
STATA DATA MANAGEMENT
REFERENCE MANUAL

RELEASE 19

®

A Stata Press Publication

StataCorp LLC

College Station, Texas

® Copyright © 1985–2025 StataCorp LLC

All rights reserved

Version 19

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845

ISBN-10: 1-59718-422-5

ISBN-13: 978-1-59718-422-9

This manual is protected by copyright. All rights are reserved. No part of this manual may be reproduced, stored in a

retrieval system, or transcribed, in any form or by any means—electronic, mechanical, photocopy, recording, or other-

wise—without the prior written permission of StataCorp LLC unless permitted subject to the terms and conditions of

a license granted to you by StataCorp LLC to use the software and documentation. No license, express or implied, by

estoppel or otherwise, to any intellectual property rights is granted by this document.

StataCorp provides this manual “as is” without warranty of any kind, either expressed or implied, including, but not lim-

ited to, the implied warranties of merchantability and fitness for a particular purpose. StataCorp may make improvements

and/or changes in the product(s) and the program(s) described in this manual at any time and without notice.

The software described in this manual is furnished under a license agreement or nondisclosure agreement. The software

may be copied only in accordance with the terms of the agreement. It is against the law to copy the software onto DVD,

CD, disk, diskette, tape, or any other medium for any purpose other than backup or archival purposes.

The automobile dataset appearing on the accompanying media is Copyright © 1979 by Consumers Union of U.S., Inc.,

Yonkers, NY 10703-1057 and is reproduced by permission from CONSUMER REPORTS, April 1979.

Stata, , Stata Press, Mata, , NetCourse, and NetCourseNow are registered trademarks of StataCorp LLC.

Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations.

StataNow is a trademark of StataCorp LLC.

Other brand and product names are registered trademarks or trademarks of their respective companies.

For copyright information about the software, type help copyright within Stata.

The suggested citation for this software is

StataCorp. 2025. Stata 19. Statistical software. StataCorp LLC.

The suggested citation for this manual is

StataCorp. 2025. Stata 19 Data Management Reference Manual . College Station, TX: Stata Press.

www.stata.com

https://www.stata.com

Contents

Intro . Introduction to data management reference manual 1

Data management . Introduction to data management commands 2

append . Append datasets 8

assert . Verify truth of claim 16

assertnested . Verify variables nested 21

bcal . Business calendar file manipulation 25

by . Repeat Stata command on subsets of the data 31

cd . Change directory 35

cf . Compare two datasets 39

changeeol . Convert end-of-line characters of text file 42

checksum . Calculate checksum of file 44

clear . Clear memory 47

clonevar . Clone existing variable 50

codebook . Describe data contents 53

collapse . Make dataset of summary statistics 64

compare . Compare two variables 74

compress . Compress data in memory 76

contract . Make dataset of frequencies and percentages 78

copy . Copy file from disk or URL 82

corr2data . Create dataset with specified correlation structure 85

count . Count observations satisfying specified conditions 90

cross . Form every pairwise combination of two datasets 92

Data types . Quick reference for data types 94

datasignature . Determine whether data have changed 96

Datetime . Date and time values and variables 104

Datetime business calendars . Business calendars 123

Datetime business calendars creation . Business calendars creation 130

Datetime conversion . Converting strings to Stata dates 140

Datetime display formats . Display formats for dates and times 151

Datetime durations . Obtaining and working with durations 157

Datetime relative dates Obtaining dates and date information from other dates 169

Datetime values from other software Date and time conversion from other software 177

describe . Describe data in memory or in a file 183

destring . Convert string variables to numeric variables and vice versa 191

dir . Display filenames 200

drawnorm . Draw sample from multivariate normal distribution 203

drop . Drop variables or observations 208

ds . Compactly list variables with specified properties 213

duplicates . Report, tag, or drop duplicate observations 219

dyngen . Dynamically generate new values of variables 226

edit . Browse or edit data with Data Editor 230

egen . Extensions to generate 236

encode . Encode string into numeric and vice versa 259

i

Contents ii

erase . Erase a disk file 267

expand . Duplicate observations 269

expandcl . Duplicate clustered observations 272

export . Overview of exporting data from Stata 275

filefilter . Convert ASCII or binary patterns in a file 277

fillin . Rectangularize dataset 280

format . Set variables’ output format 282

fralias . Alias variables from linked frames 296

frames intro . Introduction to frames 308

frames . Data frames 320

frame change . Change identity of current (working) frame 323

frame copy . Make a copy of a frame 325

frame create . Create a new frame 327

frame drop . Drop frames from memory 329

frame prefix . The frame prefix command 330

frame put . Copy selected variables or observations to a new frame 332

frame pwf . Display name of current (working) frame 335

frame rename . Rename existing frame 336

frames describe . Describe frames in memory or in a file 337

frames dir . Display names of all frames in memory 344

frames modify . Modify a set of frames on disk 346

frames reset . Drop all frames from memory 349

frames save . Save a set of frames on disk 351

frames use . Load a set of frames from disk 356

frget . Copy variables from linked frame 361

frlink . Link frames 368

frunalias . Change storage type of alias variables 388

generate . Create or change contents of variable 390

gsort . Ascending and descending sort 396

hexdump . Display hexadecimal report on file 400

icd . Introduction to ICD commands 406

icd9 . ICD-9-CM diagnosis codes 414

icd9p . ICD-9-CM procedure codes 425

icd10 . ICD-10 diagnosis codes 432

icd10cm . ICD-10-CM diagnosis codes 443

icd10pcs . ICD-10-PCS procedure codes 454

import . Overview of importing data into Stata 463

import dbase . Import and export dBase files 472

import delimited . Import and export delimited text data 475

import excel . Import and export Excel files 487

import fred . Import data from Federal Reserve Economic Data 494

import haver . Import data from Haver Analytics databases 521

import haverdirect . Import data from Haver Analytics cloud servers 533

import sas . Import SAS files 544

import sasxport5 Import and export data in SAS XPORT Version 5 format 548

import sasxport8 Import and export data in SAS XPORT Version 8 format 559

Contents iii

import spss . Import and export SPSS files 563

infile (fixed format) . Import text data in fixed format with a dictionary 568

infile (free format) . Import unformatted text data 586

infix (fixed format) . Import text data in fixed format 596

input . Enter data from keyboard 604

insobs . Add or insert observations 612

inspect . Display simple summary of data’s attributes 614

ipolate . Linearly interpolate (extrapolate) values 618

isid . Check for unique identifiers 621

jdbc . Load, write, or view data from a database with a Java API 624

joinby . Form all pairwise combinations within groups 636

label . Manipulate labels 641

label language . Labels for variables and values in multiple languages 651

labelbook . Label utilities 657

list . List values of variables 668

lookfor . Search for string in variable names and labels 681

memory . Memory management 683

merge . Merge datasets 689

Missing values . Quick reference for missing values 714

mkdir . Create directory 715

mvencode . Change missing values to numeric values and vice versa 717

notes . Place notes in data 721

obs . Increase the number of observations in a dataset 726

odbc . Load, write, or view data from ODBC sources 728

order . Reorder variables in dataset 742

outfile . Export dataset in text format 746

pctile . Create variable containing percentiles 753

putmata . Put Stata variables into Mata and vice versa 765

range . Generate numerical range 777

recast . Change storage type of variable 780

recode . Recode categorical variables 783

rename . Rename variable 792

rename group . Rename groups of variables 794

reshape . Convert data from wide to long form and vice versa 805

rmdir . Remove directory 824

sample . Draw random sample 826

save . Save Stata dataset 831

separate . Create separate variables 837

shell . Temporarily invoke operating system 841

snapshot . Save and restore data snapshots 847

sort . Sort data 850

split . Split string variables into parts 859

splitsample . Split data into random samples 864

stack . Stack data 873

statsby . Collect statistics for a command across a by list 879

Contents iv

sysuse . Use shipped dataset 888

type . Display contents of a file 891

unicode . Unicode utilities 894

unicode collator . Language-specific Unicode collators 895

unicode convertfile . Low-level file conversion between encodings 897

unicode encoding . Unicode encoding utilities 900

unicode locale . Unicode locale utilities 902

unicode translate . Translate files to Unicode 905

use . Load Stata dataset 921

varmanage . Manage variable labels, formats, and other properties 925

vl . Manage variable lists 926

vl create . Create and modify user-defined variable lists 943

vl drop . Drop variable lists or variables from variable lists 947

vl list . List contents of variable lists 950

vl rebuild . Rebuild variable lists 957

vl set . Set system-defined variable lists 961

webuse . Use dataset from Stata website 966

xpose . Interchange observations and variables 969

zipfile Compress and uncompress files and directories in zip archive format 972

Glossary . 975

Subject and author index . 980

Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals, for example,

[U] 27 Overview of Stata estimation commands; [R] regress; and [D] reshape. The first example

is a reference to chapter 27, Overview of Stata estimation commands, in the User’s Guide; the second

is a reference to the regress entry in the Base Reference Manual; and the third is a reference to the

reshape entry in the Data Management Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM] Getting Started with Stata for Mac
[GSU] Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows

[U] Stata User’s Guide

[R] Stata Base Reference Manual

[ADAPT] Stata Adaptive Designs: Group Sequential Trials Reference Manual

[BAYES] Stata Bayesian Analysis Reference Manual

[BMA] Stata Bayesian Model Averaging Reference Manual

[CAUSAL] Stata Causal Inference and Treatment-Effects Estimation Reference Manual

[CM] Stata Choice Models Reference Manual

[D] Stata Data Management Reference Manual

[DSGE] Stata Dynamic Stochastic General Equilibrium Models Reference Manual

[ERM] Stata Extended Regression Models Reference Manual

[FMM] Stata Finite Mixture Models Reference Manual

[FN] Stata Functions Reference Manual

[G] Stata Graphics Reference Manual

[H2OML] Machine Learning in Stata Using H2O: Ensemble Decision Trees Reference Manual

[IRT] Stata Item Response Theory Reference Manual

[LASSO] Stata Lasso Reference Manual

[XT] Stata Longitudinal-Data/Panel-Data Reference Manual

[META] Stata Meta-Analysis Reference Manual

[ME] Stata Multilevel Mixed-Effects Reference Manual

[MI] Stata Multiple-Imputation Reference Manual

[MV] Stata Multivariate Statistics Reference Manual

[PSS] Stata Power, Precision, and Sample-Size Reference Manual

[P] Stata Programming Reference Manual

[RPT] Stata Reporting Reference Manual

[SP] Stata Spatial Autoregressive Models Reference Manual

[SEM] Stata Structural Equation Modeling Reference Manual

[SVY] Stata Survey Data Reference Manual

[ST] Stata Survival Analysis Reference Manual

[TABLES] Stata Customizable Tables and Collected Results Reference Manual

[TS] Stata Time-Series Reference Manual

[I] Stata Index

[M] Mata Reference Manual

v

Intro — Introduction to data management reference manual

Description
This manual documents most of Stata’s data management features and is referred to as the [D] manual.

Some specialized data management features are documented in such subject-specific reference manuals

as [MI] Stata Multiple-Imputation Reference Manual, [SEM] Stata Structural Equation Modeling Refer-

ence Manual, [TS] Stata Time-Series Reference Manual, [ST] Stata SurvivalAnalysis Reference Manual,

and [XT] Stata Longitudinal-Data/Panel-Data Reference Manual.

Following this entry, [D] Data management provides an overview of data management in Stata and

of Stata’s data management commands. The other parts of this manual are arranged alphabetically. If

you are new to Stata’s data management features, we recommend that you read the following first:

[D] Data management — Introduction to data management commands

[U] 12 Data

[U] 13 Functions and expressions

[U] 11.5 by varlist: construct

[U] 22 Entering and importing data

[U] 23 Combining datasets

[U] 24 Working with strings

[U] 26 Working with categorical data and factor variables

[U] 25 Working with dates and times

[U] 16 Do-files

You can see that most of the suggested reading is in [U]. That is because [U] provides overviews of most

Stata features, whereas this is a reference manual and provides details on the usage of specific commands.

You will get an overview of features for combining data from [U] 23 Combining datasets, but the details

of performing a match-merge (merging the records of two files by matching the records on a common

variable) will be found here, in [D] merge.

Stata is continually being updated, and Stata users are always writing new commands. To ensure that

you have the latest features, you should install the most recent official update; see [R] update.

Also see
[U] 1.3 What’s new

[R] Intro — Introduction to base reference manual

1

Data management — Introduction to data management commands

Description References Also see

Description
This manual, called [D], documents Stata’s data management features. See Mitchell (2020) for addi-

tional information and examples on data management in Stata.

Data management for statistical applications refers not only to classical data management—sorting,

merging, appending, and the like—but also to data reorganization because the statistical routines you

will use assume that the data are organized in a certain way. For example, statistical commands that

analyze longitudinal data, such as xtreg, generally require that the data be in long rather than wide

form, meaning that repeated values are recorded not as extra variables, but as extra observations.

Here are the basics everyone should know:

[D] use Load Stata dataset

[D] sysuse Use shipped dataset

[D] webuse Use dataset from Stata website

[D] save Save Stata dataset

[D] describe Describe data in memory or in a file

[D] codebook Describe data contents

[D] inspect Display simple summary of data’s attributes

[D] count Count observations satisfying specified conditions

[D] Data types Quick reference for data types

[D]Missing values Quick reference for missing values

[D] Datetime Date and time values and variables

[D] list List values of variables

[D] edit Browse or edit data with Data Editor

[D] varmanage Manage variable labels, formats, and other properties

[D] rename Rename variable

[D] format Set variables’ output format

[D] label Manipulate labels

[D] frames intro Introduction to frames

2

Data management — Introduction to data management commands 3

To work with multiple datasets in memory, see

[D] frames intro Introduction to frames

[D] frames Data frames

[D] frame change Change identity of current (working) frame

[D] frame copy Make a copy of a frame

[D] frame create Create a new frame

[D] frame drop Drop frames from memory

[D] frame prefix The frame prefix command

[D] frame put Copy selected variables or observations to a new frame

[D] frame pwf Display name of current (working) frame

[D] frame rename Rename existing frame

[D] frames dir Display names of all frames in memory

[D] frames reset Drop all frames from memory

[D] frames save Save a set of frames on disk

[D] frames modify Modify a set of frames on disk

[D] frames use Load a set of frames from disk

[D] frames describe Describe frames in memory or in a file

[D] frget Copy variables from linked frame

[D] frlink Link frames

You will need to create and drop variables, and here is how:

[D] generate Create or change contents of variable

[D] egen Extensions to generate

[D] drop Drop variables or observations

[D] clear Clear memory

Data management — Introduction to data management commands 4

For inputting or importing data, see

[D] use Load Stata dataset

[D] sysuse Use shipped dataset

[D] webuse Use dataset from Stata website

[D] input Enter data from keyboard

[D] import Overview of importing data into Stata

[D] import dbase Import and export dBase files

[D] import delimited Import and export delimited text data

[D] import excel Import and export Excel files

[D] import fred Import data from Federal Reserve Economic Data

[D] import haver Import data from Haver Analytics databases

[D] import haverdirect Import data from Haver Analytics cloud servers

[D] import sas Import SAS files

[D] import sasxport5 Import and export data in SAS XPORT Version 5 format

[D] import sasxport8 Import and export data in SAS XPORT Version 8 format

[D] import spss Import and export SPSS files

[D] infile (fixed format) Import text data in fixed format with a dictionary

[D] infile (free format) Import unformatted text data

[D] infix (fixed format) Import text data in fixed format

[D] jdbc Load, write, or view data from a database with a Java API

[D] odbc Load, write, or view data from ODBC sources

[D] hexdump Display hexadecimal report on file

[D] icd9 ICD-9-CM diagnosis codes

[D] icd9p ICD-9-CM procedure codes

[D] icd10 ICD-10 diagnosis codes

[D] icd10cm ICD-10-CM diagnosis codes

[D] icd10pcs ICD-10-PCS procedure codes

and for exporting data, see

[D] save Save Stata dataset

[D] export Overview of exporting data from Stata

[D] outfile Export dataset in text format

[D] import dbase Import and export dBase files

[D] import delimited Import and export delimited text data

[D] import excel Import and export Excel files

[D] import sasxport5 Import and export data in SAS XPORT Version 5 format

[D] import sasxport8 Import and export data in SAS XPORT Version 8 format

[D] import spss Import and export SPSS files

[D] jdbc Load, write, or view data from a database with a Java API

[D] odbc Load, write, or view data from ODBC sources

Data management — Introduction to data management commands 5

The ordering of variables and observations (sort order) can be important; see

[D] order Reorder variables in dataset

[D] sort Sort data

[D] gsort Ascending and descending sort

To reorganize or combine data, see

[D] append Append datasets

[D] merge Merge datasets

[D] frlink Link frames

[D] frget Copy variables from linked frame

[D] reshape Convert data from wide to long form and vice versa

[D] collapse Make dataset of summary statistics

[D] contract Make dataset of frequencies and percentages

[D] fillin Rectangularize dataset

[D] expand Duplicate observations

[D] expandcl Duplicate clustered observations

[D] stack Stack data

[D] joinby Form all pairwise combinations within groups

[D] xpose Interchange observations and variables

[D] cross Form every pairwise combination of two datasets

In the above list, we particularly want to direct your attention to [D] reshape, a useful command that

beginners often overlook.

For random sampling, see

[D] sample Draw random sample

[D] splitsample Split data into random samples

[D] drawnorm Draw sample from multivariate normal distribution

For file manipulation, see

[D] type Display contents of a file

[D] erase Erase a disk file

[D] copy Copy file from disk or URL

[D] cd Change directory

[D] dir Display filenames

[D] mkdir Create directory

[D] rmdir Remove directory

[D] cf Compare two datasets

[D] changeeol Convert end-of-line characters of text file

[D] filefilter Convert ASCII or binary patterns in a file

[D] checksum Calculate checksum of file

[D] zipfile Compress and uncompress files and directories in zip archive
format

Data management — Introduction to data management commands 6

For handling Unicode strings, see

[D] unicode Unicode utilities

[D] unicode translate Translate files to Unicode

[D] unicode encoding Unicode encoding utilities

[D] unicode locale Unicode locale utilities

[D] unicode collator Language-specific Unicode collators

[D] unicode convertfile Low-level file conversion between encoding

The entries above are important. The rest are useful when you need them:

[D] datasignature Determine whether data have changed

[D] type Display contents of a file

[D] notes Place notes in data

[D] label language Labels for variables and values in multiple languages

[D] labelbook Label utilities

[D] encode Encode string into numeric and vice versa

[D] recode Recode categorical variables

[D] ipolate Linearly interpolate (extrapolate) values

[D] destring Convert string variables to numeric variables and vice versa

[D] mvencode Change missing values to numeric values and vice versa

[D] pctile Create variable containing percentiles

[D] range Generate numerical range

[D] by Repeat Stata command on subsets of the data

[D] statsby Collect statistics for a command across a by list

[D] dyngen Dynamically generate new values of variables

[D] compress Compress data in memory

[D] recast Change storage type of variable

[D] Datetime display formats Display formats for dates and times

[D] Datetime conversion String to numeric date conversion functions

[D] Datetime durations Obtaining and working with durations

[D] Datetime relative dates Datetime relative dates

[D] Datetime values from other Date and time conversion from other software
software

[D] bcal Business calendar file manipulation

[D] Datetime business calendars Business calendars

[D] Datetime business calendars Business calendars creation
creation

Data management — Introduction to data management commands 7

[D] assert Verify truth of claim

[D] assertnested Verify variables nested

[D] clonevar Clone existing variable

[D] compare Compare two variables

[D] corr2data Create dataset with specified correlation structure

[D] ds Compactly list variables with specified properties

[D] duplicates Report, tag, or drop duplicate observations

[D] insobs Add or insert observations

[D] isid Check for unique identifiers

[D] lookfor Search for string in variable names and labels

[D] memory Memory management

[D] putmata Put Stata variables into Mata and vice versa

[D] obs Increase the number of observations in a dataset

[D] rename group Rename groups of variables

[D] separate Create separate variables

[D] shell Temporarily invoke operating system

[D] snapshot Save and restore data snapshots

[D] split Split string variables into parts

[D] vl Manage variable lists

[D] vl create Create and modify user-defined variable lists

[D] vl drop Drop variable lists or variables from variable lists

[D] vl list List contents of variable lists

[D] vl rebuild Rebuild variable lists

[D] vl set Set system-defined variable lists

There are some real jewels in the above, such as [D] notes, [D] compress, and [D] assert, which you will

find particularly useful.

References
Hoffmann, J. P. 2017. Principles of Data Management and Presentation. Oakland, CA: University of California Press.

Mitchell, M. N. 2020. Data Management Using Stata: A Practical Handbook. 2nd ed. College Station, TX: Stata Press.

Also see
[D] Intro — Introduction to data management reference manual

[R] Intro — Introduction to base reference manual

https://www.stata.com/bookstore/principles-of-data-management-and-presentation/
https://www.stata-press.com/books/data-management-using-stata/

append — Append datasets

Description Quick start Menu Syntax
Options Remarks and examples Reference Also see

Description
append appends Stata-format datasets stored on disk to the end of the dataset in memory. If any

filename is specified without an extension, .dta is assumed.

Stata can also join observations from two datasets into one; see [D] merge. See [U] 23 Combining

datasets for a comparison of append, merge, and joinby.

Quick start
Append mydata2.dta to mydata1.dta with no data in memory

append using mydata1 mydata2

Same as above, but with mydata1.dta in memory
append using mydata2

Same as above, and generate newv to indicate source dataset
append using mydata2, generate(newv)

Same as above, but do not copy value labels or notes from mydata2.dta
append using mydata2, generate(newv) nolabel nonotes

Only keep v1, v2, and v3 from mydata2.dta
append using mydata2, keep(v1 v2 v3)

Menu
Data > Combine datasets > Append datasets

8

append — Append datasets 9

Syntax
append using filename [filename [. . .]] [, options]

You may enclose filename in double quotes and must do so if filename contains blanks or other special

characters.

options Description

generate(newvar) newvar marks source of resulting observations

keep(varlist) keep specified variables from appending dataset(s)

nolabel do not copy value-label definitions from dataset(s) on disk

nonotes do not copy notes from dataset(s) on disk

force append string to numeric or numeric to string without error

Options
generate(newvar) specifies the name of a variable to be created that will mark the source of observa-

tions. Observations from the master dataset (the data in memory before the append command) will
contain 0 for this variable. Observations from the first using dataset will contain 1 for this variable;

observations from the second using dataset will contain 2 for this variable; and so on.

keep(varlist) specifies the variables to be kept from the using dataset. If keep() is not specified, all
variables are kept.

The varlist in keep(varlist) differs from standard Stata varlists in two ways: variable names in varlist

may not be abbreviated, except by the use of wildcard characters, and you may not refer to a range of

variables, such as price-weight.

nolabel prevents Stata from copying the value-label definitions from the disk dataset into the dataset in

memory. Even if you do not specify this option, label definitions from the disk dataset never replace

definitions already in memory.

nonotes prevents notes in the using dataset from being incorporated into the result. The default is to

incorporate notes from the using dataset that do not already appear in the master data.

force allows string variables to be appended to numeric variables and vice versa, resulting in missing
values from the using dataset. If omitted, append issues an error message; if specified, append issues
a warning message.

Remarks and examples
The disk dataset must be a Stata-format dataset; that is, it must have been created by save (see

[D] save).

Example 1
We have two datasets stored on disk that we want to combine. The first dataset, called even.dta,

contains the sixth through eighth positive even numbers. The second dataset, called odd.dta, contains
the first five positive odd numbers. The datasets are

append — Append datasets 10

. use even
(6th through 8th even numbers)
. list

number even

1. 6 12
2. 7 14
3. 8 16

. use odd
(First five odd numbers)
. list

number odd

1. 1 1
2. 2 3
3. 3 5
4. 4 7
5. 5 9

We will append the even data to the end of the odd data. Because the odd data are already in memory

(we just used them above), we type append using even. The result is

. append using even

. list

number odd even

1. 1 1 .
2. 2 3 .
3. 3 5 .
4. 4 7 .
5. 5 9 .

6. 6 . 12
7. 7 . 14
8. 8 . 16

Because the number variable is in both datasets, the variable was extended with the new data from

the file even.dta. Because there is no variable called odd in the new data, the additional observations

on odd were forward-filled with missing (.). Because there is no variable called even in the original
data, the first observations on even were back-filled with missing.

append — Append datasets 11

Example 2
The order of variables in the two datasets is irrelevant. Stata always appends variables by name:

. use https://www.stata-press.com/data/r19/odd1
(First five odd numbers)
. describe
Contains data from https://www.stata-press.com/data/r19/odd1.dta
Observations: 5 First five odd numbers

Variables: 2 9 Jan 2024 08:41

Variable Storage Display Value
name type format label Variable label

odd float %9.0g Odd numbers
number float %9.0g

Sorted by: number
. describe using https://www.stata-press.com/data/r19/even
Contains data 6th through 8th even numbers
Observations: 3 9 Jan 2024 08:43

Variables: 2

Variable Storage Display Value
name type format label Variable label

number byte %9.0g
even float %9.0g Even numbers

Sorted by: number
. append using https://www.stata-press.com/data/r19/even
. list

odd number even

1. 1 1 .
2. 3 2 .
3. 5 3 .
4. 7 4 .
5. 9 5 .

6. . 6 12
7. . 7 14
8. . 8 16

The results are the same as those in the first example.

When Stata appends two datasets, the definitions of the dataset in memory, called the master dataset,

override the definitions of the dataset on disk, called the using dataset. This extends to value labels,

variable labels, characteristics, and date–time stamps. If there are conflicts in numeric storage types, the

more precise storage type will be used regardless of whether this storage type was in the master dataset

or the using dataset. If a variable is stored as a string in one dataset that is longer than in the other, the

longer str# storage type will prevail. If a variable is stored as a strL in one dataset and a str# in

another dataset, the strL storage type will prevail.

append — Append datasets 12

Technical note
If a variable is a string in one dataset and numeric in the other, Stata issues an error message unless the

force option is specified. If force is specified, Stata issues a warning message before appending the
data. If the using dataset contains the string variable, the combined dataset will have numeric missing

values for the appended data on this variable; the contents of the string variable in the using dataset

are ignored. If the using dataset contains the numeric variable, the combined dataset will have empty

strings for the appended data on this variable; the contents of the numeric variable in the using dataset

are ignored.

Example 3
Because Stata has five numeric variable types—byte, int, long, float, and double—you may

attempt to append datasets containing variables with the same name but of different numeric types; see

[U] 12.2.2 Numeric storage types.

Let’s describe the datasets in the example above:

. describe using https://www.stata-press.com/data/r19/odd
Contains data First five odd numbers
Observations: 5 9 Jan 2024 08:50

Variables: 2

Variable Storage Display Value
name type format label Variable label

number float %9.0g
odd float %9.0g Odd numbers

Sorted by:
. describe using https://www.stata-press.com/data/r19/even
Contains data 6th through 8th even numbers
Observations: 3 9 Jan 2024 08:43

Variables: 2

Variable Storage Display Value
name type format label Variable label

number byte %9.0g
even float %9.0g Even numbers

Sorted by: number
. describe using https://www.stata-press.com/data/r19/oddeven
Contains data First five odd numbers
Observations: 8 9 Jan 2024 08:53

Variables: 3

Variable Storage Display Value
name type format label Variable label

number float %9.0g
odd float %9.0g Odd numbers
even float %9.0g Even numbers

Sorted by:

append — Append datasets 13

The number variable was stored as a float in odd.dta but as a byte in even.dta. Because float
is the more precise storage type, the resulting dataset, oddeven.dta, had number stored as a float.
Had we instead appended odd.dta to even.dta, number would still have been stored as a float:

. use https://www.stata-press.com/data/r19/even, clear
(6th through 8th even numbers)
. append using https://www.stata-press.com/data/r19/odd
(variable number was byte, now float to accommodate using data’s values)
. describe
Contains data from https://www.stata-press.com/data/r19/even.dta
Observations: 8 6th through 8th even numbers

Variables: 3 9 Jan 2024 08:43

Variable Storage Display Value
name type format label Variable label

number float %9.0g
even float %9.0g Even numbers
odd float %9.0g Odd numbers

Sorted by:
Note: Dataset has changed since last saved.

Example 4
Suppose that we have a dataset in memory containing the variable educ, and we have previously given

a label variable educ ”Education Level” command so that the variable label associated with educ
is “Education Level”. We now append a dataset called newdata.dta, which also contains a variable
named educ, except that its variable label is “Ed. Lev”. After appending the two datasets, the educ
variable is still labeled “Education Level”. See [U] 12.6.2 Variable labels.

Example 5
Assume that the values of the educ variable are labeled with a value label named educlbl. Further

assume that in newdata.dta, the values of educ are also labeled by a value label named educlbl. Thus
there is one definition of educlbl in memory and another (although perhaps equivalent) definition in
newdata.dta. When you append the new data, you will see the following:

. append using newdata
label educlbl already defined

If one label in memory and another on disk have the same name, append warns you of the problem and

sticks with the definition currently in memory, ignoring the definition in the disk file.

append — Append datasets 14

Technical note
When you append two datasets that both contain definitions of the same value label, the codings may

not be equivalent. That is why Stata warns you with a message like “label educlbl already defined”. If

you do not know that the two value labels are equivalent, you should convert the value-labeled variables

into string variables, append the data, and then construct a new coding. decode and encode make this
easy:

. use newdata, clear

. decode educ, gen(edstr)

. drop educ

. save newdata, replace

. use basedata

. decode educ, gen(edstr)

. drop educ

. append using newdata

. encode edstr, gen(educ)

. drop edstr

See [D] encode.

You can specify the nolabel option to force append to ignore all the value-label definitions in the
incoming file, whether or not there is a conflict. In practice, you will probably never want to do this.

Example 6
Suppose that we have several datasets containing the populations of counties in various states. We

can use append to combine these datasets all at once and use the generate() option to create a variable
identifying from which dataset each observation originally came.

. use https://www.stata-press.com/data/r19/capop

. list

county pop

1. Los Angeles 9878554
2. Orange 2997033
3. Ventura 798364

. append using https://www.stata-press.com/data/r19/ilpop
> https://www.stata-press.com/data/r19/txpop, generate(state)
. label define statelab 0 ”CA” 1 ”IL” 2 ”TX”
. label values state statelab

append — Append datasets 15

. list

county pop state

1. Los Angeles 9878554 CA
2. Orange 2997033 CA
3. Ventura 798364 CA
4. Cook 5285107 IL
5. DeKalb 103729 IL

6. Will 673586 IL
7. Brazos 152415 TX
8. Johnson 149797 TX
9. Harris 4011475 TX

Video example
How to append files into a single dataset

Reference
Chatfield, M. D. 2015. precombine: Acommand to examine𝑛 ≥ 2 datasets before combining. Stata Journal 15: 607–626.

Also see
[D] cross — Form every pairwise combination of two datasets

[D] joinby — Form all pairwise combinations within groups

[D] merge — Merge datasets

[D] save — Save Stata dataset

[D] use — Load Stata dataset

[U] 23 Combining datasets

https://www.youtube.com/watch?v=AZGW8tohiqw
https://www.stata-journal.com/article.html?article=dm0081

assert — Verify truth of claim

Description Quick start Syntax Options Remarks and examples
Reference Also see

Description
assert verifies that exp is true. If it is true, the command produces no output. If it is not true, assert

informs you that the “assertion is false” and issues a return code of 9; see [U] 8 Error messages and

return codes.

Quick start
Confirm that v1 only takes values 0 or 1

assert v1==0 | v1==1

Verify that v2 is between 100 and 200 and never missing
assert inrange(v2,100,200)

Verify that v2 is between 100 and 200 for all nonmissing values
assert inrange(v2,100,200) if !missing(v2)

Verify that v2 is between 100 and 200 and never missing when catvar equals 2 or 3
assert inrange(v2,100,200) if (catvar==2 | catvar==3)

Verify that there are 5 observations per cluster identified by cvar
by cvar: assert _N==5

Same as above, but stop checking after the first cluster has fewer than or more than 5 observations

by cvar: assert _N==5, fast

16

assert — Verify truth of claim 17

Syntax
assert exp [if] [in] [, rc0 null fast]

by is allowed; see [D] by.

Options
rc0 forces a return code of 0, even if the assertion is false.

null forces a return code of 8 on null assertions. A null assertion occurs when an if condition excludes
all observations from being checked by assert. By default, the return code is 0 for null assertions.

fast forces the command to exit at the first occurrence that exp evaluates to false.

Remarks and examples
assert verifies that the expression provided is true. It is useful because it tells Stata not only what to

do but also what you can expect to find. Groups of assertions are often combined in a do-file to certify

data. If the do-file runs all the way through without complaining, every assertion in the file is true.

Otherwise, assertwill provide a count of the contradictions when an assertion is false. It will also issue
an error message along with a return code of 9; see [U] 8 Error messages and return codes.

assert is seldom used interactively because it is easier to use inspect, summarize, or tabulate to
look for evidence of errors in the dataset. These commands, however, require you to review the output

to spot the error.

Example 1: Observation-level assertions
You and a colleague are analyzing union membership among women. Your colleague imported data

from the National Longitudinal Survey of young women for the years 1968 to 1988. You plan to include

the woman’s age, total work experience, and whether or not she graduated from college in your model.

Your colleague tells you that the cleaned dataset is called nlswork and that the following things

are true: that the variables recording union membership, age, total experience, and education level are

not missing for any of the observations; that observations taken before a woman turned 18 have been

removed; that total experience is always greater than or equal to 0; and that all college graduates have

at least 14 years of education. Before you begin your analysis, you should verify the accuracy of these

data. To test that the statements above are true, you create a do-file named check.do:

begin check.do, example 1
assert age>=18 & !missing(age)
assert !missing(union)
assert ttl_exp>=0 & !missing(ttl_exp)
assert grade>=14 & !missing(grade) if collgrad==1

end check.do, example 1

You save the above file, read in the data, and then issue the do command to check the assertions:

. use https://www.stata-press.com/data/r19/nlswork
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)
. do check

assert — Verify truth of claim 18

The output is as follows:

. assert age>=18 & !missing(age)
159 contradictions in 28,534 observations
assertion is false
r(9);
end of do-file
r(9);

The do-file did not run to completion because it encountered a false assertion—that age is never

missing and always at least 18 years.

You should resolve this and any other discrepancies before analyzing the data. You run the do-file

again, this time with the nostop option, which tells Stata to continue executing the do-file despite any
errors.

. do check, nostop

Once it runs in its entirety, you will have a list of all the data discrepancies to discuss with your colleague.

The output is as follows:

. assert age>=18 & !missing(age)
159 contradictions in 28,534 observations
assertion is false
r(9);
. assert !missing(union)
9,296 contradictions in 28,534 observations
assertion is false
r(9);
. assert ttl_exp>=0 & !missing(ttl_exp)
. assert grade>=14 & !missing(grade) if collgrad==1
42 contradictions in 4,795 observations
assertion is false
r(9);
.
end of do-file

The output from the false assertions above is helpful. First, the number of contradictions can serve as

a clue; a few contradictions may suggest data entry errors, whereas a large number may motivate further

investigation. Second, you get a straightforward message that the assertion is false. Finally, you get a

return code of 9, which makes it easy to write code based on whether or not an assertion is true.

Example 2: Speeding up assert
In example 1, we obtained a count of the number of observations where each assertion was false.

However, if all you wanted to know was whether or not an assertion was true, you could reduce the

amount of time required to check that assertion by specifying the fast option, as shown below:

. assert age>=18 & !missing(age), fast
assertion is false
r(9);

The fast option tells Stata to stop checking the assertion when it encounters the first case where it is
false, which is why you do not get a count of the contradictions.

assert — Verify truth of claim 19

Example 3: Assertions by groups
Your assertions in the previous examples were tested in each observation. You spoke with your col-

league regarding those assertions, and she has sent you a revised version of the dataset. The next goal is

to make sure that age has been recorded correctly over time. Women in the study were observed once per

year, and in some years, they were not observed at all. Therefore, you know that age must be increasing
with every time period.

Thus, now you want to assess the characteristics of each woman over time, and you can do so with

the by: prefix. You include the sort option with the by prefix because the data have not been sorted
by woman (idcode) and year already; see [U] 11.5 by varlist: construct. Now you can assert that for

each woman, the value of age is greater than it was in the previous year for all years except the first.

You add the following line to check.do:

begin check.do, example 3
by idcode (year), sort: assert age>=age[_n-1]+1 if _n>1

end check.do, example 3

Upon reissuing the the do check, nostop command, the following output is shown:

. by idcode (year), sort: assert age>=age[_n-1]+1 if _n>1
171 contradictions in 23,823 observations
assertion is false
r(9);
.
end of do-file

Again, we have found a few errors in the dataset. We might want to check the source of the dataset for

any notes on data discrepancies.

Technical note
assert is smart in how it evaluates expressions. When you type something like assert N==522

or assert work[N]>0, assert knows that the expression needs to be evaluated only once. When you

type assert female==1 | female==0, assert knows that the expression needs to be evaluated once
for each observation in the dataset.

Here are some more examples demonstrating assert’s intelligence.

by female: assert _N==100

asserts that there should be 100 observations for every unique value of female. The expression is eval-
uated once per by-group.

by female: assert work[_N]>0

asserts that the last observation on work in every by-group should be greater than zero. It is evaluated
once per by-group.

by female: assert work>0

is evaluated once for each observation in the dataset and, in that sense, is formally equivalent to assert
work>0.

assert — Verify truth of claim 20

Reference
Gould, W. W. 2001. Statistical software certification. Stata Journal 1: 29–50.

Also see
[D] assertnested — Verify variables nested

[P] capture — Capture return code

[P] confirm —Argument verification

[U] 16 Do-files

https://www.stata-journal.com/article.html?article=pr0001

assertnested — Verify variables nested

Description Quick start Syntax Options Remarks and examples Also see

Description
assertnested verifies that the values of variables are nested within the values of other variables. If

they are nested, the command produces no output. If they are not nested, assertnested informs you
that they are not and issues an error return code of 459; see [U] 8 Error messages and return codes.

Quick start
Confirm that the values of psu are nested within stratum

assertnested stratum psu

Confirm that the values of IDs in student are nested within school, which is nested within district
assertnested district school student

For panel data, where panels are individuals with IDs stored in panelid, check that values of age and
income are the same for all observations in each panel

assertnested panelid, within(age income)

Same as above, but treat any missing values the same as nonmissing values

assertnested panelid, within(age income) missing

Syntax
assertnested varlist [if] [in] [, within(withinvars) missing]

The variables in varlist are given in the order of biggest grouping to smallest grouping.

by is allowed; see [D] by.

Options
within(withinvars) asserts that the values of varlist are nestedwithin each of the variables inwithinvars.

That is, assertnested varlist, within(w1 w2 . . .) will issue an error if any of assertnested w1
varlist, assertnested w2 varlist, . . . issue an error.

missing specifies that missing values in varlist and withinvars are to be treated the same as nonmissing
values.

21

assertnested — Verify variables nested 22

Remarks and examples
assertnested is a convenience command for checking whether variables are nested. We say that

v2 is nested within v1 if for all observations that have the same value of v2, the observations also have
the same value of v1.

Here are data that are nested.

. list v1 v2, sepby(v1)

v1 v2

1. 0 1
2. 0 1
3. 0 2
4. 0 2

5. 1 3
6. 1 3
7. 1 4
8. 1 4

. assertnested v1 v2

assertnested succeeds.

Here are data that are not nested.

. list v1 v3, sepby(v1)

v1 v3

1. 0 1
2. 0 2
3. 0 3
4. 0 4

5. 1 1
6. 1 2
7. 1 3
8. 1 4

. assertnested v1 v3
v3 not nested within v1
r(459);

assertnested fails.

Running

assertnested v1 v2 v3

is the same as running

assertnested v1 v2
assertnested v2 v3

Variables must be specified with the biggest nested grouping first, then the second biggest nested group-

ing, and so on, to the smallest nested grouping.

assertnested — Verify variables nested 23

Example 1: Nested variables
We have a dataset consisting of two school districts in Texas: the district for the city of College Station

and the district for the city of Richardson. The dataset contains the actual names of all the public schools

in the variable school in these districts, given by variable district. The dataset contains fictitious
student IDs in the variable student.

We want to assert that student is nested within school and that school is nested within district.

. use https://www.stata-press.com/data/r19/schools

. assertnested district school student
school not nested within district
r(459);

Schools are not nested within district! Are some schools in both districts? That is impossible. But it is

possible that both districts have one or more schools with the same name. Let’s find them.

We use egen’s tag() function to tag one observation for each distinct value of district for each
school. Then we sum up the number of tags in each school. If the schools were nested within district,

there would be only one tag per school. We list the districts and schools with more than one tag.

. egen tag_district = tag(school district)

. bysort school: egen ndistrict = sum(tag_district)

. list district school if tag_district == 1 & ndistrict > 1, noobs

district school

Richardson Spring Creek Elementary School
College Station Spring Creek Elementary School

Both College Station and Richardson have schools named Spring Creek Elementary School. If we want

to check that students are nested within schools, we need to do the check separately by district.

. bysort district: assertnested school student

Or else Texans need to get more creative about naming their schools.

Example 2: Variables constant within panels
Commands that work with panel data in Stata require the data to be in long form. That is, multiple

Stata observations for each panel. Saying a variable is constant within each panel is the same as saying

the panels are nested within that variable. assertnested allows you to assert that variables are constant
within each panel.

We illustrate this with choice model data. Choice model data are stored like panel data in that each

individual has multiple observations, one for each possible choice. Characteristics of the individual

should be constant across observations for an individual.

We load a dataset with consumer choices for purchasing a new car (see [CM] Intro 2 for a description

of these data). Then we check that gender and income are constant for the observations with the same
consumerid by using the within() option.

assertnested — Verify variables nested 24

. use https://www.stata-press.com/data/r19/carchoice, clear
(Car choice data)
. assertnested consumerid, within(gender income)

The within() option is a convenient way to do multiple assertions. The above is the same as running

. assertnested gender consumerid

. assertnested income consumerid

The option missing can be specified to treat missing values the same as any other value.

. assertnested consumerid, within(gender income) missing
consumerid not nested within gender
r(459);

We see that gender is not constant for some consumers when we treat missing values like any other

value. Let’s list one person who has missing values for gender:

. list consumerid gender if consumerid == 142, abbrev(10)

consumerid gender

509. 142 .
510. 142 Male
511. 142 Male
512. 142 Male

This person has a missing value for gender for one observation and nonmissing values for other obser-
vations. For the data to pass assertnested with the option missing, the variable would have to be
either all missing or all nonmissing (and the same value) for each individual.

Also see
[D] assert — Verify truth of claim

[CM] Intro 2 — Data layout

[P] capture — Capture return code

[SVY] Survey — Introduction to survey commands

[XT] xt — Introduction to xt commands

[U] 16 Do-files

bcal — Business calendar file manipulation

Description Quick start Menu Syntax
Option for bcal check Options for bcal create Remarks and examples Stored results
Reference Also see

Description
See [D] Datetime business calendars for an introduction to business calendars and dates.

bcal check lists the business calendars used by the data in memory, if any.

bcal dir pattern lists filenames and directories of all available business calendars matching pattern,
or all business calendars if pattern is not specified.

bcal describe calname presents a description of the specified business calendar.

bcal load calname loads the specified business calendar. Business calendars load automatically

when needed, and thus use of bcal load is never required. bcal load is used by programmers writing
their own business calendars. bcal load calname forces immediate loading of a business calendar and

displays output, including any error messages due to improper calendar construction.

bcal create filename, from(varname) creates a business calendar file based on dates in varname.
Business holidays are inferred from gaps in varname. The qualifiers if and in, as well as the option
excludemissing(), can also be used to exclude dates from the new business calendar.

Quick start
Create business calendar file mycal.stbcal from date variable tvar in the dataset in memory

bcal create mycal, from(tvar)

Same as above, and generate business date variable newt formatted as %tbmycal
bcal create mycal, from(tvar) generate(newt)

List directories and filenames of available business calendars

bcal dir

Describe range, center date, and number of omitted days in business calendar mycal.stbcal
bcal describe mycal

Report any %tb formats applied to the variables in memory
bcal check

Menu
Data > Other utilities > Create a business calendar

Data > Other utilities > Manage business calendars

Data > Variables Manager

25

bcal — Business calendar file manipulation 26

Syntax
List business calendars used by the data in memory

bcal check [varlist] [, rc0]

List filenames and directories of available business calendars

bcal dir [pattern]

Describe the specified business calendar

bcal describe calname

Load the specified business calendar

bcal load calname

Create a business calendar from the current dataset

bcal create filename [if] [in], from(varname) [bcal create options]

where

varlist is a list of variable names to be checked for whether they use business calendars. If not speci-

fied, all variables are checked.

pattern is the name of a business calendar possibly containing wildcards * and ?. If pattern is not
specified, all available business calendar names are listed.

calname is the name of a business calendar either as a name or as a datetime format; for example,

calname could be simple or %tbsimple.

filename is the name of the business calendar file created by bcal create.

bcal create options Description

Main
∗ from(varname) specify date variable for calendar

generate(newvar) generate newvar containing business dates

excludemissing(varlist [, any]) exclude observations with missing values in varlist

personal save calendar file in your PERSONAL directory
replace replace file if it already exists

Advanced

purpose(text) describe purpose of calendar

dateformat(ymd | ydm | myd | mdy | dym | dmy) specify date format in calendar file

range(fromdate todate) specify range of calendar

centerdate(date) specify center date of calendar

maxgap(#) specify maximum gap allowed; default is 10 days

∗from(varname) is required.
collect is allowed with all bcal commands; see [U] 11.1.10 Prefix commands.

bcal — Business calendar file manipulation 27

Option for bcal check

� � �
Main �

rc0 specifies that bcal check is to exit without error (return 0) even if some calendars do not exist or
have errors. Programmers can then access the results bcal check stores in r() to get even more

details about the problems. If you wish to suppress bcal dir, precede the bcal check command

with capture and specify the rc0 option if you wish to access the r() results.

Options for bcal create

� � �
Main �

from(varname) specifies the date variable used to create the business calendar. Gaps between dates in
varname define business holidays. The longest gap allowed can be set with the maxgap() option.

from() is required.

generate(newvar) specifies that newvar be created. newvar is a date variable in %tbcalname format,
where calname is the name of the business calendar derived from filename.

excludemissing(varlist [, any]) specifies that the dates of observations withmissing values in varlist
are business holidays. By default, the dates of observations with missing values in all variables in

varlist are holidays. The any suboption specifies that the dates of observations with missing values
in any variable in varlist are holidays.

personal specifies that the calendar file be saved in the PERSONAL directory. This option cannot be used
if filename contains the pathname of the directory where the file is to be saved.

replace specifies that the business calendar file be replaced if it already exists.

� � �
Advanced �

purpose(text) specifies the purpose of the business calendar being created. text cannot exceed 63 char-
acters.

dateformat(ymd | ydm | myd | mdy | dym | dmy) specifies the date format in the new business calendar.

The default is dateformat(ymd). dateformat() has nothing to do with how dates will look when

variables are formatted with %tbcalname; it specifies how dates are typed in the calendar file.

range(fromdate todate) defines the date range of the calendar being created. fromdate and todate should
be in the format specified by the dateformat() option; if not specified, the default ymd format is
assumed.

centerdate(date) defines the center date of the new business calendar. If not specified, the earliest

date in the calendar is assumed. date should be in the format specified by the dateformat() option;
if not specified, the default ymd format is assumed.

maxgap(#) specifies the maximum number of consecutive business holidays allowed by bcal create.
The default is maxgap(10).

bcal — Business calendar file manipulation 28

Remarks and examples
bcal check reports on any %tb formats used by the data in memory:

. bcal check
%tbsimple: defined, used by variable

mydate

bcal dir reports on business calendars available:

. bcal dir
1 calendar file found:

simple: C:\Program Files\Stata19\ado\base\s\simple.stbcal

bcal describe reports on an individual calendar.

. bcal describe simple
Business calendar simple (format %tbsimple):
purpose: Example for manual
range: 01nov2011 30nov2011

18932 18961 in %td units
0 19 in %tbsimple units

center: 01nov2011
18932 in %td units

0 in %tbsimple units
omitted: 10 days

121.8 approx. days/year
included: 20 days

243.5 approx. days/year

bcal load is used by programmers writing new stbcal-files. See [D] Datetime business calendars

creation.

bcal create creates a business calendar file from the current dataset and describes the new calendar.

For example, sp500.dta is a dataset installed with Stata that has daily records on the S&P 500 stock
market index in 2001. The dataset has observations only for days when trading took place. A business

calendar for stock trading in 2001 can be automatically created from this dataset as follows:

. sysuse sp500
(S&P 500)
. bcal create sp500, from(date) purpose(S&P 500 for 2001) generate(bizdate)
Business calendar sp500 (format %tbsp500):
purpose: S&P 500 for 2001
range: 02jan2001 31dec2001

14977 15340 in %td units
0 247 in %tbsp500 units

center: 02jan2001
14977 in %td units

0 in %tbsp500 units
omitted: 116 days

116.4 approx. days/year
included: 248 days

248.9 approx. days/year
Notes:
business calendar file sp500.stbcal saved
variable bizdate created; it contains business dates in %tbsp500 format

bcal — Business calendar file manipulation 29

The business calendar file created:

begin sp500.stbcal
* Business calendar ”sp500” created by -bcal create-
* Created/replaced on 02 Apr 2021
version 19
purpose ”S&P 500 for 2001”
dateformat ymd
range 2001jan02 2001dec31
centerdate 2001jan02
omit dayofweek (Sa Su)
omit date 2001jan15
omit date 2001feb19
omit date 2001apr13
omit date 2001may28
omit date 2001jul04
omit date 2001sep03
omit date 2001sep11
omit date 2001sep12
omit date 2001sep13
omit date 2001sep14
omit date 2001nov22
omit date 2001dec25

end sp500.stbcal

bcal create filename, from() can save the calendar file anywhere in your directory system by

specifying a path in filename. It is assumed that the directory where the file is to be saved already exists.

The pattern of filename should be [path]calname[.stbcal]. Here calname should be without the %tb
prefix; calname has to be a valid Stata name but limited to 10 characters. If path is not specified, the file

is saved in the current working directory. If the .stbcal extension is not specified, it is added.

Save the file in a directory where Stata can find it. Stata automatically searches for stbcal-files in the

same way it searches for ado-files. Stata looks for ado-files and stbcal-files in the official Stata directo-

ries, your site’s directory (SITE), your current working directory, your personal directory (PERSONAL),
and your directory for materials written by other users (PLUS). The option personal specifies that the
calendar file be saved in your PERSONAL directory, which ensures that the created calendar can be easily
found in future work.

Stored results
bcal check stores the following in r():

Macros

r(defined) business calendars used, stbcal-file exists, and file contains no errors

r(undefined) business calendars used, but no stbcal-files exist for them

r(varlist calname) list of variable names that use business calendar calname

Warning to programmers: Specify the rc0 option to access these returned results. By default, bcal
check returns code 459 if a business calendar does not exist or if a business calendar exists but has

errors; in such cases, the results are not stored.

bcal dir stores the following in r():
Macros

r(calendars) business calendars available

r(fn calname) stbcal-file for business calendar calname

bcal — Business calendar file manipulation 30

bcal describe and bcal create store the following in r():

Scalars

r(min date td) calendar’s minimum date in %td units
r(max date td) calendar’s maximum date in %td units
r(ctr date td) calendar’s zero date in %td units
r(min date tb) calendar’s minimum date in %tb units
r(max date tb) calendar’s maximum date in %tb units
r(omitted) total number of days omitted from calendar

r(included) total number of days included in calendar

r(omitted year) approximate number of days omitted per year from calendar

r(included year) approximate number of days included per year in calendar

Macros

r(name) pure calendar name (for example, nyse)
r(purpose) short description of calendar’s purpose

r(fn) name of stbcal-file

bcal load stores the same results in r() as bcal describe, except it does not store r(omitted),
r(included), r(omitted year) and r(included year).

Reference
Rajbhandari, A. 2016. Handling gaps in time series using business calendars. The Stata Blog: Not Elsewhere Classified.

https://blog.stata.com/2016/02/04/handling-gaps-in-time-series-using-business-calendars/.

Also see
[D] Datetime — Date and time values and variables

[D] Datetime business calendars — Business calendars

[D] Datetime business calendars creation — Business calendars creation

https://blog.stata.com/2016/02/04/handling-gaps-in-time-series-using-business-calendars/

by — Repeat Stata command on subsets of the data

Description Quick start Syntax Options
Remarks and examples References Also see

Description
Most Stata commands allow the by prefix, which repeats the command for each group of observations

for which the values of the variables in varlist are the same. by without the sort option requires that the
data be sorted by varlist; see [D] sort.

Stata commands that work with the by prefix indicate this immediately following their syntax dia-
gram by reporting, for example, “by is allowed; see [D] by” or “bootstrap, by, etc., are allowed; see
[U] 11.1.10 Prefix commands”.

by and bysort are really the same command; bysort is just by with the sort option.

The varlist1 (varlist2) syntax is of special use to programmers. It verifies that the data are sorted by
varlist1 varlist2 and then performs a by as if only varlist1 were specified. For instance,

by pid (time): generate growth = (bp - bp[n-1])/bp

performs the generate by values of pid but first verifies that the data are sorted by pid and timewithin
pid.

Quick start
Generate newv as an observation number within each level of catvar

by catvar: generate newv = _n

Same as above, but sort data by catvar first
by catvar, sort: generate newv = _n

Same as above

bysort catvar: generate newv = _n

Same as above, but sort by v within values of catvar
bysort catvar (v): generate newv = _n

Generate newv as an observation number for each observation in levels of catvar and v
bysort catvar v: generate newv = _n

Note: Any command that accepts the by prefix may be substituted for generate above.

31

by — Repeat Stata command on subsets of the data 32

Syntax
by varlist : stata cmd

bysort varlist : stata cmd

The above diagrams show by and bysort as they are typically used.
The full syntax of the commands is

by varlist1 [(varlist2)] [, sort rc0] : stata cmd

bysort varlist1 [(varlist2)] [, rc0] : stata cmd

Options
sort specifies that if the data are not already sorted by varlist, by should sort them.

rc0 specifies that even if the stata cmd produces an error in one of the by-groups, then by is still to run
the stata cmd on the remaining by-groups. The default action is to stop when an error occurs. rc0
is especially useful when stata cmd is an estimation command and some by-groups have insufficient

observations.

Remarks and examples

Example 1
. use https://www.stata-press.com/data/r19/autornd
(1978 automobile data)
. keep in 1/20
(54 observations deleted)
. by mpg: egen mean_w = mean(weight)
not sorted
r(5);
. sort mpg
. by mpg: egen mean_w = mean(weight)

by — Repeat Stata command on subsets of the data 33

. list

make weight mpg mean_w

1. Cad. Eldorado 4000 15 3916.667
2. AMC Pacer 3500 15 3916.667
3. Chev. Impala 3500 15 3916.667
4. Buick Electra 4000 15 3916.667
5. Buick Riviera 4000 15 3916.667

6. Cad. Deville 4500 15 3916.667
7. AMC Spirit 2500 20 3350
8. Chev. Monte Carlo 3000 20 3350
9. Chev. Malibu 3000 20 3350

10. Buick Skylark 3500 20 3350

11. Buick Regal 3500 20 3350
12. Buick LeSabre 3500 20 3350
13. AMC Concord 3000 20 3350
14. Chev. Nova 3500 20 3350
15. Cad. Seville 4500 20 3350

16. Buick Century 3500 20 3350
17. Buick Opel 2000 25 2500
18. Chev. Monza 3000 25 2500
19. Dodge Colt 2000 30 2000
20. Chev. Chevette 2000 30 2000

by requires that the data be sorted. In the above example, we could have typed by mpg, sort:
egen mean w = mean(weight) or bysort mpg: egen mean w = mean(weight) rather than the sepa-

rate sort; all would yield the same results.

For more examples, see [U] 11.1.2 by varlist:, [U] 11.5 by varlist: construct, and [U] 13.7 Explicit

subscripting. For extended introductions with detailed examples, see Cox (2002) and Mitchell (2020,

chap. 8).

Technical note
by repeats the stata cmd for each group defined by varlist. If stata cmd stores results, only the

results from the last group on which stata cmd executes will be stored.

References
Cox, N. J. 2002. Speaking Stata: How to move step by: step. Stata Journal 2: 86–102.

———. 2020. Speaking Stata: Concatenating values over observations. Stata Journal 20: 236–243.

———. 2023. Speaking Stata: Replacing missing values: The easiest problems. Stata Journal 23: 884–896.

Huber, C. 2014. How to simulate multilevel/longitudinal data. The Stata Blog: Not Elsewhere Classified. https://blog.

stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/.

Mitchell, M. N. 2020. Data Management Using Stata: A Practical Handbook. 2nd ed. College Station, TX: Stata Press.

https://www.stata-journal.com/article.html?article=pr0004
https://doi.org/10.1177/1536867X20909698
https://doi.org/10.1177/1536867X231196519
https://blog.stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/
https://blog.stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/
https://www.stata-press.com/books/data-management-using-stata/

by — Repeat Stata command on subsets of the data 34

Also see
[D] sort — Sort data

[D] statsby — Collect statistics for a command across a by list

[P] byable — Make programs byable

[P] foreach — Loop over items

[P] forvalues — Loop over consecutive values

[P] while — Looping

[U] 11.1.2 by varlist:

[U] 11.1.10 Prefix commands

[U] 11.4 varname and varlists

[U] 11.5 by varlist: construct

cd — Change directory

Description Quick start Syntax Remarks and examples Also see

Description
Stata for Windows: cd changes the current working directory to the specified drive and directory.

pwd is equivalent to typing cd without arguments; both display the name of the current working direc-
tory. Note: You can shell out to a Windows command prompt; see [D] shell. However, typing !cd
directory name does not change Stata’s current directory; use the cd command to change directories.

Stata for Mac and Stata for Unix: cd (synonym chdir) changes the current working directory to

directory name or, if directory name is not specified, the home directory. pwd displays the path of the
current working directory.

Quick start
Change working directory in Stata for Windows to C:\mydir\myfolder

cd c:\mydir\myfolder

Change working directory in Stata for Windows to C:\my dir\my folder
cd ”c:\my dir\my folder”

Change working directory in Stata for Mac or Unix to mydir/myfolder
cd mydir/myfolder

Move up one level in the directory structure

cd ..

Move to myfolder from mydir
cd myfolder

View current working directory

pwd

Go to home directory in Stata for Mac or Unix

cd

35

cd — Change directory 36

Syntax
Stata for Windows

cd

cd [”]directory name[”]

cd [”]drive:[”]

cd [”]drive:directory name[”]

pwd

Stata for Mac and Stata for Unix

cd

cd [”]directory name[”]

pwd

If your directory name contains embedded spaces, remember to enclose it in double quotes.

Remarks and examples
Remarks are presented under the following headings:

Stata for Windows
Stata for Mac
Stata for Unix

Stata for Windows
When you start Stata for Windows, your current working directory is set to the Start in directory

specified in Properties. If you want to change this, see [GSW] B.1 The Windows Properties Sheet.

You can always see what your working directory is by looking at the status bar at the bottom of the Stata

window.

Once you are in Stata, you can change your directory with the cd command.

. cd
c:\data
. cd city
c:\data\city
. cd d:
D:\
. cd kande
D:\kande
. cd ”additional detail”
D:\kande\additional detail
. cd c:
C:\
. cd data\city
C:\data\city

cd — Change directory 37

. cd \a\b\c\d\e\f\g
C:\a\b\c\d\e\f\g
. cd ..
C:\a\b\c\d\e\f
. cd ...
C:\a\b\c\d
. cd
C:\a

When we typed cd d:, we changed to the current directory of the D drive. We navigated our

way to d:\kande\additional detail with three commands: cd d:, then cd kande, and then cd
”additional detail”. The double quotes around “additional detail” are necessary because of

the space in the directory name. We could have changed to this directory in one command: cd
”d:\kande\additional detail”.

Notice the last three cd commands in the example above. You are probably familiar with the cd ..
syntax to move up one directory from where you are. The last two cd commands above let you move
up more than one directory: cd ... is shorthand for “cd ..\..” and cd is shorthand for “cd
..\..\..”. These shorthand cd commands are not limited to Stata; they will work in your Command
window under Windows as well.

You can see the current directory (where Stata saves files and looks for files) by typing pwd. You can
change the current directory by using cd or by selecting File > Change working directory.... Stata’s

cd command understands “~” as an abbreviation for the home directory, so you can type things like cd
~\data.

. pwd
C:\Users\bill\proj
. cd ”~\data\city”
C:\Users\bill\data\city
.

If you now wanted to change to ”C:\Users\bill\data\city\ny”, you could type cd ny. If you

wanted instead to change to ”C:\Users\bill\data”, you could type “cd ..”.

Stata for Mac
Read [U] 11.6 Filenaming conventions for a description of how filenames are written in a command

language before reading this entry.

Invoking an application and then changing folders is an action foreign to most Mac users. If it is

foreign to you, you can ignore cd and pwd. However, they can be useful. You can see the current folder
(where Stata saves files and looks for files) by typing pwd. You can change the current folder by using
cd or by selecting File > Change working directory.... Stata’s cd command understands “~” as an

abbreviation for the home directory, so you can type things like cd ~/data.
. pwd
/Users/bill/proj
. cd ”~/data/city”
/Users/bill/data/city
.

