfixes the value labels with numeric codes. Because value labels
can be fairly long (up to 80 characters), Stata usually displays only the first 12 characters.

uselabel
uselabel is of interest primarily to programmers. Here we briefly illustrate it with the auto dataset.

Example 2
. use https://www.stata-press.com/data/r19/auto, clear
(1978 automobile data)
. uselabel
. describe
Contains data
Observations: 2

Variables: 4

Variable Storage Display Value
name type format label Variable label

lname str6 %9s
value byte %10.0g
label str8 %9s
trunc byte %8.0g

Sorted by: lname value
Note: Dataset has changed since last saved.

. list

lname value label trunc

1. origin 0 Domestic 0
2. origin 1 Foreign 0

uselabel created a dataset containing the labels and values for the value label origin.

The maximum length of the text associated with a value label is 32,000 characters, whereas the maxi-

mum length of a string variable in a Stata dataset is 2,045. uselabel uses only the first 2,045 characters
of the label. The trunc variable will record a 1 if the text was truncated for this reason.
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Stored results
labelbook stores the following in r():

Macros

r(names) lblname-list

r(gaps) gaps in mapped values

r(blanks) leading or trailing blanks

r(null) name of value label containing null strings

r(nuniq) duplicate labels

r(nuniq sh) duplicate labels at length 12

r(ntruniq) duplicate labels at maximum string length

r(notused) not used by any of the variables

r(numeric) name of value label containing mappings to numbers

uselabel stores the following in r():

Macros

r(lblname) list of variables that use value label lblname (only when var option is specified)

Acknowledgments
labelbook and numlabel were written by Jeroen Weesie of the Department of Sociology at Utrecht

University, The Netherlands. A command similar to numlabel was written by J. M. Lauritsen (2001) of

Odense Universiteshospital, Denmark.

References
Lauritsen, J. M. 2001. dm84: labjl: Adding numerical codes to value labels. Stata Technical Bulletin 59: 6–7. Reprinted

in Stata Technical Bulletin Reprints, vol. 10, pp. 35–37. College Station, TX: Stata Press.

Weesie, J. 1997. dm47: Verifying value label mappings. Stata Technical Bulletin 37: 7–8. Reprinted in Stata Technical

Bulletin Reprints, vol. 7, pp. 39–40. College Station, TX: Stata Press.

Also see
[D] codebook — Describe data contents

[D] describe — Describe data in memory or in a file
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list — List values of variables

Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description
list displays the values of variables. If no varlist is specified, the values of all the variables are

displayed. Also see browse in [D] edit.

Quick start
List the data in memory

list

List only data in variables v1, v2, and v3
list v1 v2 v3

Same as above, but include only the first 10 observations and suppress numbering

list v1 v2 v3 in f/10, noobs

Same as above, but list the last 10 observations

list v1 v2 v3 in -10/l, noobs

Draw separator line every 10 observations, and repeat header row every 20 observations

list v1 v2 v3, separator(10) header(20)

Same as above, but also show a footer row of variable names

list v1 v2 v3, separator(10) header(20) footer

Same as above, but draw separator line between values of v1 and do not show the header and footer

list v1 v2 v3, sepby(v1) noheader

Same as above, but draw separator line before and after observation 4, with a header

list v1 v2 v3, sepbyexp(_n==4)

Add the mean and sum of the observations at the end of the table, and suppress separator and divider

lines

list v1 v2 v3, mean sum clean

Menu
Data > Describe data > List data

668
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Syntax
list [ varlist ] [ if ] [ in ] [ , options ]

flist is equivalent to list with the fast option.

options Description

Main

compress compress width of columns in both table and display formats

nocompress use display format of each variable

fast synonym for nocompress; no delay in output of large datasets
abbreviate(#) abbreviate variable names to # display columns; default is ab(8)
string(#) truncate string variables to # display columns

noobs do not list observation numbers

fvall display all levels of factor variables

Options

table force table format

display force display format

header display variable header once; default is table mode

noheader suppress variable header

header(#) display variable header every # lines

footer display variable names as a footer

clean force table format with no divider or separator lines

divider draw divider lines between columns

separator(#) draw a separator line every # lines; default is separator(5)
sepby(varlist2) draw a separator line whenever varlist2 values change

sepbyexp(exp) draw a separator line whenever value of exp changes

ds use double-spaced lines

nolabel display numeric codes rather than label values

Summary

mean[(varlist2)] add line reporting the mean for the (specified) variables

sum[(varlist2)] add line reporting the sum for the (specified) variables

N[(varlist2)] add line reporting the number of nonmissing values for the (specified)
variables

labvar(varname) substitute Mean, Sum, or N for value of varname in added line reporting
mean, sum, or 𝑁

Advanced

constant[(varlist2)] separate and list variables that are constant only once

notrim suppress string trimming

absolute display overall observation numbers when using by varlist:
relative display relative observation numbers for a subset of observations

specified by qualifiers if and in
nodotz display numerical values equal to .z as field of blanks
subvarname substitute characteristic for variable name in header

linesize(#) columns per line; default is linesize(79)
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varlist may contain factor variables; see [U] 11.4.3 Factor variables.

varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by is allowed with list; see [D] by.

Options

� � �
Main �

compress and nocompress change the width of the columns in both table and display formats. By

default, list examines the data and allocates the needed width to each variable. For instance, a

variable might be a string with a %18s format, and yet the longest string will be only 12 characters

long. Or a numeric variable might have a %9.0g format, and yet, given the values actually present,

the widest number needs only four columns.

nocompress prevents list from examining the data. Widths will be set according to the display

format of each variable. Output generally looks better when nocompress is not specified, but for
very large datasets (say, 1,000,000 observations or more), nocompress can speed up the execution
of list.

compress allows list to engage in a little more compression than it otherwise would by telling list
to abbreviate variable names to fewer than eight characters.

fast is a synonym for nocompress. fastmay be of interest to those with very large datasets who wish
to see output appear without delay.

abbreviate(#) is an alternative to compress that allows you to specify the minimum abbreviation

of variable names to be considered. For example, you could specify abbreviate(16) if you never
wanted variables abbreviated to less than 16 display columns. For most users, the number of display

columns is equal to the number of characters. However, some languages, such as Chinese, Japanese,

and Korean (CJK), require two display columns per character.

string(#) specifies that when string variables are listed, they be truncated to # display columns in the
output. Any value that is truncated will be appended with “..” to indicate the truncation. string()
is useful for displaying just a part of long strings.

noobs suppresses the listing of the observation numbers.

fvall specifies that the entire dataset be used to determine how many levels are in any factor variables

specified in varlist. The default is to determine the number of levels by using only the observations

in the if and in qualifiers.

� � �
Options �

table and display determine the style of output. By default, list determines whether to use table
or display on the basis of the width of your screen and the linesize() option, if you specify it.

table forces table format. Forcing table format when list would have chosen otherwise generally
produces impossible-to-read output because of the linewraps. However, if you are logging out-

put in SMCL format and plan to print the output on wide paper later, specifying table can be a
reasonable thing to do.

display forces display format.
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header, noheader, header(#), and footer specify how the variable header or footer is to be displayed.

header is the default in table mode and displays the variable header once, at the top of the table.

noheader suppresses the header altogether.

header(#) redisplays the variable header every # observations. For example, header(10) would
display a new header every 10 observations.

footer displays variable names as a footer. With footer, a variable header is also displayed; footer
cannot be combined with noheader.

The default in display mode is to display the variable names interweaved with the data:

1. make price mpg rep78 headroom trunk weight length
AMC Concord 4,099 22 3 2.5 11 2,930 186

turn displa~t gear_r~o foreign
40 121 3.58 Domestic

However, if you specify header, the header is displayed once, at the top of the table:

make price mpg rep78 headroom trunk weight length

turn displa~t gear_r~o foreign

1. AMC Concord 4,099 22 3 2.5 11 2,930 186

40 121 3.58 Domestic

clean is a better alternative to table when you want to force table format and your goal is to produce
more readable output on the screen. clean implies table, and it removes dividing and separating
lines, which is what makes wrapped table output nearly impossible to read. Blank separator lines may

be included by specifying the ds option.

divider, separator(#), sepby(varlist2), sepbyexp(exp), and ds specify how dividers and separator

lines should be displayed. These five options affect only table format.

divider specifies that divider lines be drawn between columns. The default is to not display a divider.

separator(#) and sepby(varlist2) indicate when separator lines should be drawn between rows.
To make these separator lines blank, specify the ds option.

separator(#) specifies how often separator lines should be drawn between rows. The default is

separator(5), meaning every 5 observations. You may specify separator(0) to suppress
separators altogether.

sepby(varlist2) specifies that a separator line be drawn whenever any of the variables in

sepby(varlist2) change their values; up to 10 variables may be specified. You need not make
sure the data were sorted on sepby(varlist2) before issuing the list command. The variables
in sepby(varlist2) also need not be among the variables being listed.

sepbyexp(exp) specifies that a separator line be drawn whenever the value of exp changes. exp can
be any expression and does not necessarily have to refer to the variables being listed.
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ds specifies that the lines be double spaced, meaning that a blank separator line be inserted after every
observation. To control when blank separator lines are inserted, specify ds with separator(#),
sepby(varlist2), or sepbyexp(exp).

By default, separator lines are suppressed when specifying the clean option unless ds is specified,
in which case blank separator lines will be used.

nolabel specifies that numeric codes be displayed rather than the label values.

� � �
Summary �

mean, sum, N, mean(varlist2), sum(varlist2), and N(varlist2) all specify that lines be added to the output
reporting the mean, sum, or number of nonmissing values for the (specified) variables. If you do not

specify the variables, all numeric variables in the varlist following list are used.

labvar(varname) is for use with mean[()], sum[()], and N[()]. list displays Mean, Sum, or N where
the observation number would usually appear to indicate the end of the table—where a row represents

the calculated mean, sum, or number of observations.

labvar(varname) changes that. Instead, Mean, Sum, or N is displayed where the value for varname
would be displayed. For instance, you might type

. list group costs profits, sum(costs profits) labvar(group)

group costs profits

1. 1 47 5
2. 2 123 10
3. 3 22 2

Sum 192 17

and then also specify the noobs option to suppress the observation numbers.

� � �
Advanced �

constant and constant(varlist2) specify that variables that do not vary observation by observation
be separated out and listed only once.

constant specifies that list determine for itself which variables are constant.

constant(varlist2) allows you to specify which of the constant variables you want listed separately.
list verifies that the variables you specify really are constant and issues an error message if they
are not.

constant and constant() respect if exp and in range. If you type

. list if group==3

variable xmight be constant in the selected observations, even though the variable varies in the entire
dataset.

notrim affects how string variables are listed. The default is to trim strings at the width implied by

the widest possible column given your screen width (or linesize(), if you specified that). notrim
specifies that strings not be trimmed. notrim implies clean (see above) and, in fact, is equivalent to
the clean option, so specifying either makes no difference.
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absolute affects output only when list is prefixed with by varlist:. Observation numbers are dis-
played, but the overall observation numbers are used rather than the observation numbers within each

by-group. For example, if the first group had 4 observations and the second had 2, by default the

observations would be numbered 1, 2, 3, 4 and 1, 2. If absolute is specified, the observations will
be numbered 1, 2, 3, 4 and 5, 6.

relative affects output only when a subset of observations is listed by using qualifiers if and in.
Observation numbers are displayed, but the observations are numbered 1, 2, 3, etc. When list is
prefixed with by varlist: and relative is specified, relative observation numbers will be used for
each subgroup formed by varlist.

nodotz is a programmer’s option that specifies that numerical values equal to .z be listed as a field of
blanks rather than as .z.

subvarname is a programmer’s option. If a variable has the characteristic var[varname] set, then the
contents of that characteristic will be used in place of the variable’s name in the headers.

linesize(#) specifies the width of the page to be used for determining whether table or display format
should be used and for formatting the resulting table. Specifying a value of linesize() that is wider
than your screen width can produce truly ugly output on the screen, but that output can nevertheless

be useful if you are logging output and plan to print the log later on a wide printer.

Remarks and examples
list, typed by itself, lists all the observations and variables in the dataset. If you specify varlist, only

those variables are listed. Specifying one or both of in range and if exp limits the observations listed.

list respects line size. That is, if you resize the Results window (in windowed versions of Stata)

before running list, it will take advantage of the available horizontal space. Stata for Unix(console)
users can instead use the set linesize command to take advantage of this feature; see [R] log.

listmay not display all the large strings. You have two choices: 1) you can specify the clean option,
which makes a different, less attractive listing, or 2) you can increase line size, as discussed above.
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Example 1
list has two output formats, known as table and display. The table format is suitable for listing a

few variables, whereas the display format is suitable for listing an unlimited number of variables. Stata

chooses automatically between those two formats:

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. list in 1/2

1. make price mpg rep78 headroom trunk weight length
AMC Concord 4,099 22 3 2.5 11 2,930 186

turn displa~t gear_r~o foreign
40 121 3.58 Domestic

2. make price mpg rep78 headroom trunk weight length
AMC Pacer 4,749 17 3 3.0 11 3,350 173

turn displa~t gear_r~o foreign
40 258 2.53 Domestic

. list make mpg weight displ rep78 in 1/5

make mpg weight displa~t rep78

1. AMC Concord 22 2,930 121 3
2. AMC Pacer 17 3,350 258 3
3. AMC Spirit 22 2,640 121 .
4. Buick Century 20 3,250 196 3
5. Buick Electra 15 4,080 350 4

The first case is an example of display format; the second is an example of table format. The table

format is more readable and takes less space, but it is effective only if the variables can fit on one line

across the screen. Stata chose to list all 12 variables in display format, but when the varlist was restricted

to five variables, Stata chose table format.

If you are dissatisfied with Stata’s choice, you can decide for yourself. You can specify the display
option to force display format and the nodisplay option to force table format.

Technical note
If you have long string variables in your data—say, str75 or longer—by default, list displays only

the first 70 or so characters of each; the exact number is determined by the width of your Results window.

The first 70 or so characters will be shown followed by “. . .”. If you need to see the entire contents of

the string, you can

1. specify the clean option, which makes a different (and uglier) style of list, or

2. make your Results window wider [Stata for Unix(console) users: increase set linesize].
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Technical note
Among the things that determine the widths of the columns, the variable names play a role. Left

to itself, list will never abbreviate variable names to fewer than eight characters. You can use the

compress option to abbreviate variable names to fewer characters than that.

Technical note
When Stata lists a string variable in table output format, the variable is displayed right-justified by

default.

When Stata lists a string variable in display output format, it decides whether to display the variable

right-justified or left-justified according to the display format for the string variable; see [U] 12.5 For-

mats: Controlling how data are displayed. In our previous example, make has a display format of

%-18s.

. describe make
Variable Storage Display Value

name type format label Variable label

make str18 %-18s Make and model

The negative sign in the %-18s instructs Stata to left-justify this variable. If the display format had been
%18s, Stata would have right-justified the variable.

The foreign variable appears to be string, but if we describe it, we see that it is not:

. describe foreign
Variable Storage Display Value

name type format label Variable label

foreign byte %8.0g origin Car origin

foreign is stored as a byte, but it has an associated value label named origin; see [U] 12.6.3 Value
labels. Stata decides whether to right-justify or left-justify a numeric variable with an associated value

label by using the same rule used for string variables: it looks at the display format of the variable.

Here the display format of %8.0g tells Stata to right-justify the variable. If the display format had been
%-8.0g, Stata would have left-justified this variable.

Technical note
You can list the variables in any order. When you specify the varlist, list displays the variables in

the order you specify. You may also include variables more than once in the varlist.



list — List values of variables 676

Example 2
Sometimes you may wish to suppress the observation numbers. You do this by specifying the noobs

option:

. list make mpg weight displ foreign in 46/55, noobs

make mpg weight displa~t foreign

Plym. Volare 18 3,330 225 Domestic
Pont. Catalina 18 3,700 231 Domestic
Pont. Firebird 18 3,470 231 Domestic
Pont. Grand Prix 19 3,210 231 Domestic
Pont. Le Mans 19 3,200 231 Domestic

Pont. Phoenix 19 3,420 231 Domestic
Pont. Sunbird 24 2,690 151 Domestic
Audi 5000 17 2,830 131 Foreign
Audi Fox 23 2,070 97 Foreign
BMW 320i 25 2,650 121 Foreign

After seeing the table, we decide that we want to separate the “Domestic” observations from the

“Foreign” observations, so we specify sepby(foreign).

. list make mpg weight displ foreign in 46/55, noobs sepby(foreign)

make mpg weight displa~t foreign

Plym. Volare 18 3,330 225 Domestic
Pont. Catalina 18 3,700 231 Domestic
Pont. Firebird 18 3,470 231 Domestic
Pont. Grand Prix 19 3,210 231 Domestic
Pont. Le Mans 19 3,200 231 Domestic
Pont. Phoenix 19 3,420 231 Domestic
Pont. Sunbird 24 2,690 151 Domestic

Audi 5000 17 2,830 131 Foreign
Audi Fox 23 2,070 97 Foreign
BMW 320i 25 2,650 121 Foreign
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Example 3
We want to add vertical lines in the table to separate the variables, so we specify the divider option.

We also want to draw a horizontal line after every 2 observations, so we specify separator(2).

. list make mpg weight displ foreign in 46/55, divider separator(2)

make mpg weight displa~t foreign

46. Plym. Volare 18 3,330 225 Domestic
47. Pont. Catalina 18 3,700 231 Domestic

48. Pont. Firebird 18 3,470 231 Domestic
49. Pont. Grand Prix 19 3,210 231 Domestic

50. Pont. Le Mans 19 3,200 231 Domestic
51. Pont. Phoenix 19 3,420 231 Domestic

52. Pont. Sunbird 24 2,690 151 Domestic
53. Audi 5000 17 2,830 131 Foreign

54. Audi Fox 23 2,070 97 Foreign
55. BMW 320i 25 2,650 121 Foreign

After seeing the table, we decide that we do not want to abbreviate displacement, so we specify
abbreviate(12).

. list make mpg weight displ foreign in 46/55, divider sep(2) abbreviate(12)

make mpg weight displacement foreign

46. Plym. Volare 18 3,330 225 Domestic
47. Pont. Catalina 18 3,700 231 Domestic

48. Pont. Firebird 18 3,470 231 Domestic
49. Pont. Grand Prix 19 3,210 231 Domestic

50. Pont. Le Mans 19 3,200 231 Domestic
51. Pont. Phoenix 19 3,420 231 Domestic

52. Pont. Sunbird 24 2,690 151 Domestic
53. Audi 5000 17 2,830 131 Foreign

54. Audi Fox 23 2,070 97 Foreign
55. BMW 320i 25 2,650 121 Foreign
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Technical note
You can suppress the use of value labels by specifying the nolabel option. For instance, the foreign

variable in the examples above really contains numeric codes, with 0 meaning Domestic and 1 meaning
Foreign. When we list the variable, however, we see the corresponding value labels rather than the
underlying numeric code:

. list foreign in 51/55

foreign

51. Domestic
52. Domestic
53. Foreign
54. Foreign
55. Foreign

Specifying the nolabel option displays the underlying numeric codes:

. list foreign in 51/55, nolabel

foreign

51. 0
52. 0
53. 1
54. 1
55. 1
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Example 4
With the separator(#) option, a separator line is drawn every # observations. With the

sepby(varlist) option, a separator line is drawn every time varlist values change. The sepbyexp(exp)
option allows more flexible conditions for drawing a separator line: a line is drawn every time expres-

sion exp changes. For example, you may want a separator line whenever a string variable starts with a

different letter of the alphabet:

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. sort make
. list make weight in 1/15, sepbyexp(substr(make,1,1))

make weight

1. AMC Concord 2,930
2. AMC Pacer 3,350
3. AMC Spirit 2,640
4. Audi 5000 2,830
5. Audi Fox 2,070

6. BMW 320i 2,650
7. Buick Century 3,250
8. Buick Electra 4,080
9. Buick LeSabre 3,670

10. Buick Opel 2,230
11. Buick Regal 3,280
12. Buick Riviera 3,880
13. Buick Skylark 3,400

14. Cad. Deville 4,330
15. Cad. Eldorado 3,900

You can separate observations based on the value of a numerical variable, for example, weight in the

thousands, two thousands, etc.:

. sort weight

. list make weight in 1/10, sepbyexp(floor(weight/1000))

make weight

1. Honda Civic 1,760
2. Plym. Champ 1,800
3. Ford Fiesta 1,800
4. Renault Le Car 1,830
5. VW Rabbit 1,930
6. Mazda GLC 1,980
7. VW Scirocco 1,990

8. Datsun 210 2,020
9. VW Diesel 2,040

10. Subaru 2,050
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Observations can be delineated based on more elaborate expressions. For example, in daily time-

series data, weekdays can be separated from weekend days as follows. (Function dow() returns the day
of the week, where 0 = Sunday, 1 = Monday, . . . , 6 = Saturday.)

. use https://www.stata-press.com/data/r19/tsline2
(Simulated data of calories consumed for 365 days)
. sort day
. generate dow = dow(day)
. list day dow in 1/14, sepbyexp(dow==0 | dow==6)

day dow

1. 01jan2002 2
2. 02jan2002 3
3. 03jan2002 4
4. 04jan2002 5

5. 05jan2002 6
6. 06jan2002 0

7. 07jan2002 1
8. 08jan2002 2
9. 09jan2002 3

10. 10jan2002 4
11. 11jan2002 5

12. 12jan2002 6
13. 13jan2002 0

14. 14jan2002 1
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Also see
[D] edit — Browse or edit data with Data Editor

[P] display — Display strings and values of scalar expressions

[P] tabdisp — Display tables

[R] table — Table of frequencies, summaries, and command results
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Description Quick start Syntax Remarks and examples
Stored results Reference Also see

Description
lookfor helps you find variables by searching for string among all variable names and labels. If

multiple strings are specified, lookfor will search for each of them separately. You may search for a

phrase by enclosing string in double quotes.

Quick start
Search variable names and variable labels for the phrase “my text” regardless of case

lookfor ”my text”

Search for “word1” or “word2”

lookfor word1 word2

Syntax
lookfor string [ string [. . .] ]

collect is allowed; see [U] 11.1.10 Prefix commands.

Remarks and examples

Example 1
lookfor finds variables by searching for string, ignoring case, among the variable names and labels.

. use https://www.stata-press.com/data/r19/nlswork
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)
. lookfor code
Variable Storage Display Value

name type format label Variable label

idcode int %8.0g NLS ID
ind_code byte %8.0g Industry of employment
occ_code byte %8.0g Occupation

Three variable names contain the word code.

. lookfor married
Variable Storage Display Value

name type format label Variable label

msp byte %8.0g 1 if married, spouse present
nev_mar byte %8.0g 1 if never married

Two variable labels contain the word married.
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. lookfor gnp
Variable Storage Display Value

name type format label Variable label

ln_wage float %9.0g ln(wage/GNP deflator)

lookfor ignores case, so lookfor gnp found GNP in a variable label.

Example 2
If multiple strings are specified, all variable names or labels containing any of the strings are listed.

. lookfor code married
Variable Storage Display Value

name type format label Variable label

idcode int %8.0g NLS ID
msp byte %8.0g 1 if married, spouse present
nev_mar byte %8.0g 1 if never married
ind_code byte %8.0g Industry of employment
occ_code byte %8.0g Occupation

To search for a phrase, enclose string in double quotes.

. lookfor ”never married”
Variable Storage Display Value

name type format label Variable label

nev_mar byte %8.0g 1 if never married

Stored results
lookfor stores the following in r():

Macros

r(varlist) the varlist of found variables

Reference
Cox, N. J. 2010. Speaking Stata: Finding variables. Stata Journal 10: 281–296.

Also see
[D] describe — Describe data in memory or in a file

[D] ds — Compactly list variables with specified properties

https://www.stata-journal.com/article.html?article=dm0048


memory — Memory management

Description Quick start Syntax Options
Remarks and examples Stored results Also see

Description
Memory usage and settings are described here.

memory displays a report on Stata’s current memory usage.

query memory displays the current values of Stata’s memory settings.

set maxvar, set niceness, set min memory, set max memory, and set segmentsize change

the values of the memory settings.

If you are a Unix user, see Serious bug in Linux OS under Remarks and examples below.

Quick start
Display memory usage report

memory

Display memory settings

query memory

Increase the maximum number of variables to 8,000 in Stata/MP or Stata/SE

set maxvar 8000

Set maximum memory allocation to avoid potential memory allocation bug in Linux

set max_memory 16g, permanently
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Syntax
Display memory usage report

memory

Display memory settings

query memory

Modify memory settings

set maxvar # [ , permanently ]

set niceness # [ , permanently ]

set min memory amt [ , permanently ]

set max memory amt [ , permanently ]

set segmentsize amt [ , permanently ]

where amt is #[ b | k | m | g ], and the default unit is b.

Parameter Default Minimum Maximum

maxvar 5000 2048 120000 (MP)

5000 2048 32767 (SE)

2048 2048 2048 (BE)

niceness 5 0 10

min memory 0 0 max memory
max memory . 2×segmentsize .
segmentsize 32m 1m 32g (64-bit)

Notes:

1. The maximum number of variables in your dataset is limited to maxvar. The default value
of maxvar is 5,000 for Stata/MP and Stata/SE, and 2,048 for Stata/BE. With Stata/MP and

Stata/SE, this default value may be increased by using set maxvar. The default value is fixed
for Stata/BE.

2. Most users do not need to read beyond this point. Stata’s memory management is completely

automatic. If, however, you are using the Linux operating system, see Serious bug in Linux OS

under Remarks and examples below.

3. The maximum number of observations is fixed at 1,099,511,627,775 for Stata/MP and is fixed

at 2,147,483,619 for Stata/SE and Stata/BE regardless of computer size or memory settings.

Depending on the amount of memory on your computer, you may face a lower practical limit.

See help obs advice.
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4. max memory specifies the maximum amount of memory Stata can use to store your data. The

default of missing (.) means all the memory the operating system is willing to supply. There

are three reasons to change the value from missing to a finite number.

1. You are a Linux user; see Serious bug in Linux OS under Remarks and examples

below.

2. You wish to reduce the chances of accidents, such as typing expand 100000 with

a large dataset in memory and actually having Stata do it. You would rather see an

insufficient-memory error message. Set max memory to the amount of physical mem-
ory on your computer or more than that if you are willing to use virtual memory.

3. You are a system administrator; see Notes for system administrators under Remarks

and examples below.

5. The remaining memory parameters—niceness, min memory, and segment size—affect

efficiency only; they do not affect the size of datasets you can analyze.

6. Memory amounts for min memory, max memory, and segmentsizemay be specified in bytes,
kilobytes, megabytes, or gigabytes; suffix b, k, m, or g to the end of the number. The following
are equivalent ways of specifying 1 gigabyte:

1073741824
1048576k
1024m
1g

Suffix k is defined as (multiply by) 1024, m is defined as 10242, and g is defined as 10243.

7. 64-bit computers can theoretically provide up to 18,446,744,073,709,551,616 bytes of mem-

ory, equivalent to 17,179,869,184 gigabytes, 16,777,216 terabytes, 16,384 petabytes, or 16 ex-

abytes. Real computers have less.

8. Stata allocates memory for data in units of segmentsize. Smaller values of segmentsize can
result in more efficient use of available memory but require Stata to jump around more. The

default provides a good balance. We recommend resetting segmentsize only if your computer
has large amounts of memory.

9. If you have large amounts of memory and you use it to process large datasets, you may wish to

increase segmentsize. Suggested values are

memory segmentsize
32g 64m

64g 128m

128g 256m

256g 512m

512g 1g

1024g 2g

10. niceness affects how soon Stata gives back unused segments to the operating system. If Stata

releases them too soon, it often needs to turn around and get them right back. If Stata waits

too long, Stata is consuming memory that it is not using. One reason to give memory back is

to be nice to other users on multiuser systems or to be nice to yourself if you are running other

processes.
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The default value of 5 is defined to provide good performance. Waiting times are currently

defined as

niceness waiting time (m:s)

10 0:00.000

9 0:00.125

8 0:00.500

7 0:01

6 0:30

5 1:00

4 5:00

3 10:00

2 15:00

1 20:00

0 30:00

Niceness 10 corresponds to being totally nice. Niceness 0 corresponds to being an inconsider-

ate, self-centered, totally selfish jerk.

11. min memory specifies an amount of memory Stata will not fall below. For instance, you have
a long do-file. You know that late in the do-file, you will need 8 gigabytes. You want to ensure

that the memory will be available later. At the start of your do-file, you set min memory 8g.

12. Concerning min memory and max memory, be aware that Stata allocates memory in

segmentsize blocks. Both min memory and max memory are rounded down. Thus the actual
minimum memory Stata will reserve will be

segmentsize*trunc(min memory/segmentsize)

The effective maximum memory is calculated similarly. (Stata does not round up min memory
because some users set min memory equal to max memory.)

Options
permanently specifies that, in addition to making the change right now, the new limit be remembered

and become the default setting when you invoke Stata.

once is not shown in the syntax diagram but is allowed with set niceness, set min memory, set
max memory, and set segmentsize. It is for use by system administrators; see Notes for system

administrators under Remarks and examples below.

Remarks and examples
Remarks are presented under the following headings:

Examples
Serious bug in Linux OS
Notes for system administrators
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Examples
Here is our memory-usage report after we load auto.dta that comes with Stata using Stata/MP:

. sysuse auto
(1978 automobile data)
. memory
Memory usage

Used Allocated

Data 3,182 100,663,296
strLs 0 0

Data & strLs 3,182 100,663,296

Data & strLs 3,182 100,663,296
Variable names, %fmts, ... 4,178 396,279
Overhead 1,081,344 1,082,136
Stata matrices 0 0
ado-files 53,718 53,718
Stored results 0 0
Mata matrices 10,880 10,880
Mata functions 2,720 2,720
set maxvar usage 4,636,521 4,636,521
Other 3,497 3,497

Total 5,773,999 106,849,047

We could then obtain the current memory-settings report by typing

. query memory

Memory settings
set maxvar 5000 2048-120000; max. vars allowed
set niceness 5 0-10
set min_memory 0 0-1600g
set max_memory . 32m-1600g or .
set segmentsize 32m 1m-32g
set adosize 1000 kilobytes
set max_preservemem 1g 0-1600g

Serious bug in Linux OS
If you use Linux OS, we strongly suggest that you set max memory. Here’s why:

“By default, Linux follows an optimistic memory allocation strategy. This means that when

malloc() returns non-NULL there is no guarantee that the memory really is available. This is

a really bad bug. In case it turns out that the system is out of memory, one or more processes

will be killed by the infamous OOM killer. In case Linux is employed under circumstances

where it would be less desirable to suddenly lose some randomly picked processes, and

moreover the kernel version is sufficiently recent, one can switch off this overcommitting

behavior using [. . .]”

– Output from Unix command man malloc.

What this means is that Stata requests memory from Linux, Linux says yes, and then later when Stata

uses that memory, the memory might not be available and Linux crashes Stata, or worse. The Linux

documentation writer exercised admirable restraint. This bug can cause Linux itself to crash. It is easy.
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The proponents of this behavior call it “optimistic memory allocation”. We will, like the documenta-

tion writer, refer to it as a bug.

The bug is fixable. Type man malloc at the Unix prompt for instructions. Note that man malloc is an
instruction of Unix, not Stata. If the bug is not mentioned, perhaps it has been fixed. Before assuming

that, we suggest using a search engine to search for “linux optimistic memory allocation”.

Alternatively, Stata can live with the bug if you set max memory. Find out how much physical mem-

ory is on your computer and set max memory to that. If you want to use virtual memory, you might
set it larger, just make sure your Linux system can provide the requested memory. Specify the option

permanently so you only need to do this once. For example,
. set max_memory 16g, permanently

Doing this does not guarantee that the bug does not bite, but it makes it unlikely.

Notes for system administrators
System administrators can set max memory, min memory, and niceness so that Stata users cannot

change them. They can also do this with max preservemem (see [P] preserve). You may want to do
this on shared computers to prevent individual users from hogging resources.

There is no reason you would want to do this on users’ personal computers.

You can also set segmentsize, but there is no reason to do this even on shared systems.

The instructions are to create (or edit) the text file sysprofile.do in the directory where the Stata
executable resides. Add the lines

set min_memory 0, once
set max_memory 16g, once
set niceness 5, once

The file must be plain text, and there must be end-of-line characters at the end of each line, including the

last line. Blank lines at the end are recommended.

The 16g on set max memory is merely for example. Choose an appropriate number.

The values of 0 for min memory and 5 for niceness are recommended.

Stored results
memory stores all reported numbers in r(). StataCorp may change what memory reports, and you

should not expect the same r() results to exist in future versions of Stata. To see the stored results from
memory, type return list, all.

Also see
[P] creturn — Return c-class values

[R] query — Display system parameters

[U] 6 Managing memory
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Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description
merge joins corresponding observations from the dataset currently in memory (called the master

dataset) with those from filename.dta (called the using dataset), matching on one or more key vari-

ables. merge can perform match merges (one-to-one, one-to-many, many-to-one, and many-to-many),

which are often called joins by database people. merge can also perform sequential merges, which have

no equivalent in the relational database world.

merge is for adding new variables from a second dataset to existing observations. You use merge, for
instance, when combining hospital patient and discharge datasets. If you wish to add new observations to

existing variables, then see [D] append. You use append, for instance, when adding current discharges
to past discharges.

To link datasets in separate frames, you can use the frlink and fralias add commands. Linking
and merging solve similar problems, and each is better than the other in some ways. You may prefer

linking, for instance, when dealing with an individual-level dataset and a county-level dataset. Linking

also works well when you have nested linkages such as linking a county dataset, a school-within-county

dataset, and a student-within-school dataset or when you need to link a dataset to itself. See [D] frlink

and [D] fralias for more information and examples.

By default, merge creates a new variable, merge, containing numeric codes concerning the source
and the contents of each observation in the merged dataset. These codes are explained below in the match

results table.

Key variables cannot be strLs.

If filename is specified without an extension, then .dta is assumed.

Quick start
One-to-one merge of mydata1.dta in memory with mydata2.dta on v1

merge 1:1 v1 using mydata2

Same as above, and also treat v2 as a key variable and name the new variable indicating the merge result

for each observation newv
merge 1:1 v1 v2 using mydata2, generate(newv)

Same as above, but keep only v3 from mydata2.dta and use default merge result variable merge
merge 1:1 v1 v2 using mydata2, keepusing(v3)

Same as above, but keep only observations in both datasets

merge 1:1 v1 v2 using mydata2, keepusing(v3) keep(match)

Same as above

merge 1:1 v1 v2 using mydata2, keepusing(v3) keep(3)
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Same as above, but assert that all observations should match or return an error otherwise

merge 1:1 v1 v2 using mydata2, keepusing(v3) assert(3)

Replace missing data in mydata1.dta with values from mydata2.dta
merge 1:1 v1 v2 using mydata2, update

Replace missing and conflicting data in mydata1.dta with values from mydata2.dta
merge 1:1 v1 v2 using mydata2, update replace

Many-to-one merge on v1 and v2
merge m:1 v1 v2 using mydata2

One-to-many merge on v1 and v2
merge 1:m v1 v2 using mydata2

Menu
Data > Combine datasets > Merge two datasets
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Syntax
One-to-one merge on specified key variables

merge 1:1 varlist using filename [ , options ]

Many-to-one merge on specified key variables

merge m:1 varlist using filename [ , options ]

One-to-many merge on specified key variables

merge 1:m varlist using filename [ , options ]

Many-to-many merge on specified key variables

merge m:m varlist using filename [ , options ]

One-to-one merge by observation

merge 1:1 n using filename [ , options ]

options Description

Options

keepusing(varlist) variables to keep from using data; default is all

generate(newvar) name of new variable to mark merge results; default is merge
nogenerate do not create merge variable
nolabel do not copy value-label definitions from using

nonotes do not copy notes from using

update update missing values of same-named variables in master with values
from using

replace replace all values of same-named variables in master with nonmissing
values from using (requires update)

noreport do not display match result summary table

force allow string/numeric variable type mismatch without error

Results

assert(results) specify required match results

keep(results) specify which match results to keep

sorted do not sort; dataset already sorted

sorted does not appear in the dialog box.

Options

� � �
Options �

keepusing(varlist) specifies the variables from the using dataset that are kept in the merged dataset.

By default, all variables are kept. For example, if your using dataset contains 2,000 demographic

characteristics but you want only sex and age, then type merge . . ., keepusing(sex age) . . . .
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generate(newvar) specifies that the variable containing match results information should be named

newvar rather than merge.

nogenerate specifies that merge not be created. This would be useful if you also specified

keep(match), because keep(match) ensures that all values of merge would be 3.

nolabel specifies that value-label definitions from the using file be ignored. This option should be rare,

because definitions from the master are already used.

nonotes specifies that notes in the using dataset not be added to the merged dataset; see [D] notes.

update and replace both perform an update merge rather than a standard merge. In a standard merge,

the data in the master are the authority and inviolable. For example, if the master and using datasets

both contain a variable age, then matched observations will contain values from the master dataset,

while unmatched observations will contain values from their respective datasets.

If update is specified, then matched observations will update missing values from the master dataset

with values from the using dataset. Nonmissing values in the master dataset will be unchanged.

If replace is specified, then matched observations will contain values from the using dataset, unless

the value in the using dataset is missing.

Specifying either update or replace affects the meanings of the match codes. See Treatment of

overlapping variables for details.

noreport specifies that merge not present its summary table of match results.

force allows string/numeric variable type mismatches, resulting in missing values from the using

dataset. If omitted, merge issues an error; if specified, merge issues a warning.

� � �
Results �

assert(results) specifies the required match results. The possible results are

Numeric Equivalent

code word (results) Description

1 master observation appeared in master only

2 using observation appeared in using only

3 match observation appeared in both

4 match update observation appeared in both, missing values updated

5 match conflict observation appeared in both, conflicting nonmissing
values

Codes 4 and 5 can arise only if the update option is specified. If codes of both
4 and 5 could pertain to an observation, then 5 is used.

Numeric codes and words are equivalent when used in the assert() or keep() options.

The following synonyms are allowed: masters for master, usings for using, matches
and matched for match, match updates for match update, and match conflicts for

match conflict.

Using assert(match master) specifies that the merged file is required to include only matched

master or using observations and unmatched master observations, and may not include unmatched

using observations. Specifying assert() results in merge issuing an error message if there are match
results you did not explicitly allow.
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The order of the words or codes is not important, so all the following assert() specifications would
be the same:

assert(match master)

assert(master matches)

assert(1 3)

When the match results contain codes other than those allowed, return code 9 is returned, and the

merged dataset with the unanticipated results is left in memory to allow you to investigate.

keep(results) specifies which observations are to be kept from the merged dataset. Using keep(match
master) specifies keeping onlymatched observations and unmatchedmaster observations after merg-
ing.

keep() differs from assert() because it selects observations from the merged dataset rather than

enforcing requirements. keep() is used to pare the merged dataset to a given set of observations when
you do not care if there are other observations in the merged dataset. assert() is used to verify that
only a given set of observations is in the merged dataset.

You can specify both assert() and keep(). If you require matched observations and un-

matched master observations but you want only the matched observations, then you could specify

assert(match master) keep(match).

assert() and keep() are convenience options whose functionality can be duplicated using merge
directly.

. merge ..., assert(match master) keep(match)

is identical to

. merge ...

. assert _merge==1 | _merge==3

. keep if _merge==3

The following option is available with merge but is not shown in the dialog box:

sorted specifies that the master and using datasets are already sorted by varlist. If the datasets are

already sorted, then merge runs a little more quickly; the difference is hardly detectable, so this option
is of interest only where speed is of the utmost importance.

Remarks and examples
Remarks are presented under the following headings:

Overview
Basic description
1:1 merges
m:1 merges
1:m merges
m:m merges
Sequential merges
Treatment of overlapping variables
Sort order
Troubleshooting m:m merges
Working with alias variables
Examples
Video example
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Overview
merge 1:1 varlist . . . specifies a one-to-one match merge. varlist specifies variables common to

both datasets that together uniquely identify single observations in both datasets. For instance, suppose

you have a dataset of customer information, called customer.dta, and have a second dataset of other
information about roughly the same customers, called other.dta. Suppose further that both datasets
identify individuals by using the pid variable, and there is only one observation per individual in each
dataset. You would merge the two datasets by typing

. use customer

. merge 1:1 pid using other

Reversing the roles of the two files would be fine. Choosing which dataset is the master and which

is the using matters only if there are overlapping variable names. 1:1 merges are less common than 1:m
and m:1 merges.

merge 1:m and merge m:1 specify one-to-many and many-to-one match merges, respectively. To

illustrate the two choices, suppose you have a dataset containing information about individual hospitals,

called hospitals.dta. In this dataset, each observation contains information about one hospital, which
is uniquely identified by the hospitalid variable. You have a second dataset called discharges.dta,
which contains information on individual hospital stays by many different patients. discharges.dta
also identifies hospitals by using the hospitalid variable. You would like to join all the information in
both datasets. There are two ways you could do this.

merge 1:m varlist . . . specifies a one-to-many match merge.

. use hospitals

. merge 1:m hospitalid using discharges

would join the discharge data to the hospital data. This is a 1:m merge because hospitalid uniquely
identifies individual observations in the dataset in memory (hospitals), but could correspond to many
observations in the using dataset.

merge m:1 varlist . . . specifies a many-to-one match merge.

. use discharges

. merge m:1 hospitalid using hospitals

would join the hospital data to the discharge data. This is an m:1merge because hospitalid can corre-
spond to many observations in the master dataset, but uniquely identifies individual observations in the

using dataset.

merge m:m varlist . . . specifies a many-to-many match merge. This is allowed for completeness, but

it is difficult to imagine an example of when it would be useful. For an m:m merge, varlist does not

uniquely identify the observations in either dataset. Matching is performed by combining observations

with equal values of varlist; within matching values, the first observation in the master dataset is matched

with the first matching observation in the using dataset; the second, with the second; and so on. If there

is an unequal number of observations within a group, then the last observation of the shorter group is

used repeatedly to match with subsequent observations of the longer group. Use of merge m:m is not
encouraged.

merge 1:1 n performs a sequential merge. n is not a variable name; it is Stata syntax for ob-

servation number. A sequential merge performs a one-to-one merge on observation number. The first

observation of the master dataset is matched with the first observation of the using dataset; the second,
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with the second; and so on. If there is an unequal number of observations, the remaining observations

are unmatched. Sequential merges are dangerous, because they require you to rely on sort order to know

that observations belong together. Use this merge at your own risk.

Basic description
Think of merge as being master + using = merged result.

Call the dataset in memory the master dataset, and the dataset on disk the using dataset. This way we

have general names that are not dependent on individual datasets.

Suppose we have two datasets,

master in memory on disk in file filename

id age id wgt

1 22 1 130
2 56 2 180
5 17 4 110

Wewould like to join together the age andweight information. We notice that the id variable identifies
unique observations in both datasets: if you tell me the id number, then I can tell you the one observation
that contains information about that id. This is true for both the master and the using datasets.

Because id uniquely identifies observations in both datasets, this is a 1:1merge. We can bring in the

dataset from disk by typing

. merge 1:1 id using filename

in memory in filename.dta
master + using = merged result

id age id wgt id age wgt

1 22 1 130 1 22 130 (matched)
2 56 2 180 2 56 180 (matched)
5 17 4 110 5 17 . (master only)

4 . 110 (using only)

The original data in memory are called the master data. The data in filename.dta are called the using
data. After merge, the merged result is left in memory. The id variable is called the key variable. Stata
jargon is that the datasets were merged on id.

Observations for id==1 existed in both the master and using datasets and so were combined in the
merged result. The same occurred for id==2. For id==5 and id==4, however, no matches were found
and thus each became a separate observation in the merged result. Thus each observation in the merged

result came from one of three possible sources:

Numeric Equivalent

code word Description

1 master originally appeared in master only

2 using originally appeared in using only

3 match originally appeared in both
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merge encodes this information into new variable merge, which merge adds to the merged result:

in memory in filename.dta
master + using = merged result

id age id wgt id age wgt _merge

1 22 1 130 1 22 130 3
2 56 2 180 2 56 180 3
5 17 4 110 5 17 . 1

4 . 110 2

Note: Above we show the master and using data sorted by id before merging; this was for illustrative
purposes. The dataset resulting from a 1:1merge will have the same data, regardless of the sort order of
the master and using datasets.

The formal definition for merge behavior is the following: Start with the first observation of the

master. Find the corresponding observation in the using data, if there is one. Record the matched or un-

matched result. Proceed to the next observation in the master dataset. When you finish working through

the master dataset, work through unused observations from the using data. By default, unmatched ob-

servations are kept in the merged data, whether they come from the master dataset or the using dataset.

Remember this formal definition. It will serve you well.

1:1 merges
The example shown above is called a 1:1 merge, because the key variable uniquely identified each

observation in each of the datasets.

A variable or variable list uniquely identifies the observations if each distinct value of the variable(s)

corresponds to one observation in the dataset.

In some datasets, multiple variables are required to identify the observations. Imagine data obtained

by observing patients at specific points in time so that variables pid and time, taken together, identify
the observations. Below we have two such datasets and run a 1:1 merge on pid and time,

. merge 1:1 pid time using filename

master + using = merged result

pid time x1 pid time x2 pid time x1 x2 _merge

14 1 0 14 1 7 14 1 0 7 3
14 2 0 14 2 9 14 2 0 9 3
14 4 0 16 1 2 14 4 0 . 1
16 1 1 16 2 3 16 1 1 2 3
16 2 1 17 1 5 16 2 1 3 3
17 1 0 17 2 2 17 1 0 5 3

17 2 . 2 2

This is a 1:1 merge because the combination of the values of pid and time uniquely identifies ob-
servations in both datasets.

By default, there is nothing about a 1:1 merge that implies that all, or even any of, the observations
match. Above five observations matched, one observation was only in the master (subject 14 at time 4),

and another was only in the using (subject 17 at time 2).



merge — Merge datasets 697

m:1 merges
In an m:1 merge, the key variable or variables uniquely identify the observations in the using data,

but not necessarily in the master data. Suppose you had person-level data within regions and you wished

to bring in regional data. Here is an example:

. merge m:1 region using filename

master + using = merged result

id region a region x id region a x _merge

1 2 26 1 15 1 2 26 13 3
2 1 29 2 13 2 1 29 15 3
3 2 22 3 12 3 2 22 13 3
4 3 21 4 11 4 3 21 12 3
5 1 24 5 1 24 15 3
6 5 20 6 5 20 . 1

. 4 . 11 2

To bring in the regional information, we need to merge on region. The values of region identify
individual observations in the using data, but it is not an identifier in the master data.

We show the merged dataset sorted by id because this makes it easier to see how the merged dataset

was constructed. For each observation in the master data, merge finds the corresponding observation in
the using data. merge combines the values of the variables in the using dataset to the observations in the
master dataset.

1:m merges
1:m merges are similar to m:1, except that now the key variables identify unique observations in the

master dataset. Any datasets that can be merged using an m:1 merge may be merged using a 1:m merge
by reversing the roles of the master and using datasets. Here is the same example as used previously,

with the master and using datasets reversed:

. merge 1:m region using filename

master + using = merged result

region x id region a region x id a _merge

1 15 1 2 26 1 15 2 29 3
2 13 2 1 29 1 15 5 24 3
3 12 3 2 22 2 13 1 26 3
4 11 4 3 21 2 13 3 22 3

5 1 24 3 12 4 21 3
6 5 20 4 11 . . 1

5 . 6 20 2

This merged result is identical to the merged result in the previous section, except for the sort order and

the contents of merge. This time, we show themerged result sorted by region rather than id. Reversing
the roles of the files causes a reversal in the 1s and 2s for merge: where merge was previously 1, it
is now 2, and vice versa. These exchanged merge values reflect the reversed roles of the master and
using data.
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For each observation in the master data, merge found the corresponding observation(s) in the us-

ing data and then wrote down the matched or unmatched result. Once the master observations were

exhausted, merge wrote down any observations from the using data that were never used.

m:m merges
m:m specifies a many-to-many merge and is a bad idea. In an m:m merge, observations are matched

within equal values of the key variable(s), with the first observation being matched to the first; the sec-

ond, to the second; and so on. If the master and using have an unequal number of observations within

the group, then the last observation of the shorter group is used repeatedly to match with subsequent

observations of the longer group. Thus m:m merges are dependent on the current sort order—something

which should never happen.

Because m:m merges are such a bad idea, we are not going to show you an example. If you think that

you need an m:mmerge, then you probably need to work with your data so that you can use a 1:m or m:1
merge. Tips for this are given in Troubleshooting m:m merges below.

Sequential merges
In a sequentialmerge, there are no key variables. Observations arematched solely on their observation

number:

. merge 1:1 _n using filename

master + using = merged result

x1 x2 x1 x2 _merge

10 7 10 7 3
30 2 30 2 3
20 1 20 1 3
5 9 5 9 3

3 . 3 2

In the example above, the using data are longer than the master, but that could be reversed. In most

cases where sequential merges are appropriate, the datasets are expected to be of equal length, and you

should type

. merge 1:1 _n using filename, assert(match) nogenerate

Sequential merges, like m:mmerges, are dangerous. Both depend on the current sort order of the data.

Treatment of overlapping variables
When performing merges of any type, the master and using datasets may have variables in common

other than the key variables. We will call such variables overlapping variables. For instance, if the

variables in the master and using datasets are

master: id, region, sex, age, race
using: id, sex, bp, race

and id is the key variable, then the overlapping variables are sex and race.
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By default, merge treats values from the master as inviolable. When observations match, it is the

master’s values of the overlapping variables that are recorded in the merged result.

If you specify the update option, however, then all missing values of overlapping variables in

matched observations are replaced with values from the using data. Because of this new behavior, the

merge codes change somewhat. Codes 1 and 2 keep their old meaning. Code 3 splits into codes 3, 4, and

5. Codes 3, 4, and 5 are filtered according to the following rules; the first applicable rule is used.

5 corresponds to matched observations where at least one overlapping variable had conflicting

nonmissing values.

4 corresponds to matched observations where at least one missing value was updated, but there
were no conflicting nonmissing values.

3 means observations matched, and there were neither updated missing values nor conflicting

nonmissing values.

If you specify both the update and replace options, then the merge==5 cases are updated with

values from the using data.

Sort order
As we have mentioned, in the 1:1, 1:m, and m:1match merges, the sort orders of the master and using

datasets do not affect the data in the merged dataset. This is not the case of m:m, which we recommend
you never use.

Sorting is used by merge internally for efficiency, so the merged result can be produced most quickly
when the master and using datasets are already sorted by the key variable(s) before merging. You are

not required to have the dataset sorted before using merge, however, because merge will sort behind the
scenes, if necessary. If the using dataset is not sorted, then a temporary copy is made and sorted to ensure

that the current sort order on disk is not affected.

All of this is to reassure you that 1) your datasets on disk will not be modified by merge and 2) despite
the fact that our discussion has ignored sort issues, merge is, in fact, efficient behind the scenes.

It hardly makes any difference in run times, but if you know that the master and using data are already

sorted by the key variable(s), then you can specify the sorted option. All that will be saved is the time
merge would spend discovering that fact for itself.

Themerged result produced by merge orders the variables and observations in a special and sometimes
useful way. If you think of datasets as tables, then the columns for the new variables appear to the right

of what was the master. If the master data originally had 𝑘 variables, then the new variables will be the

(𝑘 + 1)st, (𝑘 + 2)nd, and so on. The new observations are similarly ordered so that they all appear at the

end of what was the master. If the master originally had 𝑁 observations, then the new observations, if

any, are the (𝑁 +1)st, (𝑁 +2)nd, and so on. Thus the original master data can be found from the merged

result by extracting the first 𝑘 variables and first 𝑁 observations. If merge with the update option was
specified, however, then be aware that the extracted master may have some updated values.

If you care about the ordering of observations in the data after a merge, then you should sort the data

after the merge. You should sort it in such a way that it has a unique ordering; see Sorting with ties in

[D] sort. If, against this recommendation, you wish to have a reproducible ordering after a merge, then

read the next paragraph. But be forewarned; just because something is reproducible does not mean it is

useful. Again, see Sorting with ties.
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The resulting dataset after any merge is unsorted. That is to say, if you type describe, the “Sorted
by” result will be empty. That is not to say that the data will not be ordered; a dataset always has an

order. After 1:1merges, the ordering will always be in the original order of the master dataset, with any
additional observations from the using dataset at the bottom and in their order from the using dataset. For

all other merges, you will need to go to some effort to ensure a reproducible ordering. For m:1, 1:m, and
m:mmerges, youmust first sort themaster and using datasets by themerge keys and by other variables that
will produce a unique ordering of the dataset. You may have to create those other variables. (See Sorting

with ties for obtaining a unique sort.) After m:1 merges, the ordering will be the original ordering of the
master data with any unmatched observations from the using dataset appended to the bottom in their order

from the using dataset. After 1:m and m:m merges, the ordering is difficult to explain. Regardless, the
ordering will be the same if you repeat the merge after uniquely sorting each dataset—it is reproducible.

Troubleshooting m:m merges
First, if you think you need to perform an m:m merge, then we suspect you are wrong. If you would

like to match every observation in the master to every observation in the using with the same values of

the key variable(s), then you should be using joinby; see [D] joinby.

If you still want to use merge, then it is likely that you have forgotten one or more key variables that
could be used to identify observations within groups. Perhaps you have panel data with 4 observations

on each subject, and you are thinking that what you need to do is

. merge m:m subjectid using filename

Ask yourself if you have a variable that identifies observation within panel, such as a sequence number

or a time. If you have, say, a time variable, then you probably should try something like

. merge 1:m subjectid time using filename

(You might need a 1:1 or m:1 merge; 1:m was arbitrarily chosen for the example.)

If you do not have a time or time-like variable, then ask yourself if there is a meaning to matching the

first observations within subject, the second observations within subject, and so on. If so, then there is a

concept of sequence within subject.

Suppose you do indeed have a sequence concept, but in your dataset it is recorded via the ordering

of the observations. Here you are in a dangerous situation because any kind of sorting would lose the

identity of the first, second, and 𝑛th observation within subject. Your first goal should be to fix this
problem by creating an explicit sequence variable from the current ordering—your merge can come

later.

Start with your master data. Type

. sort subjectid, stable

. by subjectid: generate seqnum = _n

Do not omit sort’s stable option. That is what will keep the observations in the same order within
subject. Save the data. Perform these same three steps on your using data.

After fixing the datasets, you can now type

. merge 1:m subjectid seqnum using filename

If you do not think there is a meaning to being the first, second, and 𝑛th observation within subject,
then you need to ask yourself what it means to match the first observations within subjectid, the second
observations within subjectid, and so on. Would it make equal sense to match the first with the third,
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the second with the fourth, or any other haphazard matching? If so, then there is no real ordering, so

there is no real meaning to merging. You are about to obtain a haphazard result; you need to rethink your

merge.

Working with alias variables
merge allows alias variables in the master and using datasets, with the following restrictions. An alias

variable with a broken linkage will cause merge to exit with an informative error message; see [D] fralias
for examples.

If a key variable in the master dataset is an alias, then it must be an alias with the same linkage in the

using dataset; otherwise, you get something like the following error message:

variable keyvar is alias in master data but float in using data
Key variables (on which observations are matched) may be type alias,
but their alias characteristics must match between the master and
using datasets for the merged data to be correct and complete. When
alias characteristics do not match, or when a master key variable is
alias but the using key variable is not, you could use command
frunalias to recast the key variables in the master data
to avoid this error message.

r(106);

If an overlapping variable in the master dataset is an alias, then it must be an alias with the same

linkage in the using dataset; otherwise, you get something like the following error message:

variable ovar is alias in master data but float in using data
You could use command frunalias to recast ovar in the master data to avoid
this error message.

r(106);

Examples

Example 1: A 1:1 merge
We have two datasets, one of which has information about the size of old automobiles and the other

of which has information about their expense:

. use https://www.stata-press.com/data/r19/autosize
(1978 automobile data)
. list

make weight length

1. Toyota Celica 2,410 174
2. BMW 320i 2,650 177
3. Cad. Seville 4,290 204
4. Pont. Grand Prix 3,210 201
5. Datsun 210 2,020 165

6. Plym. Arrow 3,260 170
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. use https://www.stata-press.com/data/r19/autoexpense
(1978 automobile data)
. list

make price mpg

1. Toyota Celica 5,899 18
2. BMW 320i 9,735 25
3. Cad. Seville 15,906 21
4. Pont. Grand Prix 5,222 19
5. Datsun 210 4,589 35

We can see that these datasets contain different information about nearly the same cars—the autosize
file has one more car. We would like to get all the information about all the cars into one dataset.

Because we are adding new variables to old variables, this is a job for the merge command. We need

only to decide what type of match merge we need.

Looking carefully at the datasets, we see that the make variable, which identifies the cars in each of
the two datasets, also identifies individual observations within the datasets. What this means is that if

you tell me the make of car, I can tell you the one observation that corresponds to that car. Because this

is true for both datasets, we should use a 1:1 merge.

We will start with a clean slate to show the full process:

. use https://www.stata-press.com/data/r19/autosize
(1978 automobile data)
. merge 1:1 make using https://www.stata-press.com/data/r19/autoexpense

Result Number of obs

Not matched 1
from master 1 (_merge==1)
from using 0 (_merge==2)

Matched 5 (_merge==3)

. list

make weight length price mpg _merge

1. BMW 320i 2,650 177 9,735 25 Matched (3)
2. Cad. Seville 4,290 204 15,906 21 Matched (3)
3. Datsun 210 2,020 165 4,589 35 Matched (3)
4. Plym. Arrow 3,260 170 . . Master only (1)
5. Pont. Grand Prix 3,210 201 5,222 19 Matched (3)

6. Toyota Celica 2,410 174 5,899 18 Matched (3)

The merge is successful—all the data are present in the combined dataset, even that from the one car that

has only size information. If we wanted only those makes for which all information is present, it would

be up to us to drop the observations for which merge < 3.
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Example 2: Requiring matches
Suppose we had the same setup as in the previous example, but we erroneously think that we have all

the information on all the cars. We could tell merge that we expect only matches by using the assert
option.