If you now wanted to change to ”/Users/bill/data/city/ny”, you could type cd ny. If you wanted
instead to change to ”/Users/bill/data”, you could type “cd ..”.

cd — Change directory 38

Stata for Unix
cd and pwd are equivalent to Unix’s cd and pwd commands. Like csh, Stata’s cd understands “~” as

an abbreviation for the home directory $HOME, so you can type things like cd ~/data; see [U] 11.6 File-
naming conventions.

. pwd
/usr/bill/proj
. cd ~/data/city
/usr/bill/data/city
.

If you now wanted to change to /usr/bill/data/city/ny, you could type cd ny. If you wanted

instead to change to /usr/bill/data, you could type “cd ..”.

Also see
[D] copy — Copy file from disk or URL

[D] dir — Display filenames

[D] erase — Erase a disk file

[D] mkdir — Create directory

[D] rmdir — Remove directory

[D] shell — Temporarily invoke operating system

[D] type — Display contents of a file

[U] 11.6 Filenaming conventions

cf — Compare two datasets

Description Quick start Menu Syntax Options
Remarks and examples Stored results Acknowledgment Also see

Description
cf compares varlist of the dataset in memory (the master dataset) with the corresponding variables

in filename (the using dataset). cf returns nothing (that is, a return code of 0) if the specified variables
are identical and a return code of 9 if there are any differences. Only the variable values are compared.

Variable labels, value labels, notes, characteristics, etc., are not compared.

Quick start
Compare values of v1 and v2 from mydata1.dta in memory to mydata2.dta

cf v1 v2 using mydata2

Same as above, but give a detailed listing of the differences

cf v1 v2 using mydata2, verbose

Same as above, but for all variables in memory

cf _all using mydata2, verbose

Menu
Data > Data utilities > Compare two datasets

39

cf — Compare two datasets 40

Syntax
cf varlist using filename [, all verbose]

Options
all displays the result of the comparison for each variable in varlist. Unless all is specified, only the

results of the variables that differ are displayed.

verbose gives a detailed listing, by variable, of each observation that differs.

Remarks and examples
cf produces messages having the following form:

varname: does not exist in using
varname: in master but in using
varname: mismatches
varname: match

An example of the second message is “str4 in master but float in using”. Unless all is specified, the
fourth message does not appear—silence indicates matches.

Example 1
We think the dataset in memory is identical to mydata.dta, but we are unsure. Wewant to understand

any differences before continuing:

. cf _all using mydata

.

All the variables in the master dataset are in mydata.dta, and these variables are the same in both

datasets. We might see instead

. cf _all using mydata
mpg: 2 mismatches

headroom: does not exist in using
displacement: does not exist in using
gear_ratio: does not exist in using

r(9);

Two changes were made to the mpg variable, and the headroom, displacement, and gear ratio vari-
ables do not exist in mydata.dta.

cf — Compare two datasets 41

To see the result of each comparison, we could append the all option to our command:

. cf _all using mydata, all
make: match
price: match

mpg: 2 mismatches
rep78: match

headroom: does not exist in using
trunk: match

weight: match
length: match
turn: match

displacement: does not exist in using
gear_ratio: does not exist in using

foreign: match
r(9);

For more details on the mismatches, we can use the verbose option:

. cf _all using mydata, verbose
mpg: 2 mismatches

obs 1. 22 in master; 33 in using
obs 2. 17 in master; 33 in using

headroom: does not exist in using
displacement: does not exist in using
gear_ratio: does not exist in using

r(9);

This example shows us exactly which two observations for mpg differ, as well as the value stored in
each dataset.

Example 2
Wewant to compare a group of variables in the dataset in memory against the same group of variables

in mydata.dta.

. cf mpg headroom using mydata
mpg: 2 mismatches

headroom: does not exist in using
r(9);

Stored results
cf stores the following in r():
Macros

r(Nsum) number of differences

Acknowledgment
Speed improvements in cf were based on code written by David Kantor.

Also see
[D] compare — Compare two variables

changeeol — Convert end-of-line characters of text file

Description Quick start Syntax Options Remarks and examples Also see

Description
changeeol converts text file filename1 to text file filename2 with the specified Win-

dows/Unix/Mac/classic Mac-style end-of-line characters. changeeol changes the end-of-line characters
from one type of file to another.

Quick start
Create mytext2.txt with Windows end-of-line characters from mytext1.txt

changeeol mytext1.txt mytext2.txt, eol(windows)

Same as above, but convert to Mac-style end-of-line characters

changeeol mytext1.txt mytext2.txt, eol(mac)

Same as above, but convert to Unix-style end-of-line characters

changeeol mytext1.txt mytext2.txt, eol(unix)

Syntax
changeeol filename1 filename2, eol(platform) [options]

filename1 and filename2 must be filenames.

Note: Double quotes may be used to enclose the filenames, and the quotes must be used if the filename

contains embedded blanks.

options Description

∗ eol(windows) convert to Windows-style end-of-line characters (\r\n)
∗ eol(dos) synonym for eol(windows)
∗ eol(unix) convert to Unix-style end-of-line characters (\n)
∗ eol(mac) convert to Mac-style end-of-line characters (\n)
∗ eol(classicmac) convert to classic Mac-style end-of-line characters (\r)
replace overwrite filename2

force force to convert filename1 to filename2 if filename1 is a binary file

∗eol() is required.

Options
eol(windows | dos | unix | mac | classicmac) specifies to which platform style filename2 is to be con-

verted. eol() is required.

replace specifies that filename2 be replaced if it already exists.

force specifies that filename1 be converted if it is a binary file.

42

changeeol — Convert end-of-line characters of text file 43

Remarks and examples
changeeol uses hexdump to determine whether filename1 is text or binary. If it is binary, changeeol

will refuse to convert it unless the force option is specified.

Examples

Windows:

. changeeol orig.txt newcopy.txt, eol(windows)

Unix:

. changeeol orig.txt newcopy.txt, eol(unix)

Mac:

. changeeol orig.txt newcopy.txt, eol(mac)

Classic Mac:

. changeeol orig.txt newcopy.txt, eol(classicmac)

Also see
[D] filefilter — Convert ASCII or binary patterns in a file

[D] hexdump — Display hexadecimal report on file

checksum — Calculate checksum of file

Description Quick start Syntax Options
Remarks and examples Stored results Also see

Description
checksum creates filename.sum files for later use by Stata when it reads files over a network. These

optional files are used to reduce the chances of corrupted files going undetected. Whenever Stata reads

file filename.suffix over a network, whether by use, net, update, etc., it also looks for filename.sum.
If Stata finds that file, Stata reads it and uses its contents to verify that the first file was received without

error. If there are errors, Stata informs the user that the file could not be read.

Quick start
Calculate checksum of mydata.dta

checksum mydata.dta

Same as above, and save results to mydata.sum
checksum mydata.dta, save

Same as above, but save results to mycheck.sum
checksum mydata.dta, saving(mycheck.sum)

Same as above, but replace mycheck.sum if it exists
checksum mydata.dta, saving(mycheck.sum, replace)

Syntax
checksum filename [, options]

options Description

save save output to filename.sum; default is to display a report
replace may overwrite filename.sum; use with save
saving(filename2 [, replace]) save output to filename2; alternative to save

44

checksum — Calculate checksum of file 45

Technical note
checksum calculates a CRC checksum following the POSIX 1003.2 specification and displays the file

size in bytes. checksum produces the same results as the Unix cksum command. Comparing the check-
sum of the original file with the received file guarantees the integrity of the received file.

When comparing Stata’s checksum results with those of Unix, do not confuse Unix’s sum and cksum
commands. Unix’s cksum and Stata’s checksum use a more robust algorithm than that used by Unix’s

sum. In some Unix operating systems, there is no cksum command, and the more robust algorithm is

obtained by specifying an option with sum.

Options
save saves the output of the checksum command to the text file filename.sum. The default is to display

a report but not create a file.

replace is for use with save; it permits Stata to overwrite an existing filename.sum file.

saving(filename2 [, replace]) is an alternative to save. It saves the output in the specified filename.
You must supply a file extension if you want one, because none is assumed.

Remarks and examples

Example 1
Say that you wish to put a dataset on your homepage so that colleagues can use it over the internet by

typing

. use http://www.myuni.edu/department/~joe/mydata

mydata.dta is important, and even though the chances of the file mydata.dta being corrupted by the
internet are small, you wish to guard against that. The solution is to create the checksum file named

mydata.sum and place that on your homepage. Your colleagues need type nothing different, but now
Stata will verify that all goes well. When they use the file, they will see either

. use http://www.myuni.edu/department/~joe/mydata
(important data from joe)

or

. use http://www.myuni.edu/department/~joe/mydata
file transmission error (checksums do not match)
http://www.myuni.edu/department/~joe/mydata.dta not downloaded
r(639);

To make the checksum file, change to the directory where the file is located and type

. checksum mydata.dta, save
Checksum for mydata.dta = 263508742, size = 4052
file mydata.sum saved

checksum — Calculate checksum of file 46

Example 2
Let’s use checksum on auto.dta that is shipped with Stata. We will load the dataset and save it to

our current directory.

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. save auto
file auto.dta saved
. checksum auto.dta
Checksum for auto.dta = 108935638, size = 12765

We see the report produced by checksum, but we decide to save this information to a file.

. checksum auto.dta, save

. type auto.sum
1 12765 108935638

The first number is the version number (possibly used for future releases). The second number is the

file’s size in bytes, which can be used with the checksum value to ensure that the file transferred without

corruption. The third number is the checksum value. Although two different files can have the same

checksum value, two files with the same checksum value almost certainly could not have the same file

size.

This example is admittedly artificial. Typically, you would use checksum to verify that no file trans-
mission error occurred during a web download. If you want to verify that your own data are unchanged,

using datasignature is better; see [D] datasignature.

Stored results
checksum stores the following in r():

Scalars

r(version) checksum version number
r(filelen) length of file in bytes

r(checksum) checksum value

Also see
[R] net — Install and manage community-contributed additions from the internet

[D] use — Load Stata dataset

[D] datasignature — Determine whether data have changed

clear — Clear memory

Description Quick start Syntax Remarks and examples Also see

Description
clear, by itself, removes data and value labels from memory and is equivalent to typing

. drop _all (see [D] drop)

. label drop _all (see [D] label)

clear mata removes Mata functions and objects from memory and is equivalent to typing

. mata: mata clear (see [M-3] mata clear)

clear results eliminates stored results from memory and is equivalent to typing

. return clear (see [P] return)

. ereturn clear (see [P] return)

. sreturn clear (see [P] return)

. _return drop _all (see [P] _return)

clear matrix eliminates from memory all matrices created by Stata’s matrix command; it does not
eliminate Mata matrices from memory. clear matrix is equivalent to typing

. return clear (see [P] return)

. ereturn clear (see [P] return)

. sreturn clear (see [P] return)

. _return drop _all (see [P] _return)

. matrix drop _all (see [P] matrix utility)

. estimates drop _all (see [R] estimates)

clear programs eliminates all programs from memory and is equivalent to typing

. program drop _all (see [P] program)

clear ado eliminates all automatically loaded ado-file programs from memory (but not programs

defined interactively or by do-files). It is equivalent to typing

. program drop _allado (see [P] program)

clear rngstream eliminates from memory stored random-number states for all mt64s streams (in-
cluding the current stream). It resets the mt64s generator to the beginning of every stream, based on the
current mt64s seed. clear rngstream does not change the current mt64s seed and stream. The mt64s
seed and stream can be set with set seed and set rngstream, respectively.

clear frames eliminates from memory all frames and restores Stata to its initial state of having a
single, empty frame named default.

clear collect removes all collections from memory and is equivalent to typing

. collect clear (see [TABLES] collect clear)

47

clear — Clear memory 48

clear all and clear * are synonyms. They remove all data, value labels, matrices, scalars, con-
straints, clusters, stored results, frames, sersets, and Mata functions and objects from memory. They

also close all open files and postfiles, clear the class system, close any open Graph windows and dialog

boxes, drop all programs from memory, and reset all timers to zero. However, they do not call clear
rngstream. They are equivalent to typing

. drop _all (see [D] drop)

. frames reset (see [D] frames reset)

. collect clear (see [TABLES] collect clear)

. label drop _all (see [D] label)

. matrix drop _all (see [P] matrix utility)

. scalar drop _all (see [P] scalar)

. constraint drop _all (see [R] constraint)

. cluster drop _all (see [MV] cluster utility)

. file close _all (see [P] file)

. postutil clear (see [P] postfile)

. _return drop _all (see [P] _return)

. discard (see [P] discard)

. program drop _all (see [P] program)

. timer clear (see [P] timer)

. putdocx clear (see [RPT] putdocx begin)

. putpdf clear (see [RPT] putpdf begin)

. mata: mata clear (see [M-3] mata clear)

. python clear (see [P] PyStata integration)

. java clear (see [P] Java integration)

Quick start
Remove data and value labels from memory

clear

Remove Stata matrices from memory

clear matrix

Remove Mata matrices, Mata objects, and Mata functions from memory

clear mata

Remove all programs from memory

clear programs

Same as above, but only programs automatically loaded by ado-files

clear ado

Remove results stored in r(), e(), and s() from memory

clear results

Remove all the above and constraints, clusters, and sersets; reset timers to 0; clear the class system; and

close all open files, graph windows, and dialog boxes

clear all

Same as above

clear *

clear — Clear memory 49

Syntax
clear

clear [mata | results | matrix | programs | ado | rngstream | frames | collect]

clear [all | *]

Remarks and examples
You can clear the entire dataset without affecting macros and programs by typing clear. You can also

type clear all. This command has the same result as clear by itself but also clears matrices, scalars,
constraints, clusters, stored results, sersets, Mata, the class system, business calendars, and programs;

closes all open files and postfiles; closes all open Graph windows and dialog boxes; and resets all timers

to zero.

Example 1
We load the bpwide dataset to correct a mistake in the data.

. use https://www.stata-press.com/data/r19/bpwide
(Fictional blood-pressure data)
. list in 1/5

patient sex agegrp bp_bef~e bp_after

1. 1 Male 30-45 143 153
2. 2 Male 30-45 163 170
3. 3 Male 30-45 153 168
4. 4 Male 30-45 153 142
5. 5 Male 30-45 146 141

. replace bp_after = 145 in 3
(1 real change made)

We made another mistake. We meant to change the value of bp after in observation 4. It is easiest to
begin again.

. clear

. use https://www.stata-press.com/data/r19/bpwide
(Fictional blood-pressure data)

Also see
[D] drop — Drop variables or observations

[P] discard — Drop automatically loaded programs

[U] 11 Language syntax

[U] 13 Functions and expressions

clonevar — Clone existing variable

Description Quick start Menu Syntax
Remarks and examples Acknowledgments Also see

Description
clonevar generates newvar as an exact copy of an existing variable, varname, with the same storage

type, values, and display format as varname. varname’s variable label, value labels, notes, and charac-

teristics will also be copied.

Quick start
Copy contents, label, and value label of v1 to newv1

clonevar newv1 = v1

Copy observations from v2 to newv2 where v2 is less than 30
clonevar newv2 = v2 if v2 < 30

Copy the first 20 observations of v3 to newv3
clonevar newv3 = v3 in f/20

Same as above

clonevar newv3 = v3 in 1/20

Menu
Data > Create or change data > Other variable-creation commands > Clone existing variable

Syntax
clonevar newvar = varname [if] [in]

Remarks and examples
clonevar has various possible uses. Programmers may desire that a temporary variable appear to

the user exactly like an existing variable. Interactively, you might want a slightly modified copy of an

original variable, so the natural starting point is a clone of the original.

50

clonevar — Clone existing variable 51

Example 1
We have a dataset containing information on modes of travel. These data contain a variable named

mode that identifies each observation as a specific mode of travel: air, train, bus, or car.

. use https://www.stata-press.com/data/r19/travel
(Modes of travel)
. describe mode
Variable Storage Display Value

name type format label Variable label

mode byte %8.0g travel Travel mode alternatives
. label list travel
travel:

1 Air
2 Train
3 Bus
4 Car

To create an identical variable identifying only observations that contain air or train, we could use

clonevar with an if qualifier.

. clonevar airtrain = mode if mode == 1 | mode == 2
(420 missing values generated)
. describe mode airtrain
Variable Storage Display Value

name type format label Variable label

mode byte %8.0g travel Travel mode alternatives
airtrain byte %8.0g travel Travel mode alternatives
. list mode airtrain in 1/5

mode airtrain

1. Air Air
2. Train Train
3. Bus .
4. Car .
5. Air Air

The new airtrain variable has the same storage type, display format, value label, and variable label
as mode. If mode had any characteristics or notes attached to it, they would have been applied to the new
airtrain variable, too. The only differences in the two variables are their names and values for bus and
car.

Technical note
The if qualifier used with the clonevar command in example 1 referred to the values of mode as 1

and 2. Had we wanted to refer to the values by their associated value labels, we could have typed

. clonevar airtrain = mode if mode == ”air”:travel | mode == ”train”:travel

For more details, see [U] 13.11 Label values.

clonevar — Clone existing variable 52

Acknowledgments
clonevarwas written by Nicholas J. Cox of the Department of Geography at DurhamUniversity, UK,

who is coeditor of the Stata Journal and author of Speaking Stata Graphics. He in turn thanks Michael

Blasnik of Nest Labs and Ken Higbee of StataCorp for very helpful comments on a precursor of this

command.

Also see
[D] generate — Create or change contents of variable

[D] separate — Create separate variables

https://www.stata-journal.com/
https://www.stata-press.com/books/speaking-stata-graphics/

codebook — Describe data contents

Description Quick start Menu Syntax Options
Remarks and examples Stored results References Also see

Description
codebook examines the variable names, labels, and data to produce a codebook describing the dataset.

Quick start
Codebook of all variables in the dataset

codebook

Codebook of variables v1, v2, and v3
codebook v1 v2 v3

Codebook of all variables starting with code
codebook code*

Include dataset name, last saved date, and variable notes in the codebook

codebook, header notes

Report problemswith labels, constant-valued variables, embedded spaces and binary 0 in string variables,

and noninteger date variables

codebook, problems

Codebook for dataset with English and Spanish variable and value labels using label languages en and
es

codebook, languages(en es)

Menu
Data > Describe data > Describe data contents (codebook)

53

codebook — Describe data contents 54

Syntax
codebook [varlist] [if] [in] [, options]

options Description

Options

all print complete report without missing values

header print dataset name and last saved date

notes print any notes attached to variables

mv report pattern of missing values

tabulate(#) set tables/summary statistics threshold; default is tabulate(9)
problems report potential problems in dataset

detail display detailed report on the variables; only with problems
compact display compact report on the variables

dots display a dot for each variable processed; only with compact

Languages

languages[(namelist)] use with multilingual datasets; see [D] label language for details

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Options �

all is equivalent to specifying the header and notes options. It provides a complete report, which

excludes only performing mv.

header adds to the top of the output a header that lists the dataset name, the date that the dataset was last
saved, etc.

notes lists any notes attached to the variables; see [D] notes.

mv specifies that codebook search the data to determine the pattern of missing values. This is a CPU-

intensive task.

tabulate(#) specifies the number of unique values of the variables to use to determine whether a

variable is categorical or continuous. Missing values are not included in this count. The default is

9; when there are more than nine unique values, the variable is classified as continuous. Extended

missing values will be included in the tabulation.

problems specifies that a summary report is produced describing potential problems that have been

diagnosed:

• Variables that are labeled with an undefined value label

• Incompletely value-labeled variables

• Variables that are constant, including always missing

• Leading, trailing, and embedded spaces in string variables

• Embedded binary 0 (\0) in string variables

• Noninteger-valued date variables

See the discussion of these problems and advice on overcoming them following example 5.

codebook — Describe data contents 55

detail may be specified only with the problems option. It specifies that the detailed report on the

variables not be suppressed.

compact specifies that a compact report on the variables be displayed. compact may not be specified
with any options other than dots.

dots specifies that a dot be displayed for every variable processed. dots may be specified only with
compact.

� � �
Languages �

languages[(namelist)] is for use with multilingual datasets; see [D] label language. It indicates that the
codebook pertains to the languages in namelist or to all defined languages if no such list is specified

as an argument to languages(). The output of codebook lists the data label and variable labels in
these languages and which value labels are attached to variables in these languages.

Problems are diagnosed in all of these languages, as well. The problem report does not provide details

in which language problems occur. We advise you to rerun codebook for problematic variables;

specify detail to produce the problem report again.

If you have a multilingual dataset but do not specify languages(), all output, including the problem
report, is shown in the “active” language.

Remarks and examples
codebook, without arguments, is most usefully combined with log to produce a printed listing for

enclosure in a notebook documenting the data; see [U] 15 Saving and printing output—log files.

codebook is, however, also useful interactively, because you can specify one or a few variables.

Example 1
codebook examines the data in producing its results. For variables that codebook thinks are continu-

ous, it presents the mean; the standard deviation; and the 10th, 25th, 50th, 75th, and 90th percentiles. For

variables that it thinks are categorical, it presents a tabulation. In part, codebook makes this determina-
tion by counting the number of unique values of the variable. If the number is nine or fewer, codebook
reports a tabulation; otherwise, it reports summary statistics.

codebook distinguishes the standard missing values (.) and the extended missing values (.a through
.z, denoted by .*). If extended missing values are found, codebook reports the number of distinct

missing value codes that occurred in that variable. Missing values are ignored with the tabulate option
when determining whether a variable is treated as continuous or categorical.

codebook — Describe data contents 56

. use https://www.stata-press.com/data/r19/educ3
(ccdb46, 52-54)
. codebook fips division, all

Dataset: https://www.stata-press.com/data/r19/educ3.dta
Last saved: 6 Mar 2024 22:20

Label: ccdb46, 52-54
Number of variables: 42

Number of observations: 956
Size: 145,312 bytes ignoring labels, etc.

_dta:
1. confirmed data with steve on 7/22

fips state/place code

Type: Numeric (long)
Range: [10060,560050] Units: 1

Unique values: 956 Missing .: 0/956
Mean: 256495

Std. dev.: 156998
Percentiles: 10% 25% 50% 75% 90%

61462 120426 252848 391360 482530

division Census Division

Type: Numeric (int)
Label: division
Range: [1,9] Units: 1

Unique values: 9 Missing .: 4/956
Unique mv codes: 2 Missing .*: 2/956

Tabulation: Freq. Numeric Label
69 1 N. Eng.
97 2 Mid Atl

202 3 E.N.C.
78 4 W.N.C.

115 5 S. Atl.
46 6 E.S.C.
89 7 W.S.C.
59 8 Mountain

195 9 Pacific
4 .
2 .a

Because division has nine unique nonmissing values, codebook reported a tabulation. If division
had contained one more unique nonmissing value, codebookwould have switched to reporting summary
statistics, unless we had included the tabulate(#) option.

codebook — Describe data contents 57

Example 2
The mv option is useful. It instructs codebook to search the data to determine patterns of missing

values. Different kinds of missing values are not distinguished in the patterns.

. use https://www.stata-press.com/data/r19/citytemp
(City temperature data)
. codebook cooldd heatdd tempjan tempjuly, mv

cooldd Cooling degree days

Type: Numeric (int)
Range: [0,4389] Units: 1

Unique values: 438 Missing .: 3/956
Mean: 1240.41

Std. dev.: 937.668
Percentiles: 10% 25% 50% 75% 90%

411 615 940 1566 2761
Missing values: heatdd==mv <-> cooldd==mv

tempjan==mv --> cooldd==mv
tempjuly==mv --> cooldd==mv

heatdd Heating degree days

Type: Numeric (int)
Range: [0,10816] Units: 1

Unique values: 471 Missing .: 3/956
Mean: 4425.53

Std. dev.: 2199.6
Percentiles: 10% 25% 50% 75% 90%

1510 2460 4950 6232 6919
Missing values: cooldd==mv <-> heatdd==mv

tempjan==mv --> heatdd==mv
tempjuly==mv --> heatdd==mv

tempjan Average January temperature

Type: Numeric (float)
Range: [2.2,72.6] Units: .1

Unique values: 310 Missing .: 2/956
Mean: 35.749

Std. dev.: 14.1881
Percentiles: 10% 25% 50% 75% 90%

20.2 25.1 31.3 47.8 55.1
Missing values: tempjuly==mv <-> tempjan==mv

codebook — Describe data contents 58

tempjuly Average July temperature

Type: Numeric (float)
Range: [58.1,93.6] Units: .1

Unique values: 196 Missing .: 2/956
Mean: 75.0538

Std. dev.: 5.49504
Percentiles: 10% 25% 50% 75% 90%

68.8 71.8 74.25 78.7 82.3
Missing values: tempjan==mv <-> tempjuly==mv

codebook reports that if tempjan is missing, tempjuly is also missing, and vice versa. In the output
for the cooldd variable, codebook also reports that the pattern of missing values is the same for cooldd
and heatdd. In both cases, the correspondence is indicated with “<->”.

For cooldd, codebook also states that “tempjan==mv –> cooldd==mv”. The one-way arrow means

that a missing tempjan value implies a missing cooldd value but that a missing cooldd value does not
necessarily imply a missing tempjan value.

Another feature of codebook—this one for numeric variables—is that it can determine the units of

the variable. For instance, in the example above, tempjan and tempjuly both have units of 0.1, meaning
that temperature is recorded to tenths of a degree. codebook handles precision considerations in making
this determination (tempjan and tempjuly are floats; see [U] 13.12 Precision and problems therein).

If we had a variable in our dataset recorded in 100s (for example, 21,500 or 36,800), codebook would
have reported the units as 100. If we had a variable that took on only values divisible by 5 (5, 10, 15,

etc.), codebook would have reported the units as 5.

Example 3
We can use the label language command (see [D] label language) and the label command (see

[D] label) to create German value labels for our auto dataset. These labels are reported by codebook:

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. label language en, rename
(language default renamed en)
. label language de, new
(language de now current language)
. label data ”1978 Automobile Daten”
. label variable foreign ”Art Auto”
. label values foreign origin_de
. label define origin_de 0 ”Innen” 1 ”Ausländisch”

codebook — Describe data contents 59

. codebook foreign

foreign Art Auto

Type: Numeric (byte)
Label: origin_de
Range: [0,1] Units: 1

Unique values: 2 Missing .: 0/74
Tabulation: Freq. Numeric Label

52 0 Innen
22 1 Ausländisch

. codebook foreign, languages(en de)

foreign in en: Car origin
in de: Art Auto

Type: Numeric (byte)
Label in en: origin
Label in de: origin_de

Range: [0,1] Units: 1
Unique values: 2 Missing .: 0/74

Tabulation: Freq. Numeric origin origin_de
52 0 Domestic Innen
22 1 Foreign Ausländisch

With the languages() option, the value labels are shown in the specified active and available lan-
guages.

Example 4
codebook, compact summarizes the variables in your dataset, including variable labels. It is an

alternative to the summarize command.

. use https://www.stata-press.com/data/r19/auto, clear
(1978 automobile data)
. codebook, compact
Variable Obs Unique Mean Min Max Label

make 74 74 . . . Make and model
price 74 74 6165.257 3291 15906 Price
mpg 74 21 21.2973 12 41 Mileage (mpg)
rep78 69 5 3.405797 1 5 Repair record 1978
headroom 74 8 2.993243 1.5 5 Headroom (in.)
trunk 74 18 13.75676 5 23 Trunk space (cu. ft.)
weight 74 64 3019.459 1760 4840 Weight (lbs.)
length 74 47 187.9324 142 233 Length (in.)
turn 74 18 39.64865 31 51 Turn circle (ft.)
displacement 74 31 197.2973 79 425 Displacement (cu. in.)
gear_ratio 74 36 3.014865 2.19 3.89 Gear ratio
foreign 74 2 .2972973 0 1 Car origin

codebook — Describe data contents 60

. summarize
Variable Obs Mean Std. dev. Min Max

make 0
price 74 6165.257 2949.496 3291 15906

mpg 74 21.2973 5.785503 12 41
rep78 69 3.405797 .9899323 1 5

headroom 74 2.993243 .8459948 1.5 5

trunk 74 13.75676 4.277404 5 23
weight 74 3019.459 777.1936 1760 4840
length 74 187.9324 22.26634 142 233
turn 74 39.64865 4.399354 31 51

displacement 74 197.2973 91.83722 79 425

gear_ratio 74 3.014865 .4562871 2.19 3.89
foreign 74 .2972973 .4601885 0 1

Example 5
When codebook determines that neither a tabulation nor a listing of summary statistics is appropriate,

for instance, for a string variable or for a numeric variable taking on many labeled values, it reports a

few examples instead.

. use https://www.stata-press.com/data/r19/funnyvar

. codebook name

name (unlabeled)

Type: String (str5), but longest is str3
Unique values: 10 Missing ””: 0/10

Examples: ”1 0”
”3”
”5”
”7”

Warning: Variable has embedded blanks.

codebook is also on the lookout for common problems that might cause you to make errors when

dealing with the data. For string variables, this includes leading, embedded, and trailing blanks and

embedded binary 0 (\0). In the output above, codebook informed us that name includes embedded

blanks. If name had leading or trailing blanks, it would have mentioned that, too.

When variables are value labeled, codebook performs two checks. First, if a value label labname

is associated with a variable, codebook checks whether labname is actually defined. Second, it checks
whether all values are value labeled. Partial labeling of a variable may mean that the label was defined

incorrectly (for instance, the variable has values 0 and 1, but the value label maps 1 to “male” and 2 to

“female”) or that the variable was defined incorrectly (for example, a variable genderwith three values).
codebook checks whether date variables are integer valued.

If the problems option is specified, codebook does not provide detailed descriptions of each variable
but reports only the potential problems in the data.

codebook — Describe data contents 61

. codebook, problems
Potential problems in dataset https://www.stata-press.com/data/r19/
> funnyvar.dta

Potential problem Variables

constant (or all missing) vars human planet
vars with nonexisting label educ
incompletely labeled vars gender

str# vars that may be compressed name address city country planet
string vars with leading blanks city country
string vars with trailing blanks planet
string vars with embedded blanks name address

string vars with embedded \0 mugshot
noninteger-valued date vars birthdate

In the example above, codebook, problems reported various potential problems with the dataset.
These problems include

• Constant variables, including variables that are always missing

Variables that are constant, taking the same value in all observations, or that are always

missing, are often superfluous. Such variables, however, may also indicate problems. For

instance, variables that are always missing may occur when importing data with an incor-

rect input specification. Such variables may also occur if you generate a new variable for

a subset of the data, selected with an expression that is false for all observations.

Advice: Carefully check the origin of constant variables. If you are saving a constant

variable, be sure to compress the variable to use minimal storage.

• Variables with nonexisting value labels

Stata treats value labels as separate objects that can be attached to one or more variables.

A problem may arise if variables are linked to value labels that are not yet defined or if an

incorrect value label name was used.

Advice: Attach the correct value label, or label define the value label. See [D] label.

• Incompletely labeled variables

A variable is called “incompletely value labeled” if the variable is value labeled but no

mapping is provided for some values of the variable. An example is a variable with values

0, 1, and 2 and value labels for 1, 2, and 3. This situation usually indicates an error, either

in the data or in the value label.

Advice: Change either the data or the value label.

• String variables that may be compressed

The storage space used by a string variable is determined by its data type; see [D] Data

types. For instance, the storage type str20 indicates that 20 bytes are used per observation.
If the declared storage type exceeds your requirements, memory and disk space is wasted.

Advice: Use compress to store the data as compactly as possible.

codebook — Describe data contents 62

• String variables with leading or trailing blanks

In most applications, leading and trailing spaces do not affect the meaning of variables

but are probably side effects from importing the data or from data manipulation. Spurious

leading and trailing spaces force Stata to use more memory than required. In addition,

manipulating strings with leading and trailing spaces is harder.

Advice: Remove leading and trailing blanks from a string variable s by typing

replace s = strtrim(s)

See [FN] String functions.

• String variables with embedded blanks

String variables with embedded blanks are often appropriate; however, sometimes they

indicate problems importing the data.

Advice: Verify that blanks are meaningful in the variables.

• String variables with embedded binary 0 (\0)

String variables with embedded binary 0 (\0) are allowed; however, caution should be
used when working with them as some commands and functions may only work with the

plain text portion of a binary string, ignoring anything after the first binary 0.

Advice: Be aware of binary strings in your data and whether you are manipulating them

in a way that is only appropriate with plain text values.

• Noninteger-valued date variables

Stata’s date and time formats were designed for use with integer values but will work with

noninteger values.

Advice: Carefully inspect the nature of the noninteger values. If noninteger values in a

variable are the consequence of roundoff error, you may want to round the variable to the

nearest integer.

replace time = round(time)

Of course, more problems not reported by codebook are possible. These might include

• Numerical data stored as strings

After importing data into Stata, youmay discover that some string variables can actually be

interpreted as numbers. Stata can do much more with numerical data than with string data.

Moreover, string representation usually makes less efficient use of computer resources.

destring will convert string variables to numeric.

Astring variablemay contain a “field” with numeric information. An example is an address

variable that contains the street name followed by the house number. The Stata string

functions can extract the relevant substring.

• Categorical variables stored as strings

Most statistical commands do not allow string variables. Moreover, string variables that

take only a limited number of distinct values are an inefficient storage method. Use value-

labeled numeric values instead. These are easily created with encode.

• Duplicate observations

See [D] duplicates.

codebook — Describe data contents 63

• Observations that are always missing

Drop observations that are missing for all variables in varlist using the rownonmiss()
egen function:

egen nobs = rownonmiss(varlist)

drop if nobs==0

Specify all for varlist if only observations that are always missing should be dropped.

Stored results
codebook stores the following lists of variables with potential problems in r():

Macros

r(cons) constant (or missing)

r(labelnotfound) undefined value labeled

r(notlabeled) value labeled but with unlabeled categories

r(str type) compressible

r(str leading) leading blanks

r(str trailing) trailing blanks

r(str embedded) embedded blanks

r(str embedded0) embedded binary 0 (\0)
r(realdate) noninteger dates

References
Bjärkefur, K., L. Cardoso de Andrade, and B. Daniels. 2020. iefieldkit: Commands for primary data collection and

cleaning. Stata Journal 20: 892–915.

———. 2023. iefieldkit: Commands for primary data collection and cleaning (update). Stata Journal 23: 875–883.

Cox, N. J. 2012. Software Updates: Speaking Stata: Distinct observations. Stata Journal 12: 352.

Cox, N. J., and G. M. Longton. 2008. Speaking Stata: Distinct observations. Stata Journal 8: 557–568.

Long, J. S. 2009. The Workflow of Data Analysis Using Stata. College Station, TX: Stata Press.

Also see
[D] describe — Describe data in memory or in a file

[D] ds — Compactly list variables with specified properties

[D] inspect — Display simple summary of data’s attributes

[D] labelbook — Label utilities

[D] notes — Place notes in data

[D] split — Split string variables into parts

[U] 15 Saving and printing output—log files

https://doi.org/10.1177/1536867X20976321
https://doi.org/10.1177/1536867X20976321
https://doi.org/10.1177/1536867X231196496
https://www.stata-journal.com/article.html?article=up0036
https://www.stata-journal.com/article.html?article=dm0042
https://www.stata-press.com/books/wdaus.html

collapse — Make dataset of summary statistics

Description Quick start Menu Syntax
Options Remarks and examples Acknowledgment Also see

Description
collapse converts the dataset in memory into a dataset of means, sums, medians, etc. clist must

refer to numeric variables exclusively.

Note: See [D] contract if you want to collapse to a dataset of frequencies.

Quick start
Replace dataset in memory with means of v1 and v2

collapse v1 v2

Same as above, but calculate statistics separately by each level of catvar
collapse v1 v2, by(catvar)

Dataset of mean, standard deviation, and standard error of the mean of v1
collapse (mean) mean1=v1 (sd) sd1=v1 (semean) sem1=v1

Mean and standard error of the mean for binomial v2
collapse (mean) mean2=v2 (sebinomial) sem2=v2

Frequency, median, and interquartile range of v1
collapse (count) freq=v1 (p50) p50=v1 (iqr) iqr=v1

Weighted and unweighted sum of v2 using frequency weight wvar
collapse (sum) weighted=v2 (rawsum) unweighted=v2 [fweight=wvar]

Menu
Data > Create or change data > Other variable-transformation commands > Make dataset of means, medians,
etc.

64

collapse — Make dataset of summary statistics 65

Syntax
collapse clist [if] [in] [weight] [, options]

where clist is either

[(stat)] varlist [[(stat)] . . .]
[(stat)] target var=varname [target var=varname . . .] [[(stat)] . . .]

or any combination of the varlist and target var forms, and stat is one of

mean means; the default
median medians
p1 1st percentile
p2 2nd percentile
. . . 3rd–49th percentiles
p50 50th percentile (same as median)
. . . 51st–97th percentiles
p98 98th percentile
p99 99th percentile
sd standard deviations
semean standard error of the mean (sd/sqrt(n))
sebinomial standard error of the mean, binomial (sqrt(p(1-p)/n))
sepoisson standard error of the mean, Poisson (sqrt(mean/n))
sum sums
rawsum sums, ignoring optionally specified weight except observations with a weight of zero are excluded
count number of nonmissing observations
percent percentage of nonmissing observations in the by group

(100 × (# nonmissing in by group)/(total # nonmissing))
max maximums
min minimums
iqr interquartile range
first first value
last last value
firstnm first nonmissing value
lastnm last nonmissing value

options Description

Options

by(varlist) groups over which stat is to be calculated

cw casewise deletion instead of all possible observations

fast do not restore the original dataset should the user press Break; programmer’s
command

varlist and varname in clist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight, and see Weights below. pweights may
not be used with sd, semean, sebinomial, or sepoisson. iweights may not be used with semean, sebinomial, or
sepoisson. aweights may not be used with sebinomial or sepoisson.

fast does not appear in the dialog box.

Examples:

. collapse age educ income, by(state)

. collapse (mean) age educ (median) income, by(state)

. collapse (mean) age educ income (median) medinc=income, by(state)

. collapse (p25) gpa [fw=number], by(year)

collapse — Make dataset of summary statistics 66

Options

� � �
Options �

by(varlist) specifies the groups over which the means, etc., are to be calculated. If this option is not
specified, the resulting dataset will contain 1 observation. If it is specified, varlist may refer to either

string or numeric variables.

cw specifies casewise deletion. If cw is not specified, all possible observations are used for each calculated
statistic.

The following option is available with collapse but is not shown in the dialog box:

fast specifies that collapse not restore the original dataset should the user press Break. fast is in-
tended for use by programmers.

Remarks and examples
collapse takes the dataset in memory and creates a new dataset containing summary statistics of the

original data. collapse adds meaningful variable labels to the variables in this new dataset. Because

the syntax diagram for collapse makes using it appear more complicated than it is, collapse is best
explained with examples.

Remarks are presented under the following headings:

Introductory examples
Variablewise or casewise deletion
Weights
A final example

Introductory examples

Example 1
Consider the following artificial data on the grade-point average (gpa) of college students:

. use https://www.stata-press.com/data/r19/college

. describe
Contains data from https://www.stata-press.com/data/r19/college.dta
Observations: 12

Variables: 4 3 Jan 2024 12:05

Variable Storage Display Value
name type format label Variable label

gpa float %9.0g gpa for this year
hour int %9.0g Total academic hours
year int %9.0g 1 = freshman, 2 = sophomore, 3 =

junior, 4 = senior
number int %9.0g number of students

Sorted by: year

collapse — Make dataset of summary statistics 67

. list, sep(4)

gpa hour year number

1. 3.2 30 1 3
2. 3.5 34 1 2
3. 2.8 28 1 9
4. 2.1 30 1 4

5. 3.8 29 2 3
6. 2.5 30 2 4
7. 2.9 35 2 5
8. 3.7 30 3 4

9. 2.2 35 3 2
10. 3.3 33 3 3
11. 3.4 32 4 5
12. 2.9 31 4 2

To obtain a dataset containing the 25th percentile of gpa’s for each year, we type

. collapse (p25) gpa [fw=number], by(year)

We used frequency weights.

Next we want to create a dataset containing the mean of gpa and hour for each year. We do not have

to type (mean) to specify that we want the mean because the mean is reported by default.

. use https://www.stata-press.com/data/r19/college, clear

. collapse gpa hour [fw=number], by(year)

. list

year gpa hour

1. 1 2.788889 29.44444
2. 2 2.991667 31.83333
3. 3 3.233333 32.11111
4. 4 3.257143 31.71428

Now we want to create a dataset containing the mean and median of gpa and hour, and we want the
median of gpa and hour to be stored as variables medgpa and medhour, respectively.

. use https://www.stata-press.com/data/r19/college, clear

. collapse (mean) gpa hour (median) medgpa=gpa medhour=hour [fw=num], by(year)

. list

year gpa hour medgpa medhour

1. 1 2.788889 29.44444 2.8 29
2. 2 2.991667 31.83333 2.9 30
3. 3 3.233333 32.11111 3.3 33
4. 4 3.257143 31.71428 3.4 32

collapse — Make dataset of summary statistics 68

Here we want to create a dataset containing a count of gpa and hour and the minimums of gpa and
hour. The minimums of gpa and hour will be stored as variables mingpa and minhour, respectively.

. use https://www.stata-press.com/data/r19/college, clear

. collapse (count) gpa hour (min) mingpa=gpa minhour=hour [fw=num], by(year)

. list

year gpa hour mingpa minhour

1. 1 18 18 2.1 28
2. 2 12 12 2.5 29
3. 3 9 9 2.2 30
4. 4 7 7 2.9 31

Now we replace the values of gpa in 3 of the observations with missing values.

. use https://www.stata-press.com/data/r19/college, clear

. replace gpa = . in 2/4
(3 real changes made, 3 to missing)
. list, sep(4)

gpa hour year number

1. 3.2 30 1 3
2. . 34 1 2
3. . 28 1 9
4. . 30 1 4

5. 3.8 29 2 3
6. 2.5 30 2 4
7. 2.9 35 2 5
8. 3.7 30 3 4

9. 2.2 35 3 2
10. 3.3 33 3 3
11. 3.4 32 4 5
12. 2.9 31 4 2

If we now want to list the data containing the mean of gpa and hour for each year, collapse uses
all observations on hour for year = 1, even though gpa is missing for observations 1–3.

. collapse gpa hour [fw=num], by(year)

. list

year gpa hour

1. 1 3.2 29.44444
2. 2 2.991667 31.83333
3. 3 3.233333 32.11111
4. 4 3.257143 31.71428

collapse — Make dataset of summary statistics 69

If we repeat this process but specify the cw option, collapse ignores all observations that have

missing values.

. use https://www.stata-press.com/data/r19/college, clear

. replace gpa = . in 2/4
(3 real changes made, 3 to missing)
. collapse (mean) gpa hour [fw=num], by(year) cw
. list

year gpa hour

1. 1 3.2 30
2. 2 2.991667 31.83333
3. 3 3.233333 32.11111
4. 4 3.257143 31.71428

Example 2
We have individual-level data from a census in which each observation is a person. Among other

variables, the dataset contains the numeric variables age, educ, and income and the string variable

state. We want to create a 50-observation dataset containing the means of age, education, and income

for each state.

. collapse age educ income, by(state)

The resulting dataset contains means because collapse assumes that we want means if we do not specify
otherwise. To make this explicit, we could have typed

. collapse (mean) age educ income, by(state)

Had we wanted the mean for age and educ and the median for income, we could have typed

. collapse (mean) age educ (median) income, by(state)

or if we had wanted the mean for age and educ and both the mean and the median for income, we could
have typed

. collapse (mean) age educ income (median) medinc=income, by(state)

This last dataset will contain three variables containing means—age, educ, and income—and one vari-

able containing the median of income—medinc. Because we typed (median) medinc=income, Stata
knew to find the median for income and to store those in a variable named medinc. This renaming con-
vention is necessary in this example because a variable named income containing the mean is also being
created.

collapse — Make dataset of summary statistics 70

Variablewise or casewise deletion

Example 3
Let’s assume that in our census data, we have 25,000 persons for whom age is recorded but only

15,000 for whom income is recorded; that is, income is missing for 10,000 observations. If we want
summary statistics for age and income, collapse will, by default, use all 25,000 observations when
calculating the summary statistics for age. If we prefer that collapse use only the 15,000 observations
for which income is not missing, we can specify the cw (casewise) option:

. collapse (mean) age income (median) medinc=income, by(state) cw

Weights
collapse allows all four weight types; the default is aweights. Weight normalization affects only

the sum, count, sd, semean, and sebinomial statistics.

Let 𝑗 index observations and 𝑖 index by-groups. Here are the definitions for count and sum with

weights:

count:
unweighted: 𝑁𝑖, the number of observations in group 𝑖
aweight: 𝑁𝑖, the number of observations in group 𝑖
fweight, iweight, pweight: ∑ 𝑤𝑗, the sum of the weights over observations in

group 𝑖
sum:

unweighted: ∑ 𝑥𝑗, the sum of 𝑥𝑗 over observations in group 𝑖
aweight: ∑ 𝑣𝑗𝑥𝑗 over observations in group 𝑖; 𝑣𝑗 = weights

normalized to sum to 𝑁𝑖
fweight, iweight, pweight: ∑ 𝑤𝑗𝑥𝑗 over observations in group 𝑖

When the by() option is not specified, the entire dataset is treated as one group.

The sd statistic with weights returns the square root of the bias-corrected variance, which is based on
the factor √𝑁𝑖/(𝑁𝑖 − 1), where 𝑁𝑖 is the number of observations. Statistics sd, semean, sebinomial,
and sepoisson are not allowed with pweighted data. Otherwise, the statistic is changed by the weights
through the computation of the weighted count, as outlined above.

For instance, consider a case in which there are 25 observations in the dataset and a weighting variable

that sums to 57. In the unweighted case, the weight is not specified, and the count is 25. In the analytically

weighted case, the count is still 25; the scale of the weight is irrelevant. In the frequency-weighted case,

however, the count is 57, the sum of the weights.

The rawsum statistic with aweights ignores the weight, with one exception: observations with zero
weight will not be included in the sum.

collapse — Make dataset of summary statistics 71

Example 4
Using our same census data, suppose that instead of startingwith individual-level data and aggregating

to the state level, we started with state-level data and wanted to aggregate to the region level. Also assume

that our dataset contains pop, the population of each state.

To obtain unweighted means and medians of age and income, by region, along with the total popula-

tion, we could type

. collapse (mean) age income (median) medage=age medinc=income (sum) pop,
> by(region)

To obtain weighted means and medians of age and income, by region, along with the total population

and using frequency weights, we could type

. collapse (mean) age income (median) medage=age medinc=income (count) pop
> [fweight=pop], by(region)

Note: Specifying (sum) pop would not have worked because that would have yielded the pop-weighted
sum of pop. Specifying (count) agewould have worked as well as (count) pop because countmerely
counts the number of nonmissing observations. The counts here, however, are frequency-weighted and

equal the sum of pop.

To obtain the same mean and medians as above, but using analytic weights, we could type

. collapse (mean) age income (median) medage=age medinc=income (rawsum) pop
> [aweight=pop], by(region)

Note: Specifying (count) pop would not have worked because, with analytic weights, count would
count numbers of physical observations. Specifying (sum) pop would not have worked because sum
would calculate weighted sums (with a normalized weight). The rawsum function, however, ignores the
weights and sums only the specified variable, with one exception: observations with zero weight will

not be included in the sum. rawsum would have worked as the solution to all three cases.

collapse — Make dataset of summary statistics 72

A final example

Example 5
We have census data containing information on each state’s median age, marriage rate, and divorce

rate. We want to form a new dataset containing various summary statistics, by region, of the variables:

. use https://www.stata-press.com/data/r19/census5, clear
(1980 Census data by state)
. describe
Contains data from https://www.stata-press.com/data/r19/census5.dta
Observations: 50 1980 Census data by state

Variables: 7 6 Apr 2024 15:43

Variable Storage Display Value
name type format label Variable label

state str14 %14s State
state2 str2 %-2s Two-letter state abbreviation
region int %8.0g cenreg Census region
pop long %10.0g Population
median_age float %9.2f Median age
marriage_rate float %9.0g
divorce_rate float %9.0g

Sorted by: region
. collapse (median) median_age marriage divorce (mean) avgmrate=marriage
> avgdrate=divorce [aw=pop], by(region)
. list

region median~e marria~e divorc~e avgmrate avgdrate

1. NE 31.90 .0080657 .0035295 .0081472 .0035359
2. N Cntrl 29.90 .0093821 .0048636 .0096701 .004961
3. South 29.60 .0112609 .0065792 .0117082 .0059439
4. West 29.90 .0089093 .0056423 .0125199 .0063464

. describe
Contains data
Observations: 4 1980 Census data by state

Variables: 6

Variable Storage Display Value
name type format label Variable label

region int %8.0g cenreg Census region
median_age float %9.2f (p 50) median_age
marriage_rate float %9.0g (p 50) marriage_rate
divorce_rate float %9.0g (p 50) divorce_rate
avgmrate float %9.0g (mean) marriage_rate
avgdrate float %9.0g (mean) divorce_rate

Sorted by: region
Note: Dataset has changed since last saved.

collapse — Make dataset of summary statistics 73

Acknowledgment
We thank David Roodman of the Open Philanthropy Project for writing collapse2, which inspired

several features in collapse.

Also see
[D] contract — Make dataset of frequencies and percentages

[D] egen — Extensions to generate

[D] statsby — Collect statistics for a command across a by list

[R] summarize — Summary statistics

compare — Compare two variables

Description Quick start Menu Syntax Remarks and examples
Also see

Description
compare reports the differences and similarities between varname1 and varname2.

Quick start
Describe differences in missing and defined values of v1 and v2

compare v1 v2

Same as above, but only for observations where catvar is equal to 3
compare v1 v2 if catvar==3

Same as above, but for each level of catvar
by catvar: compare v1 v2

Menu
Data > Data utilities > Compare two variables

Syntax
compare varname1 varname2 [if] [in]

by is allowed; see [D] by.

Remarks and examples

Example 1
One of the more useful accountings made by compare is the pattern of missing values:

. use https://www.stata-press.com/data/r19/fullauto
(Automobile models)
. compare rep77 rep78

Difference
Count Minimum Average Maximum

rep77<rep78 16 -3 -1.3125 -1
rep77=rep78 43
rep77>rep78 7 1 1 1

Jointly defined 66 -3 -.2121212 1
rep77 missing only 3
Jointly missing 5

Total 74

74

compare — Compare two variables 75

We see that both rep77 and rep78 are missing in 5 observations and that rep77 is also missing in 3

more observations.

Technical note
compare may be used with numeric variables, string variables, or both. When used with string vari-

ables, the summary of the differences (minimum, average, maximum) is not reported. When used with

string and numeric variables, the breakdown by <, =, and > is also suppressed.

Also see
[D] cf — Compare two datasets

[D] codebook — Describe data contents

[D] inspect — Display simple summary of data’s attributes

compress — Compress data in memory

Description Quick start Menu Syntax Option Remarks and examples
Also see

Description
compress attempts to reduce the amount of memory used by your data.

Quick start
Reduce the amount of memory used by the current dataset

compress

Same as above, but only reduce memory used by v1 and v2
compress v1 v2

Speed up compress for large datasets with strL-type variables, but possibly reduce the amount of mem-
ory saved

compress, nocoalesce

Menu
Data > Data utilities > Optimize variable storage

Syntax
compress [varlist] [, nocoalesce]

Option
nocoalesce specifies that compress not try to find duplicate values within strL variables in an attempt

to save memory. If nocoalesce is not specified, compressmust sort the data by each strL variable,
which can be time consuming in large datasets.

Remarks and examples
compress reduces the size of your dataset by considering two things. First, it considers demoting

doubles to longs, ints, or bytes
floats to ints or bytes
longs to ints or bytes
ints to bytes
str#s to shorter str#s
strLs to str#s

See [D] Data types for an explanation of these storage types.

76

compress — Compress data in memory 77

Second, it considers coalescing strLs within each strL variable. That is to say, if a strL variable takes
on the same value in multiple observations, compress can link those values to a single memory location
to save memory. To check for this, compress must sort the data on each strL variable. You can use the
nocoalesce option to tell compress not to take the time to perform this check. If compress does check
whether it can coalesce strL values, it will do whichever saves more memory—coalescing strL values
or demoting a strL to a str#—or it will do nothing if it cannot save memory by changing a strL.

compress leaves your data logically unchanged but (probably) appreciably smaller. compress never
makes a mistake, results in loss of precision, or hacks off strings.

Example 1
If you do not specify varlist, compress considers demoting all the variables in your dataset, so typing

compress by itself is usually enough:

. use https://www.stata-press.com/data/r19/compxmp2
(1978 automobile data)
. compress
variable mpg was float now byte
variable price was long now int
variable yenprice was double now long
variable weight was double now int
variable make was str26 now str17
(1,776 bytes saved)

If there are no compression possibilities, compress does nothing. For instance, typing compress again
results in

. compress
(0 bytes saved)

Video example
How to optimize the storage of variables

Also see
[D] Data types — Quick reference for data types

[D] recast — Change storage type of variable

https://www.youtube.com/watch?v=PIV9ugn6XL8

contract — Make dataset of frequencies and percentages

Description Quick start Menu Syntax Options
Remarks and examples Acknowledgments Reference Also see

Description
contract replaces the dataset in memory with a new dataset consisting of all combinations of varlist

that exist in the data and a new variable that contains the frequency of each combination.

Quick start
Frequency of each combination of v1 and v2 saved in freq

contract v1 v2

Same as above, but name new frequency variable newf
contract v1 v2, freq(newf)

Add percentage of total in newp
contract v1 v2, freq(newf) percent(newp)

Add cumulative frequency newcf and cumulative percentage newcp
contract v1 v2, freq(newf) percent(newp) cfreq(newcf) ///

cpercent(newcp)

Frequency of combinations excluding missing values

contract v1 v2, nomiss

Add combinations with zero observations

contract v1 v2, nomiss zero

Menu
Data > Create or change data > Other variable-transformation commands > Make dataset of frequencies

78

contract — Make dataset of frequencies and percentages 79

Syntax
contract varlist [if] [in] [weight] [, options]

options Description

Options

freq(newvar) name of frequency variable; default is freq
cfreq(newvar) create cumulative frequency variable

percent(newvar) create percentage variable

cpercent(newvar) create cumulative percentage variable

float generate percentage variables as type float
format(format) display format for new percentage variables; default is format(%8.2f)
zero include combinations with frequency zero

nomiss drop observations with missing values

fweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Options �

freq(newvar) specifies a name for the frequency variable. If not specified, freq is used.

cfreq(newvar) specifies a name for the cumulative frequency variable. If not specified, no cumulative
frequency variable is created.

percent(newvar) specifies a name for the percentage variable. If not specified, no percentage variable
is created.

cpercent(newvar) specifies a name for the cumulative percentage variable. If not specified, no cumu-
lative percentage variable is created.

float specifies that the percentage variables specified by percent() and cpercent()will be generated
as variables of type float. If float is not specified, these variables will be generated as variables
of type double. All generated variables are compressed to the smallest storage type possible without
loss of precision; see [D] compress.

format(format) specifies a display format for the generated percentage variables specified by

percent() and cpercent(). If format() is not specified, these variables will have the display

format %8.2f.

zero specifies that combinations with frequency zero be included.

nomiss specifies that observations with missing values on any variable in varlist be dropped. If nomiss
is not specified, all observations possible are used.

contract — Make dataset of frequencies and percentages 80

Remarks and examples
contract takes the dataset in memory and creates a new dataset containing all combinations of varlist

that exist in the data and a new variable that contains the frequency of each combination.

Sometimes you may want to collapse a dataset into frequency form. Several observations that have

identical values on one or more variables will be replaced by one such observation, together with the

frequency of the corresponding set of values. For example, in certain generalized linear models, the

frequency of some combination of values is the response variable, so you would need to produce that

response variable. The set of covariate values associated with each frequency is sometimes called a

covariate class or covariate pattern. Such collapsing is reversible for the variables concerned, because

the original dataset can be reconstituted by using expand (see [D] expand) with the variable containing
the frequencies of each covariate class.

Example 1
Suppose that we wish to collapse auto2.dta to a set of frequencies of the variables rep78, which

takes values labeled “Poor”, “Fair”, “Average”, “Good”, and “Excellent”, and foreign, which takes
values labeled “Domestic” and “Foreign”.

. use https://www.stata-press.com/data/r19/auto2
(1978 automobile data)
. contract rep78 foreign
. list

rep78 foreign _freq

1. Poor Domestic 2
2. Fair Domestic 8
3. Average Domestic 27
4. Average Foreign 3
5. Good Domestic 9

6. Good Foreign 9
7. Excellent Domestic 2
8. Excellent Foreign 9
9. . Domestic 4

10. . Foreign 1

By default, contract uses the variable name freq for the new variable that contains the frequencies.

If freq is in use, you will be reminded to specify a new variable name via the freq() option.

contract — Make dataset of frequencies and percentages 81

Specifying the zero option requests that combinations with frequency zero also be listed.

. use https://www.stata-press.com/data/r19/auto2, clear
(1978 automobile data)
. contract rep78 foreign, zero
. list

rep78 foreign _freq

1. Poor Domestic 2
2. Poor Foreign 0
3. Fair Domestic 8
4. Fair Foreign 0
5. Average Domestic 27

6. Average Foreign 3
7. Good Domestic 9
8. Good Foreign 9
9. Excellent Domestic 2

10. Excellent Foreign 9

11. . Domestic 4
12. . Foreign 1

Acknowledgments
contract was written by Nicholas J. Cox (1998) of the Department of Geography at Durham Uni-

versity, UK, who is coeditor of the Stata Journal and author of Speaking Stata Graphics. The cfreq(),
percent(), cpercent(), float, and format() options were written by Roger Newson of the Imperial
College London.

Reference
Cox, N. J. 1998. dm59: Collapsing datasets to frequencies. Stata Technical Bulletin 44: 2–3. Reprinted in Stata Technical

Bulletin Reprints, vol. 8, pp. 20–21. College Station, TX: Stata Press.

Also see
[D] expand — Duplicate observations

[D] collapse — Make dataset of summary statistics

[D] duplicates — Report, tag, or drop duplicate observations

https://www.stata-journal.com/
https://www.stata-press.com/books/speaking-stata-graphics/
https://www.stata.com/products/stb/journals/stb44.pdf

copy — Copy file from disk or URL

Description Quick start Syntax Options Remarks and examples
Also see

Description
copy copies an existing file to a file with a new name.

Quick start
Copy mydata.dta from C:\myfolder to C:\otherfolder

copy c:\myfolder\mydata.dta c:\otherfolder\

Same as above, but change dataset name to newdata.dta
copy c:\myfolder\mydata.dta c:\otherfolder\newdata.dta

Same as above, but replace newdata.dta if it exists
copy c:\myfolder\mydata.dta c:\otherfolder\newdata.dta, replace

Copy web-based Stata example dataset fullauto.dta to the current working directory
copy https://www.stata-press.com/data/r19/fullauto.dta myauto.dta

Syntax
copy filename1 filename2 [, options]

filename1 may be a filename or a URL. filename2 may be the name of a file or a directory. If filename2
is a directory name, filename1 will be copied to that directory. filename2 may not be a URL.

Note: Double quotes may be used to enclose the filenames, and the quotes must be used if the filename

contains embedded blanks.

options Description

public make filename2 readable by all

text interpret filename1 as text file and translate to native text format

replace may overwrite filename2

replace does not appear in the dialog box.

82

copy — Copy file from disk or URL 83

Options
public specifies that filename2 be readable by everyone; otherwise, the file will be created according

to the default permissions of your operating system.

text specifies that filename1 be interpreted as a text file and be translated to the native form of text files

on your computer. Computers differ on how end-of-line is recorded: Unix systems record one line-

feed character, Windows computers record a carriage-return/line-feed combination, andMac comput-

ers record just a carriage return. text specifies that filename1 be examined to determine how it has

end-of-line recorded and that the line-end characters be switched to whatever is appropriate for your

computer when the copy is made.

There is no reason to specify textwhen copying a file already on your computer to a different location
because the file would already be in your computer’s format.

Do not specify text unless you know that the file is a text file; if the file is binary and you specify

text, the copy will be useless. Most word processors produce binary files, not text files. The term

text, as it is used here, specifies a particular way of recording textual information.

When other parts of Stata read text files, they do not care how lines are terminated, so there is no

reason to translate end-of-line characters on that score. You specify text because you may want to
look at the file with other software.

The following option is available with copy but is not shown in the dialog box:

replace specifies that filename2 be replaced if it already exists.

Remarks and examples
Examples:

Windows:

. copy orig.dta newcopy.dta

. copy mydir\orig.dta .

. copy orig.dta ../../

. copy ”my document” ”copy of document”

. copy ..\mydir\doc.txt document\doc.tex

. copy https://www.stata.com/examples/simple.dta simple.dta

. copy https://www.stata.com/examples/simple.txt simple.txt, text

Mac and Unix:

. copy orig.dta newcopy.dta

. copy mydir/orig.dta .

. copy orig.dta ../../

. copy ”my document” ”copy of document”

. copy ../mydir/doc.txt document/doc.tex

. copy https://www.stata.com/examples/simple.dta simple.dta

. copy https://www.stata.com/examples/simple.txt simple.txt, text

copy — Copy file from disk or URL 84

Also see
[D] cd — Change directory

[D] dir — Display filenames

[D] erase — Erase a disk file

[D] mkdir — Create directory

[D] rmdir — Remove directory

[D] shell — Temporarily invoke operating system

[D] type — Display contents of a file

[U] 11.6 Filenaming conventions

corr2data — Create dataset with specified correlation structure

Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas Reference
Also see

Description
corr2data adds new variables with specified covariance (correlation) structure to the existing dataset

or creates a new dataset with a specified covariance (correlation) structure. Singular covariance (corre-

lation) structures are permitted. The purpose of this is to allow you to perform analyses from summary

statistics (correlations/covariances andmaybe themeans) when these summary statistics are all you know

and summary statistics are sufficient to obtain results. For example, these summary statistics are suffi-

cient for performing analysis of 𝑡 tests, variance, principal components, regression, and factor analysis.
The recommended process is

. clear (clear memory)

. corr2data ..., n(#) cov(...) ... (create artificial data)

. regress ... (use artificial data appropriately)

However, for factor analyses and principal components, the commands factormat and pcamat allow
you to skip the step of using corr2data; see [MV] factor and [MV] pca.

The data created by corr2data are artificial; they are not the original data, and it is not a sample

from an underlying population with the summary statistics specified. See [D] drawnorm if you want to

generate a random sample. In a sample, the summary statistics will differ from the population values and

will differ from one sample to the next.

The dataset corr2data creates is suitable for one purpose only: performing analyses when all that
is known are summary statistics and those summary statistics are sufficient for the analysis at hand. The

artificial data tricks the analysis command into producing the desired result. The analysis command, be-

ing by assumption only a function of the summary statistics, extracts from the artificial data the summary

statistics, which are the same summary statistics you specified, and then makes its calculation based on

those statistics.

If you doubt whether the analysis depends only on the specified summary statistics, you can generate

different artificial datasets by using different seeds of the random-number generator (see the seed()
option below) and compare the results, which should be the same within rounding error.

Quick start
Create dataset with 1,000 observations, v1 with mean of 3.4 and std. dev. of 1, v2 with mean of 3 and

std. dev. of 0.5, and no correlation between v1 and v2
corr2data v1 v2, n(1000) means(3.4 3) sds(1 .5)

Same as above, but with correlation between v1 and v2 specified in matrix mymat
corr2data v1 v2, n(1000) means(3.4 3) sds(1 .5) corr(mymat)

Menu
Data > Create or change data > Other variable-creation commands > Create dataset with specified correlation

85

corr2data — Create dataset with specified correlation structure 86

Syntax
corr2data newvarlist [, options]

options Description

Main

clear replace the current dataset

double generate variable type as double; default is float
n(#) generate # observations; default is current number

sds(vector) standard deviations of generated variables

corr(matrix | vector) correlation matrix

cov(matrix | vector) covariance matrix

cstorage(full) store correlation/covariance structure as a symmetric 𝑘×𝑘 matrix
cstorage(lower) store correlation/covariance structure as a lower triangular matrix

cstorage(upper) store correlation/covariance structure as an upper triangular matrix

forcepsd force the covariance/correlation matrix to be positive semidefinite

means(vector) means of generated variables; default is means(0)

Options

seed(#) seed for random-number generator

Options

� � �
Main �

clear specifies that it is okay to replace the dataset in memory, even though the current dataset has not
been saved on disk.

double specifies that the new variables be stored as Stata doubles, meaning 8-byte reals. If double is
not specified, variables are stored as floats, meaning 4-byte reals. See [D] Data types.

n(#) specifies the number of observations to be generated; the default is the current number of observa-
tions. If n(#) is not specified or is the same as the current number of observations, corr2data adds
the new variables to the existing dataset; otherwise, corr2data replaces the dataset in memory.

sds(vector) specifies the standard deviations of the generated variables. sds() may not be specified
with cov().

corr(matrix | vector) specifies the correlation matrix. If neither corr() nor cov() is specified, the

default is orthogonal data.

cov(matrix | vector) specifies the covariance matrix. If neither corr() nor cov() is specified, the de-
fault is orthogonal data.

corr2data — Create dataset with specified correlation structure 87

cstorage(full | lower | upper) specifies the storage mode for the correlation or covariance structure
in corr() or cov(). The following storage modes are supported:

full specifies that the correlation or covariance structure is stored (recorded) as a symmetric 𝑘×𝑘
matrix.

lower specifies that the correlation or covariance structure is recorded as a lower triangular matrix.
With 𝑘 variables, the matrix should have 𝑘(𝑘 + 1)/2 elements in the following order:

C11 C21 C22 C31 C32 C33 . . . C𝑘1 C𝑘2 . . . C𝑘𝑘

upper specifies that the correlation or covariance structure is recorded as an upper triangular matrix.
With 𝑘 variables, the matrix should have 𝑘(𝑘 + 1)/2 elements in the following order:

C11 C12 C13 . . . C1𝑘 C22 C23 . . .C2𝑘 . . . C(𝑘−1𝑘−1) C(𝑘−1𝑘) C𝑘𝑘

Specifying cstorage(full) is optional if the matrix is square. cstorage(lower) or

cstorage(upper) is required for the vectorized storage methods. See Storage modes for correlation
and covariance matrices in [D] drawnorm for examples.

forcepsd modifies the matrix C to be positive semidefinite (psd) and to thus be a proper covariance

matrix. If C is not positive semidefinite, it will have negative eigenvalues. By setting the negative

eigenvalues to 0 and reconstructing, we obtain the least-squares positive-semidefinite approximation

to C. This approximation is a singular covariance matrix.

means(vector) specifies the means of the generated variables. The default is means(0).

� � �
Options �

seed(#) specifies the seed of the random-number generator used to generate data. # defaults to 0. The
random numbers generated inside corr2data do not affect the seed of the standard random-number
generator.

Remarks and examples
corr2data is designed to enable analyses of correlation (covariance) matrices by commands that

expect variables rather than a correlation (covariance) matrix. corr2data creates variables with exactly
the correlation (covariance) that you want to analyze. Apart from means and covariances, all aspects of

the data are meaningless. Only analyses that depend on the correlations (covariances) and means produce

meaningful results. Thus you may perform a paired 𝑡 test ([R] ttest) or an ordinary regression analysis
([R] regress), etc.

If you are not sure that a statistical result depends only on the specified summary statistics and not on

other aspects of the data, you can generate different datasets, each having the same summary statistics

but other different aspects, by specifying the seed() option. If the statistical results differ beyond what
is attributable to roundoff error, then using corr2data is inappropriate.

corr2data — Create dataset with specified correlation structure 88

Example 1
We first run a regression using the auto dataset.

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. regress weight length trunk

Source SS df MS Number of obs = 74
F(2, 71) = 303.95

Model 39482774.4 2 19741387.2 Prob > F = 0.0000
Residual 4611403.95 71 64949.3513 R-squared = 0.8954

Adj R-squared = 0.8925
Total 44094178.4 73 604029.841 Root MSE = 254.85

weight Coefficient Std. err. t P>|t| [95% conf. interval]

length 33.83435 1.949751 17.35 0.000 29.94666 37.72204
trunk -5.83515 10.14957 -0.57 0.567 -26.07282 14.40252
_cons -3258.84 283.3547 -11.50 0.000 -3823.833 -2693.846

Suppose that, for some reason, we no longer have the auto dataset. Instead, we know the means and

covariance matrices of weight, length, and trunk, and we want to do the same regression again. The
matrix of means is

. matrix list M
M[1,3]

weight length trunk
_cons 3019.4595 187.93243 13.756757

and the covariance matrix is

. matrix list V
symmetric V[3,3]

weight length trunk
weight 604029.84
length 16370.922 495.78989
trunk 2234.6612 69.202518 18.296187

To do the regression analysis in Stata, we need to create a dataset that has the specified correlation

structure.

. corr2data x y z, n(74) cov(V) means(M)

. regress x y z
Source SS df MS Number of obs = 74

F(2, 71) = 303.95
Model 39482773.3 2 19741386.6 Prob > F = 0.0000

Residual 4611402.75 71 64949.3345 R-squared = 0.8954
Adj R-squared = 0.8925

Total 44094176 73 604029.809 Root MSE = 254.85

x Coefficient Std. err. t P>|t| [95% conf. interval]

y 33.83435 1.949751 17.35 0.000 29.94666 37.72204
z -5.835155 10.14957 -0.57 0.567 -26.07282 14.40251

_cons -3258.84 283.3546 -11.50 0.000 -3823.833 -2693.847

corr2data — Create dataset with specified correlation structure 89

The results from the regression based on the generated data are the same as those based on the real data.

Methods and formulas
Two steps are involved in generating the desired dataset. The first step is to generate a zero-mean,

zero-correlated dataset. The second step is to apply the desired correlation structure and the means to the

zero-mean, zero-correlated dataset. In both steps, we take into account that, given any matrixA and any

vector of variables X, Var(A′X) = A′Var(X)A.

Reference
Cappellari, L., and S. P. Jenkins. 2006. Calculation of multivariate normal probabilities by simulation, with applications

to maximum simulated likelihood estimation. Stata Journal 6: 156–189.

Also see
[D] Data types — Quick reference for data types

[D] drawnorm — Draw sample from multivariate normal distribution

https://www.stata-journal.com/article.html?article=st0101
https://www.stata-journal.com/article.html?article=st0101

count — Count observations satisfying specified conditions

Description Quick start Menu Syntax
Remarks and examples Stored results References Also see

Description
count counts the number of observations that satisfy the specified conditions. If no conditions are

specified, count displays the number of observations in the data.

Quick start
Count the number of observations

count

Same as above, but where catvar equals 3
count if catvar==3

Count observations for each value of catvar
by catvar: count

Menu
Data > Data utilities > Count observations satisfying condition

Syntax
count [if] [in]

by and collect are allowed; see [U] 11.1.10 Prefix commands.

Remarks and examples
count may strike you as an almost useless command, but it can be one of Stata’s handiest.

Example 1
How many times have you obtained a statistical result and then asked yourself how it was possible?

You think a moment and then mutter aloud, “Wait a minute. Is income ever negative in these data?” or

“Is sex ever equal to 3?” count can quickly answer those questions:

90

count — Count observations satisfying specified conditions 91

. use https://www.stata-press.com/data/r19/countxmpl
(1980 Census data by state)
. count
641

. count if income<0
0

. count if sex==3
1

. by division: count if sex==3

-> division = New England
0

-> division = Mountain
0

-> division = Pacific
1

We have 641 observations. income is never negative. sex, however, takes on the value 3 once. When

we decompose the count by division, we see that it takes on that odd value in the Pacific division.

Stored results
count stores the following in r():

Scalars

r(N) number of observations

References
Cox, N. J. 2007a. Speaking Stata: Counting groups, especially panels. Stata Journal 7: 571–581.

———. 2007b. Speaking Stata: Making it count. Stata Journal 7: 117–130.

———. 2007c. Stata tip 51: Events in intervals. Stata Journal 7: 440–443.

Also see
[R] tabulate oneway — One-way table of frequencies

https://www.stata-journal.com/article.html?article=dm0033
https://www.stata-journal.com/article.html?article=pr0029
https://www.stata-journal.com/article.html?article=pr0033

cross — Form every pairwise combination of two datasets

Description Quick start Menu Syntax
Remarks and examples References Also see

Description
cross forms every pairwise combination of the data in memory with the data in filename. If filename

is specified without a suffix, .dta is assumed.

Quick start
Form every pairwise combination of observations from mydata1.dta in memory with observations from

mydata2.dta
cross using mydata2

Menu
Data > Combine datasets > Form every pairwise combination of two datasets

Syntax
cross using filename

cross does not allow alias variables; see [D] frunalias for advice on how to get around this restriction.

Remarks and examples
This command is rarely used; also see [D] joinby, [D] merge, and [D] append.

Crossing refers to merging two datasets in every way possible. That is, the first observation of the

data in memory is merged with every observation of filename, followed by the second, and so on. Thus

the result will have 𝑁1𝑁2 observations, where 𝑁1 and 𝑁2 are the number of observations in memory

and in filename, respectively.

Typically, the datasets will have no common variables. If they do, such variables will take on only

the values of the data in memory.

Example 1
We wish to form a dataset containing all combinations of three age categories and two sexes to serve

as a stub. The three age categories are 20, 30, and 40. The two sexes are male and female:

92

cross — Form every pairwise combination of two datasets 93

. input str6 sex
sex

1. male
2. female
3. end

. save sex
file sex.dta saved
. drop _all
. input agecat

agecat
1. 20
2. 30
3. 40
4. end

. cross using sex

. list

agecat sex

1. 20 male
2. 30 male
3. 40 male
4. 20 female
5. 30 female

6. 40 female

References
Baum, C. F. 2016. An Introduction to Stata Programming. 2nd ed. College Station, TX: Stata Press.

Franklin, C. H. 2006. Stata tip 29: For all times and all places. Stata Journal 6: 147–148.

Also see
[D] append —Append datasets

[D] fillin — Rectangularize dataset

[D] frunalias — Change storage type of alias variables

[D] joinby — Form all pairwise combinations within groups

[D] merge — Merge datasets

[D] save — Save Stata dataset

https://www.stata-press.com/books/introduction-stata-programming/
https://www.stata-journal.com/article.html?article=dm0020

Data types — Quick reference for data types

Description Remarks and examples Also see

Description
This entry provides a quick reference for data types allowed by Stata. See [U] 12 Data for details.

Remarks and examples

Closest to 0

Storage type Minimum Maximum without being 0 Bytes

byte −127 100 ±1 1

int −32,767 32,740 ±1 2

long −2,147,483,647 2,147,483,620 ±1 4

float −1.70141173319 × 1038 1.70141173319 × 1038 ±10−38 4

double −8.9884656743 × 10307 8.9884656743 × 10307 ±10−323 8

Precision for float is 3.795 × 10−8.

Precision for double is 1.414 × 10−16.

String Maximum

storage type length Bytes

str1 1 1

str2 2 2

.

.

.

str2045 2045 2045

strL 2000000000 2000000000

Each element of data is said to be either type numeric or type string. The word “real” is sometimes

used in place of numeric. Associated with each data type is a storage type.

Numbers are stored as byte, int, long, float, or double, with the default being float. byte, int,
and long are said to be of integer type in that they can hold only integers.

Strings are stored as str#, for instance, str1, str2, str3, . . . , str2045, or as strL. The number
after the str indicates the maximum length of the string. A str5 could hold the word “male”, but not
the word “female” because “female” has six characters. A strL can hold strings of arbitrary lengths, up
to 2000000000 characters, and can even hold binary data containing embedded \0 characters.

Stata keeps data in memory, and you should record your data as parsimoniously as possible. If you

have a string variable that hasmaximum length 6, it wouldwastememory to store it as a str20. Similarly,
if you have an integer variable, it would be a waste to store it as a double.

94

Data types — Quick reference for data types 95

Precision of numeric storage types
floats have about 7 digits of accuracy; the magnitude of the number does not matter. Thus, 1234567

can be stored perfectly as a float, as can 1234567e+20. The number 123456789, however, would be
rounded to 123456792. In general, this rounding does not matter.

If you are storing identification numbers, the rounding could matter. If the identification numbers are

integers and take 9 digits or less, store them as longs; otherwise, store them as doubles. doubles have
16 digits of accuracy.

Stata stores numbers in binary, and this has a second effect on numbers less than 1. 1/10 has no

perfect binary representation just as 1/11 has no perfect decimal representation. In float, .1 is stored
as .10000000149011612. Note that there are 7 digits of accuracy, just as with numbers larger than 1.

Stata, however, performs all calculations in double precision. If you were to store 0.1 in a float called
x and then ask, say, list if x==.1, there would be nothing in the list. The .1 that you just typed was
converted to double, with 16 digits of accuracy (.100000000000000014. . .), and that number is never
equal to 0.1 stored with float accuracy.

One solution is to type list if x==float(.1). The float() function rounds its argument to float
accuracy; see [FN] Programming functions. The other alternative would be store your data as double,
but this is probably a waste of memory. Few people have data that is accurate to 1 part in 10 to the

7th. Among the exceptions are banks, who keep records accurate to the penny on amounts of billions of

dollars. If you are dealing with such financial data, store your dollar amounts as doubles.

Also see
[D] compress — Compress data in memory

[D] destring — Convert string variables to numeric variables and vice versa

[D] encode — Encode string into numeric and vice versa

[D] format — Set variables’ output format

[D] recast — Change storage type of variable

[U] 12.2.2 Numeric storage types

[U] 12.4 Strings

[U] 12.5 Formats: Controlling how data are displayed

[U] 13.12 Precision and problems therein

datasignature — Determine whether data have changed

Description Quick start Menu
Syntax Options Remarks and examples
Stored results Methods and formulas Reference
Also see

Description
These commands calculate, display, save, and verify checksums of the data, which taken together

form what is called a signature. An example signature is 162:11(12321):2725060400:4007406597. That

signature is a function of the values of the variables and their names, and thus the signature can be used

later to determine whether a dataset has changed.

datasignature without arguments calculates and displays the signature of the data in memory.

datasignature set does the same, and it stores the signature as a characteristic in the dataset. You
should save the dataset afterward so that the signature becomes a permanent part of the dataset.

datasignature confirm verifies that, were the signature recalculated this instant, it would match
the one previously set. datasignature confirm displays an error message and returns a nonzero return
code if the signatures do not match.

datasignature report displays a full report comparing the previously set signature to the current
one.

In the above, the signature is stored in the dataset and accessed from it. The signature can also be

stored in a separate, small file.

datasignature set, saving(filename) calculates and displays the signature and, in addition to

storing it as a characteristic in the dataset, also saves the signature in filename.

datasignature confirm using filename verifies that the current signature matches the one stored

in filename.

datasignature report using filename displays a full report comparing the current signature with

the one stored in filename.

In all the above, if filename is specified without an extension, .dtasig is assumed.

datasignature clear clears the signature, if any, stored in the characteristics of the dataset in mem-
ory.

Quick start
Calculate and display the signature of the dataset in memory

datasignature

Same as above, and store the signature as a characteristic of the data

datasignature set

Same as above, but also save the signature in datasig.txt
datasignature set, saving(datasig.txt)

96

datasignature — Determine whether data have changed 97

Confirm that the data are currently exactly the same as they were when signed

datasignature confirm

Confirm that the data in memory have the same signature saved in datasig.txt
datasignature confirm using datasig.txt

Menu
Data > Other utilities > Manage data signature

Syntax
datasignature

datasignature set [, reset]

datasignature confirm [, strict]

datasignature report

datasignature set, saving(filename[, replace]) [reset]

datasignature confirm using filename [, strict]

datasignature report using filename

datasignature clear

collect is allowed; see [U] 11.1.10 Prefix commands.

Options
reset is used with datasignature set. It specifies that even though you have previously set a signa-

ture, you want to erase the old signature and replace it with the current one.

strict is for use with datasignature confirm. It specifies that, in addition to requiring that the

signatures match, you also wish to require that the variables be in the same order and that no new

variables have been added to the dataset. (If any variables were dropped, the signatures would not

match.)

saving(filename[, replace]) is used with datasignature set. It specifies that, in addition to stor-
ing the signature in the dataset, you want a copy of the signature saved in a separate file. If filename

is specified without a suffix, .dtasig is assumed. The replace suboption allows filename to be

replaced if it already exists.

datasignature — Determine whether data have changed 98

Remarks and examples
Remarks are presented under the following headings:

Using datasignature interactively
Example 1: Verification at a distance
Example 2: Protecting yourself from yourself
Example 3: Working with assistants
Example 4: Working with shared data

Using datasignature in do-files
Interpreting data signatures
The logic of data signatures

Using datasignature interactively
datasignature is useful in the following cases:

1. You and a coworker, separated by distance, have both received what is claimed to be the same

dataset. You wish to verify that it is.

2. You work interactively and realize that you could mistakenly modify your data. You wish to

guard against that.

3. You want to give your dataset to an assistant to improve the labels and the like. You wish to

verify that the data returned to you are the same data.

4. You work with an important dataset served on a network drive. You wish to verify that others

have not changed it.

Example 1: Verification at a distance
You load the data and type

. datasignature
74:12(71728):3831085005:1395876116

Your coworker does the same with his or her copy. You compare the two signatures.

Example 2: Protecting yourself from yourself
You load the data and type

. datasignature set
74:12(71728):3831085005:1395876116 (data signature set)

. save, replace

From then on, you periodically type

. datasignature confirm
(data unchanged since 19feb2025 14:24)

One day, however, you check and see the message:

. datasignature confirm
(data unchanged since 19feb2025 14:24, except 2 variables have been added)

datasignature — Determine whether data have changed 99

You can find out more by typing

. datasignature report
(data signature set on Monday 19feb2025 14:24)
Data signature summary

1. Previous data signature 74:12(71728):3831085005:1395876116
2. Same data signature today (same as 1)
3. Full data signature today 74:14(113906):1142538197:2410350265

Comparison of current data with previously set data signature

variables number notes

original # of variables 12 (values unchanged)
added variables 2 (1)
dropped variables 0

resulting # of variables 14
(1) Added variables are agesquared logincome.

You could now either drop the added variables or decide to incorporate them:

. datasignature set
data signature already set -- specify option reset

r(110)
. datasignature set, reset
74:14(113906):1142538197:2410350265 (data signature reset)

Concerning the detailed report, three data signatures are reported: 1) the stored signature, 2) the

signature that would be calculated today on the basis of the same variables in their original order, and

3) the signature that would be calculated today on the basis of all the variables and in their current order.

datasignature confirm knew that new variables had been added because signature 1 was equal to

signature 2. If some variables had been dropped, however, datasignature confirm would not be able
to determine whether the remaining variables had changed.

Example 3: Working with assistants
You give your dataset to an assistant to have variable labels and the like added. You wish to verify

that the returned data are the same data.

Saving the signature with the dataset is inadequate here. Your assistant, having your dataset, could

change both your data and the signature and might even do that in a desire to be helpful. The solution is

to save the signature in a separate file that you do not give to your assistant:

. datasignature set, saving(mycopy)
74:12(71728):3831085005:1395876116 (data signature set)
(file mycopy.dtasig saved)

You keep file mycopy.dtasig. When your assistant returns the dataset to you, you use it and compare
the current signature to what you have stored in mycopy.dtasig:

. datasignature confirm using mycopy
(data unchanged since 19feb2025 15:05)

By the way, the signature is a function of the following:

• The number of observations and number of variables in the data

• The values of the variables

datasignature — Determine whether data have changed 100

• The names of the variables

• The order in which the variables occur in the dataset

• The storage types of the individual variables

The signature is not a function of variable labels, value labels, notes, and the like.

Example 4: Working with shared data
You work on a dataset served on a network drive, which means that others could change the data. You

wish to know whether this occurs.

The solution here is the same as working with an assistant: you save the signature in a separate, private

file on your computer,

. datasignature set, saving(private)
74:12(71728):3831085005:1395876116 (data signature set)
(file private.dtasig saved)

and then you periodically check the signature by typing

. datasignature confirm using private
(data unchanged since 15mar2025 11:22)

Using datasignature in do-files
datasignature confirm aborts with error if the signatures do not match:

. datasignature confirm
data have changed since 19feb2025 15:05

r(9);

This means that, if you use datasignature confirm in a do-file, execution of the do-file will be stopped
if the data have changed.

You may want to specify the strict option. strict adds two more requirements: that the variables
be in the same order and that no new variables have been added. Without strict, these are not considered
errors:

. datasignature confirm
(data unchanged since 19feb2025 15:22)

. datasignature confirm, strict
(data unchanged since 19feb2025 15:05, but order of variables has changed)

r(9);

and

. datasignature confirm
(data unchanged since 19feb2025 15:22, except 1 variable has been added)

. datasignature confirm, strict
(data unchanged since 19feb2025 15:22, except 1 variable has been added)

r(9);

If you keep logs of your analyses, issuing datasignature or datasignature confirm immediately
after loading each dataset is a good idea. This way, you have a permanent record that you can use for

comparison.

datasignature — Determine whether data have changed 101

Interpreting data signatures
An example signature is 74:12(71728):3831085005:1395876116. The components are

1. 74, the number of observations;

2. 12, the number of variables;

3. 71728, a checksum function of the variable names and the order in which they occur; and

4. 3831085005 and 1395876116, checksum functions of the values of the variables, calculated

two different ways.

Two signatures are equal only if all their components are equal.

Two different datasets will probably not have the same signature, and it is even more unlikely that

datasets containing similar values will have equal signatures. There are two data checksums, but do

not read too much into that. If either data checksum changes, even just a little, the data have changed.

Whether the change in the checksum is large or small—or in one, the other, or both—signifies nothing.

The logic of data signatures
The components of a data signature are known as checksums. The checksums are many-to-one map-

pings of the data onto the integers. Let’s consider the checksums of auto.dta carefully.

The data portion of auto.dta contains 38,184 bytes. There are 25638184 such datasets or, equiva-

lently, 2305472. The first checksum has 248 possible values, and it can be proven that those values are

equally distributed over the 2305472 datasets. Thus there are 2305472/248 − 1 = 2305424 − 1 datasets that

have the same first checksum value as auto.dta. The same can be said for the second checksum. It
would be difficult to prove, but we believe that the two checksums are conditionally independent, being

based on different bit shifts and bit shuffles of the same data. Of the 2305424 − 1 datasets that have the

same first checksum as auto.dta, the second checksum should be equally distributed over them. Thus

there are about 2305376 − 1 datasets with the same first and second checksums as auto.dta.

Now let’s consider those 2305376 − 1 other datasets. Most of them look nothing like auto.dta. The
checksum formulas guarantee that a change of one variable in 1 observation will lead to a change in

the calculated result if the value changed is stored in 4 or fewer bytes, and they nearly guarantee it in

other cases. When it is not guaranteed, the change cannot be subtle—“Chevrolet” will have to change

to binary junk, or a double-precision 1 to −6.476678983751e+301, and so on. The change will be easily

detected if you summarize your data and just glance at the minimums and maximums. If the data look
at all like auto.dta, which is unlikely, they will look like a corrupted version.

More interesting are offsetting changes across observations. For instance, can you change one variable

in 1 observation and make an offsetting change in another observation so that, taken together, they will

go undetected? You can fool one of the checksums, but fooling both of them simultaneously will prove

difficult. The basic rule is that the more changes youmake, the easier it is to create a dataset with the same

checksums as auto.dta, but by the time you have done that, the data will look nothing like auto.dta.

datasignature — Determine whether data have changed 102

Stored results
datasignature without arguments and datasignature set store the following in r():

Macros

r(datasignature) the signature

datasignature confirm stores the following in r():

Scalars

r(k added) number of variables added

Macros

r(datasignature) the signature

datasignature confirm aborts execution if the signatures do not match and so then returns nothing
except a return code of 9.

datasignature report stores the following in r():

Scalars

r(datetime) %tc date–time when set
r(changed) . if r(k dropped) ≠ 0, otherwise

0 if data have not changed, 1 if data have changed
r(reordered) 1 if variables reordered, 0 if not reordered,

. if r(k added) ≠ 0 | r(k dropped) ≠ 0

r(k original) number of original variables

r(k added) number of added variables

r(k dropped) number of dropped variables

Macros

r(origdatasignature) original signature

r(curdatasignature) current signature on same variables, if it can be calculated

r(fulldatasignature) current full-data signature

r(varsadded) variable names added

r(varsdropped) variable names dropped

datasignature clear stores nothing in r() but does clear it.

datasignature set stores the signature in the following characteristics:

Characteristic

dta[datasignature si] signature

dta[datasignature dt] %tc date–time when set in %21x format
dta[datasignature vl1] part 1, original variables

dta[datasignature vl2] part 2, original variables, if necessary

etc.

To access the original variables stored in dta[datasignature vl1], etc., from an ado-file, code

mata: ado_fromlchar(”vars”, ”_dta”, ”datasignature_vl”)

Thereafter, the original variable list would be found in ‘vars’.

Methods and formulas
datasignature is implemented using datasignature; see [P] datasignature.

datasignature — Determine whether data have changed 103

Reference
Gould, W. W. 2006. Stata tip 35: Detecting whether data have changed. Stata Journal 6: 428–429.

Also see
[P] datasignature — Determine whether data have changed

[P] signestimationsample — Determine whether the estimation sample has changed

https://www.stata-journal.com/article.html?article=dm0024

Datetime — Date and time values and variables

Description Quick start Syntax Remarks and examples References Also see

Description
This entry provides a complete overview of Stata’s date and time values. We discuss functions used

to obtain Stata dates, including string-to-numeric conversions and conversions among different types of

dates and times.

Stata’s date and time values need to be formatted so they look like the dates and times we are familiar

with. We show basic formatting options here, but more details can be found in [D] Datetime display

formats.

[D] Datetime conversion has more details on converting dates and times stored as strings to numeri-

cally encoded Stata dates and times.

[D] Datetime values from other software discusses getting Stata dates from dates created by other

software.

[D] Datetime durations describes functions designed to get durations (for example, ages) from two

Stata dates or to express a duration in different units.

[D] Datetime relative dates describes functions that return dates based on other dates, for example,

the date of a birthday in another year.

[D] Datetime business calendars describes business calendars—using dates with nonbusiness days

(for example, weekends and holidays) removed. You can use existing calendars or create your own; see

[D] Datetime business calendars creation.

For an alphabetical listing of all the datetime functions, see [FN] Date and time functions.

Quick start
Convert the string variable strdate, with dates such as ”January 1, 2020”, to a numerically encoded

Stata date

generate numdate = date(strdate, ”MDY”)

Format numdate to make it readable when displayed
format numdate %td

Convert the string variable strtime, with dates and times such as ”January 1,2020 10:30 am”, to a
numerically encoded Stata datetime variable

generate double numtime = clock(strtime, ”MDYhm”)

Format numtime to make it readable when displayed
format numtime %tc

104

Datetime — Date and time values and variables 105

Convert the string variable strmonthly, with monthly dates such as ”2012-04”, to a Stata date, and
format it to make it readable when displayed

generate nummonth = monthly(strmonthly, ”YM”)
format nummonth %tm

List observations for which numdate is prior to February 15, 2013
list if numdate < td(15/2/2013)

Create a monthly date variable from numeric variables year and month
generate monthly = ym(year,month)

Create a daily date variable from the datetimes stored in numtime
generate dateoftime = dofc(numtime)

Create a monthly date variable from the daily dates stored in numdate
generate monthlyofdate = mofd(numdate)

Create a new variable with the month of the daily dates stored in numdate
generate monthnum = month(numdate)

Syntax
Syntax is presented under the following headings:

Types of dates and how they are displayed
How Stata dates are stored
Converting dates stored as strings to Stata dates
Formatting Stata dates for display
Creating dates from components
Converting among units
Extracting time-of-day components from datetimes
Extracting date components from daily dates
Typing dates into expressions

Types of dates and how they are displayed
Dates and times can take many forms; below, we list the types of dates that are supported in Stata.

Note that throughout our documentation, we use the term “datetime” to refer to variables that record time

or date and time.

Date type Examples

datetime 20jan2010 09:15:22.120

date 20jan2010, 20/01/2010, . . .

weekly date 2010w3

monthly date 2010m1

quarterly date 2010q1

half-yearly date 2010h1

yearly date 2010

The styles of the dates in the table above are merely examples; dates can be displayed in a number of

ways. Perhaps you prefer 2010.01.20; Jan. 20, 2010; 2010-1; etc.

Datetime — Date and time values and variables 106

How Stata dates are stored
Stata dates are numeric values that record durations (positive or negative) from 01jan1960. Below,

we list the numeric values corresponding to the dates displayed in the table in the previous section.

Stata date type Examples Units

datetime/c 1,579,598,122,120 milliseconds since 01jan1960 00:00:00.000,
assuming 86,400 s/day

datetime/C 1,579,598,146,120 milliseconds since 01jan1960 00:00:00.000,
adjusted for leap seconds*

date 18,282 days since 01jan1960 (01jan1960 = 0)

weekly date 2,601 weeks since 1960w1

monthly date 600 months since 1960m1

quarterly date 200 quarters since 1960q1

half-yearly date 100 half-years since 1960h1

yearly date 2010 years since 0000

* Datetime/C is equivalent to coordinated universal time (UTC). In UTC, leap seconds are
periodically inserted because the length of the mean solar day is slowly increasing. See
Why there are two datetime encodings in [D] Datetime conversion.

Stata dates are stored as regular Stata numeric variables.

You can convert dates stored as strings to Stata dates by using the string-to-numeric conversion func-

tions; see Converting dates stored as strings to Stata dates.

You can make Stata dates readable by placing the appropriate %fmt on the numeric variable; see For-
matting Stata dates for display.

You can convert from one Stata date type to another by using conversion functions; see Converting

among units.

Storing dates as numeric values is convenient because you can subtract them to obtain time between

dates, for example,

datetime2 − datetime1= milliseconds between datetime1 and datetime2

(divide by 1,000 to obtain seconds)

date2 − date1 = days between date1 and date2

week2 − week1 = weeks between week1 and week2

month2 − month1 = months between month1 and month2

half2 − half1 = half-years between half1 and half2

year2 − year1 = years between year1 and year2

For time differences in other units, for example, the number of years between date1 and date2, see

[D] Datetime durations.

Datetime — Date and time values and variables 107

Converting dates stored as strings to Stata dates
To convert dates and times stored as strings to Stata dates and times, use one of the functions listed

below.

Stata date type Function Required variable precision

datetime/c clock(str, mask) double
datetime/C Clock(str, mask) double

date date(str, mask) float or long

weekly date weekly(str, mask)* float or int
monthly date monthly(str, mask)* float or int
quarterly date quarterly(str, mask)* float or int
half-yearly date halfyearly(str, mask)* float or int
yearly date yearly(str, mask) float or int

* str is a string variable or a literal string enclosed in quotes.

Within each function, you need to specify the string you want to convert and the order in which the

date and time components appear in that string.

The string to be converted with clock(), Clock(), and date() may contain dates and times that
are run together or include punctuation marks between the components. However, the functions marked

with an asterisk require that the string date contain a space or punctuation between the year and the other

component if the string consists only of numbers. For more information on how punctuation is handled

and other details related to these conversion functions, see [D] Datetime conversion.

The order of the components is specified within quotes, such as ”YMD”, and is referred to as a mask.
The mask may contain the following elements:

Mask element Component

D day

W week

M month

Q quarter

H half-year

Y year

19Y two-digit year in the 1900s

20Y two-digit year in the 2000s

h hour

m minute

s second

placeholder for something to be ignored

Datetime — Date and time values and variables 108

Examples:

1. You have datetimes stored in the string variable mystr, an example being 2010.07.12 14:32.
To convert this to a Stata datetime/c variable, you type

. generate double eventtime = clock(mystr, ”YMDhm”)

The string contains the year, month, and day followed by the hour and minute, so you specify

the mask ”YMDhm”.

2. You have datetimes stored in mystr, an example being 2010.07.12 14:32:12. You type

. generate double eventtime = clock(mystr, ”YMDhms”)

Mask element s specifies seconds. In example 1, there were no seconds; in this example, there
are.

3. You have datetimes stored in mystr, an example being 2010 Jul 12 14:32. You type

. generate double eventtime = clock(mystr, ”YMDhm”)

This is the same command that you typed in example 1. In the mask, you specify the order of

the components; Stata figures out the style for itself. In example 1, months were numeric. In

this example, they are spelled out (and happen to be abbreviated).

4. You have datetimes stored in mystr, an example being July 12, 2010 2:32 PM. You type

. generate double eventtime = clock(mystr, ”MDYhm”)

Stata automatically looks forAM and PM, in uppercase and lowercase, with and without periods.

5. You have datetimes stored in mystr, an example being 7-12-10 14.32. The 2-digit year is to
be interpreted as being prefixed with 20. You type

. generate double eventtime = clock(mystr, ”MD20Yhm”)

6. You have datetimes stored in mystr, an example being 14:32 on 7/12/2010. You type

. generate double eventtime = clock(mystr, ”hm#MDY”)

The # sign between m and M means “ignore one thing between minute and month”, which in
this case is the word “on”. Had you omitted the # from the mask, the new variable eventtime
would have contained missing values.

7. You have a date stored in mystr, an example being 22/7/2010. In this case, you want to create
a Stata date instead of a datetime. You type

. generate eventdate = date(mystr, ”DMY”)

Typing

. generate double eventtime = clock(mystr, ”DMY”)

would have worked, too. Variable eventtime would contain a different coding from that

contained by eventdate; namely, it would contain milliseconds from 1jan1960 rather than

days (1,595,376,000,000 rather than 18,465). Datetime value 1,595,376,000,000 corresponds

to 22jul2010 00:00:00.000.

Datetime — Date and time values and variables 109

Formatting Stata dates for display
While Stata dates are stored as regular Stata numeric variables, they are formatted so they look like

the dates and times we are familiar with. Each type of date has a corresponding display format, and we

list them below:

Stata date type Display format

datetime/c %tc
datetime/C %tC

date %td

weekly date %tw
monthly date %tm
quarterly date %tq
half-yearly date %th
yearly date %ty

The display formats above are the simplest forms of each of the Stata dates. You can control how

each type of Stata date is displayed; see [D] Datetime display formats.

Examples:

1. You have datetimes stored in string variable mystr, an example being 2010.07.12 14:32. To
convert this to a Stata datetime/c variable and make the new variable readable when displayed,

you type

. generate double eventtime = clock(mystr, ”YMDhm”)

. format eventtime %tc

2. You have a date stored in mystr, an example being 22/7/2010. To convert this to a Stata date
variable and make the new variable readable when displayed, you type

. generate eventdate = date(mystr, ”DMY”)

. format eventdate %td

Datetime — Date and time values and variables 110

Creating dates from components
If you have components of your date stored separately, you can use the following functions to create

a single date variable. Note that each component used in this function must be numeric; you can specify

numeric variables or simply digits.

Stata date type Function to build from components

datetime/c mdyhms(M, D, Y, h, m, s)*
dhms(𝑒𝑑, h, m, s)*†

hms(h, m, s)*

datetime/C Cmdyhms(M, D, Y, h, m, s)*
Cdhms(𝑒𝑑, h, m, s)*†

Chms(h, m, s)*

date mdy(M, D, Y)
dmy(D, M, Y)

weekly date yw(Y, W)
monthly date ym(Y, M)
quarterly date yq(Y, Q)
half-yearly date yh(Y, H)
yearly date y(Y)

* Stata datetime variables must be stored as doubles.
† 𝑒𝑑 is a Stata date with a month, day, and year component.

Examples:

1. Your dataset has three variables, mo, da, and yr, with each variable containing a date component
in numeric form. To create a date variable from these components, you type

. generate eventdate = mdy(mo, da, yr)

. format eventdate %td

If you prefer the ordering day, month, and year, you can use dmy() instead of mdy():

. generate eventdate = dmy(da, mo, yr)

. format eventdate %td

2. Your dataset has two numeric variables, mo and yr. To create a date variable corresponding to
the first day of the month, you type

. generate eventdate = mdy(mo, 1, yr)

. format eventdate %td

3. Your dataset has two numeric variables, da and yr, and one string variable, month, containing
the spelled-out month. In this case, do not use the building-from-component functions. Instead,

construct a new string variable with these components, and then convert the string to a Stata

date using the conversion functions:

. generate str work = month + ” ” + string(da) + ” ” + string(yr)

. generate eventdate = date(work, ”MDY”)

. format eventdate %td

Datetime — Date and time values and variables 111

Converting among units
The table below lists the functions for converting one type of date and time to another. Because there

are not official functions for every possible conversion, we have also included the functions you can nest

instead to obtain those conversions. Similarly, for any other conversion not listed here, you can use two

functions, going through date or datetime as appropriate. For example, to obtain a monthly date from a

datetime/c variable, you would use mofd(dofc(varname)).

To:

From: datetime/c datetime/C date

datetime/c Cofc() dofc()
datetime/C cofC() dofC()
date cofd() Cofd()

To:

From: date weekly monthly quarterly

date wofd() mofd() qofd()
weekly dofw() mofd(dofw()) qofd(dofw())
monthly dofm() wofd(dofm()) qofd(dofm())
quarterly dofq() wofd(dofq()) mofd(dofq())

To:

From: date half-yearly yearly

date hofd() yofd()
half-yearly dofh()
yearly dofy()

Note that if you are converting to a date type for which you do not have all the components, those

missing elements will be set to their defaults. For example, converting a yearly date to a weekly date

would give you the first week of each year. Converting a quarterly date to a monthly date would give

you the first month of each quarter, along with the year, of course. Below, we list the defaults for the

date and time components:

Date component Default

year 1960

half-year 1

quarter 1

month 1

week 1

day 01

hour 00

minute 00

second 00

Datetime — Date and time values and variables 112

Examples:

1. You have the Stata datetime/c variable eventtime and wish to create the new variable

eventdate containing just the date from the datetime variable. You type

. generate eventdate = dofc(eventtime)

. format eventdate %td

2. You have the daily date eventdate and wish to create the new datetime/c variable eventtime
from it. For this unusual case, you can even type

. generate double eventtime = cofd(eventdate)

. format eventtime %tc

The time components of the new variable will be set to the default 00:00:00.000.

3. You have the Stata quarterly variable eventqtr and wish to create the new Stata date variable

eventdate from it. You type

. generate eventdate = dofq(eventqtr)

. format eventdate %tq

The new variable, eventdate, will contain 01jan dates for quarter 1, 01apr dates for quarter 2,
01jul dates for quarter 3, and 01oct dates for quarter 4.

4. You have the datetime/c variable admittime and wish to create the quarterly variable

admitqtr from it. You type

. generate admitqtr = qofd(dofc(admittime))

. format admitqtr %tq

Because there is no qofc() function, you use qofd(dofc()).

Datetime — Date and time values and variables 113

Extracting time-of-day components from datetimes
In the table below, we list the functions used to extract time-of-day components from datetimes. If

you are working with standard datetimes, use the functions in the datetime/c column. If you are working

with leap second–adjusted times, use the functions in the datetime/C column.

Function

Desired component datetime/c datetime/C Example

hour of day hh(𝑒𝑡𝑐) hhC(𝑒𝑡𝐶) 14

minutes of day mm(𝑒𝑡𝑐) mmC(𝑒𝑡𝐶) 42

seconds of day ss(𝑒𝑡𝑐) ssC(𝑒𝑡𝐶) 57.123

year, month, day, clockpart(𝑒𝑡𝑐,𝑠𝑢) Clockpart(𝑒𝑡𝐶,𝑠𝑢) 2020

hour, minute, second,

or millisecond

𝑒𝑡𝑐 is a Stata datetime/c value.
𝑒𝑡𝐶 is a Stata datetime/C value (UTC time with leap seconds).

𝑠𝑢 is a string specifying the time unit. 𝑠𝑢 can be string ”year” or ”y” for year;
”month” or ”mon” for month; ”day” or ”d” for day; ”hour” or ”h” for hour;
”minute” or ”min” for minute; ”second”, ”sec”, or ”s” for second; and
”millisecond” or ”ms” for millisecond (case insensitive).

Notes:
0 ≤ hh(𝑒𝑡𝑐) ≤ 23, 0 ≤ hhC(𝑒𝑡𝐶) ≤ 23
0 ≤ mm(𝑒𝑡𝑐) ≤ 59, 0 ≤ mmC(𝑒𝑡𝐶) ≤ 59
0 ≤ ss(𝑒𝑡𝑐) < 60, 0 ≤ ssC(𝑒𝑡𝐶) < 61 (sic)

Example:

1. You have the Stata datetime/c variable admittime. You wish to create the new variable

admithour equal to the hour and fraction of hour within the day of admission. You type
. generate admithour = hh(admittime) + mm(admittime)/60
> + ss(admittime)/3600

2. You have the Stata datetime/C variable admitTime. You wish to create the new variable

admityear to record the year of admission. You type

. generate admityear = Clockpart(admitTime, ”year”)

See [D] Datetime durations for other functions that can be used to calculate durations.

Datetime — Date and time values and variables 114

Extracting date components from daily dates
You might be working with dates that have more information than you need. For example, daily dates

refer to dates that have a month, day, and year component. If you want to refer only to the month, or

year, of a daily date, you can use the extraction functions below.

Desired component Function* Example†

calendar year year(𝑒𝑑) 2013

datepart(𝑒𝑑, ”year”) 2013

calendar month month(𝑒𝑑) 7

datepart(𝑒𝑑, ”month”) 7

calendar day day(𝑒𝑑) 5

datepart(𝑒𝑑, ”day”) 5

day of week dow(𝑒𝑑) 2

(0=Sunday)

Julian day of year doy(𝑒𝑑) 186

(1=first day)

week within year week(𝑒𝑑) 27

(1=first week)

quarter within year quarter(𝑒𝑑) 3

(1=first quarter)

half within year halfyear(𝑒𝑑) 2

(1=first half)

* 𝑒𝑑 is a Stata date with a month, day, and year component.
† All examples are with 𝑒𝑑 = mdy(7,5,2013).

All functions require a numeric Stata daily date as an argument. A string variable cannot be specified

as the date. To extract components from other Stata date types, use the appropriate conversion function

to convert to a daily date. For example, quarter(dofq(qvar))would return the quarter of the quarterly
date values stored in qvar.

Datetime — Date and time values and variables 115

Examples:

1. Youwish to obtain the day of week Sunday, Monday, . . . corresponding to the daily date variable

eventdate. You type

. generate day_of_week = dow(eventdate)

The new variable, day of week, contains 0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

2. You wish to obtain the day of week Sunday, Monday, . . . corresponding to the datetime/c vari-

able eventtime. You type

. generate day_of_week = dow(dofc(eventtime))

3. You have the daily date variable evdate and wish to create the new date variable evdate r
from it. evdate r will contain the same date as evdate but rounded back to the first of the
month. You type

. generate evdate_r = mdy(month(evdate), 1, year(evdate))

In the above solution, we used the date-component extraction functions month() and year()
and used the build-from-components function mdy().

Typing dates into expressions
You can type date values by just typing the number, such as 16,237 or 1,402,920,000,000, as in

. generate before = cond(hiredon < 16237, 1, 0) if !missing(hiredon)

. drop if admittedon < 1402920000000

Easier to type is

. generate before = cond(hiredon < td(15jun2004), 1, 0) if !missing(hiredon)

. drop if admittedon < tc(15jun2004 12:00:00)

You can type Stata date values by typing the date inside td(), as in td(15jun2004).

You can type Stata datetime/c values by typing the datetime inside tc(), as in tc(15jun2004
12:00:00).

td() and tc() are called pseudofunctions because they translate what you type into their numerical
equivalents. Pseudofunctions require only that you specify the datetime components in the expected

order, so rather than 15jun2004 above, we could have specified 15 June 2004, 15-6-2004, or 15/6/2004.

The pseudofunctions and their expected component order are

Desired date type Pseudofunction

datetime/c tc([day-month-year] hh:mm[:ss [.sss]])
datetime/C tC([day-month-year] hh:mm[:ss [.sss]])
date td(day-month-year)
weekly date tw(year-week)
monthly date tm(year-month)
quarterly date tq(year-quarter)
half-yearly date th(year-half)
yearly date none necessary; years are numeric and can be typed directly

Datetime — Date and time values and variables 116

Note that the day-month-year in tc() and tC() are optional. If you omit them, 01jan1960 is assumed.
Doing so produces time as an offset, which can be useful in, for example,

. generate six_hrs_later = eventtime + tc(6:00)

Note that string-to-date functions can be used in expressions with literal strings. For example,

date(”15jun2004”,”DMY”) gives the same result as td(15jun2004).

Remarks and examples
Remarks are presented under the following headings:

Introduction
Example 1: Converting string datetimes to Stata datetimes
Example 2: Extracting date components
Example 3: Building dates from components
Example 4: Converting among date types
Example 5: Using dates in expressions

Introduction
To use dates in Stata, you must first convert what you have to a Stata date. Stata dates are numbers,

so they can easily be translated from, say, daily dates to monthly dates. Even so, they can be formatted

so that they look like the dates you are familiar with. If you have dates stored as strings, you must first

convert them to Stata dates.

Converting a string date to a Stata date is as simple as telling Stata the string date and the order of the

components. For example, we have a fictional dataset on patients who visited a local hospital. We have

their birthdates, the dates of their visits, the reasons for their visits, and the dates they were discharged.

All dates and times are stored as strings.

. use https://www.stata-press.com/data/r19/visits
(Fictional hospital visit data)
. describe
Contains data from https://www.stata-press.com/data/r19/visits.dta
Observations: 5 Fictional hospital visit data

Variables: 7 27 Aug 2024 22:56

Variable Storage Display Value
name type format label Variable label

patid byte %9.0g Patient ID
dateofbirth str9 %9s Date of birth
reason str15 %15s Reason for visit
admit_d str8 %9s Admission date
admit_t str17 %17s Admission date and time
discharge_d str9 %9s Discharge date
discharge_t str14 %14s Discharge date and time

Sorted by:

Datetime — Date and time values and variables 117

. list admit_d dateofbirth

admit_d dateofb~h

1. 20110625 May152001
2. 20110313 Apr011999
3. 20110409 Nov151975
4. 20120211 Aug261960
5. 20120801 Dec161987

If we wanted to sort our data by birthdates or use these dates to compute a patient’s age, we would

need these variables to be numeric, not strings. So let’s create numeric Stata dates from the birthdates

and dates of admission:

. generate admit = date(admit_d, ”YMD”)

. generate dob = date(dateofbirth, ”MDY”)

. list admit_d admit dateofbirth dob

admit_d admit dateofb~h dob

1. 20110625 18803 May152001 15110
2. 20110313 18699 Apr011999 14335
3. 20110409 18726 Nov151975 5797
4. 20120211 19034 Aug261960 238
5. 20120801 19206 Dec161987 10211

For dates of admission, we told Stata that the string date was stored in admit d and that the date was
stored in the following order: year, month, day (YMD). Similarly, for birthdates we specify the string date

and the order of the components: month, day, and year (MDY). It does not matter whether the month is

written as a number, spelled out completely, or abbreviated to three letters.

You might be surprised by the values listed. The numbers represent the days elapsed since January 1,

1960, Stata’s base date. Most software store dates and times in this manner, but they differ in the date

they choose as a base. For us to understand the dates that these values represent, we apply a display

format. All datetime display formats begin with a %t and contain a second letter representing the type of
date: %td for daily dates, %tw for weekly dates, and so on. In our case, we have daily dates, so we use
the %td format.

. format admit dob %td

. list admit dob

admit dob

1. 25jun2011 15may2001
2. 13mar2011 01apr1999
3. 09apr2011 15nov1975
4. 11feb2012 26aug1960
5. 01aug2012 16dec1987

If we instead had weekly dates, monthly dates, or quarterly dates, we would use the appropriate string-

to-numeric conversion function to create the numeric variable and the appropriate display format. For

more ways to format the dates above, see [D] Datetime display formats.

Datetime — Date and time values and variables 118

This is a simple example to get us started. The key points are that we want our dates to be stored

numerically and formatted so that they look like the dates we are familiar with.

Below, we will discuss how to work with other types of dates. We will explore dates that have a time

component, dates with components stored in multiple variables, and dates that have more components

than we wish to work with. So whether you need to build, extract, or convert among different types of

dates, you will learn how to do so with the examples that follow.

Example 1: Converting string datetimes to Stata datetimes
In this dataset, we also have string variables that record the date and time of admission and discharge:

. codebook admit_t discharge_t

admit_t Admission date and time

Type: String (str17)
Unique values: 5 Missing ””: 0/5

Tabulation: Freq. Value
1 ”20110313 8:30:45”
1 ”20110409 10:17:08”
1 ”20110625 5:15:06”
1 ”20120211 10:30:12”
1 ”20120801 6:45:59”

Warning: Variable has embedded blanks.

discharge_t Discharge date and time

Type: String (str14)
Unique values: 5 Missing ””: 0/5

Tabulation: Freq. Value
1 ”20110326 2:15”
1 ”20110409 19:35”
1 ”20110629 10:27”
1 ”20120216 2:15”
1 ”20120802 11:59”

Warning: Variable has embedded blanks.

Let’s convert these to Stata dates. Regardless if we are working with simple dates or dates and times,

the process is the same. We are going to specify the string we want to convert and the order of the

components. The only difference between this example and the previous example is the function; because

these variables record the date and time, we will now use the clock() function, and the variables we
generate will be referred to as datetime variables.

Datetime — Date and time values and variables 119

. generate double admit_time = clock(admit_t, ”YMDhms”)

. generate double disch_time = clock(discharge_t, ”YMDhm”)

. format admit_time disch_time %tc

. list admit_time disch_time

admit_time disch_time

1. 25jun2011 05:15:06 29jun2011 10:27:00
2. 13mar2011 08:30:45 26mar2011 02:15:00
3. 09apr2011 10:17:08 09apr2011 19:35:00
4. 11feb2012 10:30:12 16feb2012 02:15:00
5. 01aug2012 06:45:59 02aug2012 11:59:00

Note that the string variable admit t contained the hour, minutes, and seconds, whereas the string
variable discharge t contained only the hour and minutes. This is why we did not specify an s in the
list of components for discharge t, and it is also why the seconds are set to zero for disch time.

These variables now record the milliseconds since 01jan1960 00:00:00.000, assuming 86,400 seconds

per day. You might have guessed that these values will be quite large, which is why we need to use the

most precise storage type in Stata, double.

We have a lot of information in these variables, but we can choose to view just the portion in which we

are interested by modifying the display format. For example, below we specify that we want to display

only the hour and minute for the time of discharge, and we list the newly formatted time alongside the

original string variable.

. format disch_time %tcHH:MM

. list discharge_t disch_time

discharge_t disch_~e

1. 20110629 10:27 10:27
2. 20110326 2:15 02:15
3. 20110409 19:35 19:35
4. 20120216 2:15 02:15
5. 20120802 11:59 11:59

We created the datetime variables above assuming there are 86,400 seconds in a day. This is one way

to record time; another way would be to use UTC. UTC times are adjusted for leap seconds and can be

obtained by modifying our commands just slightly, as follows:

. generate double admit_Time = Clock(admit_t, ”YMDhms”)

. format admit_Time %tC

Notice that the Clock() function and the %tC display format both contain a capital C. When you are

working with standard datetimes, you will use functions with a lowercase c, and for UTC times, you will
use functions with an uppercase C.

Datetime — Date and time values and variables 120

Example 2: Extracting date components
Suppose we want to work with just the month or year of admission. We can extract these components

from our Stata date variable:

. generate admonth = month(admit)

. generate adyear = year(admit)

. list admit admonth adyear

admit admonth adyear

1. 25jun2011 6 2011
2. 13mar2011 3 2011
3. 09apr2011 4 2011
4. 11feb2012 2 2012
5. 01aug2012 8 2012

Now, for each year, we can look at the patients that were admitted in the first three months and the

reason for their visit:

. bysort adyear: list patid reason if admonth < 4

-> adyear = 2011

patid reason

2. 2 chest pain

-> adyear = 2012

patid reason

1. 4 abdominal pain

Example 3: Building dates from components
If we are concerned only with the month and year of admission, we can also create a monthly date

with the two newly created variables above:

. generate monthly = ym(adyear,admonth)

. format monthly %tm

. list admit monthly

admit monthly

1. 25jun2011 2011m6
2. 13mar2011 2011m3
3. 09apr2011 2011m4
4. 11feb2012 2012m2
5. 01aug2012 2012m8

Because we now have monthly dates, we apply the %tm display format.

Datetime — Date and time values and variables 121

The ym() function shown above is useful when you have components of a date stored separately. In
fact, we could have created this monthly date variable by nesting functions:

. generate monthly2 = ym(year(admit), month(admit))

. format monthly2 %tm

Instead of generating those intermediary variables to extract the month and year of the daily date, we

simply used the extraction functions year() and month() within the ym() function. Either of the two
methods shown above will give you the same result, but if your goal is to convert a daily date variable

to a monthly date, you can use the mofd() conversion function, as demonstrated in the next example.

Example 4: Converting among date types
Often, we need to modify the data from its raw form for our purposes. For example, suppose our

dataset included only the datetime variable admit time but we were interested only in the date. We

could type

. generate dateoftime = dofc(admit_time)

. format dateoftime %td

. list admit_time dateoftime

admit_time dateoft~e

1. 25jun2011 05:15:06 25jun2011
2. 13mar2011 08:30:45 13mar2011
3. 09apr2011 10:17:08 09apr2011
4. 11feb2012 10:30:12 11feb2012
5. 01aug2012 06:45:59 01aug2012

Or we might want to create a monthly date from the date of admission:

. generate monthofdate = mofd(admit)

. format monthofdate %tm

. list admit monthofdate

admit montho~e

1. 25jun2011 2011m6
2. 13mar2011 2011m3
3. 09apr2011 2011m4
4. 11feb2012 2012m2
5. 01aug2012 2012m8

Several functions are available for converting from one type of date and time to another. But, if one is

not available for what you need, you can nest functions to obtain the conversion you want. For example,

suppose we would like to convert a monthly date to a quarterly date. There is no direct function for this

conversion, so instead we type

Datetime — Date and time values and variables 122

. generate quarterly = qofd(dofm(monthofdate))

. format quarterly %tq

. list monthofdate quarterly

montho~e quarte~y

1. 2011m6 2011q2
2. 2011m3 2011q1
3. 2011m4 2011q2
4. 2012m2 2012q1
5. 2012m8 2012q3

We use the dofm() function to convert the monthly date to a daily date. This daily date will contain the
month and year from the monthly date, and the day will be set to 1. This is the general rule with datetime

functions; if you are converting from one type of date to another that has more elements, those elements

are set to their defaults. The qofd() function then converts the resulting daily date to a quarterly date.

Example 5: Using dates in expressions
Besides generating date and time variables, you might use dates in expressions. For example, suppose

we wanted to look only at observations after a certain date. Let’s list visit information for any patients

who were admitted after February 20, 2012:

. list admit patid reason if admit > td(20feb2012)

admit patid reason

5. 01aug2012 5 rapid breathing

This td() function will convert February 20, 2012, to its numeric form. Our expression is then evaluated
by comparing this numeric value with the numeric values stored in admit.

If you would like to see that underlying numeric value, you can type

. display td(20feb2012)

References
Cox, N. J. 2010. Stata tip 68: Week assumptions. Stata Journal 10: 682–685.

———. 2012. Stata tip 111: More on working with weeks. Stata Journal 12: 565–569.

Cox, N. J., and C. B. Schechter. 2018. Speaking Stata: Seven steps for vexatious string variables. Stata Journal 18:

981–994.

Also see
[D] Datetime business calendars — Business calendars

[D] Datetime conversion — Converting strings to Stata dates

[D] Datetime display formats — Display formats for dates and times

[D] Datetime durations — Obtaining and working with durations

[D] Datetime relative dates — Obtaining dates and date information from other dates

[D] Datetime values from other software — Date and time conversion from other software

https://www.stata-journal.com/article.html?article=dm0052
https://doi.org/10.1177/1536867X1201200316
https://www.stata-journal.com/article.html?article=dm0098

Datetime business calendars — Business calendars

Description Syntax Remarks and examples Also see

Description
Stata provides user-definable business calendars.

Syntax
Apply business calendar format

format varlist %tbcalname

Apply detailed date format with business calendar format

format varlist %tbcalname[:datetime-specifiers]

Convert between business dates and regular dates

{ generate | replace } bdate = bofd(”calname”, regulardate)

{ generate | replace } regulardate = dofb(bdate, ”calname”)

File calname.stbcal contains the business calendar definition.

Details of the syntax follow:

1. Definition.

Business calendars are regular calendars with some dates crossed out:

November 2011

Su Mo Tu We Th Fr Sa

1 2 3 4 X

X 7 8 9 10 11 X

X 14 15 16 17 18 X

X 21 22 23 X X X

X 28 29 30

A date that appears on the business calendar is called a business date. 11nov2011 is a business date.

12nov2011 is not a business date with respect to this calendar.

Crossed-out dates are literally omitted. That is,

18nov2011 + 1 = 21nov2011

28nov2011 − 1 = 23nov2011

Stata’s lead and lag operators work the same way.

123

Datetime business calendars — Business calendars 124

2. Business calendars are named.

Assume that the above business calendar is named simple.

3. Business calendars are defined in files named calname.stbcal, such as simple.stbcal. Calendars
may be supplied by StataCorp and already installed, obtained from other users directly or via the SSC,

or written yourself. Calendars can also be created automatically from the current dataset with the

bcal create command; see [D] bcal. Stbcal-files are treated in the same way as ado-files.

You can obtain a list of all business calendars installed on your computer by typing bcal dir; see
[D] bcal.

4. Datetime format.

The date format associated with the business calendar named simple is %tbsimple, which is to say
% + t + b + calname.

% it is a format

t it is a datetime

b it is based on a business calendar

calname the calendar’s name

5. Format variables the usual way.

You format variables to have business calendar formats just as you format any variable, using the

format command.

. format mydate %tbsimple

specifies that existing variable mydate contains values according to the business calendar named

simple. See [D] format.

You may format variables %tbcalname regardless of whether the corresponding stbcal-file exists. If
it does not exist, the underlying numeric values will be displayed in a %g format.