. use https://www.stata-press.com/data/r19/autosize, clear
(1978 automobile data)
. merge 1:1 make using https://www.stata-press.com/data/r19/autoexpense,
> assert(match)
merge: after merge, not all observations matched

(merged result left in memory)
r(9);

merge tells us that there is a problem with our assumption. To see how many mismatches there were,

we can tabulate merge:

. tabulate _merge
_merge Freq. Percent Cum.

master only (1) 1 16.67 16.67
matched (3) 5 83.33 100.00

Total 6 100.00

If we would like to list the problem observation, we can type

. list if _merge < 3

make weight length price mpg _merge

4. Plym. Arrow 3,260 170 . . master only (1)

If we were convinced that all data should be complete in the two datasets, we would have to rectify

the mismatch in the original datasets.

Example 3: Keeping just the matches
Once again, suppose that we had the same datasets as before, but this time we want the final dataset

to have only those observations for which there is a match. We do not care if there are mismatches—all

that is important are the complete observations. By using the keep(match) option, we will guarantee
that this happens. Because we are keeping only those observations for which the key variable matches,

there is no need to generate the merge variable. We could do the following:

. use https://www.stata-press.com/data/r19/autosize, clear
(1978 automobile data)
. merge 1:1 make using https://www.stata-press.com/data/r19/autoexpense,
> keep(match) nogenerate

Result Number of obs

Not matched 0
Matched 5
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. list

make weight length price mpg

1. BMW 320i 2,650 177 9,735 25
2. Cad. Seville 4,290 204 15,906 21
3. Datsun 210 2,020 165 4,589 35
4. Pont. Grand Prix 3,210 201 5,222 19
5. Toyota Celica 2,410 174 5,899 18

Example 4: Many-to-one matches
We have two datasets: one has salespeople in regions and the other has regional data about sales. We

would like to put all the information into one dataset. Here are the datasets:

. use https://www.stata-press.com/data/r19/sforce, clear
(Sales Force)
. list

region name

1. N Cntrl Krantz
2. N Cntrl Phipps
3. N Cntrl Willis
4. NE Ecklund
5. NE Franks

6. South Anderson
7. South Dubnoff
8. South Lee
9. South McNeil

10. West Charles

11. West Cobb
12. West Grant

. use https://www.stata-press.com/data/r19/dollars
(Regional Sales & Costs)
. list

region sales cost

1. N Cntrl 419,472 227,677
2. NE 360,523 138,097
3. South 532,399 330,499
4. West 310,565 165,348

We can see that the region would be used to match observations in the two datasets, and this time we

see that region identifies individual observations in the dollars dataset but not in the sforce dataset.
This means we will have to use either an m:1 or a 1:m merge. Here we will open the sforce dataset
and then merge the dollars dataset. This will be an m:1 merge, because region does not identify

individual observations in the dataset in memory but does identify them in the using dataset. Here is the

command and its result:
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. use https://www.stata-press.com/data/r19/sforce
(Sales Force)
. merge m:1 region using https://www.stata-press.com/data/r19/dollars
(label region already defined)

Result Number of obs

Not matched 0
Matched 12 (_merge==3)

. list

region name sales cost _merge

1. N Cntrl Krantz 419,472 227,677 Matched (3)
2. N Cntrl Phipps 419,472 227,677 Matched (3)
3. N Cntrl Willis 419,472 227,677 Matched (3)
4. NE Ecklund 360,523 138,097 Matched (3)
5. NE Franks 360,523 138,097 Matched (3)

6. South Anderson 532,399 330,499 Matched (3)
7. South Dubnoff 532,399 330,499 Matched (3)
8. South Lee 532,399 330,499 Matched (3)
9. South McNeil 532,399 330,499 Matched (3)

10. West Charles 310,565 165,348 Matched (3)

11. West Cobb 310,565 165,348 Matched (3)
12. West Grant 310,565 165,348 Matched (3)

We can see from the result that all the values of region were matched in both datasets. This is a rare
occurrence in practice!

Had we had the dollars dataset in memory and merged in the sforce dataset, we would have done
a 1:m merge.

We would now like to use a series of examples that shows how merge treats nonkey variables, which
have the same names in the two datasets. We will call these “overlapping” variables.
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Example 5: Overlapping variables
Here are two datasets whose only purpose is for this illustration:

. use https://www.stata-press.com/data/r19/overlap1, clear

. list, sepby(id)

id seq x1 x2

1. 1 1 1 1
2. 1 2 1 .
3. 1 3 1 2
4. 1 4 . 2

5. 2 1 . 1
6. 2 2 . 2
7. 2 3 1 1
8. 2 4 1 2
9. 2 5 .a 1

10. 2 6 .a 2

11. 3 1 . .a
12. 3 2 . 1
13. 3 3 . .
14. 3 4 .a .a

15. 10 1 5 8

. use https://www.stata-press.com/data/r19/overlap2

. list

id bar x1 x2

1. 1 11 1 1
2. 2 12 . 1
3. 3 14 . .a
4. 20 18 1 1

We can see that id can be used as the key variable for putting the two datasets together. We can also see

that there are two overlapping variables: x1 and x2.
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We will start with a simple m:1 merge:

. use https://www.stata-press.com/data/r19/overlap1

. merge m:1 id using https://www.stata-press.com/data/r19/overlap2
Result Number of obs

Not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)

Matched 14 (_merge==3)

. list, sepby(id)

id seq x1 x2 bar _merge

1. 1 1 1 1 11 Matched (3)
2. 1 2 1 . 11 Matched (3)
3. 1 3 1 2 11 Matched (3)
4. 1 4 . 2 11 Matched (3)

5. 2 1 . 1 12 Matched (3)
6. 2 2 . 2 12 Matched (3)
7. 2 3 1 1 12 Matched (3)
8. 2 4 1 2 12 Matched (3)
9. 2 5 .a 1 12 Matched (3)

10. 2 6 .a 2 12 Matched (3)

11. 3 1 . .a 14 Matched (3)
12. 3 2 . 1 14 Matched (3)
13. 3 3 . . 14 Matched (3)
14. 3 4 .a .a 14 Matched (3)

15. 10 1 5 8 . Master only (1)

16. 20 . 1 1 18 Using only (2)

Careful inspection shows that for the matched id, the values of x1 and x2 are still the values that were
originally in the overlap1 dataset. This is the default behavior of merge—the data in the master dataset

are the authority and are kept intact.
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Example 6: Updating missing data
Now we would like to investigate the update option. Used by itself, it will replace missing values in

the master dataset with values from the using dataset:

. use https://www.stata-press.com/data/r19/overlap1, clear

. merge m:1 id using https://www.stata-press.com/data/r19/overlap2, update
Result Number of obs

Not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)

Matched 14
not updated 5 (_merge==3)
missing updated 4 (_merge==4)
nonmissing conflict 5 (_merge==5)

. list, sepby(id)

id seq x1 x2 bar _merge

1. 1 1 1 1 11 Matched (3)
2. 1 2 1 1 11 Missing updated (4)
3. 1 3 1 2 11 Nonmissing conflict (5)
4. 1 4 1 2 11 Nonmissing conflict (5)

5. 2 1 . 1 12 Matched (3)
6. 2 2 . 2 12 Nonmissing conflict (5)
7. 2 3 1 1 12 Matched (3)
8. 2 4 1 2 12 Nonmissing conflict (5)
9. 2 5 . 1 12 Missing updated (4)

10. 2 6 . 2 12 Nonmissing conflict (5)

11. 3 1 . .a 14 Matched (3)
12. 3 2 . 1 14 Matched (3)
13. 3 3 . .a 14 Missing updated (4)
14. 3 4 . .a 14 Missing updated (4)

15. 10 1 5 8 . Master only (1)

16. 20 . 1 1 18 Using only (2)

Looking through the resulting dataset observation by observation, we can see both what the update
option updated as well as how the merge variable gets its values.
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The following is a listing that shows what is happening, where x1 m and x2 m come from the master

dataset (overlap1), x1 u and x2 u come from the using dataset (overlap2), and x1 and x2 are the

values that appear when using merge with the update option.

id x1_m x1_u x1 x2_m x2_u x2 _merge

1. 1 1 1 1 1 1 1 matched (3)
2. 1 1 1 1 . 1 1 missing updated (4)
3. 1 1 1 1 2 1 2 nonmissing conflict (5)
4. 1 . 1 1 2 1 2 nonmissing conflict (5)

5. 2 . . . 1 1 1 matched (3)
6. 2 . . . 2 1 2 nonmissing conflict (5)
7. 2 1 . 1 1 1 1 matched (3)
8. 2 1 . 1 2 1 2 nonmissing conflict (5)
9. 2 .a . . 1 1 1 missing updated (4)

10. 2 .a . . 2 1 2 nonmissing conflict (5)

11. 3 . . . .a .a .a matched (3)
12. 3 . . . 1 .a 1 matched (3)
13. 3 . . . . .a .a missing updated (4)
14. 3 .a . . .a .a .a missing updated (4)

15. 10 5 . 5 8 . 8 master only (1)

16. 20 . 1 1 . 1 1 using only (2)

From this, we can see two important facts: if there are both a conflict and an updated value, the value

of merge will reflect that there was a conflict, and missing values in the master dataset are updated by
missing values in the using dataset.

Example 7: Updating all common observations
We would like to see what happens if the update and replace options are specified. The replace

option extends the action of update to use nonmissing values of the using dataset to replace values in
the master dataset. The values of merge are unaffected by using both update and replace.

. use https://www.stata-press.com/data/r19/overlap1, clear

. merge m:1 id using https://www.stata-press.com/data/r19/overlap2, update replace
Result Number of obs

Not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)

Matched 14
not updated 5 (_merge==3)
missing updated 4 (_merge==4)
nonmissing conflict 5 (_merge==5)
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. list, sepby(id)

id seq x1 x2 bar _merge

1. 1 1 1 1 11 Matched (3)
2. 1 2 1 1 11 Missing updated (4)
3. 1 3 1 1 11 Nonmissing conflict (5)
4. 1 4 1 1 11 Nonmissing conflict (5)

5. 2 1 . 1 12 Matched (3)
6. 2 2 . 1 12 Nonmissing conflict (5)
7. 2 3 1 1 12 Matched (3)
8. 2 4 1 1 12 Nonmissing conflict (5)
9. 2 5 . 1 12 Missing updated (4)

10. 2 6 . 1 12 Nonmissing conflict (5)

11. 3 1 . .a 14 Matched (3)
12. 3 2 . 1 14 Matched (3)
13. 3 3 . .a 14 Missing updated (4)
14. 3 4 . .a 14 Missing updated (4)

15. 10 1 5 8 . Master only (1)

16. 20 . 1 1 18 Using only (2)

Example 8: More on the keep() option
Suppose we would like to use the update option, as we did above, but we would like to keep only

those observations for which the value of the key variable, id, was found in both datasets. This will
be more complicated than in our earlier example, because the update option splits the matches into

matches, match updates, and match conflicts. We must either use all of these code words in the

keep option or use their numerical equivalents, 3, 4, and 5. Here the latter is simpler.

. use https://www.stata-press.com/data/r19/overlap1, clear

. merge m:1 id using https://www.stata-press.com/data/r19/overlap2, update
> keep(3 4 5)

Result Number of obs

Not matched 0
Matched 14

not updated 5 (_merge==3)
missing updated 4 (_merge==4)
nonmissing conflict 5 (_merge==5)
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. list, sepby(id)

id seq x1 x2 bar _merge

1. 1 1 1 1 11 Matched (3)
2. 1 2 1 1 11 Missing updated (4)
3. 1 3 1 2 11 Nonmissing conflict (5)
4. 1 4 1 2 11 Nonmissing conflict (5)

5. 2 1 . 1 12 Matched (3)
6. 2 2 . 2 12 Nonmissing conflict (5)
7. 2 3 1 1 12 Matched (3)
8. 2 4 1 2 12 Nonmissing conflict (5)
9. 2 5 . 1 12 Missing updated (4)

10. 2 6 . 2 12 Nonmissing conflict (5)

11. 3 1 . .a 14 Matched (3)
12. 3 2 . 1 14 Matched (3)
13. 3 3 . .a 14 Missing updated (4)
14. 3 4 . .a 14 Missing updated (4)

Example 9: A one-to-many merge
As a final example, we would like show one example of a 1:m merge. There is nothing conceptually

different here; what is interesting is the order of the observations in the final dataset:

. use https://www.stata-press.com/data/r19/overlap2, clear

. merge 1:m id using https://www.stata-press.com/data/r19/overlap1
Result Number of obs

Not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)

Matched 14 (_merge==3)
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. list, sepby(id)

id bar x1 x2 seq _merge

1. 1 11 1 1 1 Matched (3)

2. 2 12 . 1 1 Matched (3)

3. 3 14 . .a 1 Matched (3)

4. 20 18 1 1 . Master only (1)

5. 1 11 1 1 2 Matched (3)
6. 1 11 1 1 3 Matched (3)
7. 1 11 1 1 4 Matched (3)

8. 2 12 . 1 2 Matched (3)
9. 2 12 . 1 3 Matched (3)

10. 2 12 . 1 4 Matched (3)
11. 2 12 . 1 5 Matched (3)
12. 2 12 . 1 6 Matched (3)

13. 3 14 . .a 2 Matched (3)
14. 3 14 . .a 3 Matched (3)
15. 3 14 . .a 4 Matched (3)

16. 10 . 5 8 1 Using only (2)

We can see here that the first four observations come from the master dataset, and all additional

observations, whether matched or unmatched, come below these observations. This illustrates that the

master dataset is always in the upper-left corner of the merged dataset.

Video example
How to merge files into a single dataset

References
Canette, I. 2014. Using resampling methods to detect influential points. The Stata Blog: Not Elsewhere Classified. https:

//blog.stata.com/2014/05/08/using-resampling-methods-to-detect-influential-points/.

Chatfield, M. D. 2015. precombine: Acommand to examine𝑛 ≥ 2 datasets before combining. Stata Journal 15: 607–626.
Golbe, D. L. 2010. Stata tip 83: Merging multilingual datasets. Stata Journal 10: 152–156.

Gould, W.W. 2011a. Merging data, part 1: Merges gone bad. The Stata Blog: Not Elsewhere Classified. https://blog.stata.

com/2011/04/18/merging-data-part-1-merges-gone-bad/.

———. 2011b. Merging data, part 2: Multiple-key merges. The Stata Blog: Not Elsewhere Classified. https://blog.stata.

com/2011/05/27/merging-data-part-2-multiple-key-merges/.

Mazrekaj, D., and J. Wursten. 2021. Stata tip 142: joinby is the real merge m:m. Stata Journal 21: 1065–1068.

Wasi, N., and A. Flaaen. 2015. Record linkage using Stata: Preprocessing, linking, and reviewing utilities. Stata Journal

15: 672–697.

https://www.youtube.com/watch?v=niGZBRyyDuY
https://blog.stata.com/2014/05/08/using-resampling-methods-to-detect-influential-points/
https://blog.stata.com/2014/05/08/using-resampling-methods-to-detect-influential-points/
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Also see
[D] append —Append datasets

[D] cross — Form every pairwise combination of two datasets

[D] fralias —Alias variables from linked frames

[D] frget — Copy variables from linked frame

[D] frlink — Link frames

[D] frunalias — Change storage type of alias variables

[D] joinby — Form all pairwise combinations within groups

[D] save — Save Stata dataset

[U] 23 Combining datasets



Missing values — Quick reference for missing values

Description
This entry provides a quick reference for Stata’s missing values.

Remarks and examples
Stata has 27 numeric missing values:

., the default, which is called the system missing value or sysmiss

and

.a, .b, .c, . . . , .z, which are called the extended missing values.

Numeric missing values are represented by large positive values. The ordering is

all nonmissing numbers < . < .a < .b < · · · < .z

Thus the expression

age > 60

is true if variable age is greater than 60 or missing.

To exclude missing values, ask whether the value is less than ‘.’.

. list if age > 60 & age < .

To specify missing values, ask whether the value is greater than or equal to ‘.’. For instance,

. list if age >=.

Stata has one string missing value, which is denoted by ”” (blank).

References
Cox, N. J. 2010. Stata tip 84: Summing missings. Stata Journal 10: 157–159.

———. 2015. Speaking Stata: A set of utilities for managing missing values. Stata Journal 15: 1174–1185.

Also see
[U] 12.2.1 Missing values
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mkdir — Create directory

Description Quick start Syntax Option Remarks and examples Also see

Description
mkdir creates a new directory (folder).

Quick start
Create mysubdir in the current working directory

mkdir mysubdir

Same as above, but make mysubdir readable by everyone regardless of default permissions
mkdir mysubdir, public

Create mysubdir in C:\mydir using Stata for Windows

mkdir c:\mydir\mysubdir

Create mysubdir in ~/mydir using Stata for Mac or Unix

mkdir ~/mydir/mysubdir

Create my folder in C:\my dir using Stata for Windows

mkdir ”c:\my dir\my folder”

Syntax
mkdir directoryname [ , public ]

Double quotes may be used to enclose directoryname, and the quotes must be used if directoryname

contains embedded spaces.

Option
public specifies that directoryname be readable by everyone; otherwise, the directory will be created

according to the default permissions of your operating system.
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Remarks and examples
Examples:

Windows

. mkdir myproj

. mkdir c:\projects\myproj

. mkdir ”c:\My Projects\Project 1”

Mac and Unix

. mkdir myproj

. mkdir ~/projects/myproj

Also see
[D] cd — Change directory

[D] copy — Copy file from disk or URL

[D] dir — Display filenames

[D] erase — Erase a disk file

[D] rmdir — Remove directory

[D] shell — Temporarily invoke operating system

[D] type — Display contents of a file

[U] 11.6 Filenaming conventions



mvencode — Change missing values to numeric values and vice versa

Description Quick start Menu Syntax
Options Remarks and examples Acknowledgment Also see

Description
mvencode changes missing values in the specified varlist to numeric values.

mvdecode changes occurrences of a numlist in the specified varlist to a missing-value code.

Missing-value codes may be sysmiss (.) and the extended missing-value codes .a, .b, . . . , .z.

String variables in varlist are ignored.

Quick start
Replace all missing values in v1 with 99

mvencode v1, mv(99)

Replace extended missing value .a with 888 and .b with 999 in v2
mvencode v2, mv(.a=888 \ .b=999)

Replace .a with 888, .b with 999, and other missing values with 99 in numeric variables
mvencode _all, mv(.a=888 \ .b=999 \ else=99)

Same as above, but only for observations where catvar equals 1
mvencode _all if catvar==1, mv(.a=888 \ .b=999 \ else=99)

Replace 888 and 999 with system missing . in all numeric variables

mvdecode _all, mv(888 999)

Same as above, but replace 888 with .a and 999 with .b
mvdecode _all, mv(888=.a \ 999=.b)

Menu
mvencode
Data > Create or change data > Other variable-transformation commands > Change missing values to numeric

mvdecode
Data > Create or change data > Other variable-transformation commands > Change numeric values to missing
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Syntax
Change missing values to numeric values

mvencode varlist [ if ] [ in ] , mv(# | mvc = # [ \ mvc = #...] [ \ else = #]) [ override ]

Change numeric values to missing values

mvdecode varlist [ if ] [ in ] , mv(numlist | numlist =mvc [ \ numlist =mvc ...])

where mvc is one of . | .a | .b | . . . | .z

Options

� � �
Main �

mv(# | mvc = # [ \ mvc = #...] [ \ else = #]) is required and specifies the numeric values to which the
missing values are to be changed.

mv(#) specifies that all types of missing values be changed to #.

mv(mvc=#) specifies that occurrences of missing-value code mvc be changed to #. Multiple transfor-

mation rules may be specified, separated by a backward slash (\). The list may be terminated by the
special rule else=#, specifying that all types of missing values not yet transformed be set to #.

Examples: mv(9), mv(.=99\.a=98\.b=97), mv(.=99\ else=98)

mv(numlist | numlist=mvc [ \ numlist =mvc ...]) is required and specifies the numeric values that are
to be changed to missing values.

mv(numlist=mvc) specifies that the values in numlist be changed to missing-value codemvc. Multiple

transformation rules may be specified, separated by a backward slash (\). See [P] numlist for the

syntax of a numlist.

Examples: mv(9), mv(99=.\98=.a\97=.b), mv(99=.\ 100/999=.a)

override specifies that the protection provided by mvencode be overridden. Without this option,

mvencode refuses to make the requested change if any of the numeric values are already used in

the data.

Remarks and examples
Remarks are presented under the following headings:

Overview
Video example

Overview
Youmay occasionally read data in which missing (for example, a respondent failed to answer a survey

question or the data were not collected) is coded with a special numeric value. Popular codings are 9,

99, −9, −99, and the like. If missing were encoded as −99, then

. mvdecode _all, mv(-99)
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would translate the special code to the Stata missing value “.”. Use this command cautiously because,
even if −99 were not a special code, all −99s in the data would be changed to missing.

Sometimes different codes are used to represent different reasons for missing values. For instance,

98 may be used for “refused to answer” and 99 for “not applicable”. Extended missing values (.a, .b,
and so on) may be used to code these differences.

. mvdecode _all, mv(98=.a\ 99=.b)

Conversely, you might need to export data to software that does not understand that “.” indicates a
missing value, so you might code missing with a special numeric value. To change all missings to −99,

you could type

. mvencode _all, mv(-99)

To change extended missing values back to numeric values, type

. mvencode _all, mv(.a=98\ .b=99)

This would leave sysmiss and all other extended missing values unchanged. To encode in addition

sysmiss . to 999 and all other extended missing values to 97, you might type

. mvencode _all, mv(.=999\ .a=98\ .b=99\ else=97)

mvencode will automatically recast variables upward, if necessary, so even if a variable is stored as a
byte, its missing values can be recoded to, say, 999. Also mvencode refuses to make the change if #
(−99 here) is already used in the data, so you can be certain that your coding is unique. You can override

this feature by including the override option.

Be aware of another potential problem with encoding and decoding missing values: value labels are

not automatically adapted to the changed codings. You have to do this yourself. For example, the value

label divlabormaps the value 99 to the string “not applicable”. You used mvdecode to recode 99 to .a
for all variables that are associated with this label. To fix the value label, clear the mapping for 99 and

define it again for .a.

. label define divlabor 99 ””, modify

. label define divlabor .a ”not applicable”, add

Example 1
Our automobile dataset contains 74 observations and 12 variables. Let’s first attempt to translate the

missing values in the data to 1:

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. mvencode _all, mv(1)

make: string variable ignored
rep78: already 1 in 2 observations

foreign: already 1 in 22 observations
no action taken
r(9);

Our attempt failed. mvencode first informed us that make is a string variable—this is not a problem but is

reported merely for our information. String variables are ignored by mvencode. It next informed us that
rep78 was already coded 1 in 2 observations and that foreign was already coded 1 in 22 observations.
Thus 1 would be a poor choice for encoding missing values because, after encoding, we could not tell a

real 1 from a coded missing value 1.
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We could force mvencode to encode the data with 1, anyway, by typing mvencode all, mv(1)
override. That would be appropriate if the 1s in our data already represented missing data. They do
not, however, so we code missing as 999:

. mvencode _all, mv(999)
make: string variable ignored
rep78: 5 missing values

This worked, and we are informed that the only changes necessary were to 5 observations of rep78.

Example 2
Let’s now pretend that we just read in the automobile data from some raw dataset in which all the

missing values were coded 999. We can convert the 999s to real missings by typing

. mvdecode _all, mv(999)
make: string variable ignored
rep78: 5 missing values

We are informed that make is a string variable, so it was ignored, and that rep78 contained 5 observations
with 999. Those observations have now been changed to contain missing.

Video example
How to convert missing value codes to missing values

Acknowledgment
These versions of mvencode and mvdecode were written by Jeroen Weesie of the Department of

Sociology at Utrecht University, The Netherlands.

Also see
[D] generate — Create or change contents of variable

[D] recode — Recode categorical variables

https://www.youtube.com/watch?v=6HV2773-dVM


notes — Place notes in data

Description Quick start Menu Syntax
Remarks and examples Reference Also see

Description
notes attaches notes to the dataset in memory. These notes become a part of the dataset and are saved

when the dataset is saved and retrieved when the dataset is used; see [D] save and [D] use. notes can be
attached generically to the dataset or specifically to a variable within the dataset.

Quick start
Attach “My note about data” to current dataset

notes: My note about data

Add note “There is one note for v1” to v1
notes v1: There is one note for v1

Add note “A note was added to v2 on” and a time stamp for the note

notes v2: A note was added to v2 on TS

Add note “Data have changed” to the dataset

notes: Data have changed

Remove the first note from the dataset

notes drop _dta in 1

Renumber notes after removing a note from the dataset

notes renumber _dta

Same as above, but for a variable

notes renumber v1

List all notes

notes

List notes for the dataset but omit notes applied to variables

notes _dta

List only notes for variables

notes *

Search all notes for the word “check”

notes search check
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Menu
notes (add)
Data > Variables Manager

notes list and notes search
Data > Data utilities > Notes utilities > List or search notes

notes replace

Data > Variables Manager

notes drop
Data > Variables Manager

notes renumber
Data > Data utilities > Notes utilities > Renumber notes

Syntax
Attach notes to dataset

notes [ evarname ]: text

List all notes

notes

List specific notes

notes [ list ] evarlist [ in #[ /# ] ]

Search for a text string across all notes in all variables and dta

notes search [ sometext ]

Replace a note

notes replace evarname in # : text

Drop notes

notes drop evarlist [ in #[ /# ] ]

Renumber notes

notes renumber evarname

where evarname is dta or a varname, evarlist is a varlist that may contain the dta, and # is a number
or the letter l.

If text includes the letters TS surrounded by blanks, the TS is removed, and a time stamp is substituted in
its place.
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Remarks and examples
Remarks are presented under the following headings:

How notes are numbered
Attaching and listing notes
Selectively listing notes
Searching and replacing notes
Deleting notes
Warnings
Video example

How notes are numbered
Notes are numbered sequentially, with the first note being 1. Say the myvar variable has four notes

numbered 1, 2, 3, and 4. If you type notes drop myvar in 3, the remaining notes will be numbered 1,
2, and 4. If you now add another note, it will be numbered 5. That is, notes are not renumbered and new

notes are added immediately after the highest numbered note. Thus, if you now dropped notes 4 and 5,

the next note added would be 3.

You can renumber notes by using notes renumber. Going back to when myvar had notes numbered
1, 2, and 4 after dropping note 3, if you typed notes renumber myvar, the notes would be renumbered
1, 2, and 3. If you added a new note after that, it would be numbered 4.

Attaching and listing notes
A note is nothing formal; it is merely a string of text reminding you to do something, cautioning you

against something, or saying anything else you might feel like jotting down. People who work with real

data invariably end up with paper notes plastered around their terminal saying things like, “Send the new

sales data to Bob”, “Check the income variable in salary95; I don’t believe it”, or “The gender dummy
was significant!” It would be better if these notes were attached to the dataset.

Adding a note to your dataset requires typing note or notes (they are synonyms), a colon (:), and
whatever you want to remember. The note is added to the dataset currently in memory.

. note: Send copy to Bob once verified.

You can replay your notes by typing notes (or note) by itself.

. notes
_dta:
1. Send copy to Bob once verified.

Once you resave your data, you can replay the note in the future, too. You add more notes just as you did

the first:

. note: Mary wants a copy, too.

. notes
_dta:
1. Send copy to Bob once verified.
2. Mary wants a copy, too.
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You can place time stamps on your notes by placing the word TS (in capitals) in the text of your note:

. note: TS merged updates from JJ&F

. notes
_dta:
1. Send copy to Bob once verified.
2. Mary wants a copy, too.
3. 19 Apr 2024 15:38 merged updates from JJ&F

Notes may contain SMCL directives:

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. note: check reason for missing values in {cmd:rep78}
. notes
_dta:
1. from Consumer Reports with permission
2. check reason for missing values in rep78

The notes we have added so far are attached to the dataset generically, which is why Stata prefixes them

with dta when it lists them. You can attach notes to variables:

. note mpg: is the 44 a mistake? Ask Bob.

. note mpg: what about the two missing values?

. notes
_dta:
1. Send copy to Bob once verified.
2. Mary wants a copy, too.
3. 19 Apr 2024 15:38 merged updates from JJ&F

mpg:
1. is the 44 a mistake? Ask Bob.
2. what about the two missing values?

Up to 9,999 generic notes can be attached to dta, and another 9,999 notes can be attached to each
variable.

Selectively listing notes
Typing notes by itself lists all the notes. In full syntax, notes is equivalent to typing notes all

in 1/l. Here are some variations:
notes dta list all generic notes
notes mpg list all notes for variable mpg
notes dta mpg list all generic notes and mpg notes
notes dta in 3 list generic note 3
notes dta in 3/5 list generic notes 3–5
notes mpg in 3/5 list mpg notes 3–5
notes dta in 3/l list generic notes 3 through last

Searching and replacing notes
You had a bad day yesterday, and you want to recheck the notes that you added to your dataset.

Fortunately, you always put a time stamp on your notes.

. notes search ”29 Jan”
_dta:
2. 29 Jan 2024 13:40 check reason for missing values in foreign
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Good thing you checked. It is rep78 that has missing values.

. notes replace _dta in 2: TS check reason for missing values in rep78
(note 2 for _dta replaced)

. notes
_dta:
1. from Consumer Reports with permission
2. 30 Jan 2024 12:32 check reason for missing values in rep78

Deleting notes
notes drop works much like listing notes, except that typing notes drop by itself does not delete

all notes; you must type notes drop all. Here are some variations:

notes drop dta delete all generic notes
notes drop dta in 3 delete generic note 3
notes drop dta in 3/5 delete generic notes 3–5
notes drop dta in 3/l delete generic notes 3 through last
notes drop mpg in 4 delete mpg note 4

Warnings
• Notes are stored with the data, and as with other updates you make to the data, the additions and

deletions are not permanent until you save the data; see [D] save.

• The maximum length of one note is 67,784 characters for Stata/MP, Stata/SE, and Stata/BE.

Video example
How to add notes to a variable

Reference
Long, J. S. 2009. The Workflow of Data Analysis Using Stata. College Station, TX: Stata Press.

Also see
[D] codebook — Describe data contents

[D] describe — Describe data in memory or in a file

[D] ds — Compactly list variables with specified properties

[D] save — Save Stata dataset

[D] varmanage — Manage variable labels, formats, and other properties

[U] 12.8 Characteristics

https://www.youtube.com/watch?v=wMDHD7REHr4
https://www.stata-press.com/books/wdaus.html


obs — Increase the number of observations in a dataset

Description Quick start Syntax Remarks and examples Also see

Description
set obs changes the number of observations in the current dataset. # must be at least as large as the

current number of observations. If there are variables in memory, the values of all new observations are

set to missing.

Quick start
Add 100 observations with no observations currently in memory

set obs 100

Add 100 observations with 100 observations currently in memory

set obs 200

Syntax
set obs #

Remarks and examples

Example 1
set obs can be useful for creating artificial datasets. For instance, if we wanted to graph the function

𝑦 = 𝑥2 over the range 1–100, we could type

. drop _all

. set obs 100
Number of observations (_N) was 0, now 100.
. generate x = _n
. generate y = x^2
. scatter y x
(graph omitted )

Example 2
If we want to add an extra data point in a program, we could type

. local np1 = _N + 1

. set obs ‘np1’
Number of observations (_N) was 0, now 1.

or

. set obs ‘=_N + 1’
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Also see
[D] describe — Describe data in memory or in a file

[D] insobs —Add or insert observations



odbc — Load, write, or view data from ODBC sources

Description Quick start Menu Syntax
Options Remarks and examples Reference Also see

Description
odbc allows you to load, write, and view data from Open DataBase Connectivity (ODBC) sources

into Stata. ODBC is a standardized set of function calls for accessing data stored in both relational and

nonrelational database-management systems. By default on Unix platforms, iODBC is the ODBC driver

manager Stata uses, but you can use unixODBC by using the command set odbcmgr unixodbc.

ODBC’s architecture consists of four major components (or layers): the client interface, the ODBC

driver manager, the ODBC drivers, and the data sources. Stata provides odbc as the client interface. The
system is illustrated as follows:

odbc list produces a list of ODBC data source names to which Stata can connect.

odbc query retrieves a list of table names available from a specified data source’s system catalog.

odbc describe lists column names and types associated with a specified table.

odbc load reads an ODBC table into memory. You can load an ODBC table specified in the table()
option or load an ODBC table generated by an SQL SELECT statement specified in the exec() option. In
both cases, you can choose which columns and rows of the ODBC table to read by specifying extvarlist

and if and in conditions. extvarlist specifies the columns to be read and allows you to rename variables.
For example,

. odbc load id=ID name=”Last Name”, table(Employees) dsn(Northwind)

reads two columns, ID and Last Name, from the Employees table of the Northwind data source. It will
also rename variable ID to id and variable Last Name to name.

odbc insert writes data from memory to an ODBC table. The data can be appended to an existing

table or replace an existing table.

odbc exec allows for most SQL statements to be issued directly to any ODBC data source. Statements

that produce output, such as SELECT, have their output neatly displayed. By using Stata’s ado language,

you can also generate SQL commands on the fly to do positional updates or whatever the situation requires.

odbc sqlfile provides a “batch job” alternative to the odbc exec command. A file is specified that

contains any number of any length SQL commands. Every SQL command in this file should be delimited

by a semicolon and must be constructed as pure SQL. Stata macros and ado-language syntax are not

permitted. The advantage in using this command, as opposed to odbc exec, is that only one connection
is established for multiple SQL statements. A similar sequence of SQL commands used via odbc exec
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would require constructing an ado-file that issued a command and, thus, a connection for every SQL

command. Another slight difference is that any output that might be generated from an SQL command is

suppressed by default. A loud option is provided to toggle output back on.

set odbcdriver unicode specifies that the ODBC driver is a Unicode driver (the default). set
odbcdriver ansi specifies that the ODBC driver is anANSI driver. You must restart Stata for the setting
to take effect.

set odbcmgr iodbc specifies that the ODBC driver manager is iODBC (the default). set odbcmgr
unixodbc specifies that the ODBC driver manager is unixODBC.

Quick start
List all defined data source names (DSNs) to which Stata can connect

odbc list

List available table names in MyDSN
odbc query ”MyDSN”

Describe the column names and data types in table MyTable from MyDSN
odbc describe ”MyTable”, dsn(”MyDSN”)

Load MyTable into memory from MyDSN
odbc load, table(”MyTable”) dsn(”MyDSN”)

Menu
odbc load
File > Import > ODBC data source

odbc insert
File > Export > ODBC data source
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Syntax
List ODBC sources to which Stata can connect

odbc list

Retrieve available names from specified data source

odbc query [ ”DataSourceName”, verbose schema connect options ]

List column names and types associated with specified table

odbc describe [ ”TableName”, connect options ]

Import data from an ODBC data source

odbc load [ extvarlist ] [ if ] [ in ] , { table(”TableName”) | exec(”SqlStmt”) }
[ load options connect options ]

Export data to an ODBC data source

odbc insert [ varlist ] [ if ] [ in ], table(”TableName”)

{dsn(”DataSourceName”) | connectionstring(”ConnectStr”)}
[ insert options connect options ]

Allow SQL statements to be issued directly to ODBC data source

odbc exec(”SqlStmt”) ,

{dsn(”DataSourceName”) | connectionstring(”ConnectStr”)}
[ connect options ]

Batch job alternative to odbc exec

odbc sqlfile(”filename”) ,

{dsn(”DataSourceName”) | connectionstring(”ConnectStr”)}
[ loud connect options ]

Specify ODBC driver type

set odbcdriver { unicode | ansi } [ , permanently ]

Specify ODBC driver manager (Mac and Unix only)

set odbcmgr { iodbc | unixodbc } [ , permanently ]
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DataSourceName is the name of the ODBC source (database, spreadsheet, etc.)

ConnectStr is a valid ODBC connection string

TableName is the name of a table within the ODBC data source

SqlStmt is an SQL SELECT statement

filename is pure SQL commands separated by semicolons

extvarlist contains

sqlvarname

varname = sqlvarname

connect options Description

user(UserID) user ID of user establishing connection

password(Password) password of user establishing connection

dialog(noprompt) do not display ODBC connection-information dialog, and
do not prompt user for connection information

dialog(prompt) display ODBC connection-information dialog

dialog(complete) display ODBC connection-information dialog only if there
is not enough information

dialog(required) display ODBC connection-information dialog only if there
is not enough mandatory information provided

∗ dsn(”DataSourceName”) name of data source
∗ connectionstring(”ConnectStr”) ODBC connection string

∗dsn(”DataSourceName”) is not allowed with odbc query. You may not specify both DataSourceName and
connectionstring() with odbc query. Either dsn() or connectionstring() is required with odbc insert, odbc
exec, and odbc sqlfile.

load options Description

∗ table(”TableName”) name of table stored in data source
∗ exec(”SqlStmt”) SQL SELECT statement to generate a table to be read into Stata

clear load dataset even if there is one in memory

noquote alter Stata’s internal use of SQL commands; seldom used

lowercase read variable names as lowercase

sqlshow show all SQL commands issued

allstring read all variables as strings

datestring read date-formatted variables as strings

multistatement allow multiple SQL statements delimited by ; when using exec()
bigintasdouble store BIGINT columns as Stata doubles on 64-bit operating systems

∗Either table(”TableName”) or exec(”SqlStmt”) must be specified with odbc load.
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insert options Description

∗ table(”TableName”) name of table stored in data source

overwrite clear data in ODBC table before data in memory is written to the table

insert default mode of operation for the odbc insert command
quoted quote all values with single quotes as they are inserted in ODBC table

sqlshow show all SQL commands issued

as(”varlist”) ODBC variables on the data source that correspond to the variables in
Stata’s memory

block use block inserts

∗table(”TableName”) is required for odbc insert.

Options
user(UserID) specifies the user ID of the user attempting to establish the connection to the data source.

By default, Stata assumes that the user ID is the same as the one specified in the previous odbc
command or is empty if user() has never been specified in the current session of Stata.

password(Password) specifies the password of the user attempting to establish the connection to the
data source. By default, Stata assumes that the password is the same as the one previously specified

or is empty if the password has not been used during the current session of Stata. Typically, the

password() option will not be specified apart from the user() option.

dialog(noprompt | prompt | complete | required) specifies the mode the ODBCDriverManager uses

to display the ODBC connection-information dialog to prompt for more connection information.

noprompt is the default value. The ODBC connection-information dialog is not displayed, and you are
not prompted for connection information. If there is not enough information to establish a connection

to the specified data source, an error is returned.

prompt causes the ODBC connection-information dialog to be displayed.

complete causes the ODBC connection-information dialog to be displayed only if there is not enough
information, even if the information is not mandatory.

required causes the ODBC connection-information dialog to be displayed only if there is not enough
mandatory information provided to establish a connection to the specified data source. You are

prompted only for mandatory information; controls for information that is not required to connect

to the specified data source are disabled.

dsn(”DataSourceName”) specifies the name of a data source, as listed by the odbc list command.

If a name contains spaces, it must be enclosed in double quotes. By default, Stata assumes that the

data source name is the same as the one specified in the previous odbc command. This option is

not allowed with odbc query. Either the dsn() option or the connectionstring() option may be
specified with odbc describe and odbc load, and one of these options must be specified with odbc
insert, odbc exec, and odbc sqlfile.

connectionstring(”ConnectStr”) specifies a connection string rather than the name of a data source.
Stata does not assume that the connection string is the same as the one specified in the previous

odbc command. EitherDataSourceName or the connectionstring() option may be specified with
odbc query; either the dsn() option or the connectionstring() option can be specified with odbc
describe and odbc load, and one of these options must be specified with odbc insert, odbc exec,
and odbc sqlfile.
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table(”TableName”) specifies the name of an ODBC table stored in a specified data source’s system

catalog, as listed by the odbc query command. If a table name contains spaces, it must be enclosed
in double quotes. Either the table() option or the exec() option—but not both—is required with

the odbc load command.

exec(”SqlStmt”) allows you to issue an SQL SELECT statement to generate a table to be read into Stata.

An error message is returned if the SELECT statement is an invalid SQL statement. The statement must
be enclosed in double quotes. Either the table() option or the exec() option—but not both—is

required with the odbc load command.

clear permits the data to be loaded, even if there is a dataset already in memory, and even if that dataset
has changed since the data were last saved.

noquote alters Stata’s internal use of SQL commands, specifically those relating to quoted table names,
to better accommodate various drivers. This option has been particularly helpful for DB2 drivers.

lowercase causes all the variable names to be read as lowercase.

sqlshow is a useful option for showing all SQL commands issued to the ODBC data source from the odbc
insert or odbc load command. This can help you debug any issues related to inserting or loading.

allstring causes all variables to be read as string data types.

datestring causes all date- and time-formatted variables to be read as string data types.

multistatement specifies that multiple SQL statements delimited by ; be allowed when using the

exec() option. Some drivers do not support multiple SQL statements.

bigintasdouble specifies that data stored in 64-bit integer (BIGINT) database columns be con-

verted to Stata doubles. If any integer value is larger than 9,007,199,254,740,965 or less than

−9,007,199,254,740,992, this conversion is not possible, and odbc load will issue an error message.

overwrite allows data to be cleared from an ODBC table before the data in memory are written to the

table. All data from the ODBC table are erased, not just the data from the variable columns that will

be replaced.

insert appends data to an existing ODBC table and is the default mode of operation for the odbc insert
command.

quoted is useful for ODBC data sources that require all inserted values to be quoted. This option specifies
that all values be quoted with single quotes as they are inserted into an ODBC table.

as(”varlist”) allows you to specify theODBC variables on the data source that correspond to the variables
in Stata’s memory. If this option is specified, the number of variables must equal the number of

variables being inserted, even if some names are identical.

loud specifies that output be displayed for SQL commands.

verbose specifies that odbc query list any data source alias, nickname, typed table, typed view, and
view along with tables so that you can load data from these table types.

schema specifies that odbc query return schema names with the table names from a data source. Note:

The schema names returned from odbc query will also be used with the odbc describe and odbc
load commands. When using odbc load with a schema name, you might also need to specify the
noquote option because some drivers do not accept quotes around table or schema names.

block specifies that odbc insert use block inserts to speed up data-writing performance. Some drivers
do not support block inserts.
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permanently (set odbcdriver and set odbcmgr only) specifies that, in addition to making the change
right now, the setting be remembered and become the default setting when you invoke Stata.

Remarks and examples
When possible, the examples in this manual entry are developed using the Northwind sample

database that is automatically installed with Microsoft Access. If you do not have Access, you can still

use odbc, but you will need to consult the documentation for your other ODBC sources to determine how
to set them up.

Remarks are presented under the following headings:

Unicode and ODBC
Setting up the data sources
Listing ODBC data source names
Listing available table names from a specified data source’s system catalog
Describing a specified table
Loading data from ODBC sources

Unicode and ODBC
Stata supports accessing databases with Unicode data through Unicode ODBC drivers on the following

platforms:

• Microsoft Windows through ODBC driver manager (version 3.5 or higher).

• Unix through unixODBC driver manager with ODBC drivers compiled for unixODBC. Stata does not

support Unicode drivers when using iODBC as your driver manager. Stata requires that the driver

support UTF-8.

• macOS through unixODBC driver manager with ODBC drivers compiled for unixODBC. Stata does not

support Unicode drivers when using iODBC as your driver manager. Stata requires that the driver

support UTF-8.

Stata supports non-Unicode databases through ASCII drivers with all driver managers.

Setting up the data sources
Before using Stata’s ODBC commands, you must register your ODBC database with the ODBC Data

Source Administrator. This process varies depending on platform, but the following example shows the

steps necessary for Windows.

UsingWindows 10, follow these steps to create an ODBCUser Data Source for the Northwind sample
database:

1. On the Start page, type ODBC Data Sources. From the list that appears, select theODBCData

Sources Desktop App.

2. In the Data Sources (ODBC) dialog box,

a. click on the User DSN tab;

b. click onAdd...;

c. chooseMicrosoftAccess Driver (*.mdb,*.accdb) on the Create NewData Source dialog box;

and
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d. click on Finish.

3. In the ODBC Microsoft Access Setup dialog box, type Northwind in the Data Source Name
field and click on Select.... Locate the Northwind.mdb database and click on OK to finish

creating the data source.

Using Windows 7, follow these steps to create an ODBC User Data Source for the Northwind sample
database:

1. From the Start Menu, select the Control Panel.

2. In the Control Panel window, click on System and Security >Administrative Tools.

3. In the Data Sources (ODBC) dialog box,

a. click on the User DSN tab;

b. click onAdd...;

c. chooseMicrosoftAccess Driver (*.mdb,*.accdb) on the Create NewData Source dialog box;

and

d. click on Finish.

4. In the ODBC Microsoft Access Setup dialog box, type Northwind in the Data Source Name
field and click on Select.... Locate the Northwind.mdb database and click on OK to finish

creating the data source.

Technical note
In earlier versions of Windows, the exact location of the Data Source (ODBC) dialog varies, but it is

always somewhere within the Control Panel.

Listing ODBC data source names
odbc list is used to produce a list of data source names to which Stata can connect. For a specific

data source name to be shown in the list, the data source has to be registered with the ODBC Data Source

Administrator. See Setting up the data sources for information on how to do this.

Example 1
. odbc list
Data Source Name Driver

dBASE Files Microsoft Access dBASE Driver (*.dbf, *.ndx
Excel Files Microsoft Excel Driver (*.xls, *.xlsx, *.xl
MS Access Database Microsoft Access Driver (*.mdb, *.accdb)
Northwind Microsoft Access Driver (*.mdb, *.accdb)

In the above list, Northwind is one of the sample Microsoft Access databases that Access installs by

default.
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Listing available table names from a specified data source’s system catalog
odbc query is used to list table names available from a specified data source.

Example 2
. odbc query ”Northwind”
DataSource: Northwind
Path : C:\Program Files\Microsoft Office\Office\Samples\Northwind.accdb

Customers
Employee Privileges
Employees
Inventory Transaction Types
Inventory Transactions
Invoices
Order Details
Order Details Status
Orders
Orders Status
Orders Tax Status
Privileges
Products
Purchase Order Details
Purchase Order Status
Purchase Orders
Sales Reports
Shippers
Strings
Suppliers
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Describing a specified table
odbc describe is used to list column (variable) names and their SQL data types that are associated

with a specified table.

Example 3
Here we specify that we want to list all variables in the Employees table of the Northwind data

source.

. odbc describe ”Employees”, dsn(”Northwind”)
DataSource: Northwind (query)
Table: Employees (load)

Variable Name Variable Type

ID COUNTER
Company VARCHAR
Last Name VARCHAR
First Name VARCHAR
E-mail Address VARCHAR
Job Title VARCHAR
Business Phone VARCHAR
Home Phone VARCHAR
Mobile Phone VARCHAR
Fax Number VARCHAR
Address LONGCHAR
City VARCHAR
State/Province VARCHAR
ZIP/Postal Code VARCHAR
Country/Region VARCHAR
Web Page LONGCHAR
Notes LONGCHAR
Attachments LONGCHAR

Loading data from ODBC sources
odbc load is used to load an ODBC table into memory.

To load an ODBC table listed in the odbc query output, specify the table name in the table() option
and the data source name in the dsn() option.

Example 4
We want to load the Employees table from the Northwind data source.

. clear

. odbc load, table(”Employees”) dsn(”Northwind”)
E-mail_Address invalid name
- converted E-mail_Address to var5
State/Province invalid name
- converted State/Province to var13
ZIP/Postal_Code invalid name
- converted ZIP/Postal_Code to var14
Country/Region invalid name
- converted Country/Region to var15
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. describe
Contains data
Observations: 9

Variables: 18

Variable Storage Display Value
name type format label Variable label

ID long %12.0g
Company str17 %17s
Last_Name str14 %14s Last Name
First_Name str7 %9s First Name
var5 str28 %28s E-mail Address
Job_Title str21 %21s Job Title
Business_Phone str13 %13s Business Phone
Home_Phone str13 %13s Home Phone
Mobile_Phone str1 %9s Mobile Phone
Fax_Number str13 %13s Fax Number
Address strL %9s
City str8 %9s
var13 str2 %9s State/Province
var14 str5 %9s ZIP/Postal Code
var15 str3 %9s Country/Region
Web_Page strL %9s Web Page
Notes strL %9s
Attachments strL %9s

Sorted by:
Note: Dataset has changed since last saved.

Technical note
When Stata loads the ODBC table, data are converted from SQL data types to Stata data types. Stata

does not support all SQL data types. If the column cannot be read because of incompatible data types,

Stata will issue a note and skip a column. The following table lists the supported SQL data types and their

corresponding Stata data types:
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SQL data type Stata data type

SQL BIT byte
SQL TINYINT

SQL SMALLINT int

SQL INTEGER long

SQL DECIMAL double
SQL NUMERIC

SQL FLOAT double
SQL DOUBLE
SQL REAL double

SQL BIGINT string

SQL CHAR string
SQL VARCHAR
SQL LONGVARCHAR
SQL WCHAR
SQL WVARCHAR
SQL WLONGVARCHAR

SQL TIME
SQL DATE
SQL TIMESTAMP
SQL TYPE TIME double
SQL TYPE DATE
SQL TYPE TIMESTAMP

SQL BINARY
SQL VARBINARY
SQL LONGVARBINARY

You can also load an ODBC table generated by an SQL SELECT statement specified in the exec()
option.

Example 5
Suppose that, from the Northwind data source, we want a list of all the customers who have placed

orders. We might use the SQL SELECT statement

SELECT DISTINCT c.ID, c.Company
FROM Customers c
INNER JOIN Orders o

ON c.[Customer ID] = o.CustomerID

To load the table into Stata, we use odbc load with the exec() option.
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. odbc load, exec(‘”SELECT DISTINCT c.ID, c.Company FROM Customers c INNER JOIN
> Orders o ON c.ID = o.[Customer ID]”’) dsn(”Northwind”) clear
. describe
Contains data
Observations: 15

Variables: 2

Variable Storage Display Value
name type format label Variable label

ID long %12.0g
Company str10 %10s

Sorted by:
Note: Dataset has changed since last saved.

The extvarlist is optional. It allows you to choose which columns (variables) are to be read and to

rename variables when they are read.

Example 6
Suppose that we want to load the ID column and the Last Name column from the Employees table

of the Northwind data source. Moreover, we want to rename ID as id and Last Name as name.

. odbc load id=ID name=”Last Name”, table(”Employees”) dsn(”Northwind”) clear

. describe
Contains data
Observations: 9

Variables: 2

Variable Storage Display Value
name type format label Variable label

id long %12.0g ID
name str14 %14s Last Name

Sorted by:
Note: Dataset has changed since last saved.

The if and in qualifiers allow you to choose which rows are to be read. You can also use a WHERE
clause in the SQL SELECT statement to select the rows to be read.
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Example 7
Suppose that we want the information from the Order Details table, where Quantity is greater

than 50. We can specify the if and in qualifiers,

. odbc load if Quantity>50, table(”Order Details”) dsn(”Northwind”) clear

. sum Quantity
Variable Obs Mean Std. Dev. Min Max

Quantity 10 177.7 94.21966 87 300

or we can issue the SQL SELECT statement directly:

. odbc load, exec(”SELECT * FROM [Order Details] WHERE Quantity>50”)
> dsn(”Northwind”) clear
. sum Quantity

Variable Obs Mean Std. Dev. Min Max

Quantity 10 177.7 94.21966 87 300

Example 8
To use odbc insert, you must have an SQL table already created in your data source. If you do not,

you can use odbc exec to create a table in your data source. For example, one might create a table in an
Oracle database with the SQL command below:

#delimit ;
local cols ‘” ID NUMBER(5,0),

PAY NUMBER(8,2),
TITLE NVARCHAR2(18),

LOCATION VARCHAR(40)”; ;
#delimit cr
odbc exec(‘”CREATE TABLE JOB_TYPES (‘cols’);”’), dsn(oracle_dsn) ///

user(username) password(password)

You must create a table using the correct data type for each table column for your data to transfer

correctly. Note that the SQL syntax to create a table differs across data sources, as do column data types.

Reference
Crow, K. 2017. Importing WRDS data into Stata. The Stata Blog: Not Elsewhere Classified. https://blog.stata.com/2017/

09/19/importing-wrds-data-into-stata/.

Also see
[D] jdbc — Load, write, or view data from a database with a Java API

[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

https://blog.stata.com/2017/09/19/importing-wrds-data-into-stata/
https://blog.stata.com/2017/09/19/importing-wrds-data-into-stata/


order — Reorder variables in dataset

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
order relocates varlist to a position depending on which option you specify. If no option is specified,

order relocates varlist to the beginning of the dataset in the order in which the variables are specified.

Quick start
Move v1 to the beginning of the dataset

order v1

Same as above, but instead move v1 to the end of the dataset
order v1, last

Move v3 before v2
order v3, before(v2)

Move x and z after y
order x z, after(y)

Alphabetize y, x, and z, and move them to the beginning of the dataset

order y x z, alphabetic

Alphabetize x, y, z, v3, v2, and v1, and sort numbers in sequential order
order x y z v*, sequential

Menu
Data > Data utilities > Change order of variables

742
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Syntax
order varlist [ , options ]

options Description

first move varlist to beginning of dataset; the default

last move varlist to end of dataset

before(varname) move varlist before varname

after(varname) move varlist after varname

alphabetic alphabetize varlist and move it to beginning of dataset

sequential alphabetize varlist keeping numbers sequential and move it to
beginning of dataset

Options
first shifts varlist to the beginning of the dataset. This is the default.

last shifts varlist to the end of the dataset.

before(varname) shifts varlist before varname.

after(varname) shifts varlist after varname.

alphabetic alphabetizes varlist and moves it to the beginning of the dataset. For example, here is a
varlist in alphabetic order: a x7 x70 x8 x80 z. If combined with another option, alphabetic just
alphabetizes varlist, and the movement of varlist is controlled by the other option.

sequential alphabetizes varlist, keeping variables with the same ordered letters but with differing ap-
pended numbers in sequential order. varlist is moved to the beginning of the dataset. For example,

here is a varlist in sequential order: a x7 x8 x70 x80 z.

Remarks and examples

Example 1
When using order, you must specify a varlist, but you do not need to specify all the variables in the

dataset. For example, we want to move the make and mpg variables to the front of the auto dataset.
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. use https://www.stata-press.com/data/r19/auto4
(1978 automobile data)
. describe
Contains data from https://www.stata-press.com/data/r19/auto4.dta
Observations: 74 1978 automobile data

Variables: 6 6 Apr 2024 00:20

Variable Storage Display Value
name type format label Variable label

price int %8.0gc Price
weight int %8.0gc Weight (lbs.)
mpg byte %8.0g Mileage (mpg)
make str17 %-17s Make and model
length int %8.0g Length (in.)
rep78 byte %8.0g Repair record 1978

Sorted by:
. order make mpg
. describe
Contains data from https://www.stata-press.com/data/r19/auto4.dta
Observations: 74 1978 automobile data

Variables: 6 6 Apr 2024 00:20

Variable Storage Display Value
name type format label Variable label

make str17 %-17s Make and model
mpg byte %8.0g Mileage (mpg)
price int %8.0gc Price
weight int %8.0gc Weight (lbs.)
length int %8.0g Length (in.)
rep78 byte %8.0g Repair record 1978

Sorted by:

We now want length to be the last variable in our dataset, so we could type order make mpg price
weight rep78 length, but it would be easier to use the last option:

. order length, last

. describe
Contains data from https://www.stata-press.com/data/r19/auto4.dta
Observations: 74 1978 automobile data

Variables: 6 6 Apr 2024 00:20

Variable Storage Display Value
name type format label Variable label

make str17 %-17s Make and model
mpg byte %8.0g Mileage (mpg)
price int %8.0gc Price
weight int %8.0gc Weight (lbs.)
rep78 byte %8.0g Repair record 1978
length int %8.0g Length (in.)

Sorted by:
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We now change our mind and decide that we prefer that the variables be alphabetized.

. order _all, alphabetic

. describe
Contains data from https://www.stata-press.com/data/r19/auto4.dta
Observations: 74 1978 automobile data

Variables: 6 6 Apr 2024 00:20

Variable Storage Display Value
name type format label Variable label

length int %8.0g Length (in.)
make str17 %-17s Make and model
mpg byte %8.0g Mileage (mpg)
price int %8.0gc Price
rep78 byte %8.0g Repair record 1978
weight int %8.0gc Weight (lbs.)

Sorted by:

Technical note
If your data contain variables named year1, year2, . . . , year19, year20, specify the sequential

option to obtain this ordering. If you specify the alphabetic option, year10will appear between year1
and year11.

Also see
[D] describe — Describe data in memory or in a file

[D] ds — Compactly list variables with specified properties

[D] edit — Browse or edit data with Data Editor

[D] rename — Rename variable
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Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
outfilewrites data to a disk file in plain text format, which can be read by other programs. The new

file is not in Stata format; see [D] save for instructions on saving data for later use in Stata.

The data saved by outfile can be read back by infile; see [D] import. If filename is specified

without an extension, .raw is assumed unless the dictionary option is specified, in which case .dct
is assumed. If your filename contains embedded spaces, remember to enclose it in double quotes.

Quick start
Export current dataset to space-separated mydata.raw

outfile using mydata

Same as above, but export only v1, v2, and v3
outfile v1 v2 v3 using mydata

Same as above, but export to comma-separated mydata.csv
outfile v1 v2 v3 using mydata.csv, comma

Export current dataset in Stata’s dictionary format to myfile.dct
outfile v1 v2 v3 using mydata, dictionary

Do not allow observations to break across lines

outfile using mydata, wide

Menu
File > Export > Text data (fixed- or free-format)
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Syntax
outfile [ varlist ] using filename [ if ] [ in ] [ , options ]

options Description

Main

dictionary write the file in Stata’s dictionary format

nolabel output numeric values (not labels) of labeled variables; the default
is to write labels in double quotes

noquote do not enclose strings in double quotes

comma write file in comma-separated (instead of space-separated) format

wide force one observation per line (no matter how wide)

Advanced

rjs right-justify string variables; the default is to left-justify

fjs left-justify if format width < 0; right-justify if format width > 0

runtogether all on one line, no quotes, no space between, and ignore formats

missing retain missing values; use only with comma

replace overwrite the existing file

replace does not appear in the dialog box.

Options

� � �
Main �

dictionary writes the file in Stata’s data dictionary format. See [D] infile (fixed format) for a descrip-

tion of dictionaries. comma, missing, and wide are not allowed with dictionary.

nolabel causes Stata to write the numeric values of labeled variables. The default is to write the labels
enclosed in double quotes.

noquote prevents Stata from placing double quotes around the contents of strings, meaning string vari-

ables and value labels.

comma causes Stata to write the file in comma-separated–value format. In this format, values are sepa-
rated by commas rather than by blanks. Missing values are written as two consecutive commas unless

missing is specified.

wide causes Stata to write the data with 1 observation per line. The default is to split observations into
lines of 80 characters or fewer, but strings longer than 80 characters are never split across lines.