6. Detailed date formats.

You may include detailed datetime format specifiers by placing a colon and the detail specifiers after

the calendar’s name.

. format mydate %tbsimple:CCYY.NN.DD

would display 21nov2011 as 2011.11.21. See [D] Datetime display formats for detailed datetime

format specifiers.

7. Reading business dates.

To read files containing business dates, ignore the business date aspect and read the files as if they

contained regular dates. Convert and format those dates as %td; see Converting dates stored as strings
to Stata dates in [D] Datetime. Then convert the regular dates to %tb business dates:

. generate mydate = bofd(”simple”, regulardate)

. format mydate %tbsimple

. assert mydate!=. if regulardate!=.

The first statement performs the conversion.

The second statement attaches the %tbsimple date format to the new variable mydate so that it will
display correctly.

Datetime business calendars — Business calendars 125

The third statement verifies that all dates recorded in regulardate fit onto the business calendar.

For instance, 12nov2011 does not appear on the simple calendar but, of course, it does appear on the
regular calendar. If the data contained 12nov2011, that would be an error. Function bofd() returns
missing when the date does not appear on the specified calendar.

8. More on conversion.

There are only two functions specific to business dates, bofd() and dofb(). Their definitions are

bdate = bofd(”calname”, regulardate)
regulardate = dofb(bdate, ”calname”)

bofd() returns missing if regulardate is missing or does not appear on the specified business calendar.
dofb() returns missing if bdate contains missing.

9. Obtaining day of week, etc.

You obtain day of week, etc., by converting business dates to regular dates and then using the standard

functions. To obtain the day of week of bdate on business calendar calname, type

. generate dow = dow(dofb(bdate, ”calname”))

See Extracting date components from daily dates in [D] Datetime for the other extraction functions.

10. Stbcal-files.

The stbcal-file for simple, the calendar shown below,

November 2011

Su Mo Tu We Th Fr Sa

1 2 3 4 X

X 7 8 9 10 11 X

X 14 15 16 17 18 X

X 21 22 23 X X X

X 28 29 30

is

begin simple.stbcal
*! version 1.0.0
* simple.stbcal
version 19.5 // (or version 19 if you do not have StataNow)
purpose ”Example for manual”
dateformat dmy
range 01nov2011 30nov2011
centerdate 01nov2011
omit dayofweek (Sa Su)
omit date 24nov2011
omit date 25nov2011

end simple.stbcal

This calendar was so simple that we crossed out the Thanksgiving holidays by specifying the dates to

be omitted. In a real calendar, we would change the last two lines,

omit date 24nov2011
omit date 25nov2011

to read

omit dowinmonth +4 Th of Nov and +1

Datetime business calendars — Business calendars 126

which says to omit the fourth (+4) Thursday of November in every year, and omit the day after that
(+1), too. See [D] Datetime business calendars creation.

Remarks and examples
See [D] Datetime for an introduction to Stata’s date and time features.

Below we work through an example from start to finish.

Remarks are presented under the following headings:

Step 1: Read the data, date as string
Step 2: Convert date variable to %td date
Step 3: Convert %td date to %tb date
Key feature: Each business calendar has its own encoding
Key feature: Omitted dates really are omitted
Key feature: Extracting components from %tb dates
Key feature: Merging on dates

Step 1: Read the data, date as string
File bcal simple.raw on our website provides data, including a date variable, that is to be inter-

preted according to the business calendar simple shown under Syntax above.
. type https://www.stata-press.com/data/r19/bcal_simple.raw
11/4/11 51
11/7/11 9
11/18/11 12
11/21/11 4
11/23/11 17
11/28/11 22

We begin by reading the data and then listing the result. Note that we read the date as a string variable:

. infile str10 sdate float x using https://www.stata-press.com/data/r19/bcal_simple
(6 observations read)
. list

sdate x

1. 11/4/11 51
2. 11/7/11 9
3. 11/18/11 12
4. 11/21/11 4
5. 11/23/11 17

6. 11/28/11 22

Step 2: Convert date variable to %td date
Now we create a numeric date variable from the string date and format it as a date (%td):

. generate rdate = date(sdate, ”MD20Y”)

. format rdate %td

See Converting dates stored as strings to Stata dates in [D] Datetime. We verify that the conversion

went well and drop the string variable of the date:

Datetime business calendars — Business calendars 127

. list

sdate x rdate

1. 11/4/11 51 04nov2011
2. 11/7/11 9 07nov2011
3. 11/18/11 12 18nov2011
4. 11/21/11 4 21nov2011
5. 11/23/11 17 23nov2011

6. 11/28/11 22 28nov2011

. drop sdate

Step 3: Convert %td date to %tb date
We convert the %td date to a %tbsimple date following the instructions of item 7 of Syntax above.

. generate mydate = bofd(”simple”, rdate)

. format mydate %tbsimple

. assert mydate!=. if rdate!=.

Had there been any dates that could not be converted from regular dates to simple business dates,
assertwould have responded, “assertion is false”. Nonetheless, wewill list the data to show you that the

conversion went well. We would usually drop the %td encoding of the date, but we want it to demonstrate
a feature below.

. list

x rdate mydate

1. 51 04nov2011 04nov2011
2. 9 07nov2011 07nov2011
3. 12 18nov2011 18nov2011
4. 4 21nov2011 21nov2011
5. 17 23nov2011 23nov2011

6. 22 28nov2011 28nov2011

Key feature: Each business calendar has its own encoding
In the listing above, rdate and mydate appear to be equal. They are not:

. format rdate mydate %9.0g // remove date formats

. list

x rdate mydate

1. 51 18935 3
2. 9 18938 4
3. 12 18949 13
4. 4 18952 14
5. 17 18954 16

6. 22 18959 17

Datetime business calendars — Business calendars 128

%tb dates each have their own encoding, and those encodings differ from the encoding used by %td
dates. It does not matter. Neither encoding is better than the other. Neither do you need to concern

yourself with the encoding. If you were curious, you could learn more about the encoding used by

%tbsimple by typing bcal describe simple; see [D] bcal.

We will drop variable rdate and put the %tbsimple format back on variable mydate:

. drop rdate

. format mydate %tbsimple

Key feature: Omitted dates really are omitted
In Syntax, we mentioned that for the simple business calendar

18nov2011 + 1 = 21nov2011

28nov2011 − 1 = 23nov2011

That is true:

. generate tomorrow = mydate + 1

. generate yesterday = mydate - 1

. format tomorrow yesterday %tbsimple

. list

x mydate tomorrow yesterday

1. 51 04nov2011 07nov2011 03nov2011
2. 9 07nov2011 08nov2011 04nov2011
3. 12 18nov2011 21nov2011 17nov2011
4. 4 21nov2011 22nov2011 18nov2011
5. 17 23nov2011 28nov2011 22nov2011

6. 22 28nov2011 29nov2011 23nov2011

. drop tomorrow yesterday

Stata’s lag and lead operators L.varname and F.varname work similarly.

Key feature: Extracting components from %tb dates
You extract components such as day of week, month, day, and year from business dates using the

same extraction functions you use with Stata’s regular %td dates, namely, dow(), month(), day(), and
year(), and you use function dofb() to convert business dates to regular dates. Below we add day of

week to our data, list the data, and then drop the new variable:

Datetime business calendars — Business calendars 129

. generate dow = dow(dofb(mydate, ”simple”))

. list

x mydate dow

1. 51 04nov2011 5
2. 9 07nov2011 1
3. 12 18nov2011 5
4. 4 21nov2011 1
5. 17 23nov2011 3

6. 22 28nov2011 1

. drop dow

See Extracting date components from daily dates in [D] Datetime.

Key feature: Merging on dates
It may happen that you have one dataset containing business dates and a second dataset containing

regular dates, say, on economic conditions, and you want to merge them. To do that, you create a regular

date variable in your first dataset and merge on that:

. generate rdate = dofb(mydate, ”simple”)

. merge 1:1 rdate using econditions, keep(match)

. drop rdate

Also see
[D] bcal — Business calendar file manipulation

[D] Datetime business calendars creation — Business calendars creation

[D] Datetime — Date and time values and variables

Datetime business calendars creation — Business calendars creation

Description Syntax Remarks and examples Also see

Description
Stata provides user-definable business calendars. Business calendars are provided by StataCorp and

by other users, and you can write your own. You can also create a business calendar automatically from

the current dataset with the bcal create command; see [D] bcal. This entry concerns writing your own
business calendars.

See [D] Datetime business calendars for an introduction to business calendars.

Syntax
Business calendar calname and corresponding display format %tbcalname are defined by the text file
calname.stbcal, which contains the following:

* comments

version version of stata

purpose ”text”

dateformat { ymd | ydm | myd | mdy | dym | dmy }

range date date

centerdate date

[from { date | . } to { date | . }:] omit . . . [if]
. . .

. . .

where

omit . . . may be

omit date pdate [and pmlist]
omit dayofweek dowlist

omit dowinmonth pm# dow [of monthlist] [and pmlist]
[if] may be

if restriction [& restriction . . .]
restriction is one of

dow(dowlist)
month(monthlist)
year(yearlist)

date is a date written with the year, month, and day in the order specified by dateformat. For
instance, if dateformat is dmy, a date can be 12apr2013, 12-4-2013, or 12.4.2013.

130

Datetime business calendars creation — Business calendars creation 131

pdate is a date or it is a date with character * substituted where the year would usually appear.
If dateformat is dmy, a pdate can be 12apr2013, 12-4-2013, or 12.4.2013; or it can be
12apr*, 12-4-*, or 12.4.*. 12apr* means the 12th of April across all years.

dow is a day of the week, in English. It may be abbreviated to as few as 2 characters, and

capitalization is irrelevant. Examples: Sunday, Mo, tu, Wed, th, Friday, saturday.

dowlist is a dow, or it is a space-separated list of one or more dows enclosed in parentheses.

Examples: Sa, (Sa), (Sa Su).

month is a month of the year, in English, or it is a month number. It may be abbreviated to the

minimum possible, and capitalization is irrelevant. Examples: January, 2, Mar, ap, may,
6, Jul, aug, 9, Octob, nov, 12.

monthlist is a month, or it is a space-separated list of one or more months enclosed in parenthe-

ses. Examples: Nov, (Nov), 11, (11), (Nov Dec), (11 12).

year is a 4-digit calendar year. Examples: 1872, 1992, 2013, 2050.

yearlist is a year, or it is a space-separated list of one or more years enclosed in parentheses.

Examples: 2013, (2013), (2013 2014).

pm# is a nonzero integer preceded by a plus or minus sign. Examples: -2, -1, +1. pm# appears
in omit dowinmonth pm# dow of monthlist, where pm# specifies which dow in the month.

omit dowinmonth +1 Th means the first Thursday of the month. omit dowinmonth -1 Th
means the last Thursday of the month.

pmlist is a pm#, or it is a space-separated list of one or more pm#s enclosed in parentheses.

Examples: +1, (+1), (+1 +2), (-1 +1 +2). pmlist appears in the optional and pmlist al-

lowed at the end of omit date and omit dowinmonth, and it specifies additional dates to be
omitted. and +1 means and the day after. and -1 means and the day before.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Concepts
The preliminary commands
The omit commands: from/to and if
The omit commands: and
The omit commands: omit date
The omit commands: omit dayofweek
The omit commands: omit dowinmonth
Creating stbcal-files with bcal create
Where to place stbcal-files
How to debug stbcal-files
Ideas for calendars that may not occur to you

Datetime business calendars creation — Business calendars creation 132

Introduction
A business calendar is a regular calendar with some dates crossed out, such as

November 2011

Su Mo Tu We Th Fr Sa

1 2 3 4 X

X 7 8 9 10 11 X

X 14 15 16 17 18 X

X 21 22 23 X X X

X 28 29 30

The purpose of the stbcal-file is to

1. Specify the range of dates covered by the calendar.

2. Specify the particular date that will be encoded as date 0.

3. Specify the dates from the regular calendar that are to be crossed out.

The stbcal-file for the above calendar could be as simple as

begin example 1.stbcal
version 19.5 // (or version 19 if you do not have StataNow)
range 01nov2011 30nov2011
centerdate 01nov2011
omit date 5nov2011
omit date 6nov2011
omit date 12nov2011
omit date 13nov2011
omit date 19nov2011
omit date 20nov2011
omit date 24nov2011
omit date 25nov2011
omit date 26nov2011
omit date 27nov2011

end example 1.stbcal

In fact, this calendar can be written more compactly because we can specify to omit all Saturdays and

Sundays:

begin example 2.stbcal
version 19.5 // (or version 19 if you do not have StataNow)
range 01nov2011 30nov2011
centerdate 01nov2011
omit dayofweek (Sa Su)
omit date 24nov2011
omit date 25nov2011

end example 2.stbcal

In this particular calendar, we are omitting 24nov2011 and 25nov2011 because of the American

Thanksgiving holiday. Thanksgiving is celebrated on the fourth Thursday of November, and many busi-

nesses close on the following Friday as well. It is possible to specify rules like that in stbcal-files:

Datetime business calendars creation — Business calendars creation 133

begin example 3.stbcal
version 19.5 // (or version 19 if you do not have StataNow)
range 01nov2011 30nov2011
centerdate 01nov2011
omit dayofweek (Sa Su)
omit dowinmonth +4 Th of Nov and +1

end example 3.stbcal

Understand that this calendar is an artificial example, and it is made all the more artificial because it

covers so brief a period. Real stbcal-files cover at least decades, and some cover centuries.

Concepts
You are required to specify four things in an stbcal-file:

1. the version of Stata being used,

2. the range of the calendar,

3. the center date of the calendar, and

4. the dates to be omitted.

Version.

You specify the version of Stata to ensure forward compatibility with future versions of Stata. If your

calendar starts with the line version 19.5 or, if you do not have StataNow, version 19.0, future
versions of Stata will know how to interpret the file even if the definition of the stbcal-file language

has greatly changed.

Range.

A calendar is defined over a specific range of dates, and you must explicitly state what that range

is. When you or others use your calendar, dates outside the range will be considered invalid, which

usually means that they will be treated as missing values.

Center date.

Stata stores dates as integers. In a calendar, 57 might stand for a particular date. If it did, then

57 − 1 = 56 stands for the day before, and 57 + 1 = 58 stands for the day after. The previous

statement works just as well if we substitute −12,739 for 57, and thus the particular values do not

matter except that we must agree upon what values we wish to standardize because we will be storing

these values in our datasets.

The standard is called the center date, and here center does not mean the date that corresponds to

the middle of your calendar. It means the date that corresponds to the center of integers, which is

to say, 0. You must choose a date within the range as the standard. The particular date you choose

does not matter, but most authors choose easily remembered ones. Stata’s built-in %td calendar uses
01jan1960, but that date will probably not be available to you because the center date must be a date

on the business calendars, and most businesses were closed on 01jan1960.

It will sometimes happen that you will want to expand the range of your calendar in the future. Today,

you make a calendar that covers, say 1990 to 2020, which is good enough for your purposes. Later,

you need to expand the range, say back to 1970 or forward to 2030, or both. When you update your

calendar, do not change the center date. This way, your new calendar will be backward compatible

with your previous one.

Datetime business calendars creation — Business calendars creation 134

Omitted dates.

Obviously you will need to specify the dates to be omitted. You can specify the exact dates to be

omitted when need be, but whenever possible, specify the rules instead of the outcome of the rules.

Rules change, so learn about the from/to prefix that can be used in front of omit commands. You
can code things like

from 01jan1960 to 31dec1968: omit ...
from 01jan1979 to .: omit ...

When specifying from/to, . for the first date is synonymous with the opening date of the range. .
for the second date is synonymous with the closing date.

The preliminary commands
Stbcal-files should begin with these commands:

version version of stata

purpose ”text”
dateformat { ymd | ydm | myd | mdy | dym | dmy }
range date date

centerdate date

version version of stata

You could specify version 19.5 or, if you do not have StataNow, version 19.0. Better still, type
command version in Stata to discover the version of Stata you are currently using. Specify that

version, and be sure to look at the documentation so that you use the modern syntax correctly.

purpose ”text”
This command is optional. The purpose of purpose is not to make comments in your file. If you want
comments, include those with a * in front. The purpose sets the text that bcal describe calname

will display.

dateformat { ymd | ydm | myd | mdy | dym | dmy }
This command is optional. dateformat ymd is assumed if not specified. This command has nothing
to do with how dates will look when variables are formatted with %tbcalname. This command speci-
fies how you are typing dates in this stbcal-file on the subsequent commands. Specify the format that

you find convenient.

range date date

The date range was discussed in Concepts. You must specify it.

centerdate date

The centering date was discussed in Concepts. You must specify it.

The omit commands: from/to and if
An stbcal-file usually contains multiple omit commands. The omit commands have the syntax

[from { date | . } to { date | . }:] omit . . . [if]
That is, an omit command may optionally be preceded by from/to and may optionally contain an if

at the end.

Datetime business calendars creation — Business calendars creation 135

When you do not specify from/to, results are the same as if you specified

from . to .: omit ...

That is, the omit command applies to all dates from the beginning to the end of the range. In Intro-

duction, we showed the command

omit dowinmonth +4 Th of Nov and +1

Our sample calendar covered only the month of November, but imagine that it covered a longer period

and that the business was open on Fridays following Thanksgiving up until 1998. The Thanksgiving

holidays could be coded

from . to 31dec1997: omit dowinmonth +4 Th of Nov
from 01jan1998 to .: omit dowinmonth +4 Th of Nov and +1

The same holidays could also be coded

omit dowinmonth +4 Th of Nov
from 01jan1998 to .: omit dowinmonth +4 Th of Nov and +1

We like the first style better, but understand that the same dates can be omitted from the calendars

multiple times and for multiple reasons, and the result is still the same as if the dates were omitted only

once.

The optional if also determines when the omit statement is operational. Let’s think about the Christ-
mas holidays. Let’s say a business is closed on the 24th and 25th of December. That could be coded

omit date 24dec*
omit date 25dec*

although perhaps that would be more understandable if we coded

from . to .: omit date 24dec*
from . to .: omit date 25dec*

Remember, from . to . is implied when not specified. In any case, we are omitting 24dec and

25dec across all years.

Now consider a more complicated rule. The business is closed on the 24th and 25th of December

if the 25th is on Tuesday, Wednesday, Thursday, or Friday. If the 25th is on Saturday or Sunday, the

holidays are the preceding Friday and the following Monday. If the 25th is on Monday, the holidays are

Monday and Tuesday. The rule could be coded

omit date 25dec* and -1 if dow(Tu We Th Fr)
omit date 25dec* and (-2 -1) if dow(Sa)
omit date 25dec* and (-3 -2) if dow(Su)
omit date 25dec* and +1 if dow(Mo)

The if clause specifies that the omit command is only to be executed when 25dec* is one of the
specified days of the week. If 25dec* is not one of those days, the omit statement is ignored for that
year. Our focus here is on the if clause. We will explain about the and clause in the next section.

Sometimes, you have a choice between using from/to or if. In such cases, use whichever is conve-
nient. For instance, imagine that the Christmas holiday rule for Monday changed in 2011 and 2012. You

could code

from . to 31dec2010: omit date 25dec* and +1 if dow(Mo)
from 01jan2011 to .: omit date ... if dow(Mo)

Datetime business calendars creation — Business calendars creation 136

or

omit date 25dec* and +1 if dow(Mo) & year(2007 2008 2009 2010)
omit date ... if dow(Mo) & year(2011 2012)

Generally, we find from/to more convenient to code than if year().

The omit commands: and
The other common piece of syntax that shows up on omit commands is and pmlist. We used it above

in coding the Christmas holidays,

omit date 25dec* and -1 if dow(Tu We Th Fr)
omit date 25dec* and (-2 -1) if dow(Sa)
omit date 25dec* and (-3 -2) if dow(Su)
omit date 25dec* and +1 if dow(Mo)

and pmlist specifies a list of days also to be omitted if the date being referred to is omitted. The extra
days are specified as howmany days they are from the date being referred to. Please excuse the inelegant

“date being referred to”, but sometimes the date being referred to is implied rather than stated explicitly.

For this problem, however, the date being referred to is 25dec across a number of years. The line

omit date 25dec* and -1 if dow(Tu We Th Fr)

says to omit 25dec and the day before if 25dec is on a Tuesday, Wednesday, etc. The line

omit date 25dec* and (-2 -1) if dow(Sa)

says to omit 25dec and two days before and one day before if 25dec is Saturday. The line

omit date 25dec* and (-3 -2) if dow(Su)

says to omit 25dec and three days before and two days before if 25dec is Sunday. The line

omit date 25dec* and +1 if dow(Mo)

says to omit 25dec and the day after if 25dec is Monday.

Another omit command for solving a different problem reads

omit dowinmonth -1 We of (Nov Dec) and +1 if year(2009)

Please focus on the and +1. We are going to omit the date being referred to and the date after if the

year is 2009. The date being referred to here is -1 We of (Nov Dec), which is to say, the last Wednesday

of November and December.

The omit commands: omit date
The full syntax of omit date is

[from { date | . } to { date | . }:] omit date pdate [and pmlist] [if]
You may omit specific dates,

omit date 25dec2010

or you may omit the same date across years:

omit date 25dec*

Datetime business calendars creation — Business calendars creation 137

The omit commands: omit dayofweek
The full syntax of omit dayofweek is

[from { date | . } to { date | . }:] omit dayofweek dowlist [if]
The specified days of week (Monday, Tuesday, . . .) are omitted.

The omit commands: omit dowinmonth
The full syntax of omit dowinmonth is

[from { date | . } to { date | . }:] omit pm# dow [of monthlist] [and pmlist] [if]
dowinmonth stands for day of week in month and refers to days such as the first Monday, second

Monday, . . . , next-to-last Monday, and last Monday of a month. This is written as +1 Mo, +2 Mo, . . . , -2
Mo, and -1 Mo.

Creating stbcal-files with bcal create
Business calendars can be obtained from your Stata installation or from other Stata users. You can

also write your own business calendar files or use the bcal create command to automatically create
a business calendar from the current dataset. With bcal create, business holidays are automatically
inferred from gaps in the dataset, or they can be explicitly defined by specifying the if and in quali-
fiers, as well as the excludemissing() option. You can also edit business calendars created with bcal
create or obtained from other sources. It is advisable to use bcal load or bcal describe to verify
that a business calendar is well constructed and remains so after editing.

See [D] bcal for more information on bcal create.

Where to place stbcal-files
Stata automatically searches for stbcal-files in the same way it searches for ado-files. Stata looks

for ado-files and stbcal-files in the official Stata directories, your site’s directory (SITE), your current
working directory (.), your personal directory (PERSONAL), and your directory for materials written by
other users (PLUS). On this writer’s computer, these directories happen to be

. sysdir
STATA: C:\Program Files\Stata19\
BASE: C:\Program Files\Stata12\ado\base\
SITE: C:\Program Files\Stata19\ado\site\
PLUS: C:\ado\plus\

PERSONAL: C:\ado\personal\
OLDPLACE: C:\ado\

Place calendars that you write into ., PERSONAL, or SITE. Calendars you obtain from others using

net or ssc will be placed by those commands into PLUS. See [P] sysdir, [R] net, and [R] ssc.

How to debug stbcal-files
Stbcal-files are loaded automatically as they are needed, and because this can happen anytime, even

at inopportune moments, no output is produced. If there are errors in the file, no mention is made of the

problem, and thereafter Stata simply acts as if it had never found the file, which is to say, variables with

%tbcalname formats are displayed in %g format.

Datetime business calendars creation — Business calendars creation 138

You can tell Stata to load a calendar file right now and to show you the output, including error mes-

sages. Type

. bcal load calname

It does not matter where calname.stbcal is stored, Stata will find it. It does not matter whether

Stata has already loaded calname.stbcal, either secretly or because you previously instructed the file
be loaded. It will be reloaded, you will see what you wrote, and you will see any error messages.

Ideas for calendars that may not occur to you
Business calendars obviously are not restricted to businesses, and neither do they have to be restricted

to days.

Say you have weekly data and want to create a calendar that contains only Mondays. You could code

begin mondays.stbcal
version 19.5 // (or version 19 if you do not have StataNow)
purpose ”Mondays only”
range 04jan1960 06jan2020
centerdate 04jan1960
omitdow (Tu We Th Fr Sa Su)

end mondays.stbcal

Say you have semimonthly data and want to include the 1st and 15th of every month. You could code

begin smnth.stbcal
version 19.5 // (or version 19 if you do not have StataNow)
purpose ”Semimonthly”
range 01jan1960 15dec2020
centerdate 01jan1960
omit date 2jan*
omit date 3jan*
.
.
omit date 14jan*
omit date 16jan*
.
.
omit date 31jan*
omit date 2feb*
.
.

end smnth.stbcal

Forgive the ellipses, but this file will be long. Even so, you have to create it only once.

As a final example, say that you just want Stata’s %td dates, but you wish they were centered on

01jan1970 rather than on 01jan1960. You could code

begin rectr.stbcal
version 19.5 // (or version 19 if you do not have StataNow)
Purpose ”%td centered on 01jan1970”
range 01jan1800 31dec2999
centerdate 01jan1970

end rectr.stbcal

Datetime business calendars creation — Business calendars creation 139

Also see
[D] bcal — Business calendar file manipulation

[D] Datetime business calendars — Business calendars

[D] Datetime — Date and time values and variables

Datetime conversion — Converting strings to Stata dates

Description Quick start Syntax Remarks and examples
Reference Also see

Description
These functions convert dates and times recorded as strings to Stata dates. Stata dates are numbers

that can be formatted so that they look like the dates you are familiar with. See [D] Datetime for an

introduction to Stata’s date and time features.

Quick start
Convert strdate1, with dates such as ”Tue January 25, 2013”, to a numerically encoded Stata date

variable, ignoring the day of the week from the string

generate numvar1 = date(strdate1, ”#MDY”)

Convert strdate2, with dates in the 2000s such as ”01-25-13”, to a Stata date variable
generate numvar2 = date(strdate2, ”MD20Y”)

Convert strdate3, with dates such as ”15Jan05”, to a Stata date variable; expand the two-digit years
to the largest year that does not exceed 2006

generate numvar3 = date(strdate3, ”DMY”, 2006)

Convert strtime, with times such as ”11:15 am”, to a numerically encoded Stata datetime/c variable
generate double numvar4 = clock(strtime,”hm”)

140

Datetime conversion — Converting strings to Stata dates 141

Syntax
The string-to-numeric date and time conversion functions are

Desired Stata date type String-to-numeric conversion function

datetime/c clock(str, mask [, topyear])
datetime/C Clock(str, mask [, topyear])

date date(str, mask [, topyear])

weekly date weekly(str, mask [, topyear])
monthly date monthly(str, mask [, topyear])
quarterly date quarterly(str, mask [, topyear])
half-yearly date halfyearly(str, mask [, topyear])
yearly date yearly(str, mask [, topyear])
str is the string value to be converted.

mask specifies the order of the date and time components and is a string composed of a sequence of codes (see the next table).

topyear is described in Working with two-digit years, below.

Code Meaning

M month

D day within month

Y 4-digit year

19Y 2-digit year to be interpreted as 19xx

20Y 2-digit year to be interpreted as 20xx

W week (weekly() only)
Q quarter (quarterly() only)
H half-year (halfyearly() only)

h hour of day

m minutes within hour

s seconds within minute

ignore one element

Blanks are also allowed in mask, which can make the mask easier to read, but they otherwise have no

significance.

Examples of masks include the following:

”MDY” str contains month, day, and year, in that order.

”MD19Y” means the same as ”MDY”, except that str may contain two-digit years, and when it
does, they are to be treated as if they are 4-digit years beginning with 19.

”MDYhms” str contains month, day, year, hour, minute, and second, in that order.

”MDY hms” means the same as ”MDYhms”; the blank has no meaning.

”MDY#hms” means that one element between the year and the hour is to be ignored. For exam-

ple, str contains values like ”1-1-2010 at 15:23:17” or values like ”1-1-2010
at 3:23:17 PM”.

Datetime conversion — Converting strings to Stata dates 142

Remarks and examples
Remarks are presented under the following headings:

Introduction
Specifying the mask
How the conversion functions interpret the mask
Working with two-digit years
Working with incomplete dates and times
Converting run-together dates, such as 20060125
Valid times
The clock() and Clock() functions
Why there are two datetime encodings
Advice on using datetime/c and datetime/C
Determining when leap seconds occurred
The date() function
The other conversion functions

Introduction
The conversion functions are used to convert string dates, such as 08/12/06, 12-8-2006, 12 Aug 06,

12aug2006 14:23, and 12 aug06 2:23 pm, to Stata dates. The conversion functions are typically used after

importing or reading data. You read the date information into string variables and then these functions

convert the string into something Stata can use, namely, a numeric Stata date variable.

You use generate to create the Stata date variables. The conversion functions are used in the expres-
sions, such as

. generate double time_admitted = clock(time_admitted_str, ”DMYhms”)

. format time_admitted %tc

. generate date_hired = date(date_hired_str, ”MDY”)

. format date_hired %td

Every conversion function—such as clock() and date() above—requires these two arguments:

1. str specifying the string to be converted; and

2. mask specifying the order in which the date and time components appear in str.

Notes:

1. You choose the conversion function clock(), Clock(), date(), etc., according to the type of
Stata date you want returned.

2. You specify the mask according to the contents of str.

Usually, you will want to convert str containing 2006.08.13 14:23 to a Stata datetime/c or datetime/C

value and convert str containing 2006.08.13 to a Stata date. If you wish, however, it can be the other way

around. In that case, the detailed string would convert to a Stata date corresponding to just the date part,

13aug2006, and the less detailed string would convert to a Stata datetime corresponding to 13aug2006

00:00:00.000.

Datetime conversion — Converting strings to Stata dates 143

Specifying the mask
An argument mask is a string specifying the order of the date and time components in str. Examples

of string dates and the mask required to convert them include the following:

str Corresponding mask

01dec2006 14:22 ”DMYhm”
01-12-2006 14.22 ”DMYhm”

1dec2006 14:22 ”DMYhm”
1-12-2006 14:22 ”DMYhm”

01dec06 14:22 ”DM20Yhm”
01-12-06 14.22 ”DM20Yhm”

December 1, 2006 14:22 ”MDYhm”

2006 Dec 01 14:22 ”YMDhm”
2006-12-01 14:22 ”YMDhm”

2006-12-01 14:22:43 ”YMDhms”
2006-12-01 14:22:43.2 ”YMDhms”
2006-12-01 14:22:43.21 ”YMDhms”
2006-12-01 14:22:43.213 ”YMDhms”

2006-12-01 2:22:43.213 pm ”YMDhms” (see note 1)

2006-12-01 2:22:43.213 pm. ”YMDhms”
2006-12-01 2:22:43.213 p.m. ”YMDhms”
2006-12-01 2:22:43.213 P.M. ”YMDhms”

20061201 1422 ”YMDhm”

14:22 ”hm” (see note 2)

2006-12-01 ”YMD”

Fri Dec 01 14:22:43 CST 2006 ”#MDhms#Y”

Notes:

1. Nothing special needs to be included in mask to process a.m. and p.m. markers. When you

include code h, the conversion functions automatically watch for meridian markers.

2. You specify the mask according to what is contained in str. If that is a subset of what

the selected Stata date type could record, the remaining elements are set to their defaults.

clock(”14:22”, ”hm”) produces 01jan1960 14:22:00 and clock(”2006-12-01”, ”YMD”)
produces 01dec2006 00:00:00. date(”jan 2006”, ”MY”) produces 01jan2006.

mask may include spaces so that it is more readable; the spaces have no meaning. Thus, you can type

. generate double admit = clock(admitstr, ”#MDhms#Y”)

or type

. generate double admit = clock(admitstr, ”# MD hms # Y”)

and which one you use makes no difference.

Datetime conversion — Converting strings to Stata dates 144

How the conversion functions interpret the mask
The conversion functions apply the following rules when interpreting str:

1. For each string date to be converted, remove all punctuation except for the period separating

seconds from tenths, hundredths, and thousandths of seconds. Replace removed punctuation

with a space.

2. Insert a space in the string everywhere that a letter is next to a number, or vice versa.

3. Interpret the resulting elements according to mask.

For instance, consider the string

01dec2006 14:22

Under rule 1, the string becomes

01dec2006 14 22

Under rule 2, the string becomes

01 dec 2006 14 22

Finally, the conversion functions apply rule 3. If the mask is ”DMYhm”, then the functions interpret “01”
as the day, “dec” as the month, and so on.

Or consider the string

Wed Dec 01 14:22:43 CST 2006

Under rule 1, the string becomes

Wed Dec 01 14 22 43 CST 2006

Applying rule 2 does not change the string. Now rule 3 is applied. If the mask is ”#MDhms#Y”, the
conversion function skips “Wed”, interprets “Dec” as the month, and so on.

The # code serves a second purpose. If it appears at the end of the mask, it specifies that the rest of
string is to be ignored. Consider converting the string

Wed Dec 01 14 22 43 CST 2006 patient 42

The mask code that previously worked when patient 42 was not part of the string, ”#MDhms#Y”, will
result in a missing value in this case. The functions are careful in the conversion, and if the whole string

is not used, they return missing. If you end the mask in #, however, the functions ignore the rest of the
string. Changing the mask from ”#MDhms#Y” to ”#MDhms#Y#” will produce the desired result.

Working with two-digit years
Consider converting the string 01-12-06 14:22, which is to be interpreted as 01dec2006 14:22:00, to

a Stata datetime value. The conversion functions provide two ways of doing this.

The first is to specify the assumed prefix in the mask. The string 01-12-06 14:22 can be read by

specifying the mask ”DM20Yhm”. If we instead wanted to interpret the year as 1906, we would specify
the mask ”DM19Yhm”. We could even interpret the year as 1806 by specifying ”DM18Yhm”.

What if our data include 01-12-06 14:22 and include 15-06-98 11:01? We want to interpret the first

year as being in 2006 and the second year as being in 1998. That is the purpose of the optional argument

topyear:

clock(string, mask [, topyear])

Datetime conversion — Converting strings to Stata dates 145

When you specify topyear, you are stating that when years in string are two digits, the full year is to

be obtained by finding the largest year that does not exceed topyear. Thus, you could code

. generate double timestamp = clock(timestr, ”DMYhm”, 2020)

The two-digit year 06 would be interpreted as 2006 because 2006 does not exceed 2020. The two-digit

year 98 would be interpreted as 1998 because 2098 does exceed 2020.

Working with incomplete dates and times
The conversion functions do not require that every component of the date and time be specified.

Converting 2006-12-01 with mask ”YMD” results in 01dec2006 00:00:00.

Converting 14:22 with mask ”hm” results in 01jan1960 14:22:00.

Converting 11-2006 with mask ”MY” results in 01nov2006 00:00:00.

The default for a component, if not specified in the mask, is

Code Default (if not specified)

M 01

D 01

Y 1960

h 00

m 00

s 00

Thus, if you have data recording 14:22, meaning a duration of 14 hours and 22 minutes or the time

14:22 each day, you can convert it with clock(str, ”hm”).

Converting run-together dates, such as 20060125
The clock(), Clock(), and date() conversion functions will convert dates and times that are run

together, such as 20060125, 060125, and 20060125110215 (which is 25jan2006 11:02:15). You do not

have to do anything special to convert them:

. display %d date(”20060125”, ”YMD”)
25jan2006
. display %td date(”060125”, ”20YMD”)
25jan2006
. display %tc clock(”20060125110215”, ”YMDhms”)
25jan2006 11:02:15

However, the weekly(), monthly(), quarterly(), and halfyearly() functions will convert only
dates that are run together if there is a combination of letters and numbers. For example,

. display %tm monthly(”2020m1”, ”YM”)
2020m1
. display %tq quarterly(”2020q2”, ”YQ”)
2020q1

If your string consists of numbers only, such as 202001, you will need to insert a space or punctuation

between the year and the other component before using one of these functions.

Datetime conversion — Converting strings to Stata dates 146

In a data context, you could type

. generate startdate = date(startdatestr, ”YMD”)

. generate double starttime = clock(starttimestr, ”YMDhms”)

Remember to read the original date into a string. If you mistakenly read the date as numeric, the best

advice is to read the date again. Numbers such as 20060125 and 20060125110215 will be rounded unless

they are stored as doubles.

If you mistakenly read the variables as numeric and have verified that rounding did not occur, you

can convert the variable from numeric to string by using the string() function, which comes in one-
and two-argument forms. You will need the two-argument form:

. generate str startdatestr = string(startdatedouble, ”%10.0g”)

. generate str starttimestr = string(starttimedouble, ”%16.0g”)

If you omitted the format, string() would produce 2.01e+07 for 20060125 and 2.01e+13 for

20060125110215. The format we used had a width that was two characters larger than the length of

the integer number, although using a too-wide format does no harm.

Valid times
An invalid time is 27:62:90. If you try to convert 27:62:90 to a datetime value, you will obtain a

missing value.

Another invalid time is 24:00:00. A correct time would be 00:00:00 of the next day.

In hh:mm:ss, the requirements are 0 ≤ hh < 24, 0 ≤ mm < 60, and 0 ≤ ss < 60, although sometimes

60 is allowed. The encoding 31dec2005 23:59:60 is an invalid datetime/c but a valid datetime/C. The

encoding 31dec2005 23:59:60 includes an inserted leap second.

Invalid in both datetime encodings is 30dec2005 23:59:60. Not including a leap second as in

30dec2005 23:59:60 would also be an invalid encoding. A correct datetime would be 31dec2005

00:00:00.

The clock() and Clock() functions
Stata provides two separate datetime encodings that we call datetime/c and datetime/C and that others

would call “times assuming 86,400 seconds per day” and “times adjusted for leap seconds” or, equiva-

lently, Coordinated Universal Time (UTC).

The syntax of the two functions is the same:

clock(str, mask [, topyear])

Clock(str, mask [, topyear])

Function Clock() is nearly identical to function clock(), except that Clock() returns a datetime/C
value rather than a datetime/c value. For instance,

Noon of 23nov2010 = 1,606,132,800,000 in datetime/c

= 1,606,132,824,000 in datetime/C

They differ because 24 seconds have been inserted into datetime/C between 01jan1960 and 23nov2010.

Correspondingly, Clock() understands times in which there are leap seconds, such as 30jun1997

23:59:60. clock() would consider 30jun1997 23:59:60 an invalid time and so return a missing value.

Datetime conversion — Converting strings to Stata dates 147

Why there are two datetime encodings
Stata provides two different datetime encodings, datetime/c and datetime/C.

The datetime/c encoding assumes that there are 24 × 60 × 60 × 1000 ms per day, just as an atomic

clock does. Atomic clocks count oscillations between the nucleus and the electrons of an atom and thus

provide a measurement of the real passage of time.

Time of day measurements have historically been based on astronomical observation, which is a fancy

way of saying that the measurements are based on looking at the sun. The sun should be at its highest

point at noon, right? So however you might have kept track of time—by falling grains of sand or a

wound-up spring—you would have periodically reset your clock and then gone about your business. In

olden times, it was understood that the 60 seconds per minute, 60 minutes per hour, and 24 hours per

day were theoretical goals that no mechanical device could reproduce accurately. These days, we have

more formal definitions for measurements of time. One second is 9,192,631,770 periods of the radiation

corresponding to the transition between two levels of the ground state of cesium 133. Obviously, we

have better equipment than the ancients, so problem solved, right? Wrong. There are two problems: the

formal definition of a second is just a little too short to use for accurately calculating the length of a day,

and the Earth’s rotation is slowing down.

Thus, since 1972, leap seconds have been added to atomic clocks once or twice a year to keep time

measurements in synchronization with Earth’s rotation. Unlike leap years, however, there is no formula

for predicting when leap seconds will occur. Earth may be on average slowing down, but there is a large

random component to that. Therefore, leap seconds are determined by committee and announced six

months before they are inserted. Leap seconds are added, if necessary, on the end of the day on June 30

and December 31 of the year. The exact times are designated as 23:59:60.

Unadjusted atomic clocks may accurately mark the passage of real time, but you need to understand

that leap seconds are every bit as real as every other second of the year. Once a leap second is inserted,

it ticks just like any other second and real things can happen during that tick.

You may have heard of terms such as Greenwich Mean Time (GMT) and UTC.

GMT, based on astronomical observation, has been replaced by UTC.

UTC is measured by atomic clocks and is occasionally corrected for leap seconds. UTC is derived

from two other times, Universal Time 1 (UT1) and International Atomic Time (TAI). UT1 is the mean

solar time with which UTC is kept in sync by the occasional addition of a leap second. TAI is the atomic

time on which UTC is based. TAI is a statistical combination of various atomic chronometers, and even it

has not ticked uniformly over its history; see http://www.ucolick.org/∼sla/leapsecs/timescales.html and

especially http://www.ucolick.org/∼sla/leapsecs/dutc.html#TAI.

UNK is our term for the time standard most people use. UNK stands for unknown or unknowing. UNK

is based on a recent time observation, probably UTC, and it just assumes that there are 86,400 seconds

per day after that.

The UNK standard is adequate for many purposes, and when using it you will want to use datetime/c

rather than the leap second–adjusted datetime/C encoding. If you are using computer-timestamped data,

however, you need to find out whether the timestamping system accounted for leap-second adjustment.

Problems can arise even if you do not care about losing or gaining a second here and there.

For instance, you may import from other systems timestamp values recorded in the number of mil-

liseconds that have passed since some agreed-upon date. You may do this, but if you choose the wrong

encoding scheme (choose datetime/c when you should choose datetime/C, or vice versa), more recent

times will be off by 24 seconds.

http://www.ucolick.org/~sla/leapsecs/timescales.html
http://www.ucolick.org/~sla/leapsecs/dutc.html#TAI

Datetime conversion — Converting strings to Stata dates 148

To avoid such problems, you may decide to import and export data as strings, such as Fri Aug 18

14:05:36 CDT 2010. This method has advantages, but for datetime/C (UTC) encoding, times such as

23:59:60 are possible. Some systems will refuse to decode such times.

Stata refuses to decode 23:59:60 in the datetime/c encoding (function clock()) and accepts it with
datetime/C (function Clock()). When datetime/C function Clock() sees a time with a 60th second,

Clock() verifies that the time is one of the official leap seconds. Thus, when converting from printable

forms, try assuming datetime/c, and check the result for missing values. If there are none, then you can

assume your use of datetime/c was valid. However, if there are missing values and they are due to leap

seconds and not some other error, you must use datetime/C Clock() to convert the string value. After
that, if you still want to work in datetime/c units, use function cofC() to convert datetime/C values to

datetime/c.

If precision matters, the best way to process datetime/C data is simply to treat them that way. The

inconvenience is that you cannot assume that there are 86,400 seconds per day. To obtain the duration

between dates, youmust subtract the two time values involved. The other difficulty has to do with dealing

with dates in the future. Under the datetime/C (UTC) encoding, there is no set value for any date more

than six months in the future. Below is a summary of advice.

Advice on using datetime/c and datetime/C
Stata provides two datetime encodings:

1. datetime/C, also known as UTC, which accounts for leap seconds; and

2. datetime/c, which ignores leap seconds (it assumes 86,400 seconds/day).

Systems vary in how they treat time variables. SAS ignores leap seconds. Oracle includes them. Stata

handles either situation. Here is our advice:

• If you obtain data from a system that accounts for leap seconds, import using Stata’s datetime/C

encoding.

a. If you later need to export data to a system that does not account for leap seconds, use

Stata’s cofC() function to convert time values before exporting.

b. If you intend to tsset the time variable and the analysis will be at the second level
or finer, just tsset the datetime/C variable, specifying the appropriate delta() if

necessary—for example, delta(1000) for seconds.

c. If you intend to tsset the time variable and the analysis will be coarser than the

second level (minute, hour, etc.), create a datetime/c variable from the datetime/C

variable (generate double tctime = cofC(tCtime)) and tsset that, specifying the
appropriate delta() if necessary. You must do that because in a datetime/C variable,

there are not necessarily 60 seconds in a minute; some minutes have 61 seconds.

• If you obtain data from a system that ignores leap seconds, use Stata’s datetime/c encoding.

a. If you later need to export data to a system that does account for leap seconds, use

Stata’s Cofc() function to convert time values before exporting.

b. If you intend to tsset the time variable, just tsset it, specifying the appropriate

delta().

Datetime conversion — Converting strings to Stata dates 149

Some users prefer always to use Stata’s datetime/c because %tc values are a little easier to work with.
You can always use datetime/c if

• you do not mind having up to 1 second of error; and

• you do not import or export numerical values (clock ticks) from other systems that are using

leap seconds, because doing so could introduce nearly 30 seconds of error.

Remember these two things if you use datetime/C variables:

1. The number of seconds between two dates is a function of when the dates occurred. Five days

from one date is not simply a matter of adding 5× 24× 60× 60× 1000 ms. You might need to

add another 1,000 ms. Three hundred sixty-five days from now might require adding 1,000 or

2,000 ms. The longer the span, the more you might have to add. The best way to add durations

to datetime/C variables is to extract the components, add to them, and then reconstruct from

the numerical components.

2. You cannot accurately predict datetimes more than six months into the future. We do not know

what the datetime/C value of 25dec2026 00:00:00 will be, because every year along the way,

the International Earth Rotation Reference Systems Service (IERS) will twice announce whether

a leap second will be inserted.

You can help alleviate these inconveniences. Face west and throw rocks. The benefit will be transitory

only if the rocks land back on Earth, so you need to throw them really hard. We know what you are

thinking, but this does not need to be a coordinated effort.

Determining when leap seconds occurred
Stata system file leapseconds.maint lists the dates on which leap seconds occurred. The file is

updated periodically (see [R] update; the file is updated when you update all), and Stata’s datetime/C
functions access the file to know when leap seconds occurred.

You can access it, too. To view the file, type

. viewsource leapseconds.maint

The date() function
The syntax of the date() function is

date(string, mask [, topyear])

The date() function is identical to clock(), except that date() returns a Stata date value rather

than a Stata datetime value. The date() function is the same as dofc(clock()).

daily() is a synonym for date().

Datetime conversion — Converting strings to Stata dates 150

The other conversion functions
The other conversion functions are

Stata date type Conversion function

weekly date weekly(str, mask [, topyear])
monthly date monthly(str, mask [, topyear])
quarterly date quarterly(str, mask [, topyear])
half-yearly date halfyearly(str, mask [, topyear])
str is the value to be converted.

mask specifies the order of the components.

topyear is described in Working with two-digit years, above.

These functions are rarely used because data seldom arrive in these formats.

Each of the functions converts a pair of numbers: weekly() converts a year and a week number

(1–52); monthly() converts a year and a month number (1–12); quarterly() converts a year and a
quarter number (1–4); and halfyearly() translates a year and a half number (1–2).

The masks allowed are far more limited than the masks for clock(), Clock(), and date():

Code Meaning

Y 4-digit year

19Y 2-digit year to be interpreted as 19xx

20Y 2-digit year to be interpreted as 20xx

W week number (weekly() only)
M month number (monthly() only)
Q quarter number (quarterly() only)
H half-year number (halfyearly() only)

The pair of numbers to be converted must be separated by a space or punctuation. No extra characters are allowed.

Reference
Rajbhandari, A. 2015. A tour of datetime in Stata. The Stata Blog: Not Elsewhere Classified. https://blog.stata.com/2015/

12/17/a-tour-of-datetime-in-stata-i/.

Also see
[D] Datetime — Date and time values and variables

[D] Datetime business calendars — Business calendars

[D] Datetime display formats — Display formats for dates and times

[D] Datetime durations — Obtaining and working with durations

[D] Datetime relative dates — Obtaining dates and date information from other dates

[D] Datetime values from other software — Date and time conversion from other software

https://blog.stata.com/2015/12/17/a-tour-of-datetime-in-stata-i/
https://blog.stata.com/2015/12/17/a-tour-of-datetime-in-stata-i/

Datetime display formats — Display formats for dates and times

Description Quick start Syntax Remarks and examples Also see

Description
Stata stores dates and times numerically in one of eight units. The value of a Stata date might be

18,282 or even 1,579,619,730,000. Place the appropriate format on it, and the 18,282 is displayed as

20jan2010 (%td). The 1,579,619,730,000 is displayed as 20jan2010 15:15:30 (%tc).

If you specify additional format characters, you can change how the result is displayed. Rather than

20jan2010, you could change it to 2010.01.20; January 20, 2010; or 1/20/10. Rather than 20jan2010

15:15:30, you could change it to 2010.01.20 15:15; January 20, 2010 3:15 pm; or Wed Jan 20 15:15:30

2010.

See [D] Datetime for an introduction to Stata’s dates and times.

Quick start
Format daily dates stored in datevar to display as 15mar2005

format datevar %td

Format daily dates stored in datevar to display as 3/15/05
format datevar %tdnn/DD/YY

Format daily dates stored in datevar to display as Tue Mar. 15
format datevar %tdDay_Mon._DD

Format dates and times stored in timevar to display as 15mar2005 14:30:00
format timevar %tc

Format dates and times stored in timevar to display as 14:30
format timevar %tcHH:MM

Format dates and times stored in timevar to display as 2:30 PM
format timevar %tchh:mm_AM

151

Datetime display formats — Display formats for dates and times 152

Syntax
The formats for displaying Stata dates and times are

Stata date type Display format

datetime/c %tc[details]
datetime/C %tC[details]

date %td[details]

weekly date %tw[details]
monthly date %tm[details]
quarterly date %tq[details]
half-yearly date %th[details]
yearly date %ty[details]

The optional details allows you to control how results appear and is composed of a sequence of the

following codes:

Code Meaning Output

CC century-1 01–99

cc century-1 1–99

YY 2-digit year 00–99

yy 2-digit year 0–99

JJJ day within year 001–366

jjj day within year 1–366

Mon month Jan, Feb, . . . , Dec

Month month January, February, . . . , December

mon month jan, feb, . . . , dec

month month january, february, . . . , december

NN month 01–12

nn month 1–12

DD day within month 01–31

dd day within month 1–31

DAYNAME day of week Sunday, Monday, . . . (aligned)

Dayname day of week Sunday, Monday, . . . (unaligned)

Day day of week Sun, Mon, . . .

Da day of week Su, Mo, . . .

day day of week sun, mon, . . .

da day of week su, mo, . . .

Datetime display formats — Display formats for dates and times 153

h half 1–2

q quarter 1–4

WW week 01–52

ww week 1–52

HH hour 00–23

Hh hour 00–12

hH hour 0–23

hh hour 0–12

MM minute 00–59

mm minute 0–59

SS second 00–60 (sic, due to leap seconds)

ss second 0–60 (sic, due to leap seconds)

.s tenths .0–.9

.ss hundredths .00–.99

.sss thousandths .000–.999

am show am or pm am or pm

a.m. show a.m. or p.m. a.m. or p.m.

AM showAM or PM AM or PM

A.M. showA.M. or P.M. A.M. or P.M.

. display period .

, display comma ,

: display colon :

- display hyphen -

display space

/ display slash /
\ display backslash \
!c display character c

+ separator (see note)

Note: + displays nothing; it may be used to separate one code from the next to make the
format more readable. + is never necessary. For instance, %tchh:MM+am and %tchh:MMam
have the same meaning, as does %tc+hh+:+MM+am.

Datetime display formats — Display formats for dates and times 154

When details is not specified, it is equivalent to specifying

Format Implied (fully specified) format

%tC %tCDDmonCCYY HH:MM:SS
%tc %tcDDmonCCYY HH:MM:SS

%td %tdDDmonCCYY

%tw %twCCYY!www
%tm %tmCCYY!mnn
%tq %tqCCYY!qq
%th %thCCYY!hh
%ty %tyCCYY

That is, typing

. format mytimevar %tc

has the same effect as typing

. format mytimevar %tcDDmonCCYY_HH:MM:SS

Format %tcDDmonCCYY HH:MM:SS is interpreted as

% t c DDmonCCYY HH:MM:SS
| | | |

all formats it is a variable formatting codes

start with % datetime format coded in specify how to

milliseconds display value

Remarks and examples
Remarks are presented under the following headings:

Specifying display formats
Times are truncated, not rounded, when displayed

Specifying display formats
Rather than using the default format 20jan2010, you could display the daily date in one of these

formats:

2010.01.20

January 20, 2010

1/20/10

Likewise, rather than displaying the datetime/c variable in the default format 20jan2010 15:15:30,

you could display it in one of these formats:

2010.01.20 15:15

January 20, 2010 3:15 pm

Wed Jan 20 15:15:30 2010

Datetime display formats — Display formats for dates and times 155

Here is how to do it:

1. 2010.01.20

format mytdvar %tdCCYY.NN.DD

2. January 20, 2010

format mytdvar %tdMonth dd, CCYY

3. 1/20/10

format mytdvar %tdnn/dd/YY

4. 2010.01.20 15:15

format mytcvar %tcCCYY.NN.DD HH:MM

5. January 20, 2010 3:15 pm

format mytcvar %tcMonth dd, CCYY hh:MM am
Code am at the end indicates that am or pm should be displayed, as appropriate.

6. Wed Jan 20 15:15:30 2010

format mytcvar %tcDay Mon DD HH:MM:SS CCYY

In examples 1 to 3, the formats each begin with %td, and in examples 4 to 6, the formats begin with
%tc. It is important that you specify the opening correctly—namely, as % + t + third character. The

third character indicates the particular encoding type, which is to say, how the numeric value is to be

interpreted. You specify %tc. . . for datetime/c variables, %tC. . . for datetime/C, %td. . . for date, and so
on.

The default format for datetime/c and datetime/C variables omits the fraction of seconds; 15:15:30.000

is displayed as 15:15:30. If you wish to see the fractional seconds, specify the format

%tcDDmonCCYY HH:MM:SS.sss

or

%tCDDmonCCYY HH:MM:SS.sss

as appropriate.

Times are truncated, not rounded, when displayed
Consider the time 11:32:59.999. Other, less precise, ways of writing that time are

11:32:59.99

11:32:59.9

11:32:59

11:32

That is, when you suppress the display of more-detailed components of the time, the parts that are

displayed are not rounded. Stata displays time just as a digital clock would; the time is 11:32 right up

until the instant that it becomes 11:33.

Datetime display formats — Display formats for dates and times 156

Also see
[D] Datetime — Date and time values and variables

[D] Datetime business calendars — Business calendars

[D] Datetime conversion — Converting strings to Stata dates

[D] Datetime durations — Obtaining and working with durations

[D] Datetime relative dates — Obtaining dates and date information from other dates

[D] Datetime values from other software — Date and time conversion from other software

Datetime durations — Obtaining and working with durations

Description Quick start Syntax Remarks and examples Reference Also see

Description
This entry describes functions that calculate durations, such as the number of years between two dates

(for example, a person’s age). These functions account for leap years and leap days and produce results

that are more consistent than simply taking arithmetic differences of numerical dates and converting to

another unit.

This entry also describes functions that convert durations from one unit (for example, milliseconds)

to another (for example, hours).

Quick start
Calculate age of a subject in integer years on the date of a survey based on a numerically encoded Stata

date dob that gives the subject’s date of birth and a numerically encoded Stata date date of survey
generate subject_age = age(dob, date_of_survey)

Same as above, but calculate the age as a noninteger; that is, include the fractional part

generate subject_fage = age_frac(dob, date_of_survey)

Calculate age on date d for persons born on 29feb as having their birthday on 28feb in nonleap years

(rather than the default of 01mar)

generate celebrate = age(dob, d, ”28feb”)

Calculate the difference in number of months, rounded down to an integer, between two Stata dates, d1
and d2

generate diff_months = datediff(d1, d2, ”month”)

Same as above, but include the fractional part of the difference

generate diff_fmonths = datediff_frac(d1, d2, ”month”)

Calculate the difference in number of hours, rounded down to an integer, between two Stata datetime/c

variables, t1 and t2
generate diff_hours = clockdiff(t1, t2, ”hour”)

Same as above, but include the fractional part of the difference

generate diff_fhours = clockdiff_frac(t1, t2, ”hour”)

Same as above, but use a conversion function to calculate hours with a fractional part

generate diff_fhours2 = hours(t2 - t1)

Calculate the difference in number of minutes, rounded down to an integer, between two Stata datetime/C

variables, tvar1 and tvar2
generate diff_minutes = Clockdiff(tvar1, tvar2, ”minute”)

Calculate the number of days since the previous Monday relative to Stata date d
generate ndays = dayssinceweekday(d, ”Monday”)

157

Datetime durations — Obtaining and working with durations 158

Syntax
Syntax is presented under the following headings:

Functions for calculating durations
Functions for converting units of a duration

Functions for calculating durations

Description Function Value returned

age age(𝑒𝑑 DOB
,𝑒𝑑[,𝑠𝑛𝑙]) years rounded down to an integer

age with fraction age frac(𝑒𝑑 DOB
,𝑒𝑑[,𝑠𝑛𝑙]) years with fractional part

datetime/C difference Clockdiff(𝑒𝑡𝐶1,𝑒𝑡𝐶2,𝑠𝑡𝑢) integer (rounded down)

datetime/c difference clockdiff(𝑒𝑡𝑐1,𝑒𝑡𝑐2,𝑠𝑡𝑢) integer (rounded down)

datetime/C difference Clockdiff frac(𝑒𝑡𝐶1,𝑒𝑡𝐶2,𝑠𝑡𝑢) floating point
with fraction

datetime/c difference clockdiff frac(𝑒𝑡𝑐1,𝑒𝑡𝑐2,𝑠𝑡𝑢) floating point
with fraction

date difference datediff(𝑒𝑑1,𝑒𝑑2,𝑠𝑑𝑢[,𝑠𝑛𝑙]) integer (rounded down)

date difference with datediff frac(𝑒𝑑1,𝑒𝑑2,𝑠𝑑𝑢[,𝑠𝑛𝑙]) floating point
fraction

days since previous dayssinceweekday(𝑒𝑑,𝑑) integers 1 to 7
day of week or dayssincedow(𝑒𝑑,𝑑)

days until next daysuntilweekday(𝑒𝑑,𝑑) integers 1 to 7
day of week or daysuntildow(𝑒𝑑,𝑑)

𝑒𝑑, 𝑒𝑑 DOB
, 𝑒𝑑1, and 𝑒𝑑2 are Stata dates.

𝑒𝑡𝐶1 and 𝑒𝑡𝐶2 are Stata datetime/C values.

𝑒𝑡𝑐1 and 𝑒𝑡𝑐2 are Stata datetime/c values.

𝑠𝑛𝑙 is a string specifying nonleap-year birthdays or anniversaries of 29feb and may be

”01mar”, ”1mar”, ”mar01”, or ”mar1” (the default); or
”28feb” or ”feb28” (case insensitive).

𝑠𝑡𝑢 is a string specifying time units:

”day” or ”d” for day;
”hour” or ”h” for hour;
”minute”, ”min”, or ”m” for minute;
”second”, ”sec”, or ”s” for second; or
”millisecond” or ”ms” for millisecond (case insensitive).

𝑠𝑑𝑢 is a string specifying date units:

”day” or ”d” for day;
”month”, ”mon”, or ”m” for month; or
”year” or ”y” for year (case insensitive).

𝑑 is a numeric day of week (0=Sunday, 1=Monday, . . . , 6=Saturday); alternatively,

it is a string specifying the first two or more letters of the day of week (case insensitive).

Datetime durations — Obtaining and working with durations 159

Notes:

1. The string 𝑠𝑛𝑙 specifying nonleap-year birthdays or anniversaries is an optional

argument. It rarely needs to be specified. See example 3 below.

2. When 𝑒𝑑 < 𝑒𝑑 DOB
, age(𝑒𝑑 DOB

,𝑒𝑑[,𝑠𝑛𝑙]) and age frac(𝑒𝑑 DOB
,𝑒𝑑[,𝑠𝑛𝑙]) return

missing (.).

3. Clockdiff(𝑒𝑡𝐶1,𝑒𝑡𝐶2,𝑠𝑡𝑢) = −Clockdiff(𝑒𝑡𝐶2,𝑒𝑡𝐶1,𝑠𝑡𝑢).
clockdiff(), Clockdiff frac(), clockdiff frac(), datediff(), and
datediff frac() have the same anticommutative property.

Functions for converting units of a duration
Desired conversion Function Value returned

milliseconds to hours hours(ms) ms/(60 × 60 × 1000)
milliseconds to minutes minutes(ms) ms/(60 × 1000)
milliseconds to seconds seconds(ms) ms/1000
hours to milliseconds msofhours(h)* h × 60 × 60 × 1000

minutes to milliseconds msofminutes(m)* m × 60 × 1000

seconds to milliseconds msofseconds(s)* s × 1000

* Stata datetime values are in milliseconds and must be stored as doubles. When using millisecond

results to add to or subtract from a Stata datetime, store the results as doubles.

Remarks and examples
Remarks are presented under the following headings:

Calculating ages and differences of dates
Calculating differences of datetimes

We assume you have read [D] Datetime and are familiar with how Stata stores dates and datetimes.

String dates and times must be converted into numeric values to become Stata dates and datetimes.

Stata date and time values are durations (positive or negative) from 01jan1960. Stata date values record

the number of days from 01jan1960. Stata datetime/c values record the number of milliseconds from

01jan1960 00:00:00. Stata datetime/C is the same as datetime/c, except that it accounts for leap seconds

and encodes Coordinated Universal Time (UTC).

There are other types of Stata date and time values, ones for weeks, months, quarters, half years, and

years, but the functions described here are intended for use with daily dates or datetimes.

Calculating ages and differences of dates
The age() function calculates age just as one would expect. Typing

. generate subject_age = age(date_of_birth, current_date)

produces integers that are a person’s age in years on current date given birthdate date of birth.
The variables date of birth and current date must be Stata dates.

Datetime durations — Obtaining and working with durations 160

The arguments of age() need not be variables, but they must be Stata date values, which are numeric.
To get Stata date values for literal dates, we can use the date pseudofunction td() and use its results as
arguments to age(). For example,

. display age(td(05feb1927), td(24may2006))
79

shows that an individual born on 05feb1927 was 79 years old on 24may2006.

age frac() returns age including the fractional part. For example, let’s use age frac() with the
dates we specified above:

. display age_frac(td(05feb1927), td(24may2006))
79.29589

The datediff() and datediff frac() functions produce results in units of years, months, or days.
For example, to determine the number of months between 05feb1927 and 24may2006, first as an integer

(rounded down) and as a number including the fractional part, we type

. display datediff(td(05feb1927), td(24may2006), ”month”)
951
. display datediff_frac(td(05feb1927), td(24may2006), ”month”)
951.6129

The optional last argument, 𝑠𝑛𝑙, for age(), age frac(), datediff(), and datediff frac() was
not specified in any of the above examples. It applies only to a date of birth (or starting date) on 29feb

when the ending date is not in a leap year. The argument controls whether to use 01mar (the default) or

28feb as the birthday (or anniversary) in nonleap years. Setting this argument is important only when the

data you are using have a set rule for determining the age of persons born on 29feb. For example, you

might have data on the dates when people first get their driver’s licenses. You would want the argument

to match the legal rule for the data. See example 3.

The functions age() and age frac() are based on datediff() and datediff frac(),
respectively,

age(𝑒𝑑 DOB
,𝑒𝑑,𝑠𝑛𝑙) = datediff(𝑒𝑑 DOB

,𝑒𝑑,”year”,𝑠𝑛𝑙)

and

age frac(𝑒𝑑 DOB
,𝑒𝑑,𝑠𝑛𝑙) = datediff frac(𝑒𝑑 DOB

,𝑒𝑑,”year”,𝑠𝑛𝑙)

when 𝑒𝑑 ≥ 𝑒𝑑 DOB
. When 𝑒𝑑 < 𝑒𝑑 DOB

, age() and age frac() return missing (.).

datediff(. . .,”year”,. . .) and datediff frac(. . .,”year”,. . .) calculate the number of years
between two dates just as one would expect. The only wrinkles are leap days and leap years. SeeMethods

and formulas in [FN] Date and time functions for details.

The usefulness of these functions is solely in the way they handle leap days and leap years. Sup-

pose, for example, you are doing an analysis of age of onset of some disorder. If you use values from

age frac() as time in a survival model, these times will match up perfectly with recorded ages (or ages
from age() of course). If instead you used

. generate time_years = (onset_date - date_of_birth)/365.25

as your time variable, there would be minor discrepancies between this time and ages at birthdays. See

examples below.

Datetime durations — Obtaining and working with durations 161

datediff(. . .,”month”,. . .) and datediff frac(. . .,”month”,. . .) calculate the number of

months between two dates as one would expect for starting days 1–28. For example, a starting date

on the 28th of the month will have month anniversaries on the 28th of all other months. When the day

of the starting date is 29, 30, or 31, other months may not have this day of the month. The last day of

February will be 28 or 29. When the starting date is on the 31st, the months ending on the 30th obviously

do not have a 31st. In these cases, the first day of the next month is considered the month anniversary.

(This is consistent with the default handling of 29feb start dates when calculating year anniversaries in

nonleap years; the nonleap year anniversaries are on 01mar.)

Fractional months are also a bit tricky because lengths of months vary. There is an example below,

and see Methods and formulas in [FN] Date and time functions for how they are calculated.

Note that datediff(...,”year”,...), datediff frac(...,”year”,...), datediff(...,
”month”,...), and datediff frac(. . .,”month”,. . .) all match up. That is, on an ending

date on which datediff(. . .,”year”,. . .) increases by one from the previous day, the value of

datediff frac(. . .,”year”,. . .) is exactly an integer and equal to datediff(. . .,”year”,. . .). On
this ending date, datediff frac(. . .,”month”,. . .) is also an integer and equal to 12 times the year
difference.

datediff(𝑒𝑑1,𝑒𝑑2,”day”,𝑠𝑛𝑙) and datediff frac(𝑒𝑑1,𝑒𝑑2,”day”,𝑠𝑛𝑙) have no complications
in how they are calculated. Both are equal to 𝑒𝑑2 − 𝑒𝑑1 and are always integers. The optional argument

𝑠𝑛𝑙 has no bearing on the calculation and is ignored if specified.

Example 1: Ages
Calculating ages is straightforward, but we do need to show how age frac() calculates the fractional

part of age. Here is an example.

We have a dataset with string dates. Date of birth is recorded in the variable str dob, and the end
date for calculating age is in str end date.

. use https://www.stata-press.com/data/r19/ages
(Fictional data for calculating ages)
. describe
Contains data from https://www.stata-press.com/data/r19/ages.dta
Observations: 5 Fictional data for calculating

ages
Variables: 2 30 Oct 2024 17:35

Variable Storage Display Value
name type format label Variable label

str_dob str9 %9s Date of birth
str_end_date str9 %9s End date

Sorted by:
. list, abbreviate(12)

str_dob str_end_date

1. 28/8/1967 27/8/2019
2. 28/8/1967 28/8/2019
3. 28/8/1967 29/8/2019
4. 28/8/1967 28/8/2020
5. 28/8/1967 29/8/2020

Datetime durations — Obtaining and working with durations 162

We must convert the strings to numeric Stata dates, which we do using the date() function with

a mask of ”DMY” because the date components are in the order day, month, year. We format the new

encoded date variables using format %td, the simplest format specification for daily dates.

. generate dob = date(str_dob, ”DMY”)

. generate end_date = date(str_end_date, ”DMY”)

. format dob end_date %td

. list str_dob dob str_end_date end_date, abbreviate(12)

str_dob dob str_end_date end_date

1. 28/8/1967 28aug1967 27/8/2019 27aug2019
2. 28/8/1967 28aug1967 28/8/2019 28aug2019
3. 28/8/1967 28aug1967 29/8/2019 29aug2019
4. 28/8/1967 28aug1967 28/8/2020 28aug2020
5. 28/8/1967 28aug1967 29/8/2020 29aug2020

This person was born on 28aug1967, and we compute his or her age and age with the fractional part

on the dates in end date.

. generate age = age(dob, end_date)

. generate double fage = age_frac(dob, end_date)

. format fage %12.0g

. list dob end_date age fage

dob end_date age fage

1. 28aug1967 27aug2019 51 51.99726027
2. 28aug1967 28aug2019 52 52
3. 28aug1967 29aug2019 52 52.00273224
4. 28aug1967 28aug2020 53 53
5. 28aug1967 29aug2020 53 53.00273973

Note that the fractional parts on end dates of 29aug2019 and 29aug2020 differ. There are 366 days

between 28aug2019 and 28aug2020 because 2020 is a leap year. So the fractional part for 29aug2019 is

1/366 = 0.00273224. There are 365 days between 28aug2020 and 28aug2021, so the fractional part for

29aug2020 is 1/365 = 0.00273973.

Example 2: Differences in months
Here we show an example of how datediff() and datediff frac() calculate date differences in

units of months.

We load a dataset with Stata date variables start and end. First, we generate months using

datediff(start, end, ”month”) to get the integer difference (rounded down) in months. Then, we
generate fmonths using datediff frac(start, end, ”month”) to get the difference including the
fractional part. We also put datediff(start, end, ”day”) into a variable to get differences in days
to help us see how the fractional parts are calculated.

. use https://www.stata-press.com/data/r19/month_differences, clear
(Fictional data for calculating date differences)
. generate months = datediff(start, end, ”month”)
. generate double fmonths = datediff_frac(start, end, ”month”)

Datetime durations — Obtaining and working with durations 163

. generate days = datediff(start, end, ”day”)

. format fmonths %12.0g

. list start end months fmonths days, sepby(start)

start end months fmonths days

1. 15jan2019 15jan2019 0 0 0
2. 15jan2019 16jan2019 0 .0322580645 1
3. 15jan2019 15feb2019 1 1 31
4. 15jan2019 16feb2019 1 1.035714286 32
5. 15jan2019 15mar2019 2 2 59
6. 15jan2019 16mar2019 2 2.032258065 60
7. 15jan2019 15apr2019 3 3 90
8. 15jan2019 16apr2019 3 3.033333333 91

9. 31jan2019 01feb2019 0 .0344827586 1
10. 31jan2019 28feb2019 0 .9655172414 28
11. 31jan2019 01mar2019 1 1 29
12. 31jan2019 02mar2019 1 1.033333333 30
13. 31jan2019 31mar2019 2 2 59
14. 31jan2019 01apr2019 2 2.032258065 60
15. 31jan2019 30apr2019 2 2.967741935 89
16. 31jan2019 01may2019 3 3 90

Let’s first look at the start date 15jan2019. months increases by one on 15feb2019 and then again on
15mar2019 and 15apr2019. On these days, datediff frac(. . ., ”month”) is an integer.

The fractional month difference between 15jan2019 and 16jan2019 is 1/31 = 0.032258. The de-

nominator is 31 because the next month anniversary is 15feb2019, which is 31 days from 15jan2019.

The fractional part of the difference between 15jan2019 and 16feb2019 is 1/28 = 0.035714 because

there are 28 days between the month anniversaries 15feb2019 and 15mar2019. The fractional part of the

difference between 15jan2019 and 16apr2019 is 1/30 = 0.033333 because there are 30 days between

the month anniversaries 15apr2019 and 15may2019.

For the start date 31jan2019, monthly anniversaries are 01mar2019, 31mar2019, and 01may2019.

Fractional differences are calculated based on the number of days between the monthly anniversaries.

For example, there are 29 days between 31jan2019 and 01mar2019, so the fractional difference between

31jan2019 and 01feb2019 is 1/29 = 0.034483.

The optional fourth argument, 𝑠𝑛𝑙, of datediff(𝑒𝑑1,𝑒𝑑2,”month”,𝑠𝑛𝑙) applies only when the start
date, 𝑒𝑑1, falls on 29feb. See the next example for what this option does with ages in years. It works

similarly when units are months.

Example 3: Born on a leap day
If you are a “leapling”—born on 29feb—when do you have a birthday in nonleap years? On 28feb

or 01mar? Or do you not have a birthday at all in nonleap years (Sullivan 1923)?

In the United Kingdom, a leapling legally becomes 18 on 01mar. In Taiwan, it is 28feb. In the United

States, there is no legal statute concerning leap-day birthdates.

The functions age(), age frac(), datediff(), and datediff frac() all have an optional last
argument that sets the day of the birthday (or anniversary) in nonleap years. Here is an example using

age() and age frac().

Datetime durations — Obtaining and working with durations 164

We load a dataset with Stata date variables dob (containing date of birth) and end date. We generate

age1 using age()with the ”01mar” argument (which is the default if it is not specified). The age2 vari-
able is generated using ”28feb”. We also generate the variables fage1 and fage2 using age frac()
with different last arguments.

. use https://www.stata-press.com/data/r19/leap_day, clear
(Fictional leapling data)
. generate age1 = age(dob, end_date, ”01mar”)
. generate double fage1 = age_frac(dob, end_date, ”01mar”)
. generate age2 = age(dob, end_date, ”28feb”)
. generate double fage2 = age_frac(dob, end_date, ”28feb”)
. generate year = year(end_date)
. format fage1 fage2 %12.0g
. list dob end_date age1 age2 fage1 fage2, sepby(year)

dob end_date age1 age2 fage1 fage2

1. 29feb2004 27feb2019 14 14 14.99452055 14.99726027
2. 29feb2004 28feb2019 14 15 14.99726027 15
3. 29feb2004 01mar2019 15 15 15 15.00273224

4. 29feb2004 28feb2020 15 15 15.99726027 15.99726776
5. 29feb2004 29feb2020 16 16 16 16
6. 29feb2004 01mar2020 16 16 16.00273224 16.00273973

Changes in age1 and age2 (that is, birthdays) in nonleap years occur on the day specified by the

last argument to age(). Note that birthdays in leap years are, of course, on 29feb regardless of the

last argument. Fractional parts from age frac() differ because they are based on the number of days
between birthdays on either side of end date, which will be 365 or 366. So fractional parts are multiples
of 1/365 or 1/366.

It is worth mentioning again that age(), age frac(), datediff(), and datediff frac() all

match up sensibly, but if there are leaplings, the last argument must be the same (or not be specified)

for them to match up. See Methods and formulas in [FN] Date and time functions.

Calculating differences of datetimes
The clockdiff() function calculates differences of datetime/c values in units of days, hours, min-

utes, seconds, or milliseconds, with the result rounded down to an integer. The Clockdiff() function
does the same, except it calculates differences for datetime/C values (UTC times with leap seconds).

The clockdiff frac() and Clockdiff frac() functions calculate the corresponding differences
for datetime/c and datetime/C values, respectively, but the fractional part of the difference is also in-

cluded.

Example 4: Differences of datetime/c values
We have a dataset with string datetimes. A start datetime is recorded in the variable str start, and

an end datetime is in str end.

Datetime durations — Obtaining and working with durations 165

. use https://www.stata-press.com/data/r19/time_differences, clear
(Fictional data for calculating time differences)
. list, abbreviate(9)

str_start str_end

1. 2015-06-30 00:00:00 2015-06-30 23:59:59
2. 2015-06-30 00:00:00 2015-06-30 23:59:60
3. 2015-06-30 00:00:00 2015-07-01 00:00:00
4. 2015-06-30 00:00:00 2015-07-01 23:59:59
5. 2015-06-30 00:00:00 2015-07-02 00:00:00

We must convert the strings to numeric Stata datetimes, which we do using the clock() function

with a mask of ”YMDhms”. We format the new encoded datetime variables using format %tc, the simplest
format specification for datetime/c.

. generate double cstart = clock(str_start, ”YMDhms”)

. generate double cend = clock(str_end, ”YMDhms”)
(1 missing value generated)
. format cstart cend %tc
. list str_end cend

str_end cend

1. 2015-06-30 23:59:59 30jun2015 23:59:59
2. 2015-06-30 23:59:60 .
3. 2015-07-01 00:00:00 01jul2015 00:00:00
4. 2015-07-01 23:59:59 01jul2015 23:59:59
5. 2015-07-02 00:00:00 02jul2015 00:00:00

One of the string values became missing when it was encoded. It was the value ”2015-06-30
23:59:60”. This is a leap second, which was added to the end of the day on 30jun2015. There is

no encoding for leap seconds in datetime/c. That is why it is missing. We snuck in this leap second to

illustrate a point later about datetime/C.

We now use clockdiff() to calculate differences in seconds and hours between the datetime/c vari-
ables cstart and cend.

. generate csecs = clockdiff(cstart, cend, ”second”)
(1 missing value generated)
. generate chours = clockdiff(cstart, cend, ”hour”)
(1 missing value generated)
. list cstart cend csecs chours

cstart cend csecs chours

1. 30jun2015 00:00:00 30jun2015 23:59:59 86399 23
2. 30jun2015 00:00:00 . . .
3. 30jun2015 00:00:00 01jul2015 00:00:00 86400 24
4. 30jun2015 00:00:00 01jul2015 23:59:59 172799 47
5. 30jun2015 00:00:00 02jul2015 00:00:00 172800 48

Datetime durations — Obtaining and working with durations 166

clockdiff() calculates values rounded down to integers, and the results are what we expect. Integer
hours starting at 30jun2015 00:00:00 are 23 hours at 30jun2015 23:59:59. Integer hours become 24 hours

one second later at 01jul2015 00:00:00.

Rather than use clockdiff(), we could take the difference between the datetime/c variables cstart
and cend and use the conversion functions seconds() and hours().

. generate double csecs2 = seconds(cend - cstart)
(1 missing value generated)
. generate double chours2 = hours(cend - cstart)
(1 missing value generated)
. format %12.0g chours2
. list csecs csecs2 chours chours2

csecs csecs2 chours chours2

1. 86399 86399 23 23.99972222
2.
3. 86400 86400 24 24
4. 172799 172799 47 47.99972222
5. 172800 172800 48 48

The results are consistent with our earlier results. The number of seconds are exactly the same in

csecs and csecs2 because they are integers. Hours in chours2 are not integers, but rounded down to
integers, they agree with hours produced by clockdiff().

If we want to calculate the difference between cstart and cend in hours with the fractional part, we
can use clockdiff frac() as follows:

. generate double fchours = clockdiff_frac(cstart, cend, ”hour”)
(1 missing value generated)
. format %12.0g fchours
. list chours chours2 fchours

chours chours2 fchours

1. 23 23.99972222 23.99972222
2. . . .
3. 24 24 24
4. 47 47.99972222 47.99972222
5. 48 48 48

As expected, fchours is the same as chours2.

Example 5: Differences of datetime/C values
What if we are using datetime/C values, that is, datetimes with leap seconds? Let’s redo

the previous example encoding the strings using Clock() to produce Cstart and Cend as date-

time/C. Then, we generate a variable Csecs using Clockdiff(Cstart, Cend, ”second”), Chours
using clockdiff(Cstart, Cend, ”hour”), and fChours using Clockdiff frac(Cstart, Cend,
”hour”).

. generate double Cstart = Clock(str_start, ”YMDhms”)

. generate double Cend = Clock(str_end, ”YMDhms”)

Datetime durations — Obtaining and working with durations 167

. format Cstart Cend %tC

. generate Csecs = Clockdiff(Cstart, Cend, ”second”)

. generate Chours = Clockdiff(Cstart, Cend, ”hour”)

. generate double fChours = Clockdiff_frac(Cstart, Cend, ”hour”)

. format %12.0g fChours

. list Cstart Cend Csecs Chours fChours

1. Cstart Cend Csecs Chours
30jun2015 00:00:00 30jun2015 23:59:59 86399 23

fChours
23.9994446

2. Cstart Cend Csecs Chours
30jun2015 00:00:00 30jun2015 23:59:60 86400 23

fChours
23.9997223

3. Cstart Cend Csecs Chours
30jun2015 00:00:00 01jul2015 00:00:00 86401 24

fChours
24

4. Cstart Cend Csecs Chours
30jun2015 00:00:00 01jul2015 23:59:59 172800 47

fChours
47.99972222

5. Cstart Cend Csecs Chours
30jun2015 00:00:00 02jul2015 00:00:00 172801 48

fChours
48

In the previous example, the difference between the times of the first observationwas 23.99972222 hours;

now it is 23.99944460 hours. The difference for the first observation in this example is further from 24

hours because there are now two seconds between Cend and 24 hours from Cstart, whereas before there
was only one second because the leap second was treated as if it did not exist.

The other difference is the denominator of the fractional part. From the earlier example using date-

time/c values and clockdiff frac(), we note that 1 − 0.99972222 = 0.00027778 = 1/3600,
where 3,600 is the number of seconds in an hour. In this example using datetime/C values and

Clockdiff frac(), we see that 1− 0.99944460 = 0.00055540 = 2/3601, where 3,601 is the number
of seconds in the hour containing the leap second.

Datetime durations — Obtaining and working with durations 168

For the second-to-last observation, the fractional part of the difference is 0.99972222, the same as the

fractional part in the previous example. So in this example, the hour differences with the fractional part

are not evenly spaced, and this would be true even without the second observation with the leap second

in the data. If the lack of uniform spacing is a problem and there are no leap seconds in your data, you

may want to consider converting your datetime/C data to datetime/c.

Reference
Sullivan, A. 1923. The Pirates of Penzance or the Slave of Duty, libretto by W. S. Gilbert. New York: G. Schirmer.

Also see
[D] Datetime — Date and time values and variables

[D] Datetime business calendars — Business calendars

[D] Datetime conversion — Converting strings to Stata dates

[D] Datetime display formats — Display formats for dates and times

[D] Datetime relative dates — Obtaining dates and date information from other dates

[D] Datetime values from other software — Date and time conversion from other software

Datetime relative dates — Obtaining dates and date information from other dates

Description Quick start Syntax Remarks and examples Also see

Description
This entry describes functions that calculate dates from other dates, such as the date of a birthday in

another year or the next leap year after a given year. It also describes functions that return the current

date and current datetime.

Quick start
Display today’s date

display %td today()

Save the current date and time in a scalar

scalar ctime = now()

Calculate the date of a birthday in the year given by numeric variable y based on a numerically encoded
Stata date variable dob that gives date of birth

generate bday_future = birthday(dob, y)

Same as above, but for persons born on 29feb have their birthdays on 28feb in nonleap years (rather than

the default of 01mar)

generate bday_future = birthday(dob, y, ”28feb”)

Calculate the date of the first birthday after Stata date date today based on date of birth dob
generate next_bday = nextbirthday(dob, date_today)

Calculate the number of days in the year y
generate ndays = cond(isleapyear(y), 366, 365)

Calculate the year of the leap year immediately before the year y
generate yleap = previousleapyear(y)

Calculate the number of days in the month on which the values of Stata date variable d fall
generate ndays = daysinmonth(d)

Calculate the date of the first Friday of month m and year y
generate firstfriday = firstweekdayofmonth(m, y, ”Friday”)

Calculate the date of the previous Saturday relative to Stata date d
generate previous = previousweekday(d, ”sat”)

169

Datetime relative dates — Obtaining dates and date information from other dates 170

Syntax
Description Function Value returned

today today() Stata date

current date and time now() Stata datetime/c

birthday in year birthday(𝑒𝑑 DOB
,𝑌[,𝑠𝑛𝑙]) Stata date

previous birthday previousbirthday(𝑒𝑑 DOB
,𝑒𝑑[,𝑠𝑛𝑙]) Stata date

next birthday nextbirthday(𝑒𝑑 DOB
,𝑒𝑑[,𝑠𝑛𝑙]) Stata date

days in month daysinmonth(𝑒𝑑) 28–31

first day of month firstdayofmonth(𝑒𝑑) Stata date

last day of month lastdayofmonth(𝑒𝑑) Stata date

leap year indicator isleapyear(𝑌) 0 or 1

previous leap year previousleapyear(𝑌) year

next leap year nextleapyear(𝑌) year

leap second indicator isleapsecond(𝑒𝑡𝐶) 0 or 1

first day of week of month firstweekdayofmonth(𝑀,𝑌,𝑑) Stata date

or firstdowofmonth(𝑀,𝑌,𝑑)

last day of week of month lastweekdayofmonth(𝑀,𝑌,𝑑) Stata date

or lastdowofmonth(𝑀,𝑌,𝑑)

previous day of week previousweekday(𝑒𝑑,𝑑) Stata date

or previousdow(𝑒𝑑,𝑑)

next day of week nextweekday(𝑒𝑑,𝑑) Stata date

or nextdow(𝑒𝑑,𝑑)

𝑒𝑑 and 𝑒𝑑 DOB
are Stata dates.

𝑒𝑡𝐶 is a Stata datetime/C value (UTC time with leap seconds).

𝑠𝑛𝑙 is a string specifying nonleap-year birthdays of 29feb and may be

”01mar”, ”1mar”, ”mar01”, or ”mar1” (the default); or
”28feb” or ”feb28” (case insensitive).

𝑌 is a numeric year.

𝑑 is a numeric day of week (0=Sunday, 1=Monday, . . . , 6=Saturday); alternatively,

it is a string specifying the first two or more letters of the day of week (case insensitive).

Note: The string 𝑠𝑛𝑙 specifying nonleap-year birthdays is an optional argument. It rarely needs to be

specified. See example 3 in [D] Datetime durations.

Datetime relative dates — Obtaining dates and date information from other dates 171

Remarks and examples
Remarks are presented under the following headings:

Current date and time
Birthdays and anniversaries
Months: Number of days, first day, and last day
Determining leap years
Determining leap seconds
Dates of days of week

We assume you have read [D] Datetime and are familiar with how Stata stores and formats dates.

Current date and time
today() and now() return date and datetime/c values for today’s date and the current datetime, re-

spectively. Note that the datetime value returned by now() is not adjusted for leap seconds.

Birthdays and anniversaries
The birthday() function returns a Stata date giving the birthday in a specified year. For example,

suppose date of birth is a variable containing Stata dates and yvar is a numeric variable containing
years; typing

. generate bday = birthday(date_of_birth, yvar)

produces a Stata date variable bday containing birthdays in those years. However, it will not be formatted
as a date variable. If you list bday, you will see numbers, not dates. To see dates, you must give it a date
format, such as

. format bday %td

We used the format %td, the simplest format specification for daily dates.

Of course, birthday() can be used for more than just birthdays. It can be used to give anniversary
dates of any date in different years.

The previousbirthday() and nextbirthday() functions do what their names suggest. Typing

. generate pbday = previousbirthday(date_of_birth, current_date)

. format pbday %td

gives birthdays immediately before current date. Typing

. generate nbday = nextbirthday(date_of_birth, current_date)

. format nbday %td

gives birthdays immediately after current date. Note that if current date is a birthday,

previousbirthday() returns the previous birthday, not the value of current date. Similarly,

nextbirthday() returns the next birthday when the argument is a birthday.

The optional last argument, 𝑠𝑛𝑙, for birthday(), previousbirthday(), and nextbirthday()
applies only to a date of birth on 29feb. The argument controls whether to use 01mar (the default) or

28feb as the birthday in nonleap years. See example 3 in [D]Datetime durations and the example below.

Datetime relative dates — Obtaining dates and date information from other dates 172

Example 1: Birthdays in other years
Here we show how to use birthday() and nextbirthday() to calculate birthdays in other years.

We load a dataset with Stata date variables dob and date and a numeric variable year.

. use https://www.stata-press.com/data/r19/birthdays
(Fictional data for calculating birthdays)
. list, sepby(dob)

dob date year

1. Mon 28 Aug 1967 Thu 27 Aug 2020 2020
2. Mon 28 Aug 1967 Sat 28 Aug 2021 2021
3. Mon 28 Aug 1967 Mon 29 Aug 2022 2022

4. Thu 29 Feb 1968 Tue 28 Feb 2023 2023
5. Thu 29 Feb 1968 Thu 29 Feb 2024 2024
6. Thu 29 Feb 1968 Sat 01 Mar 2025 2025

To calculate the birthday in year based on date of birth dob, we type

. generate bday = birthday(dob, year)

. format bday %tdDay_DD_Mon_CCYY

. list dob year bday, sepby(dob)

dob year bday

1. Mon 28 Aug 1967 2020 Fri 28 Aug 2020
2. Mon 28 Aug 1967 2021 Sat 28 Aug 2021
3. Mon 28 Aug 1967 2022 Sun 28 Aug 2022

4. Thu 29 Feb 1968 2023 Wed 01 Mar 2023
5. Thu 29 Feb 1968 2024 Thu 29 Feb 2024
6. Thu 29 Feb 1968 2025 Sat 01 Mar 2025

We see that for a date of birth of 28Aug 1967, the birthday in 2020 is on 28Aug 2020, which is a Friday.

For persons born on leap day 29 Feb 1968, their birthdays in nonleap years will be on 01 Mar. In leap

years, of course, they will be on 29 Feb.

Note that we used the fancy date format %tdDay DD Mon CCYY. The %td at the beginning means it
is a format for daily dates. Day displays the day of the week abbreviated. The underscore () means put

in a space. DD displays the day with a leading zero. Mon displays the month abbreviated. CCYY displays
the year with the century. See [D] Datetime display formats for all the format variants.

For persons born on leap days (“leaplings”), we can change the day of their birthdays in nonleap years

from the default of 01 Mar to 28 Feb by specifying the optional argument ”28feb”. For example,

Datetime relative dates — Obtaining dates and date information from other dates 173

. generate abday = birthday(dob, year, ”28feb”)

. format abday %tdDay_DD_Mon_CCYY

. list dob year abday, sepby(dob)

dob year abday

1. Mon 28 Aug 1967 2020 Fri 28 Aug 2020
2. Mon 28 Aug 1967 2021 Sat 28 Aug 2021
3. Mon 28 Aug 1967 2022 Sun 28 Aug 2022

4. Thu 29 Feb 1968 2023 Tue 28 Feb 2023
5. Thu 29 Feb 1968 2024 Thu 29 Feb 2024
6. Thu 29 Feb 1968 2025 Fri 28 Feb 2025

Birthdays of leaplings are now on 28 Feb in nonleap years. Birthdays for nonleaplings are unaffected by

this argument.

Suppose we want a birthday relative to another date. Say we want the date of the first birthday after

date. We can do this by typing

. generate nbday = nextbirthday(dob, date)

. format nbday %tdDay_DD_Mon_CCYY

. list dob date nbday, sepby(dob)

dob date nbday

1. Mon 28 Aug 1967 Thu 27 Aug 2020 Fri 28 Aug 2020
2. Mon 28 Aug 1967 Sat 28 Aug 2021 Sun 28 Aug 2022
3. Mon 28 Aug 1967 Mon 29 Aug 2022 Mon 28 Aug 2023

4. Thu 29 Feb 1968 Tue 28 Feb 2023 Wed 01 Mar 2023
5. Thu 29 Feb 1968 Thu 29 Feb 2024 Sat 01 Mar 2025
6. Thu 29 Feb 1968 Sat 01 Mar 2025 Sun 01 Mar 2026

We see that the first birthday after 27 Aug 2020 for someone born on 28 Aug is 28 Aug 2020. The first

birthday after 28 Aug 2021 (a birthday) for someone born on 28 Aug is the birthday in the next year,

28 Aug 2022.

The first birthday after 29 Feb 2024 for someone born on 29 Feb is 01 Mar 2025. Again, we can

specify the argument ”28feb” to change the nonleap-year birthdays of leaplings to 28 Feb.

. generate anbday = nextbirthday(dob, date, ”28feb”)

. format anbday %tdDay_DD_Mon_CCYY

. list dob date anbday, sepby(dob)

dob date anbday

1. Mon 28 Aug 1967 Thu 27 Aug 2020 Fri 28 Aug 2020
2. Mon 28 Aug 1967 Sat 28 Aug 2021 Sun 28 Aug 2022
3. Mon 28 Aug 1967 Mon 29 Aug 2022 Mon 28 Aug 2023

4. Thu 29 Feb 1968 Tue 28 Feb 2023 Thu 29 Feb 2024
5. Thu 29 Feb 1968 Thu 29 Feb 2024 Fri 28 Feb 2025
6. Thu 29 Feb 1968 Sat 01 Mar 2025 Sat 28 Feb 2026

Datetime relative dates — Obtaining dates and date information from other dates 174

Now the first birthday after 29 Feb 2024 for someone born on 29 Feb is 28 Feb 2025.

Months: Number of days, first day, and last day
daysinmonth(𝑒𝑑), firstdayofmonth(𝑒𝑑), and lastdayofmonth(𝑒𝑑) each take a Stata date 𝑒𝑑

as an argument and determine the month of that date. daysinmonth() returns the number of days in
that month. firstdayofmonth() returns the date of the first day of that month. lastdayofmonth()
returns the date of the last day of that month.

For example, for any day in the month of February of leap year 2020 (such as 15feb2020), these

functions return the following:

. display daysinmonth(mdy(2,15,2020))
29
. display %td firstdayofmonth(mdy(2,15,2020))
01feb2020
. display %td lastdayofmonth(mdy(2,15,2020))
29feb2020

Determining leap years
isleapyear(𝑌), previousleapyear(𝑌), and nextleapyear(𝑌) are functions that make it easier

to handle leap years. Each takes a single argument that is a numeric year.

isleapyear(𝑌) returns 1 if 𝑌 is a leap year and 0 otherwise. The argument 𝑌 can be a numeric

variable or a literal value. Here are some examples with literal values:

. display isleapyear(2020)
1
. display isleapyear(2021)
0
. display isleapyear(2100)
0
. display isleapyear(2400)
1

The year 2020 is a leap year, and 2021 is not. The year 2100 is not because it is divisible by 100 and not

by 400. The year 2400 is divisible by 400, so it is a leap year.

previousleapyear(𝑌) returns the leap year immediately before year 𝑌. nextleapyear(𝑌) returns
the first leap year after year 𝑌. Here are examples:

. display previousleapyear(2023)
2020
. display nextleapyear(2023)
2024
. display previousleapyear(2024)
2020
. display nextleapyear(2024)
2028

As you can see, when the argument is a leap year, these functions return the next leap year or previous

leap year and not the leap year argument.

Datetime relative dates — Obtaining dates and date information from other dates 175

Determining leap seconds
isleapsecond() takes a datetime/C value (UTC time) as an argument and returns 1 (true) if that

datetime is one of the 1,000 milliseconds of a leap second and 0 (false) otherwise. For example, the

first leap second was introduced on 30jun1972, after the last millisecond of the day. Here is what

isleapsecond() returns at various points in time, including right before the leap second was added

on 30jun1972 (at 23:59.999) and right after the leap second was added on 01jul1972 (at 00:00.000). We

use tC() to create datetime/C values.

. display isleapsecond(tC(30jun1972 23:59:59.999))
0
. display isleapsecond(tC(30jun1972 23:59:60.000))
1
. display isleapsecond(tC(30jun1972 23:59:60.999))
1
. display isleapsecond(tC(01jul1972 00:00:0))
0

isleapsecond() is useful for determining whether datetime/C values can be converted to datetime/c

without any loss of information. Suppose we have a variable admitTime that contains times of patient
admissions as datetime/C values. We can type the following:

. generate anyleapsec = isleapsecond(admitTime)

. tabulate anyleapsec
anyleapsec Freq. Percent Cum.

0 1,064 100.00 100.00

Total 1,064 100.00

anyleapsec is all zero, so no patient was admitted on a leap second, and we can convert admitTime to
datetime/c without any times being altered.

. generate newTime = cofC(admitTime)

Had there been leap seconds in the data, cofC() would have converted the leap-second times to times
one second later. For example,

. display %tc cofC(tC(31dec2016 23:59:60))
01jan2017 00:00:00

Dates of days of week
firstweekdayofmonth(𝑀,𝑌,𝑑) and lastweekdayofmonth(𝑀,𝑌,𝑑) return the Stata date of the

first and last day-of-week 𝑑, respectively, in month 𝑀 of year 𝑌. For example, we can find the first

Monday of January 2000 with the command

. display %td firstweekdayofmonth(1, 2000, ”Monday”)
03jan2000

previousweekday(𝑒𝑑,𝑑) returns the Stata date corresponding to the last day-of-week 𝑑 before the

Stata date 𝑒𝑑. nextweekday(𝑒𝑑,𝑑) returns the Stata date corresponding to the first day-of-week 𝑑 after
the Stata date 𝑒𝑑. For example, the date of the first Saturday after today can be found with the command

. display %td nextweekday(today(), ”sat”)
25mar2023

Datetime relative dates — Obtaining dates and date information from other dates 176

Note that day-of-week 𝑑 can be specified as an integer (0 = Sunday, 1 = Monday, . . . , 6 = Saturday)

or as a string with the first two or more letters of the day of the week (case insensitive). For example,

Sunday can be specified as 0 or ”Sunday”, ”Sun”, ”su”, etc.

Also see
[D] Datetime — Date and time values and variables

[D] Datetime business calendars — Business calendars

[D] Datetime conversion — Converting strings to Stata dates

[D] Datetime display formats — Display formats for dates and times

[D] Datetime durations — Obtaining and working with durations

[D] Datetime values from other software — Date and time conversion from other software

Datetime values from other software — Date and time conversion from other software

Description Remarks and examples Reference Also see

Description
Most software packages store dates and times numerically as durations from some base date in spec-

ified units, but they differ on the base date and the units. In this entry, we discuss how to convert date

and time values that you have imported from other packages to Stata dates.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Converting SAS dates
Converting SPSS dates
Converting R dates
Converting Excel dates

Example 1: Converting Excel dates to Stata dates
Converting OpenOffice dates
Converting Unix time

Introduction
Different software packages use different base dates for storing dates and times numerically. If you

are using one of the specialized subcommands for importing data from another package, you do not need

to convert your numeric dates after importing them into Stata. import sas, import spss, and import
excel will properly convert those dates to Stata dates. However, if you store data from another package

into a more general format, like a text file, you will need to do one of two things.

1. If you bring the date variable into Stata as a string, you will have to convert it to a numeric

variable.

2. If you import the date variable as a numeric variable, with values representing the underlying

numeric values that the other package used, you will have to convert that value to the numeric

value for a Stata date.

Below, we discuss the date systems for different software packages and how to convert their date and

time values to Stata dates.

Converting SAS dates
If you have data in a SAS-format file, you may want to use the import sas command. If the SAS file

contains numerically encoded dates, import sas will read those dates and properly store them as Stata

dates. You do not need to perform any conversion after importing your data with import sas.

On the other hand, if you import data originally from SAS that have been saved into another format,

such as a text file, dates and datetimes may exist as the underlying numeric values that SAS used. The

discussion below concerns converting those numeric values to Stata dates.

SAS provides dates measured as the number of days since 01jan1960 (positive or negative). This is

the same coding as used by Stata:

177

Datetime values from other software — Date and time conversion from other software 178

. generate statadate = sasdate

. format statadate %td

SAS provides datetimes measured as the number of seconds since 01jan1960 00:00:00, assuming

86,400 seconds/day. SAS datetimes do not have leap seconds. To convert to a Stata datetime/c variable,

type

. generate double statatime = (sastime*1000)

. format statatime %tc

It is important that variables containing SAS datetimes, such as sastime above, be imported into Stata
as doubles.

Converting SPSS dates
If you have data in an SPSS-format file, you may want to use the import spss command. If the SPSS

file contains numerically encoded dates, import spss will read those dates and properly store them as

Stata dates. You do not need to perform any conversion after importing your data with import spss.

On the other hand, if you import data originally from SPSS that have been saved into another format,

such as a text file, dates and datetimes may exist as the underlying numeric values that SPSS used. The

discussion below concerns converting those numeric values to Stata dates.

SPSS provides dates and datetimes measured as the number of seconds since 14oct1582 00:00:00,

assuming 86,400 seconds/day. SPSS datetimes do not have leap seconds. To convert to a Stata datetime/c

variable, type

. generate double statatime = (spsstime*1000) + tc(14oct1582 00:00)

. format statatime %tc

To convert to a Stata date, type

. generate statadate = dofc((spsstime*1000) + tc(14oct1582 00:00))

. format statadate %td

Converting R dates
R stores dates as days since 01jan1970. To convert to a Stata date, type

. generate statadate = rdate - td(01jan1970)

. format statadate %td

R stores datetimes as the number of UTC-adjusted seconds (that is, with leap seconds) since 01jan1970

00:00:00. To convert to a Stata datetime/C variable, type

. generate double statatime = rtime - tC(01jan1970 00:00)

. format statatime %tC

To convert to a Stata datetime/c variable, type

. generate double statatime = cofC(rtime - tC(01jan1970 00:00))

. format statatime %tc

There are issues of which you need to be aware when working with datetime/C values; see Why

there are two datetime encodings and Advice on using datetime/c and datetime/C, both in [D] Datetime

conversion.

Datetime values from other software — Date and time conversion from other software 179

Converting Excel dates
If you have data in an Excel format file, you may want to use the import excel command. If the

Excel file contains numerically encoded dates, import excel will read those dates and properly store
them as Stata dates. You do not need to perform any conversion after importing your data with import
excel.

On the other hand, if you are not using import excel and you need to manually convert Excel’s

numerically encoded dates to Stata dates, you can refer to the discussion below.

Excel has used different date systems across operating systems. Excel for Windows used the “1900

date system”. Excel for Mac used the “1904 date system”. More recently, Excel has been standardizing

on the 1900 date system on all operating systems.

Regardless of operating system, Excel can use either encoding. See

https://support.microsoft.com/kb/214330 for instructions on converting workbooks between date sys-

tems.

Converted dates will be off by four years if you choose the wrong date system.

Converting Excel 1900 date-system dates:

Excel’s 1900 date system stores dates as days since 31dec1899 (0jan1900), and it treats 1900 as a leap

year, although it was not. Therefore, this date system contains the nonexistent day 29feb1900, which is

not recognized by Stata. You can see http://www.cpearson.com/excel/datetime.htm for more information

on how dates and times are handled in Excel.

Because of this behavior, we need to account for that additional day when converting these numeri-

cally encoded dates to Stata dates. In other words, to convert Excel dates on or after 01mar1900 to Stata

dates, we instead use 30dec1899 as the base.

. generate statadate = exceldate + td(30dec1899)

. format statadate %td

To convert Excel dates on or before 28feb1900 to Stata dates, we use 31dec1899 as the base. For an

example of working with these dates, see the technical note following example 1.

Stata stores date and datetime values differently, with dates recorded as the number of days since

01jan1960 and datetimes recorded as the number of milliseconds from 01jan1960 00:00:00. However,

Excel stores date and time values together in a single number. For datetimes on or after 01mar1900

00:00:00, Excel stores datetimes as days plus fraction of day since 30dec1899 00:00:00, such as

ddddddd.tttttt. The integer records the days, and the fractional part records the number of seconds
from 00:00:00, the beginning of the day, divided by the number of seconds in 24 hours (24*60*60 =

86400).

To convert with a one-second resolution to a Stata datetime, type

. generate double statatime = round((exceltime+td(30dec1899))*86400)*1000

. format statatime %tc

Converting Excel 1904 date-system dates:

For dates on or after 01jan1904, Excel stores dates as days since 01jan1904. To convert to a Stata

date, type

. generate statadate = exceldate + td(01jan1904)

. format statadate %td

https://support.microsoft.com/kb/214330
http://www.cpearson.com/excel/datetime.htm

Datetime values from other software — Date and time conversion from other software 180

For datetimes on or after 01jan1904 00:00:00, Excel stores datetimes as days plus the fraction of the

day since 01jan1904 00:00:00. To convert with a one-second resolution to a Stata datetime, type

. generate double statatime = round((exceltime+td(01jan1904))*86400)*1000

. format statatime %tc

Example 1: Converting Excel dates to Stata dates

We have some Excel 1900 date-system dates saved in a tab-delimited file. The file contains patients’

ID numbers and their dates of birth. The numeric variable bdate contains the numeric values that Excel
used to store those dates.

. clear

. import delimited ”exceldates.txt”
(encoding automatically selected: ISO-8859-1)
(2 vars, 3 obs)
. list

patid bdate

1. 1 33106
2. 2 31305
3. 3 37327

Stata dates measure the number of days since January 1, 1960. For dates on or after March 1, 1900,

Excel’s base date is December 30, 1899. To convert bdate to a Stata date, we need to add the number
of days from January 1, 1960, to December 30, 1899 (which is a negative number of days).

. generate statadate = bdate + td(30dec1899)

. format statadate %td

. list

patid bdate statadate

1. 1 33106 21aug1990
2. 2 31305 15sep1985
3. 3 37327 12mar2002

If you would like to confirm that the conversion has been done properly, you can copy those values

of bdate into an Excel spreadsheet and format them as dates. You will see the same dates as those listed

under statadate.

Technical note
Suppose we were working with data in Excel that contained dates between January 1, 1900, and

February 28, 1900. If we saved these data to a .txt or .csv file and brought in those numerically

encoded dates into Stata, we could not use the conversion function above. The reason these dates are

treated differently is that Excel treats 1900 as a leap year, even though it was not; therefore, Excel behaves

as if 29feb1900 was an actual date. If you are curious, the purpose of this behavior was to be compatible

with a spreadsheet software that was dominant at the time. In short, what this means for us is that if we

are working with these particular dates, we need to modify Excel’s base date.

Datetime values from other software — Date and time conversion from other software 181

Below, we import a text file with dates between January 1, 1900, and February 28, 1900, to demon-

strate.

. clear

. import delimited ”exceldates2.txt”
(encoding automatically selected: ISO-8859-1)
(2 vars, 3 obs)
. list

patid bdate

1. 1 1
2. 2 15
3. 3 43

Instead of using December 30, 1899, as Excel’s base date, as we did previously, we will now use

December 31, 1899.

. generate statadate = bdate + td(31dec1899)

. format statadate %td

. list

patid bdate statadate

1. 1 1 01jan1900
2. 2 15 15jan1900
3. 3 43 12feb1900

Now we have a Stata date recording dates between January 1, 1900, and February 28, 1900.

Converting OpenOffice dates
OpenOffice uses the Excel 1900 date system described above.

Converting Unix time
Unix time is stored as the number of seconds since midnight, 01jan1970. To convert to a Stata date-

time, type

. generate double statatime = unixtime * 1000 + mdyhms(1,1,1970,0,0,0)

To convert to a Stata date, type

. generate statadate = dofc(unixtime * 1000 + mdyhms(1,1,1970,0,0,0))

Reference
Gould, W. W. 2011. Using dates and times from other software. The Stata Blog: Not Elsewhere Classified. https://blog.

stata.com/2011/01/05/using-dates-and-times-from-other-software/.

https://blog.stata.com/2011/01/05/using-dates-and-times-from-other-software/
https://blog.stata.com/2011/01/05/using-dates-and-times-from-other-software/

Datetime values from other software — Date and time conversion from other software 182

Also see
[D] Datetime — Date and time values and variables

[D] Datetime business calendars — Business calendars

[D] Datetime conversion — Converting strings to Stata dates

[D] Datetime display formats — Display formats for dates and times

[D] Datetime durations — Obtaining and working with durations

[D] Datetime relative dates — Obtaining dates and date information from other dates

describe — Describe data in memory or in a file

Description Quick start
Menu Syntax
Options to describe data in memory Options to describe data in a file
Remarks and examples Stored results
References Also see

Description
describe produces a summary of the dataset in memory or of the data stored in a Stata-format dataset.

For a compact listing of variable names, use describe, simple.

Quick start
Describe all variables in the dataset

describe

Describe all variables starting with code
describe code*

Describe properties of the dataset

describe, short

Describe without abbreviating variable names

describe, fullnames

Create a dataset containing variable descriptions

describe, replace

Describe contents of mydata.dta without opening the dataset
describe using mydata

Menu
Data > Describe data > Describe data in memory or in a file

183

describe — Describe data in memory or in a file 184

Syntax
Describe data in memory

describe [varlist] [, memory options]

Describe data in a file

describe [varlist] using filename [, file options]

memory options Description

simple display only variable names

short display only general information

fullnames do not abbreviate variable names

numbers display variable number along with name

replace make dataset, not written report, of description

clear for use with replace

varlist store r(varlist) and r(sortlist) in addition to usual stored results;
programmer’s option

varlist does not appear in the dialog box.

file options Description

short display only general information

simple display only variable names

varlist store r(varlist) and r(sortlist) in addition to usual stored results;
programmer’s option

varlist does not appear in the dialog box.

collect is allowed; see [U] 11.1.10 Prefix commands.

Options to describe data in memory
simple displays only the variable names in a compact format. simple may not be combined with other

options.

short suppresses the specific information for each variable. Only the general information (number of
observations, number of variables, and sort order) is displayed.

fullnames specifies that describe display the full names of the variables. The default is to present an
abbreviation when the variable name is longer than 15 characters. describe using always shows
the full names of the variables, so fullnames may not be specified with describe using.

numbers specifies that describe present the variable number with the variable name. If numbers is
specified, variable names are abbreviated when the name is longer than eight characters. The numbers
and fullnames options may not be specified together. numbersmay not be specified with describe
using.

describe — Describe data in memory or in a file 185

replace and clear are alternatives to the options above. describe usually produces a written report,
and the options above specify what the report is to contain. If you specify replace, however, no
report is produced; the data in memory are instead replaced with data containing the information that

the report would have presented. Each observation of the new data describes a variable in the original

data; see describe, replace below.

clearmay be specified only when replace is specified. clear specifies that the data in memory be
cleared and replaced with the description information, even if the original data have not been saved

to disk.

The following option is available with describe but is not shown in the dialog box:

varlist, an option for programmers, specifies that, in addition to the usual stored results, r(varlist)
and r(sortlist) be stored, too. r(varlist) will contain the names of the variables in the dataset.
r(sortlist) will contain the names of the variables by which the data are sorted.

Options to describe data in a file
short suppresses the specific information for each variable. Only the general information (number of

observations, number of variables, and sort order) is displayed.

simple displays only the variable names in a compact format. simple may not be combined with other
options.

The following option is available with describe but is not shown in the dialog box:

varlist, an option for programmers, specifies that, in addition to the usual stored results, r(varlist)
and r(sortlist) be stored, too. r(varlist) will contain the names of the variables in the dataset.
r(sortlist) will contain the names of the variables by which the data are sorted.

Because Stata/MP and Stata/SE can create truly large datasets, there might be too many variables in

a dataset for their names to be stored in r(varlist), given the current maximum length of macros,

as determined by set maxvar. Should that occur, describe using will issue the error message “too
many variables”, r(103).

Remarks and examples
Remarks are presented under the following headings:

describe
describe, replace

describe
If describe is typed with no operands, the contents of the dataset currently in memory are described.

The varlist in the describe using syntax differs from standard Stata varlists in two ways. First, you

cannot abbreviate variable names; that is, you have to type displacement rather than displ. However,
you can use the abbreviation character (~) to indicate abbreviations, for example, displ~. Second, you
may not refer to a range of variables; specifying price-trunk is considered an error.

describe — Describe data in memory or in a file 186

If you are using frames to work with multiple datasets in memory, you can use frames describe to
describe data from one or more frames. However, you might also want to create alias variables, which

is similar to copying variables across frames but is more memory efficient. When the dataset in memory

contains alias variables, describe tries to report the storage type of the linked variable. If an alias

variable’s linkage is broken, then describe will report unknown for the storage type. In either case,

the storage type text will be a clickable link that runs command fralias describe on the associated
variable. For examples of describe output and behavior with alias variables, see [D] fralias.

For alias variables in filename, describe using reports alias for the storage type.

Example 1
The basic description includes some general information on the number of variables and observations,

along with a description of every variable in the dataset:

. use https://www.stata-press.com/data/r19/states
(State data)
. describe, numbers
Contains data from https://www.stata-press.com/data/r19/states.dta
Observations: 50 State data

Variables: 5 3 Jan 2024 15:17
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

1. state str8 %9s
2. region int %8.0g reg Census Region
3. median~e float %9.0g Median Age
4. marria~e long %12.0g Marriages per 100,000
5. divorc~e long %12.0g Divorces per 100,000

Sorted by: region

In this example, the dataset in memory comes from the file states.dta and contains 50 observations on
5 variables. The dataset is labeled “State data” and was last modified on January 3, 2024, at 15:17 (3:17

p.m.). The “ dta has notes” message indicates that a note is attached to the dataset; see [U] 12.7 Notes

attached to data.

The first variable, state, is stored as a str8 and has a display format of %9s.

The next variable, region, is stored as an int and has a display format of %8.0g. This variable has
associated with it a value label called reg, and the variable is labeled Census Region.

The third variable, which is abbreviated median~e, is stored as a float, has a display format of

%9.0g, has no value label, and has a variable label of Median Age. The variables that are abbreviated
marria~e and divorc~e are both stored as longs and have display formats of %12.0g. These last two
variables are labeled Marriages per 100,000 and Divorces per 100,000, respectively.

The data are sorted by region.

Because we specified the numbers option, the variables are numbered; for example, region is vari-
able 2 in this dataset.

describe — Describe data in memory or in a file 187

Example 2
To view the full variable names, we could omit the numbers option and specify the fullnames option.

. describe, fullnames
Contains data from https://www.stata-press.com/data/r19/states.dta
Observations: 50 State data

Variables: 5 3 Jan 2024 15:17
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

state str8 %9s
region int %8.0g reg Census Region
median_age float %9.0g Median Age
marriage_rate long %12.0g Marriages per 100,000
divorce_rate long %12.0g Divorces per 100,000

Sorted by: region

Here we did not need to specify the fullnames option to see the unabbreviated variable names because
the longest variable name is 13 characters. Omitting the numbers option results in 15-character variable
names being displayed.

Technical note
The output from describe allows you to compute the size of the dataset. If you are curious, you can

compute it for this dataset as follows:

(8 + 2 + 4 + 4 + 4) × 50 = 1100

The numbers 8, 2, 4, 4, and 4 are the storage requirements for a str8, int, float, long, and long,
respectively; see [U] 12.2.2 Numeric storage types. Fifty is the number of observations in the dataset.

Example 3
If we specify the short option, only general information about the data is presented:

. describe, short
Contains data from https://www.stata-press.com/data/r19/states.dta
Observations: 50 State data

Variables: 5 3 Jan 2024 15:17
Sorted by: region

If we specify varlist, only the variables in that varlist are described.

describe — Describe data in memory or in a file 188

Example 4
Let’s change datasets. The describe varlist command is particularly useful when combined with the

‘*’ wildcard character. For instance, we can describe all the variables whose names start with pop by
typing describe pop*:

. use https://www.stata-press.com/data/r19/census
(1980 Census data by state)
. describe pop*
Variable Storage Display Value

name type format label Variable label

pop long %12.0gc Population
poplt5 long %12.0gc Pop, < 5 year
pop5_17 long %12.0gc Pop, 5 to 17 years
pop18p long %12.0gc Pop, 18 and older
pop65p long %12.0gc Pop, 65 and older
popurban long %12.0gc Urban population

We can describe the variables state, region, and pop18p by specifying them:

. describe state region pop18p
Variable Storage Display Value

name type format label Variable label

state str14 %-14s State
region int %-8.0g cenreg Census region
pop18p long %12.0gc Pop, 18 and older

Typing describe using filename describes the data stored in filename. If an extension is not speci-

fied, .dta is assumed.

Example 5
We can describe the contents of states.dta without disturbing the data that we currently have in

memory by typing

. describe using https://www.stata-press.com/data/r19/states
Contains data State data
Observations: 50 3 Jan 2024 15:17

Variables: 5

Variable Storage Display Value
name type format label Variable label

state str8 %9s
region int %8.0g reg Census Region
median_age float %9.0g Median Age
marriage_rate long %12.0g Marriages per 100,000
divorce_rate long %12.0g Divorces per 100,000

Sorted by: region

describe — Describe data in memory or in a file 189

describe, replace
describe with the replace option is rarely used, although you may sometimes find it convenient.

Think of describe, replace as separate from but related to describewithout the replace option.
Rather than producing a written report, describe, replace produces a new dataset that contains the

same information a written report would. For instance, try the following:

. sysuse auto, clear

. describe
(report appears; data in memory unchanged)

. list
(visual proof that data are unchanged)

. describe, replace
(no report appears, but the data in memory are changed!)

. list
(visual proof that data are changed)

describe, replace changes the original data in memory into a dataset containing an observation
for each variable in the original data. Each observation in the new data describes a variable in the original

data. The new variables are

1. position, a variable containing the numeric position of the original variable (1, 2, 3, . . .).

2. name, a variable containing the name of the original variable, such as ”make”, ”price”, ”mpg”,
. . . .

3. type, a variable containing the storage type of the original variable, such as ”str18”, ”int”,
”float”,

4. isnumeric, a variable equal to 1 if the original variable was numeric and equal to 0 if it was
string.

5. format, a variable containing the display format of the original variable, such as ”%-18s”,
”%8.0gc”,

6. vallab, a variable containing the name of the value label associated with the original variable,
if any.

7. varlab, a variable containing the variable label of the original variable, such as ”Make and
model”, ”Price”, ”Mileage (mpg)”,

In addition, the data contain the following characteristics:

dta[d filename], the name of the file containing the original data.

dta[d filedate], the date and time the file was written.

dta[d N], the number of observations in the original data.

dta[d sortedby], the variables on which the original data were sorted, if any.

describe — Describe data in memory or in a file 190

Stored results
describe stores the following in r():

Scalars

r(N) number of observations

r(k) number of variables

r(width) width of dataset

r(changed) flag indicating data have changed since last saved

Macros

r(datalabel) dataset label

r(varlist) variables in dataset (if varlist specified)
r(sortlist) variables by which data are sorted (if varlist specified)

describe, replace stores nothing in r().

References
Cox, N. J. 2015. Speaking Stata: A set of utilities for managing missing values. Stata Journal 15: 1174–1185.

Dietz, T., and L. Kalof. 2009. Introduction to Social Statistics: The Logic of Statistical Reasoning. Chichester, UK: Wiley.

Also see
[D] ds — Compactly list variables with specified properties

[D] varmanage — Manage variable labels, formats, and other properties

[D] cf — Compare two datasets

[D] codebook — Describe data contents

[D] compare — Compare two variables

[D] compress — Compress data in memory

[D] format — Set variables’ output format

[D] fralias —Alias variables from linked frames

[D] label — Manipulate labels

[D] lookfor — Search for string in variable names and labels

[D] notes — Place notes in data

[D] order — Reorder variables in dataset

[D] rename — Rename variable

[SVY] svydescribe — Describe survey data

[U] 6 Managing memory

https://www.stata-journal.com/article.html?article=dm0085
https://www.stata.com/bookstore/social-statistics-introduction/

destring — Convert string variables to numeric variables and vice versa

Description Quick start Menu
Syntax Options for destring Options for tostring
Remarks and examples Acknowledgment References
Also see

Description
destring converts variables in varlist from string to numeric. If varlist is not specified, destring

will attempt to convert all variables in the dataset from string to numeric. Characters listed in ignore()
are removed. Variables in varlist that are already numeric will not be changed. destring treats both
empty strings “ ” and “.” as indicating sysmiss (.) and interprets the strings “.a”, “.b”, . . . , “.z” as
the extended missing values .a, .b, . . . , .z; see [U] 12.2.1 Missing values. destring also ignores any
leading or trailing spaces so that, for example, “ ” is equivalent to “ ” and “ . ” is equivalent to “.”.

tostring converts variables in varlist from numeric to string. The most compact string format pos-

sible is used. Variables in varlist that are already string will not be converted.

Quick start
Convert strg1 from string to numeric, and place result in num1

destring strg1, generate(num1)

Same as above, but ignore the % character in strg1
destring strg1, generate(num1) ignore(%)

Same as above, but return . for observations with nonnumeric characters

destring strg1, generate(num1) force

Convert num2 from numeric to string, and place result in strg2
tostring num2, generate(strg2)

Same as above, but format with a leading zero and 3 digits after the decimal

tostring num2, generate(strg2) format(%09.3f)

Menu
destring
Data > Create or change data > Other variable-transformation commands > Convert variables from string to
numeric

tostring
Data > Create or change data > Other variable-transformation commands > Convert variables from numeric to
string

191

destring — Convert string variables to numeric variables and vice versa 192

Syntax
Convert string variables to numeric variables

destring [varlist], { generate(newvarlist) | replace } [destring options]

Convert numeric variables to string variables

tostring varlist , { generate(newvarlist) | replace } [tostring options]

destring options Description

∗ generate(newvarlist) generate newvar1, . . . , newvar𝑘 for each variable in varlist
∗ replace replace string variables in varlist with numeric variables

ignore(”chars” [, ignoreopts]) remove specified nonnumeric characters, as characters or as
bytes, and illegal Unicode characters

force convert nonnumeric strings to missing values

float generate numeric variables as type float
percent convert percent variables to fractional form

dpcomma convert variables with commas as decimals to period-decimal
format

∗ Either generate(newvarlist) or replace is required.

tostring options Description

∗ generate(newvarlist) generate newvar1, . . . , newvar𝑘 for each variable in varlist
∗ replace replace numeric variables in varlist with string variables

force force conversion ignoring information loss

format(format) convert using specified format

usedisplayformat convert using display format

∗ Either generate(newvarlist) or replace is required.

Options for destring
Either generate() or replace must be specified. With either option, if any string variable contains

nonnumeric characters not specified with ignore(), then no corresponding variable will be generated,
nor will that variable be replaced (unless force is specified).

generate(newvarlist) specifies that a new variable be created for each variable in varlist. newvarlist

must contain the same number of new variable names as there are variables in varlist. If varlist is

not specified, destring attempts to generate a numeric variable for each variable in the dataset;

newvarlist must then contain the same number of new variable names as there are variables in the

dataset. Any variable labels or characteristics will be copied to the new variables created.

replace specifies that the variables in varlist be converted to numeric variables. If varlist is not spec-

ified, destring attempts to convert all variables from string to numeric. Any variable labels or

characteristics will be retained.

destring — Convert string variables to numeric variables and vice versa 193

ignore(”chars” [, ignoreopts]) specifies nonnumeric characters be removed. ignoreopts may be

aschars, asbytes, or illegal. The default behavior is to remove characters as characters, which is
the same as specifying aschars. asbytes specifies removal of all bytes included in all characters in
the ignore string, regardless of whether these bytes form complete Unicode characters. illegal spec-
ifies removal of all illegal Unicode characters, which is useful for removing high-ASCII characters.

illegal may not be specified with asbytes. If any string variable still contains any nonnumeric or
illegal Unicode characters after the ignore string has been removed, no action will take place for that

variable unless force is also specified. Note that to Stata the comma is a nonnumeric character; see
also the dpcomma option below.

force specifies that any string values containing nonnumeric characters, in addition to any specified

with ignore(), be treated as indicating missing numeric values.

float specifies that any new numeric variables be created initially as type float. The default is type
double; see [D] Data types. destring attempts automatically to compress each new numeric vari-

able after creation.

percent removes any percent signs found in the values of a variable, and all values of that variable are
divided by 100 to convert the values to fractional form. percent by itself implies that the percent
sign, “ % ”, is an argument to ignore(), but the converse is not true.

dpcomma specifies that variables with commas as decimal values should be converted to have periods as
decimal values.