� � �
Advanced �

rjs and fjs affect how strings are justified; you probably do not want to specify either of these options.

By default, outfile outputs strings left-justified in their field.

If rjs is specified, strings are output right-justified. rjs stands for “right-justified strings”.

If fjs is specified, strings are output left- or right-justified according to the variable’s format: left-
justified if the format width is negative and right-justified if the format width is positive. fjs stands
for “format-justified strings”.
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runtogether is a programmer’s option that is valid only when all variables of the specified varlist are
of type string. runtogether specifies that the variables be output in the order specified, without
quotes, with no spaces between, and ignoring the display format attached to each variable. Each

observation ends with a new line character.

missing, valid only with comma, specifies that missing values be retained. When comma is specified

without missing, missing values are changed to null strings (””).

The following option is available with outfile but is not shown in the dialog box:

replace permits outfile to overwrite an existing dataset.

Remarks and examples
outfile enables data to be sent to a disk file for processing by a non-Stata program. Each observation

is written as one or more records that will not exceed 80 characters unless you specify the wide option.
Each column other than the first is prefixed by two blanks.

outfile is careful to put the data in columns in case you want to read the data by using formatted
input. String variables and value labels are output in left-justified fields by default. You can change this

behavior by using the rjs or fjs options.

Numeric variables are output right-justified in the field width specified by their display format. A

numeric variable with a display format of %9.0gwill be right-justified in a nine-character field. Commas
are not written in numeric variables, even if a comma format is used.

If you specify the dictionary option, the data are written in the same way, but preceding the data,
outfile writes a data dictionary describing the contents of the file.

Example 1: Basic usage
We have entered into Stata some data on seven employees in our firm. The data contain employee

name, employee identification number, salary, and sex:

. list

name empno salary sex

1. Carl Marks 57213 24,000 male
2. Irene Adler 47229 27,000 female
3. Adam Smith 57323 24,000 male
4. David Wallis 57401 24,500 male
5. Mary Rogers 57802 27,000 female

6. Carolyn Frank 57805 24,000 female
7. Robert Lawson 57824 22,500 male

The last variable in our data, sex, is really a numeric variable, but it has an associated value label.

If we now wish to use a program other than Stata with these data, we must somehow get the data

over to that other program. The standard Stata-format dataset created by save will not do the job—it is

written in a special format that only Stata understands. Most programs, however, understand plain text

datasets, such as those produced by a text editor. We can tell Stata to produce such a dataset by using

outfile. Typing outfile using employee creates a dataset called employee.raw that contains all
the data. We can use the Stata type command to review the resulting file:
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. outfile using employee

. type employee.raw
”Carl Marks” 57213 24000 ”male”
”Irene Adler” 47229 27000 ”female”
”Adam Smith” 57323 24000 ”male”
”David Wallis” 57401 24500 ”male”
”Mary Rogers” 57802 27000 ”female”
”Carolyn Frank” 57805 24000 ”female”
”Robert Lawson” 57824 22500 ”male”

We see that the file contains the four variables and that Stata has surrounded the string variables with

double quotes.

Technical note
The nolabel option prevents Stata from substituting value-label strings for the underlying numeric

values; see [U] 12.6.3 Value labels. The last variable in our data is really a numeric variable:

. outfile using employ2, nolabel

. type employ2.raw
”Carl Marks” 57213 24000 0
”Irene Adler” 47229 27000 1
”Adam Smith” 57323 24000 0
”David Wallis” 57401 24500 0
”Mary Rogers” 57802 27000 1
”Carolyn Frank” 57805 24000 1
”Robert Lawson” 57824 22500 0

Technical note
If you do not want Stata to place double quotes around the contents of string variables, you can specify

the noquote option:

. outfile using employ3, noquote

. type employ3.raw
Carl Marks 57213 24000 male
Irene Adler 47229 27000 female
Adam Smith 57323 24000 male
David Wallis 57401 24500 male
Mary Rogers 57802 27000 female
Carolyn Frank 57805 24000 female
Robert Lawson 57824 22500 male

Example 2: Overwriting an existing file
Stata never writes over an existing file unless explicitly told to do so. For instance, if the file

employee.raw already exists and we attempt to overwrite it by typing outfile using employee, here
is what would happen:

. outfile using employee
file employee.raw already exists
r(602);
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We can tell Stata that it is okay to overwrite a file by specifying the replace option:

. outfile using employee, replace

Technical note
Some programs prefer data to be separated by commas rather than by blanks. Stata produces such a

dataset if you specify the comma option:

. outfile using employee, comma replace

. type employee.raw
”Carl Marks”,57213,24000,”male”
”Irene Adler”,47229,27000,”female”
”Adam Smith”,57323,24000,”male”
”David Wallis”,57401,24500,”male”
”Mary Rogers”,57802,27000,”female”
”Carolyn Frank”,57805,24000,”female”
”Robert Lawson”,57824,22500,”male”

Example 3: Creating data dictionaries
Finally, outfile can create data dictionaries that infile can read. Dictionaries are perhaps the best

way to organize your raw data. A dictionary describes your data so that you do not have to remember the

order of the variables, the number of variables, the variable names, or anything else. The file in which

you store your data becomes self-documenting so that you can understand the data in the future. See

[D] infile (fixed format) for a full description of data dictionaries.

When you specify the dictionary option, Stata writes a .dct file:

. outfile using employee, dict replace

. type employee.dct
dictionary {

str15 name ‘”Employee name”’
float empno ‘”Employee number”’
float salary ‘”Annual salary”’
float sex :sexlbl ‘”Sex”’

}
”Carl Marks” 57213 24000 ”male”
”Irene Adler” 47229 27000 ”female”
”Adam Smith” 57323 24000 ”male”
”David Wallis” 57401 24500 ”male”
”Mary Rogers” 57802 27000 ”female”
”Carolyn Frank” 57805 24000 ”female”
”Robert Lawson” 57824 22500 ”male”
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Example 4: Working with dates
We have historical data on the S&P 500 for the month of January 2001.

. use https://www.stata-press.com/data/r19/outfilexmpl, clear
(S&P 500)
. describe
Contains data from https://www.stata-press.com/data/r19/outfilexmpl.dta
Observations: 21 S&P 500

Variables: 6 6 Apr 2024 16:02
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

date int %td Date
open float %9.0g Opening price
high float %9.0g High price
low float %9.0g Low price
close float %9.0g Closing price
volume int %12.0gc Volume (thousands)

Sorted by: date

The date variable has a display format of %td so that it is displayed as ddmmmyyyy.

. list

date open high low close volume

1. 02jan2001 1320.28 1320.28 1276.05 1283.27 11,294
2. 03jan2001 1283.27 1347.76 1274.62 1347.56 18,807
3. 04jan2001 1347.56 1350.24 1329.14 1333.34 21,310
4. 05jan2001 1333.34 1334.77 1294.95 1298.35 14,308
5. 08jan2001 1298.35 1298.35 1276.29 1295.86 11,155

6. 09jan2001 1295.86 1311.72 1295.14 1300.8 11,913
7. 10jan2001 1300.8 1313.76 1287.28 1313.27 12,965
8. 11jan2001 1313.27 1332.19 1309.72 1326.82 14,112
9. 12jan2001 1326.82 1333.21 1311.59 1318.55 12,760

10. 16jan2001 1318.32 1327.81 1313.33 1326.65 12,057

11. 17jan2001 1326.65 1346.92 1325.41 1329.47 13,491
12. 18jan2001 1329.89 1352.71 1327.41 1347.97 14,450
13. 19jan2001 1347.97 1354.55 1336.74 1342.54 14,078
14. 22jan2001 1342.54 1353.62 1333.84 1342.9 11,640
15. 23jan2001 1342.9 1362.9 1339.63 1360.4 12,326

16. 24jan2001 1360.4 1369.75 1357.28 1364.3 13,090
17. 25jan2001 1364.3 1367.35 1354.63 1357.51 12,580
18. 26jan2001 1357.51 1357.51 1342.75 1354.95 10,980
19. 29jan2001 1354.92 1365.54 1350.36 1364.17 10,531
20. 30jan2001 1364.17 1375.68 1356.2 1373.73 11,498

21. 31jan2001 1373.73 1383.37 1364.66 1366.01 12,953
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We outfile our data and use the type command to view the result.

. outfile using sp

. type sp.raw
”02jan2001” 1320.28 1320.28 1276.05 1283.27 11294
”03jan2001” 1283.27 1347.76 1274.62 1347.56 18807
”04jan2001” 1347.56 1350.24 1329.14 1333.34 21310
”05jan2001” 1333.34 1334.77 1294.95 1298.35 14308
”08jan2001” 1298.35 1298.35 1276.29 1295.86 11155
”09jan2001” 1295.86 1311.72 1295.14 1300.8 11913
”10jan2001” 1300.8 1313.76 1287.28 1313.27 12965
”11jan2001” 1313.27 1332.19 1309.72 1326.82 14112
”12jan2001” 1326.82 1333.21 1311.59 1318.55 12760
”16jan2001” 1318.32 1327.81 1313.33 1326.65 12057
”17jan2001” 1326.65 1346.92 1325.41 1329.47 13491
”18jan2001” 1329.89 1352.71 1327.41 1347.97 14450
”19jan2001” 1347.97 1354.55 1336.74 1342.54 14078
”22jan2001” 1342.54 1353.62 1333.84 1342.9 11640
”23jan2001” 1342.9 1362.9 1339.63 1360.4 12326
”24jan2001” 1360.4 1369.75 1357.28 1364.3 13090
”25jan2001” 1364.3 1367.35 1354.63 1357.51 12580
”26jan2001” 1357.51 1357.51 1342.75 1354.95 10980
”29jan2001” 1354.92 1365.54 1350.36 1364.17 10531
”30jan2001” 1364.17 1375.68 1356.2 1373.73 11498
”31jan2001” 1373.73 1383.37 1364.66 1366.01 12953

The date variable, originally stored as an int, was outfiled as a string variable. Whenever Stata outfiles

a variable with a date format, Stata outfiles the variable as a string.

Also see
[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

[U] 22 Entering and importing data



pctile — Create variable containing percentiles

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment Also see

Description
pctile creates a new variable containing the percentiles of exp, where the expression exp is typically

just another variable.

xtile creates a new variable that categorizes exp by its quantiles. If the cutpoints(varname) option
is specified, it categorizes exp using the values of varname as category cutpoints. For example, varname

might contain percentiles of another variable, generated by pctile.

pctile is a programmer’s command that computes up to 4,096 percentiles and places the results
in r(); see [U] 18.8 Accessing results calculated by other programs. summarize, detail computes
some percentiles (1, 5, 10, 25, 50, 75, 90, 95, and 99th); see [R] summarize.

Quick start
Create qrt1 containing the quartiles of v

pctile qrt1 = v, nq(4)

Same as above, and create percent containing the percentages
pctile qrt1 = v, nq(4) genp(percent)

Same as above, but apply sampling weights wvar1
pctile qrt1 = v [pweight=wvar1], nq(4) genp(percent)

Create dec1 containing the deciles of v
pctile dec1 = v, nq(10)

Same as above, but create dec2 indicating to which decile each observation belongs
xtile dec2 = v, nq(10)

Same as above, but apply frequency weights wvar2
xtile dec2 = v [fweight=wvar2], nq(10)

Compute the 10th and 90th percentiles, and store them in r(r1) and r(r2)
pctile v, percentiles(10 90)

Menu
pctile
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Create variable of percentiles

xtile
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Create variable of quantiles

753
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Syntax
Create variable containing percentiles

pctile [ type ] newvar = exp [ if ] [ in ] [weight ] [ , pctile options ]

Create variable containing quantile categories

xtile newvar = exp [ if ] [ in ] [weight ] [ , xtile options ]

Compute percentiles and store them in r()

pctile varname [ if ] [ in ] [weight ] [ , pctile options ]

pctile options Description

Main

nquantiles(#) number of quantiles; default is nquantiles(2)
genp(newvar𝑝) generate newvar𝑝 variable containing percentages

altdef use alternative formula for calculating percentiles

xtile options Description

Main

nquantiles(#) number of quantiles; default is nquantiles(2)
cutpoints(varname) use values of varname as cutpoints

altdef use alternative formula for calculating percentiles

pctile options Description

nquantiles(#) number of quantiles; default is nquantiles(2)
percentiles(numlist) calculate percentiles corresponding to the specified percentages

altdef use alternative formula for calculating percentiles

collect is allowed with pctile; see [U] 11.1.10 Prefix commands.

aweights, fweights, and pweights are allowed (see [U] 11.1.6 weight), except when the altdef option is specified, in
which case no weights are allowed.

Options

� � �
Main �

nquantiles(#) specifies the number of quantiles. It computes percentiles corresponding to percentages
100 𝑘/𝑚 for 𝑘 = 1, 2, . . . , 𝑚 − 1, where 𝑚 = #. For example, nquantiles(10) requests that the
10th, 20th, . . . , 90th percentiles be computed. The default is nquantiles(2); that is, the median is
computed.

genp(newvar𝑝) (pctile only) specifies a new variable to be generated containing the percentages cor-

responding to the percentiles.
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altdef uses an alternative formula for calculating percentiles. The default method is to invert the em-
pirical distribution function by using averages, (𝑥𝑖 + 𝑥𝑖+1)/2, where the function is flat (the default
is the same method used by summarize; see [R] summarize). The alternative formula uses an inter-

polation method. See Methods and formulas at the end of this entry. Weights cannot be used when

altdef is specified.

cutpoints(varname) (xtile only) requests that xtile use the values of varname, rather than quan-
tiles, as cutpoints for the categories. All values of varname are used, regardless of any if or in
restriction; see the technical note in the xtile section below.

percentiles(numlist) ( pctile only) requests percentiles corresponding to the specified percentages.
Percentiles are placed in r(r1), r(r2), . . . , etc. For example, percentiles(10(20)90) requests
that the 10th, 30th, 50th, 70th, and 90th percentiles be computed and placed into r(r1), r(r2),
r(r3), r(r4), and r(r5). Up to 4,096 (inclusive) percentiles can be requested. See [P] numlist for

the syntax of a numlist.

Remarks and examples
Remarks are presented under the following headings:

pctile
xtile
pctile

pctile
pctile creates a new variable containing percentiles. You specify the number of quantiles that you

want, and pctile computes the corresponding percentiles. Here we use Stata’s auto dataset and com-
pute the deciles of mpg:

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. pctile pct = mpg, nq(10)
. list pct in 1/10

pct

1. 14
2. 17
3. 18
4. 19
5. 20

6. 22
7. 24
8. 25
9. 29

10. .
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If we use the genp() option to generate another variable with the corresponding percentages, it is easier
to distinguish between the percentiles.

. drop pct

. pctile pct = mpg, nq(10) genp(percent)

. list percent pct in 1/10

percent pct

1. 10 14
2. 20 17
3. 30 18
4. 40 19
5. 50 20

6. 60 22
7. 70 24
8. 80 25
9. 90 29

10. . .

summarize, detail calculates standard percentiles.

. summarize mpg, detail
Mileage (mpg)

Percentiles Smallest
1% 12 12
5% 14 12
10% 14 14 Obs 74
25% 18 14 Sum of wgt. 74
50% 20 Mean 21.2973

Largest Std. dev. 5.785503
75% 25 34
90% 29 35 Variance 33.47205
95% 34 35 Skewness .9487176
99% 41 41 Kurtosis 3.975005

summarize, detail can calculate only these particular percentiles. The pctile and pctile com-

mands allow you to compute any percentile.
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Weights can be used with pctile, xtile, and pctile:

. drop pct percent

. pctile pct = mpg [w=weight], nq(10) genp(percent)
(analytic weights assumed)
. list percent pct in 1/10

percent pct

1. 10 14
2. 20 16
3. 30 17
4. 40 18
5. 50 19

6. 60 20
7. 70 22
8. 80 24
9. 90 28

10. . .

The result is the same, no matter which weight type you specify—aweight, fweight, or pweight.

xtile
xtile creates a categorical variable that contains categories corresponding to quantiles. We illustrate

this with a simple example. Suppose that we have a variable, bp, containing blood pressure measure-
ments:

. use https://www.stata-press.com/data/r19/bp1, clear

. list

bp

1. 98
2. 100
3. 104
4. 110
5. 120

6. 120
7. 120
8. 120
9. 125

10. 130

11. 132
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xtile can be used to create a variable, quart, that indicates the quartiles of bp.

. xtile quart = bp, nq(4)

. list bp quart, sepby(quart)

bp quart

1. 98 1
2. 100 1
3. 104 1

4. 110 2
5. 120 2
6. 120 2
7. 120 2
8. 120 2

9. 125 3

10. 130 4
11. 132 4

The categories created are

(−∞, 𝑥[25] ], (𝑥[25], 𝑥[50] ], (𝑥[50], 𝑥[75] ], (𝑥[75], +∞)

where 𝑥[25], 𝑥[50], and 𝑥[75] are, respectively, the 25th, 50th (median), and 75th percentiles of bp. We

could use the pctile command to generate these percentiles:

. pctile pct = bp, nq(4) genp(percent)

. list bp quart percent pct, sepby(quart)

bp quart percent pct

1. 98 1 25 104
2. 100 1 50 120
3. 104 1 75 125

4. 110 2 . .
5. 120 2 . .
6. 120 2 . .
7. 120 2 . .
8. 120 2 . .

9. 125 3 . .

10. 130 4 . .
11. 132 4 . .

xtile can categorize a variable on the basis of any set of cutpoints, not just percentiles. Suppose that
we wish to create the following categories for blood pressure:

(−∞, 100 ], (100, 110 ], (110, 120 ], (120, 130 ], (130, +∞)
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To do this, we simply create a variable containing the cutpoints,

. input class
class

1. 100
2. 110
3. 120
4. 130
5. end

and then use xtile with the cutpoints() option:

. xtile category = bp, cutpoints(class)

. list bp class category, sepby(category)

bp class category

1. 98 100 1
2. 100 110 1

3. 104 120 2
4. 110 130 2

5. 120 . 3
6. 120 . 3
7. 120 . 3
8. 120 . 3

9. 125 . 4
10. 130 . 4

11. 132 . 5

The cutpoints can, of course, come from anywhere. They can be the quantiles of another variable or

the quantiles of a subgroup of the variable. Suppose that we had a variable, case, that indicated whether
an observation represented a case (case = 1) or control (case = 0).

. use https://www.stata-press.com/data/r19/bp2, clear

. list in 1/11, sep(4)

bp case

1. 98 1
2. 100 1
3. 104 1
4. 110 1

5. 120 1
6. 120 1
7. 120 1
8. 120 1

9. 125 1
10. 130 1
11. 132 1
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We can categorize the cases on the basis of the quantiles of the controls. To do this, we first generate

a variable, pct, containing the percentiles of the controls’ blood pressure data:

. pctile pct = bp if case==0, nq(4)

. list pct in 1/4

pct

1. 104
2. 117
3. 124
4. .

Then we use these percentiles as cutpoints to classify bp: for all subjects.

. xtile category = bp, cutpoints(pct)

. gsort -case bp

. list bp case category in 1/11, sepby(category)

bp case category

1. 98 1 1
2. 100 1 1
3. 104 1 1

4. 110 1 2

5. 120 1 3
6. 120 1 3
7. 120 1 3
8. 120 1 3

9. 125 1 4
10. 130 1 4
11. 132 1 4

Technical note
In the last example, if we wanted to categorize only cases, we could have issued the command

. xtile category = bp if case==1, cutpoints(pct)

Most Stata commands follow the logic that using an if exp is equivalent to dropping observations that
do not satisfy the expression and running the command. This is not true of xtilewhen the cutpoints()
option is used. (When the cutpoints() option is not used, the standard logic is true.) xtile uses all
nonmissing values of the cutpoints() variable whether or not these values belong to observations that
satisfy the if expression.

If you do not want to use all the values in the cutpoints() variable as cutpoints, simply set the ones
that you do not need to missing. xtile does not care about the order of the values or whether they are
separated by missing values.
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Technical note
Quantiles are not always unique. If we categorize our blood pressure data by quintiles rather than

quartiles, we get

. use https://www.stata-press.com/data/r19/bp1, clear

. xtile quint = bp, nq(5)

. pctile pct = bp, nq(5) genp(percent)

. list bp quint pct percent, sepby(quint)

bp quint pct percent

1. 98 1 104 20
2. 100 1 120 40
3. 104 1 120 60

4. 110 2 125 80
5. 120 2 . .
6. 120 2 . .
7. 120 2 . .
8. 120 2 . .

9. 125 4 . .

10. 130 5 . .
11. 132 5 . .

The 40th and 60th percentile are the same; they are both 120. When two (or more) percentiles are the

same, they are given the lower category number.

pctile
pctile is a programmer’s command. It computes percentiles and stores them in r(); see

[U] 18.8 Accessing results calculated by other programs.



pctile — Create variable containing percentiles 762

You can use pctile to compute quantiles, just as you can with pctile:

. use https://www.stata-press.com/data/r19/auto, clear
(1978 automobile data)
. _pctile weight, nq(10)
. return list
scalars:

r(r1) = 2020
r(r2) = 2160
r(r3) = 2520
r(r4) = 2730
r(r5) = 3190
r(r6) = 3310
r(r7) = 3420
r(r8) = 3700
r(r9) = 4060

The percentiles() option (abbreviation p()) can be used to compute any percentile you wish:

. _pctile weight, p(10, 33.333, 45, 50, 55, 66.667, 90)

. return list
scalars:

r(r1) = 2020
r(r2) = 2640
r(r3) = 2830
r(r4) = 3190
r(r5) = 3250
r(r6) = 3400
r(r7) = 4060

pctile, pctile, and xtile each have an option that uses an alternative definition of percentiles,
based on an interpolation scheme; see Methods and formulas below.

. _pctile weight, p(10, 33.333, 45, 50, 55, 66.667, 90) altdef

. return list
scalars:

r(r1) = 2005
r(r2) = 2639.985
r(r3) = 2830
r(r4) = 3190
r(r5) = 3252.5
r(r6) = 3400.005
r(r7) = 4060

The default formula inverts the empirical distribution function. The default formula is more commonly

used, although some consider the “alternative” formula to be the standard definition. One drawback of

the alternative formula is that it does not have an obvious generalization to noninteger weights.

Technical note
summarize, detail computes the 1st, 5th, 10th, 25th, 50th (median), 75th, 90th, 95th, and 99th per-

centiles. There is no real advantage in using pctile to compute these percentiles. Both summarize,
detail and pctile use the same internal code. pctile is slightly faster because summarize,
detail computes a few extra things. The value of pctile is its ability to compute percentiles other
than these standard ones.
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Stored results
pctile and pctile store the following in r():

Scalars

r(r#) value of #-requested percentile

Methods and formulas
The default formula for percentiles is as follows: Let 𝑥(𝑗) refer to the 𝑥 in ascending order for 𝑗 =

1, 2, . . . , 𝑛. Let 𝑤(𝑗) refer to the corresponding weights of 𝑥(𝑗); if there are no weights, 𝑤(𝑗) = 1. Let

𝑁 = ∑𝑛
𝑗=1 𝑤(𝑗).

To obtain the 𝑝th percentile, which we will denote as 𝑥[𝑝], let 𝑃 = 𝑁𝑝/100, and let

𝑊(𝑖) =
𝑖

∑
𝑗=1

𝑤(𝑗)

Find the first index, 𝑖, such that 𝑊(𝑖) > 𝑃. The 𝑝th percentile is then

𝑥[𝑝] =
⎧{
⎨{⎩

𝑥(𝑖−1) + 𝑥(𝑖)

2
if 𝑊(𝑖−1) = 𝑃

𝑥(𝑖) otherwise

When the altdef option is specified, the following alternative definition is used. Here weights are
not allowed.

Let 𝑖 be the integer floor of (𝑛 + 1)𝑝/100; that is, 𝑖 is the largest integer 𝑖 ≤ (𝑛 + 1)𝑝/100. Let ℎ be

the remainder ℎ = (𝑛 + 1)𝑝/100 − 𝑖. The 𝑝th percentile is then

𝑥[𝑝] = (1 − ℎ)𝑥(𝑖) + ℎ𝑥(𝑖+1)

where 𝑥(0) is taken to be 𝑥(1) and 𝑥(𝑛+1) is taken to be 𝑥(𝑛).

xtile produces the categories

(−∞, 𝑥[𝑝1]], (𝑥[𝑝1], 𝑥[𝑝2]], . . . , (𝑥[𝑝𝑚−2], 𝑥[𝑝𝑚−1]], (𝑥[𝑝𝑚−1], +∞)

numbered, respectively, 1, 2, . . . , 𝑚, based on the 𝑚 quantiles given by the 𝑝𝑘th percentiles, where 𝑝𝑘 =
100 𝑘/𝑚 for 𝑘 = 1, 2, . . . , 𝑚 − 1.

If 𝑥[𝑝𝑘−1] = 𝑥[𝑝𝑘], the 𝑘th category is empty. All elements 𝑥 = 𝑥[𝑝𝑘−1] = 𝑥[𝑝𝑘] are put in the (𝑘 − 1)th
category: (𝑥[𝑝𝑘−2], 𝑥[𝑝𝑘−1]].

If xtile is used with the cutpoints(varname) option, the categories are

(−∞, 𝑦(1)], (𝑦(1), 𝑦(2)], . . . , (𝑦(𝑚−1), 𝑦(𝑚)], (𝑦(𝑚), +∞)

and they are numbered, respectively, 1, 2, . . . , 𝑚 + 1, based on the 𝑚 nonmissing values of varname:

𝑦(1), 𝑦(2), . . . , 𝑦(𝑚).
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Also see
[R] centile — Report centile and confidence interval

[R] summarize — Summary statistics

[U] 18.8 Accessing results calculated by other programs
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Description Quick start Syntax
Options for putmata Options for getmata Remarks and examples
Stored results Reference Also see

Description
putmata exports the contents of Stata variables to Mata vectors and matrices.

getmata imports the contents of Mata vectors and matrices to Stata variables.

putmata and getmata are useful for creating solutions to problems more easily solved in Mata. The

commands are also useful in teaching.

Quick start
Create a Mata vector for each Stata variable in memory

putmata *

Same as above, but create a vector only for nonmissing values of idvar, v1, and v2
putmata idvar v1 v2, omitmissing

Place variables v1 and v2 into column vectors x1 and x2
putmata idvar x1=v1 x2=v2

Create Mata matrix X from v1 and v2
putmata X=(v1 v2)

Create Stata variables newv1 and newv2 from Mata matrix X
getmata (newv1 newv2)=X

Replace v1 and v2 with columns from Mata matrix X
getmata (v1 v2)=X, replace

Same as above, and match observations using idvarMata vector

getmata (v1 v2)=X, replace id(idvar)

765
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Syntax
putmata putlist [ if ] [ in ] [ , putmata options ]

getmata getlist [ , getmata options ]

putmata options Description

omitmissing omit observations with missing values

view create vectors and matrices as views, not as copies

replace replace existing Mata vectors and matrices

A putlist can be as simple as a list of Stata variable names. See below for details.

getmata options Description

double create Stata variables as doubles
update update existing Stata variables

replace replace existing Stata variables

id(name) match observations with rows based on equal values of variable name
and matrix name; id(varname=vecname) is also allowed

force allow nonconformable matrices; usually, id() is preferable

A getlist can be as simple as a list of Mata vector names. See below for details.

collect is allowed with putmata and getmata; see [U] 11.1.10 Prefix commands.

Definition of putlist for use with putmata:

A putlist is one or more of any of the following:

*
varname

varlist

vecname=varname
matname=(varlist)
matname=([ varlist ] # [ varlist ] [ ... ])

Example: putmata *
Creates a vector in Mata for each of the Stata variables in memory. Vectors contain the same data

as Stata variables. Vectors have the same names as the corresponding variables.

Example: putmata mpg weight displ
Creates a vector in Mata for each variable specified. Vectors have the same names as the corre-

sponding variables. In this example, displ is an abbreviation for the variable displacement;
thus the vector will also be named displacement.

Example: putmata mileage=mpg pounds=weight
Creates a vector for each variable specified. Vector names differ from the corresponding variable

names. In this example, vectors will be named mileage and pounds.

Example: putmata y=mpg X=(weight displ)
Creates 𝑁 × 1 Mata vector y equal to Stata variable mpg, and creates 𝑁 × 2 Mata matrix X

containing the values of Stata variables weight and displacement.
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Example: putmata y=mpg X=(weight displ 1)
Creates𝑁 ×1Mata vector y containing mpg, and creates𝑁 ×3Mata matrixX containing weight,
displacement, and a column of 1s. After typing this example, you could enter Mata and type

invsym(X’X)*X’y to obtain the regression coefficients.

Syntactical elements may be combined. It is valid to type

. putmata mpg foreign X=(weight displ) Z=(foreign 1)

No matter how you specify the putlist, you will need to specify the replace option if some or all vectors
already exist in Mata:

. putmata mpg foreign X=(weight displ) Z=(foreign 1), replace

Definition of getlist for use with getmata:

A getlist is one or more of any of the following:

vecname

varname=vecname
(varname varname . . . varname)=matname
(varname*)=matname

Example: getmata x1 x2
Creates a Stata variable for each Mata vector specified. Variables will have the same names as the

corresponding vectors. Names may not be abbreviated.

Example: getmata myvar1=x1 myvar2=x2
Creates a Stata variable for each Mata vector specified. Variable names will differ from the corre-

sponding vector names.

Example: getmata (firstvar secondvar)=X
Creates one Stata variable corresponding to each column of the Mata matrix specified. In this

case, the matrix has two columns, and corresponding variables will be named firstvar and

secondvar. If the matrix had three columns, then three variable names would need to be specified.

Example: getmata (myvar*)=X
Creates one Stata variable corresponding to each column of the Mata matrix specified. Variables

will be named myvar1, myvar2, etc. The matrix may have any number of columns, even zero!

Syntactical elements may be combined. It is valid to type

. getmata r1 r2 final=r3 (rplus*)=X

No matter how you specify the getlist, you will need to specify the replace or update option if some
or all variables already exist in Stata:

. getmata r1 r2 final=r3 (rplus*)=X, replace

Options for putmata
omitmissing specifies that observations containing a missing value in any of the numeric variables

specified be omitted from the vectors and matrices created in Mata. In

. putmata y=mpg X=(weight displ 1), omitmissing

rows would be omitted from y and X in which the corresponding observation contained missing in
any of mpg, weight, or displ. In this case, specifying omitmissing would be equivalent to typing
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. putmata y=mpg X=(weight displ 1) if !missing(mpg) & !missing(weight) ///
& !missing(displ)

All vectors and matrices created by a single putmata command will have the same number of rows
(observations). That is true whether you specify if, in, or the omitmissing option.

view specifies that putmata create views rather than copies of the Stata data in the Mata vectors and

matrices. Views require less memory than copies and offer the advantage (and disadvantage) that

changes in the Stata data are immediately reflected in the Mata vectors and matrices, and vice versa.

If you specify numeric constants using the matname=(...) syntax, matname is created as a copy

even if the view option is specified. Other vectors and matrices created by the command, however,
would be views.

Use of the view option with putmata often obviates the need to use getmata to import results back
into Stata.

Warning 1: Mata records views as “this vector is a view onto variable 3, observations 2 through 5 and

7”. If you change the order of the variables, the order of the observations, or drop variables once the

views are created, then the contents of the views will change.

Warning 2: When assigning values in Mata to view vectors, code

v[] = ...

not v = ....

To have changes reflected in the underlying Stata data, you must update the elements of the view v,
not redefine it. To update all the elements of v, you literally code v[.]. In the matrix case, you code
X[.,.].

replace specifies that existing Mata vectors or matrices be replaced should that be necessary.

Options for getmata
double specifies that Stata numeric variables be created as doubles. The default is that they be created

as floats. Actually, variables start out as floats or doubles, but then they are compressed (see
[D] compress).

update and replace are alternatives. They have the same meaning unless the id() or force option is
specified.

When id() or force is not specified, both replace and update specify that it is okay to replace the
values in existing Stata variables. By default, vectors can be posted to new Stata variables only.

When id() or force is specified, replace and update allow posting of values of existing variables,

just as usual. The options differ in how the posting is performedwhen the id() or force option causes
only a subset of the observations of the variables to be updated. update specifies that the remaining
values be left as they are. replace specifies that the remaining values be set to missing, just as if the
existing variable(s) were being created for the first time.

id(name) and id(varname=vecname) specify how the rows in the Mata vectors and matrices match the

observations in the Stata data. Observation 𝑖matches row 𝑗 if variable name[ 𝑖 ] equals vector name[ 𝑗 ],
or in the second syntax, if varname[ 𝑖 ] = vecname[ 𝑗 ]. The ID variable (vector) must contain values

that uniquely identify the observations (rows). Only in observations that contain matching values will

the variable be modified. Values in observations that have no match will not be modified or will be

set to missing, as appropriate; values in the ID vector that have no match will be ignored.
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Example: You wish to run a regression of y on x1 and x2 on the males in the data and use that result to
obtain the fitted values for the males. Stata already has commands that will do this, namely, regress
y x1 x2 if male followed by predict yhat if male. For instructional purposes, let’s say you wish
to do this in Mata. You type

. putmata myid y X=(x1 x2 1) if male

. mata
: b = invsym(X’X)*X’y
: yhat = X*b
: end
. getmata yhat, id(myid)

The new Stata variable yhat will contain the predicted values for males and missing values for the
females. If the yhat variable already existed, you would type

. getmata yhat, id(myid) replace

or

. getmata yhat, id(myid) update

The replace option would set the female observations to missing. The update option would leave
the female observations unchanged.

If you do not have an identification variable, create one first by typing generate myid = n.

force specifies that it is okay to post vectors and matrices with fewer or with more rows than the number
of observations in the data. The force option is an alternative to id(), and usually, id() is the

appropriate choice.

If you specify force and if there are fewer rows in the vectors and matrices than observations in the
data, new variables will be padded with missing values. If there are more rows than observations,

observations will be added to the data and previously existing variables will be padded with missing

values.

Remarks and examples
Remarks are presented under the following headings:

Use of putmata
Use of putmata and getmata
Using putmata and getmata on subsets of observations
Using views
Constructing do-files

Use of putmata
In this example, we will use Mata to make a calculation and report the result, but we will not post

results back to Stata. We will use putmata but not getmata.

Consider solving for b the set of linear equations

y = Xb (1)

where y: 𝑁 × 1, X: 𝑁 × 𝑘, and b: 𝑘 × 1. If 𝑁 = 𝑘, then y = Xb amounts to solving 𝑘 equations for 𝑘
unknowns, and the solution is

b = X−1y (2)
That solution is obtained by premultiplying both sides of (1) by X−1.
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When 𝑁 > 𝑘, (2) can be used to obtain least-square results if matrix inversion is appropriately de-
fined. Assume that you wish to demonstrate this when matrix inversion is defined as the Moore–Penrose

generalized inverse for nonsquare matrices. The demonstration can be obtained by typing

. sysuse auto, clear

. regress mpg weight displacement

. putmata y=mpg X=(weight displacement 1)

. mata
: pinv(X)*y
: end
. _

The Mata expression pinv(X)*y will display a 3× 1 column vector. The elements of the vector will

equal the coefficients reported by regress mpg weight displacement.

For your information, theMoore–Penrose inverse of rectangularmatrixX: 𝑁×𝑘 is a 𝑘×𝑁 rectangular

matrix. Among other properties, pinv(X)*X = I, where I is the 𝑘 × 𝑘 identity matrix. You can

demonstrate that using Mata, too:

. mata: pinv(X)*X

Use of putmata and getmata
In this example, we will use Mata to calculate a result that we wish to post back to Stata. We will use

both putmata and getmata.

Some problems are more easily solved in Mata than in Stata. For instance, say that you need to create

new Stata variable D from existing variable C, defined as

D[ 𝑖 ] = sum(C[ 𝑗 ] − C[ 𝑖 ]) for all C[ 𝑗 ] > C[ 𝑖 ]

where 𝑖 and 𝑗 index observations.
This problem can be solved in Stata, but the solution is elusive to most people. The solution is more

natural in Mata because the Mata solution corresponds almost letter for letter with the mathematical

statement of the problem. If C and D were Mata vectors rather than Stata variables, the solution would be

D = J(rows(C), 1, 0)
for (i=1; i<=rows(C); i++) {

for (j=1; j<=rows(C); j++) {
if (C[j]>C[i]) D[i] = D[i] + (C[j] - C[i])

}
}

The most difficult part of this solution to understand is the first line, D = J(rows(C), 1, 0), and
that is because you may not be familiar with Mata’s J() function. D = J(rows(C), 1, 0) creates a

rows(C) × 1 column vector of 0s. The arguments of J() are in just that order.

C and D are not vectors in Mata, or at least they are not yet. Using getmata, we can create vector C
from variable C and run our Mata solution. Then using putmata, we can post Mata vector D back to new
Stata variable D. The solution includes these three steps, also shown in the do-file below:

(1) In Stata, use putmata to create vector C in Mata equal to variable C in Stata: putmata C.

(2) Use Mata to solve the problem, creating new Mata vector D.

(3) In Stata again, use getmata to create new variable D equal to Mata vector D.
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Because of the typing involved in the solution, we would package the code in a do-file:

begin myfile.do
use mydata, clear
putmata C (1)

mata: (2)
D = J(rows(C), 1, 0)
for (i=1; i<=rows(C); i++) {

for (j=1; j<=rows(C); j++) {
if (C[j]>C[i]) D[i] = D[i] + (C[j] - C[i])

}
}
end
getmata D (3)
save mydata, replace

end myfile.do

With myfile.do now in place, in Stata we would type

. do myfile

Notes:

(1) Our program might be better if we changed putmata C to read putmata C, replace and if we
changed getmata D to read getmata D, replace. As things are right now, typing do myfile
works, but if we were then to run it a second time, it would not work. Stata would encounter the

putmata command and issue an error that matrix C already exists. Even if Stata got through
that, it would encounter the getmata command and issue an error that variable D already exists.
Perhaps that is an advantage. You cannot run myfile.do again without dropping matrix C and
variable D. If you consider that a disadvantage, however, include the replace option.

(2) In our solution, we entered Mata by typing mata:, which is to say, mata with a colon. Inter-
actively, we usually enter Mata by just typing mata. The colon affects how Mata treats errors.

When working interactively, we want Mata to note errors but then to continue running so we

can correct ourselves. In do-files, we want Mata to note the error and stop. That is the differ-

ence between mata without the colon and mata with the colon. Remember to use mata: when

writing do-files.

(3) Rather than specify the replace option, you could modify the do-file to drop any preexisting
Mata vector C and any preexisting variable D. To drop vector C, in Mata you can type mata
drop C, or in Stata, you can type mata: mata drop C. To drop variable D, in Stata you can type
drop D. You must worry that the variables do not exist, so in your do-file, you would code

capture mata: mata drop C
capture drop D

Rather than dropping vector C, you might prefer just to clear Mata:

clear mata

Using putmata and getmata on subsets of observations
putmata can be used to create Mata vectors that contain a subset of the observations in the Stata data,

and getmata can be used to fetch such vectors back into Stata. Thus you can work with only the males
or only outcomes in which failures are observed, and so on. Below we work with only the observations

in which C does not contain missing values.
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In the create-variable-D-from-C example above, we assumed that there were no missing values in C,
or at least we did not consider the issue. It turns out that our code produces several missing values in the

presence of just one missing value in C. Perhaps, if there are missing values, we want to exclude them
from our calculation. We could complicate our Mata code to handle that. We could modify our Mata

code to read

use mydata, clear
putmata C
D = J(rows(C), 1, 0)
for (i=1; i<=rows(C); i++) {

if (C[i]>=.) D[i] = . // new
else for (j=1; j<=rows(C); j++) {

if (C[j]<.) { // new
if (C[j]>C[i]) D[i] = D[i] + (C[j] - C[i])

}
}

}
end
getmata D
save mydata, replace

Easier, however, is simply to restrict Mata vector C to the nonmissing elements of Stata variable C,
which we could do by replacing putmata C with

putmata C if !missing(C)

or, equivalently,

putmata C, omitmissing

Whichever way we coded it, if the data contained 100 observations and variable C contained 82 non-
missing values, newMata vector Cwould contain 82 rows rather than 100. The observations correspond-
ing to missing(C) would be omitted from the vector, and that means we could run our original Mata

solution without modification.

There is, however, an issue. At the end of our code when we post the Mata solution vector D to

Stata variable D—getmata D—we will need to specify which of the 100 observations are to receive the

82 results stored in the vector. getmata has an option to handle this situation—id(varname), where
varname is the name of an identification variable.

An identification variable is a variable that takes on different values for each observation in the data.

The values could be 1, 2, . . . , 100; or they could be 1.25, −2, . . . , 16.5; or they could be Nick, Bill, . . . ,

Mary. The values can be numeric or string, and they need not be in order. All that is important is that the

variable contain a unique (different) value in each observation. Possibly, the data already contain such a

variable. If not, you can create one by typing

generate fid = _n

When we use putmata to create vector C, we will need simultaneously to create vector fid containing
the selected values of variable fid, which we can do by adding fid to the putlist:

putmata fid C if !missing(C)

The above command creates two vectors in Mata: fid and C. When we post the resulting vector D
back to Stata, we will specify the id(fid) option to indicate into which observations getmata is to post
the results:

getmata D, id(fid)
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The id(fid) option is taken to mean that there exists a variable named fid and a vector named fid.
It is by comparing the values in each that getmata determines how the rows of the vectors correspond

to the observations of the data.

The entire solution is

begin myfile.do
use mydata, clear
putmata fid C if !missing(C) // new: we put fid & add if !missing(C)
mata:
D = J(rows(C), 1, 0)
for (i=1; i<=rows(C); i++) {

for (j=1; j<=rows(C); j++) {
if (C[j]>C[i]) D[i] = D[i] + (C[j] - C[i])

}
}
end
getmata D, id(fid) // new: we add option id(fid)
save mydata, replace

end myfile.do

The above code will run on data with or without missing values. New variable D will be missing in
observations where C is missing, but D will otherwise contain nonmissing values.

Using views
When you type or code putmata C, vector C is created as a copy of the Stata data. The variable and

the vector are separate things. An alternative is to make the Mata vector a view onto the Stata variable.

By that, we mean that both the variable and the vector share the same recording of the values. Views

save memory but are slightly less efficient in terms of execution time. Views have other advantages and

disadvantages, too.

For instance, if you type putmata mpg and then, in Mata, type mpg[1]=20, you will change not only
the Mata vector but also the Stata data! Or if, after typing putmata mpg, you typed replace mpg = 20
in 1, that would modify both the data and the Mata vector! This is an advantage if you are fixing real

errors and a disadvantage if you intend to do something else.

If in the middle of your Mata session where you are working with views you take a break and return to

Stata, it is important that you do not modify the Stata data in certain ways. Rather than recording copies

of the data, views record notes about the mapping. Aviewmight record that this Mata vector corresponds

to variable 3, observations 2 through 20 and 39. If you change the sort order of the data, the view will

still be working with observations 2 through 20 and 39 even though those physical observations now

contain different data. If you drop the first or second variable, the view will still be working with the

third variable even though that will now be a different variable!

The memory savings offered by views are considerable, at least when working with large datasets.

Say that you have a dataset containing 200 variables and 1,000,000 observations. Your data might be

1 GB in size. Even so, typing putmata *, view, and thus creating 200 vectors each with 1,000,000 rows,
would consume only a few dozen kilobytes of memory.
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All the examples shown above work equally well with copies or views. We have been working with

copies, but in the previous example, where we coded

putmata fid C if !missing(C)

we could switch to working with views by coding

putmata fid C if !missing(C), view

With that one change, our code would still work and it would use less memory.

With that one change, we would still not be working with views everywhere we could, however.

Vector D—the vector we create in Mata and then post back to Stata—would still be a regular vector. We

can save additional memory by making D a view, too. Before we do that, let us warn you that we do not
recommend doing this unless the memory savings is vitally important. The result, when complete, will

be elegant and memory efficient, but the extra memory savings is seldom worth the debugging effort.

No extra changes are required to your code when the vectors you make into views contain values that

are not modified in the code. Vector C is such a vector. We use the values stored in C, but we do not
change them. Vector D, on the other hand, is a vector in which we change values. It is usually easier if
you do not convert such vectors into views.

With that proviso, we are going to make D into a view, too, and in the process, we will drop the use
of fid altogether:

begin myfile.do
use mydata, clear
generate D = . // new
putmata C D if !missing(C), view // changed
mata:
D[.] = J(rows(C), 1, 0) // changed
for (i=1; i<=rows(C); i++) {

for (j=1; j<=rows(C); j++) {
if (C[j]>C[i]) D[i] = D[i] + (C[j] - C[i])

}
}
end

// we drop the getmata
save mydata, replace

end myfile.do

In this solution, we create new Stata variable D at the outset, and then we modify the putmata com-
mand to create view vectors for both C and D. Our code, which stores results in vector D, now simulta-

neously posts to variable D when we store results in vector D, so we can omit the getmata D at the end
because results are already posted! Moreover, we no longer have to concern ourselves with matching ob-

servations to rows via fid. Rows of D now automatically align themselves with the selected observations

in variable D by the mere fact of D being a view.

The beginning of our Mata code has an important change, however. We change

D = J(rows(C), 1, 0)

to

D[.] = J(rows(C), 1, 0)
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That change is very important. What we coded previously created vector D. What we now code

changes the values stored in existing vector D. If we left what we coded previously,Matawould discard the

view currently stored in D and create a new D—a regular Mata vector unconnected to Stata—containing

0s.

Constructing do-files
putmata and getmata can be used interactively, but if you have much Mata code between the put

and the get, you will be better off using a do-file because do-files can be easily edited when they have a

mistake in them. We recommend the following outline for such do-files:

begin outline.do
version 19.5 (1)

mata clear (2)

// Stata code for setup goes here (3)

putmata ... (4)

mata:
// Mata code goes here (5)
end
getmata (6)

mata clear (7)
end outline.do

Notes on do-file steps:

(1) A do-file should always start with a version statement; it ensures that the do-file continues to
work in the years to come as new versions of Stata are released. See [P] version.

(2) The do-file should not depend on Mata having certain vectors, matrices, or programs already

loaded and set up because if you attempt to run the do-file again later, what you assumed may

not be true. A do-file should be self-contained. To ensure that is true the first time we write and

run the do-file and to ensure on subsequent runs that nothing lying around in Mata gets in our

way, we clear Mata.

(3) Youmay need to sort your data, create extra variables that your do-file will use, or drop variables

that you are assuming do not already exist. In the last iteration of myfile.do, we needed to
generate D = ., and it would not have been a bad idea to capture drop D before we did that.
Our example did not depend on the sort order of the data, but if it had, we would have included

the sort even if we were certain that the data would already be in the right order.

(4) Put the putmata command here. If putmata includes the omitmissing option, then put every-
thing you need to put in a single putmata command. Otherwise, you can use multiple putmata
commands if you find that more convenient. If you use multiple putmata commands, be sure
to include the same if expression and in range qualifiers on each one.

(5) The Mata code goes here. Note that we type mata: (mata with a colon) to enter Mata. mata:
ensures that errors stop Mata and thus our do-file.

(6) The getmata command goes here if you need it. Be sure to include getmata’s id(name) or
id(vecname=varname) option if, on the putmata command in step 4, you included the if
expression qualifier or the in range qualifier or the omitmissing option. If you include id(),
be sure you included the ID variable in the putmata command in step 4.

(7) We conclude by clearingMata again to avoid leaving memory allocated needlessly and to avoid

causing problems for poorly written do-files that we might subsequently run.
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putmata and getmata are designed to work interactively and in do-files. The commands are not

designed to work with ado-files. An ado-file is something like a do-file, but it defines a program that

implements a new command of Stata, and well-written ado-files do not use globals such as the global

vectors and matrices that putmata creates. Ado-files use local variables. Ado-file programmers should
use the Mata functions st data() and st view() (see [M-5] st data( ) and [M-5] st view( )) to create

vectors and matrices, and if necessary, use st store() (see [M-5] st store( )) to post the contents of

those vectors and matrices back to Stata.

Stored results
putmata stores the following in r():

Scalars

r(N) number of rows in created vectors and matrices

r(K views) number of vectors and matrices created as views

r(K copies) number of vectors and matrices created as copies

The total number of vectors and matrices created is r(K views) + r(K copies).

r(N)=. if r(K views) + r(K copies) = 0. r(N)=0 means that zero-observation vectors and matrices were created,
which is to say, vectors and matrices dimensioned 0 × 1 and 0 × k.

getmata stores the following in r():

Scalars

r(K new) number of new variables created

r(K existing) number of existing variables modified

The total number of variables modified is r(K new) + r(K existing).

Reference
Gould, W. W. 2010. Mata Matters: Stata in Mata. Stata Journal 10: 125–142.

Also see
[M-4] Stata — Stata interface functions

[M-5] st data( ) — Load copy of current Stata dataset

[M-5] st store( ) — Modify values stored in current Stata dataset

[M-5] st view( ) — Make matrix that is a view onto current Stata dataset

https://www.stata-journal.com/article.html?article=pr0050


range — Generate numerical range

Description Quick start Menu Syntax
Remarks and examples Also see

Description
range generates a numerical range, which is useful for evaluating and graphing functions.

Quick start
Generate newv1 that ranges from 0 to 𝜋

range newv1 0 _pi

Same as above, but only for the first 50 observations in the dataset

range newv1 0 _pi 50

Generate newv2 that ranges from the minimum to the maximum of v2 after summarize
range newv2 r(min) r(max)

Menu
Data > Create or change data > Other variable-creation commands > Generate numerical range

Syntax
range varname #first #last [ #obs ]

Remarks and examples
range constructs the variable varname, taking on values #first to #last, inclusive, over #obs. If #obs is

not specified, the number of observations in the current dataset is used.

range can be used to produce increasing sequences, such as

. range x 0 12.56 100

or it can be used to produce decreasing sequences:

. range z 100 1
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Example 1
To graph 𝑦 = 𝑒−𝑥/6sin(𝑥) over the interval [ 0, 12.56 ], we can type

. range x 0 12.56 100
Number of observations (_N) was 0, now 100.
. generate y = exp(-x/6)*sin(x)
. scatter y x, yline(0) ytitle(y = exp(-x/6) sin(x))
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Example 2
Stata is not limited solely to graphing functions—it can draw parameterized curves as well. For

instance, consider the curve given by the polar coordinate relation 𝑟 = 2 sin(2𝜃). The conversion of
polar coordinates to parameterized form is (𝑦, 𝑥) = (𝑟 sin 𝜃, 𝑟 cos 𝜃), so we can type

. clear

. range theta 0 2*_pi 400
Number of observations (_N) was 0, now 400.
. generate r = 2*sin(2*theta)
. generate y = r*sin(theta)
. generate x = r*cos(theta)
. line y x, c(l) m(i) yline(0) xline(0) aspectratio(1)
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2
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Also see
[D] egen — Extensions to generate

[D] obs — Increase the number of observations in a dataset
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Description Quick start Syntax Option
Remarks and examples Also see

Description
recast changes the storage type of variables.

Quick start
Recast numeric variable v1 to type double from any other numeric type

recast double v1

Recast string variable v2 to str30 from any length less than 30

recast str30 v2

Same as above, but for length longer than 30

recast str30 v2, force

Syntax
recast type varlist [ , force ]

Variables in varlist are changed to type, where type is byte, int, long, float, double, str1, str2, . . . , str2045, or strL.
Alias variables in varlist are changed to type copies of the linked variables.

Option
force makes recast unsafe by causing the variables to be given the new storage type even if that will

cause a loss of precision, introduction of missing values, or, for string variables, the truncation of

strings.

force should be used with caution. force is for those instances where you have a variable saved as
a double but would now be satisfied to have the variable stored as a float, even though that would
lead to a slight rounding of its values.

Remarks and examples
See [U] 12Data for a description of storage types. Also see [D] compress, [D] destring, and [D] fruna-

lias for alternatives to recast.

Note that recast is not a command to change, or to map, string variables to numeric variables or

numeric variables to string variables. For that, one of encode, decode, destring, or tostring is

likely to be appropriate.
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Example 1
recast refuses to change a variable’s type if that change is inappropriate for the values actually stored,

so it is always safe to try:

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. describe headroom
Variable Storage Display Value

name type format label Variable label

headroom float %6.1f Headroom (in.)
. recast int headroom
headroom: 37 values would be changed; not changed

Our attempt to change headroom from a float to an int was ignored—if the change had been made,

37 values would have changed. Here is an example where the type can be changed:

. describe mpg
Variable Storage Display Value

name type format label Variable label

mpg int %8.0g Mileage (mpg)
. recast byte mpg
. describe mpg
Variable Storage Display Value

name type format label Variable label

mpg byte %8.0g Mileage (mpg)

recast works with string variables as well as numeric variables, and it provides all the same protec-
tions:

. describe make
Variable Storage Display Value

name type format label Variable label

make str18 %-18s Make and model
. recast str16 make
make: 2 values would be changed; not changed

recast can be used both to promote and to demote variables:

. recast str20 make

. describe make
Variable Storage Display Value

name type format label Variable label

make str20 %-20s Make and model
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Also see
[D] compress — Compress data in memory

[D] destring — Convert string variables to numeric variables and vice versa

[D] frunalias — Change storage type of alias variables

[U] 12.2.2 Numeric storage types

[U] 12.4 Strings
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Description Quick start Menu Syntax
Options Remarks and examples Acknowledgment Also see

Description
recode changes the values of numeric variables according to the rules specified. Values that do not

meet any of the conditions of the rules are left unchanged, unless an otherwise rule is specified.

A range #1/#2 refers to all (real and integer) values between #1 and #2, including the boundaries #1
and #2. This interpretation of #1/#2 differs from that in numlists.

min and max provide a convenient way to refer to the minimum and maximum for each variable in

varlist and may be used in both the from-value and the to-value parts of the specification. Combined

with if and in, the minimum and maximum are determined over the restricted dataset.

The keyword rules specify transformations for values not changed by the previous rules:

nonmissing all nonmissing values not changed by the rules

missing all missing values (., .a, .b, . . . , .z) not changed by the rules
else all nonmissing and missing values not changed by the rules

* synonym for else

recode provides a convenient way to define value labels for the generated variables during the defini-
tion of the transformation, reducing the risk of inconsistencies between the definition and value labeling

of variables. Value labels may be defined for integer values and for the extended missing values (.a, .b,
. . . , .z), but not for noninteger values or for sysmiss (.).

Although this is not shown in the syntax diagram, the parentheses around the rules and keyword

clauses are optional if you transform only one variable and if you do not define value labels.

Quick start
Recode 3 to 0, 4 to −1, and 5 to −2 in v1, and store result in newv1

recode v1 (3=0) (4=-1) (5=-2), generate(newv1)

Same as above, and recode missing values to 9

recode v1 (3=0) (4=-1) (5=-2) (missing=9), gen(newv1)

Also recode v2 using the same rule and store result in newv2
recode v1 v2 (3=0) (4=-1) (5=-2) (missing=9), gen(newv1 newv2)

Same as above when adding a prefix to the old variable name

recode v1 v2 (3=0) (4=-1) (5=-2) (missing=9), prefix(new)

Recode 3 through 5 to 0 and 1 through 2 to 1, and create value label mylabel
recode v1 (3/5=0 ”Value 0”) (1/2=1 ”Value 1”), gen(newv1) ///

label(mylabel)

Same as above, but set all other values to 9 and label them “Invalid”

recode v1 (3/5=0 ”Value 0”) (1/2=1 ”Value 1”) ///
(else=9 ”Invalid”), gen(newv1) label(mylabel)
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Menu
Data > Create or change data > Other variable-transformation commands > Recode categorical variable

Syntax
Basic syntax

recode varlist (rule) [(rule) ...] [ , generate(newvar) ]

Full syntax

recode varlist (erule) [(erule) ...] [ if ] [ in ] [ , options ]

where the most common forms for rule are

rule Example Meaning

# = # 3 = 1 3 recoded to 1

# # = # 2 . = 9 2 and . recoded to 9

#/# = # 1/5 = 4 1 through 5 recoded to 4

nonmissing = # nonmiss = 8 all other nonmissing to 8

missing = # miss = 9 all other missings to 9

where erule has the form

element [element ...] = el [”label”]
nonmissing = el [”label”]
missing = el [”label”]
else | * = el [”label”]

element has the form

el | el/el
and el is

# | min | max
The keyword rules missing, nonmissing, and else must be the last rules specified. else may not be

combined with missing or nonmissing.

options Description

Options

generate(newvar) generate newvar containing transformed variables; default is to replace
existing variables

prefix(str) generate new variables with str prefix

label(name) specify a name for the value label defined by the transformation rules

copyrest copy out-of-sample values from original variables

test test that rules are invoked and do not overlap

recode does not allow alias variables; see [D] frunalias for advice on how to get around this restriction.
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Options

� � �
Options �

generate(newvar) specifies the names of the variables that will contain the transformed variables.

into() is a synonym for generate(). Values outside the range implied by if or in are set to

missing (.), unless the copyrest option is specified.

If generate() is not specified, the input variables are overwritten; values outside the if or in range
are not modified. Overwriting variables is dangerous (you cannot undo changes, value labels may be

wrong, etc.), so we strongly recommend specifying generate().

prefix(str) specifies that the recoded variables be returned in new variables formed by prefixing the

names of the original variables with str.

label(name) specifies a name for the value label defined from the transformation rules. label() may
be defined only with generate() (or its synonym, into()) and prefix(). If a variable is recoded,
the label name defaults to newvar unless a label with that name already exists.

copyrest specifies that out-of-sample values be copied from the original variables. In line with other

data management commands, recode defaults to setting newvar to missing (.) outside the observa-
tions selected by if exp and in range.

test specifies that Stata test whether rules are ever invoked or that rules overlap; for example, (1/5=1)
(3=2).

Remarks and examples
Remarks are presented under the following headings:

Simple examples
Setting up value labels with recode
Referring to the minimum and maximum in rules
Recoding missing values
Recoding subsets of the data
Otherwise rules
Test for overlapping rules
Video example

Simple examples
Many users experienced with other statistical software use the recode command often, but easier

and faster solutions in Stata are available. On the other hand, recode often provides simple ways to

manipulate variables that are not easily accomplished otherwise. Therefore, we show other ways to

perform a series of tasks with and without recode.

We want to change 1 to 2, leave all other values unchanged, and store the results in the new variable nx.