Options for tostring
Either generate() or replacemust be specified. If converting any numeric variable to string would

result in loss of information, no variable will be produced unless force is specified. For more details,
see force below.

generate(newvarlist) specifies that a new variable be created for each variable in varlist. newvarlist

must contain the same number of new variable names as there are variables in varlist. Any variable

labels or characteristics will be copied to the new variables created.

replace specifies that the variables in varlist be converted to string variables. Any variable labels or

characteristics will be retained.

force specifies that conversions be forced even if they entail loss of information. Loss of information
means one of two circumstances: 1) The result of real(strofreal(varname, ”format”)) is not

equal to varname; that is, the conversion is not reversible without loss of information; 2) replace
was specified, but a variable has associated value labels. In circumstance 1, it is usually best to

specify usedisplayformat or format(). In circumstance 2, value labels will be ignored in a forced
conversion. decode (see [D] encode) is the standard way to generate a string variable based on value
labels.

format(format) specifies that a numeric format be used as an argument to the strofreal() function,
which controls the conversion of the numeric variable to string. For example, a format of %7.2f spec-
ifies that numbers are to be rounded to two decimal places before conversion to string. See Remarks

and examples below and [FN] String functions and [D] format. format() cannot be specified with
usedisplayformat.

usedisplayformat specifies that the current display format be used for each variable. For example,
this option could be useful when using US Social Security numbers or daily or other dates with some

%d or %t format assigned. usedisplayformat cannot be specified with format().

destring — Convert string variables to numeric variables and vice versa 194

Remarks and examples
Remarks are presented under the following headings:

destring
tostring
Saved characteristics
Video example

destring

Example 1
We read in a dataset, but somehow all the variables were created as strings. The variables contain no

nonnumeric characters, and we want to convert them all from string to numeric data types.

. use https://www.stata-press.com/data/r19/destring1

. describe
Contains data from https://www.stata-press.com/data/r19/destring1.dta
Observations: 10

Variables: 5 3 Mar 2024 10:15

Variable Storage Display Value
name type format label Variable label

id str3 %9s
num str3 %9s
code str4 %9s
total str5 %9s
income str5 %9s

Sorted by:
. list

id num code total income

1. 111 243 1234 543 23423
2. 111 123 2345 67854 12654
3. 111 234 3456 345 43658
4. 222 345 4567 57 23546
5. 333 456 5678 23 21432

6. 333 567 6789 23465 12987
7. 333 678 7890 65 9823
8. 444 789 8976 23 32980
9. 444 901 7654 23 18565

10. 555 890 6543 423 19234

. destring, replace
id: all characters numeric; replaced as int
num: all characters numeric; replaced as int
code: all characters numeric; replaced as int
total: all characters numeric; replaced as long
income: all characters numeric; replaced as long

destring — Convert string variables to numeric variables and vice versa 195

. describe
Contains data from https://www.stata-press.com/data/r19/destring1.dta
Observations: 10

Variables: 5 3 Mar 2024 10:15

Variable Storage Display Value
name type format label Variable label

id int %10.0g
num int %10.0g
code int %10.0g
total long %10.0g
income long %10.0g

Sorted by:
Note: Dataset has changed since last saved.

. list

id num code total income

1. 111 243 1234 543 23423
2. 111 123 2345 67854 12654
3. 111 234 3456 345 43658
4. 222 345 4567 57 23546
5. 333 456 5678 23 21432

6. 333 567 6789 23465 12987
7. 333 678 7890 65 9823
8. 444 789 8976 23 32980
9. 444 901 7654 23 18565

10. 555 890 6543 423 19234

Example 2
Our dataset contains the variables date, price, and percent. These variables were accidentally read

into Stata as string variables because they contain spaces, dollar signs, commas, and percent signs. We

will leave the date variable as a string so that we can use the date() function to convert it to a numeric
date. For price and percent, we want to remove all of the nonnumeric characters and create new

variables containing numeric values. After removing the percent sign, we want to convert the percent
variable to decimal form.

destring — Convert string variables to numeric variables and vice versa 196

. use https://www.stata-press.com/data/r19/destring2, clear

. describe
Contains data from https://www.stata-press.com/data/r19/destring2.dta
Observations: 10

Variables: 3 3 Mar 2024 22:50

Variable Storage Display Value
name type format label Variable label

date str14 %10s
price str11 %11s
percent str3 %9s

Sorted by:
. list

date price percent

1. 1999 12 10 $2,343.68 34%
2. 2000 07 08 $7,233.44 86%
3. 1997 03 02 $12,442.89 12%
4. 1999 09 00 $233,325.31 6%
5. 1998 10 04 $1,549.23 76%

6. 2000 03 28 $23,517.03 35%
7. 2000 08 08 $2.43 69%
8. 1997 10 20 $9,382.47 32%
9. 1998 01 16 $289,209.32 45%

10. 1999 11 12 $8,282.49 1%

. destring price percent, generate(price2 percent2) ignore(”$,%”) percent
price: characters $, removed; price2 generated as double
percent: character % removed; percent2 generated as double
. describe
Contains data from https://www.stata-press.com/data/r19/destring2.dta
Observations: 10

Variables: 5 3 Mar 2024 22:50

Variable Storage Display Value
name type format label Variable label

date str14 %10s
price str11 %11s
price2 double %10.0g
percent str3 %9s
percent2 double %10.0g

Sorted by:
Note: Dataset has changed since last saved.

destring — Convert string variables to numeric variables and vice versa 197

. list

date price price2 percent percent2

1. 1999 12 10 $2,343.68 2343.68 34% .34
2. 2000 07 08 $7,233.44 7233.44 86% .86
3. 1997 03 02 $12,442.89 12442.89 12% .12
4. 1999 09 00 $233,325.31 233325.31 6% .06
5. 1998 10 04 $1,549.23 1549.23 76% .76

6. 2000 03 28 $23,517.03 23517.03 35% .35
7. 2000 08 08 $2.43 2.43 69% .69
8. 1997 10 20 $9,382.47 9382.47 32% .32
9. 1998 01 16 $289,209.32 289209.32 45% .45

10. 1999 11 12 $8,282.49 8282.49 1% .01

tostring
Conversion of numeric data to string equivalents can be problematic. Stata, like most software, holds

numeric data to finite precision and in binary form. See the discussion in [U] 13.12 Precision and

problems therein. If no format() is specified, tostring uses the format %12.0g. This format is, in
particular, sufficient to convert integers held as bytes, ints, or longs to string equivalent without loss of

precision.

However, users will often need to specify a format themselves, especially when the numeric data have

fractional parts and for some reason a conversion to string is required.

Example 3
Our dataset contains a string month variable and numeric year and day variables. We want to convert

the three variables to a %td date.

. use https://www.stata-press.com/data/r19/tostring, clear

. list

id month day year

1. 123456789 jan 10 2001
2. 123456710 mar 20 2001
3. 123456711 may 30 2001
4. 123456712 jun 9 2001
5. 123456713 oct 17 2001

6. 123456714 nov 15 2001
7. 123456715 dec 28 2001
8. 123456716 apr 29 2001
9. 123456717 mar 11 2001

10. 123456718 jul 3 2001

. tostring year day, replace
year was float now str4
day was float now str2
. generate date = month + ”/” + day + ”/” + year
. generate edate = date(date, ”MDY”)

destring — Convert string variables to numeric variables and vice versa 198

. format edate %td

. list

id month day year date edate

1. 123456789 jan 10 2001 jan/10/2001 10jan2001
2. 123456710 mar 20 2001 mar/20/2001 20mar2001
3. 123456711 may 30 2001 may/30/2001 30may2001
4. 123456712 jun 9 2001 jun/9/2001 09jun2001
5. 123456713 oct 17 2001 oct/17/2001 17oct2001

6. 123456714 nov 15 2001 nov/15/2001 15nov2001
7. 123456715 dec 28 2001 dec/28/2001 28dec2001
8. 123456716 apr 29 2001 apr/29/2001 29apr2001
9. 123456717 mar 11 2001 mar/11/2001 11mar2001

10. 123456718 jul 3 2001 jul/3/2001 03jul2001

Saved characteristics
Each time the destring or tostring commands are issued, an entry is made in the characteristics

list of each converted variable. You can type char list to view these characteristics.

After example 2, we could use char list to find out what characters were removed by the destring
command.

. char list
price2[destring]: Characters removed were: $,
price2[destring_cmd]: destring price percent, generate(price2 percent..
percent2[destring]: Character removed was: %
percent2[destring_cmd]: destring price percent, generate(price2 percent..

Video example
How to convert a string variable to a numeric variable

Acknowledgment
destring and tostringwere originally written by Nicholas J. Cox of the Department of Geography

at Durham University, UK, who is coeditor of the Stata Journal and author of Speaking Stata Graphics.

References
Cox, N. J. 1999a. dm45.1: Changing string variables to numeric: Update. Stata Technical Bulletin 49: 2. Reprinted in

Stata Technical Bulletin Reprints, vol. 9, p. 14. College Station, TX: Stata Press.

———. 1999b. dm45.2: Changing string variables to numeric: Correction. Stata Technical Bulletin 52: 2. Reprinted in

Stata Technical Bulletin Reprints, vol. 9, p. 14. College Station, TX: Stata Press.

———. 2011. Speaking Stata: MMXI and all that: Handling Roman numerals within Stata. Stata Journal 11: 126–142.

Cox, N. J., and W. W. Gould. 1997. dm45: Changing string variables to numeric. Stata Technical Bulletin 37: 4–6.

Reprinted in Stata Technical Bulletin Reprints, vol. 7, pp. 34–37. College Station, TX: Stata Press.

Cox, N. J., and C. B. Schechter. 2018. Speaking Stata: Seven steps for vexatious string variables. Stata Journal 18:

981–994.

https://www.youtube.com/watch?v=Js_i3wI2-jY
https://www.stata-journal.com/
https://www.stata-press.com/books/speaking-stata-graphics/
https://www.stata.com/products/stb/journals/stb49.pdf
https://www.stata.com/products/stb/journals/stb52.pdf
https://www.stata-journal.com/article.html?article=dm0054
https://www.stata.com/products/stb/journals/stb37.pdf
https://www.stata-journal.com/article.html?article=dm0098

destring — Convert string variables to numeric variables and vice versa 199

Cox, N. J., and J. B. Wernow. 2000a. dm80: Changing numeric variables to string. Stata Technical Bulletin 56: 8–12.

Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 24–28. College Station, TX: Stata Press.

———. 2000b. dm80.1: Update to changing numeric variables to string. Stata Technical Bulletin 57: 2. Reprinted in

Stata Technical Bulletin Reprints, vol. 10, pp. 28–29. College Station, TX: Stata Press.

Jeanty, P. W. 2013. Dealing with identifier variables in data management and analysis. Stata Journal 13: 699–718.

Also see
[D] egen — Extensions to generate

[D] encode — Encode string into numeric and vice versa

[D] generate — Create or change contents of variable

[D] split — Split string variables into parts

[FN] String functions

https://www.stata.com/products/stb/journals/stb56.pdf
https://www.stata.com/products/stb/journals/stb57.pdf
https://www.stata-journal.com/article.html?article=dm0071

dir — Display filenames

Description Quick start Syntax Option Remarks and examples
Also see

Description
dir and ls—they work the same way—list the names of files in the specified directory; the names

of the commands come from names popular on Unix and Windows computers.

Quick start
List the names of all files in the current directory using Stata for Windows

dir

Same as above, but for Mac or Unix

ls

List Stata datasets in the current directory using Stata for Windows

dir *.dta

Same as above, but for Mac or Unix

ls *.dta

List dataset name for all .dta files in the C:\ directory using Stata for Windows

dir C:*.dta

List dataset name for all .dta files in the home directory using Stata for Windows

dir ~*.dta

Same as above, but for Mac or Unix

ls ~/*.dta

Syntax
{dir | ls} [”][filespec][”] [, wide]

filespec is any valid Mac, Unix, or Windows file path or file specification (see [U] 11.6 Filenaming

conventions) and may include “*” to indicate any string of characters.

Note: Double quotes must be used to enclose filespec if the name contains spaces.

200

dir — Display filenames 201

Option
wide under Mac and Windows produces an effect similar to specifying /W with the DOS dir com-

mand—it compresses the resulting listing by placing more than one filename on a line. Under Unix,

it produces the same effect as typing ls -F -C. Without the wide option, ls is equivalent to typing
ls -F -l.

Remarks and examples
Mac and Unix: The only difference between the Stata and Unix ls commands is that piping through

the more(1) or pg(1) filter is unnecessary—Stata always pauses when the screen is full.

Windows: Other than minor differences in presentation format, there is only one difference between

the Stata and DOS dir commands: the DOS /P option is unnecessary, because Stata always pauses when
the screen is full.

Example 1
If you use Stata for Windows and wish to obtain a list of all your Stata-format data files, type

. dir *.dta
3.9k 7/07/15 13:51 auto.dta
0.6k 8/04/15 10:40 cancer.dta
3.5k 7/06/08 17:06 census.dta
3.4k 1/25/08 9:20 hsng.dta
0.3k 1/26/08 16:54 kva.dta
0.7k 4/27/11 11:39 sysage.dta
0.5k 5/09/07 2:56 systolic.dta
10.3k 7/13/08 8:37 Household Survey.dta

You could also include the wide option:

. dir *.dta, wide
3.9k auto.dta 0.6k cancer.dta 3.5k census.dta
3.4k hsng.dta 0.3k kva.dta 0.7k sysage.dta
0.5k systolic.dta 10.3k Household Survey.dta

Unix users will find it more natural to type

. ls *.dta
-rw-r----- 1 roger 2868 Mar 4 15:34 highway.dta
-rw-r----- 1 roger 941 Apr 5 09:43 hoyle.dta
-rw-r----- 1 roger 19312 May 14 10:36 p1.dta
-rw-r----- 1 roger 11838 Apr 11 13:26 p2.dta

but they could type dir if they preferred. Mac users may also type either command.

. dir *.dta
-rw-r----- 1 roger 2868 Mar 4 15:34 highway.dta
-rw-r----- 1 roger 941 Apr 5 09:43 hoyle.dta
-rw-r----- 1 roger 19312 May 14 10:36 p1.dta
-rw-r----- 1 roger 11838 Apr 11 13:26 p2.dta

dir — Display filenames 202

Technical note
There is a macro function named dir that allows you to obtain a list of files in a macro for later

processing. See Macro functions for filenames and file paths in [P] macro.

Also see
[D] cd — Change directory

[D] copy — Copy file from disk or URL

[D] erase — Erase a disk file

[D] mkdir — Create directory

[D] rmdir — Remove directory

[D] shell — Temporarily invoke operating system

[D] type — Display contents of a file

[U] 11.6 Filenaming conventions

drawnorm — Draw sample from multivariate normal distribution

Description Quick start Menu Syntax Options
Remarks and examples Methods and formulas References Also see

Description
drawnorm draws a sample from a multivariate normal distribution with desired means and covariance

matrix. The default is orthogonal data with mean 0 and variance 1. The covariance matrix may be

singular. The values generated are a function of the current random-number seed or the number specified

with set seed(); see [R] set seed.

Quick start
Generate independent variables x and y, where x has mean 2 and standard deviation 0.5 and y has mean

3 and standard deviation 1

drawnorm x y, means(2,3) sds(.5,1)

Same as above, but create dataset of 1,000 observations on x and y with means stored in vector m and
standard deviations stored in vector sd

drawnorm x y, means(m) sds(sd) n(1000)

Same as above, and set the seed for the random-number generator to reproduce results

drawnorm x y, means(m) sds(sd) n(1000) seed(81625)

Sample from bivariate standard normal distribution with covariance between x and y of 0.5 stored in

variance–covariance matrix C
matrix C = (1, .5 \ .5, 1)
drawnorm x y, cov(C)

Sample from a trivariate standard normal distribution with correlation between x and y of 0.4, x and z
of 0.3, and y and z of 0.6 stored in correlation matrix C

matrix C = (1, .4, .3 \ .4, 1, .6 \ .3, .6, 1)
drawnorm x y z, corr(C)

Same as above, but avoid typing full matrix by specifying correlations in vector v treated as a lower

triangular matrix

matrix v = (1, .4, 1, .3, .6, 1)
drawnorm x y z, corr(v) cstorage(lower)

Menu
Data > Create or change data > Other variable-creation commands > Draw sample from normal distribution

203

drawnorm — Draw sample from multivariate normal distribution 204

Syntax
drawnorm newvarlist [, options]

options Description

Main

clear replace the current dataset

double generate variable type as double; default is float
n(#) generate # observations; default is current number

sds(vector) standard deviations of generated variables

corr(matrix | vector) correlation matrix

cov(matrix | vector) covariance matrix

cstorage(full) store correlation/covariance structure as a symmetric 𝑘×𝑘 matrix
cstorage(lower) store correlation/covariance structure as a lower triangular matrix

cstorage(upper) store correlation/covariance structure as an upper triangular matrix

forcepsd force the covariance/correlation matrix to be positive semidefinite

means(vector) means of generated variables; default is means(0)

Options

seed(#) seed for random-number generator

Options

� � �
Main �

clear specifies that the dataset in memory be replaced, even though the current dataset has not been

saved on disk.

double specifies that the new variables be stored as Stata doubles, meaning 8-byte reals. If double is
not specified, variables are stored as floats, meaning 4-byte reals. See [D] Data types.

n(#) specifies the number of observations to be generated. The default is the current number of obser-
vations. If n(#) is not specified or is the same as the current number of observations, drawnorm adds
the new variables to the existing dataset; otherwise, drawnorm replaces the data in memory.

sds(vector) specifies the standard deviations of the generated variables. sds() may not be specified
with cov().

corr(matrix | vector) specifies the correlation matrix. If neither corr() nor cov() is specified, the

default is orthogonal data.

cov(matrix | vector) specifies the covariance matrix. If neither cov() nor corr() is specified, the de-
fault is orthogonal data.

cstorage(full | lower | upper) specifies the storage mode for the correlation or covariance structure
in corr() or cov(). The following storage modes are supported:

full specifies that the correlation or covariance structure is stored (recorded) as a symmetric 𝑘×𝑘
matrix.

drawnorm — Draw sample from multivariate normal distribution 205

lower specifies that the correlation or covariance structure is recorded as a lower triangular matrix.
With 𝑘 variables, the matrix should have 𝑘(𝑘 + 1)/2 elements in the following order:

C11 C21 C22 C31 C32 C33 . . . C𝑘1 C𝑘2 . . . C𝑘𝑘

upper specifies that the correlation or covariance structure is recorded as an upper triangular matrix.
With 𝑘 variables, the matrix should have 𝑘(𝑘 + 1)/2 elements in the following order:

C11 C12 C13 . . . C1𝑘 C22 C23 . . .C2𝑘 . . . C(𝑘−1𝑘−1) C(𝑘−1𝑘) C𝑘𝑘

Specifying cstorage(full) is optional if the matrix is square. cstorage(lower) or

cstorage(upper) is required for the vectorized storage methods. See Example 2: Storage modes
for correlation and covariance matrices.

forcepsdmodifies the matrix C to be positive semidefinite (psd), and so be a proper covariance matrix.

If C is not positive semidefinite, it will have negative eigenvalues. By setting negative eigenvalues

to 0 and reconstructing, we obtain the least-squares positive-semidefinite approximation to C. This

approximation is a singular covariance matrix.

means(vector) specifies the means of the generated variables. The default is means(0).

� � �
Options �

seed(#) specifies the initial value of the random-number seed used by the runiform() function. The
default is the current random-number seed. Specifying seed(#) is the same as typing set seed #

before issuing the drawnorm command.

Remarks and examples

Example 1
Suppose that we want to draw a sample of 1,000 observations from a normal distribution 𝑁(M,V),

whereM is the mean matrix and V is the covariance matrix:

. matrix M = 5, -6, 0.5

. matrix V = (9, 5, 2 \ 5 , 4 , 1 \ 2, 1, 1)

. matrix list M
M[1,3]

c1 c2 c3
r1 5 -6 .5
. matrix list V
symmetric V[3,3]

c1 c2 c3
r1 9
r2 5 4
r3 2 1 1
. drawnorm x y z, n(1000) cov(V) means(M)
(obs 1,000)

drawnorm — Draw sample from multivariate normal distribution 206

. summarize
Variable Obs Mean Std. dev. Min Max

x 1,000 5.0424 3.061953 -5.065592 15.96129
y 1,000 -5.914462 2.012488 -12.25234 .3326397
z 1,000 .5181909 1.017397 -2.59316 3.884182

. correlate, cov
(obs=1,000)

x y z

x 9.37556
y 5.14201 4.05011
z 2.17972 1.07222 1.0351

Technical note
The values generated by drawnorm are a function of the current random-number seed. To reproduce

the same dataset each time drawnorm is run with the same setup, specify the same seed number in the
seed() option.

Example 2: Storage modes for correlation and covariance matrices
The three storage modes for specifying the correlation or covariance matrix in corr2data and

drawnorm can be illustrated with a correlation structure, C, of 4 variables. In full storage mode, this
structure can be entered as a 4 × 4 Stata matrix:

. matrix C = (1.0000, 0.3232, 0.1112, 0.0066 \ ///
0.3232, 1.0000, 0.6608, -0.1572 \ ///
0.1112, 0.6608, 1.0000, -0.1480 \ ///
0.0066, -0.1572, -0.1480, 1.0000)

Elements within a row are separated by commas, and rows are separated by a backslash, \. We use

the input continuation operator /// for convenient multiline input; see [P] comments. In this storage

mode, we probably want to set the row and column names to the variable names:

. matrix rownames C = price trunk headroom rep78

. matrix colnames C = price trunk headroom rep78

This correlation structure can be entered more conveniently in one of the two vectorized storage

modes. In these modes, we enter the lower triangle or the upper triangle of C in rowwise order; these two
storage modes differ only in the order in which the 𝑘(𝑘 + 1)/2 matrix elements are recorded. The lower
storage mode for C comprises a vector with 4(4 + 1)/2 = 10 elements, that is, a 1 × 10 or 10 × 1 Stata

matrix, with one row or column,

. matrix C = (1.0000, ///
0.3232, 1.0000, ///
0.1112, 0.6608, 1.0000, ///
0.0066, -0.1572, -0.1480, 1.0000)

or more compactly as

. matrix C = (1, 0.3232, 1, 0.1112, 0.6608, 1, 0.0066, -0.1572, -0.1480, 1)

drawnorm — Draw sample from multivariate normal distribution 207

C may also be entered in upper storage mode as a vector with 4(4 + 1)/2 = 10 elements, that is, a

1 × 10 or 10 × 1 Stata matrix,

. matrix C = (1.0000, 0.3232, 0.1112, 0.0066, ///
1.0000, 0.6608, -0.1572, ///

1.0000, -0.1480, ///
1.0000)

or more compactly as

. matrix C = (1, 0.3232, 0.1112, 0.0066, 1, 0.6608, -0.1572, 1, -0.1480, 1)

Methods and formulas
Results are asymptotic. The more observations generated, the closer the correlation matrix of the

dataset is to the desired correlation structure.

Let V = A′A be the desired covariance matrix andM be the desired mean matrix. We first generate

X, such that X ∼ 𝑁(0, I). Let Y = A′X + M, then Y ∼ 𝑁(M,V).

References
Canette, I. 2013. Fitting ordered probit models with endogenous covariates with Stata’s gsem command. The Stata

Blog: Not Elsewhere Classified. https://blog.stata.com/2013/11/07/fitting-ordered-probit-models-with-endogenous-

covariates-with-statas-gsem-command/.

Chen, M. 2015. Generating nonnegatively correlated binary random variates. Stata Journal 15: 301–308.

Gould, W. W. 2012a. Using Stata’s random-number generators, part 2: Drawing without replacement. The Stata Blog:

Not Elsewhere Classified. https://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-

without-replacement/.

———. 2012b. Using Stata’s random-number generators, part 3: Drawing with replacement. The Stata Blog:

Not Elsewhere Classified. https://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawing-

with-replacement/.

Huber, C. 2014. How to simulate multilevel/longitudinal data. The Stata Blog: Not Elsewhere Classified. https://blog.

stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/.

Lee, S. 2015. Generating univariate and multivariate nonnormal data. Stata Journal 15: 95–109.

Lindsey, C. 2015a. Probit model with sample selection by mlexp. The Stata Blog: Not Elsewhere Classified. https:

//blog.stata.com/2015/10/22/probit-model-with-sample-selection-by-mlexp/.

———. 2015b. Using mlexp to estimate endogenous treatment effects in a probit model. The Stata Blog: Not

Elsewhere Classified. https://blog.stata.com/2015/11/05/using-mlexp-to-estimate-endogenous-treatment-effects-in-a-

probit-model/.

Also see
[D] corr2data — Create dataset with specified correlation structure

[R] set seed — Specify random-number seed and state

https://blog.stata.com/2013/11/07/fitting-ordered-probit-models-with-endogenous-covariates-with-statas-gsem-command/
https://blog.stata.com/2013/11/07/fitting-ordered-probit-models-with-endogenous-covariates-with-statas-gsem-command/
https://www.stata-journal.com/article.html?article=st0382
https://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-without-replacement/
https://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-without-replacement/
https://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawing-with-replacement/
https://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawing-with-replacement/
https://blog.stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/
https://blog.stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/
https://www.stata-journal.com/article.html?article=st0371
https://blog.stata.com/2015/10/22/probit-model-with-sample-selection-by-mlexp/
https://blog.stata.com/2015/10/22/probit-model-with-sample-selection-by-mlexp/
https://blog.stata.com/2015/11/05/using-mlexp-to-estimate-endogenous-treatment-effects-in-a-probit-model/
https://blog.stata.com/2015/11/05/using-mlexp-to-estimate-endogenous-treatment-effects-in-a-probit-model/

drop — Drop variables or observations

Description Quick start Menu Syntax
Remarks and examples Stored results Also see

Description
drop eliminates variables or observations from the data in memory.

keep works the same way as drop, except that you specify the variables or observations to be kept
rather than the variables or observations to be deleted.

Warning: drop and keep are not reversible. Once you have eliminated observations, you cannot read
them back in again. You would need to go back to the original dataset and read it in again. Instead of

applying drop or keep for a subset analysis, consider using if or in to select subsets temporarily. This
is usually the best strategy. Alternatively, applying preserve followed in due course by restore may
be a good approach. You can also use frame put to place a subset of variables or observations from the

current dataset into another frame; see [D] frame put.

Quick start
Remove v1, v2, and v3 from memory

drop v1 v2 v3

Remove all variables whose name begins with code from memory

drop code*

Remove observations where v1 is equal to 99
drop if v1==99

Also drop observations where v1 equals 88 or v2 is missing
drop if inlist(v1,88,99) | missing(v2)

Keep observations where v3 is not missing
keep if !missing(v3)

Keep the first observation from each cluster identified by cvar
by cvar: keep if _n==1

Menu
Drop or keep variables
Data > Variables Manager

Drop or keep observations
Data > Create or change data > Drop or keep observations

208

drop — Drop variables or observations 209

Syntax
Drop variables

drop varlist

Drop observations

drop if exp

Drop a range of observations

drop in range [if exp]

Keep variables

keep varlist

Keep observations that satisfy specified condition

keep if exp

Keep a range of observations

keep in range [if exp]

by and collect are allowedwith the second syntax of drop and the second syntax of keep; see [U] 11.1.10 Prefix commands.

Remarks and examples
You can clear the entire dataset by typing drop all without affecting value labels, macros, and

programs. (Also see [U] 12.6 Dataset, variable, and value labels, [U] 18.3 Macros, and [P] program.)

drop — Drop variables or observations 210

Example 1
We will systematically eliminate data until, at the end, no data are left in memory. We begin by

describing the data:

. use https://www.stata-press.com/data/r19/census11
(1980 Census data by state)
. describe
Contains data from https://www.stata-press.com/data/r19/census11.dta
Observations: 50 1980 Census data by state

Variables: 15 2 Dec 2024 14:31

Variable Storage Display Value
name type format label Variable label

state str13 %-13s State
state2 str2 %-2s Two-letter state abbreviation
region byte %-8.0g cenreg Census region
pop long %12.0gc Population
poplt5 long %12.0gc Pop, < 5 year
pop5_17 long %12.0gc Pop, 5 to 17 years
pop18p long %12.0gc Pop, 18 and older
pop65p long %12.0gc Pop, 65 and older
popurban long %12.0gc Urban population
medage float %9.2f Median age
death long %12.0gc Number of deaths
marriage long %12.0gc Number of marriages
divorce long %12.0gc Number of divorces
mrgrate float %9.0g Marriage rate
dvcrate float %9.0g Divorce rate

Sorted by: region

We can eliminate all the variables with names that begin with pop by typing drop pop*:

drop — Drop variables or observations 211

. drop pop*

. describe
Contains data from https://www.stata-press.com/data/r19/census11.dta
Observations: 50 1980 Census data by state

Variables: 9 2 Dec 2024 14:31

Variable Storage Display Value
name type format label Variable label

state str13 %-13s State
state2 str2 %-2s Two-letter state abbreviation
region byte %-8.0g cenreg Census region
medage float %9.2f Median age
death long %12.0gc Number of deaths
marriage long %12.0gc Number of marriages
divorce long %12.0gc Number of divorces
mrgrate float %9.0g Marriage rate
dvcrate float %9.0g Divorce rate

Sorted by: region
Note: Dataset has changed since last saved.

Let’s eliminate more variables and then eliminate observations:

. drop marriage divorce mrgrate dvcrate

. describe
Contains data from https://www.stata-press.com/data/r19/census11.dta
Observations: 50 1980 Census data by state

Variables: 5 2 Dec 2024 14:31

Variable Storage Display Value
name type format label Variable label

state str13 %-13s State
state2 str2 %-2s Two-letter state abbreviation
region byte %-8.0g cenreg Census region
medage float %9.2f Median age
death long %12.0gc Number of deaths

Sorted by: region
Note: Dataset has changed since last saved.

Next we will drop any observation for which medage is greater than 32.

. drop if medage > 32
(3 observations deleted)

Let’s drop the first observation in each region:

. by region: drop if _n==1
(4 observations deleted)

Now we drop all but the last observation in each region:

. by region: drop if _n!=_N
(39 observations deleted)

Let’s now drop the first 2 observations in our dataset:

. drop in 1/2
(2 observations deleted)

drop — Drop variables or observations 212

Finally, let’s get rid of everything:

. drop _all

. describe
Contains data
Observations: 0

Variables: 0
Sorted by:

Typing keep in 10/l is the same as typing drop in 1/9.

Typing keep if x==3 is the same as typing drop if x !=3.

keep is especially useful for keeping a few variables from a large dataset. Typing keep myvar1
myvar2 is the same as typing drop followed by all the variables in the dataset except myvar1 and myvar2.

Technical note
In addition to dropping variables and observations, drop all removes any business calendars; see

[D] Datetime business calendars.

Stored results
drop and keep store the following in r():

Scalars

r(N drop) number of observations dropped

r(k drop) number of variables dropped

Also see
[D] clear — Clear memory

[D] frame put — Copy selected variables or observations to a new frame

[D] varmanage — Manage variable labels, formats, and other properties

[U] 11 Language syntax

[U] 13 Functions and expressions

ds — Compactly list variables with specified properties

Description Quick start Menu Syntax Options
Remarks and examples Stored results Acknowledgments Also see

Description
ds lists variable names of the dataset currently in memory in a compact or detailed format, and lets

you specify subsets of variables to be listed, either by name or by properties (for example, the variables

are numeric). In addition, ds leaves behind in r(varlist) the names of variables selected so that you
can use them in a subsequent command.

ds, typed without arguments, lists all variable names of the dataset currently in memory in a compact
form.

Quick start
List variables in alphabetical order

ds, alpha

List all string variables

ds, has(type string)

List all numeric variables

ds, has(type numeric)

Same as above, but exclude date-formatted variables

ds, not(format %td* type string)

List all variables whose label includes the phrase “my text” regardless of case

ds, has(varlabel ”*my text*”) insensitive

Menu
Data > Describe data > Compactly list variable names

213

ds — Compactly list variables with specified properties 214

Syntax
Simple syntax

ds [, alpha]

Advanced syntax

ds [varlist] [, options]

options Description

Main

not list variables not specified in varlist

alpha list variables in alphabetical order

detail display additional details

varwidth(#) display width for variable names; default is varwidth(12)
skip(#) gap between variables; default is skip(2)

Advanced

has(spec) describe subset that matches spec

not(spec) describe subset that does not match spec

insensitive perform case-insensitive pattern matching

indent(#) indent output; seldom used

collect is allowed; see [U] 11.1.10 Prefix commands.

insensitive and indent(#) are not shown in the dialog box.

spec Description

type typelist specified types

format patternlist display format matching patternlist

varlabel [patternlist] variable label or variable label matching patternlist

char [patternlist] characteristic or characteristic matching patternlist

vallabel [patternlist] value label or value label matching patternlist

linkname namelist link name matching namelist

ds — Compactly list variables with specified properties 215

typelist used in has(type typelist) and not(type typelist) is a list of one or more types, each of which
may be alias, unknown, numeric, string, str#, strL, byte, int, long, float, or double or

may be a numlist such as 1/8 to mean “str1 str2 . . . str8”. Examples include

has(type alias) was created by fralias add; see [D] fralias
has(type unknown) is type alias, but the link is broken

has(type int) is of type int
has(type byte int long) is of integer type
not(type int) is not of type int
not(type byte int long) is not of the integer types
has(type numeric) is a numeric variable

not(type string) is not a string (str# or strL) variable (same as above)
has(type 1/40) is str1, str2, . . . , str40
has(type str#) is str1, str2, . . . , str2045 but not strL
has(type strL) is of type strL but not str#
has(type numeric 1/2) is numeric or str1 or str2

patternlist used in, for instance, has(format patternlist), is a list of one or more patterns. A pattern is

the expected text with the addition of the characters * and ?. * indicates 0 or more characters go here,
and ? indicates exactly 1 character goes here. Examples include

has(format *f) format is %#.#f
has(format %t*) has time or date format

has(format %-*s) is a left-justified string

has(varl *weight*) variable label includes word weight
has(varl *weight* *Weight*) variable label has weight or Weight

To match a phrase, enclose the phrase in quotes.

has(varl ”*some phrase*”) variable label has some phrase

If instead you used has(varl *some phrase*), then only variables having labels ending in some or

starting with phrase would be listed.

namelist used in, for instance, has(linkname namelist) is a list of one or more names. linkname refers
to the linkage variables used to create alias variables; see [D] fralias. Abbreviations in namelist are

not supported.

Options

� � �
Main �

not specifies that the variables in varlist not be listed. For instance, ds pop*, not specifies that all

variables not starting with the letters pop be listed. The default is to list all the variables in the dataset
or, if varlist is specified, the variables specified.

alpha specifies that the variables be listed in alphabetical order. If the variable contains Unicode char-
acters other than plain ASCII, the sort order is determined strictly by the underlying byte order. See

[U] 12.4.2.5 Sorting strings containing Unicode characters.

detail specifies that detailed output identical to that of describe be produced. If detail is specified,
varwidth(), skip(), and indent() are ignored.

ds — Compactly list variables with specified properties 216

varwidth(#) specifies the display width of the variable names; the default is varwidth(12).

skip(#) specifies the number of spaces between variable names, where all variable names are assumed
to be the length of the longest variable name; the default is skip(2).

� � �
Advanced �

has(spec) and not(spec) select from the dataset (or from varlist) the subset of variables that meet or

fail the specification spec. Selection may be made on the basis of storage type, variable label, value

label, display format, or characteristics. Only one not, has(), or not() option may be specified.

has(type string) selects all string variables. Typing ds, has(type string) would list all string
variables in the dataset, and typing ds pop*, has(type string)would list all string variables whose
names begin with the letters pop.

has(format patternlist) specifies variables whose format matches any of the patterns in patternlist.
has(format *f) would select all variables with formats ending in f, which presumably would be all
%#.#f, %0#.#f, and %-#.#f formats. has(format *f *fc) would select all variables with formats
ending in f or fc. not(format %t* %-t*) would select all variables except those with date or time-
series formats.

has(varlabel) selects variables with defined variable labels. has(varlabel *weight*) selects
variables with variable labels including theword “weight”. not(varlabel)would select all variables
with no variable labels.

has(char) selects all variables with defined characteristics. has(char problem) selects all vari-
ables with a characteristic named problem.

has(vallabel) selects variables with defined value labels. has(vallabel yesno) selects variables
whose value label is yesno. has(vallabel *no) selects variables whose value label ends in the

letters no.

has(linkname) selects variables to create alias variables; see [D] fralias.

The following options are available with ds but are not shown in the dialog box:

insensitive specifies that the matching of the pattern in has() and not() be case insensitive. Note
that the case insensitivity applies only to ASCII characters.

indent(#) specifies the amount the lines are indented.

Remarks and examples
If ds is typed without any operands, then a compact list of the variable names for the data currently

in memory is displayed.

Example 1
ds can be especially useful if you have a dataset with over 1,000 variables, but you may find it con-

venient even if you have considerably fewer variables.

ds — Compactly list variables with specified properties 217

. use https://www.stata-press.com/data/r19/educ3
(ccdb46, 52-54)
. ds
fips popcol medhhinc tlf emp clfbls z
crimes perhspls medfinc clf empmanuf clfuebls adjinc
pcrimes perclpls state clffem emptrade famnw perman
crimrate prcolhs division clfue empserv fam2w pertrade
pop25pls medage region empgovt osigind famwsamp perserv
pophspls perwhite dc empself osigindp pop18pls perother

Example 2
You might wonder why you would ever specify varlist with this command. Remember that varlist

understands the ‘*’ abbreviation character and the ‘-’ dash notation; see [U] 11.4 varname and varlists.

. ds p*
pcrimes pophspls perhspls prcolhs pop18pls pertrade perother
pop25pls popcol perclpls perwhite perman perserv
. ds popcol-clfue
popcol perclpls medage medhhinc state region tlf clffem
perhspls prcolhs perwhite medfinc division dc clf clfue

Example 3
Because the primary use of ds is to inspect the names of variables, it is sometimes useful to let ds

display the variable names in alphabetical order.

. ds, alpha
adjinc crimes empmanuf famwsamp osigindp perserv pophspls
clf crimrate empself fips pcrimes pertrade prcolhs
clfbls dc empserv medage perclpls perwhite region
clffem division emptrade medfinc perhspls pop18pls state
clfue emp fam2w medhhinc perman pop25pls tlf
clfuebls empgovt famnw osigind perother popcol z

Stored results
ds stores the following in r():

Macros

r(varlist) the varlist of found variables

Acknowledgments
ds was originally written by StataCorp. It was redesigned and rewritten by Nicholas J. Cox of the

Department of Geography at Durham University, UK, who is coeditor of the Stata Journal and author

of Speaking Stata Graphics. The purpose was to include the selection options not, has(), and not();
to produce better-formatted output; and to be faster. Cox thanks Richard Goldstein, William Gould,

Kenneth Higbee, Jay Kaufman, Jean Marie Linhart, and Fred Wolfe for their helpful suggestions on

previous versions.

https://www.stata-journal.com/
https://www.stata-press.com/books/speaking-stata-graphics/

ds — Compactly list variables with specified properties 218

Also see
[D] cf — Compare two datasets

[D] codebook — Describe data contents

[D] compare — Compare two variables

[D] compress — Compress data in memory

[D] describe — Describe data in memory or in a file

[D] format — Set variables’ output format

[D] fralias —Alias variables from linked frames

[D] label — Manipulate labels

[D] lookfor — Search for string in variable names and labels

[D] notes — Place notes in data

[D] order — Reorder variables in dataset

[D] rename — Rename variable

duplicates — Report, tag, or drop duplicate observations

Description Quick start Menu Syntax Options
Remarks and examples Stored results Acknowledgments References Also see

Description
duplicates reports, displays, lists, tags, or drops duplicate observations, depending on the subcom-

mand specified. Duplicates are observations with identical values either on all variables if no varlist is

specified or on a specified varlist.

duplicates report produces a table showing observations that occur as one or more copies and

indicating how many observations are “surplus” in the sense that they are the second (third, . . .) copy of

the first of each group of duplicates.

duplicates examples lists one example for each group of duplicated observations. Each example
represents the first occurrence of each group in the dataset.

duplicates list lists all duplicated observations.

duplicates tag generates a variable representing the number of duplicates for each observation.

This will be 0 for all unique observations.

duplicates drop drops all but the first occurrence of each group of duplicated observations. The
word drop may not be abbreviated.

Any observations that do not satisfy specified if and/or in conditions are ignored when you use

report, examples, list, or drop. The variable created by tag will have missing values for such

observations.

Quick start
Report the total number of observations and the number of duplicates

duplicates report

Same as above, but only check for duplicates jointly by v1, v2, and v3
duplicates report v1 v2 v3

Generate newv equal to the number of duplicate observations or 0 for unique observations
duplicates tag, generate(newv)

List all duplicate observations

duplicates list

Same as above, but determine duplicates by v1, v2, and v3 and separate list by values of v1
duplicates list v1 v2 v3, sepby(v1)

Drop duplicate observations

duplicates drop

Force dropping observations with duplicates for v1, v2, and v3 if observations are unique by other vari-
ables

duplicates drop v1 v2 v3, force

219

duplicates — Report, tag, or drop duplicate observations 220

Menu
duplicates report, duplicates examples, and duplicates list

Data > Data utilities > Report and list duplicated observations

duplicates tag
Data > Data utilities > Tag duplicated observations

duplicates drop
Data > Data utilities > Drop duplicated observations

Syntax
Report duplicates

duplicates report [varlist] [if] [in]

List one example for each group of duplicates

duplicates examples [varlist] [if] [in] [, options]

List all duplicates

duplicates list [varlist] [if] [in] [, options]

Tag duplicates

duplicates tag [varlist] [if] [in] , generate(newvar)

Drop duplicates

duplicates drop [if] [in]

duplicates drop varlist [if] [in] , force

duplicates — Report, tag, or drop duplicate observations 221

options Description

Main

compress compress width of columns in both table and display formats

nocompress use display format of each variable

fast synonym for nocompress; no delay in output of large datasets
abbreviate(#) abbreviate variable names to # characters; default is ab(8)
string(#) truncate string variables to # characters; default is string(10)

Options

table force table format

display force display format

header display variable header once; default is table mode

noheader suppress variable header

header(#) display variable header every # lines

clean force table format with no divider or separator lines

divider draw divider lines between columns

separator(#) draw a separator line every # lines; default is separator(5)
sepby(varlist) draw a separator line whenever varlist values change

nolabel display numeric codes rather than label values

Summary

mean[(varlist)] add line reporting the mean for each of the (specified) variables

sum[(varlist)] add line reporting the sum for each of the (specified) variables

N[(varlist)] add line reporting the number of nonmissing values for each of the
(specified) variables

labvar(varname) substitute Mean, Sum, or N for value of varname in last row of table

Advanced

constant[(varlist)] separate and list variables that are constant only once

notrim suppress string trimming

absolute display overall observation numbers when using by varlist:
nodotz display numerical values equal to .z as field of blanks
subvarname substitute characteristic for variable name in header

linesize(#) columns per line; default is linesize(79)

collect is allowed with all duplicates commands; see [U] 11.1.10 Prefix commands.

Options
Options are presented under the following headings:

Options for duplicates examples and duplicates list
Option for duplicates tag
Option for duplicates drop

Options for duplicates examples and duplicates list

� � �
Main �

compress, nocompress, fast, abbreviate(#), string(#); see [D] list.

duplicates — Report, tag, or drop duplicate observations 222

� � �
Options �

table, display, header, noheader, header(#), clean, divider, separator(#),
sepby(varlist), nolabel; see [D] list.

� � �
Summary �

mean[(varlist)], sum[(varlist)], N[(varlist)], labvar(varname); see [D] list.

� � �
Advanced �

constant[(varlist)], notrim, absolute, nodotz, subvarname, linesize(#); see [D] list.

Option for duplicates tag
generate(newvar) is required and specifies the name of a new variable that will tag duplicates.

Option for duplicates drop
force specifies that observations duplicated with respect to a named varlist be dropped. The force

option is required when such a varlist is given as a reminder that information may be lost by dropping

observations, given that those observations may differ on any variable not included in varlist.

Remarks and examples
Current data management and analysis may hinge on detecting (and sometimes dropping) duplicate

observations. In Stata terms, duplicates are observations with identical values, either on all variables if

no varlist is specified or on a specified varlist; that is, 2 or more observations that are identical on all

specified variables form a group of duplicates. When the specified variables are a set of explanatory

variables, such a group is often called a covariate pattern or a covariate class.

Linguistic purists will point out that duplicate observations are strictly only those that occur in pairs,

and they might prefer a more literal term, although the most obvious replacement, “replicates”, already

has another statistical meaning. However, the looser term appears in practice to be much more frequently

used for this purpose and to be as easy to understand.

Observations may occur as duplicates through some error; for example, the same observations might

have been entered more than once into your dataset. In contrast, some researchers deliberately enter a

dataset twice. Each entry is a check on the other, and all observations should occur as identical pairs,

assuming that one or more variables identify unique records. If there is just one copy, or more than two

copies, there has been an error in data entry.

Or duplicate observationsmay also arise simply because some observations just happen to be identical,

which is especially likely with categorical variables or large datasets. In this second situation, consider

whether contract, which automatically produces a count of each distinct set of observations, is more
appropriate for your problem. See [D] contract.

Observations unique on all variables in varlist occur as single copies. Thus there are no surplus ob-

servations in the sense that no observation may be dropped without losing information about the contents

of observations. (Information will inevitably be lost on the frequency of such observations. Again, if

recording frequency is important to you, contract is the better command to use.) Observations that are
duplicated twice or more occur as copies, and in each case, all but one copy may be considered surplus.

duplicates — Report, tag, or drop duplicate observations 223

This command helps you produce a dataset, usually smaller than the original, in which each observa-

tion is unique (literally, each occurs only once) and distinct (each differs from all the others). If you are

familiar with Unix systems, or with sets of Unix utilities ported to other platforms, you will know the

uniq command, which removes duplicate adjacent lines from a file, usually as part of a pipe.

Example 1
Suppose that we are given a dataset in which some observations are unique (no other observation is

identical on all variables) and other observations are duplicates (in each case, at least 1 other observation

exists that is identical). Imagine dropping all but 1 observation from each group of duplicates, that is,

dropping the surplus observations. Now all the observations are unique. This example helps clarify the

difference between 1) identifying unique observations before dropping surplus copies and 2) identifying

unique observations after dropping surplus copies (whether in truth or merely in imagination). codebook
(see [D] codebook) reports the number of unique values for each variable in this second sense.

Suppose that we have typed in a dataset for 200 individuals. However, a simple describe or count
shows that we have 202 observations in our dataset. We guess that we may have typed in 2 observations

twice. duplicates report gives a quick report of the occurrence of duplicates:

. use https://www.stata-press.com/data/r19/dupxmpl

. duplicates report
Duplicates in terms of all variables

Copies Observations Surplus

1 198 0
2 4 2

Our hypothesis is supported: 198 observations are unique (just 1 copy of each), whereas 4 occur

as duplicates (2 copies of each; in each case, 1 may be dubbed surplus). We now wish to see which

observations are duplicates, so the next step is to ask for a duplicates list.

. duplicates list
Duplicates in terms of all variables

Group Obs id x y

1 42 42 0 2
1 43 42 0 2
2 145 144 4 4
2 146 144 4 4

duplicates — Report, tag, or drop duplicate observations 224

The records for id 42 and id 144 were evidently entered twice. Satisfied, we now issue duplicates
drop.

. duplicates drop
Duplicates in terms of all variables
(2 observations deleted)

The report, list, and drop subcommands of duplicates are perhaps the most useful, especially
for a relatively small dataset. For a larger dataset with many duplicates, a full listing may be too long to

be manageable, especially as you see repetitions of the same data. duplicates examples gives you a
more compact listing in which each group of duplicates is represented by just 1 observation, the first to

occur.

A subcommand that is occasionally useful is duplicates tag, which generates a new variable con-

taining the number of duplicates for each observation. Thus unique observations are tagged with value

0, and all duplicate observations are tagged with values greater than 0. For checking double data entry,

in which you expect just one surplus copy for each individual record, you can generate a tag variable and

then look at observations with tag not equal to 1 because both unique observations and groups with two

or more surplus copies need inspection.

. duplicates tag, gen(tag)
Duplicates in terms of all variables

As of Stata 11, the browse subcommand is no longer available. To open duplicates in the Data

Browser, use the following commands:

. duplicates tag, generate(newvar)

. browse if newvar > 0

See [D] edit for details on the browse command.

Video example
How to identify and remove duplicate observations

Stored results
duplicates report, duplicates examples, duplicates list, duplicates tag, and

duplicates drop store the following in r():

Scalars

r(N) number of observations

duplicates report also stores the following in r():

Scalars

r(unique value) number of unique observations

duplicates drop also stores the following in r():

Scalars

r(N drop) number of observations dropped

https://www.youtube.com/watch?v=433GzdIwZN8

duplicates — Report, tag, or drop duplicate observations 225

Acknowledgments
duplicates was written by Nicholas J. Cox of the Department of Geography at Durham University,

UK, who is coeditor of the Stata Journal and author of Speaking Stata Graphics. He in turn thanks Thomas

Steichen (retired) of RJRT for ideas contributed to an earlier jointly written program (Steichen and Cox

1998).

References
Bjärkefur, K., L. Cardoso de Andrade, and B. Daniels. 2020. iefieldkit: Commands for primary data collection and

cleaning. Stata Journal 20: 892–915.

———. 2023. iefieldkit: Commands for primary data collection and cleaning (update). Stata Journal 23: 875–883.

Steichen, T. J., and N. J. Cox. 1998. dm53: Detection and deletion of duplicate observations. Stata Technical Bulletin 41:

2–4. Reprinted in Stata Technical Bulletin Reprints, vol. 7, pp. 52–55. College Station, TX: Stata Press.

Also see
[D] codebook — Describe data contents

[D] contract — Make dataset of frequencies and percentages

[D] edit — Browse or edit data with Data Editor

[D] isid — Check for unique identifiers

[D] list — List values of variables

https://www.stata-journal.com/
https://www.stata-press.com/books/speaking-stata-graphics/
https://doi.org/10.1177/1536867X20976321
https://doi.org/10.1177/1536867X20976321
https://doi.org/10.1177/1536867X231196496
https://www.stata.com/products/stb/journals/stb41.pdf

dyngen — Dynamically generate new values of variables

Description Menu Syntax Option Remarks and examples Also see

Description
dyngen replaces the value of variables when two or more variables depend on each other’s lagged

values. Use dyngen when the values for the whole set of variables must be computed for an observation
before moving to the next observation.

Menu
Data > Create or change data > Dynamically generate new values

Syntax
dyngen {

update varname1 = exp [if] [, missval(#)]

⋮

update varname𝑁 = exp [if] [, missval(#)]

} [if] [in]
varname𝑛, 𝑛 = 1, . . . , 𝑁, must already exist in the dataset and cannot be an alias variable; see [D] frunalias.

exp must be a valid expression and may include time-series operators; see [U] 11.4.4 Time-series varlists.

Option
missval(#) specifies the value to use in place of missing values when performing calculations. This

option is particularly useful when referring to lags that exist prior to the data.

Remarks and examples
Like replace, dyngen modifies the contents of existing variables. However, dyngen works obser-

vation by observation. If you are doing a computation only on a single variable that relies only on its own

lagged values or those of other variables, you do not need dyngen because generate and replacework
their way through the data sequentially. Use dyngen when you need to modify two or more variables at
the same time.

226

dyngen — Dynamically generate new values of variables 227

The examples in this entry use the following data:

. input time x1 x2
time x1 x2

1. 1 3 1
2. 2 4 4
3. 3 5 2
4. 4 5 1
5. 5 2 1
6. end

Example 1: Using dyngen
We want to update our values of x1 and x2 such that x1 depends on its current value and the previous

value of x2, and x2 depends on previous values of x1 and x2. We will be using these same values of x1
and x2 in subsequent examples, so we do not want to overwrite their values. We create a copy of each in

the variables d1 and d2, where the d prefix is used to remind us that these variables contain dynamically
updated values.

. generate d1=x1

. generate d2=x2

Because we are using previous values, we need to specify a value for dyngen to substitute in place of
missings; in this case, we use the means.

. summarize d1 d2
Variable Obs Mean Std. dev. Min Max

d1 5 3.8 1.30384 2 5
d2 5 1.8 1.30384 1 4

Within the dyngen command, we specify an update statement for d1 and d2. We also use observation

subscripts to indicate the previous values as needed; see [U] 13.7 Explicit subscripting. With time-series

data, we could also use time-series operators; see example 3 for an illustration.

. dyngen {

. update d1 = .4*d1 + .1*d2[_n-1], missval(3.8)

. update d2 = .2*d1[_n-1] + .3*d2[_n-1], missval(1.8)

. }

. list x1 x2 d*

x1 x2 d1 d2

1. 3 1 3.8 1.8
2. 4 4 1.78 1.3
3. 5 2 2.13 .746
4. 5 1 2.0746 .6498
5. 2 1 .86498 .60986

In observation 1, dyngen has substituted 3.8 for d1 and 1.8 for d2, values that would otherwise be
missing because there are no data preceding the first observation. In observation 2, the updated value of

d1 is 0.4 × 4 + 0.1 × 1.8 = 1.78 and that of d2 is 0.2 × 3.8 + 0.3 × 1.8 = 1.3, and so on.

dyngen — Dynamically generate new values of variables 228

Example 2: Distinction between dyngen and replace
We can compare the results from example 1 with those from replace to see how dyngen operates

differently.

As in example 1, we create two new variables, r1 and r2, that will hold values we update using

replace. There is no automatic way to handle missing values with replace, so we need to set the first
values to the means “by hand” to avoid missing values later. We then have a replace command for each
variable, restricted to observations 2 through 5.

. generate r1=x1

. generate r2=x2

. replace r1 = 3.8 in 1
(1 real change made)
. replace r2 = 1.8 in 1
(1 real change made)
. replace r1 = .4*r1 + .1*r2[_n-1] in 2/5
(4 real changes made)
. replace r2 = .2*r1[_n-1] + .3*r2[_n-1] in 2/5
(4 real changes made)

Now, we can compare the results side by side.

. list x* d* r*

x1 x2 d1 d2 r1 r2

1. 3 1 3.8 1.8 3.8 1.8
2. 4 4 1.78 1.3 1.78 1.3
3. 5 2 2.13 .746 2.4 .746
4. 5 1 2.0746 .6498 2.2 .7038
5. 2 1 .86498 .60986 .9 .65114

For the first two observations, the inputs are exactly the same, so there is no difference in the outcome.

We see differences starting in the third row.

At the time that replace is updating the value of r1 in observation 3, it is making the calculation

0.4 × 5 + 0.1 × 4 = 2.4

because the value of r2 is still 4, the original value of x2. Compare this with the results of dyngen,
which uses

0.4 × 5 + 0.1 × 1.3 = 2.13

That is, the key distinction is dyngen has fully updated observation 2 before moving on to observation 3.
replace will make a full pass through r1 before moving on to r2.

dyngen — Dynamically generate new values of variables 229

Example 3: Processing if conditions
Each update statement within the dyngen command can take an if condition. To illustrate, we

replace d1 and d2 with the original values of x1 and x2 and update them again, this time restricting the

updated observations to just those observations where time ≥ 3.

. replace d1=x1
(5 real changes made)
. replace d2=x2
(5 real changes made)

Here, we tsset the data and use the lag operator instead of subscripting observations, but that is not
required.

. tsset time
Time variable: time, 1 to 5

Delta: 1 unit
. dyngen {
. update d1 = .4*d1 + .1*L.d2 if time>=3
. update d2 = .2*L.d1 + .3*L.d2 if time>=3
. }
. list x* d*

x1 x2 d1 d2

1. 3 1 3 1
2. 4 4 4 4
3. 5 2 2.4 2
4. 5 1 2.2 1.08
5. 2 1 .908 .764

When the same if condition is specified on all update statements, the results are equivalent to specifying
one if condition on the entire dyngen block. We used the same if statement on both update statements
above, so typing the following produces the same results as the code above.

dyngen {
update d1 = .4*d1 + .1*L.d2
update d2 = .2*L.d1 + .3*L.d2

} if time>=3

You may also specify an in qualifier with the dyngen command. If you specify an if or in qualifier,
dyngen loops over the observations that meet the if condition or in range but will reference values

outside that range if needed.

Also see
[D] frunalias — Change storage type of alias variables

[D] generate — Create or change contents of variable

[U] 12 Data

[U] 13 Functions and expressions

edit — Browse or edit data with Data Editor

Description Quick start Menu Syntax
Option Remarks and examples Also see

Description
edit brings up a spreadsheet-style data editor for entering new data and editing existing data. edit

is a better alternative to input; see [D] input.

browse is similar to edit, except that modifications to the data by editing in the grid are not permitted.
browse is a convenient alternative to list; see [D] list.

See [GS] 6 Using the Data Editor (GSM, GSU, or GSW) for a tutorial discussion of the Data Editor.

This entry provides the technical details.

Quick start
Open dataset in the Data Editor for entering new data or editing existing data

edit

Same as above, but include only v1, v2, and v3
edit v1 v2 v3

Same as above, but only for observations where v3 is missing
edit v1 v2 v3 if v3 >= .

Open dataset in the Data Editor with no ability to edit data

browse

Same as above, but include only v1, v2, and v3 and suppress value labels
browse v1 v2 v3, nolabel

Menu
edit
Data > Data Editor > Data Editor (Edit)

browse
Data > Data Editor > Data Editor (Browse)

230

edit — Browse or edit data with Data Editor 231

Syntax
Edit using Data Editor

edit [varlist] [if] [in] [, nolabel]

Browse using Data Editor

browse [varlist] [if] [in] [, nolabel]

Option
nolabel causes the underlying numeric values, rather than the label values (equivalent strings), to be

displayed for variables with value labels; see [D] label.

Remarks and examples
Remarks are presented under the following headings:

Modes
The current observation and current variable
Assigning value labels to variables
Changing values of existing cells
Adding new variables
Adding new observations
Copying and pasting
Logging changes
Advice

Clicking on Stata’s Data Editor (Edit) button is equivalent to typing edit by itself. Clicking on

Stata’s Data Editor (Browse) button is equivalent to typing browse by itself.

edit, typed by itself, opens the Data Editor with all observations on all variables displayed. If you
specify varlist, only the specified variables are displayed in the Editor. If you specify one or both of in
range and if exp, only the observations specified are displayed.

Modes
We will refer to the Data Editor in the singular with edit and browse referring to two of its three

modes.

Full-edit mode. This is the Editor’s mode that you enter when you type edit or type edit followed by
a list of variables. All features of the Editor are turned on.

Filtered mode. This is the Editor’s mode that you enter when you use edit with or without a list of

variables but include in range, if exp, or both, or if you filter the data from within the Editor. A few

of the Editor’s features are turned off, most notably, the ability to sort data and the ability to paste data

into the Editor.

Browse mode. This is the Editor’s mode that you enter when you use browse or when you change the
Editor’s mode to Browse after you start the Editor. The ability to type in the Editor, thereby changing

data, is turned off, ensuring that the data cannot accidentally be changed. One feature that is left on

may surprise you: the ability to sort data. Sorting, in Stata’s mind, is not really a change to the dataset.

On the other hand, if you enter using browse and specify in range or if exp, sorting is not allowed.

You can think of this as restricted-browse mode.

edit — Browse or edit data with Data Editor 232

Actually, the Editor does not set its mode to filtered just because you specify an in range or if exp.

It sets its mode to filtered if you specify in or if and if this restriction is effective, that is, if the in
or if would actually cause some data to be omitted. For instance, typing edit if x>0 would result in
unrestricted full-edit mode if x were greater than zero for all observations.

The current observation and current variable
The Data Editor looks much like a spreadsheet, with rows and columns corresponding to observations

and variables, respectively. At all times, one of the cells is highlighted. This is called the current cell.

The observation (row) of the current cell is called the current observation. The variable (column) of the

current cell is called the current variable.

You change the current cell by clicking with the mouse on another cell or by using the arrow keys.

To help distinguish between the different types of variables in the Editor, string values are displayed

in red, value labels are displayed in blue, and all other values are displayed in black. You can change

the colors for strings and value labels by right-clicking on the Data Editor window and selecting Prefer-

ences....

Assigning value labels to variables
You can assign a value label to a nonstring variable by right-clicking any cell on the variable column,

choosing the Data > Value Labels menu, and selecting a value label from the Attach Value Label to

Variable ‘varname’ menu. You can define a value label by right-clicking on the Data Editor window

and selecting Data > Value Labels > Manage Value Labels.... You can also accomplish these tasks by

using the Properties pane; see [GS] 6 Using the Data Editor (GSM, GSU, or GSW) for details.

Changing values of existing cells
Make the cell youwish to change the current cell. Type the new value, and press Enter. When updating

string variables, do not type double quotes around the string. For variables that have a value label, you

can right-click on the cell to display a list of values for the value label. You can assign a new value to

the cell by selecting a value from the list.

Technical note
Stata experts will wonder about storage types. Say that variable mpg is stored as an int and you want

to change the fourth observation to contain 22.5. The Data Editor will change the storage type of the

variable. Similarly, if the variable is a str4 and you type alpha, it will be changed to str5.

The Editor will not, however, change numeric variable types to strings (unless the numeric variable

contains only missing values). This is intentional, as such a change could result in a loss of data and is

probably the result of a mistake.

Technical note
Stata can store long strings in the strL storage type. Although the strL type can hold very long

strings, these strings may only be edited if they are 2045 characters or less. Similarly, strLs that hold
binary data may not be edited. For more information on storage types, see [D] Data types.

edit — Browse or edit data with Data Editor 233

Adding new variables
Go to the first empty column, and begin entering your data. The first entry that you make will create

the variable and determine whether that variable is numeric or string. The variable will be given a name

like var1, but you can rename it by using the Properties pane.

Technical note
Stata experts: The storage type will be determined automatically. If you type a number, the created

variable will be numeric; if you type a string, it will be a string. Thus if you want a string variable, be sure

that your first entry cannot be interpreted as a number. Away to achieve this is to use surrounding quotes

so that ”123” will be taken as the string ”123”, not the number 123. If you want a numeric variable, do
not worry about whether it is byte, int, float, etc. If a byte will hold your first number but you need
a float to hold your second number, the Editor will recast the variable later.

Technical note
If you do not type in the first empty column but instead type in one to the right of it, the Editor will

create variables for all the intervening columns.

Adding new observations
Go to the first empty row, and begin entering your data. As soon as you add one cell below the last

row of the dataset, an observation will be created.

Technical note
If you do not enter data in the first empty row but, instead, enter data in a row below it, the Data Editor

will create observations for all the intervening rows.

Copying and pasting
You can copy and paste data between Stata’s Data Editor and other applications.

First, select the data you wish to copy. In Stata, click on a cell and drag the mouse across other cells

to select a range of cells. If you want to select an entire column, click once on the variable name at the

top of that column. If you want to select an entire row, click once on the observation number at the left

of that row. You can hold down the mouse button after clicking and drag to select multiple columns or

rows.

Once you have selected the data, copy the data to the Clipboard. In Stata, right-click on the selected

data, and select Copy.

You can copy data to the Clipboard from Stata with or without the variable names at the top of each

column by right-clicking on the Data Editor window, selecting Preferences..., and checking or uncheck-

ing Include variable names on copy to Clipboard.

edit — Browse or edit data with Data Editor 234

You can choose to copy either the value labels or the underlying numeric values associated with

the selected data by right-clicking on the Data Editor window, selecting Preferences..., and checking

or unchecking Copy value labels instead of numbers. For more information about value labels, see

[U] 12.6.3 Value labels and [D] label.

After you have copied data to the Clipboard from Stata’s Data Editor or another spreadsheet, you

can paste the data into Stata’s Data Editor. First, select the top-left cell of the area into which you wish

to paste the data by clicking on it once. Then right-click on the cell and select Paste. Stata will paste

the data from the Clipboard into the Editor, overwriting any data below and to the right of the cell you

selected as the top left of the paste area. If the Data Editor is in filtered mode or in browse mode, Paste

will be disabled, meaning that you cannot paste into the Data Editor. You can have more control over

how data are pasted by selecting Paste Special....

Technical note
If you attempt to paste one or more string values into numeric variables, the original numeric values

will be left unchanged for those cells. Stata will display a message box to let you know that this has

happened: “You attempted to paste one or more string values into numeric variables. The contents of

these cells, if any, are unchanged.”

If you see this message, you should look carefully at the data that you pasted into Stata’s Data Editor

to make sure that you pasted into the area that you intended. We recommend that you take a snapshot of

your data before pasting into Stata’s Data Editor so that you can restore the data from the snapshot if you

make a mistake. See [GS] 6 Using the Data Editor (GSM, GSU, or GSW) to read about snapshots.

Logging changes
When you use edit to enter new data or change existing data, you will find output in the Stata Results

window documenting the changes that you made. For example, a line of this output might be

. replace mpg = 22.5 in 5

The Editor submits a command to Stata for everything you do in it except pasting. If you are logging

your results, you will have a permanent record of what you did in the Editor.

Advice
• People who care about data integrity know that editors are dangerous—it is too easy to make changes

accidentally. Never use edit when you want to browse.

• Protect yourself when you edit existing data by limiting exposure. If you need to change mpg and

need to see model to know which value of mpg to change, do not click on the Data Editor button.
Instead, type edit model mpg. It is now impossible for you to change (damage) variables other than

model and mpg. Furthermore, if you know that you need to change mpg only if it is missing, you can
reduce your exposure even more by typing ‘edit model mpg if mpg>=.’.

• Stata’s Data Editor is safer than most because it logs changes to the Results window. Use this fea-

ture—look at the log afterward, and verify that the changes you made are the changes you wanted to

make.

edit — Browse or edit data with Data Editor 235

Also see
[D] import — Overview of importing data into Stata

[D] input — Enter data from keyboard

[D] list — List values of variables

[D] save — Save Stata dataset

[GSM] 6 Using the Data Editor

[GSW] 6 Using the Data Editor

[GSU] 6 Using the Data Editor

egen — Extensions to generate

Description Quick start Menu Syntax
Remarks and examples Acknowledgments References Also see

Description
egen creates a new variable of the optionally specified storage type equal to the given function based

on arguments of that function. The functions are specifically written for egen, as documented below or

as written by users.

Quick start
Generate newv1 for distinct groups of v1 and v2, and create and apply value label mylabel

egen newv1 = group(v1 v2), label(mylabel)

Generate newv2 equal to the minimum of v1, v2, and v3 for each observation
egen newv2 = rowmin(v1 v2 v3)

Generate newv3 equal to the overall sum of v1
egen newv3 = total(v1)

Same as above, but calculate total within each level of catvar
egen newv3 = total(v1), by(catvar)

Generate newv4 equal to the number of nonmissing numeric values across v1, v2, and v3 for each ob-
servation

egen newv4 = rownonmiss(v1 v2 v3)

Same as above, but allow string values

egen newv4 = rownonmiss(v1 v2 v3), strok

Generate newv5 as the concatenation of numeric v1 and string v4 separated by a space
egen newv5 = concat(v1 v4), punct(” ”)

Menu
Data > Create or change data > Create new variable (extended)

236

egen — Extensions to generate 237

Syntax
egen [type] newvar = fcn(arguments) [if] [in] [, options]

by is allowed with some of the egen functions, as noted below.

Depending on fcn, arguments refers to an expression, varlist, or numlist, and the options are also fcn

dependent. fcn and its dependencies are listed below.

anycount(varlist), values(integer numlist)
may not be combined with by. It returns the number of variables in varlist for which values are

equal to any integer value in a supplied numlist. Values for any observations excluded by either

if or in are set to 0 (not missing). Also see anyvalue(varname) and anymatch(varlist).

anymatch(varlist), values(integer numlist)
may not be combined with by. It is 1 if any variable in varlist is equal to any integer value in a

supplied numlist and 0 otherwise. Values for any observations excluded by either if or in are set
to 0 (not missing). Also see anyvalue(varname) and anycount(varlist).

anyvalue(varname) , values(integer numlist)
may not be combined with by. It takes the value of varname if varname is equal to any in-

teger value in a supplied numlist and is missing otherwise. Also see anymatch(varlist) and

anycount(varlist).

concat(varlist) [, format(% fmt) decode maxlength(#) punct(pchars)]
may not be combined with by. It concatenates varlist to produce a string variable. Values of string
variables are unchanged. Values of numeric variables are converted to string, as is, or are converted

using a numeric format under the format(%fmt) option or decoded under the decode option, in
which case maxlength()may also be used to control the maximum label length used. By default,

variables are added end to end: punct(pchars) may be used to specify punctuation, such as a

space, punct(” ”), or a comma, punct(,).

count(exp) (allows by varlist:)
creates a constant (within varlist) containing the number of nonmissing observations of exp. Also

see rownonmiss() and rowmiss().

cut(varname), { at(numlist) | group(#) } [icodes label]
may not be combined with by. Either at() or group() must be specified. When at() is speci-
fied, it creates a new categorical variable coded with the left-hand ends of the grouping intervals

specified in the at() option. When group() is specified, groups of roughly equal frequencies are
created.

at(numlist) with numlist in ascending order supplies the breaks for the groups. newvar is set

to missing for observations with varname less than the first number specified in at() and for

observations with varname greater than or equal to the last number specified in at().

group(#) specifies the number of equal-frequency grouping intervals when breaks are not speci-
fied. Specifying this option automatically invokes icodes.

icodes requests that the codes 0, 1, 2, etc., be used in place of the left-hand ends of the intervals.

label requests that the integer-coded values of the grouped variable be labeled with the left-hand
ends of the grouping intervals. Specifying this option automatically invokes icodes.

diff(varlist)
may not be combined with by. It creates an indicator variable equal to 1 if the variables in varlist
are not equal and 0 otherwise.

egen — Extensions to generate 238

ends(strvar) [, punct(pchars) trim [head | last | tail]]
may not be combined with by. It gives the first “word” or head (with the head option), the last
“word” (with the last option), or the remainder or tail (with the tail option) from string variable

strvar.

head, last, and tail are determined by the occurrence of pchars, which is by default one space
(“ ”).

The head is whatever precedes the first occurrence of pchars, or the whole of the string if it does not

occur. For example, the head of “frog toad” is “frog” and that of “frog” is “frog”. With punct(,),
the head of “frog,toad” is “frog”.

The last word is whatever follows the last occurrence of pchars or is the whole of the string if a

space does not occur. The last word of “frog toad newt” is “newt” and that of “frog” is “frog”.

With punct(,), the last word of “frog,toad” is “toad”.

The remainder or tail is whatever follows the first occurrence of pchars, which will be the empty

string ”” if pchars does not occur. The tail of “frog toad newt” is “toad newt” and that of “frog”
is ””. With punct(,), the tail of “frog,toad” is “toad”.

The trim option trims any leading or trailing spaces.

fill(numlist)
may not be combined with by. It creates a variable of ascending or descending numbers or complex
repeating patterns. numlist must contain at least two numbers and may be specified using standard

numlist notation; see [U] 11.1.8 numlist. if and in are not allowed with fill().

group(varlist) [, missing autotype label[(lblname[, replace truncate(#)])]]
may not be combined with by. It creates one variable taking on values 1, 2, . . . for the groups
formed by varlist. varlist may contain numeric variables, string variables, or a combination of the

two. The order of the groups is that of the sort order of varlist.

missing indicates that missing values in varlist (either . or ””) are to be treated like any other
value when assigning groups. By default, any observation with a missing value is assigned to the

group with newvar equal to missing (.).

autotype specifies that newvar be the smallest type possible to hold the integers generated. The
resulting type will be byte, int, long, or double.

label or label(lblname) creates a value label for newvar. The integers in newvar are la-

beled with the values of varlist or their value labels, if they exist. label(lblname) specifies

lblname as the name of the value label. If label alone is specified, the name of the value label
is newvar. label(..., replace) allows an existing value label to be redefined. label(...,
truncate(#)) truncates the values contributed to the label from each variable in varlist to the

length specified by the integer argument #.

iqr(exp)[, autotype] (allows by varlist:)
creates a constant (within varlist) containing the interquartile range of exp. autotype specifies
that newvar be the smallest type possible to hold the result. The resulting type will be byte, int,
long, or double. Also see pctile().

kurt(exp) (allows by varlist:)
returns the kurtosis (within varlist) of exp.

mad(exp) (allows by varlist:)
returns the median absolute deviation from the median (within varlist) of exp.

egen — Extensions to generate 239

max(exp) [, missing] (allows by varlist:)
creates a constant (within varlist) containing the maximum value of exp. missing indicates that
missing values be treated like other values.

mdev(exp) (allows by varlist:)
returns the mean absolute deviation from the mean (within varlist) of exp.

mean(exp) (allows by varlist:)
creates a constant (within varlist) containing the mean of exp.

median(exp)[, autotype] (allows by varlist:)
creates a constant (within varlist) containing the median of exp. autotype specifies that newvar
be the smallest type possible to hold the result. The resulting type will be byte, int, long, or
double. Also see pctile().

min(exp) [, missing] (allows by varlist:)
creates a constant (within varlist) containing the minimum value of exp. missing indicates that
missing values be treated like other values.

mode(varname) [, minmode maxmode nummode(integer) missing] (allows by varlist:)
produces the mode (within varlist) for varname, which may be numeric or string. The mode is

the value occurring most frequently. If two or more modes exist or if varname contains all miss-

ing values, the mode produced will be a missing value. To avoid this, the minmode, maxmode,
or nummode() option may be used to specify choices for selecting among the multiple modes.

minmode returns the lowest value, and maxmode returns the highest value. nummode(#) returns
the #th mode, counting from the lowest up. missing indicates that missing values be treated like
other values.

pc(exp) [, prop] (allows by varlist:)
returns exp (within varlist) scaled to be a percentage of the total, between 0 and 100. The prop
option returns exp scaled to be a proportion of the total, between 0 and 1.

pctile(exp)[, p(#) autotype] (allows by varlist:)
creates a constant (within varlist) containing the #th percentile of exp. If p(#) is not specified, 50
is assumed, meaning medians. autotype specifies that newvar be the smallest type possible to
hold the result. The resulting type will be byte, int, long, or double. Also see median().

rank(exp) [, field | track | unique] (allows by varlist:)
creates ranks (within varlist) of exp; by default, equal observations are assigned the average rank.

The field option calculates the field rank of exp: the highest value is ranked 1, and there is no
correction for ties. That is, the field rank is 1 + the number of values that are higher. The track
option calculates the track rank of exp: the lowest value is ranked 1, and there is no correction for

ties. That is, the track rank is 1+ the number of values that are lower. The unique option calculates
the unique rank of exp: values are ranked 1, . . . , #, and values and ties are broken arbitrarily. Two

values that are tied for second are ranked 2 and 3.

rowfirst(varlist)
may not be combined with by. It gives the first nonmissing value in varlist for each observation

(row). If all values in varlist are missing for an observation, newvar is set to missing for that

observation.

rowlast(varlist)
may not be combined with by. It gives the last nonmissing value in varlist for each observation

(row). If all values in varlist are missing for an observation, newvar is set to missing for that

observation.

egen — Extensions to generate 240

rowmax(varlist)
may not be combined with by. It gives the maximum value (ignoring missing values) in varlist

for each observation (row). If all values in varlist are missing for an observation, newvar is set to

missing for that observation.

rowmean(varlist)
may not be combined with by. It creates the (row) means of the variables in varlist, ignoring

missing values. For example, if three variables are specified and, in some observations, one of the

variables is missing, in those observations newvar will contain the mean of the two variables that

do exist. Other observations will contain the mean of all three variables. If all values in varlist are

missing for an observation, newvar is set to missing for that observation.

rowmedian(varlist)
may not be combined with by. It gives the (row) median of the variables in varlist, ignoring

missing values. If all values in varlist are missing for an observation, newvar is set to missing for

that observation. Also see rowpctile().

rowmin(varlist)
may not be combined with by. It gives the minimum value in varlist for each observation (row).

If all values in varlist are missing for an observation, newvar is set to missing for that observation.

rowmiss(varlist)
may not be combined with by. It gives the number of missing values in varlist for each observation
(row).

rownonmiss(varlist)[, strok]
may not be combined with by. It gives the number of nonmissing values in varlist for each obser-
vation (row).

String variables may not be specified unless the strok option is also specified. When strok is
specified, varlist may contain a mixture of string and numeric variables.

rowpctile(varlist) [, p(#)]
may not be combinedwith by. It gives the #th percentile of the variables in varlist, ignoringmissing
values. If p() is not specified, p(50) is assumed, meaning medians. If all values in varlist are

missing for an observation, newvar is set to missing for that observation. Also see rowmedian().

rowsd(varlist)
may not be combined with by. It creates the (row) standard deviations of the variables in varlist,
ignoring missing values. If all values in varlist are missing for an observation, newvar is set to

missing for that observation.

rowtotal(varlist) [, missing]
may not be combined with by. It creates the (row) sum of the variables in varlist, treating missing

values as 0. If missing is specified and all values in varlist are missing for an observation, newvar
is set to missing for that observation.

sd(exp) (allows by varlist:)
creates a constant (within varlist) containing the standard deviation of exp. Also see mean().

seq() [, from(#) to(#) block(#)] (allows by varlist:)
returns integer sequences. Values start from from() (default 1) and increase to to() (the default
is the maximum number of values) in blocks (default size 1). If to() is less than the maximum
number, sequences restart at from(). Numbering may also be separate within groups defined by
varlist or decreasing if to() is less than from(). Sequences depend on the sort order of observa-

egen — Extensions to generate 241

tions, following three rules: 1) observations excluded by if or in are not counted; 2) observations
are sorted by varlist, if specified; and 3) otherwise, the order is that when called. No arguments

are specified.

skew(exp) (allows by varlist:)
returns the skewness (within varlist) of exp.

std(exp) [, mean(#) sd(#)] (allows by varlist:)
creates the standardized values (within varlist) of exp. The options specify the desired mean and

standard deviation. The default is mean(0) and sd(1), producing a variable with mean 0 and
standard deviation 1 (within each group defined by varlist).

tag(varlist) [, missing]
may not be combined with by. It tags just one observation in each distinct group defined by varlist.
When all observations in a group have the same value for a summary variable calculated for the

group, it will be sufficient to use just one value for many purposes. The result will be 1 if the

observation is tagged and never missing, and 0 otherwise. Values for any observations excluded

by either if or in are set to 0 (not missing). Hence, if tag is the variable produced by egen tag
= tag(varlist), the idiom if tag is always safe. missing specifies that missing values of varlist
may be included.

total(exp) [, missing] (allows by varlist:)
creates a constant (within varlist) containing the sum of exp treating missing as 0. If missing is
specified and all values in exp are missing, newvar is set to missing. Also see mean().

Remarks and examples
Remarks are presented under the following headings:

Summary statistics
Missing values
Generating patterns
Marking differences among variables
Ranks
Standardized variables
Row functions
Categorical and integer variables
String variables

See Mitchell (2020) for numerous examples using egen.

Summary statistics
The functions count(), iqr(), kurt(), mad(), max(), mdev(), mean(), median(), min(),

mode(), pc(), pctile(), sd(), skew(), and total() create variables containing summary statistics.
These functions take a by ...: prefix and, if specified, calculate the summary statistics within each

by-group.

egen — Extensions to generate 242

Example 1: Without the by prefix
Without the by prefix, the result produced by these functions is a constant for every observation in

the data. For instance, we have data on cholesterol levels (chol) and wish to have a variable that, for
each patient, records the deviation from the average across all patients:

. use https://www.stata-press.com/data/r19/egenxmpl

. egen avg = mean(chol)

. generate deviation = chol - avg

Example 2: With the by prefix
These functions are most useful when the by prefix is specified. For instance, assume that our dataset

includes dcode, a hospital–patient diagnostic code, and los, the number of days that the patient remained
in the hospital. We wish to obtain the deviation in length of stay from the median for all patients having

the same diagnostic code:

. use https://www.stata-press.com/data/r19/egenxmpl2, clear

. by dcode, sort: egen medstay = median(los)

. generate deltalos = los - medstay

Example 3: sum() function and egen total()
Distinguish carefully between Stata’s sum() function and egen’s total() function. Stata’s sum()

function creates the running sum, whereas egen’s total() function creates a constant equal to the overall
sum, for example,

. clear

. set obs 5
Number of observations (_N) was 0, now 5.
. generate a = _n
. generate sum1 = sum(a)
. egen sum2 = total(a)
. list

a sum1 sum2

1. 1 1 15
2. 2 3 15
3. 3 6 15
4. 4 10 15
5. 5 15 15

Definitions of egen summary functions

The definitions and formulas used by egen summary functions are the same as those used by

summarize; see [R] summarize. For comparison with summarize, mean() and sd() correspond to the
mean and standard deviation. total() is the numerator of the mean, and count() is its denominator.

egen — Extensions to generate 243

min() and max() correspond to the minimum and maximum. median()—or, equally well, pctile()
with p(50)—is the median. pctile() with p(5) refers to the 5th percentile, and so on. iqr() is the
difference between the 75th and 25th percentiles.

The mode is the most common value of a dataset, whether it contains numeric or string variables.

It is perhaps most useful for categorical variables (whether defined by integers or strings) or for other

integer-valued values, but mode() can be applied to variables of any type. Nevertheless, the modes of
continuous (or nearly continuous) variables are perhaps better estimated either from inspection of a graph

of a frequency distribution or from the results of some density estimation (see [R] kdensity).

Missing values need special attention. egen newvar = mode(varname) calculates the mode of all

nonmissing observations, and the variable newvar containing the mode is filled in for all observations,

even those for which varname is missing (except for observations excluded using an if or in statement).
This allows use of mode() as a simple way to impute categorical variables.

Missing values are by default excluded from the determination of modes (whether missing is defined

by the period [.] or extended missing values [.a, .b, . . . , .z] for numeric variables or the empty string
[””] for string variables). However, missing may be the most common value in a variable, and you want
mode() to report this value as the mode. To include missing values as possible values for the mode, use
the missing option. See Missing values below for more on missing values.

mad() and mdev() produce alternative measures of spread. The median absolute deviation from the

median and even the mean deviation will both be more resistant than the standard deviation to heavy

tails or outliers, in particular from distributions with heavier tails than the normal or Gaussian. The first

measure was named the MAD by Andrews et al. (1972) but was already known to K. F. Gauss in 1816,

according to Hampel et al. (1986). For more historical and statistical details, see David (1998) and

Wilcox (2003, 72–73).

Missing values
Missing values in the argument to egen functions (typically, varname, an expression, or varlist) are

generally handled in one of three ways. Functions that calculate a single statistic for varname or an

expression (for example, mean() and total()) fill in the result for all observations, including those for
which varname or the expression is missing.

Functions that calculate results that potentially differ observation by observation (for example,

group() and rank()) generally generate missing values for the result for observations where varname
or the expression is missing.

Functions that take varlist (for example, rowmean()) generally generate a missing value for the result
only when every variable in varlist is missing for that observation.

egen — Extensions to generate 244

Example 4: How missing values are handled
Here’s an example of how mean() handles missing values.

. use https://www.stata-press.com/data/r19/egenxmpl1, clear

. egen y = mean(x)

. list x y

x y

1. 0 3
2. 5 3
3. 2 3
4. 5 3
5. 3 3

6. . 3
7. .a 3

The result y is filled in for all observations, including the 6th and 7th observations where x is missing.
If you do not want this behavior, you can explicitly exclude missing values using an if statement.

. egen z = mean(x) if !missing(x)
(2 missing values generated)
. list x z

x z

1. 0 3
2. 5 3
3. 2 3
4. 5 3
5. 3 3

6. . .
7. .a .

Other functions, such as group(), by default exclude missing values. If you want to treat missing
values just like other values and let them be part of the enumerated groups as well, use the missing
option.

. egen g1 = group(x)
(2 missing values generated)
. egen g2 = group(x), missing
. list x g1 g2

x g1 g2

1. 0 1 1
2. 5 4 4
3. 2 2 2
4. 5 4 4
5. 3 3 3

6. . . 5
7. .a . 6

egen — Extensions to generate 245

With the missing option, the missing values “.” and “.a” are placed in two distinct groups, the 5th and
6th groups, in the result g2.

Here’s an example of how rowmean() and rowtotal() handle missing values.

. egen m = rowmean(x1 x2 x3 x4)
(1 missing value generated)
. egen t1 = rowtotal(x1 x2 x3 x4)
. egen t2 = rowtotal(x1 x2 x3 x4), missing
(1 missing value generated)
. list x1 x2 x3 x4 m t1 t2

x1 x2 x3 x4 m t1 t2

1. 2 6 4 8 5 20 20
2. 9 . 0 3 4 12 12
3. . .a .b 2 2 2 2
4. . .a 3 6 4.5 9 9
5. 4 5 5 2 4 16 16

6. 7 8 4 5 6 24 24
7. .b .a . . . 0 .

rowmean() uses all the nonmissing values to calculate themean of a row, ignoring anymissing values.
In the first row, all four variables are nonmissing, so the result is the mean of these four values. In the

second row, three variables are nonmissing, and the result is the mean of these three values. In the third

row, only one variable is nonmissing, and the result is simply the mean of this one value, that is, the value

itself.

rowtotal() is similar to rowmean(), except that by default the total is 0 when all four variables are
missing. See the 7th observation in this example. The result t1 is 0 in this case. If you want rowtotal()
to behave like rowmean(), use the missing option. The result t2 is produced with this option, and you
can see it is missing for the 7th observation, just like the rowmean() result.

Several egen functions have a missing option. See Syntax for the description of what missing does
with each function that has this option—or better yet create a simple example, and run the function with

and without the missing option.

Generating patterns
To create a sequence of numbers, simply “show” the fill() function how the sequence should look.

It must be a linear progression to produce the expected results. Stata does not understand geometric

progressions. To produce repeating patterns, you present fill() with the pattern twice in the numlist.

Example 5: Sequences produced by fill()
Here are some examples of ascending and descending sequences produced by fill():

. clear

. set obs 12
Number of observations (_N) was 0, now 12.
. egen i = fill(1 2)
. egen w = fill(100 99)

egen — Extensions to generate 246

. egen x = fill(22 17)

. egen y = fill(1 1 2 2)

. egen z = fill(8 8 8 7 7 7)

. list, sep(4)

i w x y z

1. 1 100 22 1 8
2. 2 99 17 1 8
3. 3 98 12 2 8
4. 4 97 7 2 7

5. 5 96 2 3 7
6. 6 95 -3 3 7
7. 7 94 -8 4 6
8. 8 93 -13 4 6

9. 9 92 -18 5 6
10. 10 91 -23 5 5
11. 11 90 -28 6 5
12. 12 89 -33 6 5

Example 6: Patterns produced by fill()
Here are examples of patterns produced by fill():

. clear

. set obs 12
Number of observations (_N) was 0, now 12.
. egen a = fill(0 0 1 0 0 1)
. egen b = fill(1 3 8 1 3 8)
. egen c = fill(-3(3)6 -3(3)6)
. egen d = fill(10 20 to 50 10 20 to 50)
. list, sep(4)

a b c d

1. 0 1 -3 10
2. 0 3 0 20
3. 1 8 3 30
4. 0 1 6 40

5. 0 3 -3 50
6. 1 8 0 10
7. 0 1 3 20
8. 0 3 6 30

9. 1 8 -3 40
10. 0 1 0 50
11. 0 3 3 10
12. 1 8 6 20

egen — Extensions to generate 247

Example 7: seq()
seq() creates a new variable containing one or more sequences of integers. It is useful mainly for

quickly creating observation identifiers or automatically numbering levels of factors or categorical vari-

ables.

. clear

. set obs 12

In the simplest case,

. egen a = seq()

is just equivalent to the common idiom

. generate a = _n

a may also be obtained from

. range a 1 _N

(the actual value of N may also be used).

In more complicated cases, seq() with option calls is equivalent to calls to the versatile functions
int and mod.

. egen b = seq(), b(2)

produces integers in blocks of 2, whereas

. egen c = seq(), t(6)

restarts the sequence after 6 is reached.

. egen d = seq(), f(10) t(12)

shows that sequences may start with integers other than 1, and

. egen e = seq(), f(3) t(1)

shows that they may decrease.

The results of these commands are shown by

. list, sep(4)

a b c d e

1. 1 1 1 10 3
2. 2 1 2 11 2
3. 3 2 3 12 1
4. 4 2 4 10 3

5. 5 3 5 11 2
6. 6 3 6 12 1
7. 7 4 1 10 3
8. 8 4 2 11 2

9. 9 5 3 12 1
10. 10 5 4 10 3
11. 11 6 5 11 2
12. 12 6 6 12 1

egen — Extensions to generate 248

All of these sequences could have been generated in one line with generate and with the use of the
int and mod functions. The variables b through e are obtained with

. gen b = 1 + int((_n - 1)/2)

. gen c = 1 + mod(_n - 1, 6)

. gen d = 10 + mod(_n - 1, 3)

. gen e = 3 - mod(_n - 1, 3)

Nevertheless, seq()may save users from puzzling out such solutions or from typing in the needed values.

In general, the sequences produced depend on the sort order of observations, following three rules:

1. observations excluded by if or in are not counted;

2. observations are sorted by varlist, if specified; and

3. otherwise, the order is that specified when seq() is called.

The fill() and seq() functions are alternatives. In essence, fill() requires a minimal example
that indicates the kind of sequence required, whereas seq() requires that the rule be specified through
options. There are sequences that fill() can produce that seq() cannot, and vice versa. fill() cannot
be combined with if or in, in contrast to seq(), which can.

Marking differences among variables

Example 8: diff()
We have three measures of respondents’ income obtained from different sources. We wish to create

the variable differ equal to 1 for disagreements:
. use https://www.stata-press.com/data/r19/egenxmpl3, clear
. egen byte differ = diff(inc*)
. list if differ==1

inc1 inc2 inc3 id differ

10. 42,491 41,491 41,491 110 1
11. 26,075 25,075 25,075 111 1
12. 26,283 25,283 25,283 112 1
78. 41,780 41,780 41,880 178 1
100. 25,687 26,687 25,687 200 1

101. 25,359 26,359 25,359 201 1
102. 25,969 26,969 25,969 202 1
103. 25,339 26,339 25,339 203 1
104. 25,296 26,296 25,296 204 1
105. 41,800 41,000 41,000 205 1

134. 26,233 26,233 26,133 234 1

Rather than typing diff(inc*), we could have typed diff(inc1 inc2 inc3).

egen — Extensions to generate 249

Ranks

Example 9: rank()
Most applications of rank() will be to one variable, but the argument exp can be more general,

namely, an expression. In particular, rank(-varname) reverses ranks from those obtained by rank(var-
name).

The default ranking and those obtained by using one of the track, field, and unique options differ
principally in their treatment of ties. The default is to assign the same rank to tied values such that the

sum of the ranks is preserved. The track option assigns the same rank but resembles the convention in
track events; thus, if one person had the lowest time and three persons tied for second-lowest time, their

ranks would be 1, 2, 2, and 2, and the next person(s) would have rank 5. The field option acts similarly
except that the highest is assigned rank 1, as in field events in which the greatest distance or height wins.

The unique option breaks ties arbitrarily: its most obvious use is assigning ranks for a graph of ordered
values. See also group() for another kind of “ranking”.

. use https://www.stata-press.com/data/r19/auto, clear
(1978 automobile data)
. keep in 1/10
(64 observations deleted)
. egen rank = rank(mpg)
. egen rank_r = rank(-mpg)
. egen rank_f = rank(mpg), field
. egen rank_t = rank(mpg), track
. egen rank_u = rank(mpg), unique
. egen rank_ur = rank(-mpg), unique
. sort rank_u
. list mpg rank*

mpg rank rank_r rank_f rank_t rank_u rank_ur

1. 15 1 10 10 1 1 10
2. 16 2 9 9 2 2 9
3. 17 3 8 8 3 3 8
4. 18 4 7 7 4 4 7
5. 19 5 6 6 5 5 6

6. 20 6.5 4.5 4 6 6 5
7. 20 6.5 4.5 4 6 7 4
8. 22 8.5 2.5 2 8 8 3
9. 22 8.5 2.5 2 8 9 2

10. 26 10 1 1 10 10 1

egen — Extensions to generate 250

Standardized variables

Example 10: std()
We have a variable called age recording the median age in the 50 states. We wish to create the

standardized value of age and verify the calculation:

. use https://www.stata-press.com/data/r19/states1, clear
(State data)
. egen stdage = std(age)
. summarize age stdage

Variable Obs Mean Std. dev. Min Max

age 50 29.54 1.693445 24.2 34.7
stdage 50 6.41e-09 1 -3.153336 3.047044

. correlate age stdage
(obs=50)

age stdage

age 1.0000
stdage 1.0000 1.0000

summarize shows that the new variable has a mean of approximately zero; 10−9 is the precision of a

float and is close enough to zero for all practical purposes. If we wanted, we could have typed egen
double stdage = std(age), making stdage a double-precision variable, and the mean would have

been 10−16. In any case, summarize also shows that the standard deviation is 1. correlate shows that
the new variable and the original variable are perfectly correlated.

We may optionally specify the mean and standard deviation for the new variable. For instance,

. egen newage1 = std(age), sd(2)

. egen newage2 = std(age), mean(2) sd(4)

. egen newage3 = std(age), mean(2)

. summarize age newage1-newage3
Variable Obs Mean Std. dev. Min Max

age 50 29.54 1.693445 24.2 34.7
newage1 50 1.28e-08 2 -6.306671 6.094089
newage2 50 2 4 -10.61334 14.18818
newage3 50 2 1 -1.153336 5.047044

. correlate age newage1-newage3
(obs=50)

age newage1 newage2 newage3

age 1.0000
newage1 1.0000 1.0000
newage2 1.0000 1.0000 1.0000
newage3 1.0000 1.0000 1.0000 1.0000

egen — Extensions to generate 251

Row functions

Example 11: rowtotal()
generate’s sum() function creates the vertical, running sum of its argument, whereas egen’s

total() function creates a constant equal to the overall sum. egen’s rowtotal() function, however,
creates the horizontal sum of its arguments. They all treat missing as zero. However, if the missing
option is specified with total() or rowtotal(), then newvar will contain missing values if all values
of exp or varlist are missing.

. use https://www.stata-press.com/data/r19/egenxmpl4, clear

. egen hsum = rowtotal(a b c)

. generate vsum = sum(hsum)

. egen sum = total(hsum)

. list

a b c hsum vsum sum

1. . 2 3 5 5 63
2. 4 . 6 10 15 63
3. 7 8 . 15 30 63
4. 10 11 12 33 63 63

Example 12: rowmean(), rowmedian(), rowpctile(), rowsd(), and rownonmiss()
summarize displays the mean and standard deviation of a variable across observations; program writ-

ers can access the mean in r(mean) and the standard deviation in r(sd) (see [R] summarize). egen’s
rowmean() function creates the means of observations across variables. rowmedian() creates the medi-
ans of observations across variables. rowpctile() returns the #th percentile of the variables specified in
varlist. rowsd() creates the standard deviations of observations across variables. rownonmiss() creates
a count of the number of nonmissing observations, the denominator of the rowmean() calculation:

. use https://www.stata-press.com/data/r19/egenxmpl4, clear

. egen avg = rowmean(a b c)

. egen median = rowmedian(a b c)

. egen pct25 = rowpctile(a b c), p(25)

. egen std = rowsd(a b c)

. egen n = rownonmiss(a b c)

. list

a b c avg median pct25 std n

1. . 2 3 2.5 2.5 2 .7071068 2
2. 4 . 6 5 5 4 1.414214 2
3. 7 8 . 7.5 7.5 7 .7071068 2
4. 10 11 12 11 11 10 1 3

egen — Extensions to generate 252

Example 13: rowmiss()
rowmiss() returns 𝑘 − rownonmiss(), where 𝑘 is the number of variables specified. rowmiss()

can be especially useful for finding casewise-deleted observations caused by missing values.

. use https://www.stata-press.com/data/r19/auto3, clear
(1978 automobile data)
. correlate price weight mpg
(obs=70)

price weight mpg

price 1.0000
weight 0.5309 1.0000

mpg -0.4478 -0.7985 1.0000

. egen excluded = rowmiss(price weight mpg)

. list make price weight mpg if excluded~=0

make price weight mpg

5. Buick Electra . 4,080 15
12. Cad. Eldorado 14,500 3,900 .
40. Olds Starfire 4,195 . 24
51. Pont. Phoenix . 3,420 .

Example 14: rowmin(), rowmax(), rowfirst(), and rowlast()
rowmin(), rowmax(), rowfirst(), and rowlast() return the minimum, maximum, first, or last

nonmissing value, respectively, for the specified variables within an observation (row).

. use https://www.stata-press.com/data/r19/egenxmpl5, clear

. egen min = rowmin(x y z)
(1 missing value generated)
. egen max = rowmax(x y z)
(1 missing value generated)
. egen first = rowfirst(x y z)
(1 missing value generated)
. egen last = rowlast(x y z)
(1 missing value generated)
. list, sep(4)

x y z min max first last

1. -1 2 3 -1 3 -1 3
2. . -6 . -6 -6 -6 -6
3. 7 . -5 -5 7 7 -5
4.

5. 4 . . 4 4 4 4
6. . . 8 8 8 8 8
7. . 3 7 3 7 3 7
8. 5 -1 6 -1 6 5 6

egen — Extensions to generate 253

Categorical and integer variables

Example 15: anyvalue(), anymatch(), and anycount()
anyvalue(), anymatch(), and anycount() are for categorical or other variables taking integer val-

ues. If we define a subset of values specified by an integer numlist (see [U] 11.1.8 numlist), anyvalue()
extracts the subset, leaving every other value missing; anymatch() defines an indicator variable (1 if
in subset, 0 otherwise); and anycount() counts occurrences of the subset across a set of variables.

Therefore, with just one variable, anymatch(varname) and anycount(varname) are equivalent.

With the auto dataset, we can generate a variable containing the high values of rep78 and a variable
indicating whether rep78 has a high value:

. use https://www.stata-press.com/data/r19/auto, clear
(1978 automobile data)
. egen hirep = anyvalue(rep78), v(3/5)
(15 missing values generated)
. egen ishirep = anymatch(rep78), v(3/5)

Here it is easy to produce the same results with official Stata commands:

. generate hirep = rep78 if inlist(rep78,3,4,5)

. generate byte ishirep = inlist(rep78,3,4,5)

However, as the specification becomes more complicated or involves several variables, the egen func-
tions may be more convenient.

Example 16: group()
group() maps the distinct groups of a varlist to a categorical variable that takes on integer values

from 1 to the total number of groups. order of the groups is that of the sort order of varlist. The varlist

may be of numeric variables, string variables, or a mixture of the two. The resulting variable can be

useful for many purposes, including stepping through the distinct groups easily and systematically and

cleaning up an untidy ordering. Suppose that the actual (and arbitrary) codes present in the data are 1, 2,

4, and 7, but we desire equally spaced numbers, as when the codes will be values on one axis of a graph.

group() maps these to 1, 2, 3, and 4.

We have a variable agegrp that takes on the values 24, 40, 50, and 65, corresponding to age groups
18–24, 25–40, 41–50, and 51 and above. Perhaps we created this coding using the recode() function
(see [U] 13.3 Functions and [U] 26Working with categorical data and factor variables) from another

age-in-years variable:

. generate agegrp=recode(age,24,40,50,65)

We now want to change the codes to 1, 2, 3, and 4:

. egen agegrp2 = group(agegrp)

egen — Extensions to generate 254

Example 17: group() with missing values
We have two categorical variables, race and sex, which may be string or numeric. We want to use

ir (see [R] Epitab) to create a Mantel–Haenszel weighted estimate of the incidence rate. ir, however,
allows only one variable to be specified in its by() option. We type

. use https://www.stata-press.com/data/r19/egenxmpl6, clear

. egen racesex = group(race sex)
(2 missing values generated)
. ir deaths smokes pyears, by(racesex)
(output omitted)

The new numeric variable, racesex, will be missing wherever race or sex is missing (meaning . for

numeric variables and ”” for string variables), so missing values will be handled correctly. When we list

some of the data, we see

. list race sex racesex in 1/7, sep(0)

race sex racesex

1. White Female 1
2. White Male 2
3. Black Female 3
4. Black Male 4
5. Black Male 4
6. . Female .
7. Black . .

group() began by putting the data in the order of the grouping variables and then assigned the numeric
codes. Observations 6 and 7 were assigned to racesex = . because, in one case, race was not known,
and in the other, sex was not known. (These observations were not used by ir.)

If we wanted the unknown groups to be treated just as any other category, we could have typed

. egen rs2 = group(race sex), missing

. list race sex rs2 in 1/7, sep(0)

race sex rs2

1. White Female 1
2. White Male 2
3. Black Female 3
4. Black Male 4
5. Black Male 4
6. . Female 6
7. Black . 5

egen — Extensions to generate 255

The resulting variable from group() does not have value labels. Therefore, the values carry no

indication of meaning. Interpretation requires comparison with the original varlist. To get value labels,

we specify the option label.

. egen rs3 = group(race sex), missing label

. list race sex rs3 in 1/7, sep(0)

race sex rs3

1. White Female White Female
2. White Male White Male
3. Black Female Black Female
4. Black Male Black Male
5. Black Male Black Male
6. . Female . Female
7. Black . Black .

The numeric values of the generated variable rs3 are the same as rs2, but rs3 has a value label that
indicates the categories of race and sex that define the groups. The value label created by group()
uses the actual values of the categorical variables or their value labels, if they exist. In this case, the

categorical variables race and sex are numeric variables with value labels, so their value labels were
used to create the value label for rs3.

String variables
Concatenation of string variables is provided in Stata. In context, Stata understands the addition sym-

bol + as specifying concatenation or adding strings end to end. ”soft” + ”ware” produces ”software”,
and given string variables s1 and s2, s1 + s2 indicates their concatenation.

The complications that may arise in practice include wanting 1) to concatenate the string versions

of numeric variables and 2) to concatenate variables, together with some separator such as a space or a

comma. Given numeric variables n1 and n2,
. generate newstr = s1 + string(n1) + string(n2) + s2

shows how numeric values may be converted to their string equivalents before concatenation, and

. generate newstr = s1 + ” ” + s2 + ” ” + s3

shows how spaces may be added between variables. Stata will automatically assign the most appropriate

data type for the new string variables.

Example 18: concat()
concat() allows us to do everything in one line concisely.

. egen newstr = concat(s1 n1 n2 s2)

carries with it an implicit instruction to convert numeric values to their string equivalents, and the appro-

priate string data type is worked out within concat() by Stata’s automatic promotion. Moreover,

. egen newstr = concat(s1 s2 s3), p(” ”)

specifies that spaces be used as separators. (The default is to have no separation of concatenated strings.)

egen — Extensions to generate 256

As an example of punctuation other than a space, consider

. egen fullname = concat(surname forename), p(”, ”)

Noninteger numerical values can cause difficulties, but

. egen newstr = concat(n1 n2), format(%9.3f) p(” ”)

specifies the use of format %9.3f. This is equivalent to

. generate str1 newstr = ””

. replace newstr = string(n1,”%9.3f”) + ” ” + string(n2,”%9.3f”)

See [FN] String functions for more about string().

As a final flourish, the decode option instructs concat() to use value labels. With that option, the

maxlength() option may also be used. For more details about decode, see [D] encode. Unlike the
decode command, however, concat() uses string(varname), not ””, whenever values of varname
are not associated with value labels, and the format() option, whenever specified, applies to this use of
string().

Example 19: ends()
The ends(strvar) function is used for subdividing strings. The approach is to find specified separators

by using the strpos() string function and then to extract what is desired, which either precedes or

follows the separators, using the substr() string function.

By default, substrings are considered to be separated by individual spaces, so we will give definitions

in those terms and then generalize.

The head of the string is whatever precedes the first space or is the whole of the string if no space

occurs. This could also be called the first “word”. The tail of the string is whatever follows the first

space. This could be nothing or one or more words. The last word in the string is whatever follows the

last space or is the whole of the string if no space occurs.

To clarify, let’s look at some examples. The quotation marks here just mark the limits of each string

and are not part of the strings.

head tail last

”frog” ”frog” ”” ”frog”
”frog toad” ”frog” ”toad” ”toad”

”frog toad newt” ”frog” ”toad newt” ”newt”
”frog toad newt” ”frog” ” toad newt” ”newt”
”frog toad newt” ”frog” ”toad newt” ”newt”

The main subtlety is that these functions are literal, so the tail of ”frog toad newt”, in which two
spaces follow ”frog”, includes the second of those spaces, and is thus ” toad newt”. Therefore, you
may prefer to use the trim option to trim the result of any leading or trailing spaces, producing ”toad
newt” in this instance.

The punct(pchars) option may be used to specify separators other than spaces. The general defini-
tions of the head, tail, and last options are therefore interpreted in terms of whatever separator has
been specified; that is, they are relative to the first or last occurrence of the separator in the string value.

egen — Extensions to generate 257

Thus, with punct(,) and the string ”Darwin, Charles Robert”, the head is ”Darwin”, and the tail
and the last are both ” Charles Robert”. Note again the leading space in this example, which may be
trimmed with trim. The punctuation (here the comma, “,”) is discarded, just as it is with one space.

pchars, the argument of punct(), will usually, but not always, be one character. If two or more

characters are specified, these must occur together; for example, punct(:;) would mean that words are
separated by a colon followed by a semicolon (that is, :;). It is not implied, in particular, that the colon
and semicolon are alternatives. To do that, you would have to modify the programs presented here or

resort to first principles by using split; see [D] split.

With personal names, the head or last option might be applied to extract surnames if strings were
similar to ”Darwin, Charles Robert” or ”Charles Robert Darwin”, with the surname coming first or
last. What then happens with surnames like ”von Neumann” or ”de la Mare”? ”von Neumann, John”
is no problem, if the comma is specified as a separator, but the last option is not intelligent enough to
handle ”Walter de la Mare” properly.

Acknowledgments
The cut() function was written by David Clayton (retired) of the Cambridge Institute for Medical

Research and Michael Hills (1934–2021) of the London School of Hygiene and Tropical Medicine.

Many of the other egen functions were written by Nicholas J. Cox of the Department of Geography
at Durham University, UK, and coeditor of the Stata Journal and author of Speaking Stata Graphics.

References
Andrews, D. F., P. J. Bickel, F. R. Hampel, P. J. Huber,W. H. Rogers, and J.W. Tukey. 1972. Robust Estimates of Location:

Survey and Advances. Princeton, NJ: Princeton University Press.

Cappellari, L., and S. P. Jenkins. 2006. Calculation of multivariate normal probabilities by simulation, with applications

to maximum simulated likelihood estimation. Stata Journal 6: 156–189.

Cox, N. J. 2009. Speaking Stata: Rowwise. Stata Journal 9: 137–157.

———. 2014. Speaking Stata: Self and others. Stata Journal 14: 432–444.

———. 2020. Speaking Stata: More ways for rowwise. Stata Journal 20: 481–488.

———. 2021. Speaking Stata: Ordering or ranking groups of observations. Stata Journal 21: 818–837.

———. 2022. Speaking Stata: The largest five—a tale of tail values. Stata Journal 22: 446–459.

———. 2023. Speaking Stata: Replacing missing values: The easiest problems. Stata Journal 23: 884–896.

———. 2024. Stata tip 156: Concentration and diversity measures using egen. Stata Journal 24: 535–545.

Cox, N. J., and C. B. Schechter. 2018. Speaking Stata: Seven steps for vexatious string variables. Stata Journal 18:

981–994.

David, H. A. 1998. Early sample measures of variability. Statistical Science 13: 368–377. https://doi.org/10.1214/ss/

1028905831.

Gallup, J. L. 2019. Grade functions. Stata Journal 19: 459–476.

Hampel, F. R., E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel. 1986. Robust Statistics: The Approach Based on

Influence Functions. New York: Wiley. https://doi.org/10.1002/9781118186435.

Huber, C. 2014. How to simulate multilevel/longitudinal data. The Stata Blog: Not Elsewhere Classified. https://blog.

stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/.

Kohler, U., and J. Zeh. 2012. Apportionment methods. Stata Journal 12: 375–392.

Mitchell, M. N. 2020. Data Management Using Stata: A Practical Handbook. 2nd ed. College Station, TX: Stata Press.

https://www.stata-journal.com/
https://www.stata-press.com/books/speaking-stata-graphics/
https://www.stata-journal.com/article.html?article=st0101
https://www.stata-journal.com/article.html?article=st0101
https://www.stata-journal.com/article.html?article=pr0046
https://www.stata-journal.com/article.html?article=dm0075
https://doi.org/10.1177/1536867X20931007
https://doi.org/10.1177/1536867X211045582
https://doi.org/10.1177/1536867X221106436
https://doi.org/10.1177/1536867X231196519
https://doi.org/10.1177/1536867X241276115
https://www.stata-journal.com/article.html?article=dm0098
https://doi.org/10.1214/ss/1028905831
https://doi.org/10.1214/ss/1028905831
https://doi.org/10.1177/1536867X19854020
https://doi.org/10.1002/9781118186435
https://blog.stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/
https://blog.stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/
https://www.stata-journal.com/article.html?article=st0265
https://www.stata-press.com/books/data-management-using-stata/

egen — Extensions to generate 258

Pinzon, E. 2015. Fixed effects or random effects: The Mundlak approach. The Stata Blog: Not Elsewhere Classified.

https://blog.stata.com/2015/10/29/fixed-effects-or-random-effects-the-mundlak-approach/.

Rios-Avila, F. 2020. Recentered influence functions (RIFs) in Stata: RIF regression and RIF decomposition. Stata Journal

20: 51–94.

Salas Pauliac, C. H. 2013. group2: Generating the finest partition that is coarser than two given partitions. Stata Journal

13: 867–875.

Weiss, M. 2009. Stata tip 80: Constructing a group variable with specified group sizes. Stata Journal 9: 640–642.

Wilcox, R. R. 2003.Applying Contemporary Statistical Techniques. San Diego: Academic Press. https://doi.org/10.1016/

B978-0-12-751541-0.X5021-4.

Also see
[D] collapse — Make dataset of summary statistics

[D] generate — Create or change contents of variable

[U] 13.3 Functions

https://blog.stata.com/2015/10/29/fixed-effects-or-random-effects-the-mundlak-approach/
https://doi.org/10.1177/1536867X20909690
https://www.stata-journal.com/article.html?article=dm0073
https://www.stata-journal.com/article.html?article=st0181
https://doi.org/10.1016/B978-0-12-751541-0.X5021-4
https://doi.org/10.1016/B978-0-12-751541-0.X5021-4

encode — Encode string into numeric and vice versa

Description Quick start Menu Syntax
Options for encode Options for decode Remarks and examples References
Also see

Description
encode creates a new variable named newvar based on the string variable varname, creating, adding

to, or just using (as necessary) the value label newvar or, if specified, name. Do not use encode if

varname contains numbers that merely happen to be stored as strings; instead, use generate newvar

= real(varname) or destring; see [U] 24.2 Categorical string variables, [FN] String functions, and
[D] destring.

decode creates a new string variable named newvar based on the “encoded” numeric variable var-

name and its value label.

Quick start
Generate numeric newv1 from string v1, using the values of v1 to create a value label that is applied to

newv1
encode v1, generate(newv1)

Same as above, but name the value label mylabel1
encode v1, generate(newv1) label(mylabel1)

Same as above, but refuse to encode v1 if values exist in v1 that are not present in preexisting value label
mylabel1

encode v1, generate(newv1) label(mylabel1) noextend

Convert numeric v2 to string newv2 using the value label applied to v2 to generate values of newv2
decode v2, generate(newv2)

Menu
encode
Data > Create or change data > Other variable-transformation commands > Encode value labels from string
variable

decode
Data > Create or change data > Other variable-transformation commands > Decode strings from labeled numeric
variable

259

encode — Encode string into numeric and vice versa 260

Syntax
String variable to numeric variable

encode varname [if] [in] , generate(newvar) [label(name) noextend]

Numeric variable to string variable

decode varname [if] [in] , generate(newvar) [maxlength(#)]

Options for encode
generate(newvar) is required and specifies the name of the variable to be created.

label(name) specifies the name of the value label to be created or used and added to if the named value
label already exists. If label() is not specified, encode uses the same name for the label as it does
for the new variable.

noextend specifies that varname not be encoded if there are values contained in varname that are not

present in label(name). By default, any values not present in label(name) will be added to that
label.

Options for decode
generate(newvar) is required and specifies the name of the variable to be created.

maxlength(#) specifies how many bytes of the value label to retain; # must be between 1 and 32,000.

The default is maxlength(32000).

Remarks and examples
Remarks are presented under the following headings:

encode
decode
Video example

encode
encode is most useful in making string variables accessible to Stata’s statistical routines, most of

which can work only with numeric variables. encode is also useful in reducing the size of a dataset. If
you are not familiar with value labels, read [U] 12.6.3 Value labels.

The maximum number of associations within each value label is 65,536. Each association in a value

label maps a string of up to 32,000 bytes to a number. For plainASCII text, the number of bytes is equal to

the number of characters. If your string has other Unicode characters, the number of bytes is greater than

the number of characters. See [U] 12.4.2 Handling Unicode strings. If your variable contains string

values longer than 32,000 bytes, then only the first 32,000 bytes are retained and assigned as a value

label to a number.

encode — Encode string into numeric and vice versa 261

Example 1
We have a dataset on high blood pressure, and among the variables is sex, a string variable containing

either “male” or “female”. Wewish to run a regression of high blood pressure on race, sex, and age group.

We type regress hbp race sex age grp and get the message “no observations”.

. use https://www.stata-press.com/data/r19/hbp2

. regress hbp sex race age_grp
no observations
r(2000);

Stata’s statistical procedures cannot directly deal with string variables; as far as they are concerned,

all observations on sex are missing. encode provides the solution:

. encode sex, gen(gender)

. regress hbp gender race age_grp
Source SS df MS Number of obs = 1,121

F(3, 1117) = 15.15
Model 2.01013476 3 .67004492 Prob > F = 0.0000

Residual 49.3886164 1,117 .044215413 R-squared = 0.0391
Adj R-squared = 0.0365

Total 51.3987511 1,120 .045891742 Root MSE = .21027

hbp Coefficient Std. err. t P>|t| [95% conf. interval]

gender .0394747 .0130022 3.04 0.002 .0139633 .0649861
race -.0409453 .0113721 -3.60 0.000 -.0632584 -.0186322

age_grp .0241484 .00624 3.87 0.000 .0119049 .0363919
_cons -.016815 .0389167 -0.43 0.666 -.093173 .059543

encode looks at a string variable and makes an internal table of all the values it takes on, here “male”
and “female”. It then alphabetizes that list and assigns numeric codes to each entry. Thus 1 becomes

“female” and 2 becomes “male”. It creates a new int variable (gender) and substitutes a 1 where sex
is “female”, a 2 where sex is “male”, and a missing (.) where sex is null (””). It creates a value label
(also named gender) that records the mapping 1 ↔ female and 2 ↔ male. Finally, encode labels the
values of the new variable with the value label.

Example 2
It is difficult to distinguish the result of encode from the original string variable. For instance, in our

last two examples, we typed encode sex, gen(gender). Let’s compare the two variables:

. list sex gender in 1/4

sex gender

1. female female
2. .
3. male male
4. male male

They look almost identical, although you should notice the missing value for gender in the second ob-

servation.

encode — Encode string into numeric and vice versa 262

The difference does show, however, if we tell list to ignore the value labels and show how the data

really appear:

. list sex gender in 1/4, nolabel

sex gender

1. female 1
2. .
3. male 2
4. male 2

We could also ask to see the underlying value label:

. label list gender
gender:

1 female
2 male

gender really is a numeric variable, but because all Stata commands understand value labels, the variable
displays as “male” and “female”, just as the underlying string variable sex would.

Example 3
Wecan drastically reduce the size of our dataset by encoding strings and then discarding the underlying

string variable. We have a string variable, sex, that records each person’s sex as “male” and “female”.
Because female has six characters, the variable is stored as a str6.

We can encode the sex variable and use compress to store the variable as a byte, which takes only
1 byte. Because our dataset contains 1,130 people, the string variable takes 6,780 bytes, but the encoded

variable will take only 1,130 bytes.

. use https://www.stata-press.com/data/r19/hbp2, clear

. describe
Contains data from https://www.stata-press.com/data/r19/hbp2.dta
Observations: 1,130

Variables: 7 3 Mar 2024 06:47

Variable Storage Display Value
name type format label Variable label

id str10 %10s Record identification number
city byte %8.0g City
year int %8.0g Year
age_grp byte %8.0g agefmt Age group
race byte %8.0g racefmt Race
hbp byte %8.0g yn High blood pressure
sex str6 %9s Sex

Sorted by:
. encode sex, generate(gender)

encode — Encode string into numeric and vice versa 263

. list sex gender in 1/5

sex gender

1. female female
2. .
3. male male
4. male male
5. female female

. drop sex

. rename gender sex

. compress
variable sex was long now byte
(3,390 bytes saved)

. describe
Contains data from https://www.stata-press.com/data/r19/hbp2.dta
Observations: 1,130

Variables: 7 3 Mar 2024 06:47

Variable Storage Display Value
name type format label Variable label

id str10 %10s Record identification number
city byte %8.0g City
year int %8.0g Year
age_grp byte %8.0g agefmt Age group
race byte %8.0g racefmt Race
hbp byte %8.0g yn High blood pressure
sex byte %8.0g gender Sex

Sorted by:
Note: Dataset has changed since last saved.

The size of our dataset has fallen from 24,860 bytes to 19,210 bytes.

Technical note
In the examples above, the value label did not exist before encode created it, because that is not

required. If the value label does exist, encode uses your encoding as far as it can and adds newmappings

for anything not found in your value label. For instance, if you wanted “female” to be encoded as 0
rather than 1 (possibly for use in linear regression), you could type

. label define gender 0 ”female”

. encode sex, gen(gender)

You can also specify the name of the value label. If you do not, the value label is assumed to have the

same name as the newly created variable. For instance,

. label define sexlbl 0 ”female”

. encode sex, gen(gender) label(sexlbl)

encode — Encode string into numeric and vice versa 264

decode
decode is used to convert numeric variables with associated value labels into true string variables.

Example 4
We have a numeric variable named female that records the values 0 and 1. female is associated with

a value label named sexlbl that says that 0 means male and 1 means female:
. use https://www.stata-press.com/data/r19/hbp3, clear
. describe female
Variable Storage Display Value

name type format label Variable label

female byte %8.0g sexlbl Female
. label list sexlbl
sexlbl:

0 Male
1 Female

We see that female is stored as a byte. It is a numeric variable. Nevertheless, it has an associated value
label describing what the numeric codes mean, so if we tabulate the variable, for instance, it appears
to contain the strings “male” and “female”:

. tabulate female
Female Freq. Percent Cum.

Male 695 61.61 61.61
Female 433 38.39 100.00

Total 1,128 100.00

We can create a real string variable from this numerically encoded variable by using decode:

. decode female, gen(sex)

. describe sex
Variable Storage Display Value

name type format label Variable label

sex str6 %9s Female

We have a new variable called sex. It is a string, and Stata automatically created the shortest possible
string. The word “female” has six characters, so our new variable is a str6. female and sex appear
indistinguishable:

. list female sex in 1/4

female sex

1. Female Female
2. .
3. Male Male
4. Male Male

encode — Encode string into numeric and vice versa 265

But when we add nolabel, the difference is apparent:

. list female sex in 1/4, nolabel

female sex

1. 1 Female
2. .
3. 0 Male
4. 0 Male

Example 5
decode is most useful in instances when we wish to match-merge two datasets on a variable that has

been encoded inconsistently.

For instance, we have two datasets on individual states in which one of the variables (state) takes on
values such as “CA” and “NY”. The state variable was originally a string, but along the way the variable

was encoded into an integer with a corresponding value label in one or both datasets.

We wish to merge these two datasets, but either 1) one of the datasets has a string variable for state

and the other an encoded variable or 2) although both are numeric, we are not certain that the codings

are consistent. Perhaps “CA” has been coded 5 in one dataset and 6 in another.

Because decode will take an encoded variable and turn it back into a string, decode provides the

solution:
use first (load the first dataset)
decode state, gen(st) (make a string state variable)
drop state (discard the encoded variable)
sort st (sort on string)
save first, replace (save the dataset)
use second (load the second dataset)
decode state, gen(st) (make a string variable)
drop state (discard the encoded variable)
sort st (sort on string)
merge 1:1 st using first (merge the data)

Video example
How to convert categorical string variables to labeled numeric variables

References
Cox, N. J., and C. B. Schechter. 2018. Speaking Stata: Seven steps for vexatious string variables. Stata Journal 18:

981–994.

Schechter, C. B. 2011. Stata tip 99: Taking extra care with encode. Stata Journal 11: 321–322.

https://www.youtube.com/watch?v=ZRWHjdIZyxo
https://www.stata-journal.com/article.html?article=dm0098
https://www.stata-journal.com/article.html?article=dm0057

encode — Encode string into numeric and vice versa 266

Also see
[D] compress — Compress data in memory

[D] destring — Convert string variables to numeric variables and vice versa

[D] generate — Create or change contents of variable

[U] 12.6.3 Value labels

[U] 24.2 Categorical string variables

erase — Erase a disk file

Description Quick start Syntax Remarks and examples Also see

Description
The erase command erases files stored on disk. rm is a synonym for erase for the convenience of

Mac and Unix users.

Stata forMac users: erase is permanent; the file is notmoved to theTrash but is immediately removed
from the disk.

Stata for Windows users: erase is permanent; the file is not moved to the Recycle Bin but is imme-
diately removed from the disk.

Quick start
Delete mylog.smcl from current directory in Stata for Windows

erase mylog.smcl

Same as above for Mac and Unix

rm mylog.smcl

Delete mydata.dta from current directory in Stata for Windows

erase mydata.dta

Same as above for Mac and Unix

rm mydata.dta

Delete mylog.smcl from C:\my dir\my folder in Stata for Windows

erase ”c:\my dir\my folder\mylog.smcl”

Same as above for Mac and Unix

rm ”~/my dir/my folder/mylog.smcl”

Syntax
{ erase | rm } [”] filename[”]

Note: Double quotes must be used to enclose filename if the name contains spaces.