. recode x (1 = 2), gen(nx)

or

. generate nx = x

. replace nx = 2 if nx==1

or

. generate nx = cond(x==1,2,x)
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We want to swap 1 and 2, saving them in nx.

. recode x (1 = 2) (2 = 1), gen(nx)

or

. generate nx = cond(x==1,2,cond(x==2,1,x))

We want to recode item by collapsing 1 and 2 into 1, 3 into 2, and 4 to 7 (boundaries included) into 3.

. recode item (1 2 = 1) (3 = 2) (4/7 = 3), gen(Ritem)

or

. generate Ritem = item

. replace Ritem = 1 if inlist(item,1,2)

. replace Ritem = 2 if item==3

. replace Ritem = 3 if inrange(item,4,7)

We want to change the “direction” of the 1, . . . , 5 valued variables x1, x2, x3, storing the transformed
variables in nx1, nx2, and nx3 (that is, we form new variable names by prefixing old variable names

with an “n”).

. recode x1 x2 x3 (1=5) (2=4) (3=3) (4=2) (5=1), pre(n) test

or

. generate nx1 = 6-x1

. generate nx2 = 6-x2

. generate nx3 = 6-x3

. forvalues i = 1/3 {
generate nx‘i’ = 6-x‘i’

}

In the categorical variable religion, we want to change 1, 3, and the real and integer numbers 3 through
5 into 6; we want to set 2, 8, and 10 to 3 and leave all other values unchanged.

. recode religion 1 3/5 = 6 2 8 10 = 3

or

. replace religion = 6 if religion==1 | inrange(religion,3,5)

. replace religion = 3 if inlist(religion,2,8,10)

This example illustrates two features of recode that were included for backward compatibility with
previous versions of recode but that we do not recommend. First, we omitted the parentheses around the
rules. This is allowed if you recode one variable and you do not plan to define value labels with recode
(see below for an explanation of this feature). Personally, we find the syntax without parentheses hard to

read, although we admit that we could have used blanks more sensibly. Because difficulties in reading

may cause us to overlook errors, we recommend always including parentheses. Second, because we

did not specify a generate() option, we overwrite the religion variable. This is often dangerous,

especially for “original” variables in a dataset. We recommend that you always specify generate()
unless you want to overwrite your data.
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Setting up value labels with recode
The recode command is most often used to transform categorical variables, which are many times

value labeled. When a value-labeled variable is overwritten by recode, it may well be that the value label
is no longer appropriate. Consequently, output that is labeled using these value labels may be misleading

or wrong.

When recode creates one or more new variables with a new classification, you may want to put value

labels on these new variables. It is possible to do this in three steps:

1. Create the new variables (recode . . ., gen()).

2. Define the value label (label define . . .).

3. Link the value label to the variables (label value . . .).

Inconsistencies may emerge from mistakes between steps 1 and 2. Especially when you make a

change to the recode 1, it is easy to forget to make a similar adjustment to the value label 2. Therefore,

recode can perform steps 2 and 3 itself.

Consider recoding a series of items with values

1 = strongly agree

2 = agree

3 = neutral

4 = disagree

5 = strongly disagree

into three items:

1 = positive (= “strongly agree” or “agree”)

2 = neutral

3 = negative (= “strongly disagree” or “disagree”)

This is accomplished by typing

. recode item* (1 2 = 1 positive) (3 = 2 neutral) (4 5 = 3 negative), pre(R)
> label(Item3)

which is much simpler and safer than

. recode item1-item7 (1 2 = 1) (3 = 2) (4 5 = 3), pre(R)

. label define Item3 1 positive 2 neutral 3 negative

. forvalues i = 1/7 {
label value Ritem‘i’ Item3

}

Example 1
As another example, let’s recode vote (voting intentions) for 12 political parties in the Dutch parlia-

ment into left, center, and right parties. We then tabulate the original and new variables so that we can

check that everything came out correctly.
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. use https://www.stata-press.com/data/r19/recodexmpl

. label list pparty
pparty:

1 pvda
2 cda
3 d66
4 vvd
5 groenlinks
6 sgp
7 rpf
8 gpv
9 aov

10 unie55
11 sp
12 cd

. recode polpref (1 5 11 = 1 left) (2 3 = 2 center) (4 6/10 12 = 3 right),
> gen(polpref3)
(2,020 differences between polpref and polpref3)
. tabulate polpref polpref3
pol party RECODE of polpref (pol party
choice if choice if elections)
elections left center right Total

pvda 622 0 0 622
cda 0 525 0 525
d66 0 634 0 634
vvd 0 0 930 930

groenlinks 199 0 0 199
sgp 0 0 54 54
rpf 0 0 63 63
gpv 0 0 30 30
aov 0 0 17 17

unie55 0 0 23 23
sp 45 0 0 45
cd 0 0 25 25

Total 866 1,159 1,142 3,167

Referring to the minimum and maximum in rules
recode allows you to refer to the minimum and maximum of a variable in the transformation rules.

The keywords min and max may be included as a from-value, as well as a to-value.

For example, we might divide age into age categories, storing in iage.
. recode age (0/9=1) (10/19=2) (20/29=3) (30/39=4) (40/49=5) (50/max=6),
> gen(iage)

or

. generate iage = 1 + irecode(age,9,19,29,39,49)

or

. generate iage = min(6, 1+int(age/10))

As another example, we could set all incomes less than 10,000 to 10,000 and those more than 200,000

to 200,000, storing the data in ninc.
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. recode inc (min/10000 = 10000) (200000/max = 200000), gen(ninc)

or

. generate ninc = inc

. replace ninc = 10000 if ninc<10000

. replace ninc = 200000 if ninc>200000 & !missing(ninc)

or

. generate ninc = max(min(inc,200000),10000)

or

. generate ninc = clip(inc,10000,200000)

Recoding missing values
You can also set up rules in terms of missing values, either as from-values or as to-values. Here

recode mimics the functionality of mvdecode and mvencode (see [D] mvencode), although these spe-

cialized commands execute much faster.

Say that we want to change missing (.) to 9, storing the data in X:
. recode x (.=9), gen(X)

or

. generate X = cond(x==., 9, x)

or

. mvencode x, mv(.=9) gen(X)

We want to change 9 to .a and 8 to ., storing the data in z.

. recode x (9=.a) (8=.), gen(z)

or

. generate z = cond(x==9, .a, cond(x==8, ., x))

or

. mvdecode x, mv(9=.a, 8=.) gen(z)

Recoding subsets of the data
We want to swap in x the values 1 and 2 only for those observations for which age>40, leaving all

other values unchanged. We issue the command

. recode x (1=2) (2=1) if age>40, gen(y)

or

. generate y = cond(x==1,2,cond(x==2,1,x)) if age>40

We are in for a surprise. y is missing for observations that do not satisfy the if condition. This

outcome is in accordance with how Stata’s data manipulation commands usually work. However, it

may not be what you intend. The copyrest option specifies that x be copied into y for all nonselected
observations:
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. recode x (1=2) (2=1) if age>40, gen(y) copy

or

. generate y = x

. recode y (1=2) (2=1) if age>40

or

. generate y = cond(age>40,cond(x==1,2,cond(x==2,1,x),x))

Otherwise rules
In all our examples so far, recode had an implicit rule that specified that values that did not meet

the conditions of any of the rules were to be left unchanged. recode also allows you to use an “other-
wise rule” to specify how untransformed values are to be transformed. recode supports three kinds of
otherwise conditions:

nonmissing all nonmissing not yet transformed

missing all missing values not yet transformed

else all values, missing or nonmissing, not yet transformed

The otherwise rules are to be specified after the standard transformation rules. nonmissing and

missing may be combined with each other, but not with else.

Consider a recode that swaps the values 1 and 2, transforms all other nonmissing values to 3, and

transforms all missing values (that is, sysmiss and the extended missing values) to . (sysmiss). We

could type

. recode x (1=2) (2=1) (nonmissing=3) (missing=.), gen(z)

or

. generate z = cond(x==1,2,cond(x==2,1,cond(!missing(x),3),.))

As a variation, if we had decided to recode all extended missing values to .a but to keep sysmiss .
distinct at ., we could have typed

. recode x (1=2) (2=1) (.=.) (nonmissing=3) (missing=.a), gen(z)

Test for overlapping rules
recode evaluates the rules from left to right. Once a value has been transformed, it will not be

transformed again. Thus if rules “overlap”, the first matching rule is applied, and further matches are

ignored. A common form of overlapping is illustrated in the following example:

... (1/5 = 1) (5/10 = 2)

Here 5 occurs in the condition parts of both rules. Because rules are matched left to right, 5 matches the

first rule, and the second rule will not be tested for 5, unless recode is instructed to test for rule overlap
with the test option.
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Other instances of overlapping rules usually arise because you mistyped the rules. For instance, you

are recoding voting intentions for parties in elections into three groups of parties (left, center, right), and

you type

... (1/5 = 1) ... (3 = 2)

Party 3 matches the conditions 1/5 and 3. Because recode applies the first matching rule, party 3 will
be mapped into party category 1. The second matching rule is ignored. It is not clear what was wrong in

this example. You may have included party 3 in the range 1/5 or mistyped 3 in the second rule. Either

way, recode did not notice the problem and your data analysis is in jeopardy. The test option specifies
that recode display a warning message if values are matched by more than one rule. With the test
option specified, recode also tests whether all rules were applied at least once and displays a warning
message otherwise. Rules that never matched any data may indicate that you mistyped a rule, although

some conditions may not have applied to (a selection of) your data.

Video example
How to create a categorical variable from a continuous variable

Acknowledgment
This version of recode was written by Jeroen Weesie of the Department of Sociology at Utrecht

University, The Netherlands.

Also see
[D] frunalias — Change storage type of alias variables

[D] generate — Create or change contents of variable

[D] mvencode — Change missing values to numeric values and vice versa

https://www.youtube.com/watch?v=XWVaXN2KwmA
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Description Quick start Menu Syntax Remarks and examples Also see

Description
rename changes the name of an existing variable old varname to new varname; the contents of the

variable are unchanged. Also see [D] rename group for renaming groups of variables.

Quick start
Change the name of v1 to var1

rename v1 var1

Also change the name of v2 to var2
rename v2 var2

Menu
Data > Data utilities > Rename groups of variables

Syntax
rename old varname new varname

collect is allowed; see [U] 11.1.10 Prefix commands.

Remarks and examples

Example 1
rename allows you to change variable names. Say that we have labor market data for siblings.

. use https://www.stata-press.com/data/r19/renamexmpl

. describe
Contains data from https://www.stata-press.com/data/r19/renamexmpl.dta
Observations: 277

Variables: 6 9 Jan 2024 11:57

Variable Storage Display Value
name type format label Variable label

famid float %9.0g
edu float %9.0g
exp float %9.0g
promo float %9.0g
sex float %9.0g sex
inc float %9.0g

Sorted by: famid
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We decide to rename the exp and inc variables.

. rename exp experience

. rename inc income

. describe
Contains data from https://www.stata-press.com/data/r19/renamexmpl.dta
Observations: 277

Variables: 6 9 Jan 2024 11:57

Variable Storage Display Value
name type format label Variable label

famid float %9.0g
edu float %9.0g
experience float %9.0g
promo float %9.0g
sex float %9.0g sex
income float %9.0g

Sorted by: famid
Note: Dataset has changed since last saved.

The exp variable is now called experience, and the inc variable is now called income.

Also see
[D] rename group — Rename groups of variables

[D] generate — Create or change contents of variable

[D] varmanage — Manage variable labels, formats, and other properties
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Description Quick start
Menu Syntax
Options for renaming variables Options for changing the case of groups of variable names
Remarks and examples Stored results
Also see

Description
rename changes the names of existing variables to the new names specified. See [D] rename for the

base rename syntax. Documented here is the advanced syntax for renaming groups of variables.

Quick start
Change the name of v1 to var1 and v2 to var2

rename (v1 v2) (var1 var2)

Change the name of V1 to v1 and V2 to v2
rename V1 V2, lower

Add suffix old to variables v1, v2, . . . for one or more digits
rename v# =old

Remove suffix old from all variables ending in old
rename *old *

Remove prefix old from all variables beginning with old
rename old* *

Note: A complete list of rules for renaming groups of variables appears below the syntax diagram.

Menu
Data > Data utilities > Rename groups of variables
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Syntax
Rename a single variable

rename old new [ , options1 ]

Rename groups of variables

rename (old1 old2 . . .) (new1 new2 . . .) [ , options1 ]

Change the case of groups of variable names

rename old1 old2 . . ., { upper | lower | proper } [ options2 ]

where old and new specify the existing and the new variable names. The rules for specifying them are

1. rename stat status: Renames stat to status.

Rule 1: This is the same rename command documented in [D] rename, with which you

are familiar.

2. rename (stat inc) (status income): Renames stat to status and inc to income.

Rule 2: Use parentheses to specify multiple variables for old and new.

3. rename (v1 v2) (v2 v1): Swaps v1 and v2.

Rule 3: Variable names may be interchanged.

4. rename (a b c) (b c a): Swaps names. Renames a to b, b to c, and c to a.

Rule 4: There is no limit to how many names may be interchanged.

5. rename (a b c) (c b a): Renames a to c and c to a, but leaves b as is.

Rule 5: Renaming variables to themselves is allowed.

6. rename jan* *1: Renames all variables starting with jan to instead end with 1, for example,
janstat to stat1, janinc to inc1, etc.

Rule 6.1: * in old selects the variables to be renamed. * means that zero or more characters
go here.

Rule 6.2: * in new corresponds with * in old and stands for the text that * in old matched.

* in new or old is called a wildcard character, or just a wildcard.

rename jan* *: Removes prefix jan.

rename *jan *: Removes suffix jan.

7. rename jan? ?1: Renames all variables starting with jan and ending in one character by re-
moving jan and adding 1 to the end; for example, jans is renamed to s1, but janstat remains
unchanged. ? means that exactly one character goes here, just as * means that zero or more
characters go here.

Rule 7: ? means exactly one character, ?? means exactly two characters, etc.
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8. rename *jan* **: Removes prefix, midfix, and suffix jan, for example, janstat to stat,
injanstat to instat, and subjan to sub.

Rule 8: You may specify more than one wildcard in old and in new. They correspond in

the order given.

rename jan*s* *s*1: Renames all variables that start with jan and contain s to instead end
in 1, dropping the jan, for example, janstat to stat1 and janest to est1, but not janinc
to inc1.

9. rename *jan* *: Removes jan and whatever follows from variable names, thereby renaming

statjan to stat, incjan71 to inc, . . . .

Rule 9: You may specify more wildcards in old than in new.

10. rename *jan* .*: Removes jan and whatever precedes it from variable names, thereby re-

naming midjaninc to inc, . . . .

Rule 10: Wildcard . (dot) in new skips over the corresponding wildcard in old.

11. rename *pop jan=: Adds prefix jan to all variables ending in pop, for example, age1pop to
janage1pop, . . . .

rename (status bp time) admit=: Renames status to admitstatus, bp to admitbp, and
time to admittime.

rename whatever pre=: Adds prefix pre to all variables selected by whatever, however what-
ever is specified.

Rule 11: Wildcard = in new specifies the original variable name.

rename whatever =jan: Adds suffix jan to all variables selected by whatever.

rename whatever pre=fix: Adds prefix pre and suffix fix to all variables selected by what-
ever.

12. rename v# stat#: Renames v1 to stat1, v2 to stat2, . . . , v10 to stat10, . . . .

Rule 12.1: # is like * but for digits. # in old selects one or more digits.

Rule 12.2: # in new copies the digits just as they appear in the corresponding old.

13. rename v(#) stat(#): Renames v1 to stat1, v2 to stat2, . . . , but does not rename v10, . . . .

Rule 13.1: (#) in old selects exactly one digit. Similarly, (##) selects exactly two digits,

and so on, up to ten # symbols.

Rule 13.2: (#) in new means reformat to one or more digits. Similarly, (##) reformats to
two or more digits, and so on, up to ten # symbols.

rename v(##) stat(##): Renames v01 to stat01, v02 to stat02, . . . , v10 to stat10, . . . ,
but does not rename v0, v1, v2, . . . , v9, v100, . . . .
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14. rename v# v(##): Renames v1 to v01, v2 to v02, . . . , v10 to v10, v11 to v11, . . . , v100 to
v100, v101 to v101, . . . .

Rule 14: You may combine #, (#), (##), . . . in old with any of #, (#), (##), . . . in new.

rename v(##) v(#): Renames v01 to v1, v02 to v2, . . . , v10 to v10, . . . , but does not rename
v001, etc.

rename stat(##) stat 20(##): Renames stat10 to stat 2010, stat11 to stat 2011,
. . . , but does not rename stat1, stat2, . . . .

rename stat(#) to stat 200(#): Renames stat1 to stat 2001, stat2 to stat 2002,
. . . , but does not rename stat10 or stat 2010.

15. rename v# (a b c): Renames v1 to a, v10 to b, and v2 to c if variables v1, v10, v2 appear
in that order in the data. Because three variables were specified in new, v# in old must select

three variables or rename will issue an error.

Rule 15.1: You may mix syntaxes. Note that the explicit and implied numbers of variables

must agree.

rename v# (a b c), sort: Renames (for instance) v1 to a, v2 to b, and v10 to c.

Rule 15.2: The sort option places the variables selected by old in order and does so smartly.
In the case where #, (#), (##), . . . appear in old, sort places the variables in

numeric order.

rename v* (a b c), sort: Renames (for instance) valpha to a, vbeta to b, and vgamma to
c regardless of the order of the variables in the data.

Rule 15.3: In the case where * or ? appears in old, sort places the variables in alphabetical
order.

16. rename v# v#, renumber: Renames (for instance) v9 to v1, v10 to v2, v8 to v3, . . . , assuming
that variables v9, v10, v8, . . . appear in that order in the data.

Rule 16.1: The renumber option resequences the numbers.

rename v# v#, renumber sort: Renames (for instance) v8 to v1, v9 to v2, v10 to v3, . . . .
Concerning option sort, see rule 15.2 above.

rename v# v#, renumber(10) sort: Renames (for instance) v8 to v10, v9 to v11, v10 to

v12, . . . .

Rule 16.2: The renumber(#) option allows you to specify the starting value.

17. rename v* v#, renumber: Renames (for instance) valpha to v1, vgamma to v2, vbeta to v3,
. . . , assuming variables valpha, vgamma, vbeta, . . . appear in that order in the data.

Rule 17: # in new may correspond to *, ?, #, (#), (##), . . . in old.

rename v* v#, renumber sort: Renames (for instance) valpha to v1, vbeta to v2, vgamma
to v3, . . . . Also see rule 15.3 above concerning the sort option.

rename *stat stat#, renumber: Renames, for instance, janstat to stat1, febstat to

stat2, . . . . Note that # in new corresponds to * in old, just as in the previous example.

rename *stat stat(##), renumber: Renames, for instance, janstat to stat01, febstat
to stat02, . . . .
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rename *stat stat#, renumber(0): Renames, for instance, janstat to stat0, febstat to
stat1, . . . .

rename *stat stat#, renumber sort: Renames, for instance, aprstat to stat1, augstat
to stat2, . . . .

18. rename (a b c) v#, addnumber: Renames a to v1, b to v2, and c to v3.

Rule 18: The addnumber option allows you to add numbering. More formally, if you spec-

ify addnumber, you may specify one more wildcard in new than is specified in

old, and that extra wildcard must be #, (#), (##), . . . .

19. rename a(#)(#) a(#)[2](#)[1]: Renames a12 to a21, a13 to a31, a14 to a41, . . . , a21 to
a12, . . . .

Rule 19.1: You may specify explicit subscripts with wildcards in new to make explicit its

matching wildcard in old. Subscripts are specified in square brackets after a wild-

card in new. The number refers to the number of the wildcard in old.

rename *stat* *[2]stat*[1]: Swaps prefixes and suffixes; it renames bpstata to

astatbp, rstater to erstatr, etc.

rename *stat* *[2]stat*: Does the same as above; it swaps prefixes and suffixes.

Rule 19.2: After specifying a subscripted wildcard, subsequent unsubscripted wildcards cor-

respond to the same wildcards in old as they would if you had removed the sub-

scripted wildcards altogether.

rename v#a# v# #[1] a#[2]: Renames v1a1 to v1 1 a1, v1a2 to v1 1 a2, . . . , v2a1 to
v2 2 a1, . . . .

Rule 19.3: Using subscripts, you may refer to the same wildcard in old more than once.

Subscripts are commonly used to interchange suffixes at the ends of variable names. For in-

stance, you have districts and schools within them, and many of the variable names in your data

match * # #. The first number records district and the second records school within district.
To reverse the ordering, you type rename * # # * #[3] #[2]. When specifying subscripts,

you refer to them by the position number in the original name. For example, our original name

was * # # so [1] refers to *, [2] refers to the first #, and [3] refers to the last #.

Specifier Meaning in old

* 0 or more characters

? 1 character exactly

# 1 or more digits

(#) 1 digit exactly

(##) 2 digits exactly

(###) 3 digits exactly

. . .

(##########) 10 digits exactly
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May correspond

Specifier in old with Meaning in new

* *, ?, #, (#), . . . copies matched text

? ? copies a character

# #, (#), . . . copies a number as is

(#) #, (#), . . . reformats to 1 or more digits

(##) #, (#), . . . reformats to 2 or more digits

. . .

(##########) #, (#), . . . reformats to 10 digits

. *, ?, #, (#), . . . skip

= nothing copies entire variable name

Specifier # in any of its guises may also correspond with * or ? if the renumber option is specified.

options1 Description

addnumber add sequential numbering to end

addnumber(#) addnumber, starting at #
renumber renumber sequentially

renumber(#) renumber, starting at #
sort sort before numbering

dryrun do not rename, but instead produce a report

r store variable names in r() for programming use

These options correspond to the first and second syntaxes.

options2 Description

upper uppercase ASCII letters in variable names (UPPERCASE)

lower lowercase ASCII letters in variable names (lowercase)

proper propercase ASCII letters in variable names (Propercase)

dryrun do not rename, but instead produce a report

r store variable names in r() for programming use

These options correspond to the third syntax. One of upper, lower, or proper must be specified.

Options for renaming variables
addnumber and addnumber(#) specify to add a sequence number to the variable names. See item 18 of

Syntax. If # is not specified, the sequence number begins with 1.

renumber and renumber(#) specify to replace existing numbers or text in a set of variable names with
a sequence number. See items 16 and 17 of Syntax. If # is not specified, the sequence number begins

with 1.

sort specifies that the existing names be placed in order before the renaming is performed. See item 15

of Syntax for details. This ordering matters only when addnumber or renumber is also specified or
when specifying a list of variable names for old or new.

dryrun specifies that the requested renaming not be performed but instead that a table be displayed

showing the old and new variable names. It is often a good idea to specify this option before actually

renaming the variables.
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r is a programmer’s option that requests that old and new variable names be stored in r(). This option
may be specified with or without dryrun.

Options for changing the case of groups of variable names
upper, lower, and proper specify how the variables are to be renamed. upper specifies that ASCII

letters in variable names be changed to uppercase; lower, to lowercase; and proper, to having the
first ASCII letter capitalized and the remaining ASCII letters in lowercase. One of these three options

must be specified. Note that these options do not handle Unicode characters beyond the plain ASCII

range. To change Unicode characters in the variable names to uppercase, lowercase, or titlecase, use

functions ustrupper(), ustrlower(), and ustrtitle(). See the technical note in Remarks and
examples.

dryrun and r are the same options as documented directly above.

Remarks and examples
Remarks are presented under the following headings:

Advice
Explanation
* matches 0 or more characters; use ?* to match 1 or more
* is greedy
# is greedier

Advice
1. Read [D] rename before reading this entry.

2. Read items 1–19 (the Rules) under Syntax above before reading the rest of these remarks.

3. Specify the dryrun option when using complicated patterns. dryrun presents a table of the
old and new variable names rather than actually renaming the variables, so you can check that

the patterns you have specified produce the desired result.

Explanation
The rename command has three syntaxes; see Syntax. See [D] rename for details on the first syntax,

renaming a single variable. The remaining two syntaxes are for renaming groups of variables and for

changing the case of groups of variables. These two syntaxes are the ones we will focus on for the

remainder of this manual entry. Here they are again:

rename (old1 old2 . . .) (new1 new2 . . .)

rename old1 old2 . . ., { upper | lower | proper }

The second syntax shown above merely changes the case of variables, such as MPG or mpg or Mpg. For
instance, to rename all variables to be lowercase, type

rename *, lower
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The first syntax shown above is more daunting and more powerful. The first syntax has two styles,

with and without parentheses:

rename (bp 0 bp 1) (bp 1 bp 0)

rename pop*80 pop * 1980

You can combine the two styles whenever it is convenient.

rename v* (mpg weight displacement)

rename (mpg weight displacement) v#, addnumber

rename (bp 0 bp 1 pop*80) (bp 1 bp 0 pop * 1980)

We summarize all of this by simply writing the syntax as

rename old new, ...

and referring to old and new.

Wildcards play different but related roles in old and new. When you type

rename pop*80 pop * 1980

the wildcard (* in this case) in old specifies which variables are to be renamed, and in new the wildcard

stands for the text that appears in the variables to be renamed. In this case, there is just one wildcard, but

sometimes there are more.

In old, * means zero or more characters go here. Specifying pop*80 means find all variables that

begin with pop and end in 80. Say that doing so results in three variables being found: poplt2080,
pop204080, and pop41plus80. To understand how * is interpreted in new, it is useful to write the three
found variables like this:

pop*80 = pop + * + 80
poplt2080 = pop + lt20 + 80
pop204080 = pop + 2040 + 80

pop41plus80 = pop + 41plus + 80

* in new refers to what was found by * in old. So the new pattern pop * 1980 will assemble the
following new variable names for each of the old names:

old variable * is → pop * 1980 is
poplt2080 lt20 → pop lt20 1980
pop204080 2040 → pop 2040 1980

pop41plus80 41plus → pop 41plus 1980

Thus typing rename pop*80 pop * 1980 is equivalent to typing

rename poplt2080 pop_lt20_1980

rename pop204080 pop_2040_1980

rename pop41plus80 pop_41plus_1980
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There are three basic wildcard characters for specification in old, and they filter the variables to be

renamed:

* 0 or more characters go here

? exactly 1 character goes here

# number goes here (this one comes in 11 flavors!)

The generic # listed above collects all the digits. The other 10 flavors are (#), which means exactly
1 digit goes here; (##), which means exactly 2 digits go here; and so on, up to exactly 10 digits go here.

All the above, the 3+ 10 = 13 wildcard characters, can appear in new, where each has a different but

related meaning:

* copy corresponding text from old as is

? copy corresponding character from old

# copy corresponding number from old as is

(#) reformat corresponding number from old to 1 or more digits

(##) reformat corresponding number from old to 2 or more digits

. . .

In addition, new allows two special wildcard characters of its own:

= copy the entire original variable name

. skip the corresponding text in old

With the above information and the definitions of the options, you can derive on your own the first

eighteen rules given in Syntax. The nineteenth rule concerns subscripting. In new, you can specify

explicitly to which wildcard in old you are referring. You can type

rename pop*80 pop_*_1980

or you can type

rename pop*80 pop_*[1]_1980

thus making it explicit that the * in new is referring to the text matched by the first wildcard in old. That

* corresponds to * is hardly surprising, especially when there is only one * in old, so let’s complicate the
example:

rename v*_* outcome_*_*

You can type that command, or you can type

rename v*_* outcome_*[1]_*[2]

More importantly, you can specify the subscripts in whatever order you wish, so you could type

rename v*_* outcome_*[2]_*[1]

That command would interchange the text in old matched by the two wildcards.
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* matches 0 or more characters; use ?* to match 1 or more
l*a in old matches louisiana and it matches la because * means zero or more characters. What if

you want to match louisiana and lymphoma but not la?

For instance, say you have from–to variables named from*to* and from variables named from*.
The problem is that variable fromtoledo would match from*to*. To avoid that, rather than describing
the from–to pattern from*to*, you use from?*to?*. Thus you could type

rename from?*to?* from_?*_to_?*

?* is not a secret wildcard we have yet to tell you about—it is merely the two wildcards ? and * in
sequence. ? means exactly one character goes here, and * means zero or more characters go here, so ?*
means one or more characters go here. In the same way, ??* means two or more characters go here, and
so on.

* is greedy
Consider the existing variable assessment and pattern *s* in old. Clearly, *s* matches

assessment, but how? That is, among these possibilities,

assessment = * s *

a + s + sessment
as + s + essment
asse + s + sment
asses + s + ment

which one is true? We need to know the answer to know what each of the corresponding wildcards in

new will mean. The answer is that * is greedy, and the pattern is matched from left to right. As we move

through the variable name from left to right, at each step * takes the most characters possible, subject to
the pattern working out.

* s *

assessment = asses + s + ment

Thus the first * in new would stand for asses and the second would stand for ment.

The “subject to the pattern working out” part is important. Variable sunglasses would be broken
out by *s* as

* s *

sunglasses = sunglasse + s + nothing

But by *s?*, the breakout would be

* s ? *

sunglasses = sunglas + s + e + s

# is greedier
Wildcard # in old is greedier than *, which means that when * and # are up against each other, #wins.
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Consider the pattern *# and the variable name v1234. Given that * is greedy and that the # specifies
one or more digits, the possible solutions are

v1234 = * #

v123 + 4
v12 + 34
v1 + 234
v + 1234

The solution chosen by rename is the last one, v + 1234. Thus you can type

rename *# period_#[2]

without concern that some digits might be lost.

Technical note
You cannot directly use functions ustrupper(), ustrlower(), and ustrtitle() in your rename

command. You must first create a local macro with the new variable name and then use that macro in

your rename command. For example,

. local new = ustrlower(Ubicación)

. rename Ubicación ‘new’

You can use multiple local macros in a varlist. For example,

. local new1 = ustrlower(Ubicación1)

. local new2 = ustrlower(Ubicación2)

. rename (Ubicación1 Ubicación2) (‘new1’ ‘new2’)

For more information about local macros, see [U] 18.3.1 Local macros.

Stored results
rename stores nothing in r() by default. If the r option is specified, then rename stores the following

in r():

Scalars

r(n) number of variables to be renamed

Macros

r(oldnames) original variable names

r(newnames) new variable names

Variables that are renamed to themselves are omitted from the recorded lists.

Also see
[D] rename — Rename variable

[D] generate — Create or change contents of variable

[D] varmanage — Manage variable labels, formats, and other properties
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Acknowledgment
References Also see

Description
reshape converts data from wide to long form and vice versa.

set reshape favor specifies whether, when performing the data conversion, reshape should favor
conserving memory (memory) or running quickly (speed). Historically, reshape favored conserving

memory. Switching to speedwill make reshape run faster at the cost of consuming more memory. You
can easily revert to the default method for reshaping the data (default).

Quick start
Create v from 2 time periods stored in v1 and v2 for observations identified by idvar and add tvar

identifying time period

reshape long v, i(idvar) j(tvar)

Create v from 2 subobservations stored in v1 and v2 for observations identified by idvar and add subobs
identifying each subobservation

reshape long v, i(idvar) j(subobs)

Same as above, but allow subobs to contain strings
reshape long v, i(idvar) j(subobs) string

Undo results from above

reshape wide

Create v1 and v2 from v with observations identified by idvar and time period identified by tvar
reshape wide v, i(idvar) j(tvar)

Undo results from above

reshape long

Create var and time identifier tvar from v1ar and v2ar with observation identifier idvar
reshape long v@ar, i(idvar) j(tvar)

Menu
Data > Create or change data > Other variable-transformation commands > Convert data between wide and long

805
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Syntax
Overview

long wide

i j stub i stub1 stub2

1 1 4.1 reshape 1 4.1 4.5
1 2 4.5 ←−−−−−−−−→ 2 3.3 3.0
2 1 3.3
2 2 3.0

To go from long to wide:

j existing variable

/
reshape wide stub, i(i) j(j)

To go from wide to long:

reshape long stub, i(i) j(j)
\
j new variable

To go back to long after using reshape wide:

reshape long

To go back to wide after using reshape long:

reshape wide

Basic syntax

Convert data from wide form to long form

reshape long stubnames , i(varlist) [ options ]

Convert data from long form to wide form

reshape wide stubnames , i(varlist) [ options ]

Convert data back to long form after using reshape wide

reshape long

Convert data back to wide form after using reshape long

reshape wide

List problem observations when reshape fails

reshape error

Specify default method for reshaping the data

set reshape favor { default | memory | speed } [ , permanently ]
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options Description

∗ i(varlist) use varlist as the ID variables

j(varname [ values ]) long→wide: varname, existing variable
wide→long: varname, new variable
optionally specify values to subset varname

string varname is a string variable (default is numeric)

favor(favor) specify reshape method; favor may be memory or speed
∗ i(varlist) is required.
reshape does not allow alias variables; see [D] frunalias for advice on how to get around this restriction.

values is #[ -# ] [ #[ -# ] [ . . . ] ] if varname is numeric (default)

”string” [ ”string” [ . . . ] ] if varname is string

stubnames are variable names (long→wide), or stubs of variable names (wide→long), and either way,

may contain @, denoting where 𝑗 appears or is to appear in the name.
In the example above, when we wrote “reshape wide stub”, we could have written “reshape wide

stub@” because 𝑗 by default ends up as a suffix. Had we written stu@b, then the wide variables would
have been named stu1b and stu2b.

Advanced syntax

reshape i varlist

reshape j varname [ values ] [ , string ]

reshape xij fvarnames [ , atwl(chars) ]

reshape xi [ varlist ]

reshape favor { memory | speed }

reshape [ query ]

reshape clear

Options
i(varlist) specifies the variables whose unique values denote a logical observation. i() is required.

j(varname [ values ]) specifies the variable whose unique values denote a subobservation. values lists
the unique values to be used from varname, which typically are not explicitly stated because reshape
will determine them automatically from the data.

string specifies that j() may contain string values.

atwl(chars), available only with the advanced syntax and not shown in the dialog box, specifies that
plainASCII chars be substituted for the @ character when converting the data from wide to long form.

favor(favor) specifies the method for reshaping the data. Historically, reshapewas coded to minimize
its use of memory; this is favor(memory). With favor(speed), the focus is to accomplish the

reshape faster at the cost of using more memory.
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permanently specifies that, in addition to making the change right now, the setting be remembered and
become the default setting when you invoke Stata.

Remarks and examples
Remarks are presented under the following headings:

Description of basic syntax
Wide and long data forms
Avoiding and correcting mistakes
reshape long and reshape wide without arguments
Missing variables
Advanced issues with basic syntax: i()
Advanced issues with basic syntax: j()
Advanced issues with basic syntax: xij
Advanced issues with basic syntax: String identifiers for j()
Advanced issues with basic syntax: Second-level nesting
Description of advanced syntax
Why favor memory over speed?
Video examples

See Mitchell (2020, chap. 9) for information and examples using reshape.

Description of basic syntax
Before using reshape, you need to determine whether the data are in long or wide form. You also

must determine the logical observation (i) and the subobservation (j) by which to organize the data.
Suppose that you had the following data, which could be organized in wide or long form as follows:

i ........ 𝑋𝑖𝑗 ........ i j 𝑋𝑖𝑗
id sex inc80 inc81 inc82 id year sex inc

1 0 5000 5500 6000 1 80 0 5000
2 1 2000 2200 3300 1 81 0 5500
3 0 3000 2000 1000 1 82 0 6000

2 80 1 2000
2 81 1 2200
2 82 1 3300
3 80 0 3000
3 81 0 2000
3 82 0 1000

Given these data, you could use reshape to convert from one form to the other:

. reshape long inc, i(id) j(year) /* goes from left form to right */

. reshape wide inc, i(id) j(year) /* goes from right form to left */

Because we did not specify sex in the command, Stata assumes that it is constant within the logical

observation, here id.

Wide and long data forms
Think of the data as a collection of observations 𝑋𝑖𝑗, where 𝑖 is the logical observation, or group

identifier, and 𝑗 is the subobservation, or within-group identifier.
Wide-form data are organized by logical observation, storing all the data on a particular observation

in one row. Long-form data are organized by subobservation, storing the data in multiple rows.
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Example 1
For example, we might have data on a person’s ID, gender, and annual income over the years

1980–1982. We have two 𝑋𝑖𝑗 variables with the data in wide form:

. use https://www.stata-press.com/data/r19/reshape1

. list

id sex inc80 inc81 inc82 ue80 ue81 ue82

1. 1 0 5000 5500 6000 0 1 0
2. 2 1 2000 2200 3300 1 0 0
3. 3 0 3000 2000 1000 0 0 1

To convert these data to the long form, we type

. reshape long inc ue, i(id) j(year)
(j = 80 81 82)
Data Wide -> Long

Number of observations 3 -> 9
Number of variables 8 -> 5
j variable (3 values) -> year
xij variables:

inc80 inc81 inc82 -> inc
ue80 ue81 ue82 -> ue

There is no variable named year in our original, wide-form dataset. year will be a new variable in our

long dataset. After this conversion, we have

. list, sep(3)

id year inc ue sex

1. 1 80 5000 0 0
2. 1 81 5500 1 0
3. 1 82 6000 0 0

4. 2 80 2000 1 1
5. 2 81 2200 0 1
6. 2 82 3300 0 1

7. 3 80 3000 0 0
8. 3 81 2000 0 0
9. 3 82 1000 1 0
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We can return to our original, wide-form dataset by using reshape wide.

. reshape wide inc ue, i(id) j(year)
(j = 80 81 82)
Data Long -> Wide

Number of observations 9 -> 3
Number of variables 5 -> 8
j variable (3 values) year -> (dropped)
xij variables:

inc -> inc80 inc81 inc82
ue -> ue80 ue81 ue82

. list

id inc80 ue80 inc81 ue81 inc82 ue82 sex

1. 1 5000 0 5500 1 6000 0 0
2. 2 2000 1 2200 0 3300 0 1
3. 3 3000 0 2000 0 1000 1 0

Converting from wide to long creates the j (year) variable. Converting back from long to wide drops

the j (year) variable.

Technical note
If your data are in wide form and you do not have a group identifier variable (the i(varlist) required

option), you can create one easily by using generate; see [D] generate. For instance, in the last example,
if we did not have the id variable in our dataset, we could have created it by typing

. generate id = _n

Avoiding and correcting mistakes
reshape often detects when the data are not suitable for reshaping; an error is issued, and the data

remain unchanged.

Example 2
The following wide data contain a mistake:

. use https://www.stata-press.com/data/r19/reshape2, clear

. list

id sex inc80 inc81 inc82

1. 1 0 5000 5500 6000
2. 2 1 2000 2200 3300
3. 3 0 3000 2000 1000
4. 2 0 2400 2500 2400
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. reshape long inc, i(id) j(year)
variable id does not uniquely identify the observations

Your data are currently wide. You are performing a reshape long. You
specified i(id) and j(year). In the current wide form, variable id should
uniquely identify the observations. Remember this picture:

long wide

i j a b i a1 a2 b1 b2
<--- reshape --->

1 1 1 2 1 1 3 2 4
1 2 3 4 2 5 7 6 8
2 1 5 6
2 2 7 8

Type reshape error for a list of the problem observations.
r(9);

The i variable must be unique when the data are in the wide form; we typed i(id), yet we have 2
observations for which id is 2. (Is person 2 a male or female?)

Example 3
It is not a mistake when the i variable is repeated when the data are in long form, but the following

data have a similar mistake:

. use https://www.stata-press.com/data/r19/reshapexp1

. list

id year sex inc

1. 1 80 0 5000
2. 1 81 0 5500
3. 1 81 0 5400
4. 1 82 0 6000

. reshape wide inc, i(id) j(year)
values of variable year not unique within id

Your data are currently long. You are performing a reshape wide. You
specified i(id) and j(year). There are observations within i(id) with the
same value of j(year). In the long data, variables i() and j() together
must uniquely identify the observations.

long wide

i j a b i a1 a2 b1 b2
<--- reshape --->

1 1 1 2 1 1 3 2 4
1 2 3 4 2 5 7 6 8
2 1 5 6
2 2 7 8

Type reshape error for a list of the problem variables.
r(9);

In the long form, i(id) does not have to be unique, but j(year) must be unique within i; otherwise,
what is the value of inc in 1981 for which id==1?
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reshape told us to type reshape error to view the problem observations.

. reshape error
(j = 80 81 82)
i (id) indicates the top-level grouping such as subject id.
j (year) indicates the subgrouping such as time.
The data are in the long form; j should be unique within i.
There are multiple observations on the same year within id.
The following 2 of 4 observations have repeated year values:

id year

2. 1 81
3. 1 81

(data now sorted by id year)

Example 4
Consider some long-form data that have no mistakes. We list the first 4 observations.

. use https://www.stata-press.com/data/r19/reshape6

. list in 1/4

id year sex inc ue

1. 1 80 0 5000 0
2. 1 81 0 5500 1
3. 1 82 0 6000 0
4. 2 80 1 2000 1

Say that when converting the data to wide form, however, we forget to mention the ue variable (which
varies within person).

. reshape wide inc, i(id) j(year)
(j = 80 81 82)
variable ue not constant within id

Your data are currently long. You are performing a reshape wide. You
typed something like

. reshape wide a b, i(id) j(year)

There are variables other than a, b, id, year in your data. They must be
constant within id because that is the only way they can fit into wide
data without loss of information.
The variable or variables listed above are not constant within id.
Perhaps the values are in error. Type reshape error for a list of the
problem observations.
Either that, or the values vary because they should vary, in which case
you must either add the variables to the list of xij variables to be
reshaped, or drop them.

r(9);
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Here reshape observed that ue was not constant within id and so could not restructure the data so that
there were single observations on id. We should have typed

. reshape wide inc ue, i(id) j(year)

In summary, there are three cases in which reshape will refuse to convert the data:

1. The data are in wide form and i is not unique.

2. The data are in long form and j is not unique within i.

3. The data are in long form and an unmentioned variable is not constant within i.

Example 5
With somemistakes, reshapewill probably convert the data and produce a surprising result. Suppose

that we forget to mention that the ue variable varies within id in the following wide data:

. use https://www.stata-press.com/data/r19/reshape1

. list

id sex inc80 inc81 inc82 ue80 ue81 ue82

1. 1 0 5000 5500 6000 0 1 0
2. 2 1 2000 2200 3300 1 0 0
3. 3 0 3000 2000 1000 0 0 1

. reshape long inc, i(id) j(year)
(j = 80 81 82)
Data Wide -> Long

Number of observations 3 -> 9
Number of variables 8 -> 7
j variable (3 values) -> year
xij variables:

inc80 inc81 inc82 -> inc

. list, sep(3)

id year inc sex ue80 ue81 ue82

1. 1 80 5000 0 0 1 0
2. 1 81 5500 0 0 1 0
3. 1 82 6000 0 0 1 0

4. 2 80 2000 1 1 0 0
5. 2 81 2200 1 1 0 0
6. 2 82 3300 1 1 0 0

7. 3 80 3000 0 0 0 1
8. 3 81 2000 0 0 0 1
9. 3 82 1000 0 0 0 1

We did not state that ue varied within i, so the variables ue80, ue81, and ue82 were left as is.

reshape did not complain. There is no real problem here because no information has been lost. In fact,

this may actually be the result we wanted. Probably, however, we simply forgot to include ue among the
𝑋𝑖𝑗 variables.
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If you obtain an unexpected result, here is how to undo it:

1. If you typed reshape long ... to produce the result, type reshape wide (without arguments)
to undo it.

2. If you typed reshape wide ... to produce the result, type reshape long (without arguments)
to undo it.

So, we can type

. reshape wide

to get back to our original, wide-form data and then type the reshape long command that we intended:

. reshape long inc ue, i(id) j(year)

reshape long and reshape wide without arguments
Whenever you type a reshape long or reshape wide command with arguments, reshape remem-

bers it. Thus you might type

. reshape long inc ue, i(id) j(year)

and work with the data like that. You could then type

. reshape wide

to convert the data back to the wide form. Then later you could type

. reshape long

to convert them back to the long form. If you save the data, you can even continue using reshape wide
and reshape long without arguments during a future Stata session.

Be careful. If you create new 𝑋𝑖𝑗 variables, you must tell reshape about them by typing the full

reshape command, although no real damage will be done if you forget. If you are converting from long

to wide form, reshape will catch your error and refuse to make the conversion. If you are converting
from wide to long, reshape will convert the data, but the result will be surprising: remember what

happened when we forgot to mention the ue variable and ended up with ue80, ue81, and ue82 in our
long data; see example 5. You can reshape long to undo the unwanted change and then try again.

Missing variables
When converting data from wide form to long form, reshape does not demand that all the variables

exist. Missing variables are treated as variables with missing observations.
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Example 6
Let’s drop ue81 from the wide form of the data:

. use https://www.stata-press.com/data/r19/reshape1, clear

. drop ue81

. list

id sex inc80 inc81 inc82 ue80 ue82

1. 1 0 5000 5500 6000 0 0
2. 2 1 2000 2200 3300 1 0
3. 3 0 3000 2000 1000 0 1

. reshape long inc ue, i(id) j(year)
(j = 80 81 82)
(variable ue81 not found)
Data Wide -> Long

Number of observations 3 -> 9
Number of variables 7 -> 5
j variable (3 values) -> year
xij variables:

inc80 inc81 inc82 -> inc
ue80 ue81 ue82 -> ue

. list, sep(3)

id year inc ue sex

1. 1 80 5000 0 0
2. 1 81 5500 . 0
3. 1 82 6000 0 0

4. 2 80 2000 1 1
5. 2 81 2200 . 1
6. 2 82 3300 0 1

7. 3 80 3000 0 0
8. 3 81 2000 . 0
9. 3 82 1000 1 0

reshape placed missing values where ue81 values were unavailable. If we reshaped these data back to
wide form by typing

. reshape wide inc ue, i(id) j(year)

the ue81 variable would be created and would contain all missing values.

Advanced issues with basic syntax: i()
The i() option can indicate one i variable (as our past examples have illustrated) or multiple vari-

ables. An example of multiple i variables would be hospital ID and patient ID within each hospital.

. reshape ... , i(hid pid)

Unique pairs of values for hid and pid in the data define the grouping variable for reshape.
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Advanced issues with basic syntax: j()
The j() option takes a variable name (as our past examples have illustrated) or a variable name and

a list of values. When the values are not provided, reshape deduces them from the data. Specifying the

values with the j() option is rarely needed.

reshape never makes a mistake when the data are in long form and you type reshape wide. The
values are easily obtained by tabulating the j variable.

reshape can make a mistake when the data are in wide form and you type reshape long if your
variables are poorly named. Say that you have the inc80, inc81, and inc82 variables, recording income
in each of the indicated years, and you have a variable named inc2, which is not income but indicates
when the area was reincorporated. You type

. reshape long inc, i(id) j(year)

reshape sees the inc2, inc80, inc81, and inc82 variables and decides that there are four groups in
which j = 2, 80, 81, and 82.

The easiest way to solve the problem is to rename the inc2 variable to something other than “inc”
followed by a number; see [D] rename.

You can also keep the name and specify the j values. To perform the reshape, you can type

. reshape long inc, i(id) j(year 80-82)

or

. reshape long inc, i(id) j(year 80 81 82)

You can mix the dash notation for value ranges with individual numbers. reshape would understand
80 82-87 89 91-95 as a valid values specification.

At the other extreme, you can omit the j() option altogether with reshape long. If you do, the j
variable will be named j.

Advanced issues with basic syntax: xij
When specifying variable names, you may include @ characters to indicate where the numbers go.

Example 7
Let’s reshape the following data from wide to long form:

. use https://www.stata-press.com/data/r19/reshape3, clear

. list

id sex inc80r inc81r inc82r ue80 ue81 ue82

1. 1 0 5000 5500 6000 0 1 0
2. 2 1 2000 2200 3300 1 0 0
3. 3 0 3000 2000 1000 0 0 1
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. reshape long inc@r ue, i(id) j(year)
(j = 80 81 82)
Data Wide -> Long

Number of observations 3 -> 9
Number of variables 8 -> 5
j variable (3 values) -> year
xij variables:

inc80r inc81r inc82r -> incr
ue80 ue81 ue82 -> ue

. list, sep(3)

id year incr ue sex

1. 1 80 5000 0 0
2. 1 81 5500 1 0
3. 1 82 6000 0 0

4. 2 80 2000 1 1
5. 2 81 2200 0 1
6. 2 82 3300 0 1

7. 3 80 3000 0 0
8. 3 81 2000 0 0
9. 3 82 1000 1 0

At most one @ character may appear in each name. If no @ character appears, results are as if the @
character appeared at the end of the name. So, the equivalent reshape command to the one above is

. reshape long inc@r ue@, i(id) j(year)

inc@r specifies variables named inc#r in the wide form and incr in the long form. The @ notation
may similarly be used for converting data from long to wide format:

. reshape wide inc@r ue, i(id) j(year)

Advanced issues with basic syntax: String identifiers for j()
The string option allows j to take on string values.

Example 8
Consider the following wide data on husbands and wives. In these data, incm is the income of the

man and incf is the income of the woman.
. use https://www.stata-press.com/data/r19/reshape4, clear
. list

id kids incm incf

1. 1 0 5000 5500
2. 2 1 2000 2200
3. 3 2 3000 2000
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These data can be reshaped into separate observations for males and females by typing

. reshape long inc, i(id) j(sex) string
(j = f m)
Data Wide -> Long

Number of observations 3 -> 6
Number of variables 4 -> 4
j variable (2 values) -> sex
xij variables:

incf incm -> inc

The string option specifies that j take on nonnumeric values. The result is

. list, sep(2)

id sex inc kids

1. 1 f 5500 0
2. 1 m 5000 0

3. 2 f 2200 1
4. 2 m 2000 1

5. 3 f 2000 2
6. 3 m 3000 2

sex will be a string variable. Similarly, these data can be converted from long to wide form by typing

. reshape wide inc, i(id) j(sex) string

Strings are not limited to being single characters or even having the same length. You can specify the

location of the string identifier in the variable name by using the @ notation.

Example 9
Suppose that our variables are named id, kids, incmale, and incfem.

. use https://www.stata-press.com/data/r19/reshapexp2, clear

. list

id kids incmale incfem

1. 1 0 5000 5500
2. 2 1 2000 2200
3. 3 2 3000 2000

. reshape long inc, i(id) j(sex) string
(j = fem male)
Data Wide -> Long

Number of observations 3 -> 6
Number of variables 4 -> 4
j variable (2 values) -> sex
xij variables:

incfem incmale -> inc
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. list, sep(2)

id sex inc kids

1. 1 fem 5500 0
2. 1 male 5000 0

3. 2 fem 2200 1
4. 2 male 2000 1

5. 3 fem 2000 2
6. 3 male 3000 2

If the wide data had variables named minc and finc, the appropriate reshape command would have
been

. reshape long @inc, i(id) j(sex) string

The resulting variable in the long form would be named inc.

We can also place strings in the middle of the variable names. If the variables were named incMome
and incFome, the reshape command would be

. reshape long inc@ome, i(id) j(sex) string

Be careful with string identifiers because it is easy to be surprised by the result. Say that we have

wide data having variables named incm, incf, uem, uef, agem, and agef. To make the data long, we
might type

. reshape long inc ue age, i(id) j(sex) string

Along with these variables, we also have the variable agenda. reshape will decide that the sexes
are m, f, and nda. This would not happen without the string option if the variables were named inc0,
inc1, ue0, ue1, age0, and age1, even with the agenda variable present in the data.

Advanced issues with basic syntax: Second-level nesting
Sometimes the data may have more than one possible j variable for reshaping. Suppose that your data

have both a year variable and a sex variable. One logical observation in the data might be represented in

any of the following four forms:

. list in 1/4 // The long-long form

hid sex year inc

1. 1 f 90 3200
2. 1 f 91 4700
3. 1 m 90 4500
4. 1 m 91 4600
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. list in 1/2 // The long-year wide-sex form

hid year minc finc

1. 1 90 4500 3200
2. 1 91 4600 4700

. list in 1/2 // The wide-year long-sex form

hid sex inc90 inc91

1. 1 f 3200 4700
2. 1 m 4500 4600

. list in 1 // The wide-wide form

hid minc90 minc91 finc90 finc91

1. 1 4500 4600 3200 4700

reshape can convert any of these forms to any other. Converting data from the long–long form to

the wide–wide form (or any of the other forms) takes two reshape commands. Here is how we would

do it:

From To
year sex year sex Command

long long long wide reshape wide @inc, i(hid year) j(sex) string
long wide long long reshape long @inc, i(hid year) j(sex) string
long long wide long reshape wide inc, i(hid sex) j(year)
wide long long long reshape long inc, i(hid sex) j(year)
long wide wide wide reshape wide minc finc, i(hid) j(year)
wide wide long wide reshape long minc finc, i(hid) j(year)
wide long wide wide reshape wide @inc90 @inc91, i(hid) j(sex) string
wide wide wide long reshape long @inc90 @inc91, i(hid) j(sex) string

Description of advanced syntax
The advanced syntax is simply a different way of specifying the reshape command, and it has one

seldom-used feature that provides extra control. Rather than typing one reshape command to describe
the data and perform the conversion, such as

. reshape long inc, i(id) j(year)

you type a sequence of reshape commands. The initial commands describe the data, and the last com-
mand performs the conversion:

. reshape i id

. reshape j year

. reshape xij inc

. reshape long

reshape i corresponds to i() in the basic syntax.

reshape j corresponds to j() in the basic syntax.
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reshape xij corresponds to the variables specified in the basic syntax. reshape xij also accepts
the atwl() option for use when @ characters are specified in the fvarnames. atwl stands for at-when-
long. When you specify names such as inc@r or ue@, in the long form the names become incr and ue,
and the @ character is ignored. atwl() allows you to change @ into whatever you specify. For example,
if you specify atwl(X), the long-form names become incXr and ueX.

There is also one more specification, which has no counterpart in the basic syntax:

. reshape xi varlist

In the basic syntax, Stata assumes that all unspecified variables are constant within i. The advanced
syntax works the same way, unless you specify the reshape xi command, which names the constant-
within-i variables. If you specify reshape xi, any variables that you do not explicitly specify are

dropped from the data during the conversion.

As a practical matter, you should explicitly drop the unwanted variables before conversion. For in-

stance, suppose that the data have variables inc80, inc81, inc82, sex, age, and age2 and that you no
longer want the age2 variable. You could specify

. reshape xi sex age

or

. drop age2

and leave reshape xi unspecified.

reshape xi does have one minor advantage. It saves reshape the work of determining which vari-
ables are unspecified. This saves a relatively small amount of computer time.

Another advanced-syntax feature is reshape query, which is equivalent to typing reshape by it-

self. reshape query reports which reshape parameters have been defined. reshape i, reshape j,
reshape xij, and reshape xi specifications may be given in any order and may be repeated to change
or correct what has been specified.

Finally, reshape clear clears the definitions. reshape definitions are stored with the dataset when
you save it. reshape clear allows you to erase these definitions.

The basic syntax of reshape is implemented in terms of the advanced syntax, so you can mix basic
and advanced syntaxes.

Why favor memory over speed?
The original code for reshape was written in a time when computer memory was not as abundantly

available as it is today and Stata could not handle multiple datasets in memory at the same time. This

code uses the commands preserve, save, use, append, and merge to reshape the data between forms.
Incrementally reshaping the data this way accommodated the memory limitations of the time at the cost

of being slow for bigger datasets. This is the method used with favor(memory).

With favor(speed), reshape preallocates a data frame with the target form and fills it with the data

from the current frame. This method of data conversion is typically much faster but requires double the

memory used for the original data.
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reshape’s default behavior is set by

. set reshape_favor default

and is determined by the current “user version”. If the user version is 19 or greater, the default is to favor
speed. If the user version is less than 19, then the default is to favor memory.

If reshape is favoring speed, you may experience Mata runtime failures with reshape for datasets
that are larger than half the available memory on your computer. If your data are larger than half the

available memory, use the favor(memory) option to avoid this memory constraint.

Video examples
How to reshape data from long format to wide format

How to reshape data from wide format to long format

Stored results
reshape stores the following characteristics with the data (see [P] char):

dta[ReS i] i variable names
dta[ReS j] j variable name
dta[ReS jv] j values, if specified
dta[ReS Xij] 𝑋𝑖𝑗 variable names
dta[ReS Xij n] number of 𝑋𝑖𝑗 variables
dta[ReS Xij long#] name of #th 𝑋𝑖𝑗 variable in long form
dta[ReS Xij wide#] name of #th 𝑋𝑖𝑗 variable in wide form
dta[ReS Xi] 𝑋𝑖 variable names, if specified
dta[ReS atwl] atwl() value, if specified
dta[ReS str] 1 if option string specified, 0 otherwise
dta[ReS favor] favor() value, if specified
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Also see
[D] frunalias — Change storage type of alias variables

[D] save — Save Stata dataset

[D] stack — Stack data

[D] xpose — Interchange observations and variables

[P] char — Characteristics



rmdir — Remove directory

Description Quick start Syntax Remarks and examples Also see

Description
rmdir removes an empty directory (folder).

Quick start
Remove empty myfolder from the current working directory

rmdir myfolder

Remove myfolder from C:\mydir using Stata for Windows

rmdir c:\mydir\myfolder

Remove myfolder from ~/mydir using Stata for Mac or Unix

rmdir ~/mydir/myfolder

Remove my folder from C:\my dir using Stata for Windows

rmdir ”c:\my dir\my folder”

Syntax
rmdir directory name

Double quotes may be used to enclose the directory name, and the quotes must be used if the directory

name contains embedded blanks.

Remarks and examples
Examples:

Windows

. rmdir myproj

. rmdir c:\projects\myproj

. rmdir ”c:\My Projects\Project 1”

Mac and Unix

. rmdir myproj

. rmdir ~/projects/myproj

824
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Also see
[D] cd — Change directory

[D] copy — Copy file from disk or URL

[D] dir — Display filenames

[D] erase — Erase a disk file

[D] mkdir — Create directory

[D] shell — Temporarily invoke operating system

[D] type — Display contents of a file

[U] 11.6 Filenaming conventions



sample — Draw random sample

Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description
sample draws random samples of the data in memory. “Sampling” here is defined as drawing obser-

vations without replacement; see [R] bsample for sampling with replacement.

The size of the sample to be drawn can be specified as a percentage or as a count:

• sample without the count option draws a #% pseudorandom sample of the data in memory,

thus discarding (100 − #)% of the observations.

• samplewith the count option draws a #-observation pseudorandom sample of the data inmem-

ory, thus discarding N−# observations. # can be larger than N, in which case all observations
are kept.

In either case, observations not meeting the optional if and in criteria are kept (sampled at 100%).

If you are interested in reproducing results, you must first set the random-number seed; see [R] set

seed.

Quick start
Draw 10% pseudorandom sample without replacement from data in memory

sample 10

Same as above, but perform sampling within strata identified by svar
sample 10, by(svar)

Sample 100 observations from data in memory

sample 100, count

Same as above, but only sample observations where catvar equals 5
sample 100 if catvar==5, count

Menu
Statistics > Resampling > Draw random sample

826
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Syntax
sample # [ if ] [ in ] [ , count by(groupvars) ]

by is allowed; see [D] by.

Options
count specifies that # in sample # be interpreted as an observation count rather than as a percentage.

Typing sample 5 without the count option means that a 5% sample be drawn; typing sample 5,
count, however, would draw a sample of 5 observations.

Specifying # as greater than the number of observations in the dataset is not considered an error.

by(groupvars) specifies that a #% sample be drawn within each set of values of groupvars, thus main-

taining the proportion of each group.

count may be combined with by(). For example, typing sample 50, count by(sex) would draw
a sample of size 50 for men and 50 for women.

Specifying by varlist: sample # is equivalent to specifying sample #, by(varlist); use whichever
syntax you prefer.

Remarks and examples

Example 1
We have NLSY data on young women aged 14–24 years in 1968 and wish to draw a 10% sample of

the data in memory.

. use https://www.stata-press.com/data/r19/nlswork
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)
. describe, short
Contains data from https://www.stata-press.com/data/r19/nlswork.dta
Observations: 28,534 National Longitudinal Survey of

Young Women, 14-24 years old in
1968

Variables: 21 27 Nov 2024 08:14
Sorted by: idcode year
. sample 10
(25,681 observations deleted)
. describe, short
Contains data from https://www.stata-press.com/data/r19/nlswork.dta
Observations: 2,853 National Longitudinal Survey of

Young Women, 14-24 years old in
1968

Variables: 21 27 Nov 2024 08:14
Sorted by:

Note: Dataset has changed since last saved.

Our original dataset had 28,534 observations. The sample-10 dataset has 2,853 observations, which is

the nearest number to 0.10 × 28534.
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Example 2
Among the variables in our data is race. By typing label list, we see that race = 1 denotes

whites, race = 2 denotes blacks, and race = 3 denotes other races. We want to keep 100% of the

nonwhite women but only 10% of the white women.

. use https://www.stata-press.com/data/r19/nlswork, clear
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)
. tab race

Race Freq. Percent Cum.

White 20,180 70.72 70.72
Black 8,051 28.22 98.94
Other 303 1.06 100.00

Total 28,534 100.00
. sample 10 if race == 1
(18,162 observations deleted)
. describe, short
Contains data from https://www.stata-press.com/data/r19/nlswork.dta
Observations: 10,372 National Longitudinal Survey of

Young Women, 14-24 years old in
1968

Variables: 21 27 Nov 2024 08:14
Sorted by:

Note: Dataset has changed since last saved.
. display .10*20180 + 8051 + 303
10372

Example 3
Now let’s suppose that we want to keep 10% of each of the three categories of race.

. use https://www.stata-press.com/data/r19/nlswork, clear
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)
. sample 10, by(race)
(25,681 observations deleted)
. tab race

Race Freq. Percent Cum.

White 2,018 70.73 70.73
Black 805 28.22 98.95
Other 30 1.05 100.00

Total 2,853 100.00

This differs from simply typing sample 10 in that with by(), sample holds constant the percentages of
white, black, and other women.
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Technical note
We have a large dataset on disk containing 125,235 observations. We wish to draw a 10% sample

of this dataset without loading the entire dataset (perhaps because the dataset will not fit in memory).

sample will not solve this problem—the dataset must be loaded first—but it is rather easy to solve it

ourselves. Say that bigdata.dct contains the dictionary for this dataset; see [D] import. One solution

is to type

. infile using bigdata if runiform()<=.1
dictionary {

etc.
}
(12,580 observations read)

The if qualifier on the end of infile drew uniformly distributed random numbers over the interval 0

and 1 and kept each observation if the random number was less than or equal to 0.1. This, however, did

not draw an exact 10% sample—the sample was expected to contain only 10% of the observations, and

here we obtained just more than 10%. This is probably a reasonable solution.

If the sample must contain precisely 12,524 observations, however, after getting too many observa-

tions, we could type

. generate u=runiform()

. sort u

. keep in 1/12524
(56 observations deleted)

That is, we put the resulting sample in random order and keep the first 12,524 observations. Now our

only problem is making sure that, at the first step, we have more than 12,524 observations. Here we were

lucky, but half the time we will not be so lucky—after typing infile . . . if runiform()<=.1, we will
have less than a 10% sample. The solution, of course, is to draw more than a 10% sample initially and

then cut it back to 10%.

Howmuchmore than 10% do we need? That depends on the number of records in the original dataset,

which in our example is 125,235.

A little experimentation with bitesti (see [R] bitest) provides the answer:

. bitesti 125235 12524 .102
Binomial probability test

N Observed k Expected k Assumed p Observed p

125,235 12,524 12,773.97 0.10200 0.10000
Pr(k >= 12,524) = 0.990466 (one-sided test)
Pr(k <= 12,524) = 0.009777 (one-sided test)
Pr(k <= 12,524 or k >= 13,025) = 0.019584 (two-sided test)

Initially drawing a 10.2% sample will yield a sample larger than 10% 99 times of 100. If we draw a

10.4% sample, we are virtually assured of having enough observations (type bitesti 125235 12524
.104 for yourself).
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References
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Also see
[D] splitsample — Split data into random samples

[R] bsample — Sampling with replacement
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save — Save Stata dataset

Description Quick start Menu Syntax
Options for save Options for saveold Remarks and examples Also see

Description
save stores the dataset currently in memory on disk under the name filename. If filename is not

specified, the name under which the data were last known to Stata (c(filename)) is used. If filename
is specified without an extension, .dta is used. If your filename contains embedded spaces, remember
to enclose it in double quotes.

Stata 14 through 17 have the same dataset format so long as the dataset has 32,767 variables or less.

Stata 18 and 19 have the same format too, unless the data have alias variables in them; see below. Since

Stata/MP 15, Stata/MP has supported more than 32,767 variables and thus has a slightly different dataset

format when there are that many variables. If you are using Stata 18 or later, do not have alias variables,

and you want to save a dataset so that it may be read by someone using Stata 15, Stata 16, or Stata 17,

simply use the save command; those older versions will be able to read it. If the dataset has more than
32,767 variables, it can be read by Stata/MP 15, Stata/MP 16, Stata/MP 17, and Stata/MP 18. If you want

to save a dataset so that it may be read by someone using Stata 14, again simply use the save command;
Stata 14 will be able to read it so long as it does not have more than 32,767 variables. Stata 14 supports

at most 32,767 variables.

saveold saves the dataset currently in memory on disk under the name filename in previous .dta
formats, namely, those for Stata 13, 12, or 11. If you are using Stata 19 and want to save a file so that it

may be read by someone using an older version of Stata, use the saveold command.

Alias variables, introduced in Stata 18, are variables that reference other variables in a linked frame;

see [D] fralias. If your dataset does not contain alias variables, then you can use commands save and
saveold as mentioned above. For datasets with alias variables, Stata 18 and later use a new format to

accommodate this new variable type. In addition, Stata/MP has a new format to accommodate datasets

with alias variables and more than 32,767 variables. If you are using data with alias variables and want to

save a dataset so that it may be read by someone using an older version of Stata, then you must either drop

the alias variables or use command frunalias to change the alias variables into copies of the variables
they reference. Then you use commands save or saveold as mentioned above. The same is true for
datasets with alias variables and more than 32,767 variables and older versions of Stata/MP.

Quick start
Save data in memory to mydata.dta in the current directory

save mydata

Same as above, but overwrite mydata.dta if it exists
save mydata, replace

Also save value labels that have not been applied to variables

save mydata, replace orphans

Save data in Stata 13 format

saveold mydata
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Menu
File > Save as...

Syntax
Save data in memory to file

save [ filename ] [ , save options ]

Save data in memory to file in Stata 13, 12, or 11 format

saveold filename [ , saveold options ]

save options Description

nolabel omit value labels from the saved dataset

replace overwrite existing dataset

all save e(sample) with the dataset; programmer’s option
orphans save all value labels

emptyok save dataset even if zero observations and zero variables

saveold options Description

version(#) specify version 11 ≤ # ≤ 18; default is version(13), meaning Stata 13 format
nolabel omit value labels from the saved dataset

replace overwrite existing dataset

all save e(sample) with the dataset; programmer’s option

Options for save
nolabel omits value labels from the saved dataset. The associations between variables and value-label

names, however, are saved along with the dataset label and the variable labels.

replace permits save to overwrite an existing dataset.

all is for use by programmers. If specified, e(sample) will be saved with the dataset. You could run a
regression; save mydata, all; drop all; use mydata; and predict yhat if e(sample).

orphans saves all value labels, including those not attached to any variable.

emptyok is a programmer’s option. It specifies that the dataset be saved, even if it contains zero obser-
vations and zero variables. If emptyok is not specified and the dataset is empty, save responds with
the message “no variables defined”.

Options for saveold
version(#) specifies which previous .dta file format is to be used. # may be 18, 17, 16, 15, 14, 13,

12, or 11. The default is version(13), meaning Stata 13 format. To save datasets in the modern,
Stata 18 and later format, use the save command, not saveold. Stata 14 through Stata 19 share the
same format, provided that there are no alias variables, so you do not have to use saveold to save a
Stata 14, 15, 16, 17, or 18 dataset; simply use save.
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nolabel omits value labels from the saved dataset. The associations between variables and value-label

names, however, are saved along with the dataset label and the variable labels.

replace permits saveold to overwrite an existing dataset.

all is for use by programmers. If specified, e(sample) will be saved with the dataset. You could run a
regression; save mydata, all; drop all; use mydata; and predict yhat if e(sample).

Remarks and examples
Stata keeps the data on which you are currently working in your computer’s memory. You put the data

there in the first place; see [U] 22 Entering and importing data. Thereafter, you can save the dataset
on disk so that you can use it easily in the future. Stata stores your data on disk in a compressed format
that only Stata understands. This does not mean, however, that you are locked into using only Stata. Any

time you wish, you can export the data to a format other software packages understand; see [D] export.

Stata goes to a lot of trouble to keep you from accidentally losing your data. When you attempt to

leave Stata by typing exit, Stata checks that your data have been safely stored on disk. If not, Stata
refuses to let you leave. (You can tell Stata that you want to leave anyway by typing exit, clear.)
Similarly, when you save your data in a disk file, Stata ensures that the disk file does not already exist.
If it does exist, Stata refuses to save it. You can use the replace option to tell Stata that it is okay to
overwrite an existing file.

Example 1
We have entered data into Stata for the first time. We have the following data:

. describe
Contains data
Observations: 39

Variables: 5

Variable Storage Display Value
name type format label Variable label

acc_rate float %9.0g Accident rate
spdlimit float %9.0g Speed limit
acc_pts float %9.0g Access points per mile
rate float %9.0g rcat Accident rate per million vehicle

miles
spdcat float %9.0g scat Speed limit category

Sorted by:
Note: Dataset has changed since last saved.

We have a dataset containing 39 observations on five variables, and, evidently, we have gone to a lot

of trouble to prepare this dataset. We have used the label data command to label the data Minnesota
Highway Data, the label variable command to label all the variables, and the label define and

label values commands to attach value labels to the last two variables. (See [U] 12.6.3 Value labels
for information about doing this.)

At the end of the describe, Stata notes that the “dataset has changed since last saved”. This is Stata’s
way of gently reminding us that these data need to be saved. Let’s save our data:

. save hiway
file hiway.dta saved
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We type save hiway, and Stata stores the data in a file named hiway.dta. (Stata automatically added
the .dta suffix.) Now when we describe our data, we no longer get the warning that our dataset has
not been saved; instead, we are told the name of the file in which the data are saved:

. describe
Contains data from hiway.dta
Observations: 39 Minnesota Highway Data, 1973

Variables: 5 21 Jul 2000 11:42

Variable Storage Display Value
name type format label Variable label

acc_rate float %9.0g Accident rate
spdlimit float %9.0g Speed limit
acc_pts float %9.0g Access points per mile
rate float %9.0g rcat Accident rate per million vehicle

miles
spdcat float %9.0g scat Speed limit category

Sorted by:

Just to prove to you that the data have really been saved, let’s eliminate the copy of the data in memory

by typing drop all:

. drop _all

. describe
Contains data
Observations: 0

Variables: 0
Sorted by:

We now have no data in memory. Because we saved our dataset, we can retrieve it by typing use hiway:

. use hiway
(Minnesota Highway Data, 1973)
. describe
Contains data from hiway.dta
Observations: 39 Minnesota Highway Data, 1973

Variables: 5 21 Jul 2000 11:42

Variable Storage Display Value
name type format label Variable label

acc_rate float %9.0g Accident rate
spdlimit float %9.0g Speed limit
acc_pts float %9.0g Access points per mile
rate float %9.0g rcat Accident rate per million vehicle

miles
spdcat float %9.0g scat Speed limit category

Sorted by:
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Example 2
Continuing with our previous example, we have saved our data in the file hiway.dta. We continue

to work with our data and discover an error; we made a mistake when we typed one of the values for the

spdlimit variable:

. list in 1/3

acc_rate spdlimit acc_pts rate spdcat

1. 1.61 50 2.2 Below 4 Above 60
2. 1.81 60 6.8 Below 4 55 to 60
3. 1.84 55 14 Below 4 55 to 60

In the first observation, the spdlimit variable is 50, whereas the spdcat variable indicates that the

speed limit is more than 60 miles per hour. We check our original copy of the data and discover that the

spdlimit variable ought to be 70. We can fix it with the replace command:

. replace spdlimit=70 in 1
(1 real change made)

If we were to describe our data now, Stata would warn us that our data have changed since they
were last saved:

. describe
Contains data from hiway.dta
Observations: 39 Minnesota Highway Data, 1973

Variables: 5 21 Jul 2000 11:42

Variable Storage Display Value
name type format label Variable label

acc_rate float %9.0g Accident rate
spdlimit float %9.0g Speed limit
acc_pts float %9.0g Access points per mile
rate float %9.0g rcat Accident rate per million vehicle

miles
spdcat float %9.0g scat Speed limit category

Sorted by:
Note: Dataset has changed since last saved.

We take our cue and attempt to save the data again:

. save hiway
file hiway.dta already exists
r(602);

Stata refuses to honor our request, telling us instead that “file hiway.dta already exists”. Stata will not let

us accidentally overwrite an existing dataset. To replace the data, we must do so explicitly by typing
save hiway, replace. If we want to save the file under the same name as it was last known to Stata,
we can omit the filename:

. save, replace
file hiway.dta saved

Now our data are saved.
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Also see
[D] compress — Compress data in memory

[D] export — Overview of exporting data from Stata

[D] fralias —Alias variables from linked frames

[D] frunalias — Change storage type of alias variables

[D] import — Overview of importing data into Stata

[D] use — Load Stata dataset

[P] File formats .dta — Description of .dta file format

[U] 11.6 Filenaming conventions
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Acknowledgment
Reference Also see

Description
separate creates new variables containing values from varname.

Quick start
Create one variable for each level of catvar containing value of v1 or missing

separate v1, by(catvar)

Same as above, but treat missing values of catvar as a valid category
separate v1, by(catvar) missing

Create v10 as the value of v1 when v2 ≥ 20 or missing and missing otherwise and v11 as the value of
v1 when v2 < 20 and missing otherwise

separate v1, by(v2 < 20)

Same as above, but name new variables newv1 and newv2
separate v1, by(v2 < 20) generate(newv) sequential

Menu
Data > Create or change data > Other variable-transformation commands > Create separate variables

837
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Syntax
separate varname [ if ] [ in ] , by(groupvar | exp) [ options ]

options Description

Main
∗ by(groupvar) categorize observations into groups defined by groupvar
∗ by(exp) categorize observations into two groups defined by exp

Options

generate(stubname) name new variables by suffixing values to stubname; default is to
use varname as prefix

sequential use as name suffix categories numbered sequentially from 1

missing create variables for the missing values

shortlabel create shorter variable labels

∗ Either by(groupvar) or by(exp) must be specified.
collect is allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

by(groupvar | exp) specifies one variable defining the categories or a logical expression that categorizes
the observations into two groups.

If by(groupvar) is specified, groupvar may be a numeric or string variable taking on any values.

If by(exp) is specified, the expression must evaluate to true (1), false (0), or missing.

by() is required.

� � �
Options �

generate(stubname) specifies how the new variables are to be named. If generate() is not specified,
separate uses the name of the original variable, shortening it if necessary. If generate() is speci-
fied, separate uses stubname. If any of the resulting names is too long when the values are suffixed,
it is not shortened and an error message is issued.

sequential specifies that categories be numbered sequentially from 1. By default, separate uses

the actual values recorded in the original variable, if possible, and sequential numbers otherwise.

separate can use the original values if they are all nonnegative integers smaller than 10,000.

missing also creates a variable for the category missing if missing occurs (groupvar takes on the value
missing or exp evaluates to missing). The resulting variable is named in the usual manner but with an

appended underscore, for example, bp . By default, separate creates no such variable. The contents
of the other variables are unaffected by whether missing is specified.

shortlabel creates a variable label that is shorter than the default. By default, when separate gen-
erates the new variable labels, it includes the name of the variable being separated. shortlabel
specifies that the variable name be omitted from the new variable labels.
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Remarks and examples

Example 1
We have data on the miles per gallon (mpg) and country of manufacture of 74 automobiles. We want

to compare the distributions of mpg for domestic and foreign automobiles by plotting the quantiles of the
two distributions (see [R] Diagnostic plots).

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. separate mpg, by(foreign)
Variable Storage Display Value

name type format label Variable label

mpg0 byte %8.0g mpg, foreign == Domestic
mpg1 byte %8.0g mpg, foreign == Foreign
. list mpg* foreign

mpg mpg0 mpg1 foreign

1. 22 22 . Domestic
2. 17 17 . Domestic
3. 22 22 . Domestic

(output omitted )
22. 16 16 . Domestic
23. 17 17 . Domestic
24. 28 28 . Domestic

(output omitted )
73. 25 . 25 Foreign
74. 17 . 17 Foreign

. qqplot mpg0 mpg1
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In our auto dataset, the foreign cars have better gas mileage.
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Stored results
separate stores the following in r():

Macros

r(varlist) names of the newly created variables

Acknowledgment
separate was originally written by Nicholas J. Cox of the Department of Geography at Durham

University, UK, who is coeditor of the Stata Journal and author of Speaking Stata Graphics.

Reference
Baum, C. F. 2016. An Introduction to Stata Programming. 2nd ed. College Station, TX: Stata Press.

Also see
[R] tabulate oneway — One-way table of frequencies

[R] tabulate twoway — Two-way table of frequencies

[R] tabulate, summarize() — One- and two-way tables of summary statistics

https://www.stata-journal.com/
https://www.stata-press.com/books/speaking-stata-graphics/
https://www.stata-press.com/books/introduction-stata-programming/


shell — Temporarily invoke operating system

Description Syntax Remarks and examples Reference Also see

Description
shell (synonym: “!”) allows you to send commands to your operating system or to enter your oper-

ating system for interactive use. Stata will wait for the shell to close or the operating system command

to complete before continuing.

winexec allows you to start other programs (such as browsers) from Stata’s command line. Stata will

continue without waiting for the program to complete.

xshell (Stata for Mac and Unix(GUI) only) brings up an xterm window in which the command is to

be executed.

Syntax
{ shell | ! } [ operating system command ]

winexec program name [ program args ]

{ xshell | !! } [ operating system command ]

Command availability:
Stata for . . .

Command Windows Mac Unix(GUI) Unix(console)

shell X X X X
winexec X X X –
xshell – X X –

Remarks and examples
Remarks are presented under the following headings:

Stata for Windows
Stata for Mac
Stata for Unix(GUI)
Stata for Unix(console)
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Stata for Windows
shell, without arguments, preserves your session and invokes the operating system. Stata’s Com-

mand window will disappear, and a Windows command prompt will appear, indicating that you may

not continue in Stata until you exit the Windows command prompt. To reenter Stata, type exit at your
operating system’s prompt. Your Stata session is reestablished just as if you had never left.

Say that you are using Stata for Windows and you suddenly realize you need to do two things. You

need to enter your operating system for a few minutes. Rather than exiting Stata, doing what you have to

do, and then restarting Stata, you type shell in the Command window. AWindows command prompt

appears:

C:\data>

You can now do whatever you need to do in Windows, and Stata will wait until you exit the Windows

command prompt before continuing.

Experienced Stata users seldom type out the word shell. They type “!”. Also you do not have to
enter your operating system, issue a command, and then exit back to Stata. If you want to execute one

command, you can type the command right after the word shell or the exclamation point:

. !rename try15.dta final.dta

If you do this, the Windows command prompt will open and close as the command is executed.

Stata for Windows users can also use the winexec command, which allows you to launch any Win-

dows application from within Stata. You can think of it as a shortcut for clicking on the Windows Start

button, choosing Run..., and typing a command.

Assume that you are working in Stata and decide that you want to run a text editor:

. winexec notepad
(The Windows application Notepad will start and run at the same time as Stata )

You could even pass a filename to your text editor:

. winexec notepad c:\docs\myfile.txt

You may need to specify a complete path to the executable that you wish to launch:

. winexec c:\windows\notepad c:\docs\myfile.txt

The important difference between winexec and shell is that Stata does not wait for whatever pro-
gram winexec launches to complete before continuing. Stata will wait for the program shell launches
to complete before performing any further commands.

Stata for Mac
shell, with arguments, invokes your operating system, executes one command, and redirects the

output to the Results window. The command must complete before you can enter another command in

the Command window.

Say that you are using Stata for Mac and suddenly realize that there are two things you have to do. You

need to switch to the Finder or enter commands from a terminal for a few minutes. Rather than exiting

Stata, doing what you have to do, and then switching back to Stata, you type shell and the command in
the Command window to execute one command. You then repeat this step for each command that you

want to execute from the shell.
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Experienced Stata users seldom type out the word shell. They type “!”.

. !mv try15.dta final.dta

Be careful not to execute commands, such as vi, that require interaction from you. Because all output is

redirected to Stata’s Results window, you will not be able to interact with the command from Stata. This

will effectively lock up Stata because the command will never complete.

When you type xshell vi myfile.do, Stata invokes an xterm window (which in turn invokes a

shell) and executes the command there. Typing !!vi myfile.do is equivalent to typing xshell vi
myfile.do.

Technical note
OnmacOS, xterm is available when X11 is installed. To install X11, you must first download XQuartz

from https://www.xquartz.org/.

Stata for Mac users can also use the winexec command, which allows you to launch any native

application from within Stata. You may, however, have to specify the absolute path to the application. If

the application you wish to launch is a macOS application bundle, you must specify an absolute path to

the executable in the bundle.

Assume that you are working in Stata and decide that you want to run a text editor:

. winexec /Applications/TextEdit.app/Contents/MacOS/TextEdit
(The macOS application TextEdit will start and run at the same time as Stata )

You could even pass a filename to your text editor:

. winexec /Applications/TextEdit.app/Contents/MacOS/TextEdit
> /Users/cnguyen/myfile.do

If you specify a file path as an argument to the program to be launched, you must specify an absolute

path. Also using ~ in the path will not resolve to a home directory. If an application cannot be launched

from a terminal window, it cannot be launched by winexec.

The important difference between winexec and shell is that Stata does not wait for whatever pro-
gram winexec launches to complete before continuing. Stata will wait for the program shell launches to
complete before performing any further commands. shell is appropriate for executing shell commands;
winexec is appropriate for launching applications.

Stata for Unix(GUI)
shell, without arguments, preserves your session and invokes the operating system. The Command

window will disappear, and an xterm window will appear, indicating that you may not do anything in

Stata until you exit the xtermwindow. To reenter Stata, type exit at the Unix prompt. Your Stata session
is reestablished just as if you had never left.

Say that you are using Stata for Unix(GUI) and suddenly realize that you need to do two things. You

need to enter your operating system for a few minutes. Rather than exiting Stata, doing what you have to

do, and then restarting Stata, you type shell in the Command window. An xterm window will appear:

mycomputer$

You can now dowhatever you need to do, and Stata will wait until you exit the window before continuing.

https://www.xquartz.org/
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Experienced Stata users seldom type out the word shell. They type “!”. Also you do not have to
enter your operating system, issue a command, and then exit back to Stata. If you want to execute one

command, you can type the command right after the word shell or the exclamation point:

. !mv try15.dta final.dta

Be careful because sometimes you will want to type

. !!vi myfile.do

and in other cases,

. winexec xedit myfile.do

!! is a synonym for xshell—a command different from, but related to, shell—and winexec is a

different and related command, too.

Before we get into this, understand that if all you want is a shell from which you can issue Unix

commands, type shell or !:

. !
mycomputer$

When you are through, type exit to the Unix prompt, and you will return to Stata:

mycomputer$ exit
.

If, on the other hand, you want to specify in Stata the Unix command that you want to execute, you need

to decide whether you want to use shell, xshell, or winexec. The answer depends on whether the
command you want to execute requires a terminal window or is an X application:

. . . does not need a terminal window: use shell . . . (synonym: !. . .)

. . . needs a terminal window: use xshell . . . (synonym: !!. . .)

. . . is an X application: use winexec . . . (no synonym)

When you type shell mv try15.dta final.dta, Stata invokes your shell (/bin/sh, /bin/csh,
etc.) and executes the specified command (mv here), routing the standard output and standard error back
to Stata. Typing !mv try15.dta final.dta is the same as typing shell mv try15.dta final.dta.

When you type xshell vi myfile.do, Stata invokes an xterm window (which in turn invokes a

shell) and executes the command there. Typing !!vi myfile.do is equivalent to typing xshell vi
myfile.do.

When you type winexec xedit myfile.do, Stata directly invokes the command specified (xedit
here). No xterm window is brought up nor is a shell invoked because, here, xterm does not need

it. xterm is an X application that will create its own window in which to run. You could have typed

!!xedit myfile.do. That would have brought up an unnecessary xterm window from which xedit
would have been executed, and that would not matter. You could even have typed !xedit myfile.do.
That would have invoked an unnecessary shell from which xedit would have been executed, and that
would not matter, either. The important difference, however, is that shell and xshell wait until the
process completes before allowing Stata to continue, and winexec does not.
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Technical note
You can set Stata global macros to control the behavior of shell and xshell. The macros are

$S SHELL defines the shell to be used by shell when
you type a command following shell.
The default is something like “/bin/sh -c”, although this can vary,
depending on how your Unix environment variables are set.

$S XSHELL defines shell to be used by shell and xshell
when they are typed without arguments.

The default is “xterm”.
$S XSHELL2 defines shell to be used by xshell when it is

typed with arguments.

The default is “xterm -e”.

For instance, if you type in Stata

. global S_XSHELL2 ”/usr/X11R6/bin/xterm -e”

and then later type

. !!vi myfile.do

then Stata would issue the command /usr/X11R6/bin/xterm -e vi myfile.do to Unix.

If you do make changes, we recommend that you record the changes in your profile.do file.

Stata for Unix(console)
shell, without arguments, preserves your session and then invokes your operating system. Your Stata

session will be suspended until you exit the shell, at which point your Stata session is reestablished just
as if you had never left.

Say that you are using Stata and you suddenly realize that you need to do two things. You need to

enter your operating system for a few minutes. Rather than exiting Stata, doing what you have to do, and

then restarting Stata, you type shell. A Unix prompt appears:

. shell
(Type exit to return to Stata)
$

You can now do whatever you need to do and type exit when you finish. You will return to Stata just
as if you had never left.

Experienced Stata users seldom type out the word shell. They type ‘!’. Also you do not have to
enter your operating system, issue a command, and then exit back to Stata. If you want to execute one

command, you can type the command right after the word shell or the exclamation point. If you want
to edit the file myfile.do, and if vi is the name of your favorite editor, you could type

. !vi myfile.do
Stata opens your editor.
When you exit your editor:

.
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Reference
Huber, C. 2014. How to create animated graphics using Stata. The Stata Blog: Not Elsewhere Classified. https://blog.

stata.com/2014/03/24/how-to-create-animated-graphics-using-stata/.

Also see
[D] cd — Change directory

[D] copy — Copy file from disk or URL

[D] dir — Display filenames

[D] erase — Erase a disk file

[D] mkdir — Create directory

[D] rmdir — Remove directory

[D] type — Display contents of a file

https://blog.stata.com/2014/03/24/how-to-create-animated-graphics-using-stata/
https://blog.stata.com/2014/03/24/how-to-create-animated-graphics-using-stata/


snapshot — Save and restore data snapshots

Description Quick start Menu Syntax
Option Remarks and examples Stored results Also see

Description
snapshot saves to disk and restores from disk copies of the data in memory. snapshot’s main

purpose is to allow the Data Editor to save and restore data snapshots during an interactive editing session.

Amore popular alternative for programmers is preserve; see [P] preserve.

Snapshots are referred to by a snapshot#. If no snapshots currently exist, the next snapshot saved will

receive a snapshot# of 1. If snapshots do exist, the next snapshot saved will receive a snapshot# one

greater than the highest existing snapshot#.

snapshot save creates a temporary file containing a copy of the data currently in memory and at-
taches an optional label (up to 80 characters) to the saved snapshot. Up to 1,000 snapshots may be saved.

snapshot label changes the label on the specified snapshot.

snapshot restore replaces the data in memory with the data from the specified snapshot.

snapshot list lists specified snapshots.

snapshot erase erases specified snapshots.

Quick start
Save a temporary copy of the data to disk, and label the snapshot mylabel1

snapshot save, label(mylabel1)

List snapshot numbers and labels

snapshot list _all

Restore snapshot mylabel1 with number 1
snapshot restore 1

Change label of snapshot 1 to mylabel2
snapshot label 1 ”mylabel2”

Delete all current snapshots, and begin renumbering new snapshots from 1

snapshot erase _all

Menu
Data > Data Editor > Data Editor (Edit)
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Syntax
Save snapshot

snapshot save [ , label(”label”) ]

Change snapshot label

snapshot label snapshot# ”label”

Restore snapshot

snapshot restore snapshot#

List snapshots

snapshot list [ all | numlist ]

Erase snapshots

snapshot erase all | numlist

collect is allowed with snapshot save; see [U] 11.1.10 Prefix commands.

Option
label(”label”) is for use with snapshot save and allows you to label a snapshot when saving it.

Remarks and examples
snapshot was created to allow a user using the Data Editor to save and restore snapshots of their

data while editing them interactively. It is similar to a checkpoint save in a video game, where after you

have made a certain amount of progress, you wish to make sure you will be able to return to that point

no matter what may happen in the future.

snapshot does not overwrite any copies of your data that you may have saved to disk. It saves a copy
of the data currently in memory to a temporary file and allows you to later restore that copy to memory.

snapshot saves the date and time at which you create a snapshot. It is a good idea to also give a

snapshot a label so that you will be better able to distinguish between multiple snapshots should you

need to restore one.

Technical note
Although we mention above the use of the Data Editor and we demonstrate below the use of

snapshot, we recommend that data cleaning not be done interactively. Instead, we recommend that
data editing and cleaning be done in a reproducible manner through the use of do-files; see [U] 16 Do-

files.
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Example 1
You decide to make some changes to auto.dta. You make a snapshot of the data before you begin

making changes, and you make another snapshot after the changes:

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. snapshot save, label(”before changes”)
snapshot 1 (before changes) created at 19 Apr 2024 21:32
. generate gpm = 1/mpg
. label variable gpm ”Gallons per mile”
. snapshot save, label(”after changes”)
snapshot 2 (after changes) created at 19 Apr 2024 21:34

You go on to do some analyses, but then, for some reason, you accidentally drop the variable you

previously created:

. drop gpm

Luckily, you made some snapshots of your work:

. snapshot list
snapshot 1 (before changes) created at 19 Apr 2024 21:32
snapshot 2 (after changes) created at 19 Apr 2024 21:34
. snapshot restore 2
. describe gpm
Variable Storage Display Value

name type format label Variable label

gpm float %9.0g Gallons per mile

Stored results
snapshot save stores the following in r():

Scalars

r(snapshot) sequence number of snapshot saved

Also see
[D] edit — Browse or edit data with Data Editor

[P] preserve — Preserve and restore data



sort — Sort data

Description Quick start Menu Syntax
Option Remarks and examples References Also see

Description
sort arranges the observations of the current data into ascending order based on the values of the

variables in varlist. There is no limit to the number of variables in varlist. Missing numeric values are

interpreted as being larger than any other number, so they are placed last with . < .a < .b < · · · < .z.
When you sort on a string variable, however, null strings are placed first and uppercase letters come

before lowercase letters.

The dataset is marked as being sorted by varlist unless in range is specified. If in range is specified,
only those observations are rearranged. The unspecified observations remain in the same place.

Quick start
Sort dataset in memory by ascending values of v1

sort v1

Same as above, and order within v1 by ascending values of v2 and within v2 by v3
sort v1 v2 v3

Same as above, and keep observations with the same values of v1, v2, and v3 in the same presort order
sort v1 v2 v3, stable

Menu
Data > Sort
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Syntax
sort varlist [ in ] [ , stable ]

Option
stable specifies that observations with the same values of the variables in varlist keep the same relative

order in the sorted data that they had previously. For instance, consider the following data:

x b

3 1

1 2

1 1

1 3

2 4

Typing sort x without the stable option produces one of the following six orderings:

x b x b x b x b x b x b

1 2 1 2 1 1 1 1 1 3 1 3

1 1 1 3 1 3 1 2 1 1 1 2

1 3 1 1 1 2 1 3 1 2 1 1

2 4 2 4 2 4 2 4 2 4 2 4

3 1 3 1 3 1 3 1 3 1 3 1

Without the stable option, the ordering of observations with equal values of varlist is randomized.
With sort x, stable, you will always get the first ordering and never the other five.

If your intent is to have the observations sorted first on x and then on b within tied values of x (the
fourth ordering above), you should type sort x b rather than sort x, stable.

stable is seldom used and, when specified, causes sort to execute more slowly.

Remarks and examples
Sorting data is one of the more common tasks involved in processing data. Often, before Stata can

perform some task, the data must be in a specific order. For the merge command to create a new dataset

that matches records from two datasets on a common key, both of those datasets must be sorted by that

key. Either you will sort the data or merge will sort it for you. If you want to use the by varlist: prefix,

the data must be sorted in order of varlist. You even sort data to put it into a more convenient order when

using list.

Remarks are presented under the following headings:

Finding the smallest values (and the largest)
Tracking sort order
Sorting on multiple variables
Descending sorts
Sorting on string variables
Sorting with ties
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Finding the smallest values (and the largest)
Sorting data can be informative. Suppose that we have data on automobiles, and each car’s make and

mileage rating (called make and mpg) are included among the variables in the data. We want to list the

five cars with the lowest mileage rating in our data:

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. keep make mpg weight
. sort mpg, stable
. list make mpg in 1/5

make mpg

1. Linc. Continental 12
2. Linc. Mark V 12
3. Cad. Deville 14
4. Cad. Eldorado 14
5. Linc. Versailles 14

We can also list the five cars with the highest mileage.

. list in -5/l

make mpg weight

70. Toyota Corolla 31 2,200
71. Plym. Champ 34 1,800
72. Datsun 210 35 2,020
73. Subaru 35 2,050
74. VW Diesel 41 2,040

Tracking sort order
Stata keeps track of the order of your data. For instance, we just sorted the above data on mpg. When

we ask Stata to describe the data in memory, it tells us how the dataset is sorted:
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. describe
Contains data from https://www.stata-press.com/data/r19/auto.dta
Observations: 74 1978 automobile data

Variables: 3 13 Apr 2024 17:45
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

make str18 %-18s Make and model
mpg int %8.0g Mileage (mpg)
weight int %8.0gc Weight (lbs.)

Sorted by: mpg
Note: Dataset has changed since last saved.

Stata keeps track of changes in sort order. If we were to make a change to the mpg variable, Stata

would know that the data are no longer sorted. Remember that the first observation in our data has mpg
equal to 12, as does the second. Let’s change the value of the first observation:

. replace mpg=13 in 1
(1 real change made)
. describe
Contains data from https://www.stata-press.com/data/r19/auto.dta
Observations: 74 1978 automobile data

Variables: 3 13 Apr 2024 17:45
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

make str18 %-18s Make and model
mpg int %8.0g Mileage (mpg)
weight int %8.0gc Weight (lbs.)

Sorted by:
Note: Dataset has changed since last saved.

After making the change, Stata indicates that our dataset is “Sorted by:” nothing. Let’s put the dataset

back as it was:

. replace mpg=12 in 1
(1 real change made)
. sort mpg

Technical note
Stata is limited in how it tracks changes in the sort order and will sometimes decide that a dataset is

not sorted when, in fact, it is. For instance, if we were to change the first observation of our automobile

dataset from 12 miles per gallon to 10, Stata would decide that the dataset is “Sorted by:” nothing, just as

it did above when we changed mpg from 12 to 13. Our change in example 2 did change the order of the

data, so Stata was correct. Changing mpg from 12 to 10, however, does not really affect the sort order.

As far as Stata is concerned, any change to the variables on which the data are sorted means that the

data are no longer sorted, even if the change actually leaves the order unchanged. Stata may be dumb,

but it is also fast. It sorts already-sorted datasets instantly, so Stata’s ignorance costs us little.
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Sorting on multiple variables
Data can be sorted by more than one variable, and in such cases, the sort order is lexicographic. If we

sort the data by two variables, for instance, the data are placed in ascending order of the first variable,
and then observations that share the same value of the first variable are placed in ascending order of the

second variable. Let’s order our automobile data by mpg and within mpg by weight:
. sort mpg weight
. list in 1/8, sep(4)

make mpg weight

1. Linc. Mark V 12 4,720
2. Linc. Continental 12 4,840
3. Peugeot 604 14 3,420
4. Linc. Versailles 14 3,830

5. Cad. Eldorado 14 3,900
6. Merc. Cougar 14 4,060
7. Merc. XR-7 14 4,130
8. Cad. Deville 14 4,330

The data are in ascending order of mpg, and within each mpg category, the data are in ascending order of
weight. The lightest car that achieves 14 miles per gallon in our data is the Peugeot 604.

Technical note
The sorting technique used by Stata is fast, but the order of variables not included in varlist is not

maintained. If you wish to maintain the order of additional variables, include them at the end of varlist.

There is no limit to the number of variables by which you may sort.

Descending sorts
Sometimes, you may want to order a dataset by descending sequence of something. Perhaps we wish

to obtain a list of the five cars achieving the best mileage rating. The sort command orders the data
only into ascending sequences. Another command, gsort, orders the data in ascending or descending
sequences; see [D] gsort. You can also create the negative of a variable and achieve the desired result:

. generate negmpg = -mpg

. sort negmpg

. list in 1/5

make mpg weight negmpg

1. VW Diesel 41 2,040 -41
2. Datsun 210 35 2,020 -35
3. Subaru 35 2,050 -35
4. Plym. Champ 34 1,800 -34
5. Toyota Corolla 31 2,200 -31

We find that the VW Diesel tops our list.
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Sorting on string variables
sort may also be used on string variables. The data are sorted alphabetically:

. sort make

. list in 1/5

make mpg weight negmpg

1. AMC Concord 22 2,930 -22
2. AMC Pacer 17 3,350 -17
3. AMC Spirit 22 2,640 -22
4. Audi 5000 17 2,830 -17
5. Audi Fox 23 2,070 -23

Technical note
Bear in mind that Stata takes “alphabetically” to mean “in order by byte value”. This means that all

uppercase letters come before lowercase letters; for example, Z < a. As far as Stata is concerned, the

following list is sorted alphabetically:

. list, sep(0)

myvar

1. ALPHA
2. Alpha
3. BETA
4. Beta
5. alpha
6. beta

For most purposes, this method of sorting is sufficient. It is possible to override Stata’s sort logic.

See [U] 12.4.2.5 Sorting strings containing Unicode characters for information about ordering strings

in a language-sensitive way. We do not recommend that you do this.

Sorting with ties
Sorting when your list of sort variables does not uniquely identify an observation, that is to say when

you have ties, is usually dangerous and should be avoided. Consider using sort to find the average mpg
for the five cars with the smallest gear ratio.

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. sort gear_ratio
. summarize mpg in 1/5

Variable Obs Mean Std. dev. Min Max

mpg 5 17 3.674235 14 21

So the answer is 17.

We go on and do some other work.
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We forgot to write down the answer from earlier, and silly us, we were not logging our results. So we

run our commands again:

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. sort gear_ratio
. summarize mpg in 1/5

Variable Obs Mean Std. dev. Min Max

mpg 5 15.8 2.949576 14 21

So the answer is 15.8.

What happened? The title of this section is a clue. Let’s list some of the data:

. list gear_ratio mpg in 1/10

gear_r~o mpg

1. 2.19 14
2. 2.24 21
3. 2.26 15
4. 2.28 14
5. 2.41 15

6. 2.41 16
7. 2.41 21
8. 2.43 18
9. 2.47 16

10. 2.47 14

The first four observations look fine; each value of gear ratio is unique. But the fifth, sixth, and
seventh observations all have a gear ratio of 2.41, whereas the values of mpg differ. Do we want

mpg = 15, mpg = 16, or mpg = 21 in our mean?

There are not many things we can do after a sort that will produce unique results if the sort itself has

observations with ties in varlist. The ordering is not unique. You must be sure that the ordering really

does not matter. If that is the case, then why did you sort in the first place?

So what are we to do? We could rephrase our question as “What is the lowest possible average mpg
for five cars with the smallest gear ratio?” Then we would type

. sort gear_ratio mpg

. summarize mpg in 1/5
Variable Obs Mean Std. dev. Min Max

mpg 5 15.8 2.949576 14 21

Now we will always get the same answer—15.8.

How do you know your sort variables form a unique ordering? Ask

. isid gear_ratio mpg
variables gear_ratio and mpg do not uniquely identify the observations
r(459);

That is still not a unique ordering. Our analysis does not require a fully unique ordering. Because we

are summarizing mpg, tied values of mpg will give the same answer. Even so, there would be no harm in

adding another variable to make the ordering truly unique:
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. isid gear_ratio mpg weight

. sort gear_ratio mpg weight

. summarize mpg in 1/5
Variable Obs Mean Std. dev. Min Max

mpg 5 15.8 2.949576 14 21

What if we did not want the lowest mpg? What if we preferred a randomized answer where the

computer chooses one of the observations with tied gear ratio? The best approach is to use a good

random-number generator to create a new variable with random values that you will also sort on:

. set seed 12345

. generate rnd = runiform()

. sort gear_ratio rnd

. summarize mpg in 1/5
Variable Obs Mean Std. dev. Min Max

mpg 5 17 3.674235 14 21

Why did we set the seed? So that our randomized result is reproducible. That is not a contradiction.

A benefit of this approach is that regardless of any further transformations or manipulations we make

on this dataset we can always recover the ordering by typing

. sort gear_ratio rnd

Well, we cannot change the values of gear ratio or rnd, and we cannot add or insert observations,
but any other manipulations are allowed.

Our example is rather artificial, but there are many cases where you do want a randomized order

within tied values of a sorted variable. One such case is creating simulated datasets for panel data or

multilevel data.

It turns out that our first results were also randomly ordered. That is true because sort performs a
quick randomized jumbling before sorting. We were already getting a randomized order within the ties.

Do not use this in practice. The randomization performed by sort is designed solely to make sort faster
by preventing any possibility of an initial ordering that defeats the sort algorithm and makes the sorting

much slower. If you want a random ordering within ties, then use a random-number generator with good

properties like the one implemented in runiform(). For more about the random-number generator, see
[R] set seed and the references therein.

If you do not want a random ordering within ties and you also do not want to use other variables from

the dataset to define a unique ordering, you can add a sequence variable to the dataset and include it in

your sort,

. generate id = _n

. sort gear_ratio id

That sort will still depend on the order of your data when id is created, but you will always be able to
recreate the ordering by typing

. sort gear_ratio id

The ordering produced after this sort will be identical to the ordering had we instead typed

. sort gear_ratio, stable
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The advantage to creating the id variable is that we can recover this ordering at any time in the future
by retyping

. sort gear_ratio id

That cannot be said of

. sort gear_ratio, stable

The ordering after this sort will depend on the order before the sort command. So if we sort on another
variable between our two stable sorts, the ordering after those two stable sorts will be different.

One final note. If you ran the commands in this entry, you may have obtained different results from

those printed here for the first several summarize commands and a different ordering from the first list
command. That is yet another reminder not to perform order-dependent analyses when your current

sort order is not unique. You got different results because the jumbler that sort preapplies started from
a different point than it did when we ran the commands for this manual entry. Unless you start Stata

immediately before running a sort with tied values or you set the state of the jumbler, you will rarely

get the same ordering for tied keys. If you want to get the ordering we got in this entry, you should use

Stata/SE and type

. set sortrngstate 12345

That’s what we do so that this entry does not change every time we re-create the manuals. See [P] set

sortrngstate. This is such an esoteric command that we warn you against using it. Regardless, unless

your goal is to write a manual entry that describes how to deal with tied values in sorts, do not use set
sortrngstate to create reproducible sorts. Think about your problem and sort on variables that create

the unique ordering you need. Or decide you want a stable sort of the ties based on the current ordering.

Or use the method described above that creates a good random number to randomly order the tied values.

References
Royston, P. 2001. Sort a list of items. Stata Journal 1: 105–106.

Schumm, L. P. 2006. Stata tip 28: Precise control of dataset sort order. Stata Journal 6: 144–146.

Also see
[D] describe — Describe data in memory or in a file

[D] gsort —Ascending and descending sort

[U] 11 Language syntax

https://www.stata-journal.com/article.html?article=dm0001
https://www.stata-journal.com/article.html?article=dm0019


split — Split string variables into parts

Description Quick start Menu Syntax Options
Remarks and examples Stored results Acknowledgments Also see

Description
split splits the contents of a string variable, strvar, into one or more parts, using one or more

parse strings (by default, blank spaces), so that new string variables are generated. Thus split is

useful for separating “words” or other parts of a string variable. strvar itself is not modified.

Quick start
Create variables v# for each word of v separated by spaces

split v

Same as above, but split into words or phrases on commas and generate variables newv#
split v, parse(,) generate(newv)

Same as above, but do not trim leading or trailing spaces

split v, parse(,) generate(newv) notrim

Create only newv1, newv2, and newv3 regardless of the number of possible new variables

split v, generate(newv) limit(3)

Same as above, and convert to numeric type when possible

split v, generate(newv) limit(3) destring

Menu
Data > Create or change data > Other variable-transformation commands > Split string variables into parts
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Syntax
split strvar [ if ] [ in ] [ , options ]

options Description

Main

generate(stub) begin new variable names with stub; default is strvar

parse(parse strings) parse on specified strings; default is to parse on spaces

limit(#) create a maximum of # new variables

notrim do not trim leading or trailing spaces of original variable

Destring

destring apply destring to new string variables, replacing initial string
variables with numeric variables where possible

ignore(”chars”) remove specified nonnumeric characters

force convert nonnumeric strings to missing values

float generate numeric variables as type float
percent convert percent variables to fractional form

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

generate(stub) specifies the beginning characters of the new variable names so that new variables

stub1, stub2, etc., are produced. stub defaults to strvar.

parse(parse strings) specifies that, instead of using spaces, parsing use one or more parse strings.

Most commonly, one string that is one punctuation character will be specified. For example, if

parse(,) is specified, then ”1,2,3” is split into ”1”, ”2”, and ”3”.

You can also specify 1) two or more strings that are alternative separators of “words” and 2) strings

that consist of two or more characters. Alternative strings should be separated by spaces. Strings that

include spaces should be bound by ” ”. Thus if parse(, ” ”) is specified, ”1,2 3” is also split into
”1”, ”2”, and ”3”. Note particularly the difference between, say, parse(a b) and parse(ab): with
the first, a and b are both acceptable as separators, whereas with the second, only the string ab is

acceptable.

limit(#) specifies an upper limit to the number of new variables to be created. Thus limit(2) specifies
that, at most, two new variables be created.

notrim specifies that the original string variable not be trimmed of leading and trailing spaces before
being parsed. notrim is not compatible with parsing on spaces, because the latter implies that spaces
in a string are to be discarded. You can either specify a parsing character or, by default, allow a trim.

� � �
Destring �

destring applies destring to the new string variables, replacing the variables initially created as strings

by numeric variables where possible. See [D] destring.

ignore(), force, float, percent; see [D] destring.
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Remarks and examples
split is used to split a string variable into two or more component parts, for example, “words”. You

might need to correct a mistake, or the string variable might be a genuine composite that you wish to

subdivide before doing more analysis.

The basic steps applied by split are, given one or more separators, to find those separators within
the string and then to generate one or more new string variables, each containing a part of the original.

The separators could be, for example, spaces or other punctuation symbols, but they can in turn be strings

containing several characters. The default separator is a space.

The key string functions for subdividing string variables and, indeed, strings in general, are strpos(),
which finds the position of separators, and substr(), which extracts parts of the string. (See [FN] String
functions.) split is based on the use of those functions.

If your problem is not defined by splitting on separators, you will probably want to use substr()
directly. Suppose that you have a string variable, date, containing dates in the form ”21011952” so that
the last four characters define a year. This string contains no separators. To extract the year, you would

use substr(date,-4,4). Again suppose that each woman’s obstetric history over the last 12 months
was recorded by a str12 variable containing values such as ”nppppppppbnn”, where p, b, and n denote
months of pregnancy, birth, and nonpregnancy. Once more, there are no separators, so you would use

substr() to subdivide the string.

split discards the separators, because it presumes that they are irrelevant to further analysis or that
you could restore them at will. If this is not what you want, you might use substr() (and possibly

strpos()).

Finally, before we turn to examples, compare split with the egen function ends(), which produces
the head, the tail, or the last part of a string. This function, like all egen functions, produces just one
new variable as a result. In contrast, split typically produces several new variables as the result of one

command. For more details and discussion, including comments on the special problem of recognizing

personal names, see [D] egen.

split can be useful when input to Stata is somehow misread as one string variable. If you copy

and paste into the Data Editor, say, under Windows by using the clipboard, but data are space-separated,

what you regard as separate variables will be combined because the Data Editor expects comma- or tab-

separated data. If some parts of your composite variable are numeric characters that should be put into

numeric variables, you could use destring at the same time; see [D] destring.

. split var1, destring

Here no generate() option was specified, so the new variables will have names var11, var12, and so
forth. You may now wish to use rename to produce more informative variable names. See [D] rename.

You can also use split to subdivide genuine composites. For example, email addresses such as

tech-support@stata.com may be split at ”@”:

. split address, p(@)

This sequence yields two new variables: address1, containing the part of the email address before the
”@”, such as ”tech-support”, and address2, containing the part after the ”@”, such as ”stata.com”.
The separator itself, ”@”, is discarded. Because generate() was not specified, the name address was
used as a stub in naming the new variables. split displays the names of new variables created, so you

will see quickly whether the number created matches your expectations.
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If the details of individuals were of no interest and you wanted only machine names, either

. egen machinename = ends(address), tail p(@)

or

. generate machinename = substr(address, strpos(address,”@”) + 1,.)

would be more direct.

Next suppose that a string variable holds names of legal cases that should be split into variables

for plaintiff and defendant. The separators could be ” V ”, ” V. ”, ” VS ”, and ” VS. ”. (We assume

that any inconsistency in the use of uppercase and lowercase has been dealt with by the string function

strupper(); see [FN] String functions.) Note particularly the leading and trailing spaces in our de-

tailing of separators: the first separator is ” V ”, for example, not ”V”, which would incorrectly split
”GOLIATH V DAVID” into ”GOLIATH ”, ” DA”, and ”ID”. The alternative separators are given as the

argument to parse():

. split case, p(” V ” ” V. ” ” VS ” ” VS. ”)

Again with default naming of variables and recalling that separators are discarded, we expect new

variables case1 and case2, with no creation of case3 or further new variables. Whenever none of the

separators specified were found, case2 would have empty values, so we can check:

. list case if case2 == ””

Suppose that a string variable contains fields separated by tabs. For example, import delimited
leaves tabs unchanged. Knowing that a tab is char(9), we can type

. split data, p(‘=char(9)’) destring

p(char(9)) would not work. The argument to parse() is taken literally, but evaluation of functions
on the fly can be forced as part of macro substitution.

Finally, suppose that a string variable contains substrings bound in parentheses, such as (1 2 3) (4 5
6). Here we can split on the right parentheses and, if desired, replace those afterward. For example,

. split data, p(”)”)

. foreach v in ‘r(varlist)’ {
replace ‘v’ = ‘v’ + ”)”

. }

Stored results
split stores the following in r():
Scalars

r(k new) number of new variables created

Macros

r(varlist) names of the newly created variables
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Also see
[D] destring — Convert string variables to numeric variables and vice versa

[D] egen — Extensions to generate

[D] rename — Rename variable

[D] separate — Create separate variables

[FN] String functions



splitsample — Split data into random samples

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas Also see

Description
splitsample splits data into random samples based on a specified number of samples and specified

proportions for each sample. Splitting can also be done based on clusters. Sample splitting can also be

balanced across specified variables. Balanced splitting can be used for matched treatment assignment.

Quick start
Split data into two random samples of equal sizes and generate sample ID variable svar with values 1

and 2

splitsample, generate(svar)

Same as above, but with sample ID variable svar having values 0 and 1
splitsample, generate(svar) values(0 1)

Split data into three random samples of equal sizes and generate sample ID variable svar with values 1,
2, and 3

splitsample, generate(svar) nsplit(3)

Same as above, but with sample ID variable svar equal to missing (.) whenever any of y or x1-x100
have missing values

splitsample y x1-x100, generate(svar) nsplit(3)

Split data into three random samples with the first sample having 25% of the observations, the second

having 25%, and the third having 50%

splitsample, generate(svar) split(0.25 0.25 0.5)

Same sample split as above, but specify the split using ratios rather than proportions

splitsample, generate(svar) split(1 1 2)

Same as above, but maintain the specified sample-size ratios in each group defined by the variables

agegrp and gender
splitsample, generate(svar) split(1 1 2) balance(agegrp gender)

Same as above, but randomly round sample sizes when samples within an agegrp by gender group

cannot be chosen to satisfy the specified sample-size ratios exactly

splitsample, generate(svar) split(1 1 2) balance(agegrp gender) rround

Split data into three samples based on clusters defined by clustvar
splitsample, generate(svar) nsplit(3) cluster(clustvar)

864
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Same as above, but maintain the specified sample proportions based on clusters in each group defined by

the variables agegrp and gender, randomly round cluster sample sizes, and display a table showing
the cluster sample sizes

splitsample, generate(svar) nsplit(3) cluster(clustvar) ///
balance(agegrp gender) rround show

Menu
Data > Create or change data > Other variable-creation commands > Split data into random samples

Syntax
splitsample [ varlist ] [ if ] [ in ], generate(newvar [ , replace ]) [ options ]

varlist is checked for missing values, and the sample ID variable newvar is set to missing for observations

where any variable in varlist is missing. all or * may be specified for varlist.

options Description

Main
∗ generate(newvar [ , replace ]) create new sample ID variable; optionally replace existing

variable

nsplit(#) split into # random samples of equal size

split(numlist) specify numlist of proportions or ratios for the split

rround randomly round sample sizes when an exact split cannot
be made

values(numlist) specify numlist of values for sample ID variable

cluster(clustvar) split by clusters defined by clustvar, not observations

balance(balvars) split each group defined by the distinct values of balvars
independently based on the specified sample proportions

Advanced

strok evaluate string variables in varlist for missing values;
by default, string variables are ignored

rseed(#) specify random-number seed

show display a table showing the sample sizes of the split

percent display percentages in the table showing the split
∗generate() is required.
collect is allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

generate(newvar [ , replace ]) creates a new variable containing ID values for the random samples.

The variable newvar is valued 1, 2, . . .by default. The option values(numlist) can be used to specify
different ID values. generate() is required.

replace allows any existing variable named newvar to be replaced.

nsplit(#) splits the data into # random samples of equal size, or as close to equal as possible. If neither

nsplit() nor split() is specified, the data are split into two samples.
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split(numlist) is an alternative to nsplit() for specifying the split. This option splits the data into
samples whose sizes are proportional to the values of numlist. The values of numlist can be any

positive number. You can specify proportions that sum to 1, or you can specify integers that define

ratios for the sample sizes. Regardless of whether you specify decimals less than 1 or integers, the

proportions of the split are given by the values in numlist divided by their sum.

rround specifies that sample sizes be randomly rounded when an exact split cannot be made. When an

exact split can be made, this option does nothing. When split(numlist) is specified with rround,
numlist must consist of integers, and the integers should contain no common factors. For instance,

use split(1 1 2), not split(25 25 50). See Methods and formulas for an explanation.

By default, the sample sizes of the splits are calculated using a deterministic rounding formula. That is,

if you repeat the splitting with a different random-number seed, you will get exactly the same sample

sizes. Specifying rround creates randomly rounded sample sizes such that the expected values of the
sample sizes match the specified split proportions exactly.

The option rround is designed for use with the balance() option when the number of observations
in each of the balance groups is small. When group sizes are small (especially when smaller than the

number of splits), rround ensures that the overall actual sample split proportions closely match the
specified split proportions.

values(numlist) specifies that numlist be used for the values of the sample ID variable rather than the

default of 1, 2, . . . . The number of values in numlist must correspond to the number of samples into

which the data are split and must be ascending nonnegative integers.

cluster(clustvar) specifies that the data be split by the clusters defined by clustvar. That is, all obser-
vations in a cluster are kept together in the same split sample. The proportions of the split are based

on numbers of clusters, not numbers of observations. clustvar can be a numeric or string variable.

balance(balvars) specifies that each group defined by the distinct values of balvars be split indepen-
dently based on the specified sample proportions. This ensures a balanced, or roughly balanced,

distribution of the balvars values across the split samples. When the number of observations (or clus-

ters) in each group is about the same as (or smaller than) the number of split samples, the option

rround is recommended. balvars can be numeric or string variables.

� � �
Advanced �

strok (applies only when a varlist is specified) specifies to check any string variables in varlist for

missing values. For observations with missing values, the generated sample ID variable is set to

missing. By default, string variables in varlist are ignored.

rseed(#) sets the random-number seed. This option can be used to reproduce results. rseed(#) is

equivalent to typing set seed # prior to running splitsample. See [R] set seed.

show displays a table showing the sample sizes of the split. When cluster() is specified, it shows

the numbers of clusters in the samples. When balance(balvars) is specified, it displays a table in
which each row corresponds to a distinct set of values of balvars and shown across the columns are

the numbers of observations (or clusters) belonging to each split sample for that balance group.

percent specifies to display percentages rather than the number of observations (or clusters) in the table.
percent can only be specified with the option show.
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Remarks and examples
splitsample is useful for dividing data into training, validation, and testing samples for machine

learning and automated model-building procedures such as those performed by the lasso, stepwise,
and nestreg commands.

splitsample with the options balance() and rround can also be used to do random treatment

assignment with matching. See example 3.

Example 1: Splitting by observations
Let’s create a dataset with 101 observations and run splitsample without any options except the

required option giving the name of the sample ID variable to generate. Then we tabulate the newly

created variable.

. set obs 101
Number of observations (_N) was 0, now 101.
. splitsample, generate(svar)
. tabulate svar

svar Freq. Percent Cum.

1 51 50.50 50.50
2 50 49.50 100.00

Total 101 100.00

By default, splitsample splits the data into two samples, with the samples as equal in size as possible.

The option nsplit(#) can be used to split the data into as many samples as you want—in this case,

three samples.

. splitsample, generate(svar, replace) nsplit(3)

. tabulate svar
svar Freq. Percent Cum.

1 34 33.66 33.66
2 33 32.67 66.34
3 34 33.66 100.00

Total 101 100.00

The option split(numlist) can be specified in place of nsplit() to split the data into any propor-
tions you want. Here we specify that we want 25% of the observations in sample 1, 25% in sample 2,

and 50% in sample 3.

. splitsample, generate(svar, replace) split(0.25 0.25 0.50) show
svar Freq. Percent Cum.

1 25 24.75 24.75
2 26 25.74 50.50
3 50 49.50 100.00

Total 101 100.00
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It split the data as close as it could to 25% ∶ 25% ∶ 50%. The option show displayed the tabulation for
us.

Example 2: Splitting by clusters
splitsample can also split the data by clusters. Let’s create a cluster variable clustvar and split

the data into three samples with proportions 25% ∶ 25% ∶ 50% for the numbers of clusters. We also

specify the option show, which gives a convenient tabulation by numbers of clusters rather than numbers
of observations.

. set seed 12345

. generate clustvar = runiformint(1, 20)

. splitsample, generate(svar, replace) split(0.25 0.25 0.50) cluster(clustvar)
> show

svar Freq. Percent Cum.

1 5 25.00 25.00
2 5 25.00 50.00
3 10 50.00 100.00

Total 20 100.00
Total is number of clusters.

Because we had 20 clusters, the split into 25% ∶ 25% ∶ 50% yielded cluster sample sizes that met the

specified proportions exactly.

The resulting split by number of observations is, of course, different.

. tabulate svar
svar Freq. Percent Cum.

1 34 33.66 33.66
2 21 20.79 54.46
3 46 45.54 100.00

Total 101 100.00

When splitting by clusters, the size of each cluster is ignored.

Example 3: Balanced splitting and treatment assignment
splitsample can split the data independently within groups using the option balance(). Let’s

create two fake categorical variables, one agegrp representing eight age–group categories, and a 0/1

variable gender.

. set seed 12345

. generate agegrp = runiformint(1, 8)

. generate gender = runiformint(0, 1)

We want to split the data into four samples, where the first three samples are the same size, and the

fourth sample is twice the size of each of the others. We specify split(1 1 1 2) using integer ratios.
We specify the option balance(agegrp gender) to ensure that the distribution of agegrp × gender
is roughly balanced across the four samples. The option show is useful for seeing the actual splits of the
numbers of observations within each agegrp × gender group.
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. splitsample, generate(svar, replace) split(1 1 1 2)
> balance(agegrp gender) show
note: some groups defined by balance() do not contain every sample value.

agegrp gender svar 1 svar 2 svar 3 svar 4 Total

1 0 2 1 2 3 8
1 1 1 2 1 3 7

2 0 2 2 1 4 9
2 1 1 1 1 2 5

3 0 1 1 1 2 5
3 1 1 1 0 2 4

4 0 2 2 2 4 10
4 1 2 2 1 4 9

5 0 1 0 1 1 3
5 1 1 0 1 1 3

6 0 1 0 1 1 3
6 1 2 2 1 4 9

7 0 0 1 0 1 2
7 1 1 1 1 2 5

8 0 2 1 2 3 8
8 1 2 2 3 4 11

We get a message “some groups defined by balance() do not contain every sample value”. Indeed,
all the groups of size three have no observations in sample 2. Because we are splitting the data into four

samples, obviously we need at least four observations in a group for every sample to contain at least one

observation.

Second, we notice that all groups of the same size are split into the four samples with exactly the

same number of observations in each sample. For example, the two groups of size eight (agegrp = 1,

gender = 0 and agegrp = 8, gender = 0) both have two observations in each of samples 1 and 3, one

observation in sample 2, and three observations in sample 4.

Groups of the same size have exactly the same sample-size splits because, by default, the sample sizes

for the splits are calculated using a deterministic formula. If the sizes of the groups vary, this typically

would not be an issue. Overall, one would expect the actual split proportions to be close to the specified

split proportions. But imagine if all, or almost all, the group sizes were the same. What if the size of each

group were eight observations in this example? Every group would be split 2 ∶ 1 ∶ 2 ∶ 3 by observations,
yielding actual split proportions of 25% ∶ 12.5% ∶ 25% ∶ 37.5%, which are rather different from the

specified split proportions of 20% ∶ 20% ∶ 20% ∶ 40%.
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The option rround provides a solution for this problem. It randomly rounds the split sample sizes
when the split cannot be made exactly.

. splitsample, generate(svar, replace) split(1 1 1 2)
> balance(agegrp gender) rround rseed(54321) show
note: some groups defined by balance() do not contain every sample value.

agegrp gender svar 1 svar 2 svar 3 svar 4 Total

1 0 2 1 2 3 8
1 1 2 1 1 3 7

2 0 2 2 1 4 9
2 1 1 1 1 2 5

3 0 1 1 1 2 5
3 1 1 1 1 1 4

4 0 2 2 2 4 10
4 1 2 2 2 3 9

5 0 1 1 0 1 3
5 1 1 1 1 0 3

6 0 0 1 1 1 3
6 1 1 2 2 4 9

7 0 0 0 0 2 2
7 1 1 1 1 2 5

8 0 1 2 2 3 8
8 1 2 2 2 5 11

We see that the groups of sizes three, eight, and nine now have different splits by numbers of observations.

The groups of size five have exactly the same splits by size because they could be divided exactly based

on the specified split ratios of 1 ∶ 1 ∶ 1 ∶ 2.
The option rroundwith balance() thus does a “more random” assignment of observations (or clus-

ters), which is important when the sizes of the balance groups are small. When the sizes of the balance

groups are large, and the sizes of the groups vary, splits made with or without rround will be similar.

Note that rroundwith balance() is suitable for random treatment assignment with matching defined

by values of the balance variables.

The computational procedure for option rround first randomly assigns as many observations to the
split samples as it can to match the specified split proportions exactly. Leftover observations are as-

signed to samples by dividing them randomly based on the specified split ratios. Splitting ratios must be

specified as integers to facilitate this method of splitting the leftovers. See Methods and formulas.

Example 4: Missing values
varlist can be specified with splitsample to handle missing values. Let’s say we want to divide our

data into training and validation samples for a lasso or other procedure. Imagine that the variables in
the lasso have more than a few missing values. Specifying these variables as varlist for splitsample
means that the sample ID variable created will have missing values whenever any of the variables in

varlist are missing.



splitsample — Split data into random samples 871

Here’s an illustration. We create a couple of variables with missing values.

. set seed 1234

. generate y = runiform()

. replace y = . if runiform() < 0.1
(11 real changes made, 11 to missing)
. generate x = runiform()
. replace x = . if runiform() < 0.1
(15 real changes made, 15 to missing)

Then split the data specifying these variables to be checked for missing:

. splitsample y x, generate(svar, replace)

. tabulate svar, miss
svar Freq. Percent Cum.

1 38 37.62 37.62
2 38 37.62 75.25
. 25 24.75 100.00

Total 101 100.00

The split was done exactly for the observations without missing values.

Stored results
splitsample stores the following in r():

Scalars

r(N) total number of observations

r(N clust) total number of clusters

r(n samples) number of split samples

Macros

r(clustvar) name of cluster variable

r(balancevars) names of balance variables

r(rngstate) random-number state used

Methods and formulas
Let 𝑟1, 𝑟2, . . . , 𝑟𝐾 be the arguments to split(numlist). If the split is specified using nsplit(#),

then we set each 𝑟𝑘 = 1, and the number of split samples is 𝐾 = #. The split sample proportions are

𝑝𝑘 = 𝑟𝑘
𝑅

where 𝑅 =
𝐾

∑
𝑖=1

𝑟𝑖

The cumulative proportions are

𝑠𝑘 =
𝑘

∑
𝑖=1

𝑝𝑖

For the default deterministic rounding, we calculate cumulative sample sizes:

𝑀𝑘 = round(𝑁𝑠𝑘)
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where 𝑁 is the total number of observations or the number of clusters, and round(⋅) is Stata’s round()
function. When the option balance() is specified, 𝑁 is the number of observations or clusters in a

single balance group. The sample sizes 𝑁1, 𝑁2, . . . , 𝑁𝐾 are given by

𝑁1 = 𝑀1

𝑁𝑘 = 𝑀𝑘 − 𝑀𝑘−1 for 𝑘 = 2, . . . , 𝐾

When the option rround is specified for random rounding, we first divide 𝑁, the number of observa-

tions or clusters, as follows:

𝑁 = 𝑐𝑅 + 𝑑

where 𝑅 is the sum of 𝑟1, 𝑟2, . . . , 𝑟𝐾; 𝑐 is a nonnegative integer; and 0 ≤ 𝑑 < 𝑅. In other words, 𝑐𝑅
observations can be split into 𝐾 samples matching the specified split proportions exactly. We randomly

pick 𝑐𝑅 observations and assign them to the samples. The leftover 𝑑 observations are randomly placed

in 𝑅 bins without replacement, where the first 𝑟1 bins represent sample 1, the next 𝑟2 bins represent

sample 2, and so on.

The computational procedure for random rounding thus requires 𝑟1, 𝑟2, . . . , 𝑟𝐾 to be integers and also

requires 𝑅 ≤ 𝑁. To reduce the variance of the random rounding, the integers 𝑟1, 𝑟2, . . . , 𝑟𝐾 should have

no common factors.

Also see
[D] sample — Draw random sample
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Description Quick start Menu Syntax
Options Remarks and examples Reference Also see

Description
stack stacks the variables in varlist vertically, resulting in a dataset with variables newvars and

N ⋅ (𝑁𝑣/𝑁𝑛) observations, where 𝑁𝑣 is the number of variables in varlist and 𝑁𝑛 is the number in

newvars. stack creates the new variable stack identifying the groups.

Quick start
Replace data in memory with v, v2 appended to v1 and identify original variable by order in stack

stack v1 v2, into(v)

Same as above, but with v1 appended to v2 and do not display warning that data in memory will be

replaced

stack v2 v1, into(v) clear

Same as above, but save result in v2
stack v2 v1, group(2) clear

Append v2 to v1 and v4 to v3 and save result in newv1 and newv2
stack v1 v3 v2 v4, into(newv1 newv2) clear

Same as above, but save results in v1 and v3
stack v1 v3 v2 v4, group(2) clear

Menu
Data > Create or change data > Other variable-transformation commands > Stack data

873
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Syntax
stack varlist [ if ] [ in ], { into(newvars) | group(#) } [ options ]

options Description

Main
∗ into(newvars) identify names of new variables to be created
∗ group(#) stack # groups of variables in varlist

clear clear dataset from memory

wide keep variables in varlist that are not specified in newvars

∗ Either into(newvars) or group(#) is required.
stack does not allow alias variables; see [D] frunalias for advice on how to get around this restriction.

Options

� � �
Main �

into(newvars) identifies the names of the new variables to be created. into() may be specified using
variable ranges (for example, into(v1-v3)). Either into() or group(), but not both, must be
specified.

group(#) specifies the number of groups of variables in varlist to be stacked. The created variables will
be named according to the first group in varlist. Either group() or into(), but not both, must be
specified.

clear indicates that it is okay to clear the dataset in memory. If you do not specify this option, you will
be asked to confirm your intentions.

wide includes any of the original variables in varlist that are not specified in newvars in the resulting

data.

Remarks and examples

Example 1: Illustrating the concept
This command is best understood by examples. We begin with artificial but informative examples

and end with useful examples.

. use https://www.stata-press.com/data/r19/stackxmpl

. list

a b c d

1. 1 2 3 4
2. 5 6 7 8
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. stack a b c d, into(e f) clear

. list

_stack e f

1. 1 1 2
2. 1 5 6
3. 2 3 4
4. 2 7 8

We formed the new variable e by stacking a and c, and we formed the new variable f by stacking b and
d. stack is automatically created and set equal to 1 for the first (a, b) group and equal to 2 for the
second (c, d) group. (When stack==1, the new data e and f contain the values from a and b. When

stack==2, e and f contain values from c and d.)

There are two groups because we specified four variables in the varlist and two variables in the into
list, and 4/2 = 2. If there were six variables in the varlist, there would be 6/2 = 3 groups. If there

were also three variables in the into list, there would be 6/3 = 2 groups. Specifying six variables in

the varlist and four variables in the into list would result in an error because 6/4 is not an integer.

Example 2: Stacking a variable multiple times
Variables may be repeated in the varlist, and the varlist need not contain all the variables:

. use https://www.stata-press.com/data/r19/stackxmpl, clear

. list

a b c d

1. 1 2 3 4
2. 5 6 7 8

. stack a b a c, into(a bc) clear

. list

_stack a bc

1. 1 1 2
2. 1 5 6
3. 2 1 3
4. 2 5 7

a was stacked on a and called a, whereas b was stacked on c and called bc.

If we had wanted the resulting variables to be called simply a and b, we could have used

. stack a b a c, group(2) clear

which is equivalent to

. stack a b a c, into(a b) clear
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Example 3: Keeping the original variables
In this artificial but informative example, the wide option includes the variables in the original dataset

that were specified in varlist in the output dataset:

. use https://www.stata-press.com/data/r19/stackxmpl, clear

. list

a b c d

1. 1 2 3 4
2. 5 6 7 8

. stack a b c d, into(e f) clear wide

. list

_stack e f a b c d

1. 1 1 2 1 2 . .
2. 1 5 6 5 6 . .
3. 2 3 4 . . 3 4
4. 2 7 8 . . 7 8

In addition to the stacked e and f variables, the original a, b, c, and d variables are included. They are
set to missing where their values are not appropriate.

Example 4: Using wide with repeated variables
This is the last artificial example. When you specify the wide option and repeat the same variable

name in both the varlist and the into list, the variable will contain the stacked values:

. use https://www.stata-press.com/data/r19/stackxmpl, clear

. list

a b c d

1. 1 2 3 4
2. 5 6 7 8

. stack a b a c, into(a bc) clear wide

. list

_stack a bc b c

1. 1 1 2 2 .
2. 1 5 6 6 .
3. 2 1 3 . 3
4. 2 5 7 . 7
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Example 5: Using stack to make graphs
We want one graph of y against x1 and y against x2. We might be tempted to type scatter y x1 x2,

but that would graph y against x2 and x1 against x2. One solution is to type

. save mydata

. stack y x1 y x2, into(yy x12) clear

. generate y1 = yy if _stack==1

. generate y2 = yy if _stack==2

. scatter y1 y2 x12

. use mydata, clear

The names yy and x12 are supposed to suggest the contents of the variables. yy contains (y,y), and x12
contains (x1,x2). We then make y1 defined at the x1 points but missing at the x2 points—graphing y1
against x12 is the same as graphing y against x1 in the original dataset. Similarly, y2 is defined at the x2
points but missing at x1—graphing y2 against x12 is the same as graphing y against x2 in the original
dataset. Therefore, scatter y1 y2 x12 produces the desired graph.

Example 6: Plotting cumulative distributions
We wish to graph y1 against x1 and y2 against x2 on the same graph. The logic is the same as above,

but let’s go through it. Perhaps we have constructed two cumulative distributions by using cumul (see
[R] cumul):

. use https://www.stata-press.com/data/r19/citytemp
(City temperature data)
. cumul tempjan, gen(cjan)
. cumul tempjuly, gen(cjuly)

We want to graph both cumulatives in the same graph; that is, we want to graph cjan against tempjan
and cjuly against tempjuly. Remember that we could graph the tempjan cumulative by typing

. scatter cjan tempjan, c(l) m(o) sort
(output omitted )

We can graph the tempjuly cumulative similarly. To obtain both on the same graph, we must stack the
data:

. stack cjuly tempjuly cjan tempjan, into(c temp) clear

. generate cjan = c if _stack==1
(958 missing values generated)
. generate cjuly = c if _stack==2
(958 missing values generated)
. scatter cjan cjuly temp, c(l l) m(o o) sort
(output omitted )
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Alternatively, if we specify the wide option, we do not have to regenerate cjan and cjuly because
they will be created automatically:

. use https://www.stata-press.com/data/r19/citytemp, clear
(City temperature data)
. cumul tempjan, gen(cjan)
. cumul tempjuly, gen(cjuly)
. stack cjuly tempjuly cjan tempjan, into(c temp) clear wide
. scatter cjan cjuly temp, c(l l) m(o o) sort
(output omitted )

Technical note
There is a third way, not using the wide option, that is exceedingly tricky but is sometimes useful:

. use https://www.stata-press.com/data/r19/citytemp, clear
(City temperature data)
. cumul tempjan, gen(cjan)
. cumul tempjuly, gen(cjuly)
. stack cjuly tempjuly cjan tempjan, into(c temp) clear
. sort _stack temp
. scatter c temp, c(L) m(o)
(output omitted )

Note the use of connect’s capital L rather than lowercase l option. c(L) connects points only from left

to right; because the data are sorted by stack temp, temp increases within the first group (cjuly vs.
tempjuly) and then starts again for the second (cjan vs. tempjan); see [G-4] connectstyle.

Reference
Baum, C. F. 2016. An Introduction to Stata Programming. 2nd ed. College Station, TX: Stata Press.

Also see
[D] contract — Make dataset of frequencies and percentages

[D] frunalias — Change storage type of alias variables

[D] reshape — Convert data from wide to long form and vice versa

[D] xpose — Interchange observations and variables

https://www.stata-press.com/books/introduction-stata-programming/


statsby — Collect statistics for a command across a by list

Description Quick start Menu Syntax Options
Remarks and examples Acknowledgment References Also see

Description
statsby collects statistics from command across a by list. Typing

. statsby exp list, by(varname): command

executes command for each group identified by varname, building a dataset of the associated values

from the expressions in exp list. The resulting dataset replaces the current dataset, unless the saving()
option is supplied. varname can refer to a numeric or a string variable.

command defines the statistical command to be executed. Most Stata commands and user-written

programs can be used with statsby, as long as they follow standard Stata syntax and allow the if
qualifier; see [U] 11 Language syntax. The by prefix cannot be part of command.

exp list specifies the statistics to be collected from the execution of command. If no expressions are

given, exp list assumes a default depending upon whether command changes results in e() and r(). If
command changes results in e(), the default is b. If command changes results in r() (but not e()), the
default is all the scalars posted to r(). It is an error not to specify an expression in exp list otherwise.

Quick start
Replace data in memory with estimates of the coefficient of x and constant for each value of catvar

statsby, by(catvar): regress y x

Same as above, but name new variables b and cons
statsby b=_b[x] cons=_b[_cons], by(catvar): regress y x

Add standard errors of the estimates and use default variable names

statsby _b _se, by(catvar): regress y x

Same as above, but retain data in memory and save estimates to myest.dta
statsby _b _se, by(catvar) saving(myest): regress y x

Same as above, and include estimate for entire dataset

statsby _b _se, by(catvar) saving(myest) total: regress y x

Note: Any command that accepts the statsby prefix may be substituted for regress above.

Menu
Statistics > Other > Collect statistics for a command across a by list
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Syntax
statsby [ exp list ] [ , options ]: command

options Description

Main
∗ by(varlist [ , missing ]) equivalent to interactive use of by varlist:

Options

clear replace data in memory with results

saving( filename, . . .) save results to filename; save statistics in double precision; save
results to filename every # replications

total include results for the entire dataset

subsets include all combinations of subsets of groups

Reporting

nodots suppress replication dots

dots(#) display dots every # replications

noisily display any output from command

trace trace command

nolegend suppress table legend

verbose display the full table legend

Advanced

basepop(exp) restrict initializing sample to exp; seldom used

force do not check for svy commands; seldom used

forcedrop retain only observations in by-groups when calling command;
seldom used

∗ by() is required in the dialog box because statsby is useful to the interactive user only when using by().
All weight types supported by command are allowed except pweights; see [U] 11.1.6 weight.

exp list contains (name: elist)
elist

eexp

elist contains newvarname = (exp)
(exp)

eexp is specname

[eqno]specname
specname is b

b[]
se
se[]

eqno is # #
name

exp is a standard Stata expression; see [U] 13 Functions and expressions.

Distinguish between [ ], which are to be typed, and [ ], which indicate optional arguments.
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Options

� � �
Main �

by(varlist [ , missing ]) specifies a list of existing variables that would normally appear in the by
varlist: section of the command if you were to issue the command interactively. By default, statsby
ignores groups in which one or more of the by() variables is missing. Alternatively, missing causes
missing values to be treated like any other values in the by-groups, and results from the entire dataset

are included with use of the subsets option. If by() is not specified, command will be run on the

entire dataset. varlist can contain both numeric and string variables.

� � �
Options �

clear specifies that it is okay to replace the data in memory, even though the current data have not been
saved to disk.

saving( filename[ , suboptions ]) creates a Stata data file (.dta file) consisting of (for each statistic in
exp list) a variable containing the replicates.

double specifies that the results for each replication be stored as doubles, meaning 8-byte reals. By
default, they are stored as floats, meaning 4-byte reals.

every(#) specifies that results be written to disk every #th replication. every() should be specified
in conjunction with saving() only when command takes a long time for each replication. This

will allow recovery of partial results should your computer crash. See [P] postfile.

total specifies that command be run on the entire dataset, in addition to the groups specified in the by()
option.

subsets specifies that command be run for each group defined by any combination of the variables in
the by() option.

� � �
Reporting �

nodots and dots(#) specify whether to display replication dots. By default, one dot character is dis-
played for each by-group. An “x” is displayed if command returns an error or if any value in exp list

is missing. You can also control whether dots are printed using set dots; see [R] set.

nodots suppresses display of the replication dots.

dots(#) displays dots every # replications. dots(0) is a synonym for nodots.

noisily causes the output of command to be displayed for each by-group. This option implies the

nodots option.

trace causes a trace of the execution of command to be displayed. This option implies the noisily
option.

nolegend suppresses the display of the table legend, which identifies the rows of the table with the

expressions they represent.

verbose requests that the full table legend be displayed. By default, coefficients and standard errors are
not displayed.

� � �
Advanced �

basepop(exp) specifies a base population that statsby uses to evaluate the command and to set up for
collecting statistics. The default base population is the entire dataset, or the dataset specified by any

if or in conditions specified on the command.
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One situation where basepop() is useful is collecting statistics over the panels of a panel dataset by
using an estimator that works for time series, but not panel data, for example,

. statsby, by(mypanels) basepop(mypanels==2): arima . . .

force suppresses the restriction that command not be a svy command. statsby does not perform

subpopulation estimation for survey data, so it should not be used with svy. statsby reports an error
when it encounters svy in command if the force option is not specified. This option is seldom used,

so use it only if you know what you are doing.

forcedrop forces statsby to drop all observations except those in each by-group before calling com-
mand for the group. This allows statsby to work with user-written programs that completely ignore
if and in but do not return an error when either is specified. forcedrop is seldom used.

Remarks and examples
Remarks are presented under the following headings:

Collecting coefficients and standard errors
Collecting stored results
All subsets

Collecting coefficients and standard errors

Example 1
We begin with an example using auto2.dta. In this example, we want to collect the coefficients

from a regression in which we model the price of a car on its weight, length, and mpg. We want to run

this model for both domestic and foreign cars. We can do this easily by using statsbywith the extended
expression b.

. use https://www.stata-press.com/data/r19/auto2
(1978 automobile data)
. statsby _b, by(foreign) verbose nodots: regress price weight length mpg

Command: regress price weight length mpg
_b_weight: _b[weight]
_b_length: _b[length]

_b_mpg: _b[mpg]
_b_cons: _b[_cons]

By: foreign

. list

foreign _b_wei~t _b_length _b_mpg _b_cons

1. Domestic 6.767233 -109.9518 142.7663 2359.475
2. Foreign 4.784841 13.39052 -18.4072 -6497.49

If we were interested only in the coefficient of a particular variable, such as mpg, we would specify
that particular coefficient; see [U] 13.5 Accessing coefficients and standard errors.



statsby — Collect statistics for a command across a by list 883

. use https://www.stata-press.com/data/r19/auto2, clear
(1978 automobile data)
. statsby mpg=_b[mpg], by(foreign) nodots: regress price weight length mpg

Command: regress price weight length mpg
mpg: _b[mpg]
By: foreign

. list

foreign mpg

1. Domestic 142.7663
2. Foreign -18.4072

The extended expression se indicates that we want standard errors.

. use https://www.stata-press.com/data/r19/auto2, clear
(1978 automobile data)
. statsby _se, by(foreign) verbose nodots: regress price weight length mpg

Command: regress price weight length mpg
_se_weight: _se[weight]
_se_length: _se[length]

_se_mpg: _se[mpg]
_se_cons: _se[_cons]

By: foreign

. list

foreign _se_we~t _se_le~h _se_mpg _se_cons

1. Domestic 1.226326 39.48193 134.7221 7770.131
2. Foreign 1.670006 50.70229 59.37442 6337.952

Example 2
Formultiple-equation estimations, we can use [eqno] b ([eqno] se) to get the coefficients (standard

errors) of a specific equation or use b ( se) to get the coefficients (standard errors) of all the equations.
To demonstrate, we use heckman and a slightly different dataset.

. use https://www.stata-press.com/data/r19/statsby, clear

. statsby _b, by(group) verbose nodots: heckman price mpg, sel(trunk)
Command: heckman price mpg, sel(trunk)

price_b_mpg: [price]_b[mpg]
price_b_cons: [price]_b[_cons]
select_b_tr~k: [select]_b[trunk]
select_b_cons: [select]_b[_cons]
_eq3_b_athrho: [/]_b[athrho]
_eq3_b_lnsi~a: [/]_b[lnsigma]

By: group
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. list, compress noobs

group price_b~g price_~s select_~k select~s _eq3_b_~o _eq3_b~a

1 -253.9293 11836.33 -.0122223 1.248342 -.31078 7.895351
2 -242.5759 11906.46 -.0488969 1.943078 -1.399222 8.000272
3 -172.6499 9813.357 -.0190373 1.452783 -.3282423 7.876059
4 -250.7318 10677.31 .0525965 .3502012 .6133645 7.96349

To collect the coefficients of the first equation only, we would specify [price] b instead of b.

. use https://www.stata-press.com/data/r19/statsby, clear

. statsby [price]_b, by(group) verbose nodots: heckman price mpg, sel(trunk)
Command: heckman price mpg, sel(trunk)

price_b_mpg: [price]_b[mpg]
price_b_cons: [price]_b[_cons]

By: group

. list

group price_b~g price_~s

1. 1 -253.9293 11836.33
2. 2 -242.5759 11906.46
3. 3 -172.6499 9813.357
4. 4 -250.7318 10677.31

Technical note
If command fails on one or more groups, statsby will capture the error messages and ignore those

groups.

Collecting stored results
Many Stata commands store results of calculations; see [U] 13.6 Accessing results from Stata com-

mands. statsby can collect the stored results and expressions involving these stored results, too. Ex-
pressions must be bound in parentheses.
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Example 3
Suppose that we want to collect the mean and the median of price, as well as their ratios, and we

want to collect them for both domestic and foreign cars. We might type

. use https://www.stata-press.com/data/r19/auto2, clear
(1978 automobile data)
. statsby mean=r(mean) median=r(p50) ratio=(r(mean)/r(p50)), by(foreign) nodots:
> summarize price, detail

Command: summarize price, detail
mean: r(mean)

median: r(p50)
ratio: r(mean)/r(p50)

By: foreign

. list

foreign mean median ratio

1. Domestic 6072.423 4782.5 1.269717
2. Foreign 6384.682 5759 1.108644

Technical note
In exp list, newvarname is not required. If no new variable name is specified, statsby names the

new variables stat 1, stat 2, and so forth.

All subsets

Example 4
When there are two or more variables in by(varlist), we can execute command for any combination,

or subset, of the variables in the by() option by specifying the subsets option.

. use https://www.stata-press.com/data/r19/auto2, clear
(1978 automobile data)
. statsby mean=r(mean) median=r(p50) n=r(N), by(foreign rep78) subsets nodots:
> summarize price, detail

Command: summarize price, detail
mean: r(mean)

median: r(p50)
n: r(N)
By: foreign rep78
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. list

foreign rep78 mean median n

1. Domestic Poor 4564.5 4564.5 2
2. Domestic Fair 5967.625 4638 8
3. Domestic Average 6607.074 4749 27
4. Domestic Good 5881.556 5705 9
5. Domestic Excellent 4204.5 4204.5 2

6. Domestic . 6179.25 4853 48
7. Foreign Average 4828.667 4296 3
8. Foreign Good 6261.444 6229 9
9. Foreign Excellent 6292.667 5719 9

10. Foreign . 6070.143 5719 21

11. . Poor 4564.5 4564.5 2
12. . Fair 5967.625 4638 8
13. . Average 6429.233 4741 30
14. . Good 6071.5 5751.5 18
15. . Excellent 5913 5397 11

16. . . 6165.257 5006.5 74

In the above dataset, observation 6 is for domestic cars, regardless of the repair record; observation

10 is for foreign cars, regardless of the repair record; observation 11 is for both foreign cars and domestic

cars given that the repair record is 1; and the last observation is for the entire dataset.

Technical note
To see the output from command for each group identified in the by() option, we can use the noisily

option.

. use https://www.stata-press.com/data/r19/auto2, clear
(1978 automobile data)
. statsby mean=r(mean) se=(r(sd)/sqrt(r(N))), by(foreign) noisily nodots:
> summarize price
statsby: First call to summarize with data as is:
. summarize price

Variable Obs Mean Std. dev. Min Max

price 74 6165.257 2949.496 3291 15906
statsby legend:

Command: summarize price
mean: r(mean)
se: r(sd)/sqrt(r(N))
By: foreign

Statsby groups:
running (summarize price) on group 1
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. summarize price
Variable Obs Mean Std. dev. Min Max

price 52 6072.423 3097.104 3291 15906
running (summarize price) on group 2
. summarize price

Variable Obs Mean Std. dev. Min Max

price 22 6384.682 2621.915 3748 12990
. list

foreign mean se

1. Domestic 6072.423 429.4911
2. Foreign 6384.682 558.9942

Acknowledgment
Speed improvements in statsby were based on code written by Michael Blasnik of Nest Labs.

References
Cox, N. J. 2010. Speaking Stata: The statsby strategy. Stata Journal 10: 143–151.

Newson, R. B. 2003. Confidence intervals and p-values for delivery to the end user. Stata Journal 3: 245–269.

Also see
[D] by — Repeat Stata command on subsets of the data

[D] collapse — Make dataset of summary statistics

[P] postfile — Post results in Stata dataset

[R] bootstrap — Bootstrap sampling and estimation

[R] jackknife — Jackknife estimation

[R] permute — Permutation tests

https://www.stata-journal.com/article.html?article=gr0045
https://www.stata-journal.com/article.html?article=st0043


sysuse — Use shipped dataset

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
sysuse filename loads the specified Stata-format dataset that was shipped with Stata or that is stored

along the ado-path. If filename is specified without a suffix, .dta is assumed.

sysuse dir lists the names of the datasets shipped with Stata plus any other datasets stored along the
ado-path. You can also see help dta examples for a list of datasets shipped with Stata.

Quick start
List example datasets installed with Stata

sysuse dir

Use auto.dta example dataset installed with Stata
sysuse auto

Same as above, but clear current dataset from memory first

sysuse auto, clear

Menu
File > Example datasets...
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Syntax
Use example dataset installed with Stata

sysuse [”]filename[”] [ , clear ]

List example Stata datasets installed with Stata

sysuse dir [ , all ]

Options
clear specifies that it is okay to replace the data in memory, even though the current data have not been

saved to disk.

all specifies that all datasets be listed, even those that include an underscore ( ) in their name. By

default, such datasets are not listed.

Remarks and examples
Remarks are presented under the following headings:

Typical use
A note concerning shipped datasets
Using user-installed datasets
How sysuse works

Typical use
A few datasets are included with Stata and are stored in the system directories. These datasets are

often used in the help files to demonstrate a certain feature.

Typing

. sysuse dir

lists the names of those datasets. One such dataset is lifeexp.dta. If you simply type use lifeexp,
you will see

. use lifeexp
file lifeexp.dta not found
r(601);

Type sysuse, however, and the dataset is loaded:

. sysuse lifeexp
(Life expectancy, 1998)

The datasets shipped with Stata are stored in different folders (directories) so that they do not become

confused with your datasets.
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A note concerning shipped datasets
Not all the datasets used in the manuals are shipped with Stata. To obtain the other datasets, see

[D] webuse.

The datasets used to demonstrate Stata are often fictional. If you want to know whether a dataset is

real or fictional, and its history, load the dataset and type

. notes

A few datasets have no notes. This means that the datasets are believed to be real, but that they were

created so long ago that information about their original source has been lost. Treat such datasets as if

they were fictional.

Using user-installed datasets
Any datasets you have installed using net or ssc (see [R] net and [R] ssc) can be listed by typing

sysuse dir and can be loaded using sysuse filename.

Any datasets you store in your personal ado folder (see [P] sysdir) are also listed by sysuse dir and
can be loaded using sysuse filename.

How sysuse works
sysuse simply looks across the ado-path for .dta files; see [P] sysdir.

By default, sysuse dir does not list a dataset that contains an underscore ( ) in its name. By con-

vention, such datasets are used by ado-files to achieve their ends and probably are not of interest to you.

If you type sysuse dir, all, then all datasets are listed.

Stored results
sysuse dir stores in the macro r(files) the list of dataset names.

sysuse filename stores in the macro r(fn) the filename, including the full path specification.

Also see
[D] frames use — Load a set of frames from disk

[D] use — Load Stata dataset

[D] webuse — Use dataset from Stata website

[P] findfile — Find file in path

[P] sysdir — Query and set system directories

[R] net — Install and manage community-contributed additions from the internet

[R] ssc — Install and uninstall packages from SSC
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Description Quick start Syntax Options Remarks and examples Also see

Description
type lists the contents of a file stored on disk. This command is similar to the Windows type com-

mand and the Unix more(1) or pg(1) commands.

In Stata for Mac and Stata for Unix, cat is a synonym for type.

On all platforms, Stata understands a leading “~” as an abbreviation for the home directory.

Quick start
Display contents of myfile.txt in the Results window

type myfile.txt

Same as above, but display myfile.txt saved in ~\mydir\mysubdir using Stata for Windows

type ~\mydir\mysubdir\myfile.txt

Same as above, but using Stata for Mac or Unix

type ~/mydir/mysubdir/myfile.txt

Display contents of my file.txt
type ”my file.txt”

Display the first 20 lines of myfile.txt
type myfile.txt, lines(20)

Syntax
type [”] filename[”] [ , options ]

Note: Double quotes must be used to enclose filename if the name contains blanks.

options Description

asis show file as is; default is to display files with suffix .smcl or .sthlp as SMCL

smcl display file as SMCL; default for files with suffix .smcl or .sthlp
showtabs display tabs as <T> rather than being expanded
starbang list lines in the file that begin with “*!”
lines(#) list first # lines
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Options
asis specifies that the file be shown exactly as it is. The default is to display files with the suffix .smcl

or .sthlp as SMCL, meaning that the SMCL directives are interpreted and properly rendered. Thus

type can be used to look at files created by the log using command.

smcl specifies that the file be displayed as SMCL, meaning that the SMCL directives are interpreted and

properly rendered. This is the default for files with the suffix .smcl or .sthlp.

showtabs requests that any tabs be displayed as <T> rather than being expanded.

starbang lists only the lines in the specified file that begin with the characters “*!”. Such comment
lines are typically used to indicate the version number of ado-files, class files, etc. starbang may
not be used with SMCL files.

lines(#) lists the first # lines of a file. lines() is ignored if the file is displayed as SMCL or if # is less

than or equal to 0.

Remarks and examples

Example 1
We have raw data containing the level of Lake Victoria Nyanza and the number of sunspots during

the years 1902–1921 stored in a file called sunspots.raw. We want to read this dataset into Stata by

using infile, but we cannot remember the order in which we entered the variables. We can find out by

using the type command:

. type sunspots.raw
1902 -10 5 1903 13 24 1904 18 42
1905 15 63 1906 29 54 1907 21 62
1908 10 49 1909 8 44 1910 1 19
1911 -7 6 1912 -11 4 1913 -3 1
1914 -2 10 1915 4 47 1916 15 57
1917 35 104 1918 27 81 1919 8 64
1920 3 38 1921 -5 25

Looking at this output, we now remember that the variables are entered year, level, and number of

sunspots. We can read this dataset by typing infile year level spots using sunspots.

If we wanted to see the tabs in sunspots.raw, we could type

. type sunspots.raw, showtabs
1902 -10 5<T>1903 13 24<T>1904 18 42
1905 15 63<T>1906 29 54<T>1907 21 62
1908 10 49<T>1909 8 44<T>1910 1 19
1911 -7 6<T>1912 -11 4<T>1913 -3 1
1914 -2 10<T>1915 4 47<T>1916 15 57
1917 35 104<T>1918 27 81<T>1919 8 64
1920 3 38<T>1921 -5 25
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Example 2
In a previous Stata session, we typed log using myres and created myres.smcl, containing our

results. We can use type to list the log:

. type myres.smcl

name: <unnamed>
log: /work/joe/dof/myres.smcl

log type: smcl
opened on: 20 Jan 2025, 15:37:48
. use lbw
(Hosmer & Lemeshow data)
. logistic low age lwt i.race smoke ptl ht ui
Logistic regression Number of obs = 189

LR chi2(8) = 33.22
Prob > chi2 = 0.0001

Log likelihood = -100.724 Pseudo R2 = 0.1416
(output omitted )

. estat gof
Logistic model for low, goodness-of-fit test

(output omitted )

. log close
name: <unnamed>
log: /work/joe/dof/myres.smcl

log type: smcl
closed on: 20 Jan 2025, 15:38:30

We could also use view to look at the log; see [R] view.

Also see
[D] cd — Change directory

[D] copy — Copy file from disk or URL

[D] dir — Display filenames

[D] erase — Erase a disk file

[D] mkdir — Create directory

[D] rmdir — Remove directory

[D] shell — Temporarily invoke operating system

[P] viewsource — View source code

[R] translate — Print and translate logs

[R] view — View files and logs

[U] 11.6 Filenaming conventions



unicode — Unicode utilities

[Suggestion: Read [U] 12.4.2 Handling Unicode strings first.]

Description
The unicode command provides utilities to help you work with Unicode strings in your data. If you

have only plain ASCII characters in your data (a–z, A–Z, 0–9, and typical punctuation characters), you

can stop reading now. Otherwise, continue with Remarks and examples below.

Remarks and examples
We recommend that you start with some overview documentation. First, you should read

[U] 12.4.2 Handling Unicode strings, which will explain the difference betweenASCII and Unicode and

provide detailed advice on working with Unicode strings in Stata. In that section, you will learn about

locales, encodings, sorting, and Unicode-specific string functions. For a general overview of Unicode-

specific advice, see help unicode advice.

Second, if you have datasets, do-files, ado-files, or other files that you used with Stata 13 or earlier

and those files contain characters other than plain ASCII such as accented characters, Chinese, Japanese,

or Korean (CJK) characters, Cyrillic characters, and the like, you should read [D] unicode translate.

unicode provides the following utilities:

[D] unicode translate Translate files to Unicode

[D] unicode encoding Unicode encoding utilities

[D] unicode locale Unicode locale utilities

[D] unicode collator Language-specific Unicode collators

[D] unicode convertfile Low-level file conversion between encodings

You may also find help encodings useful if you need to choose an encoding when converting a

string from extended ASCII to Unicode.

Also see
[D] unicode collator — Language-specific Unicode collators

[D] unicode convertfile — Low-level file conversion between encodings

[D] unicode encoding — Unicode encoding utilities

[D] unicode locale — Unicode locale utilities

[D] unicode translate — Translate files to Unicode

[U] 12.4.2 Handling Unicode strings
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Description Syntax Remarks and examples Also see

Description
unicode collator list lists the subset of locales that have language-specific collators for the

Unicode string comparison functions: ustrcompare(), ustrcompareex(), ustrsortkey(), and
ustrsortkeyex().

Syntax
unicode collator list [ pattern ]

pattern is one of all, *, *name*, *name, or name*. If you specify nothing, all, or *, then all results
will be listed. *name* lists all results containing name; *name lists all results ending with name; and
name* lists all results starting with name.

Remarks and examples
Remarks are presented under the following headings:

Overview of collation
The role of locales in collation
Further controlling collation

Overview of collation
Collation is the process of comparing and sorting Unicode character strings as a humanmight logically

order them. We call this ordering strings in a language-sensitive manner. To do this, Stata uses a Unicode

tool known as the Unicode collation algorithm, or UCA.

To perform language-sensitive string sorts, youmust combine ustrsortkey() or ustrsortkeyex()
with sort. It is a complicated process and there are several issues about which you need to be aware. For
details, see [U] 12.4.2.5 Sorting strings containing Unicode characters. To perform language-sensitive

string comparisons, you can use ustrcompare() or ustrcompareex().

For details about the UCA, see http://www.unicode.org/reports/tr10/.

The role of locales in collation
During collation, Stata can use the default collator or it can perform language-sensitive string com-

parisons or sorts that require knowledge of a locale.

A locale identifies a community with a certain set of preferences for how their language should be

written; see [U] 12.4.2.4 Locales in Unicode. For example, in English, the uppercase letter of the Latin

small letter “i” is the Latin capital letter “I”. However, in Turkish, the uppercase letter is “I” with a dot

above it (Unicode \u0130); hence, the case mapping is locale-sensitive.
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Collation in Stata involves the locale-sensitive functions ustrcompare(), ustrcompareex(),
ustrsortkey(), and ustrsortkeyex(). If you specify a locale with one of these functions or if you
have set the locale globally (see [P] set locale functions), then collation may be performed using a

language-specific collator.

Because a locale is simply an identifier to locate the resources for specific services, there is no val-

idation of the locale. For example, specifying “klingon” is as valid as specifying “en” when calling

ustrcompare() or the other functions discussed here. If the collation data for the “klingon” locale is
found, then the locale is populated; otherwise, fallback rules are followed. For more information, see

Default locale and locale fallback in [D] unicode locale.

Stata supports hundreds of locales, but only about 100 have a language-specific collator. unicode
collator list lets you determine whether your locale (or language) has its own collator. For example,
Stata supports two locales for the Zulu language: zu is a general locale and zu ZA is Zulu specific to
South Africa. Only zu has a language-specific collator.

Further controlling collation
ustrcompare() and ustrsort() use the default collation algorithm for the locale. How-

ever, you can exercise finer control over the collation algorithm if you use ustrcompareex() or

ustrsortkeyex().

An International Components for Unicode (ICU) locale may contain up to five subtags in the following

order: language, script, country, variant, and keywords. Stata usually uses only the language and coun-

try tags. However, collation keywords may be used in the ustrcompareex() and ustrsortkeyex()
functions.

The collation keyword specifies the string sort order of the locale. For example, “pinyin” and “stroke”

for Chinese language produce different string sort orders. In most cases, it is not necessary to specify a

collation keyword; the default collator (either for Stata or for the language) provides sufficient control.

However, some programmers may wish to specify a specific value. If you do not know the value of the

collation keyword, you can obtain a list of valid collation values and their meanings in XML format at

http://unicode.org/repos/cldr/trunk/common/bcp47/collation.xml.

If you are comparing or sorting Unicode strings that have come from different data sources, then

you may need to normalize the strings before ordering them. See ustrnormalize() for details on

normalization, and note the norm parameter in ustrcompareex() and ustrsortkeyex().

Also see
[D] unicode — Unicode utilities

[D] unicode locale — Unicode locale utilities

[U] 12.4.2 Handling Unicode strings

[U] 12.4.2.5 Sorting strings containing Unicode characters

http://unicode.org/repos/cldr/trunk/common/bcp47/collation.xml
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Description Syntax Options Remarks and examples Also see

Description
unicode convertfile converts text files from one encoding to another encoding. It is a low-level

utility that will feel familiar to those of you who have used the Unix command iconv or the similar In-
ternational Components for Unicode (ICU)-based command uconv. If you need to convert Stata datasets
(.dta) or text files commonly usedwith Stata such as do-files, ado-files, help files, and CSV (*.csv) files,
you should use the unicode translate command; see [D] unicode translate. If you wish to convert
individual strings or string variables in your dataset, use the ustrfrom() and ustrto() functions.

Syntax
unicode convertfile srcfilename destfilename [ , options ]

srcfilename is a text file that is to be converted from a given encoding and destfilename is the destination

text file that will use a different encoding.

options Description

srcencoding([ string ]) encoding of the source file; UTF-8 if not specified

dstencoding([ string ]) encoding of the destination file; UTF-8 if not specified

srccallback(method) what to do if source file contains invalid byte sequence(s)

dstcallback(method) what to do if destination encoding does not support characters in the
source file

replace replace the destination file if it exists

method Description

stop specify that unicode convertfile stop with an error if an invalid
character is encountered; the default

skip specify that unicode convertfile skip invalid characters
substitute specify that unicode convertfile substitute invalid characters

with the destination encoding’s substitute character during
conversion; the substitute character for Unicode encodings is \ufffd

escape specify that unicode convertfile replace any Unicode characters
not supported in the destination encoding with an escaped string

of the hex value of the Unicode code point. The string is in

4-hex-digit form \uhhhh for a code point less than or equal to
\uffff. The string is in 8-hex-digit form \Uhhhhhhhh for code
points greater than \uffff. escape may only be specified when
converting from a Unicode encoding such as UTF-8.
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Options
srcencoding([ string ]) specifies the source file encoding. See help encodings for a list of common

encodings and advice on choosing an encoding.

dstencoding([ string ]) specifies the destination file encoding. See help encodings for a list of com-
mon encodings and advice on choosing an encoding.

srccallback(method) specifies the method for handling characters in the source file that cannot be

converted.

dstcallback(method) specifies the method for handling characters that are not supported in the desti-
nation encoding.

replace permits unicode convertfile to overwrite an existing destination file.

Remarks and examples
Remarks are presented under the following headings:

Conversion between encodings
Invalid and unsupported characters
Examples

Conversion between encodings
unicode convertfile is a utility to convert strings from one encoding to another. Encoding is the

method by which text is stored in a computer. It maps a character to a nonnegative integer, called a

code point, and then maps that integer to a single byte or a sequence of bytes. Common encodings are

ASCII, UTF-8, and UTF-16. Stata uses UTF-8 encoding for storing text. Unless otherwise noted, the terms

“Unicode string” and “Unicode character” in Stata refer to a UTF-8 encoded Unicode string or character.

For more information about encodings, see [U] 12.4.2.3 Encodings. See help encodings for a list of
common encodings, and see [D] unicode encoding for a utility to find all available encodings.

If you are using unicode convertfile to convert a file to UTF-8 format, the string encoding using

by Stata, you only need to specify the encoding of the source file. By default, UTF-8 is selected as the

encoding for the destination file. You can also use unicode convertfile to convert files from UTF-8

encoding to another encoding. Although conversion to or from UTF-8 is the most common usage, you

can use unicode convertfile to convert files between any pair of encodings.

Be aware that some characters may not be shared across encodings. The next section explains options

for dealing with unsupported characters.

Invalid and unsupported characters
Unsupported characters generally occur in two ways: the bytes used to encode a character in the

source encoding are not valid in the destination encoding such as UTF-8 (called an invalid sequence); or

the character from the source encoding does not exist in the destination encoding.

It is common to encounter inconvertible characters when converting from a Unicode encoding such

as UTF-8 to some other encoding. UTF-8 supports more than 100,000 characters. Depending on the

characters in your file and the destination encoding you select, it is possible that not all characters will be

supported. For example, ASCII only supports 128 characters, so all Unicode characters with code points

greater than 127 are unsupported in ASCII encoding.
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Examples
Convert file from Latin1 encoding to UTF-8 encoding

. unicode convertfile data.csv data_utf8.csv, srcencoding(ISO-8859-1)

Convert file from UTF-32 encoding to UTF-16 encoding, skipping any invalid sequences in the source

file

. unicode convertfile utf32file.txt utf16file.txt, srcencoding(UTF-32)
> dstencoding(UTF-16) srccallback(skip)

Also see
[D] unicode — Unicode utilities

[D] unicode translate — Translate files to Unicode

[U] 12.4.2 Handling Unicode strings

[U] 12.4.2.6 Advice for users of Stata 13 and earlier
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Description Syntax Remarks and examples Also see

Description
unicode encoding list and unicode encoding alias list encodings that are available in Stata.

See help encodings for advice on choosing an encoding and a list of the most common encodings.

unicode encoding list provides a list of all encodings and their aliases or those that meet specified
criteria. unicode encoding alias provides a list of alternative names that may be used to refer to a
specific encoding.

unicode encoding set sets an encoding to be used with the unicode translate command; see

[D] unicode translate for documentation for unicode encoding set.

Syntax
List encodings

unicode encoding list [ pattern ]

List all aliases of an encoding

unicode encoding alias name

Set an encoding for use with unicode translate

unicode encoding set name

pattern is one of the following: *, all, *name*, *name, or name*. Specifying nothing, all, or * lists
all results. Specifying *name* lists all results containing name. Specifying *name lists all results
ending with name. Specifying name* lists all results starting with name.

Remarks and examples
Encoding is the method by which text is stored in a computer. It maps a character to a nonnegative

integer, called a code point, then maps that integer to a single byte or a sequence of bytes. Common

encodings are ASCII (for which there are many variants), UTF-8, and UTF-16. Stata uses UTF-8 encoding

for storing text and UTF-16 to encode the GUI on Microsoft Windows and macOS. For more information

about encodings, see [U] 12.4.2.3 Encodings.

The most common reason you will need to specify an encoding is when converting a dataset, do-file,

ado-file, or some other file used with Stata 13 or earlier (which was not Unicode aware) for use with

modern Stata. See [D] unicode translate for help with this, and see help encodings for advice on

choosing an encoding and a list of common encodings.
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Some commands and functions require that you specify one or more encodings. Often you will need

to use only common encodings. However, you may not know how to specify these to Stata. For example,

suppose that we are using unicode translate to convert a do-file from Stata 13 that contains extended

ASCII characters for use in modern Stata. If we are working on a Windows machine, the most likely

encoding isWindows-1252. If we want to check that this is how it should be specified as we use unicode
translate, we can type

. unicode encoding list Windows-1252

Stata returns all encodings for which the encoding name or an alias exactly matches Windows-1252.
Capitalization does not matter.

If we wanted to search for all encodings and aliases that have windows anywhere in their name, we
could type

. unicode encoding list *windows*

and see a long list of matches.

If we are told that a text file is encoded with ibm-913 P100-2000 and we want to see by what other
names that encoding is known (perhaps because we just do not want to type out such a long string when

using Stata’s functions that need an encoding), we can use

. unicode encoding alias ibm-913_P100-2000

and we find that there are many synonyms, including some that are much easier to type.

You may not know the exact encoding that you need and wish to browse the full list of available

encodings. To do this, you can just type unicode encoding list without specifying a pattern.

Also see
help encodings

[D] unicode — Unicode utilities

[D] unicode translate — Translate files to Unicode

[U] 12.4.2 Handling Unicode strings

[U] 12.4.2.3 Encodings



unicode locale — Unicode locale utilities

Description Syntax Remarks and examples Also see

Description
unicode locale list lists all available locales or those locales that meet the specified criteria. Any

of these locale codes may be specified in Stata or Mata functions that accept a locale as an argument,

such as ustrcompare() and ustrupper(), or in the set locale functions setting.

unicode uipackage list lists all localization packages that are available for the graphics user in-
terface (GUI). Any of the listed locales may be specified in the set locale ui setting to change the

language of the text that is displayed in GUI elements such as the menus and dialog boxes.

Syntax
List locales

unicode locale list [ pattern ]

List user interface (UI) localization packages

unicode uipackage list

pattern is one of all, *, *name*, *name, or name*. If you specify nothing, all, or *, then all results
will be listed. *name* lists all results containing name; *name lists all results ending with name; and
name* lists all results starting with name.

Remarks and examples
Remarks are presented under the following headings:

Overview
Default locale and locale fallback

Overview
A locale identifies a user community with a certain preference for how their language should be

written; see [U] 12.4.2.4 Locales in Unicode. A locale can be as general as a certain language (for

example, “en” for English) or can be more specific to a country or region (for example, “en US” for US

English or “en HK” for Hong Kong English. Stata uses International Components for Unicode’s (ICU’s)

locale format. See http://userguide.icu-project.org/locale for full information about ICU. Note that ICU

differs from the POSIX locale identifiers used by Linux systems.

Locales use tags to define how specific they are to language variants. An ICU locale may contain up

to five subtags in the following order: language, script, country, variant, and keywords. Typically, the

language is required and the other tags are optional. In most cases, Stata uses only the language and

country tags. For example, “en US” specifies the language as English and the country as the USA.
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Many language-specific operations require the locale to perform their task. This kind of operation

is called locale-sensitive. For example, in English, the uppercase letter of the Latin small letter “i” is

the Latin capital letter “I”. However, in Turkish, the uppercase letter is “İ” with a dot above it (Unicode
\u0130); hence, the case mapping is locale-sensitive.

The following functions are locale-sensitive: ustrupper(), ustrlower(), ustrtitle(),
ustrword(), ustrwordcount(), ustrcompare(), ustrcompareex(), ustrsortkey(), and

ustrsortkeyex().

Although Stata usually uses only the language and country tags, collation keywords may also be used

in functions ustrcompare() and ustrsortkey() to affect ordering of Unicode strings. The collation
keyword affects the string sort order of the locale. For example, “pinyin” and “stroke” for Chinese

language produce different string sort orders. In most cases, it is not necessary to specify a collation

keyword; the default collator (either for Stata or for the language) provides sufficient control. However,

some programmers may wish to specify a specific value. If you do not know the value of the collation

keyword, you can obtain a list of valid collation values and their meanings in XML format at http://

unicode.org/repos/cldr/trunk/common/bcp47/collation.xml.

Default locale and locale fallback
Because a locale is simply an identifier to locate the resources for specific services, there is no val-

idation of the locale. For example, specifying “klingon” is as valid as specifying “en” when calling

ustrcompare() or the other functions discussed here. If the collation data for the “klingon” locale is
found, then the locale is populated; otherwise, a fallback search process starts.

The fallback process proceeds as follows:

1 . The variant is removed if there is one.

2 . The country is removed if there is one.

3 . The script is removed if there is one.

4 . Steps 1–3 are repeated on the default locale.

5 . If a locale cannot be found after following the previous steps, the ICU “Root”, or built-in fallback,

locale is used.

The process stops at any point if the desired information is found. The ICU default locale is usually

the system locale on the machine, which you can change. Note that on macOS, the ICU default locale is

usually “en US posix”, which does not change even if you change the system locale from the operating

system’s “Language” setting. To see the ICU default locale, you can type

. display c(locale_icudflt)

You can also find it under the Unicode settings in the output of creturn list along with two

other locale-related settings: locale ui and locale functions. See [P] set locale ui and [P] set

locale functions for details.

set locale functions affects the functions ustrupper(), ustrlower(), ustrtitle(),
ustrword(), ustrwordcount(), ustrcompare(), ustrcompareex(), ustrsortkey(), and

ustrsortkeyex() when no locale is specified. If locale functions is not set, the default ICU lo-

cale c(locale icudflt) is used.

http://unicode.org/repos/cldr/trunk/common/bcp47/collation.xml
http://unicode.org/repos/cldr/trunk/common/bcp47/collation.xml
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For example, if your operating system is Microsoft Windows English version, the system locale is

most likely “en”. It is “en US” if you chose the country to be USA during installation of the operat-

ing system. If locale functions is not set or is set to default, then ustrupper(”istanbul”) is
equivalent to ustrupper(”istanbul”, ”en US”), which returns ISTANBUL.

However, if locale functions is set to tr for Turkish, then ustrupper(”istanbul”) is equiva-
lent to ustrupper(”istanbul”, ”tr”), which returns İSTANBULwith a dot over the capital I.Although
ICU does not validate locales, Stata validates that the language subtag of the locale functions setting
is a valid ISO-639-2 language code. (See the ISO-639-2 list at http://www.loc.gov/standards/iso639-2/.)

Hence, set locale functions klingon will produce an error.

With the fallback rules, the effective locale can be very different from the locale you specified,

depending on the operation being performed. Currently, ustrword() and ustrwordcount(), which
use ICU’s word break iterator service, and ustrcompare(), ustrcompareex(), ustrsortkey(), and
ustrsortkeyex(), which use ICU’s collation service, are affected by this. You may use the functions

wordbreaklocale() and collatorlocale() to find the effective locale from the requested locale.

Also see
[D] unicode — Unicode utilities

[P] set locale functions — Specify default locale for functions

[P] set locale ui — Specify a localization package for the user interface

[U] 12.4.2 Handling Unicode strings

[U] 12.4.2.4 Locales in Unicode

http://www.loc.gov/standards/iso639-2/
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Description Syntax Options Remarks and examples Also see

Description
unicode translate translates files containing extended ASCII to Unicode (UTF-8).

Extended ASCII is how people got accented Latin characters such as “á” and “à” and got characters

from other languages such as “ ”, “Θ”, and “ ” before the advent of Unicode or, in this context,

before Stata became Unicode aware.� �
If you have do-files, ado-files, .dta files, etc., from Stata 13 or earlier—and those files contain

extended ASCII—you need to use the unicode translate command to translate the files from

extended ASCII to Unicode.� �
The unicode translate command is also useful if you have text files containing extended ASCII

that you wish to read into Stata.

Syntax
Analyze files to be translated

unicode analyze filespec [ , redo nodata ]

Set encoding to be used during translation

unicode encoding set [ ” ]encoding[ ” ]

Translate or retranslate files

unicode translate filespec [ , invalid[ (escape | mark | ignore) ]

transutf8 nodata ]

unicode retranslate filespec [ , invalid[ (escape | mark | ignore) ]

transutf8 replace nodata ]

Restore backups of translated files

unicode restore filespec [ , replace ]

Delete backups of translated files

unicode erasebackups, badidea
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filespec is a single filename or a file specification containing * and ? specifying one or more files, such

as

*.dta

*.do

*.*

*

myfile.*

year??data.dta

unicode analyzes and translates .dta files and text files. It assumes that filenames with suffix .dta
contain Stata datasets and that all other suffixes contain text. Those other suffixes are .ado, .do, .mata,
.txt, .csv, .sthlp, .class, .dlg, .idlg, .ihlp, .smcl, and .stbcal.

Files with suffixes other than those listed are ignored. Thus “*.*” would ignore any .docx files or
files with other suffixes. If such files contain text, they can be analyzed and translated by specifying the

suffix explicitly, such as info.README and *.README.

Options
redo is allowed with unicode analyze. unicode analyze remembers results from one run to the next

so that it does not repeat results for files that have been previously analyzed and determined not to

need translation. Thus unicode analyze’s output focuses on the files that remain to be translated.
redo specifies that unicode analyze show the analysis for all files specified.

nodata is used with unicode analyze, translate, and retranslate. It specifies that the contents
of the str# and strL variables in .dta files are not to be translated. The contents of the variables
are to be left as is. The default behavior is to translate if necessary.

If option nodata is specified, only the metadata—variable names, dataset label, variable labels, value

labels, and characteristics—are analyzed and perhaps translated.

This option is provided for two reasons.

nodata is included for those who do not trust automated software to modify the most vital part of
their datasets, the data themselves. We emphasize to those users that unicode backs up files, and so
translated files are easily restored to their original status.

The other reason nodata is included is for those datasets that include string variables in which

some variables (observations) use one encoding and other variables (observations) use another. Such

datasets are rare and called mixed-encoding datasets. One could arise if dataset result.dta was the
result of merging input1.dta and input2.dta, and input1.dta encoded its string variables using
ISO-8859-1, whereas input2.dta used JIS-X-0208. Such datasets are rare because if this had oc-

curred, you would have noticed when you produced result.dta. The two extendedASCII encodings
are simply not compatible, and one group or another of characters would have displayed incorrectly.

invalid and invalid() are allowed with unicode translate and retranslate. They specify how
invalid characters are to be handled. Invalid characters are not supposed to arise, and when they do, it

is a sign that you have set the wrong extended ASCII encoding. So let’s assume that you have indeed

set the right encoding and that still one or a few invalid characters do arise. The stories on how this
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might happen are long and technical, and all of them involve you playing sophisticated font games,

or they involve you using a proprietary extended ASCII encoding that is no longer available, and so

you are using an encoding that is close to the actual encoding used.

By default, unicodewill not translate files containing invalid characters. unicode instead warns you
so that you can specify the correct extended ASCII encoding.

invalid specifies the invalid characters are to be shown with an escape sequence. If a string con-
tained “A@B”, where @ indicates an invalid character, after translation, the string might contain

“A%XCDB”, which is say, %XCD was substituted for @. In general, invalid characters are replaced

with %X##, where ## is the invalid character’s hex value. The substitution is admittedly ugly, but it
ensures that distinct strings remain distinct, which is important if the string is used as an identifier

when you use the data.

invalid(escape) is a synonym for invalid.

invalid(mark) specifies that the official Unicode replacement character be substituted for invalid
characters. That official character is \ufffd in Unicode speak and how it looks varies across operating

systems. On Windows, the Unicode replacement character looks like a square; on Mac and Unix, it

looks like a question mark in a hexagon.

invalid(ignore) indicates that the invalid character simply be removed. “A@B” becomes “AB”.

transutf8 is allowed with unicode translate and retranslate. transutf8 specifies that charac-
ters that look as if they are UTF-8 already should nonetheless be translated according to the extended

ASCII encoding. Do not specify this option unless unicode suggests it when you translate the file

without the option, and even then, specify the option only after you have examined the translated file

and determined that you agree.

For most of us, this issue arises when two extended ASCII characters appear next to each other, such

as a German word containing “üß”, or a French word containing “àö”. Even when extended ASCII

characters are adjacent, that is not necessarily sufficient to mimic valid UTF-8 characters, but some

combinations do mimic UTF-8.

Adjacent UTF-8 characters that mimic UTF-8 characters are actually likely when you are using a CJK

extended ASCII encoding. CJK stands for Chinese, Japanese, and Korean.

In any case, if unicode analyze reports when valid UTF-8 strings appear and if the file needs trans-

lating because it is not all ASCII plus UTF-8, you may need to specify transutf8 when you translate
the file. If you are unsure, proceed by translating the file without specifying transutf8, inspect the
result, and retranslate if necessary.

replace has nothing to do with translation and is allowed with unicode retranslate and restore. It
has to dowith the restoration of original, untranslated files from the backups that unicode translate
and retranslate make. Option replace should not be specified unless unicode suggests it.

unicode keeps backups of your originals. When you restore the originals or retranslate files (which

involves restoring the originals), unicode checks that the previously translated file is unchanged

from when unicode last translated it. It does this because if you modified the translated file since
translation, those changes might be important to you and because if unicode restored the original

from the backup, you would lose those changes. replace specifies that it is okay to change the

previously translated file even though it has changed.
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badidea is used with unicode erasebackups and is not optional. Erasing the backups of original files
is usually a bad idea. We recommend you keep them for six months or so. Eventually, however, you

will want to delete the backups. You are required to specify option badidea to show that you realize

that erasing the backups is a bad idea if done too soon.

Remarks and examples
Remarks are presented under the following headings:

What is this about?
Do I need to translate my files?
Overview of the process
How to determine the extended ASCII encoding
Use of unicode analyze
Use of unicode translate: Overview
Use of unicode translate: A word on backups
Use of unicode translate: Output
Translating binary strLs

What is this about?
Stata 14 and later use UTF-8, a form of Unicode, to encode strings. Stata 13 and earlier used ASCII.

Datasets, do-files, ado-files, help files, and the like may need translation to display properly in Stata 14

and later.

Files containing strings using only plain ASCII do not need translation. Plain ASCII provides the fol-

lowing characters:

Latin letters: A–Z, a–z

Digits: 0–9

Symbols: ! ” # $ % & ’ ( ) * + , − . /

: ; < = > ? @ [ \ ] ^ ‘

{ | } ~

If the variable names, variable labels, value labels, and string variables in your .dta files and the lines
in your do-files, ado-files, and other Stata text files contain only the characters above, there is nothing

you need to do.

On the other hand, if your .dta files, do-files, ado-files, etc., contain accented characters such as

á è ô ü ý . . .

or symbols such as

. . .

or characters from other alphabets,

then the files do need translating so that the characters display correctly.

unicode analyze will tell you whether you have such files, and unicode translate will translate
them.
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You first use unicode analyze. It may turn out that no files need translating, and in that case, you
are done.

If you do have files that need translating, you will use unicode translate. unicode translate
makes a backup of your file before translating it.

If you do have files that need translating, unicode translate will translate them. Before you can
use unicode translate, you must set the extended ASCII encoding that your files used. You do this

with unicode encoding set. Encodings go by names such as ISO-8859-1, Windows-1252, Big5, ISO-

2022-KR, and about a thousand other names. However, there are only 231 encodings. Most of the names

are aliases (synonyms). ISO-8859-1, for instance, is also known as ISO-Latin1, Latin1, and other names.

See help encodings for more information on encodings. Some of you will find the appropriate

encoding name immediately. Others will be able only to narrow down the alternatives. Even so, all is

not lost. unicode translate makes it easy to translate and retranslate a file over and over again until
you find the encoding that works best. Once you find that encoding, it is likely that all of your files are

using the same encoding.

Do I need to translate my files?
Can I ignore the issue?

If you are asking whether you can close your eyes and ignore the issue, the answer is maybe and

maybe not.

If you have files using extended ASCII, they will not display correctly in modern Stata. We view that

as a significant problem, but let’s assume that does not concern you. If you used extended ASCII for

variable names, you may find it difficult or impossible to type the untranslated name. That would be

a problem. Other than that, you are probably okay, or more accurately, we cannot think of a problem

even though we have tried. We have tried because if we could think of a problem, we would have

fixed it. Stata’s data management routines have been modified and certified to work with UTF-8. If

they receive extendedASCII, they canmightily mess up what is displayed, but beyond that, they should

produce results equivalent to what previous Statas produced.

Our advice is, for safety’s sake, do not ignore the problem.

However, you do not need to analyze and translate all of your files today. One day, you will use
a dataset and results will look odd when you describe or list the data. You will see unprintable
characters and probably mutter a few unprintable words yourself, but having discovered the problem,

you can then turn to solving it using unicode analyze and unicode translate.

However, we recommend that you learn to use unicode translate today. Take some files you are
working with, determine whether you have a problem, and fix them if you do.

Do my files need translation?

If you are asking whether you have files that contain extended ASCII in hopes that you do not, here is

our answer:

If you live and work in an English-speaking country, you probably do not have files containing ex-

tended ASCII.

If you live and work outside an English-speaking country but you have limited yourself to the un-

adorned Latin alphabet, you probably do not have files containing extended ASCII.

Otherwise, you probably do have files containing extended ASCII.
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How will I know what to do?

unicode analyzewill tell you whether you have files containing extendedASCII. unicode analyze
can look at single files, or it can look at all the files in a directory. And if you do have files containing

extended ASCII, unicode translate will fix the files.

Overview of the process
You will analyze your files and, if necessary, translate them. You can do this one file at a time by

typing

. unicode analyze myfile.dta

. unicode encoding set encoding

. unicode translate myfile.dta

or you can do this with all of your files at once by typing

. unicode analyze *

. unicode encoding set encoding

. unicode translate *

Shockingly, we are going to advise you that analyzing and even translating all of your files at once is

perfectly safe! That is because

1. unicode analyze by default ignores files that are not Stata related.

2. unicode analyze reads your files and reports on them; it does not change them.

3. unicode analyze might report that no files need translating. In that case, you are done.

4. if you do have files that need translating, before you can use unicode translate, you must set
the extended ASCII encoding. How you determine the encoding is the topic of the next section.

5. unicode translate, just like unicode analyze, ignores by default files that are not Stata
related. Typing unicode translate * is safe.

6. unicode translate does not modify files that do not need translation. This does not hinge on
your having run unicode analyze. Typing unicode translate * is safe.

7. unicode translate does not modify files in which the translation goes poorly; it discards the
translation. Typing unicode translate * is safe.

8. unicode translate makes backups of the original of any file it does translate successfully.
At any time, you can type

. unicode restore *

and the files in your directory are back to being just as they were when you started. Typing

unicode translate * is safe.

In the rest of this manual entry, we could discuss what might happen when you run unicode analyze
and unicode translate and offer advice on what you might do about it.

unicode analyze and unicode translate, however, produce a ream of output, especially if you

run them on a group of files. That output is tailored to your files and your situation. That output states

what did happen and offers advice. Read it.



unicode translate — Translate files to Unicode 911

How to determine the extended ASCII encoding
We are getting ahead of ourselves because we have not yet determined that any of your files do need

translating. Whether translation is necessary can be determined without knowing the extended ASCII

encoding.

Determining the encoding can be more difficult than you would wish. Back in the day when the

experts were still trying to make the extended ASCII solution work, the cleverest among them went to a

lot of effort to hide the encoding from you, and they did a good job.

When the time comes to type

. unicode encoding set encoding

see help encodings. We have advice. In the meantime, allow us to predict how this process will

transpire:

Some of you will not be able to determine the encoding your files are using, but you will be able to

make guesses and narrow the choices down to a few of them. Then you will experiment to see which

works best. We say “see” because that is literally how you are going to do it. You will guess, you will

translate, and you will look at the result. And then you will repeat the process with a different encoding.

The unicode command will make the translation and retranslation part easy.

Many of you will discover the single encoding that works for all of your files. Some of you will

discover that one encoding works for most of your files but that there are one or two other encodings that

you have to use with other files.

And then there is the issue of mixed UTF-8 and extended ASCII. This will affect only a few of you.

1. unicode translate will warn you when a file is a mix of UTF-8 and extended ASCII. It warns
you because 1) the file could be exactly what it appears to be, a mix of encodings, or 2) the file

is all extended ASCII and a few extended ASCII strings are merely masquerading as UTF-8.

2. By default, unicode translate assumes that the file really is a mix. It does not translate the
UTF-8 strings; it translates just the strings that are extended ASCII.

Technical note: Here is how this works. A variable label appearing to be UTF-8 already is not

translated, whereas another variable label containing extendedASCII is translated even if a part

of it appears to be UTF-8. unicode translate assumes that each variable label follows a

single encoding. This same logic applies to str# and strL variables in the data. The variable
is assumed to use the same encoding in all observations.

3. The default assumption may be incorrect; the file could be entirely extendedASCII. The default

assumption is more likely to be incorrect in the CJK case. You can determine whether the default

assumption is correct by looking at the file after translation. If some parts of it look like memory

junk, then use unicode retranslate, transutf8 to retranslate the file, and if you do not like
that result, use unicode retranslate without transutf8 to return to the previous result. Or
you could use unicode restore to return to the original file and start all over again, perhaps
with a different encoding.

Technical note: There is no difference between using unicode restore followed by unicode
translate and using unicode retranslate. So if you want to try a different encoding, you
can restore, set the new encoding, and translate, or you can set the new encoding and retranslate.
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Use of unicode analyze
If the files you want to examine are not in the current directory, change to the appropriate directory:

. cd wherever

unicode analyze and all the rest of the unicode commands described in this entry look at files in
the current directory and only files in the current directory. unicode does not even look in subdirectories
of the current directory.

Analyze the file.

. unicode analyze myfile.dta

unicode analyze will report whether the file needs translation and provide other information, too.
The output looks something like this:

. unicode analyze myfile.dta
File summary (before starting):

1 file(s) specified
1 file(s) to be examined ...

File myfile.dta (Stata dataset)

File does not need translation
File summary:

all files okay

Or it might look like this:

. unicode analyze myfile.dta
File summary (before starting):

1 file(s) specified
1 file(s) to be examined ...

File myfile.dta (Stata dataset)
3 variable names need translation
2 variable labels need translation
1 str# variable needs translation

File needs translation.
Use unicode translate on this file

File summary:
1 file needs translation

If you were to now rerun the analysis in the case where the file does not need translation, you would

see something like this:

. unicode analyze myfile.dta
File summary (before starting):

1 file(s) specified
1 file(s) already known to be ASCII in previous runs
0 file(s) to be examined ...

(nothing to do)

If you want to see the detailed output, type unicode analyze myfile.dta, redo.

The primary purpose of unicode analyze is to get the files that do not need translating out of the
way. unicode analyze does not change your files; it just dismisses the ones that need no further work.
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You can run unicode analyze on multiple files, and we recommend that you do that.

. unicode analyze *
30 file(s) specified
6 file(s) not Stata
1 file(s) already known to be ASCII in previous runs
1 file(s) already known to be UTF-8 in previous runs

22 files(s) to be examined

There is more to the output, but before we look at that, note that unicode analyze reported that

6 files were not Stata. unicode analyze and unicode translate ignore non-Stata files unless you
explicitly specify them, say, by typing unicode analyze README or unicode analyze *.README.

Let’s now return to the remaining output from unicode analyze *:

File filename (filetype)
notes about elements that need translating

recommendations

File filename (filetype)
notes about elements that need translating

recommendations

.

.
File filename (filetype)

notes about elements that need translating

recommendations

Files matching * that need translation:
list of files

File summary:
2 file(s) skipped (known okay from previous runs)
8 file(s) need translation

unicode analyze produced a lot of output. If you are like us, you will want a log of the output and
perhaps want to look at it in the Viewer. It is not too late, just remember to specify the redo option:

. log using output

. unicode analyze *, redo
(output omitted )

. log close

. view output.smcl

If you are really like us, you will instead want a file you can edit in Stata’s Do-file Editor:

. log using output.log

. unicode analyze *, redo
(output omitted )

. log close

. doedit output.log

Now, you can edit the output to make a to-do list for yourself. We go through the output and delete

the parts with which we agree, such as the following:

File myfile.do (text file)
40 line(s) in file

File does not need translation.
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Buried in the output, however, may be something like this:

File german.dta (Stata dataset)

File does not need translation, except ...
The file appears to be UTF-8 already. Sometimes, files that need
translating can look like UTF-8. Look at these examples:

variable name ”länge”
variable label ”Kofferraumvolumen (Kubikfuß)”
value-label contents ”Ausländisch”
contents of str# variable marke

Do they look okay to you?
If not, the file needs translating or retranslating with the
transutf8 option. Type

. unicode translate "bill_utf8.dta", transutf8

. unicode retranslate "bill_utf8.dta", transutf8

This file, too, is marked as not needing translation, and we agree based on the evidence presented, but

we might not have agreed. Assume that the file was named japan.dta and that the examples did not
look like Japanese but looked like memory junk. We would want to add this file to our list to translate

and remind ourselves to specify option transutf8 when translating.

It is unlikely that any file that unicode analyze reports as purely UTF-8 needs translating unless the

file is short, and then you must look at it to determine whether the file really is UTF-8.

Here is a different example. The file, according to unicode analyze, needs translation, but it also
includes UTF-8:

File filter.do (text file)
40 line(s) in file
33 line(s) ASCII
1 line(s) UTF-8
6 line(s) need translation

File needs translation. Use unicode translate on this file.
There are three possibilities.
1) The file is exactly what it appears to be, a mix of extended
ASCII and UTF-8. Use unicode translate.
2) The UTF-8 lines are extended ASCII masquerading as UTF-8.
Use unicode translate, transutf8.
3) The file is UTF-8 with some invalid characters. Set the
encoding to utf8 and then use unicode translate, invalid().

unicode analyze thinks this file needs translation and speculates about how it should be translated.

Read the output. Possibility 3) did not even occur to us. Even so, and even without looking at the file,

we would favor possibility 2) because there is only one UTF-8 line and there are 6 lines known to need

translation.

You will learn that running unicode analyze is optional. The advantage of running unicode
analyze is that it offers advice.

You can analyze files repeatedly. If you type unicode analyze without the redo option, the output
reappears, but files are skipped that unicode analyze previously determined as not needing translation.
Specify redo and you will see all the files.

unicode analyze remembers results from previous runs. Five years from now, unicode analyze
will remember the files it has examined and determined do not need translation, and it will even know

whether the file has changed in the intervening five years and so needs reexamination.
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unicode analyze remembers from one run to the next by creating a directory named bak.stunicode,

where it can put its notes. Ignore the directory and its subdirectories. When we tell you about unicode
translate, you will learn that bak.stunicode is also where backups of unmodified original files are

stored. Now that you know that, you might be tempted to restore originals from the backups by copying

the files. Do not do that because you will confuse unicode. Use unicode restore to restore originals.
We will get to that.

The purpose of unicode analyze is to dismiss all the files that do not have problems so you can focus
on those that do. When you later use unicode translate, it will also skip over files that do not need
translating. Using unicode analyze is optional, and even if you do not use it, unicode translate
will never translate a file that does not need it; unicode translate runs unicode analyze in secret if
it needs to.

Use of unicode translate: Overview
Let’s assume that we have used unicode analyze and learned that the following files need translat-

ing:

myfile.dta
anotherfile.do

Before we can translate the files, we must set the extended ASCII encoding. See help encodings
when you are translating your files.

Let’s just assume right now that we know the encoding for the files is ISO-8859-1, and then we will

assume that we were wrong and show you how we get out of that situation.

Step 1. Inform unicode of the encoding by typing

. unicode encoding set ISO-8859-1

Step 2. Translate the files, one at a time by typing

. unicode translate myfile.dta

. unicode translate anotherfile.do

or both in one command by typing

. unicode translate *

Specifying * or *.* or *.dta or m*.* or any other file specification is perfectly safe. unicode
translate ignores irrelevant files just as unicode analyze does. unicode translate also ig-

nores files that do not need translating, and it ignores files that have already been translated. unicode
translate does not depend on your having run unicode analyze previously.

unicode translate has another great feature: it makes backups of the files it modifies. If, after

translation, you decide you do not like the translation, you can restore the original by typing

. unicode restore myfile.dta

You can even type

. unicode restore *

if you want all of your files restored.
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You do not have to restore the original just to retranslate it. Use unicode retranslate instead:

. unicode retranslate myfile.dta

. unicode retranslate *

The only reason to run unicode retranslate, however, is if you want to specify different options
or try a different encoding:

. unicode encoding set some_other_encoding

. unicode retranslate *

And if you do not like that result, you can still unicode restore.

Use of unicode translate: A word on backups
unicode translate and retranslate automatically make backups when they modify a file and a

backup does not already exist. unicode calculates and keeps track of checksums calculated on the orig-
inal and translated files, so it knows whether the files are subsequently changed. unicode is thoroughly
tested. What could possibly go wrong?

If you are like us, you trust nobody with regard to your files. We do not even trust ourselves. Trust us

on this. Make your own back up in whatever way you know before using unicode translate. Backup
the entire directory. We would make a zip file of it, but if nothing else, just copy all the files to a new,

out-of-the-way directory. We predict you will not need the copies, but one never knows for sure.

Even if unicode is perfect, the subsequent validity of the backups depends on the bak.stunicode

subdirectory not being corrupted by another process or even by you. More than once, we have ourselves

damaged files in haste.

After you have translated your files, keep the backups for a while. Eventually, however, there will

come a day when the backups are no longer needed. The command to delete the backups of your originals

is

. unicode erasebackups, badidea

You must specify option badidea. Think of badidea as an abbreviation for

badideaifdonetoosoon: what you are doing in specifying the option is stating that it is not too

soon.

Use of unicode translate: Output
unicode translate’s output looks just like unicode analyze’s output except that the content

varies:

. unicode translate *
30 file(s) specified
6 file(s) not Stata
6 file(s) already known to be ASCII in previous runs
4 file(s) already known to be UTF-8 in previous runs

14 files(s) to be examined
File filename (filetype)

notes about the translation

result message



unicode translate — Translate files to Unicode 917

File badfile.ado (textfile)
40 lines in file
16 lines ASCII
2 lines translated
22 lines w/ invalid chars not translated

File not translated because it contains untranslatable
characters;

you need to specify a different encoding or, if you
are sure that you have the correct encoding, use
unicode translate with the invalid() option

.

.
File filename (filetype)

notes about the translation
notes about elements that need translating

result message

Files matching * that still need translation:
badfile.ado

File summary:
10 file(s) skipped (known okay from previous runs)
13 file(s) successfully translated
1 files(s) not translated because they contain

untranslatable characters
you need to specify a different encoding or, if you
are sure that you have the correct encoding, use
unicode translate with the invalid() option

One file still needs translation according to the output. How can files still need translation? The

output explains. We had untranslatable characters. The output even says what to do about it. We should

specify a different encoding—the fact that we had untranslatable characters is evidence that we are using

the wrong encoding—or we should accept that there are invalid characters in our file and tell unicode
translate how to handle them. It will help us make the decision if we scan up from the file-summary

message to find the detailed output for badfile.ado:

File badfile.ado (textfile)
40 lines in file
16 lines ASCII
2 lines translated
22 lines w/ invalid chars not translated

File not translated because it contains untranslatable
characters;

you need to specify a different encoding or, if you
are sure that you have the correct encoding, use
unicode translate with the invalid() option

You can read about the invalid() option under Options, but this looks like a case where the file

needs a different encoding; 2 lines translated with the current encoding, and 22 did not. If we had instead

seen that 22 lines translated and that 2 lines had invalid characters, we would be less sure about needing

a different encoding. Assume the output had been

File badfile.ado (textfile)
40 lines in file
38 lines ASCII
2 lines w/ invalid chars not translated
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File not translated because it contains untranslatable
characters;

you need to specify a different encoding or, if you
are sure that you have the correct encoding, use
unicode translate with the invalid() option

That an ado-file is mostlyASCII does not surprise us. The fact that no lines could be translated (given

the encoding) speaks volumes. We need a different encoding.

Most of our files were translated. For successful translations, the detailed output for .dta files will
be something like the following:

File trees.dta (Stata dataset)
9 variable names okay, ASCII
3 variable names translated

all data labels okay, ASCII
8 variable labels okay, ASCII
4 variable labels translated

all value-label names okay, ASCII
all value-label contents translated
all characteristic names okay, ASCII
all characteristic contents okay, ASCII
all str# variables okay, ASCII

File successfully translated

The detailed output for text files might look like the following:

File runjob.do (textfile)
120 lines in file
101 lines ASCII
19 lines translated

File successfully translated

Here is an example of a file that translated successfully but produced a lot of output:

File northwest.dta (Stata dataset)
all variable names okay, ASCII
all data labels okay, ASCII
all variable labels okay, ASCII
all value-label names okay, ASCII
all value-label contents okay, ASCII
all characteristic names okay, ASCII
all characteristic contents okay, ASCII
1 strL variable okay, ASCII
1 strL variable(s) have binary values

This concerns strL variable diagnotes.
StrL variables that contain binary values in even one
observation are not translated by unicode. Translating
binary values is inappropriate. Rarely, however,
”binary” values are just text or the variable contains
binary values in some observations and nonbinary values
in others. You translate such variables using generate
or replace; see translating binary strLs.

1 strL variable translated
2 str# variables okay, ASCII
1 str# variable translated

File successfully translated
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The extra output concerns a strL variable that was not translated. The output states that the variable

is binary and that translating binary strLs is inappropriate, but maybe not. This is the topic of the next

section.

Translating binary strLs
unicode translate does not translate binary strLs. That is probably the right decision. StrLs are

sometimes used in Stata to record documents, images, and other binary files, and modifying binary files

is never a good idea.

Stata marks strL variables as binary on an observation-by-observation basis. As far as unicode
translate is concerned, however, if there is just one observation in which the strL is marked as bi-

nary, it treats all observations as binary and does not translate them. The thinking is that variables hold

different realizations of the same underlying type of thing, and if the strL is binary in one observation, it

is probably truly binary in all observations.

Perhaps you know differently in your specific application and wish to translate the variable’s nonbi-

nary observations or all of its observations. Here is how you do that.

You use string function ustrfrom() to obtain a translated string. Assuming the existing strL variable
is named myvar, you type

. generate strL newvar = ustrfrom(myvar, ”encoding”, #)

Specify encoding just as you would with unicode encoding set encoding. encoding might be ISO-

8859-1, Windows-1252, Big5, ISO-2022-KR, or any other extended ASCII encoding. Whatever string

you specify for encoding, make sure it is valid and spelled correctly. Testing the string with unicode
encoding set is one way to do that.

# is specified as 1, 2, 3, or 4 and determines how invalid characters are to be handled. Three of the

four values correspond to unicode’s invalid() option:

1 is equivalent to invalid(mark)
2 is equivalent to invalid(ignore)
4 is equivalent to invalid(escape)

The remaining code, 3, specifies that the function return “ ” if invalid characters are encountered.

So one way of translating all the values of myvar would be

. generate strL try = ustrfrom(myvar, ”ISO-8859-1”, 1)

. browse newvar // review result

. replace newvar = try

. drop try

If you want to translate only the nonbinary values of myvar, you could type

. gen strL try = ustrfrom(myvar, ”ISO-8859-1”, 1) if !_strisbinary(myvar)

. replace try = myvar if _strisbinary(myvar)

That would use Stata’s definition of binary, which is difficult to explain. Another good definition of

binary is that the string not contain binary 0:

. gen strL try = ustrfrom(myvar, ”ISO-8859-1”, 1) if !strpos(myvar, char(0))

. replace try = myvar if strpos(myvar, char(0))
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Also see
[D] unicode — Unicode utilities

[U] 12.4.2 Handling Unicode strings

[U] 12.4.2.6 Advice for users of Stata 13 and earlier
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Description Quick start Menu Syntax Options Remarks and examples
Also see

Description
use loads into memory a Stata-format dataset previously saved by save. If filename is specified

without an extension, .dta is assumed. If your filename contains embedded spaces, remember to enclose
it in double quotes.

In the second syntax for use, a subset of the data may be read.

Quick start
Load Stata-format dataset mydata.dta into memory from current directory

use mydata

Same as above, but load data from the mysubdir subdirectory in current directory and clear current data
from memory first

use mysubdir/mydata, clear

Load only variables v1, v2, and v3 from mydata.dta
use v1 v2 v3 using mydata

Same as above, and further restrict to the first 100 observations

use v1 v2 v3 in 1/100 using mydata

Load observations from mydata.dta where catvar = 2

use if catvar==2 using mydata

Menu
File > Open...

921
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Syntax
Load Stata-format dataset

use filename [ , clear nolabel ]

Load subset of Stata-format dataset

use [ varlist ] [ if ] [ in ] using filename [ , clear nolabel ]

Options
clear specifies that it is okay to replace the data in memory, even though the current data have not been

saved to disk.

nolabel prevents value labels in the saved data from being loaded. It is unlikely that you will ever want

to specify this option.

Remarks and examples

Example 1
We have no data in memory. In a previous session, we issued the command save hiway to save the

Minnesota Highway Data that we had been analyzing. We retrieve it now:

. use hiway
(Minnesota Highway Data, 1973)

Stata loads the data into memory and shows us that the dataset is labeled “Minnesota Highway Data,

1973”.

Example 2
We continue to work with our hiway data and find an error in our data that needs correcting:

. replace spdlimit=70 in 1
(1 real change made)

We remember that we need to forward some information from another dataset to a colleague. We use
that other dataset:

. use accident
no; dataset in memory has changed since last saved
r(4);

Stata refuses to load the data because we have not saved the hiway data since we changed it.

. save hiway, replace
file hiway.dta saved
. use accident
(Minnesota accident data)
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After we save our hiway data, Stata lets us load our accident dataset. If we had not cared whether our
changed hiway dataset were saved, we could have typed use accident, clear to tell Stata to load the
accident data without saving the changed dataset in memory.

Technical note
In example 2, you saved a revised hiway.dta dataset, which you forward to your colleague. Your

colleague issues the command

. use hiway

and gets the message

file hiway.dta not Stata format
r(610);

Your colleague is using a version of Stata older than Stata 14. If your colleague is using Stata 11, 12, or

13, you can save the dataset in Stata 11, 12, or 13 format by using the saveold command; see [D] save.

Newer versions of Stata can always read datasets created by older versions of Stata. Stata/MP and

Stata/SE can read datasets created by Stata/BE. Stata/BE can read datasets created by Stata/MP and

Stata/SE if those datasets conform to Stata/BE’s limits; see [R] Limits.

Example 3
If you are using a dataset that is too large for the amount of memory on your computer, you could

load only some of the variables:

. use ln_wage grade age tenure race using
> https://www.stata-press.com/data/r19/nlswork
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)
. describe
Contains data from https://www.stata-press.com/data/r19/nlswork.dta
Observations: 28,534 National Longitudinal Survey of

Young Women, 14-24 years old in
1968

Variables: 5 27 Nov 2024 08:14
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

age byte %8.0g Age in current year
race byte %8.0g racelbl Race
grade byte %8.0g Current grade completed
tenure float %9.0g Job tenure, in years
ln_wage float %9.0g ln(wage/GNP deflator)

Sorted by:

Stata successfully loaded the five variables.
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Example 4
You are new to Stata and want to try working with a Stata dataset that was used in example 1 of

[XT] xtlogit. You load the dataset:

. use https://www.stata-press.com/data/r19/union
(NLS Women 14-24 in 1968)

The dataset is successfully loaded, but it would have been shorter to type

. webuse union
(NLS Women 14-24 in 1968)

webuse is a synonym for use https://www.stata-press.com/data/r19/; see [D] webuse.

Also see
[D] compress — Compress data in memory

[D] datasignature — Determine whether data have changed

[D] frames use — Load a set of frames from disk

[D] import — Overview of importing data into Stata

[D] save — Save Stata dataset

[D] sysuse — Use shipped dataset

[D] webuse — Use dataset from Stata website

[U] 11.6 Filenaming conventions

[U] 22 Entering and importing data



varmanage — Manage variable labels, formats, and other properties

Description
varmanage opens the Variables Manager. The Variables Manager allows for the sorting and filtering

of variables for the purpose of setting properties on one or more variables at a time. Variable properties

include the name, label, storage type, format, value label, and notes. The Variables Manager also can be

used to create varlists for the Command window.

Menu
Data > Variables Manager

Syntax
varmanage

Remarks and examples
Atutorial discussion of varmanage can be found in [GS] 7 Using the Variables Manager (GSM, GSU,

or GSW).

Also see
[D] drop — Drop variables or observations

[D] edit — Browse or edit data with Data Editor

[D] format — Set variables’ output format

[D] label — Manipulate labels

[D] notes — Place notes in data

[D] rename — Rename variable
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vl — Manage variable lists

Description Remarks and examples Also see

Description
vl stands for variable list. It is a suite of commands for creating and managing named variable lists.

Lists are intended especially to be used as arguments to estimation commands.

In particular, the suite is designed to help divide variables into two groups: one group that will be

treated as factor variables and another group that will be treated as continuous or interval variables.

vl creates two types of named variable lists: system-defined variable lists, created automatically by
vl set, and user-defined variable lists, created by vl create. You will usually use vl set to create

system-defined variable lists first, and then create your own variable lists from them with vl create.

After creating a variable list called vlusername, the expression $vlusername can be used in Stata

anywhere a varlist is allowed. Variable lists are actually global macros, and the vl commands are a

convenient way to create and manipulate them.

Variable lists are saved with the dataset.

Remarks and examples
Remarks are presented under the following headings:

Introduction
vl set and system-defined variable lists
Classification criteria for system-defined variable lists
Moving variables into another classification
vl create and user-defined variable lists
vl list
vl substitute and factor-variable operators
Exploring data with vl set
Changing the cutoffs for classification
Moving variables from one classification to another
Dropping variables and rebuilding variable lists
Changing variables and updating variable lists
Saving and using datasets with variable lists
User-defined variable lists and factor-variable operators
Updating variable lists created by vl substitute
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Introduction
The vl commands are the following:

System only

vl set initializes the system-defined variable lists based on the number
of levels and other characteristics of a variable

vl move moves variables from one system-defined variable list to another

User only

vl create creates user-defined variable lists

vl modify adds or removes variables from user-defined variable lists

vl label adds a label to a user-defined variable list

vl substitute creates a user-defined variable list using factor-variable operators

System or user

vl list lists the contents of variable lists, either system or user

vl dir displays the defined variable lists, either system or user

vl drop deletes variable lists or removes variables from multiple variable lists

vl clear deletes all variable lists

vl rebuild restores variable lists

The first thing to note is that some vl commands only work with system-defined variable lists, some
only work with user-defined variable lists, and others work with both.

vl set is typically used first. It initializes the system-defined variable lists. By default, it classifies all
the numeric variables in your dataset. Or you can specify varlist and have it classify only those variables.

When we are discussing the vl commands and say “variable list”, we mean a named variable list

created by vl set or vl create. A traditional Stata list of variables, that is, varlist, we will call varlist.

Variable lists contain varlists.

vl create allows you to create your own variable lists, either starting with system-defined variable
lists or with varlists you specify. There is no need to run vl set and create system-defined variable lists.
You can create your own from scratch. If you are familiar with the variables in your dataset and know

which ones you want treated as factor variables and which as continuous variables, you may want to

create only user-defined variable lists.

vl rebuild restores all the vl-generated variable lists after loading a dataset that previously had
variable lists. Stata saves variable lists when you save your data, but when you use the saved data file,
they are not automatically restored.

We will explain how to use vl with a series of examples.

vl set and system-defined variable lists
We will first show examples using Stata’s automobile dataset because it only has a small number of

variables and the output will not be too lengthy. We will do that even though you are unlikely to want to

use vl with this small dataset. vl is intended for use with dozens or even thousands of variables.
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. sysuse auto
(1978 automobile data)

Typing vl set without varlist classifies all the numeric variables in the data.

. vl set

Macro’s contents

Macro # Vars Description

System
$vlcategorical 2 categorical variables
$vlcontinuous 2 continuous variables
$vluncertain 7 perhaps continuous, perhaps categorical variables
$vlother 0 all missing or constant variables

Notes
1. Review contents of vlcategorical and vlcontinuous to ensure they are

correct. Type vl list vlcategorical and type vl list vlcontinuous.
2. If there are any variables in vluncertain, you can reallocate them

to vlcategorical, vlcontinuous, or vlother. Type
vl list vluncertain.

3. Use vl move to move variables among classifications. For example,
type vl move (x50 x80) vlcontinuous to move variables x50 and x80 to
the continuous classification.

4. vlnames are global macros. Type the vlname without the leading
dollar sign ($) when using vl commands. Example: vlcategorical not
$vlcategorical. Type the dollar sign with other Stata commands to
get a varlist.

By default, all numeric variables are put into one of four system-defined variable lists: vlcategorical,
vlcontinuous, vluncertain, or vlother.

vlcategorical is intended for variables that are to be used as factor variables. vlcontinuous is
intended for variables that are to be treated as continuous. vluncertain is intended for variables that
may be categorical or may be continuous. vlother is a garbage classification intended for variables you
want to ignore. vl set only puts constants and variables that are always missing into vlother, but you
can move other variables there—more on that later.

Classification criteria for system-defined variable lists
Division into vlcategorical, vlcontinuous, or vluncertain is determined by several criteria.

First, if the variable contains any noninteger values, it goes in vlcontinuous.

Second, if the variable has negative values, it goes in vlcontinuous because factor variables in Stata
must be nonnegative. If you have a variable that has values −1 and 1, you must recode it as 0 and 1 (or

1 and 2 or any other two distinct nonnegative integers) before you can use it as a factor variable.

Third, values of factor variables must be smaller than 231 = 2,147,483,648, so a variable with any

values ≥ 231 goes in vlcontinuous.

Fourth, constants, even when nonnegative integers, go in vlother.

For the remaining variables containing nonnegative integers, where they are placed is determined by

two cutoffs, which can be specified by the options categorical(#) and uncertain(#).
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When the number of levels (distinct values), 𝐿, is

2 ≤ 𝐿 ≤ categorical(#)

the variable goes in vlcategorical. When

categorical(#) < 𝐿 ≤ uncertain(#)

the variable goes in vluncertain. When

𝐿 > uncertain(#)

the variable goes in vlcontinuous.

The defaults are categorical(10) and uncertain(100), which are admittedly arbitrary. They

were chosen because they are easy-to-remember round numbers. In many cases, you will want to use

different cutoffs. See the next section, where we reset categorical(#) and uncertain(#).

Moving variables into another classification
vl list will show how each variable was classified and why.

. vl list, minimum maximum observations

Variable Macro Values Levels Min Max Obs

rep78 $vlcategorical integers >=0 5 1 5 69
foreign $vlcategorical 0 and 1 2 0 1 74
headroom $vlcontinuous noninteger 1.5 5 74

gear_ratio $vlcontinuous noninteger 2.19 3.89 74
price $vluncertain integers >=0 74 3291 15906 74

mpg $vluncertain integers >=0 21 12 41 74
trunk $vluncertain integers >=0 18 5 23 74
weight $vluncertain integers >=0 64 1760 4840 74
length $vluncertain integers >=0 47 142 233 74
turn $vluncertain integers >=0 18 31 51 74

displacement $vluncertain integers >=0 31 79 425 74

We specified options minimum, maximum, and observations to display the minimum and maximum

values of each variable and the number of nonmissing observations.

vl set does not use the minimum and maximum to determine whether the variable goes in

vlcategorical, vlcontinuous, or vluncertain. If the variable is a nonnegative integer, only the
number of levels matters to vl set. A variable with levels 1,000,000 and 2,000,000 is classified the

same as a variable with levels 0 and 1. The minimum and maximum can be displayed because you might

want to use them to reclassify the variables.

In our example, we look at the number of levels and the minimum and maximum of the variables in

vluncertain, and we decide we want to treat them all as continuous. We use vl move to move them
into vlcontinuous.
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. vl move vluncertain vlcontinuous
note: 7 variables specified and 7 variables moved.

Macro # Added/Removed

$vlcategorical 0
$vlcontinuous 7
$vluncertain -7
$vlother 0

When variables aremoved into a different system-defined variable list, they aremoved out of their current

list.

Moving on, variable rep78, which gives the vehicle repair record, is worth some thought.

. tabulate rep78
Repair

record 1978 Freq. Percent Cum.

1 2 2.90 2.90
2 8 11.59 14.49
3 30 43.48 57.97
4 18 26.09 84.06
5 11 15.94 100.00

Total 69 100.00

rep78 could be considered categorical and used as a factor variable or could be considered as an interval
variable and treated as a continuous variable.

Let’s say we want to move it into vlcontinuous. To specify variable names directly, you specify
them in parentheses. We move rep78.

. vl move (rep78) vlcontinuous
note: 1 variable specified and 1 variable moved.

Macro # Added/Removed

$vlcategorical -1
$vlcontinuous 1
$vluncertain 0
$vlother 0

vl create and user-defined variable lists
vl set and vl move are a first-pass classification of your variables. Next you will likely want to

create specialized variable lists for use as independent variables for an estimation command.

You can create variable lists based on a specific set of variables. Use vl create and specify a varlist
enclosed in parentheses, ().

. vl create power = (gear_ratio displacement weight)
note: $power initialized with 3 variables.
. vl create nonpower = (turn length rep78)
note: $nonpower initialized with 3 variables.
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We want to model mpg. We created the variable list power, containing variables we think are related
to power, and another variable list nonpower, containing variables that are not related to power but might
be predictive of mpg.

After creating these variable lists, we decide the variable length belongs in power instead of

nonpower. So we add it to power by using the vl modify command.

. vl modify power = power + (length)
note: 1 variable added to $power.

vl create and vl modify are like generate and replace in Stata. vl create creates new variable

lists. vl modify modifies existing variable lists.

vl list
We can use vl list to see the variable lists to which the variable length belongs.

. vl list (length), user

Variable Macro Values Levels

length $nonpower integers >=0 47
length $power integers >=0 47

We used vl list with varlist enclosed in parentheses. We specified option user to list only the user-
defined variable lists.

If we do not want length in nonpower, we must explicitly move it out.

. vl modify nonpower = nonpower - (length)
note: 1 variable removed from $nonpower.

In this way, vl modify differs from vl move. vl movemoves a variable out of its current system-defined
variable list when the variable is moved into a new one. vl modify only modifies the specified variable
list.

We can create new user-defined variable lists from existing variable lists, whether user or system

defined.

. vl create xvars = power + nonpower
note: $xvars initialized with 6 variables.
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Using (*) to specify the varlist for vl list gives a listing ordered by variable name first and then
variable-list name.

. vl list (*)

Variable Macro Values Levels

price $vlcontinuous integers >=0 74
price not in vluser 74

mpg $vlcontinuous integers >=0 21
mpg not in vluser 21

rep78 $vlcontinuous integers >=0 5
rep78 $nonpower integers >=0 5
rep78 $xvars integers >=0 5

headroom $vlcontinuous noninteger
headroom not in vluser

trunk $vlcontinuous integers >=0 18
trunk not in vluser 18
weight $vlcontinuous integers >=0 64
weight $power integers >=0 64
weight $xvars integers >=0 64
length $vlcontinuous integers >=0 47
length $power integers >=0 47
length $xvars integers >=0 47
turn $vlcontinuous integers >=0 18
turn $nonpower integers >=0 18
turn $xvars integers >=0 18

displacement $vlcontinuous integers >=0 31
displacement $power integers >=0 31
displacement $xvars integers >=0 31
gear_ratio $vlcontinuous noninteger
gear_ratio $power noninteger
gear_ratio $xvars noninteger

foreign $vlcategorical 0 and 1 2
foreign not in vluser 2

See [D] vl list for all the different ways it can list variable lists and variables.

vl substitute and factor-variable operators
Factor-variable operators can be used with variable lists using vl substitute. Here is an example:

. vl substitute indepvars = i.vlcategorical##c.xvars

See [U] 11.4.3 Factor variables.

To see what is in indepvars, we use the global macro syntax with a $ in front of its name and use
display to view its contents.

. display ”$indepvars”
i.foreign gear_ratio displacement weight length turn rep78 i.foreign#c.gear_ratio i
> .foreign#c.displacement i.foreign#c.weight i.foreign#c.length i.foreign#c.turn i.
> foreign#c.rep78
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To use variable lists with other Stata commands, we do the same thing. We treat the list name like the

global macro it is and put a $ in front of it.

. regress mpg $indepvars
Source SS df MS Number of obs = 69

F(13, 55) = 20.86
Model 1945.54632 13 149.657409 Prob > F = 0.0000

Residual 394.656577 55 7.17557413 R-squared = 0.8314
Adj R-squared = 0.7915

Total 2340.2029 68 34.4147485 Root MSE = 2.6787

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

foreign
Foreign -32.65519 24.36955 -1.34 0.186 -81.49286 16.18248

gear_ratio -.0847818 1.959716 -0.04 0.966 -4.012141 3.842577
(output omitted )

foreign#c.rep78
Foreign 4.480624 1.10794 4.04 0.000 2.260263 6.700985

_cons 50.52293 8.553643 5.91 0.000 33.38104 67.66481

Just like all the other user-defined variable lists, variable lists created by vl substitute are saved
with the data. See [D] vl rebuild.

Exploring data with vl set
Consider a bigger dataset. It is fictitious data, designed to mimic real questionnaire data.

. use https://www.stata-press.com/data/r19/questionnaire, clear
(Fictitious Questionnaire Data)

vl can be used to explore your data. It is a bit like codebook except that codebook provides more
information. vl set, however, is much faster. vl set is even speedy with datasets containing millions
of observations and thousands of variables.
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We run vl set with the list() option, which is equivalent to using the vl list command. We also

specify the option nonotes to suppress the notes at the end of the table.

. vl set, list(min max obs) nonotes

Variable Macro Values Levels Min Max Obs

gender $vlcategorical 0 and 1 2 0 1 1,058
age $vluncertain integers >=0 47 2 64 1,058
q1 $vluncertain integers >=0 40 1 47 1,048
q2 $vlcategorical integers >=0 3 1 3 1,046
q3 $vlcategorical 0 and 1 2 0 1 1,049
q4 $vlcategorical 0 and 1 2 0 1 1,042
q5 $vlcategorical 0 and 1 2 0 1 1,048
q6 $vlcategorical integers >=0 3 1 3 1,046
q7 $vlcategorical 0 and 1 2 0 1 1,047
q8 $vlcategorical 0 and 1 2 0 1 1,046
q9 $vlcategorical 0 and 1 2 0 1 1,051

q10 $vlcategorical 0 and 1 2 0 1 1,047
q11 $vlcategorical 0 and 1 2 0 1 1,042
q12 $vlcategorical integers >=0 5 1 5 1,052
q13 $vlcategorical 0 and 1 2 0 1 1,045
q14 $vlcategorical 0 and 1 2 0 1 1,047
q15 $vluncertain integers >=0 36 0 37 1,040
q16 $vlcategorical integers >=0 3 1 3 1,046
q17 $vlcategorical 0 and 1 2 0 1 1,054
q18 $vlcategorical integers >=0 7 1 7 1,048
q19 $vlcategorical 0 and 1 2 0 1 1,043
q20 $vluncertain integers >=0 30 1 30 1,048

check1 $vlother constant 1 1 1 1,058
q21 $vluncertain integers >=0 39 2 40 1,048
q22 $vluncertain integers >=0 32 3 36 1,050
q23 $vlcategorical integers >=0 10 1 10 1,050
q24 $vlcontinuous negative -1 1 1,050

(output omitted )

q45 $vlcontinuous noninteger 8.7 69.9 1,045
(output omitted )

q60 $vlother all missing . . 0
(output omitted )

q76 $vlcontinuous integers >=0 >100 84 287 1,051
(output omitted )

q161 $vlcategorical 0 and 1 2 0 1 1,047
check8 $vlother constant 1 1 1 1,058

Summary

Macro’s contents

Macro # Vars Description

System
$vlcategorical 138 categorical variables
$vlcontinuous 3 continuous variables
$vluncertain 21 perhaps continuous, perhaps categorical variables
$vlother 9 all missing or constant variables
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From the summary table, we see that most of the variables were put in vlcategorical. The default
cutoff for the number of levels for vlcategorical is 10, so these 138 variables all have 10 levels or
less.

Three variables were put in vlcontinuous. One, q24, has negative values. Its values are actually
only −1 and 1. So it is integer with only two levels, yet it is classified as continuous. Factor variables

must be nonnegative, so any variable with negative values is put into vlcontinuous. We need to recode

q24 as 0/1 (or 1/2, etc.) to use it as a factor variable.

The variable q45 was put in vlcontinuous because it contains noninteger values.

The variable q76 was put in vlcontinuous because, although it is a nonnegative integer, it has over
100 levels. The default cutoff is 100 for determining whether variables are put in vlcontinuous or

vluncertain. Note that the output does not say exactly how many levels, just that the number is greater

than 100.

The variable list vluncertain contains 21 variables. These are nonnegative integers with the number
of levels > 10 and ≤ 100.

The variable list vlother contains nine variables. These variables are either constants or all

missing—variables not suitable for any statistical analyses.

Changing the cutoffs for classification
The default classification produced by vl set was not very useful in this case. vl set put too

many variables in vlcategorical, and it put too many in vluncertain. Most of the variables in

vluncertain are integer-valued scales, and we want those in vlcontinuous.

We will fix this. We run vl set again to re-create the classifications, and this time, we specify

categorical(4) and uncertain(19), meaning that variables in vlcategorical can have up to 4

levels and variables with 5 to 19 levels are placed in vluncertain. We also specify the option dummy
to tell vl set to smarten up and put all the 0/1 variables in their own classification. Finally, we specify
option clear to clear the old classifications. See [D] vl set.

. vl set, categorical(4) uncertain(19) dummy clear nonotes

Macro’s contents

Macro # Vars Description

System
$vldummy 99 0/1 variables
$vlcategorical 16 categorical variables
$vlcontinuous 21 continuous variables
$vluncertain 26 perhaps continuous, perhaps categorical variables
$vlother 9 all missing or constant variables

Wedid not really need to create the vldummy variable list. Hadwewanted to treat the dummy variables
as factor variables, we could have let vl set put them in vlcategorical, as it would by default. Note
that vldummy contains only 0/1 variables. A 1/2 variable is still put in vlcategorical.
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Moving variables from one classification to another
At this point, we are happy with the variables that are in vlcategorical and vlcontinuous. We

are unhappy with having variables in vluncertain, and we have 26 of them! Those variables have

between 5 and 19 levels. Let’s list the variables and categorize them by hand.

. vl list vluncertain

Variable Macro Values Levels

q12 $vluncertain integers >=0 5
q18 $vluncertain integers >=0 7
q23 $vluncertain integers >=0 10
q27 $vluncertain integers >=0 8
q28 $vluncertain integers >=0 15
q35 $vluncertain integers >=0 7
q39 $vluncertain integers >=0 5
q54 $vluncertain integers >=0 10
q63 $vluncertain integers >=0 7
q66 $vluncertain integers >=0 5
q80 $vluncertain integers >=0 5
q81 $vluncertain integers >=0 5
q92 $vluncertain integers >=0 5
q93 $vluncertain integers >=0 7
q99 $vluncertain integers >=0 5
q103 $vluncertain integers >=0 7
q111 $vluncertain integers >=0 7
q112 $vluncertain integers >=0 7
q119 $vluncertain integers >=0 8
q120 $vluncertain integers >=0 7
q124 $vluncertain integers >=0 14
q127 $vluncertain integers >=0 5
q132 $vluncertain integers >=0 7
q135 $vluncertain integers >=0 10
q141 $vluncertain integers >=0 12
q157 $vluncertain integers >=0 7

Many of the variables have seven levels. Let’s tabulate one of them.

. tabulate q18
Question 18 Freq. Percent Cum.

very strongly disagree 136 12.98 12.98
strongly disagree 148 14.12 27.10

disagree 144 13.74 40.84
neither agree nor disagree 146 13.93 54.77

agree 173 16.51 71.28
strongly agree 146 13.93 85.21

very strongly agree 155 14.79 100.00

Total 1,048 100.00
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This variable contains a Likert scale and, because of that, we want to treat the variable as continuous. In

fact, all the variables with seven levels are Likert scales. We move them all into vlcontinuous.

. vl move (q18 q35 q63 q93 q103 q111 q112 q120 q132 q157) vlcontinuous
note: 10 variables specified and 10 variables moved.

Macro # Added/Removed

$vldummy 0
$vlcategorical 0
$vlcontinuous 10
$vluncertain -10
$vlother 0

Now we can list the remaining vluncertain variables.

. vl list vluncertain

Variable Macro Values Levels

q12 $vluncertain integers >=0 5
q23 $vluncertain integers >=0 10
q27 $vluncertain integers >=0 8
q28 $vluncertain integers >=0 15
q39 $vluncertain integers >=0 5
q54 $vluncertain integers >=0 10
q66 $vluncertain integers >=0 5
q80 $vluncertain integers >=0 5
q81 $vluncertain integers >=0 5
q92 $vluncertain integers >=0 5
q99 $vluncertain integers >=0 5
q119 $vluncertain integers >=0 8
q124 $vluncertain integers >=0 14
q127 $vluncertain integers >=0 5
q135 $vluncertain integers >=0 10
q141 $vluncertain integers >=0 12

You can decide for yourself where they go and use vl move to place them.

Dropping variables and rebuilding variable lists
We have variables in vlother.

. vl list vlother

Variable Macro Values Levels

check1 $vlother constant 1
check2 $vlother constant 1

q60 $vlother all missing
check3 $vlother constant 1
check4 $vlother constant 1
check5 $vlother constant 1
check6 $vlother constant 1
check7 $vlother constant 1
check8 $vlother constant 1
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We could use vl drop to remove them from the vl system classification. But we do not want them in

our dataset, so we drop them.

. drop $vlother

Now if we run

. vl list
variable check1 not found

Run vl rebuild to rebuild vl macros.
r(111);

we get an error! vl keeps track of all the variables put into variable lists, and whenever a vl command
is run, it first checks that everything is okay. It discovered missing variables and needs confirmation that

this is intentional. If it is, we vl rebuild the system.

. vl rebuild
Rebuilding vl macros ...

Macro’s contents

Macro # Vars Description

System
$vldummy 99 0/1 variables
$vlcategorical 16 categorical variables
$vlcontinuous 31 continuous variables
$vluncertain 16 perhaps continuous, perhaps categorical variables
$vlother 0 all missing or constant variables

Changing variables and updating variable lists
If you change the values of a variable, you need to vl set the variable again to update its statistics.

You can update its statistics leaving its classification unchanged or tell vl set to redo the classification
as well.

We noticed that age had a suspiciously low minimum.

. vl list (age), min max obs

Variable Macro Values Levels Min Max Obs

age $vlcontinuous integers >=0 >19 2 64 1,058

We do not believe a two-year-old took our questionnaire. Let’s find the ID of this subject.

. list id age if age == 2

id age

543. 05034558 2

We check our original data source and discover that the subject was 20 years old. We correct the value

of age.

. replace age = 20 if id == ”05034558” & age == 2
(1 real change made)
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Now the minimum of age stored by vl is wrong. We could ignore it, or we could fix it by using the

update option of vl set. The option update does not change the classification of a variable; it only
updates the stored statistics.

. vl set age, update list(min max obs) nonotes

Variable Macro Values Levels Min Max Obs

age $vlcontinuous integers >=0 47 18 64 1,058

Summary

Macro’s contents

Macro # Vars Description

System
$vldummy 99 0/1 variables
$vlcategorical 16 categorical variables
$vlcontinuous 31 continuous variables
$vluncertain 16 perhaps continuous, perhaps categorical variables
$vlother 0 all missing or constant variables

If we wanted to redo the classification of age and update its statistics, we would type

. vl set age, redo
(output omitted )

Saving and using datasets with variable lists
When we save our data, the vl system is saved.

. save quest_with_vl
file quest_with_vl.dta saved

However, when we use our data, the vl system is not automatically restored.

. use quest_with_vl
(Fictitious Questionnaire Data)

Type vl rebuild to bring the system back to life.

. vl rebuild
Rebuilding vl macros ...

Macro’s contents

Macro # Vars Description

System
$vldummy 99 0/1 variables
$vlcategorical 16 categorical variables
$vlcontinuous 31 continuous variables
$vluncertain 16 perhaps continuous, perhaps categorical variables
$vlother 0 all missing or constant variables

See [D] vl rebuild for other instances when you need to run vl rebuild.
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User-defined variable lists and factor-variable operators
We continue with our previous example using fictitious questionnaire data.

The system-defined variable lists are good for organizing variables. We would not use them, however,

to specify varlists for estimation commands if for no other reason than we do not want to use all the

variables in the dataset. For this purpose, we need to create user-defined variable lists.

Here is a variable list containing demographic variables we want to use for model fitting.

. vl create demographics = (gender q3 q4 q5)
note: $demographics initialized with 4 variables.

We are going to create two more variable lists: factors, containing variables we want to treat as
factor variables, and control scales, containing variables we want to treat as continuous.

. vl create factors = vldummy + vlcategorical
note: $factors initialized with 115 variables.
. vl create control_scales = (q15 q20 q21 q22)
note: $control_scales initialized with 4 variables.

This is the real power of vl. We created factors from vldummy plus vlcategorical. But factors
contains variables in demographics, and we want to handle the demographics variables differently.
So we remove them from factors. We also remove some other variables we do not want in our model.

. vl modify factors = factors - demographics
note: 4 variables removed from $factors.
. vl modify factors = factors - (q155 q156 q158)
note: 3 variables removed from $factors.

We are going to fit a poregress model, and our variables of interest (ones for which we want to do
inference) are the categorical variables q7, q13, and q16, and the continuous variable q35.

We create a variable list with the categorical ones, and remove them from factors.

. vl create fvofinterest = (q7 q13 q16)
note: $fvofinterest initialized with 3 variables.
. vl modify factors = factors - fvofinterest
note: 3 variables removed from $factors.

Now we use vl substitute to create a variable list that contains factor variables.

. vl substitute interest = i.fvofinterest q35

Notice that we tucked the continuous variable q35 in at the end. vl substitute lets you specify variable
lists and variables by using factor-variable operators—or not—in a natural way.

If you want to see the contents of a variable list created using vl substitute, you can display it:

. display ”$interest”
i.q7 i.q13 i.q16 q35

The one thing to remember about vl substitute is that it is a one-shot deal. Once the variable list
is created, you cannot modify it. If you want to change it, you must delete it using vl drop and then
re-create it using vl substitute.

We are going to go nuts and create a variable list consisting of bushels of interactions.

. vl substitute controlvars = i.demographics i.factors##c.control_scales



vl — Manage variable lists 941

The interest variable list contains our variables of interest for poregress. The controlvars
variable list contains control variables for the model.

. poregress q1 $interest, controls($controlvars)
Estimating lasso for q1 using plugin
Estimating lasso for 1bn.q7 using plugin
Estimating lasso for 1bn.q13 using plugin
Estimating lasso for 2bn.q16 using plugin
Estimating lasso for 3bn.q16 using plugin
Estimating lasso for q35 using plugin
Partialing-out linear model Number of obs = 339

Number of controls = 1,137
Number of selected controls = 12
Wald chi2(5) = 12.89
Prob > chi2 = 0.0244

Robust
q1 Coefficient std. err. z P>|z| [95% conf. interval]

q7
yes -1.333003 .7441531 -1.79 0.073 -2.791516 .1255107

q13
yes .4321797 .684376 0.63 0.528 -.9091725 1.773532

q16
2 .6905278 .8355682 0.83 0.409 -.9471559 2.328211
3 2.497944 .8572828 2.91 0.004 .8177008 4.178188

q35 -.1238627 .1833827 -0.68 0.499 -.4832861 .2355608

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

Using vl, we can specify huge varlists in a succinct notation. If we were to list the expanded estimation
command, it would take half a page!

Updating variable lists created by vl substitute
What is especially convenient about variable lists is how easy they are to modify. Suppose we decide

we do not want q13 in our model. We cannot explicitly change interest because it was created by vl
substitute, but we can change fvofinterest.

. vl modify fvofinterest = fvofinterest - (q13)
note: 1 variable removed from $fvofinterest.
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We now update interest using vl rebuild.

. vl rebuild
Rebuilding vl macros ...

Macro’s contents

Macro # Vars Description

System
$vldummy 99 0/1 variables
$vlcategorical 16 categorical variables
$vlcontinuous 31 continuous variables
$vluncertain 16 perhaps continuous, perhaps categorical variables
$vlother 0 all missing or constant variables

User
$demographics 4 variables
$factors 105 variables
$control_scales 4 variables
$fvofinterest 2 variables
$interest factor-variable list
$controlvars factor-variable list

And we see that q13 is gone from our variable list.

. display ”$interest”
i.q7 i.q16 q35

Also see
[D] vl create — Create and modify user-defined variable lists

[D] vl drop — Drop variable lists or variables from variable lists

[D] vl list — List contents of variable lists

[D] vl rebuild — Rebuild variable lists

[D] vl set — Set system-defined variable lists



vl create — Create and modify user-defined variable lists

Description Quick start Syntax Remarks and examples Also see

Description
vl create creates user-defined variable lists.

vl modify modifies existing user-defined variable lists.

vl substitute creates a variable list using factor-variable operators operating on variable lists.

After creating a variable list called vlusername, the expression $vlusername can be used in Stata

anywhere a varlist is allowed. Variable lists are actually global macros, and the vl commands are a

convenient way to create and manipulate them. They are saved with the dataset. See [D] vl rebuild.

For an introduction to the vl commands, see [D] vl.

Quick start
Create a variable list

vl create demographics = (age_cat gender)

Add variables to a variable list

vl modify demographics = demographics + (educ_cat income_cat)

Add the variables in the variable list named othervars to the existing variable list called myxvars
vl modify myxvars = myxvars + othervars

Remove the variable x8 from the variable list

vl modify myxvars = myxvars - (x8)

Apply factor-variable operator i. to all the variables in a variable list

vl substitute idemographics = i.demographics

Create interactions between the levels of the variables in the variable list demographics and the contin-
uous variables in the variable list vlcontinuous

vl substitute myinteractions = i.demographics#c.vlcontinuous

Run a regression specifying the independent variables using variable lists

regress y $idemographics $myxvars $myinteractions
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Syntax
Create user-defined variable lists

vl create vlusername = (varlist)

vl create vlusername = vlname + | - (varlist)
vl create vlusername = vlname1 [ + | - vlname2 ]

Modify user-defined variable lists

vl modify vlusername = (varlist)

vl modify vlusername = vlname + | - (varlist)
vl modify vlusername = vlname1 [ + | - vlname2 ]

Apply factor-variable operators to variable-list names

vl substitute vlusername = i.vlname

vl substitute vlusername = i.vlname1#i.vlname2

vl substitute vlusername = i.vlname1##c.vlname2

Label a user-defined variable-list name

vl label vlusername [ ”label” ]

vlname is an existing user-defined variable-list name or a system-defined variable-list name. When spec-

ifying varlist, it is always enclosed in parentheses: (varlist). See [D] vl.

Remarks and examples
Remarks are presented under the following headings:

vl create
vl modify
Using variable lists with other Stata commands
vl substitute

vl create
vl create creates a new variable list. It can be created from a list of variables:

. vl create myxvars = (x1-x100)

In the above, note that the varlist is enclosed in parentheses. varlists must always be enclosed in paren-

theses.

When we are discussing the vl commands and say “variable list,” we mean a named variable list

created by vl create or vl set. In this case, we created the variable list myxvars. A traditional Stata

list of variables, that is, a varlist, we will call a varlist.

A new variable list also can be created from an existing variable list:

. vl create indepvars = myxvars
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vl modify

vl modify is the same as vl create, except that vl modify cannot create new variables lists, and

vl create cannot modify existing lists.

The operator + can be used to take the union of two variable lists with duplicates removed.
. vl modify indepvars = myxvars + othervars

The operator - can be used to obtain the difference of two variable lists.

. vl modify indepvars = myxvars - othervars

Now indepvars contains the variables that are in myxvars excluding any that are in othervars. If
there are variables in othervars that are not in myxvars, it is not an error. These variables are simply
ignored.

The + and - operators can be used with varlists as well.

. vl modify indepvars = myxvars + (w1 w2 w3)

(varlist) must be specified after + or -, never before.

To list the variables in a variable list, use vl list. To see a directory of variable lists that have been
created, type vl dir. See [D] vl list for details on these two commands.

vl label attaches a label to the variable list that is displayed by vl dir.

. vl label indepvars ”My brilliant choice of variables”

To delete indepvars, type

. vl drop indepvars

vl drop has other uses too; see [D] vl drop.

Using variable lists with other Stata commands
To use variable lists with other Stata commands, type $ in front of the variable-list name. Remember:

With the vl commands, do not use $. With other Stata commands, use $.
. display ”$indepvars”
. summarize $indepvars
. regress y $indepvars

If you know Stata, you will have already figured out that variable lists are global macros. But the vl
system is more than another way to create global macros. For instance, variable lists are saved with the

dataset. Global macros are not. Both variable lists and other vl system information are saved. To make

the vl system come back to life in the state we last had it, after we use a dataset, we type

. vl rebuild

See [D] vl rebuild.

vl substitute
Factor-variable operators can be used with variable lists. There are two ways to do this.

The first is to use factor-variable operators on the global macro form of the variable list like so:

. regress y i.($myfactors)##c.($mycontinuous)
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Here myfactors is a user-defined variable list containing variables you want treated as factors.

mycontinuous are variables you want treated as continuous. Specifying i.(. . .)##c.(. . .) means you
want main effects of the factors plus interactions of all their levels with the continuous variables. Note

that the parentheses, (), are required.

Asecondway to use factor-variable operators with variable lists is with the command vl substitute.
For example,

. vl substitute myinteractions = i.myfactors##c.mycontinuous

. regress y $myinteractions

would produce the same result as the previous command. However, using vl substitute has the ad-
vantage that the variable lists it creates will be saved with your dataset, just like any other variable list.

See [U] 11.4.3 Factor variables.

You can mix variable names with names of variable lists:

. vl substitute myinteractions = i.gender##c.(mycontinuous x100)

Here gender and x100 are variable names and mycontinuous is a variable list.

Be careful when mixing variable names and names of variable lists. vl substitute first assumes
names are names of variable lists. Then it looks for variable names. For example, if you have both a

variable named x and a variable list named x, and you specify

. vl substitute myinteractions = i.gender##c.(mycontinuous x)

then vl substitute will assume x is the variable list.

Using vl substitute to create a user-defined variable list is a one-shot deal. These variable lists
cannot be modified after they are created. If you want to change them, first drop them,

. vl drop myinteractions

and then define them again:

. vl substitute myinteractions = i.myfactors##c.mycontinuous

For examples using vl create, vl modify, and vl substitute, see [D] vl.

Also see
[D] vl — Manage variable lists

[D] vl drop — Drop variable lists or variables from variable lists

[D] vl list — List contents of variable lists

[D] vl rebuild — Rebuild variable lists

[D] vl set — Set system-defined variable lists
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Description Quick start Syntax Options Remarks and examples Also see

Description
vl drop vlusername deletes user-defined variable lists.

vl drop vlsysname zeros system-defined variable lists. They still exist but are empty.

vl drop (varlist) removes variables from all variable lists.

vl clear deletes all variable lists and removes all traces of the vl system.

For an introduction to the vl commands, see [D] vl.

Quick start
Delete the user-defined variable list myfav

vl drop myfav

Zero the system-defined variable list vluncertain
vl drop vluncertain

Drop the variables x1 and x2 from all variable lists

vl drop (x1 x2)

Same as above, but only drop them from user-defined variable lists

vl drop (x1 x2), user

Delete all variable lists and all traces of the vl system
vl clear

Delete all user-defined variable lists

vl clear, user

Delete all system-defined variable lists and the stored variable statistics

vl clear, system
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Syntax
Drop variable lists

vl drop vlnamelist [ , system user ]

Drop variables from variable lists

vl drop (varlist) [ , system user ]

Clear all variable lists

vl clear [ , system user ]

vlnamelist is a list of variable-list names.

( all) or (*) can be used to specify all numeric variables in the dataset.

Options
system when specified with vl drop (varlist), drops the variables in varlist only from system-defined

variable lists. By default, variables are dropped from all variable lists, both system-defined and user-

defined.

When specified with vl clear, only the system-defined variable lists are deleted. By default, both
the system-defined and user-defined variable lists are deleted, and all traces of the vl system are gone.

user when specified with vl drop (varlist), drops the variables in varlist only from user-defined vari-

able lists.

When specified with vl clear, only the user-defined variable lists are deleted.

Remarks and examples
When given one or more names of user-defined variable lists, vl drop deletes them. That is, typing

. vl drop myname

deletes the user-defined variable list myname. It is as if myname was never created. A new variable list

called myname can now be created using vl create.

When given one or more names of system-defined variable lists, vl drop zeros them. That is, typing

. vl drop vluncertain

zeros the system-defined variable list vluncertain. It still exists but is empty. A single system-defined

variable list cannot be deleted.

All system-defined variable lists can be deleted using

. vl clear, system

All system-defined variable lists are now gone. Also deleted are the stored variable statistics, namely,

the number of levels, minimum and maximum values, and the number of nonmissing observations. It is

as if vl set was never run.
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Typing

. vl clear

deletes all variable lists and all traces of the vl system.

Typing

. vl drop (varlist)

removes the variables in varlist from all variable lists.

Say we only want to remove variable x8 from the user-defined variable list mylist. To do this, we
type

. vl modify mylist = mylist - (x8)

Note the parentheses around x8; see [D] vl create.

Say you want to remove variable x8 from the system-defined variable list vlcategorical. System-
defined variable lists are disjoint, so a variable is only in one of them. Thus, we can remove it by typing

. vl drop (x8), system

Rather than drop it, we could have moved it to the system-defined variable list vlother.

. vl move (x8) vlother

See [D] vl set.

Also see
[D] vl — Manage variable lists

[D] vl create — Create and modify user-defined variable lists

[D] vl list — List contents of variable lists

[D] vl rebuild — Rebuild variable lists

[D] vl set — Set system-defined variable lists
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Description Quick start Syntax Options Remarks and examples
Stored results Also see

Description
vl list shows the contents of variable lists when given names of variable lists. When given names

of variables, it shows the variable lists to which each variable belongs.

vl dir shows the names of all variable lists.

For an introduction to the vl commands, see [D] vl.

Quick start
Show the contents of all variable lists

vl list

Show the contents of the system-defined variable list vlcategorical
vl list vlcategorical

Show the contents of the user-defined variable list myfav
vl list myfav

Show the variable lists to which x1-x100 belong
vl list (x1-x100)

Show the variable lists to which every numeric variable belongs

vl list (*)

Show the contents of all system-defined variable lists

vl list, system

Show the contents of all user-defined variable lists

vl list, user

Show the contents of all variable lists, and show the minimum value, maximum value, and number of

nonmissing values for each variable

vl list, minimum maximum observations

Show the contents of all variable lists, ordered by variable list and then alphabetically by variable name

vl list, sort

Show the variable lists to which every numeric variable belongs, ordered alphabetically by variable name

and then by variable list

vl list (*), sort
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Syntax
Show the contents of variable lists

vl list [ vlnamelist ] [ , options ]

Show the variable lists to which variables belong

vl list (varlist) [ , options ]

Show names of all variable lists

vl dir [ , system user ]

vlnamelist is a list of variable-list names.

( all) or (*) can be used to specify all numeric variables in the dataset.

options Description

system show only system-defined variable lists

user show only user-defined variable lists

minimum show minimum value of each variable

maximum show maximum value of each variable

observations show number of nonmissing observations of each variable

sort order by variable list and then alphabetically by variable name when
vlnamelist is specified; order alphabetically by variable name and then
by variable list when (varlist) is specified

strok allow string variables when (varlist) is specified
nolstretch do not stretch the width of the table to accommodate long names

collect is allowed with vl list and vl dir; see [U] 11.1.10 Prefix commands.

Options
system specifies that only system-defined variable lists be shown. By default, both system-defined and

user-defined variable lists are shown.

user specifies that only user-defined variable lists be shown.

minimum specifies that the minimum value of each variable be displayed.

maximum specifies that the minimum value of each variable be displayed.

observations specifies that number of nonmissing observations of each variable be displayed.

sort specifies that the listing be sorted. When vlnamelist is specified, the listing is ordered by variable

list and then alphabetically by variable name. By default in this case, variables are listed in the order

in which they were added to the variable list.

When (varlist) is specified, the listing is ordered alphabetically by variable name and then by variable
list. By default in this case, variables are listed in the order in which they appear in varlist.

strok specifies that string variables be included in the listing when (varlist) is specified. By default,
specifying string variables in varlist gives an error message. Specifying strok prevents this error

message and lists any string variables.
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nolstretch specifies that the width of the table not be automatically widened to accommodate long

variable and variable-list names. When nolstretch is specified, names are abbreviated to make the
table width no more than 79 characters. The default, lstretch, is to automatically widen the table
up to the width of the Results window. To change the default, use set lstretch off.

Remarks and examples
vl list produces two types of listings. The first lists by variable-list name and then by variable name.

The second is the reverse; it lists by variable name and then by variable-list name.

Typing

. vl list

produces the first type of listing. This listing is useful when you want to see the contents of each variable

list.

Typing

. vl list (*)

or

. vl list (x1-x100)

produces the second type of listing. This listing is useful when you want to see all variable lists to which

a variable belongs.

System-defined variable lists are disjoint, so a variable can only belong to one of them. There is

no such restriction on user-defined variable lists. Variables can belong to more than one user-defined

variable list.

Typing

. vl dir

shows all the variable lists, both system-defined and user-defined. The options system and user work
with both vl list and vl dir to restrict the output accordingly.

Example 1: Showing the contents of variable lists
We show examples using Stata’s automobile dataset because it has only a small number of variables

and the output will not be too lengthy.

. sysuse auto
(1978 automobile data)



vl list — List contents of variable lists 953

We run vl set with the option nonotes to suppress the notes at the end of the output.

. vl set, nonotes

Macro’s contents

Macro # Vars Description

System
$vlcategorical 2 categorical variables
$vlcontinuous 2 continuous variables
$vluncertain 7 perhaps continuous, perhaps categorical variables
$vlother 0 all missing or constant variables

Let’s list the contents of the variable lists.

. vl list

Variable Macro Values Levels

rep78 $vlcategorical integers >=0 5
foreign $vlcategorical 0 and 1 2
headroom $vlcontinuous noninteger

gear_ratio $vlcontinuous noninteger
price $vluncertain integers >=0 74

mpg $vluncertain integers >=0 21
trunk $vluncertain integers >=0 18
weight $vluncertain integers >=0 64
length $vluncertain integers >=0 47
turn $vluncertain integers >=0 18

displacement $vluncertain integers >=0 31

We decide to treat all the variables in vluncertain as continuous, so we move them to

vlcontinuous. Then we run vl dir to confirm that vluncertain is empty.

. vl move vluncertain vlcontinuous
note: 7 variables specified and 7 variables moved.

Macro # Added/Removed

$vlcategorical 0
$vlcontinuous 7
$vluncertain -7
$vlother 0

. vl dir

Macro’s contents

Macro # Vars Description

System
$vlcategorical 2 categorical variables
$vlcontinuous 9 continuous variables
$vluncertain 0 perhaps continuous, perhaps categorical variables
$vlother 0 all missing or constant variables
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Let’s create two user-defined variable lists.

. vl create power = (gear_ratio weight displacement)
note: $power initialized with 3 variables.
. vl create other = (price turn length)
note: $other initialized with 3 variables.

Let’s do a listing ordered by variable list. We specify options to see the minimum and maximum

values and the number of nonmissing observations for each variable.

. vl list, minimum maximum observations

Variable Macro Values Levels Min Max Obs

rep78 $vlcategorical integers >=0 5 1 5 69
foreign $vlcategorical 0 and 1 2 0 1 74
headroom $vlcontinuous noninteger 1.5 5 74

gear_ratio $vlcontinuous noninteger 2.19 3.89 74
price $vlcontinuous integers >=0 74 3291 15906 74

mpg $vlcontinuous integers >=0 21 12 41 74
trunk $vlcontinuous integers >=0 18 5 23 74
weight $vlcontinuous integers >=0 64 1760 4840 74
length $vlcontinuous integers >=0 47 142 233 74
turn $vlcontinuous integers >=0 18 31 51 74

displacement $vlcontinuous integers >=0 31 79 425 74
gear_ratio $power noninteger 2.19 3.89 74

weight $power integers >=0 64 1760 4840 74
displacement $power integers >=0 31 79 425 74

price $other integers >=0 74 3291 15906 74
turn $other integers >=0 18 31 51 74

length $other integers >=0 47 142 233 74

Specifying (*) means that we want a listing ordered by variable name.

. vl list (*)

Variable Macro Values Levels

price $vlcontinuous integers >=0 74
price $other integers >=0 74

mpg $vlcontinuous integers >=0 21
mpg not in vluser 21

rep78 $vlcategorical integers >=0 5
rep78 not in vluser 5

headroom $vlcontinuous noninteger
headroom not in vluser

trunk $vlcontinuous integers >=0 18
trunk not in vluser 18
weight $vlcontinuous integers >=0 64
weight $power integers >=0 64
length $vlcontinuous integers >=0 47
length $other integers >=0 47
turn $vlcontinuous integers >=0 18
turn $other integers >=0 18

displacement $vlcontinuous integers >=0 31
displacement $power integers >=0 31
gear_ratio $vlcontinuous noninteger
gear_ratio $power noninteger

foreign $vlcategorical 0 and 1 2
foreign not in vluser 2
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Variables are listed multiple times showing all the variable lists to which each belongs. We can restrict

the listing to user-defined variable lists.

. vl list (*), user

Variable Macro Values Levels

price $other integers >=0 74
mpg not in vluser 21

rep78 not in vluser 5
headroom not in vluser

trunk not in vluser 18
weight $power integers >=0 64
length $other integers >=0 47
turn $other integers >=0 18

displacement $power integers >=0 31
gear_ratio $power noninteger

foreign not in vluser 2

See the lines “not in vluser”? They are omitted if you run vl list, user.

Let’s use vl substitute with factor-variable operators to create interactions between the variables
in the system-defined variable list, vlcategorical, and the variables in our user-defined variable list,
mycontinuous.

. vl substitute indepvars = i.vlcategorical##c.(power other)

The factor-variable list indepvars shows up when we run vl dir.

. vl dir

Macro’s contents

Macro # Vars Description

System
$vlcategorical 2 categorical variables
$vlcontinuous 9 continuous variables
$vluncertain 0 perhaps continuous, perhaps categorical variables
$vlother 0 all missing or constant variables

User
$power 3 variables
$other 3 variables
$indepvars factor-variable list

Factor-variable lists do not work with vl list. But you can display their contents because variable lists
are global macros. You can list the contents of a variable list by typing

. display ”$indepvars”
i.rep78 i.foreign gear_ratio weight displacement price turn length i.rep78#c.gear_r
> atio i.rep78#c.weight i.rep78#c.displacement i.rep78#c.price i.rep78#c.turn i.rep
> 78#c.length i.foreign#c.gear_ratio i.foreign#c.weight i.foreign#c.displacement i.
> foreign#c.price i.foreign#c.turn i.foreign#c.length
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Stored results
vl list stores the following in r():

Scalars

r(k) number of variables listed

r(k system) number of variables listed in system-defined variable lists

r(k not system) number of variables listed not in system-defined variable lists

r(k vlcategorical) number of variables listed in vlcategorical
r(k vlcontinuous) number of variables listed in vlcontinuous
r(k vluncertain) number of variables listed in vluncertain
r(k vlother) number of variables listed in vlother
r(k vldummy) number of variables listed in vldummy when defined
r(k user) number of variables listed in user-defined variable lists

r(k not user) number of variables listed not in user-defined variable lists

r(k vlusername) number of variables listed in vlusername

r(k string) number of string variables listed when strok specified

Macros

r(vlsysnames) names of all system-defined variable lists

r(vlusernames) names of all user-defined variable lists

vl dir stores the following in r():

Scalars

r(k system) number of variables in system-defined variable lists

r(k vlcategorical) number of variables in vlcategorical
r(k vlcontinuous) number of variables in vlcontinuous
r(k vluncertain) number of variables in vluncertain
r(k vlother) number of variables in vlother
r(k vldummy) number of variables in vldummy when defined
r(k user) number of variables in user-defined variable lists

r(k vlusername) number of variables in vlusername

Macros

r(vlsysnames) names of system-defined variable lists

r(vlusernames) names of user-defined variable lists

Also see
[D] vl — Manage variable lists

[D] vl create — Create and modify user-defined variable lists

[D] vl drop — Drop variable lists or variables from variable lists

[D] vl rebuild — Rebuild variable lists

[D] vl set — Set system-defined variable lists
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Description Quick start Syntax Remarks and examples Stored results Also see

Description
vl rebuild restores system-defined and user-defined variable lists. After loading a dataset with use,

run vl rebuild.

After using merge or append, run vl rebuild to merge variable lists. You only need to run vl
rebuild when the using dataset has variable lists.

After dropping variables with drop, run vl rebuild to remove the dropped variables from all variable

lists.

After modifying variable lists with vl modify or vl move, run vl rebuild to update variable lists
created by vl substitute.

And if you are confused, know that it never hurts to run vl rebuild.

For an introduction to the vl commands, see [D] vl.

Quick start
Restore variable lists after loading a dataset with use

vl rebuild

After running merge when the using dataset has variable lists, merge its variable lists into those in the
master dataset

vl rebuild

After dropping variables with drop, remove the dropped variables from all variable lists

vl rebuild

Update a variable list created by vl substitute after modifying any of its component variable lists
vl rebuild

Syntax
vl rebuild

collect is allowed; see [U] 11.1.10 Prefix commands.
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Remarks and examples
Remarks are presented under the following headings:

Reloading datasets
Merging datasets
Dropping variables
vl substitute and vl rebuild
Characteristics

Reloading datasets
System-defined and user-defined variable lists are saved with the dataset. However, they are not

automatically restored when you reload the data. Just type vl rebuild to restore them.

. use $...$

. vl rebuild

Merging datasets
Another time when vl rebuild is needed is when a merge is done and the using dataset has variable

lists.

. merge $...$ using filename

. vl rebuild

Only when filename has variable lists is it necessary to run vl rebuild. When both the master dataset

in memory and filename have variable lists, vl rebuild merges them. When the master dataset has

variable lists but filename does not, there is no need to run vl rebuild. However, running vl rebuild
is always harmless.

Dropping variables
When you drop variables from the data in memory using drop, the dropped variables are not auto-

matically removed from variable lists. They can be explicitly removed by using vl drop.
. drop varlist

. vl drop (varlist)

Instead of running vl drop with the list of variables that were dropped, you can simply type

. vl rebuild

It will do the same thing, and you do not have to remember the names of the variables that were dropped.

If you drop or add observations or change any of the values of variables in variable lists, vl rebuild
does not update the stored variable statistics, namely, the number of levels, the minimum and maxi-

mum values, and the number of nonmissing observations. If you want to update these statistics without

changing the system-defined classifications, type

. vl set, update

If you want to update the statistics and redo the system-defined classifications for all variables, type

. vl set, clear

See [D] vl set.
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vl substitute and vl rebuild
vl rebuild has another important use. It will update variable lists created by vl substitute.

For example, we created two user-defined variable lists:

. vl create myfactors = (x1 x2 x3)

. vl create mycontinuous = (c1 c2 c3 c4 c5)

Then we created a variable list using factor-variable operators:

. vl substitute myinteraction = i.myfactors##c.mycontinuous

If we modify mycontinuous,

. vl modify mycontinuous = mycontinuous - (c3)

then the global macro $myinteraction for the variable list myinteraction remains unchanged.

Running

. vl rebuild

updates the global macro $myinteraction.

Again, if you make any changes to your data or to your variable lists, and you want to make sure

everything is set properly and up to date, just type

. vl rebuild

Characteristics
Advanced Stata users will likely guess how variable lists and variable statistics are stored with the

dataset. They are stored as characteristics. If you want to see them, type

. char list

See [P] char.

Stored results
vl rebuild stores the following in r():

Scalars

r(k system) number of variables in system-defined variable lists

r(k vlcategorical) number of variables in vlcategorical
r(k vlcontinuous) number of variables in vlcontinuous
r(k vluncertain) number of variables in vluncertain
r(k vlother) number of variables in vlother
r(k vldummy) number of variables in vldummy when defined
r(k user) number of variables in user-defined variable lists

r(k vlusername) number of variables in vlusername

Macros

r(vlsysnames) names of system-defined variable lists

r(vlusernames) names of user-defined variable lists
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Also see
[D] vl — Manage variable lists

[D] vl create — Create and modify user-defined variable lists

[D] vl drop — Drop variable lists or variables from variable lists

[D] vl list — List contents of variable lists

[D] vl set — Set system-defined variable lists



vl set — Set system-defined variable lists

Description Quick start Syntax Options Remarks and examples
Stored results Also see

Description
vl set is designed to identify variables that are to be treated as factor variables in Stata’s estimation

commands.

vl set creates the system-defined variable lists vlcategorical, vlcontinuous, vluncertain,
and vlother. Variables are placed in them based on their values (integer or noninteger, all nonnegative,

etc.) and default or user-specified cutoffs for the number of levels in a variable.

vl move moves variables from one classification to another.

Variable lists are actually global macros, and they are saved with the dataset. See [D] vl rebuild.

For an introduction to the vl commands, see [D] vl.

Quick start
Classify all numeric variables in the dataset

vl set

Same as above, and include a vldummy classification for 0/1 variables
vl set, dummy

Classify all numeric variables in the dataset, and list each variable as it is classified

vl set, list

Put nonnegative integer variables with 6 or fewer categories into vlcategorical; put nonnegative in-
teger variables with 7–20 categories into vluncertain; put nonnegative integer variables with more
than 20 categories into vlcontinuous

vl set, categorical(6) uncertain(20)

Classify only the variables x1-x100
vl set x1-x100

Discard the existing classifications, and classify all numeric variables again

vl set, clear

Redo the classification of the variable age
vl set age, redo

Update the stored statistics for the variable age, but do not change its classification
vl set age, update

Move the variables x8 and x20 out of their current classification and into vlcategorical
vl move (x8 x20) vlcategorical

Move all the variables in vluncertain into vlcontinuous
vl move vluncertain vlcontinuous
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Syntax
Create system-defined variable lists

vl set [ varlist ] [ , options ]

Move variables from their current system-defined variable list to another

vl move (varlist) vlsysname

Move all variables in one system-defined variable list to another

vl move vlsysname1 vlsysname2

varlist contains only numeric variables. If not specified, then all numeric variables in the dataset are

classified.

options Description

categorical(#) upper limit for the number of categories in vlcategorical
uncertain(#) upper limit for the number of categories in vluncertain
dummy create variable list vldummy containing 0/1 variables
list[(list options)] list variables as they are classified

clear discard all existing classifications and make new classifications

redo redo classifications for variables in varlist

update update stored statistics for variables in varlist, but do not change
their classification

nonotes suppress the notes below the summary table

collect is allowed with vl set; see [U] 11.1.10 Prefix commands.

Options
categorical(#) specifies that variables containing nonnegative integers be put into the

vlcategorical variable list when the number of levels is between 2 and # inclusive. Vari-

ables with only one level (that is, constants) are put into the vlother variable list. The default is

categorical(10).

categorical(.) can be specified to set the upper limit effectively to infinity. That is, all vari-

ables containing nonnegative integers (whose values are less than 231 = 2,147,483,648) are put into

vlcategorical. Setting # to . or a large value can slow computation time considerably when the

number of observations is extremely large.

uncertain(#) specifies that variables containing nonnegative integers be put into the vluncertain
variable list when the number of levels are between categorical(#) + 1 and # inclusive. The

default is uncertain(100).

# must be ≥ categorical(#). To omit the vluncertain classification, set
# = categorical(#) or specify uncertain(0).

uncertain(.) can be specified to set the upper limit effectively to infinity. That is, all variables

containing nonnegative integers (whose values are less than 231 = 2,147,483,648) with more than

categorical(#) levels are put into vluncertain. Setting # to . or a large value can slow compu-

tation time considerably when the number of observations is extremely large.
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dummy specifies that a vldummy variable list be created containing 0/1 variables. By default, 0/1 variables
are put into vlcategorical.

list[(list options)] lists variables as they are classified. The classification is shown as well as the

number of levels for variables in vlcategorical and vluncertain. list options are as follows:

minimum shows the minimum value of each variable;

maximum shows the maximum value of each variable; and

observations shows the number of nonmissing values of each variable.

The same listing can be obtained using vl list after running vl set.

clear specifies that all the system-defined variable lists (if any) be dropped and the classifications re-
done. It is equivalent to running vl clear, system and then running vl set.

redo specifies that the classifications be redone for the variables in varlist. It is equivalent to running

vl drop (varlist), system and then running vl set varlist.

update specifies that all statistics (number of levels, minimum value, maximum value, and number of

nonmissing observations) that are saved for the variables in varlist be updated but the classifications

of the variables not be changed. update is intended for use when observations are added to or dropped
from the data and you want the classifications to remain unchanged.

nonotes specifies that the notes at the bottom of the summary table not be displayed. By default, the

notes are shown.

Remarks and examples
vl set creates the system-defined variable lists vlcategorical, vlcontinuous, vluncertain,

and vlother.

The vlcategorical variable list is intended for variables that will be used as factor variables in

estimation commands.

The vlcontinuous variable list is intended for variables that will be used as continuous variables in
estimation commands.

The vluncertain variable list is intended for variables that we may want to treat as factors or as

continuous, and we will decide which on a case-by-case basis. As we decide, we use vl move to move
them out of vluncertain and into vlcategorical or vlcontinuous. For example, we decide we
want variable q31, currently in vluncertain, to be a factor variable. We type

. vl move (q31) vlcategorical

In the above, note that q31 is enclosed in parentheses. varlists must always be enclosed in parentheses
in vl move.

When q31 is moved into vlcategorical, it is automatically moved out of vluncertain. The

system-defined variable lists are always kept as disjoint sets. That is, a variable can only appear in

one system-defined variable list. User-defined variable lists can be made to be overlapping. See [D] vl

create and [D] vl.
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Suppose we look at the remaining variables in vluncertain, and we decide that they all should be
treated as continuous. We type

. vl move vluncertain vlcategorical

Suppose we look at the remaining variables in vluncertain, and we decide we do not want any of
them in any of the estimation commands we wish to run. We could move them to vlother.

. vl move vluncertain vlother

vlother is intended to be a garbage classification for variables you do not want to use in estimation
commands. vl set puts variables that are constant and variables that are missing for all observations
into vlother.

Suppose, however, we simply want some variables gone from the system-defined variable lists. We

do not want them shown when we do a vl list. To make them gone, gone, gone, use vl drop.

. vl drop (varlist), system

This removes the variables in varlist from the system-defined variable lists.

We can also

. vl drop vluncertain

This removes all the variables in vluncertain. vluncertain still exists, but it is empty. We can still

move other variables into it if we want. System-defined variable lists always exist although they may be

empty. They cannot be renamed. If you do not like this behavior, you can create your own variable lists

using vl create. For example,

. vl create mycat = vlcategorical

. vl create mycont = vlcontinuous

If you are done using the system-defined variable lists and do not want them around, you can remove

them by typing

. vl clear, system

The system-defined variable lists will be gone, but user-defined variable lists will remain. When you

clear the system-defined variable lists, you also erase the statistics that are stored with each variable in

the system.

When vl set runs, it calculates the minimum, maximum, and number of nonmissing observations
for each variable. It also computes the number of levels for the variables in vlcategorical and

vluncertain. It does not compute the number of levels for other variables. That is why vl set is

so fast even when there are millions of observations.

Computing the exact number of levels when there are thousands of levels can be time consum-

ing. You can have vl set compute the number of levels for more variables by specifying the option

uncertain(#) and setting # to a large number or missing (.). But expect it to be much slower when
there are lots of observations.

To use variable lists with other Stata commands, type $ in front of the variable-list name. Remember:
With the vl commands, do not use $. With other Stata commands, use $.

. display ”$vlcategorical”

. summarize $vlcontinuous

. regress y i.($vlcategorical) $vlcontinuous
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If you know Stata, you will have already sensed that variable lists are global macros.

In this example, we used i.($vlcategorical) to turn the variables in vlcategorical into factor
variables. More likely, however, you will want to create your own variable lists based on the system-

defined variable lists, and then apply factor-variable operators. The vl create, vl modify, and vl
substitute commands were designed for this purpose. See [D] vl create.

Variable lists are saved with the dataset. Not only are variable lists saved but also all the vl system
information and variable statistics are saved. To make the vl system come back to life in the state we

last had it, after we use a dataset, we type

. vl rebuild

See [D] vl rebuild.

For examples of using vl set and its options, see [D] vl.

Stored results
vl set stores the following in r():

Scalars

r(k system) number of variables in system-defined variable lists

r(k vlcategorical) number of variables in vlcategorical
r(k vlcontinuous) number of variables in vlcontinuous
r(k vluncertain) number of variables in vluncertain
r(k vlother) number of variables in vlother
r(k vldummy) number of variables in vldummy when defined

Macros

r(vlsysnames) names of system-defined variable lists

Also see
[D] vl — Manage variable lists

[D] vl create — Create and modify user-defined variable lists

[D] vl drop — Drop variable lists or variables from variable lists

[D] vl list — List contents of variable lists

[D] vl rebuild — Rebuild variable lists



webuse — Use dataset from Stata website

Description Quick start Menu Syntax
Option Remarks and examples Also see

Description
webuse filename loads the specified dataset, obtaining it over the web. By default, datasets are ob-

tained from https://www.stata-press.com/data/r19/. If filename is specified without a suffix, .dta is

assumed.

webuse query reports the URL from which datasets will be obtained.

webuse set allows you to specify the URL to be used as the source for datasets. webuse set without
arguments resets the source to https://www.stata-press.com/data/r19/.

You can see lists of available dataset names for each manual in your browser at https://www.stata-

press.com/data/r19/ or from within Stata at help dta manuals.

Quick start
Load example nlswork.dta dataset from default Stata Press website

webuse nlswork

Same as above, but clear current dataset from memory first

webuse nlswork, clear

Change URL for data downloads to http://www.myuniversity.edu/mycourse

webuse set www.myuniversity.edu/mycourse

Reset source for datasets to Stata Press

webuse set

Report current URL from which datasets will be obtained

webuse query

Menu
File > Example datasets...
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Syntax
Load dataset over the web

webuse [”]filename[”] [ , clear ]

Report URL from which datasets will be obtained

webuse query

Specify URL from which dataset will be obtained

webuse set [https://]url[/]

webuse set [http://]url[/]

Reset URL to default

webuse set

Option
clear specifies that it is okay to replace the data in memory, even though the current data have not been

saved to disk.

Remarks and examples
Remarks are presented under the following headings:

Typical use
A note concerning example datasets
Redirecting the source

Typical use
In the examples in the Stata manuals, we see things such as

. use https://www.stata-press.com/data/r19/lifeexp

The above is used to load—in this instance—the dataset lifeexp.dta. You can type that, and it will
work:

. use https://www.stata-press.com/data/r19/lifeexp
(Life expectancy, 1998)

Or you may simply type

. webuse lifeexp
(Life expectancy, 1998)

webuse is a synonym for use https://www.stata-press.com/data/r19/.



webuse — Use dataset from Stata website 968

A note concerning example datasets
The datasets used to demonstrate Stata are often fictional. If you want to know whether a dataset is

real or fictional, and its history, load the dataset and type

. notes

A few datasets have no notes. This means that the datasets are believed to be real but that they were

created so long ago that information about their original source has been lost. Treat such datasets as if

they were fictional.

Redirecting the source
By default, webuse obtains datasets from https://www.stata-press.com/data/r19/, but you can change

that. Say that the site http://www.zzz.edu/users/~sue/ has several datasets that you wish to explore. You

can type

. webuse set http://www.zzz.edu/users/~sue

webusewill become a synonym for use http://www.zzz.edu/users/~sue/ for the rest of the session
or until you give another webuse command.

When you set the URL, you may omit the trailing slash (as we did above), or you may include it:

. webuse set http://www.zzz.edu/users/~sue/

You may also omit https:// or http://:

. webuse set www.zzz.edu/users/~sue

If you type webuse set without arguments, the URL will be reset to the default,
https://www.stata-press.com/data/r19/:

. webuse set

Also see
[D] frames use — Load a set of frames from disk

[D] sysuse — Use shipped dataset

[D] use — Load Stata dataset

[U] 1.2.2 Example datasets



xpose — Interchange observations and variables

Description Quick start Menu Syntax
Options Remarks and examples Reference Also see

Description
xpose transposes the data, changing variables into observations and observations into variables. All

new variables—that is, those created by the transposition—are made the default storage type. Thus

any original variables that were strings will result in observations containing missing values. (If you

transpose the data twice, you will lose the contents of string variables.)

Quick start
Replace dataset in memory with transposed variables and observations

xpose, clear

Add varname containing the original variable names
xpose, clear varname

Use the most compact data type that preserves accuracy in the transposed data

xpose, clear promote

Menu
Data > Create or change data > Other variable-transformation commands > Interchange observations and vari-
ables
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Syntax
xpose , clear [ options ]

options Description

∗ clear reminder that untransposed data will be lost if not previously saved

format use largest numeric display format from untransposed data

format(% fmt) apply specified format to all variables in transposed data

varname add variable varname containing original variable names
promote use the most compact data type that preserves numeric accuracy

∗ clear is required.
xpose does not allow alias variables; see [D] frunalias for advice on how to get around this restriction.

Options
clear is required and is supposed to remind you that the untransposed data will be lost (unless you have

saved the data previously).

format specifies that the largest numeric display format from your untransposed data be applied to the

transposed data.

format(% fmt) specifies that the specified numeric display format be applied to all variables in the trans-
posed data.

varname adds the new variable varname to the transposed data containing the original variable names.
Also, with or without the varname option, if the variable varname exists in the dataset before trans-
position, those names will be used to name the variables after transposition. Thus transposing the data

twice will (almost) yield the original dataset.

promote specifies that the transposed data use the most compact numeric data type that preserves the
original data accuracy.

If your data contain any variables of type double, all variables in the transposed data will be of type
double.

If variables of type float are present, but there are no variables of type double or long, the trans-
posed variables will be of type float. If variables of type long are present, but there are no variables
of type double or float, the transposed variables will be of type long.
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Remarks and examples

Example 1
We have a dataset on something by county and year that contains

. use https://www.stata-press.com/data/r19/xposexmpl

. list

county year1 year2 year3

1. 1 57.2 11.3 19.5
2. 2 12.5 8.2 28.9
3. 3 18 14.2 33.2

Each observation reflects a county. To change this dataset so that each observation reflects a year, type

. xpose, clear varname

. list

v1 v2 v3 _varname

1. 1 2 3 county
2. 57.2 12.5 18 year1
3. 11.3 8.2 14.2 year2
4. 19.5 28.9 33.2 year3

We would now have to drop the first observation (corresponding to the previous county variable) to

make each observation correspond to one year. Had we not specified the varname option, the vari-

able varname would not have been created. The varname variable is useful, however, if we want to
transpose the dataset back to its original form.

. xpose, clear

. list

county year1 year2 year3

1. 1 57.2 11.3 19.5
2. 2 12.5 8.2 28.9
3. 3 18 14.2 33.2

Reference
Baum, C. F. 2016. An Introduction to Stata Programming. 2nd ed. College Station, TX: Stata Press.

Also see
[D] frunalias — Change storage type of alias variables

[D] reshape — Convert data from wide to long form and vice versa

[D] stack — Stack data

https://www.stata-press.com/books/introduction-stata-programming/


zipfile — Compress and uncompress files and directories in zip archive format

Description Quick start Syntax Options for zipfile
Options for unzipfile Remarks and examples Stored results

Description
zipfile compresses files and directories into a zip file that is compatible with Zip64, WinZip, PKZIP

2.04g, and other applications that use the zip archive format.

unzipfile extracts files and directories from a file in zip archive format into the current directory.

unzipfile can open zip files created by Zip64, WinZip, PKZIP 2.04g, and other applications that use the

zip archive format.

Quick start
Compress mydata.dta and save as myproject.zip

zipfile mydata.dta, saving(myproject)

Same as above, but also compress mydofile.do and mylog.smcl
zipfile mydata.dta mydofile.do mylog.smcl, saving(myproject)

Replace myproject.zip if it already exists
zipfile mydata.dta mydofile.do mylog.smcl, ///

saving(myproject, replace)

Compress all files in the myproject subdirectory of the current directory
zipfile myproject/*, saving(myproject)

Extract files and directories from myzip.zip to the current directory
unzipfile myzip

Same as above, but replace any file or directory in the current directory that has the same name as a file

or directory in the zip file

unzipfile myzip, replace
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Syntax
Add files or directories to a zip file

zipfile file | directory [ file | directory ] ..., saving(zipfilename[ , replace ])
[ complevel(#) ]

Extract files or directories from a zip file

unzipfile zipfilename [ , replace
ifilter(includefilter) efilter(excludefilter) ]

Note: Double quotes must be used to enclose file and directory if the name or path contains blanks. file

and directory may also contain the ? and * wildcard characters.

Options for zipfile
saving(zipfilename[ , replace ]) specifies the filename to be created or replaced. If zipfilename is

specified without an extension, .zip will be assumed. saving() is required.

complevel(#) sets the compression level for the zipfile. # is an integer from 0, meaning no compression,

to 9, meaning full compression. The default is complevel(6).

Options for unzipfile
replace overwrites any file or directory in the current directory with the files or directories in the zip

file that have the same name.

ifilter(includefilter) limits the extracted files by including only those files that match the specified
pattern. Pattern matching is based on java.util.regex.Pattern.

efilter(excludefilter) limits the extracted files by excluding all files that match the specified pattern.
Pattern matching is based on java.util.regex.Pattern.

Remarks and examples

Example 1: Creating a zip file
Suppose that we would like to zip all the .dta files in the current directory into the file myfiles.zip.

We would type

. zipfile *.dta, saving(myfiles)

But we notice that we did not want the files in the current directory; instead, we wanted the files

in the dta, abc, and eps subdirectories. We can easily zip all the .dta files from all three-character

subdirectories of the current directory and overwrite the file myfiles.zip if it exists by typing

. zipfile ???/*.dta, saving(myfiles, replace)
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Example 2: Unzipping a zip file
Say, for example, we send myfiles.zip to a colleague, who nowwants to unzip the file in the current

directory, overwriting any files or directories that have the same name as the files or directories in the

zip file. The colleague should type

. unzipfile myfiles, replace

Stored results
zipfile stores the following in r():

Scalars

r(archived) number of files compressed

r(skipped) number of files skipped

r(total) number of files processed

r(compressed size) size of compressed file

r(processed size) combined size of all processed files

r(compression ratio) ratio of compressed size to uncompressed size

unzipfile stores the following in r():

Scalars

r(extracted) number of files extracted

r(skipped) number of files skipped

r(total) number of files contained in zip file



Glossary

ASCII.ASCII stands forAmerican Standard Code for Information Interchange. It is a way of representing

text and the characters that form text in computers. It can be divided into two sections: plain, or

lower,ASCII, which includes numbers, punctuation, plain letters without diacritical marks, whitespace

characters such as space and tab, and some control characters such as carriage return; and extended

ASCII, which includes letters with diacritical marks as well as other special characters.

Before Stata 14, datasets, do-files, ado-files, and other Stata files were encoded using ASCII.

binary 0. Binary 0, also known as the null character, is traditionally used to indicate the end of a string,

such as an ASCII or UTF-8 string.

Binary 0 is obtained by using char(0) and is sometimes displayed as \0. See [U] 12.4.10 strL

variables and binary strings for more information.

binary string. A binary string is, technically speaking, any string that does not contain text. In Stata,

however, a string is only marked as binary if it contains binary 0, or if it contains the contents of a file

read in using the fileread() function, or if it is the result of a string expression containing a string
that has already been marked as binary.

In Stata, strL variables, string scalars, and Mata strings can store binary strings.

See [U] 12.4.10 strL variables and binary strings for more information.

byte. Formally, a byte is eight binary digits (bits), the units used to record computer data. Each byte can

also be considered as representing a value from 0 through 255. Do not confuse this with Stata’s byte
variable storage type, which allows values from −127 to 100 to be stored. With regard to strings, all

strings are composed of individual characters that are encoded using either one byte or several bytes

to represent each character.

For example, in UTF-8, the encoding system used by Stata, byte value 97 encodes “a”. Byte values

195 and 161 in sequence encode “á”.

characteristics. Characteristics are one form of metadata about a Stata dataset and each of the variables

within the dataset. They are typically used in programming situations. For example, the xt commands

need to know the name of the panel variable and possibly the time variable. These variable names are

stored in characteristics within the dataset. See [U] 12.8 Characteristics for an overview and [P] char

for a technical description.

code pages. A code page maps extended ASCII values to a set of characters, typically for a specific

language or set of languages. For example, the most commonly used code page is Windows-1252,

which maps extended ASCII values to characters used in Western European languages. Code pages

are essentially encodings for extended ASCII characters.

code point. A code point is the numerical value or position that represents a single character in a

text system such as ASCII or Unicode. The original ASCII encoding system contains only 128 code

points and thus can represent only 128 characters. Historically, the 128 additional bytes of extended

ASCII have been encoded in many different and inconsistent ways to provide additional sets of 128

code points. The formal Unicode specification has 1,114,112 possible code points, of which roughly

250,000 have been assigned to actual characters. Stata uses UTF-8 encoding for Unicode. Note that

the UTF-8–encoded version of a code point does not have the same numeric value as the code point

itself.
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display column. A display column is the space required to display one typical character in the fixed-

width display used by Stata’s Results window and Viewer. Some characters are too wide for one

display column. Each character is displayed in one or two display columns.

All plain ASCII characters (for example, “M” and “9”) and many UTF-8 characters that are not plain

ASCII (for example, “é”) require the same space when using a fixed-width font. That is to say, they all

require a single display column.

Characters from non-Latin alphabets, such as Chinese, Cyrillic, Japanese, and Korean, may require

two display columns.

See [U] 12.4.2.2 Displaying Unicode characters for more information.

display format. The display format for a variable specifies how the variable will be displayed by Stata.

For numeric variables, the display format would indicate to Stata how many digits to display, how

many decimal places to display, whether to include commas, and whether to display in exponential

format. Numeric variables can also be formatted as dates. For strings, the display format indicates

whether the variable should be left-aligned or right-aligned in displays and how many characters to

display. Display formats may be specified by the format command. Display formats may also be
used with individual numeric or string values to control how they are displayed. Distinguish display

formats from storage types.

encodings. An encoding is a way of representing a character as a byte or series of bytes. Examples of

encoding systems are ASCII and UTF-8. Stata uses UTF-8 encoding.

For more information, see [U] 12.4.2.3 Encodings.

extendedASCII. ExtendedASCII, also known as higherASCII, is the byte values 128 to 255, which were

not defined as part of the original ASCII specification. Various code pages have been defined over the

years to map the extended ASCII byte values to many characters not supported in the original ASCII

specification, such as Latin letters with diacritical marks, such as “á” and “Á”; non-Latin alphabets,

such as Chinese, Cyrillic, Japanese, and Korean; punctuation marks used in non-English languages,

such as “<”, complex mathematical symbols such as “±”, and more.

Although extendedASCII characters are stored in a single byte inASCII encoding, UTF-8 stores the same

characters in two to four bytes. Because each code page maps the extended ASCII values differently,

another distinguishing feature of extended ASCII characters is that their meaning can change across

fonts and operating systems.

frames. Frames, also known as data frames, are in-memory areas where datasets are analyzed. Stata can

hold multiple datasets in memory, and each dataset is held in a memory area called a frame. A variety

of commands exist to manage frames and manipulate the data in them. See [D] frames.

hexadecimal. The hexadecimal number system, or simply hex, is a base-16 number system represented

by digits 0 through 9 and letters A through F.

higherASCII. See extended ASCII.

locale. A locale is a code that identifies a community with a certain set of rules for how their language

should be written. A locale can refer to something as general as an entire language (for example, “en”

for English) or something as specific as a language in a particular country (for example, “en HK” for

English in Hong Kong).

A locale specifies a set of rules that govern how the language should be written. Stata uses locales

to determine how certain language-specific operations are carried out. For more information, see

[U] 12.4.2.4 Locales in Unicode.
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long format and wide format. Think of a dataset as having an ID variable, 𝑖, and a variable, 𝑗, whose
values denote a subobservation. For instance, a person might be the 𝑖 variable, and a year might be
the 𝑗 variable, so you have information about a set of people across several years. If this information
is organized such that the 𝑗 variable is explicitly specified, then the data are in long format; otherwise,
they are in wide format. For instance,

id year income
1 1980 10000
1 1981 12000
1 1982 11000
2 1980 15000
2 1981 14000
2 1982 17000

are in long format because the 𝑗 variable, year, is explicitly specified. In the following, the data are
in wide format:

id income1980 income1981 income1982
1 10000 12000 11000
2 15000 14000 17000

See [D] reshape for how to go between long and wide format.

lowerASCII. See plain ASCII.

null-terminator. See binary 0.

numlist. A numlist is a list of numbers. That list can be one or more arbitrary numbers or can use

certain shorthands to indicate ranges, such as 5/9 to indicate integers 5, 6, 7, 8, and 9. Ranges can be
ascending or descending and can include an optional increment or decrement amount, such as 10.5(-
2)4.5 to indicate 10.5, 8.5, 6.5, and 4.5. See [U] 11.1.8 numlist for a list of shorthands to indicate

ranges.

plain ASCII. We use plain ASCII as a nontechnical term to refer to what computer programmers call

lower ASCII. These are the plain Latin letters “a” to “z” and “A” to “Z”; numbers “0” through “9”;

many punctuation marks, such as “!”; simple mathematical symbols, such as “+”; and whitespace and

control characters such as space (“ ”), tab, and carriage return.

Each plain ASCII character is stored as a single byte with a value between 0 and 127. Another dis-

tinguishing feature is that the byte values used to encode plain ASCII characters are the same across

different operating systems and are common between ASCII and UTF-8.

Also see ASCII and encodings.

prefix command. A prefix command is a command in Stata that prefixes other Stata commands. For ex-

ample, by varlist:. The command by region: summarize marriage rate divorce rate would
summarize marriage rate and divorce rate for each region separately. See [U] 11.1.10 Prefix
commands.

storage types. A storage type is how Stata stores a variable. The numeric storage types in Stata are

byte, int, long, float, and double. There is also a string storage type. The storage type is

specified before the variable name when a variable is created. See [U] 12.2.2 Numeric storage types,

[U] 12.4 Strings, and [D] Data types. Distinguish storage types from display formats.

str1, str2, . . . , str2045. See strL.

strL. strL is a storage type for string variables. The full list of string storage types is str1, str2, . . .,
str2045, and strL.
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str1, str2, . . ., str2045 are fixed-length storage types. If variable mystr is str8, then 8 bytes are
allocated in each observation to store mystr’s value. If you have 2,000 observations, then 16,000
bytes in total are allocated.

Distinguish between storage length and string length. If myvar is str8, that does not mean the strings
are 8 characters long in every observation. The maximum length of strings is 8 characters. Individual

observations may have strings of length 0, 1, . . . , 8. Even so, every string requires 8 bytes of storage.

You need not concern yourself with the storage length because string variables are automatically

promoted. If myvar is str8, and you changed the contents of myvar in the third observation to

“Longer than 8”, then myvar would automatically become str13.

If you changed the contents of myvar in the third observation to a string longer than 2,045 characters,
myvar would become strL.

strL variables are not necessarily longer than 2,045 characters; they can be longer or shorter than
2,045 characters. The real difference is that strL variables are stored as varying length. Pretend that
myothervar is a strL and its third observation contains “this”. The total memory consumed by the
observation would be 64 + 4 + 1 = 69 bytes. There would be 64 bytes of tracking information,

4 bytes for the contents (there are 4 characters), and 1 more byte to terminate the string. If the fifth

observation contained a 2,000,000-character string, then 64+2,000,000+1 = 2,000,069 bytes would

be used to store it.

Another difference between str1, str2, . . ., str2045, and strLs is that the str# storage types can
store only ASCII strings. strL can store ASCII or binary strings. Thus a strL variable could contain,
for instance, the contents of a Word document or a JPEG image or anything else.

strL is pronounce sturl.

titlecase, title-cased string, and Unicode title-cased string. In grammar, titlecase refers to the capital-

ization of the key words in a phrase. In Stata, titlecase refers to (a) the capitalization of the first letter

of each word in a string and (b) the capitalization of each letter after a nonletter character. There is

no judgment of the word’s importance in the string or whether the letter after a nonletter character is

part of the same word. For example, “it’s” in titlecase is “It’S”.

A title-cased string is any string to which the above rules have been applied. For example, if we

used the strproper() function with the book title Zen and theArt of Motorcycle Maintenance, Stata

would return the title-cased string Zen And The Art Of Motorcycle Maintenance.

A Unicode title-cased string is a string that has had Unicode title-casing rules applied to Unicode

words. This is almost, but not exactly, like capitalizing the first letter of each Unicode word. Like

capitalization, title-casing letters is locale-dependent, which means that the same letter might have

different titlecase forms in different locales. For example, in some locales, capital letters at the be-

ginning of words are not supposed to have accents on them, even if that capital letter by itself would

have an accent.

If you do not have characters beyond plain ASCII and your locale is English, there is no distinction in

results. For example, ustrtitle() with an English locale locale also would return the title-cased
string Zen And The Art Of Motorcycle Maintenance.

Use the ustrtitle() function to apply the appropriate capitalization rules for your language (locale).

Unicode. Unicode is a standard for encoding and dealing with text written in almost any conceivable

living or dead language. Unicode specifies a set of encoding systems that are designed to hold (and,

unlike extendedASCII, to keep separate) characters used in different languages. The Unicode standard
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defines not only the characters and encodings for them, but also rules on how to perform various

operations on words in a given language (locale), such as capitalization and ordering. The most

common Unicode encodings are mUTF-8, UTF-16, and UTF-32. Stata uses UTF-8.

Unicode character. Technically, a Unicode character is any character with a Unicode encoding. Collo-

quially, we use the term to refer to any character other than the plain ASCII characters.

Unicode normalization. Unicode normalization allows us to use a common representation and therefore

compare Unicode strings that appear the same when displayed but could have more than one way of

being encoded. This rarely arises in practice, but because it is possible in theory, Stata provides the

ustrnormalize() function for converting between different normalized forms of the same string.

For example, suppose we wish to search for “ñ” (the lowercase n with a tilde over it from the Spanish

alphabet). This letter may have been encoded with the single code point U+00F1. However, the

sequence U+006E (the Latin lowercase “n”) followed by U+0303 (the tilde) is defined by Unicode

to be equivalent to U+00F1. This type of visual identicalness is called canonical equivalence. The

one-code-point form is known as the canonical composited form, and the multiple-code-point form

is known as the canonical decomposed form. Normalization modifies one or the other string to the

opposite canonical equivalent form so that the underlying byte sequences match. If we had strings

in a mixture of forms, we would want to use this normalization when sorting or when searching for

strings or substrings.

Another form of Unicode normalization allows characters that appear somewhat different to be given

the same meaning or interpretation. For example, when sorting or indexing, we may want the code

point U+FB00 (the typographic ligature “ff”) to match the sequence of two Latin “f” letters encoded

as U+0066 U+0066. This is called compatible equivalence.

Unicode title-cased string. See titlecase, title-cased string, and Unicode title-cased string.

UTF-8. UTF-8 stands for Universal character set + Transformation Format—8-bit. It is a type of Unicode

encoding system that was designed for backward compatibility with ASCII and is used by Stata 14.

value label. A value label defines a mapping between numeric data and the words used to describe what

those numeric values represent. So, the variable disease might have a value label status associated

with it that maps 1 to positive and 0 to negative. See [U] 12.6.3 Value labels.

varlist. A varlist is a list of variables that observe certain conventions: variable names may be abbrevi-

ated; the asterisk notation can be used as a shortcut to refer to groups of variables, such as income*
or *1995 to refer to all variable names beginning with income or all variable names ending in 1995,
respectively; and a dash may be used to indicate all variables stored between the two listed variables,

for example, mpg-weight. See [U] 11.4 varname and varlists.

wide format. See long and wide format.



Subject and author index

See the combined subject index and the combined author index in the Stata Index.
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