Remarks and examples
The only difference between Stata’s erase (rm) command and the Windows command prompt DEL

or Unix rm(1) command is that we may not specify groups of files. Stata requires that we erase files one
at a time.

Mac users may prefer to discard files by dragging them to the Trash.

Windows users may prefer to discard files by dragging them to the Recycle Bin.

267

erase — Erase a disk file 268

Example 1
Stata provides seven operating system equivalent commands: cd, copy, dir, erase, mkdir, rmdir,

and type, or, from the Unix perspective, cd, copy, ls, rm, mkdir, rmdir, and cat. These commands are
provided for Mac users, too. Stata users can also issue any operating system command by using Stata’s

shell command, so you should never have to exit Stata to perform some housekeeping detail.

Suppose that we have the file mydata.dta stored on disk and we wish to permanently eliminate it:

. erase mydata
file mydata not found
r(601);
. erase mydata.dta
.

Our first attempt, erase mydata, was unsuccessful. Although Stata ordinarily supplies the file extension
for you, it does not do so when you type erase. You must be explicit. Our second attempt eliminated
the file. Unix users could have typed rm mydata.dta if they preferred.

Also see
[D] cd — Change directory

[D] copy — Copy file from disk or URL

[D] dir — Display filenames

[D] mkdir — Create directory

[D] rmdir — Remove directory

[D] shell — Temporarily invoke operating system

[D] type — Display contents of a file

[U] 11.6 Filenaming conventions

expand — Duplicate observations

Description Quick start Menu Syntax
Option Remarks and examples References Also see

Description
expand replaces each observation in the dataset with n copies of the observation, where n is equal to

the required expression rounded to the nearest integer. If the expression is less than 1 or equal to missing,

it is interpreted as if it were 1, and the observation is retained but not duplicated.

Quick start
Duplicate each observation 3 times, resulting in the original and 2 copies

expand 3

Duplicate each observation the number of times stored in v
expand v

Same as above, but flag duplicated observations using generated newv
expand v, generate(newv)

Same as above, but only duplicate observations where catvar equals 4
expand v if catvar==4, generate(newv)

Menu
Data > Create or change data > Other variable-transformation commands > Duplicate observations

269

expand — Duplicate observations 270

Syntax
expand [=]exp [if] [in][, generate(newvar)]

Option
generate(newvar) creates new variable newvar containing 0 if the observation originally appeared in

the dataset and 1 if the observation is a duplicate. For instance, after an expand, you could revert to
the original observations by typing keep if newvar==0.

Remarks and examples

Example 1
expand is, admittedly, a strange command. It can, however, be useful in tricky programs or for

reformatting data for survival analysis (see examples in [R] Epitab). Here is a silly use of expand:

. use https://www.stata-press.com/data/r19/expandxmpl

. list

n x

1. -1 1
2. 0 2
3. 1 3
4. 2 4
5. 3 5

. expand n
(1 negative count ignored; observation not deleted)
(1 zero count ignored; observation not deleted)
(3 observations created)
. list

n x

1. -1 1
2. 0 2
3. 1 3
4. 2 4
5. 3 5

6. 2 4
7. 3 5
8. 3 5

The new observations are added to the end of the dataset. expand informed us that it created 3 obser-
vations. The first 3 observations were not replicated because n was less than or equal to 1. n is 2 in the
fourth observation, so expand created one replication of this observation, bringing the total number of
observations of this type to 2. expand created two replications of observation 5 because n is 3.

Because there were 5 observations in the original dataset and because expand adds new observations

onto the end of the dataset, we could now undo the expansion by typing drop in 6/l.

expand — Duplicate observations 271

References
Cox, N. J. 2013. Stata tip 114: Expand paired dates to pairs of dates. Stata Journal 13: 217–219.

———. 2014. Stata tip 119: Expanding datasets for graphical ends. Stata Journal 14: 230–235.

Huber, C. 2014. How to simulate multilevel/longitudinal data. The Stata Blog: Not Elsewhere Classified. https://blog.

stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/.

Also see
[D] contract — Make dataset of frequencies and percentages

[D] expandcl — Duplicate clustered observations

[D] fillin — Rectangularize dataset

https://www.stata-journal.com/article.html?article=dm0068
https://www.stata-journal.com/article.html?article=gr0058
https://blog.stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/
https://blog.stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/

expandcl — Duplicate clustered observations

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
expandcl duplicates clusters of observations and generates a new variable that identifies the clusters

uniquely.

expandcl replaces each cluster in the dataset with n copies of the cluster, where n is equal to the

required expression rounded to the nearest integer. The expression is required to be constant within

cluster. If the expression is less than 1 or equal to missing, it is interpreted as if it were 1, and the cluster

is retained but not duplicated.

Quick start
Duplicate each set of observations on clusters identified by cvar 3 times, and store new cluster identifier

in newcv
expandcl 3, cluster(cvar) generate(newcv)

Duplicate each cluster of observations the number of times stored in v
expandcl v, cluster(cvar) generate(newcv)

Menu
Data > Create or change data > Other variable-transformation commands > Duplicate clustered observations

272

expandcl — Duplicate clustered observations 273

Syntax
expandcl [=]exp [if] [in], cluster(varlist) generate(newvar)

Options
cluster(varlist) is required and specifies the variables that identify the clusters before expanding the

data.

generate(newvar) is required and stores unique identifiers for the duplicated clusters in newvar. new-
var will identify the clusters by using consecutive integers starting from 1.

Remarks and examples

Example 1
We will show how expandcl works by using a small dataset with five clusters. In this dataset, cl

identifies the clusters, x contains a unique value for each observation, and n identifies how many copies

we want of each cluster.

. use https://www.stata-press.com/data/r19/expclxmpl

. list, sepby(cl)

cl x n

1. 10 1 -1
2. 10 2 -1

3. 20 3 0
4. 20 4 0

5. 30 5 1
6. 30 6 1

7. 40 7 2.7
8. 40 8 2.7

9. 50 9 3
10. 50 10 3

11. 60 11 .
12. 60 12 .

. expandcl n, generate(newcl) cluster(cl)
(2 missing counts ignored; observations not deleted)
(2 noninteger counts rounded to integer)
(2 negative counts ignored; observations not deleted)
(2 zero counts ignored; observations not deleted)
(8 observations created)
. sort newcl cl x

expandcl — Duplicate clustered observations 274

. list, sepby(newcl)

cl x n newcl

1. 10 1 -1 1
2. 10 2 -1 1

3. 20 3 0 2
4. 20 4 0 2

5. 30 5 1 3
6. 30 6 1 3

7. 40 7 2.7 4
8. 40 8 2.7 4

9. 40 7 2.7 5
10. 40 8 2.7 5

11. 40 7 2.7 6
12. 40 8 2.7 6

13. 50 9 3 7
14. 50 10 3 7

15. 50 9 3 8
16. 50 10 3 8

17. 50 9 3 9
18. 50 10 3 9

19. 60 11 . 10
20. 60 12 . 10

The first three clusters were not replicated because n was less than or equal to 1. n is 2.7 in the fourth
cluster, so expandcl created two replications (2.7 was rounded to 3) of this cluster, bringing the total
number of clusters of this type to 3. expandcl created two replications of cluster 50 because n is 3.

Finally, expandcl did not replicate the last cluster because n was missing.

Also see
[D] expand — Duplicate observations

[R] bsample — Sampling with replacement

export — Overview of exporting data from Stata

Description Remarks and examples Also see

Description
This entry provides a quick reference for determining which method to use for exporting Stata data

from memory to other formats.

Remarks and examples
Remarks are presented under the following headings:

Summary of the different methods
export excel
export delimited
jdbc
odbc
outfile
export sasxport5 and export sasxport8
export spss
export dbase

Summary of the different methods

export excel

∘ export excel creates Microsoft Excel worksheets in .xls and .xlsx files.

∘ Entire worksheets can be exported, or custom cell ranges can be overwritten.

∘ See [D] import excel.

export delimited

∘ export delimited creates comma-separated or tab-delimited files that many other programs can

read.

∘ A custom delimiter may also be specified.

∘ The first line of the file can optionally contain the names of the variables.

∘ See [D] import delimited.

jdbc

∘ Java Database Connectivity (JDBC) is an application programming interface for the programming

language Java. The jdbc command allows you to connect to, load data from, insert data into, and
execute queries on a database using JDBC.

∘ See [D] jdbc.

275

export — Overview of exporting data from Stata 276

odbc

∘ ODBC, an acronym for Open DataBase Connectivity, is a standard for exchanging data between pro-

grams. Stata supports the ODBC standard for exporting data via the odbc command and can write to
any ODBC data source on your computer.

∘ See [D] odbc.

outfile

∘ outfile creates text-format datasets.

∘ The data can be written in space-separated or comma-separated format.

∘ Alternatively, the data can be written in fixed-column format.

∘ See [D] outfile.

export sasxport5 and export sasxport8

∘ export sasxport5 saves SAS XPORT Version 5 Transport format files.

∘ export sasxport5 can also write value-label information to a formats.xpf XPORT file.

∘ export sasxport8 saves SAS XPORT Version 8 Transport format files.

∘ export sasxport8 can also write value-label information to a SAS command (.sas) file.

∘ See [D] import sasxport5 and [D] import sasxport8.

export spss

∘ export spss saves an IBM SPSS Statistics (.sav) file.

∘ See [D] import spss.

export dbase

∘ export dbase saves version IV dBase (.dbf) files.

∘ See [D] import dbase.

Also see
[D] import — Overview of importing data into Stata

[M-5] docx*() — Generate Office Open XML (.docx) file

[M-5] xl() — Excel file I/O class

[RPT] dyndoc — Convert dynamic Markdown document to HTML or Word (.docx) document

[RPT] putdocx intro — Introduction to generating Office Open XML (.docx) files

[RPT] putexcel — Export results to an Excel file

[RPT] putpdf intro — Introduction to generating PDF files

filefilter — Convert ASCII or binary patterns in a file

Description Quick start Syntax Options
Remarks and examples Stored results Reference Also see

Description
filefilter reads an input file, searching for oldpattern. Whenever a matching pattern is found, it

is replaced with newpattern. All resulting data, whether matching or nonmatching, are then written to

the new file.

Because of the buffering design of filefilter, arbitrarily large files can be converted quickly.

filefilter is also useful when traditional editors cannot edit a file, such as when unprintable ASCII

characters are involved. In fact, converting end-of-line characters between Macintosh, Windows, and

Unix is convenient with the EOL codes.

Unicode is not directly supported, but UTF-8 encoded files can be operated on by using byte-sequence

methods in some cases.

Although it is not mandatory, you may want to use quotes to delimit a pattern, protecting the pattern

from Stata’s parsing routines. A pattern that contains blanks must be in quotes.

Quick start
Create newfile.txt from oldfile.txt by replacing all tabs with semicolons

filefilter oldfile.txt newfile.txt, from(\t) to(”;”)

Create newfile.txt from oldfile.txt by replacing all instances of “The” with “the”
filefilter oldfile.txt newfile.txt, from(”The”) to(”the”)

277

filefilter — Convert ASCII or binary patterns in a file 278

Syntax
filefilter oldfile newfile ,

{ from(oldpattern) to(newpattern) | ascii2ebcdic | ebcdic2ascii } [options]

where oldpattern and newpattern for ASCII characters are

”string” or string

string := [char[char[char[. . .]]]]
char := regchar | code
regchar := ASCII 32–91, 93–127, or

extended ASCII 128, 161–255; excludes ‘\’
code := \BS backslash

\r carriage return

\n newline

\t tab

\M Classic Mac EOL, or \r
\W Windows EOL, or \r\n
\U Unix or Mac EOL, or \n
\LQ left single quote, ‘

\RQ right single quote, ’

\Q double quote, ”

\$ dollar sign, $

\###d 3-digit [0–9] decimal ASCII

\##h 2-digit [0–9, A–F] hexadecimal ASCII

options Description

∗ from(oldpattern) find oldpattern to be replaced
∗ to(newpattern) use newpattern to replace occurrences of from()
∗ ascii2ebcdic convert file from ASCII to EBCDIC
∗ ebcdic2ascii convert file from EBCDIC to ASCII

replace replace newfile if it already exists

∗ Both from(oldpattern) and to(newpattern) are required, or ascii2ebcdic or ebcdic2ascii is required.
collect is allowed; see [U] 11.1.10 Prefix commands.

Options
from(oldpattern) specifies the pattern to be found and replaced. It is required unless ascii2ebcdic or

ebcdic2ascii is specified.

to(newpattern) specifies the pattern used to replace occurrences of from(). It is required unless

ascii2ebcdic or ebcdic2ascii is specified.

ascii2ebcdic specifies that characters in the file be converted from ASCII coding to EBCDIC coding.

from(), to(), and ebcdic2ascii are not allowed with ascii2ebcdic.

ebcdic2ascii specifies that characters in the file be converted from EBCDIC coding to ASCII coding.

from(), to(), and ascii2ebcdic are not allowed with ebcdic2ascii.

replace specifies that newfile be replaced if it already exists.

filefilter — Convert ASCII or binary patterns in a file 279

Remarks and examples
Convert Classic Mac-style EOL characters to Windows-style

. filefilter macfile.txt winfile.txt, from(\M) to(\W) replace

Convert left quote (‘) characters to the string “left quote”

. filefilter auto1.csv auto2.csv, from(\LQ) to(”left quote”)

Convert the character with hexidecimal code 60 to the string “left quote”

. filefilter auto1.csv auto2.csv, from(\60h) to(”left quote”)

Convert the character with decimal code 96 to the string “left quote”

. filefilter auto1.csv auto2.csv, from(\096d) to(”left quote”)

Convert strings beginning with hexidecimal code 6B followed by “Text” followed by decimal character

100 followed by “Text” to an empty string (remove them from the file)

. filefilter file1.txt file2.txt, from(”\6BhText\100dText”) to(””)

Convert file from EBCDIC to ASCII encoding

. filefilter ebcdicfile.txt asciifile.txt, ebcdic2ascii

Technical note
Unicode is not directly supported, but you can try to operate on a UTF-8 encoded Unicode file by

working on the byte sequence representation of the UTF-8 encoded Unicode character. For example, the

Unicode character é, the Latin small letter “e” with an acute accent (Unicode code point \u00e9), has
the byte sequence representation (195,169). You can obtain the byte sequence by using tobytes(”é”).
Although youmay use 195 and 169 in regchar and code, they will be treated as two separate bytes instead

of one character é (195 followed by 169). In short, this goes beyond the original design of the command
and is technically unsupported. If you try to use filefilter in this way, you might encounter problems.

Stored results
filefilter stores the following in r():
Scalars

r(occurrences) number of oldpattern found

r(bytes from) # of bytes represented by oldpattern

r(bytes to) # of bytes represented by newpattern

Reference
Riley, A. R. 2008. Stata tip 60: Making fast and easy changes to files with filefilter. Stata Journal 8: 290–292.

Also see
[P] file — Read and write text and binary files

[D] changeeol — Convert end-of-line characters of text file

[D] hexdump — Display hexadecimal report on file

https://www.stata-journal.com/article.html?article=pr0039

fillin — Rectangularize dataset

Description Quick start Menu Syntax
Remarks and examples References Also see

Description
fillin adds observations with missing data so that all interactions of varlist exist, thus making a

complete rectangularization of varlist. fillin also adds the variable fillin to the dataset. fillin
is 1 for observations created by using fillin and 0 for previously existing observations.

Quick start
Add observations so that all possible interactions of v1 and v2 exist and flag new observations with

fillin = 1

fillin v1 v2

Same as above, but also include interactions with v3
fillin v1 v2 v3

Menu
Data > Create or change data > Other variable-transformation commands > Rectangularize dataset

Syntax
fillin varlist

varlist may not contain strLs or alias variables.

280

fillin — Rectangularize dataset 281

Remarks and examples

Example 1
We have data on something by sex, race, and age group. We suspect that some of the combinations

of sex, race, and age do not exist, but if so, we want them to exist with whatever remaining variables

there are in the dataset set to missing. For example, rather than having a missing observation for black

females aged 20–24, we want to create an observation that contains missing values:

. use https://www.stata-press.com/data/r19/fillin1

. list

sex race age_gr~p x1 x2

1. female white 20-24 20393 14.5
2. male white 25-29 32750 12.7
3. female black 30-34 39399 14.2

. fillin sex race age_group

. list, sepby(sex)

sex race age_gr~p x1 x2 _fillin

1. female white 20-24 20393 14.5 0
2. female white 25-29 . . 1
3. female white 30-34 . . 1
4. female black 20-24 . . 1
5. female black 25-29 . . 1
6. female black 30-34 39399 14.2 0

7. male white 20-24 . . 1
8. male white 25-29 32750 12.7 0
9. male white 30-34 . . 1

10. male black 20-24 . . 1
11. male black 25-29 . . 1
12. male black 30-34 . . 1

References
Baum, C. F. 2016. An Introduction to Stata Programming. 2nd ed. College Station, TX: Stata Press.

Cox, N. J. 2005. Stata tip 17: Filling in the gaps. Stata Journal 5: 135–136.

Also see
[D] cross — Form every pairwise combination of two datasets

[D] expand — Duplicate observations

[D] frunalias — Change storage type of alias variables

[D] joinby — Form all pairwise combinations within groups

[D] save — Save Stata dataset

https://www.stata-press.com/books/introduction-stata-programming/
https://www.stata-journal.com/article.html?article=dm0011

format — Set variables’ output format

Description Quick start Menu Syntax
Option Remarks and examples References Also see

Description
format varlist % fmt and format % fmt varlist are the same commands. They set the display format

associated with the variables specified. The default formats are a function of the type of the variable:

byte %8.0g
int %8.0g
long %12.0g
float %9.0g
double %10.0g
str# %#s
strL %9s

set dp sets the symbol that Stata uses to represent the decimal point. The default is period, meaning
that one and a half is displayed as 1.5.

format [varlist] displays the current formats associated with the variables. format by itself lists

all variables that have formats too long to be listed in their entirety by describe. format varlist lists

the formats for the specified variables regardless of their length. format * lists the formats for all the
variables.

Quick start
Show 10-digit v1 as whole numbers with commas

format v1 %15.0gc

Same as above

format %15.0gc v1

Left-align string variable v2 of type str20
format v2 %-20s

Show 3-digit v3 with 1 digit after the decimal
format v3 %4.1f

Left-align v4 and v5, and show with leading zeros if less than 4 digits in length

format v4 v5 %-04.0f

Show v6 in Stata default date format like 19jun2014
format v6 %td

Same as above, but show v6 in a date format like 06/14/2014
format v6 %tdNN/DD/CCYY

Menu
Data > Variables Manager

282

format — Set variables’ output format 283

Syntax
Set formats

format varlist % fmt

format % fmt varlist

Set style of decimal point

set dp { comma | period } [, permanently]

Display long formats

format [varlist]

where % fmt can be a numerical, date, business calendar, or string format.

Numerical % fmt Description Example

right-justified
%#.#g general %9.0g
%#.#f fixed %9.2f
%#.#e exponential %10.7e
%21x hexadecimal %21x
%16H binary, hilo %16H
%16L binary, lohi %16L
%8H binary, hilo %8H
%8L binary, lohi %8L

right-justified with commas
%#.#gc general %9.0gc
%#.#fc fixed %9.2fc

right-justified with leading zeros
%0#.#f fixed %09.2f

left-justified
%-#.#g general %-9.0g
%-#.#f fixed %-9.2f
%-#.#e exponential %-10.7e

left-justified with commas
%-#.#gc general %-9.0gc
%-#.#fc fixed %-9.2fc

You may substitute comma (,) for period (.) in any
of the above formats to make comma the decimal point. In

%9,2fc, 1000.03 is 1.000,03. Or you can set dp comma.

format — Set variables’ output format 284

date % fmt Description Example

right-justified
%tc date/time %tc
%tC date/time %tC
%td date %td
%tw week %tw
%tm month %tm
%tq quarter %tq
%th half-year %th
%ty year %ty
%tg generic %tg

left-justified
%-tc date/time %-tc
%-tC date/time %-tC
%-td date %-td
etc.

There are many variations allowed. See [D] Datetime display formats.

business calendar % fmt Description Example

%tbcalname a business %tbsimple
[:datetime-specifiers] calendar defined in

calname.stbcal

See [D] Datetime business calendars.

string % fmt Description Example

right-justified
%#s string %15s

left-justified
%-#s string %-20s

centered
%~#s string %~12s

The centered format is for use with display only.

Option
permanently specifies that, in addition to making the change right now, the dp setting be remembered

and become the default setting when you invoke Stata.

format — Set variables’ output format 285

Remarks and examples
Remarks are presented under the following headings:

Setting formats
Setting European formats
Details of formats

The %f format
The %fc format
The %g format
The %gc format
The %e format
The %21x format
The %16H and %16L formats
The %8H and %8L formats
The %t format
The %s format

Other effects of formats
Displaying current formats
Video example

Setting formats
See [U] 12.5 Formats: Controlling how data are displayed for an explanation of % fmt. To review:

Stata’s three numeric formats are denoted by a leading percent sign, %, followed by the string w.d (or w,d
for European format), wherew and d stand for two integers. The first integer, w, specifies the width of the

format. The second integer, d, specifies the number of digits that are to follow the decimal point; d must

be less than w. Finally, a character denoting the format type (e, f, or g) is appended. For example, %9.2f
specifies the f format that is nine characters wide and has two digits following the decimal point. For f
and g, a cmay also be suffixed to indicate comma formats. Other “numeric” formats known collectively
as the %t formats are used to display dates and times; see [D] Datetime display formats. String formats

are denoted by %ws, where w indicates the width of the format.

Example 1
We have census data by region and state on median age and population in 1980.

. use https://www.stata-press.com/data/r19/census10
(1980 Census data by state)
. describe
Contains data from https://www.stata-press.com/data/r19/census10.dta
Observations: 50 1980 Census data by state

Variables: 4 9 Apr 2024 08:05

Variable Storage Display Value
name type format label Variable label

state str14 %14s State
region int %8.0g cenreg Census region
pop long %11.0g Population
medage float %9.0g Median age

Sorted by:

format — Set variables’ output format 286

. list in 1/8

state region pop medage

1. Alabama South 3893888 29.3
2. Alaska West 401851 26.1
3. Arizona West 2718215 29.2
4. Arkansas South 2286435 30.6
5. California West 23667902 29.9

6. Colorado West 2889964 28.6
7. Connecticut NE 3107576 32
8. Delaware South 594338 29.8

The state variable has a display format of %14s. To left-align the state data, we type

. format state %-14s

. list in 1/8

state region pop medage

1. Alabama South 3893888 29.3
2. Alaska West 401851 26.1
3. Arizona West 2718215 29.2
4. Arkansas South 2286435 30.6
5. California West 23667902 29.9

6. Colorado West 2889964 28.6
7. Connecticut NE 3107576 32
8. Delaware South 594338 29.8

Although it seems like region is a string variable, it is really a numeric variable with an attached

value label. You do the same thing to left-align a numeric variable as you do a string variable: insert a

negative sign.

. format region %-8.0g

. list in 1/8

state region pop medage

1. Alabama South 3893888 29.3
2. Alaska West 401851 26.1
3. Arizona West 2718215 29.2
4. Arkansas South 2286435 30.6
5. California West 23667902 29.9

6. Colorado West 2889964 28.6
7. Connecticut NE 3107576 32
8. Delaware South 594338 29.8

format — Set variables’ output format 287

The pop variable would probably be easier to read if we inserted commas by appending a ‘c’:

. format pop %11.0gc

. list in 1/8

state region pop medage

1. Alabama South 3,893,888 29.3
2. Alaska West 401,851 26.1
3. Arizona West 2,718,215 29.2
4. Arkansas South 2,286,435 30.6
5. California West 23667902 29.9

6. Colorado West 2,889,964 28.6
7. Connecticut NE 3,107,576 32
8. Delaware South 594,338 29.8

Look at the value of pop for observation 5. There are no commas. This number was too large for Stata
to insert commas and still respect the current width of 11. Let’s try again:

. format pop %12.0gc

. list in 1/8

state region pop medage

1. Alabama South 3,893,888 29.3
2. Alaska West 401,851 26.1
3. Arizona West 2,718,215 29.2
4. Arkansas South 2,286,435 30.6
5. California West 23,667,902 29.9

6. Colorado West 2,889,964 28.6
7. Connecticut NE 3,107,576 32
8. Delaware South 594,338 29.8

Finally, medage would look better if the decimal points were vertically aligned.

. format medage %8.1f

. list in 1/8

state region pop medage

1. Alabama South 3,893,888 29.3
2. Alaska West 401,851 26.1
3. Arizona West 2,718,215 29.2
4. Arkansas South 2,286,435 30.6
5. California West 23,667,902 29.9

6. Colorado West 2,889,964 28.6
7. Connecticut NE 3,107,576 32.0
8. Delaware South 594,338 29.8

Display formats are permanently attached to variables by the format command. If we save the data,
the next time we use it, statewill still be formatted as %-14s, regionwill still be formatted as %-8.0g,
etc.

format — Set variables’ output format 288

Example 2
Suppose that we have an employee identification variable, empid, and that we want to retain the

leading zeros when we list our data. format has a leading-zero option that allows this.

. use https://www.stata-press.com/data/r19/fmtxmpl, clear

. describe empid
Variable Storage Display Value

name type format label Variable label

empid float %9.0g
. list empid in 83/87

empid

83. 98
84. 99
85. 100
86. 101
87. 102

. format empid %05.0f

. list empid in 83/87

empid

83. 00098
84. 00099
85. 00100
86. 00101
87. 00102

Technical note
The syntax of the format command allows varlist and not just one variable name. Thus you can

attach the %9.2f format to the variables myvar, thisvar, and thatvar by typing

. format myvar thisvar thatvar %9.2f

Example 3
We have employee data that includes hiredate and login and logout times. hiredate is stored

as a float, but we were careful to store login and logout as doubles. We need to attach a date format

to these three variables.

. use https://www.stata-press.com/data/r19/fmtxmpl2, clear

. format hiredate login logout
Variable name Display format

hiredate %9.0g
login %10.0g
logout %10.0g

format — Set variables’ output format 289

. format login logout %tcDDmonCCYY_HH:MM:SS.ss

. list login logout in 1/5

login logout

1. 08nov2006 08:16:42.30 08nov2006 05:32:23.53
2. 08nov2006 08:07:20.53 08nov2006 05:57:13.40
3. 08nov2006 08:10:29.48 08nov2006 06:17:07.51
4. 08nov2006 08:30:02.19 08nov2006 05:42:23.17
5. 08nov2006 08:29:43.25 08nov2006 05:29:39.48

. format hiredate %td

. list hiredate in 1/5

hiredate

1. 24jan1986
2. 10mar1994
3. 29sep2006
4. 14apr2006
5. 03dec1999

We remember that the project manager requested that hire dates be presented in the same form as they

were previously.

. format hiredate %tdDD/NN/CCYY

. list hiredate in 1/5

hiredate

1. 24/01/1986
2. 10/03/1994
3. 29/09/2006
4. 14/04/2006
5. 03/12/1999

Setting European formats
Do you prefer that one and one half be written as 1,5 and that one thousand one and a half be written

as 1.001,5? Stata will present numbers in that format if, when you set the format, you specify ‘,’ rather
than ‘.’ as follows:

. use https://www.stata-press.com/data/r19/census10, clear
(1980 Census data by state)
. format pop %12,0gc
. format medage %9,2f

format — Set variables’ output format 290

. list in 1/8

state region pop medage

1. Alabama South 3.893.888 29,30
2. Alaska West 401.851 26,10
3. Arizona West 2.718.215 29,20
4. Arkansas South 2.286.435 30,60
5. California West 23.667.902 29,90

6. Colorado West 2.889.964 28,60
7. Connecticut NE 3.107.576 32,00
8. Delaware South 594.338 29,80

You can also leave the formats just as they were and instead type set dp comma. That tells Stata to
interpret all formats as if you had typed the comma instead of the period:

. format pop %12.0gc (put the formats back as they were)

. format medage %9.2f

. set dp comma (tell Stata to use European format)

. list in 1/8
(same output appears as above)

set dp comma affects all Stata output, so if you run a regression, display summary statistics, or make a
table, commas will be used instead of periods in the output:

. tabulate region [fw=pop]
Census
region Freq. Percent Cum.

NE 49135283 21,75 21,75
N Cntrl 58865670 26,06 47,81
South 74734029 33,08 80,89
West 43172490 19,11 100,00

Total 225907472 100,00

You can return to using periods by typing

. set dp period

Setting a variable’s display format to European affects how the variable’s values are displayed by

list and in a few other places. Setting dp to comma affects every bit of Stata.

Also, set dp comma affects only how Stata displays output, not how it gets input. When you need to

type one and a half, you must type 1.5 regardless of context.

Technical note
set dp comma makes drastic changes inside Stata, and we mention this because some older, user-

written programs may not be able to deal with those changes. If you are using an older, user-written

program, you might set dp comma only to find that the program does not work and instead presents

some sort of syntax error.

If, using any program, you get an unanticipated error, try setting dp back to period.

format — Set variables’ output format 291

Even with set dp comma, you might still see some output with the decimal symbol shown as a period
rather than a comma. There are two places in Stata where Stata ignores set dp comma because the

features are generally used to produce what will be treated as input, and set dp comma does not affect
how Stata inputs numbers. First,

local x = sqrt(2)

stores the string “1.414213562373095” in x and not “1,414213562373095”, so if some program were

to display ‘x’ as a string in the output, the period would be displayed. Most programs, however, would

use ‘x’ in subsequent calculations or, at the least, when the time came to display what was in ‘x’, would
display it as a number. They would code

display ... ‘x’ ...

and not

display ... ”‘x’” ...

so the output would be

... 1,4142135 ...

The other place where Stata ignores set dp comma is the string() function. If you type

. generate res = string(numvar)

new variable res will contain the string representation of numeric variable numvar, with the decimal
symbol being a period, even if you have previously set dp comma. Of course, if you explicitly ask that
string() use European format,

. generate res = string(numvar,”%9,0g”)

then string() honors your request; string() merely ignores the global set dp comma.

Details of formats

The %f format
In %w.df, w is the total output width, including sign and decimal point, and d is the number of digits

to appear to the right of the decimal point. The result is right-justified.

The number 5.139 in %12.2f format displays as
----+----1--

5.14

When d = 0, the decimal point is not displayed. The number 5.14 in %12.0f format displays as

----+----1--
5

%-w.df works the same way, except that the output is left-justified in the field. The number 5.139 in
%-12.2f displays as

----+----1--
5.14

format — Set variables’ output format 292

The %fc format
%w.dfc works like %w.df except that commas are inserted to make larger numbers more readable.

w records the total width of the result, including commas.

The number 5.139 in %12.2fc format displays as

----+----1--
5.14

The number 5203.139 in %12.2fc format displays as

----+----1--
5,203.14

As with %f, if d = 0, the decimal point is not displayed. The number 5203.139 in %12.0fc format
displays as

----+----1--
5,203

As with %f, a minus sign may be inserted to left justify the output. The number 5203.139 in %-12.0fc
format displays as

----+----1--
5,203

The %g format
In %w.dg, w is the overall width, and d is usually specified as 0, which leaves up to the format the

number of digits to be displayed to the right of the decimal point. If d ≠ 0 is specified, then not more

than d digits will be displayed. As with %f, a minus sign may be inserted to left-justify results.

%g differs from %f in that 1) it decides how many digits to display to the right of the decimal point,

and 2) it will switch to a %e format if the number is too large or too small.

The number 5.139 in %12.0g format displays as

----+----1--
5.139

The number 5231371222.139 in %12.0g format displays as

----+----1--
5231371222

The number 52313712223.139 displays as

----+----1--
5.23137e+10

The number 0.0000029394 displays as

----+----1--
2.93940e-06

The %gc format
%w.dgc is %w.dg with commas. It works in the same way as the %g and %fc formats.

format — Set variables’ output format 293

The %e format
%w.de displays numeric values in exponential format. w records the width of the format. d records

the number of digits to be shown after the decimal place. w should be greater than or equal to d+7 or, if

3-digit exponents are expected, d+8.

The number 5.139 in %12.4e format is

----+----1--
5.1390e+00

The number 5.139 × 10220 is

----+----1--
5.1390e+220

The %21x format
The %21x format is for those, typically programmers, who wish to analyze routines for numerical

roundoff error. There is no better way to look at numbers than how the computer actually records them.

The number 5.139 in %21x format is

----+----1----+----2-
+1.48e5604189375X+002

The number 5.125 is

----+----1----+----2-
+1.4800000000000X+002

Reported is a signed, base-16 number with base-16 point, the letter X, and a signed, 3-digit base-16
integer. Call the two numbers f and e. The interpretation is f × 2𝑒.

The %16H and %16L formats
The %16H and %16L formats show the value in the IEEE floating point, double-precision form. %16H

shows the value in most-significant-byte-first (hilo) form. %16L shows the number in least-significant-
byte-first (lohi) form.

The number 5.139 in %16H is

----+----1----+-
40148e5604189375

The number 5.139 in %16L is

----+----1----+-
75931804568e1440

The format is sometimes used by programmers who are simultaneously studying a hexadecimal dump

of a binary file.

The %8H and %8L formats
%8H and %8L are similar to %16H and %16L but show the number in IEEE single-precision form.

The number 5.139 in %8H is

----+---
40a472b0

format — Set variables’ output format 294

The number 5.139 in %8L is

----+---
b072a440

The %t format
The %t format displays numerical variables as dates and times. See [D] Datetime display formats.

The %s format
The %ws format displays a string in a right-justified field of width w. %-ws displays the string left-

justified.

“Mary Smith” in %16s format is

----+----1----+-
Mary Smith

“Mary Smith” in %-16s format is

----+----1----+-
Mary Smith

Also, in some contexts, particularly display (see [P] display), %~ws is allowed, which centers the
string. “Mary Smith” in %~16s format is

----+----1----+-
Mary Smith

Other effects of formats
You have data on the age of employees, and you type summarize age to obtain the mean and standard

deviation. By default, Stata uses its default g format to provide as much precision as possible.
. use https://www.stata-press.com/data/r19/fmtxmpl, clear
. summarize age

Variable Obs Mean Std. dev. Min Max

age 204 30.18627 10.38067 18 66

If you attach a %9.2f format to the variable and specify the format option, Stata uses that specification
to format the results:

. format age %9.2f

. summarize age, format
Variable Obs Mean Std. dev. Min Max

age 204 30.19 10.38 18.00 66.00

Displaying current formats
format varlist is not often used to display the formats associated with variables because using

describe (see [D] describe) is easier and provides more information. The exceptions are date vari-

ables. Unless you use the default %tc, %tC, . . . formats (and most people do), the format specifier itself
can become very long, such as

. format admittime %tcDDmonCCYY_HH:MM:SS.sss

format — Set variables’ output format 295

Such formats are too long for describe to display, so it gives up. In such cases, you can use format
to display the format:

. format admittime
variable name display format

admittime %tcDDmonCCYY_HH:MM:SS.sss

Type format * to see the formats for all the variables.

Video example
How to change the display format of a variable

References
Cox, N. J. 2011. Speaking Stata: MMXI and all that: Handling Roman numerals within Stata. Stata Journal 11: 126–142.

Gould, W. W. 2011a. How to read the %21x format. The Stata Blog: Not Elsewhere Classified. https://blog.stata.com/

2011/02/02/how-to-read-the-percent-21x-format/.

———. 2011b. How to read the %21x format, part 2. The Stata Blog: Not Elsewhere Classified. https://blog.stata.com/

2011/02/10/how-to-read-the-percent-21x-format-part-2/.

Linhart, J. M. 2008. Mata Matters: Overflow, underflow and the IEEE floating-point format. Stata Journal 8: 255–268.

Also see
[D] Datetime business calendars — Business calendars

[D] Datetime display formats — Display formats for dates and times

[D] list — List values of variables

[D] varmanage — Manage variable labels, formats, and other properties

[P] display — Display strings and values of scalar expressions

[U] 12.5 Formats: Controlling how data are displayed

[U] 12.6 Dataset, variable, and value labels

https://www.youtube.com/watch?v=cF_pJtXWf3Y
https://www.stata-journal.com/article.html?article=dm0054
https://blog.stata.com/2011/02/02/how-to-read-the-percent-21x-format/
https://blog.stata.com/2011/02/02/how-to-read-the-percent-21x-format/
https://blog.stata.com/2011/02/10/how-to-read-the-percent-21x-format-part-2/
https://blog.stata.com/2011/02/10/how-to-read-the-percent-21x-format-part-2/
https://www.stata-journal.com/article.html?article=pr0038

fralias — Alias variables from linked frames

Description Quick start Syntax Options
Remarks and examples Stored results Also see

Description
fralias add defines variable aliases, names that reference variables in a linked frame. An alias

defined by fralias add is a variable that behaves like a copy of a variable from a linked frame, which

you could obtain from frget. Unlike a copy, however, an alias uses very little memory, and you cannot
modify its observations. Almost all of Stata’s statistical and data-management commands allow you to

specify an alias just as you would specify the name of a variable in the current frame.

fralias describe produces a summary of the alias variables in the current frame.

See [D] frames intro if you do not know what a frame is.

Quick start
Define aliases for variables v1, v2, and v3 from another frame linked by lnk

fralias add v1 v2 v3, from(lnk)

Define aliases newv4 and newv5 for variables v4 and v5 linked via lnk
fralias add newv4=v4 newv5=v5, from(lnk)

Define aliases for all variables in linkage lnk, prefixing them with l
fralias add *, from(lnk) prefix(l_)

Define aliases for all variables via linkage lnk, excluding those matching pattern ind*
fralias add *, from(lnk) exclude(ind*)

Report on all the alias variables in the current frame

fralias describe

Report on the alias variables starting with l
fralias describe l *

296

fralias — Alias variables from linked frames 297

Syntax
Add alias variables

fralias add varlist, from(linkname) [rename options] (1)

fralias add newalias1 = varname1
[newalias2 = varname2 [. . .]] , from(linkname) (2)

Describe alias variables

fralias describe [varlist]

linkname is the name of a linkvar in the current frame that was created by frlink; see [D] frlink.

rename options Description

prefix(string) prefix new alias names with string

suffix(string) suffix new alias names with string

exclude(varlist) exclude specified variables

collect is allowed; see [U] 11.1.10 Prefix commands.

Syntax 1 defines aliases for the variable names specified by varlist from the frame linked by linkname.

Syntax 2 defines alias newalias1 in the current frame to be a reference to varname1 from the frame linked

by linkname. Similarly, alias newalias2 is a reference to varname2 and so on.

Options
from(linkname) specifies the identity of the linked frame from which variables are aliased. Linkages to

frames are created by the frlink command. Linkages are usually named for the frame to which they
link. Linkage counties links to frame counties, and so you specify from(counties). If linkage
c links to frame counties, you specify from(c). from() is required.

prefix(string) specifies a string to be prefixed to the names of the new aliases created in the current

frame. Say that you type

. fralias add inc*, from(counties)

to define aliases for variables income and income family. If variable income already exists in the
current frame, the command would issue an error message to that effect and alias neither variable. To

alias the two variables, you could type

. fralias add inc*, from(counties) prefix(c_)

Then the new aliases would be named c income and c income family.

suffix(string) works like prefix(string), the difference being that the string is suffixed rather than
prefixed to the alias names. Both options may be specified if you wish.

exclude(varlist) specifies variables that are not to be aliased. An example of the option is

. fralias add *, from(counties) exclude(emp*)

All variables except variables starting with emp would get an alias. More correctly, all variables

except emp*, *, and the match variables would be aliased because fralias add always omits the
underscore and match variables. See the explanation below.

fralias — Alias variables from linked frames 298

Remarks and examples
Remarks are presented under the following headings:

Overview
Everything you need to know about fralias add
Where are alias variables not allowed
Breaking alias variables

Rename or drop the linked variable
Rename or drop the linkage variable
Rename or drop a matching variable
Rename or drop the linked frame
Change sort order in the linked frame

Overview
You have data on people and data on counties. You loaded the datasets and created a linkage named

uscounties by typing

. use people

. frame create uscounties

. frame uscounties: use uscounties

. frlink m:1 countyid, frame(uscounties)

See example 1 in [D] frlink for details.

Among the variables in uscounties.dta is median income. Instead of copying the variable into
the current frame, you could define an alias for the variable by typing either of the following:

. fralias add median_income, from(uscounties)

. fralias add medinc = median_income, from(uscounties)

The first command defines an alias named median income in the current frame. The second names it
medinc.

Everything you need to know about fralias add
Here is everything you need to know in outline form:

1. What it means to alias a linked variable

2. fralias add can define aliases one at a time
3. fralias add allows variable names to be abbreviated
4. fralias add can define groups of aliases
5. fralias add works with all the variables specified, or none of them
6. fralias add ignores repeated variables
7. How to define aliases for all the variables 1: fralias add *

8. How to define aliases for all the variables 2: fralias add *, prefix()

We make two assumptions in what follows:

A1. The current frame contains data on people. A frame named uscounties contains data on

counties. That is, we assume

. use people

. frame create uscounties

. frame uscounties: use uscounties

fralias — Alias variables from linked frames 299

A2. The frames are linked on the match variable countyid, which appears in both datasets. The
linkage between the frames is named uscounties, the same name as the frame being linked.
That is, we assume

. frlink m:1 countyid, frame(uscounties)

1. What it means to alias a linked variable

When you type

. fralias add median_income, from(uscounties)

fralias add defines an alias named median income in the current frame that references vari-
able median income from frame uscounties. This allows you to use median income as if
it were a variable in the current frame. It is like a copy of the original variable, but it uses much

less memory, and you cannot modify its observations.

2. fralias add can define aliases one at a time

To define alias median income of variable median income from linked frame uscounties,
type

. fralias add median_income, from(uscounties)

To instead define alias medinc of variable median income from the same linked frame, type

. fralias add medinc=median_income, from(uscounties)

3. fralias add allows variable names to be abbreviated

fralias add allows abbreviations if you have not set varabbrev off. If median income
is the only variable beginning with median in the linked frame, you can type

. fralias add median, from(uscounties)

The new alias will be named median income.

When using fralias add’s newvar=varname syntax, you can abbreviate the variable being
copied that appears to the right of the equals sign:

. fralias add medinc=median, from(uscounties)

4. fralias add can define groups of aliases

fralias add allows you to specify a varlist. Even though you type fralias add in the current
frame, the varlist is interpreted in the linked frame. You can type

. fralias add emp*, from(uscounties)

. fralias add emp* median_income, from(uscounties)

. fralias add emp* median, from(uscounties)

. fralias add emp* m*, from(uscounties)

. fralias add *, from(uscounties)

When you specify a varlist, fralias add automatically omits the match variable or variables
and any variables starting with an underscore (). First, we will tell you why, and then, we will

tell you a workaround.

fralias — Alias variables from linked frames 300

We start with a match variable. The match variable in our example is match variable countyid.
The variable has the same name in both frames. Pretend for a moment that fralias add did not
exclude match variables. Then, if you tried to alias countyid, that would be an error because
fralias add will not overwrite an existing variable with a new alias. That seems reasonable

until you realize that it would also mean that fralias add would issue an error if you typed

. fralias add c*, from(uscounties)

or even if you typed

. fralias add *, from(uscounties)

fralias add would issue errors because c* and * would include countyid, which, being the
match variable, already exists in the current frame. fralias add automatically omits match
variables so that you can type fralias add c* and fralias add * and get aliases for all the
other variables.

fralias add omits * variables because they tend to be Stata system variables that are valid

only in the dataset in which they appear. You do not want them.

What if you need to get one of these variables? Use the newvar=varname syntax. Type, for
instance,

. fralias add _myvar=_myvar, frame(uscounties)

Automatic omission is not applied to this syntax.

5. fralias add works with all the variables specified, or none of them

fralias addwill not replace existing variables with aliases. If just one variable in the specified
list already exists in the current frame, fralias add issues an error.

. fralias add emp* m*, from(uscounties)
variable mvalues already exists
r(110);

If you want all the m* variables except mvalues, use the exclude() option:

. fralias add emp* m*, from(uscounties) exclude(mvalues)

If you also want mvalues to have alias mvals in the current frame, type

. fralias add mvals=mvalues, from(uscounties)

6. fralias add ignores repeated variables

It is not an error to type

. fralias add employment employment, from(uscounties)

We specified employment twice, but fralias add ignores that and defines the alias once. This
is convenient because variables can be inadvertently repeated, as in

. fralias add m* employment-larea, from(uscounties)

Although you cannot see it, variable mds is repeated in the example. m* contains mds, and so
does employment-larea because mds is among the variables stored between them.

When variables are repeated using the newvar=varname syntax, fralias add does not ignore
repetition. It defines an alias for each variable that you specify:

. fralias add medinc=income inc=income, from(uscounties)

fralias — Alias variables from linked frames 301

7. How to define aliases for all the variables 1: fralias add *

To define an alias for all the variables, try typing

. fralias add *, from(uscounties)

This sometimes works. Other times it does not because some of the variables in uscounties
already exist in the current frame. When it does not work, fralias add lists the variable names
that exist in both frames and, even better, stores them in r(dups). Thus, if you are willing to
exclude those variables, you can type

. fralias add *, from(uscounties) exclude(‘r(dups)’)

8. How to define aliases for all the variables 2: fralias add *, prefix()

Another way to define aliases for all the variables in a linked frame is to type

. fralias add *, from(uscounties) prefix(c_)

This defines aliases for all the variables in the linked frame, using their original names but pre-

fixed with c . The variable mvalues in the linked frame, for instance, is aliased to c mvalues.

Another advantage of this approach is how easily you can drop the aliases from the data should

you desire to do so. Type

. drop c_*

You can choose your own prefix. If you prefer suffixing them, type

. fralias add *, from(uscounties) suffix(_c)

This names the aliases mvalues1 c, mvalues2 c, etc. These names aremore like the originals,
at least if you use tab completion for typing them. Type the first characters of the original

name, and press Tab. And if you wish, you can later drop the suffixed variables just as easily

as prefixed ones. Type

. drop *_c

Where are alias variables not allowed
The following commands change the values in variables they operate on, so by their very nature,

they cannot work with alias variables: cross, dyngen, fillin, the icd suite of commands, recode,
reshape, stack, xpose, the mi suite of commands, and snapspan.

The error message they produce, when they detect alias variables, will mention using frunalias to work
around this restriction.

. xpose, clear
alias variables not allowed

Alias variables detected: var1 and var2.
You could use command frunalias to recast these variables to avoid this
error message.

r(109);

fralias — Alias variables from linked frames 302

Breaking alias variables
We can break the linkages that alias variables depend on. In the following, we cover the various ways

this can happen.

We use the datasets and linkage described in Example 1: A typical m:1 linkage of [D] frlink for our

setup. Recall that persons.dta contains data on people and txcounty.dta contains data on Texas

counties, and we link the two using variable countyid.
. use https://www.stata-press.com/data/r19/persons
. frame create txcounty
. frame txcounty: webuse txcounty
(Median income in Texas counties)
. frlink m:1 countyid, frame(txcounty)
(all observations in frame default matched)

Let’s create an alias for each variable in the linked frame.

. fralias add *, from(txcounty)
(variable not aliased from linked frame: countyid)
(1 variable aliased from linked frame)

fralias add informed us that it added 1 alias variable.

For alias variables, describe will try to report the storage type of the linked variable. If the link

is broken, then describe will report unknown for the storage type. In either case, describe will note
when it detects alias variables. The note indicates that alias variables have a clickable type.

. describe
Contains data from https://www.stata-press.com/data/r19/persons.dta
Observations: 20

Variables: 5 16 Apr 2024 13:36
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

personid byte %9.0g Person ID
countyid byte %9.0g County ID
income float %9.0g Household income
txcounty byte %10.0g
median_income float %9.0g Household median income

Sorted by:
Note: Alias variables have clickable types.
Note: Dataset has changed since last saved.

Clicking on the storage type link (float) in Stata will run the fralias describe command on the
associated variable.

. fralias describe median_income

Alias Type Target Link Frame

median_income float median_income txcounty txcounty

fralias — Alias variables from linked frames 303

Rename or drop the linked variable

Let’s break the link in our alias variable by renaming the linked variable median income to medinc.
describe now reports unknown for the storage type of our alias variable.

. frame txcounty: rename median_income medinc

. describe
Contains data from https://www.stata-press.com/data/r19/persons.dta
Observations: 20

Variables: 5 16 Apr 2024 13:36
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

personid byte %9.0g Person ID
countyid byte %9.0g County ID
income float %9.0g Household income
txcounty byte %10.0g
median_income unknown %9.0g Household median income

Sorted by:
Note: Alias variables have clickable types.
Note: Dataset has changed since last saved.

Clicking on the link (unknown) shows the same information as before, except the target type is

(unknown).

. fralias describe median_income

Alias Type Target Link Frame

median_income (unknown) median_income txcounty txcounty

If we try to use this broken alias variable in a calculation, Stata will exit with an informative errormessage.

. summarize median_income
variable median_income not found in frame txcounty

You created alias variable median_income using the fralias command. When
you did that, you specified median_income as the target variable and
txcounty as the link variable for frame txcounty. The target variable
median_income no longer exists in frame txcounty. Without it, the alias
variable median_income is broken. If you renamed the target variable in
frame txcounty, rename it back to median_income.

r(111);

We did rename median income, so let’s rename back to the original and try summarize again.

. frame txcounty: rename medinc median_income

. summarize median_income
Variable Obs Mean Std. dev. Min Max

median_inc~e 20 56182.1 12207.6 43788 72785

Rename or drop the linkage variable

Renaming or dropping a linkage variable will break all the alias variables that depend on it. A linkage

variable is the variable created by frlink. In our example, this is the variable named txcounty. If we
rename txcounty to txcnty, describe reports unknown for the storage type of our alias variable.

fralias — Alias variables from linked frames 304

. rename txcounty txcnty

. describe
Contains data from https://www.stata-press.com/data/r19/persons.dta
Observations: 20

Variables: 5 16 Apr 2024 13:36
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

personid byte %9.0g Person ID
countyid byte %9.0g County ID
income float %9.0g Household income
txcnty byte %10.0g
median_income unknown %9.0g Household median income

Sorted by:
Note: Alias variables have clickable types.
Note: Dataset has changed since last saved.

Now, if we try to use this broken alias variable in a calculation, Stata will exit with another informative

error message.

. summarize median_income
variable txcounty not found

You created alias variable median_income using the fralias command. When
you did that, you specified txcounty as the link variable. The link
variable txcounty no longer exists. Without it, the alias variable
median_income is broken. If you renamed the link variable, rename it back
to txcounty.

r(111);
. rename txcnty txcounty

Here, we simply renamed the linkage variable back to the original.

Rename or drop a matching variable

Renaming or dropping the variables used to link the frames will break alias variables that depend on

that link. In our example, variable countyid is used to link our frames. After we rename countyid to
cnty in frame txcounty, describe reports unknown for the storage type of our alias variable.

. frame txcounty: rename countyid cnty

. describe
Contains data from https://www.stata-press.com/data/r19/persons.dta
Observations: 20

Variables: 5 16 Apr 2024 13:36
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

personid byte %9.0g Person ID
countyid byte %9.0g County ID
income float %9.0g Household income
txcounty byte %10.0g
median_income unknown %9.0g Household median income

Sorted by:
Note: Alias variables have clickable types.
Note: Dataset has changed since last saved.

fralias — Alias variables from linked frames 305

Now, if we try to use this broken alias variable in a calculation, Stata will exit with a different infor-

mative error message.

. summarize median_income
variable countyid not found in frame txcounty

You created the link variable txcounty using the frlink command. When you
did that, you specified variable countyid as the link variable, or as one
of them. That variable no longer exists in frame txcounty. Without it,
the frames can no longer be linked. If you renamed the variable in the
frame, rename it back to countyid.

r(111);
. frame txcounty: rename cnty countyid

Renaming cnty back to countyid in frame txcounty resolves this problem.

Rename or drop the linked frame

Renaming or dropping a linked frame will break alias variables linked to that frame. Let’s rename

frame txcounty to county. As before, describe now reports unknown for the storage type of our alias

variable.

. frame rename txcounty county

. describe
Contains data from https://www.stata-press.com/data/r19/persons.dta
Observations: 20

Variables: 5 16 Apr 2024 13:36
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

personid byte %9.0g Person ID
countyid byte %9.0g County ID
income float %9.0g Household income
txcounty byte %10.0g
median_income unknown %9.0g Household median income

Sorted by:
Note: Alias variables have clickable types.
Note: Dataset has changed since last saved.

Now, if we try to use this broken alias variable in a calculation, Stata will exit with another informative

error message.

. summarize median_income
frame txcounty not found

You created the link variable txcounty using the frlink command with
txcounty specified in option frame(). That frame no longer exists.
Without it, the frames can no longer be linked. If you renamed the frame,
rename it back to txcounty.

r(111);
. frame rename county txcounty

Renaming the frame back to txcounty again resolves this issue.

fralias — Alias variables from linked frames 306

Change sort order in the linked frame

Changing the sort order in the linked frame will break alias variables linked to that frame. Let’s sort

frame txcounty on median income. As evidence that the link is broken, describe reports unknown
for the storage type of our alias variable.

. frame txcounty: sort median_income

. describe
Contains data from https://www.stata-press.com/data/r19/persons.dta
Observations: 20

Variables: 5 16 Apr 2024 13:36
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

personid byte %9.0g Person ID
countyid byte %9.0g County ID
income float %9.0g Household income
txcounty byte %10.0g
median_income unknown %9.0g Household median income

Sorted by:
Note: Alias variables have clickable types.
Note: Dataset has changed since last saved.

Now, if we try to use this broken alias variable in a calculation, Stata will exit with another informative

error message.

. summarize median_income
data in frame txcounty not sorted

Type frlink describe txcounty. frlink describe will sort the data in the
frame, thus correcting the problem, and it will verify that the link
variable is otherwise still valid. If it is not, frlink describe will
tell you how to fix the problem.

r(5);
. quietly frlink describe txcounty

Using frlink describe restores the original sort order.

fralias — Alias variables from linked frames 307

Stored results
fralias add stores the following in r():

Scalars

r(k) number of aliases created

Macros

r(newlist) new aliases in the current frame

r(srclist) variables aliased from linked frame

r(excluded) variables not aliased from linked frame

r(dups) variables already present in the current frame

r(notfound) variables not found in the linked frame

r(dups) is present only if fralias add exits with an error message because a prospective new alias

name already exists in the current frame.

r(notfound) is present only for syntax 2 when fralias add exits with an error message because a
varname is not found in the linked frame.

fralias describe stores the following in r():

Macros

r(varlist) alias variables in the current frame

Also see
[D] frlink — Link frames

[D] frget — Copy variables from linked frame

[D] frunalias — Change storage type of alias variables

[D] frames intro — Introduction to frames

[D] merge — Merge datasets

[M-5] st addalias() —Add alias variable to current Stata dataset

[M-5] st isalias() — Properties of alias variable

frames intro — Introduction to frames

Description Remarks and examples References Also see

Description
Frames, also known as data frames, allow you to simultaneously store multiple datasets in memory.

The datasets in memory are stored in frames, and Stata allows multiple frames. You can switch between

them and even link data in them to data in other frames. How this works is presented below.

Remarks and examples
Remarks are presented under the following headings:

What frames can do for you
Use frames to multitask
Use frames to perform tasks integral to your work
Use frames to work with separate datasets simultaneously
Use frames to record statistics gathered from simulations
Frames make Stata (preserve/restore) faster
Other uses will occur to you that we should have listed

Learning frames
The current frame
Creating new frames
Type frame or frames, it does not matter
Switching frames
Copying frames
Dropping frames
Resetting frames
Frame prefix command
Linking frames
Ignore the frval() function
Posting new observations to frames
Saving, modifying, loading, and describing a set of frames

Programming with frames
Ado-programming with frames
Mata programming with frames

What frames can do for you
Frames let you have multiple datasets in memory simultaneously. Here are a few ways you can use

them.

Use frames to multitask

You can create a new frame, load another dataset into it, perform some task, switch back, and discard

the frame.

308

frames intro — Introduction to frames 309

You are working. The phone rings. Something has to be handled right now.

. frame create interruption // you create new frame ...

. frame change interruption // and switch to it

. use another_dataset // you load a dataset

. // you do what needs doing

. frame change default // you switch back

. frame drop interruption // you delete the new frame

You are back to work just as if you had never been interrupted.

Use frames to perform tasks integral to your work

You need to calculate a value from the data and add it to the data. This is troublesome because making

the calculation requires modifying the data, the same data that need to be unmodified and have the result

added to them.

You have loaded yourdata.dta into memory and have already made some updates to it. You have
not yet saved those changes. You set about calculating the troublesome value.

. frame copy default subtask // create & copy current data to new frame

. frame change subtask // switch to the new frame

. sort weight foreign // begin result calculation

. omitted steps

. keep if mark1 | mark2 // drop observations!

. omitted steps

. regress dmpg dw if mod(_n,2) // calculate troublesome value

. frame change default // switch back to previous frame

. gen dwc = cond(foreign,_b[dw],0) // save result in yourdata.dta

. frame drop subtask // drop new frame

You could have used preserve and restore to perform this task. Using frames, however, is usually

more convenient, if for no other reason than you can switch back and forth between them. You cannot

do that with a preserved dataset and the modified copy in memory.

If you look carefully at the code above, you will notice that the troublesome value we needed to

calculate and store was b[dw]. b[dw] was calculated from data in frame subtask and stored in Stata
for subsequent use no matter which frame is current.

It is dataset values that are stored in frames. Programmatic values such as b[], r(), e(), and s()
are stored in Stata and available across frames.

Use frames to work with separate datasets simultaneously

Whenwe say working with datasets simultaneously, wemean datasets that are linked. Linked datasets

are an alternative to merged datasets.

You have two datasets. persons.dta contains data on people. uscounties.dta contains data on
counties. You want to analyze the people in persons.dta and the counties in which they live. There
are issues in combining the two datasets:

1. Some of the people in persons.dta live in the same county.

2. There are counties in uscounties.dta that are irrelevant to your analysis because nobody in
persons.dta lives in them.

frames intro — Introduction to frames 310

3. You are not certain that uscounties.dta is complete. There might be some people in

persons.dta that live in counties not recorded in uscounties.dta.

4. And beyond that, only some of the variables in uscounties.dta are needed for your analysis.

The frames solution to all of these problems is to link the two datasets. You start by loading

persons.dta into one frame and uscounties.dta into another:
. use persons
. frame create uscounties
. frame uscounties: use uscounties

To link the datasets in the two frames, you type

. frlink m:1 countyid, frame(uscounties)

This matches the observations in persons.dta to those in uscounties.dta based on equal values
of variable countyid. The data are not merged, they are linked. No variables from uscounties.dta
are copied to persons.dta, but how the variables would be copied has been worked out.

You copy variables to the person data as you need them, one at a time, or in groups, using the frget
command:

. frget med_income nschools, from(uscounties)

You can perform the desired analysis using persons.dta, the dataset in the current frame:

. regress income med_income nschools educ age

Use frames to record statistics gathered from simulations

Simulations involve repeating a task—performing a simulation—each step of which produces statis-

tics that are somehow recorded. After that, you analyze the recorded statistics.

The frames solution to the simulation problem is to collect the statistics in another frame. We will

name that frame results. You start by creating a new frame and the variables in it to record the statistics,

such as b1coverage and b2coverage:
new frame’s
name

\
. frame create results b1coverage b2coverage

/
new variables in it

The new frame contains zero observations at this point.

You will next write a do-file to create the values to be stored after each iteration. At the end of each

iteration, the do-file will contain the line

frame’s name
\

. frame post results (exp1) (exp2)

/
values for

b1coverage and b2coverage

frame post adds an observation to the data in results. exp1 and exp2 are expressions.

frames intro — Introduction to frames 311

When the do-file finishes, the completed set of results will be found in frame results. You will want
to save them:

. frame results: save filename

You will then switch to the frame and begin your analysis of the statistics:

. frame change results

. summarize

Frames make Stata (preserve/restore) faster

Many programs written in Stata use the commands preserve and restore to temporarily save and
later restore the contents of the data in memory. Programs that use preserve and restore now run

faster if you are using Stata/MP. They run faster because Stata preserves data by copying them to hidden

frames. Those hidden frames are stored in memory. Copying data to frames stored in memory takes a

lot less time than copying data to disk.

More correctly, preserve copies data to hidden frames unless memory is in short supply. If it is,

preserve resorts to storing them on disk. That is temporary because later, as datasets are restored,

memory will again become available and preserve will return to preserving them in hidden frames.

This is all automatic, but you may want to reset the value of max preservemem, which controls this
behavior. When the amount stored in hidden frames would exceed max preservemem, Stata preserves
subsequent datasets on disk. Out of the box, max preservemem is set to 1 gigabyte. Perhaps you or

someone else has already changed that. To find out the current value of max preservemem, type
. query memory

If you want to change max preservemem to 2 gigabytes for the duration of the session, type

. set max_preservemem 2g

You can set the value up or down. You could set it to 4g or 50m. You could even set it to 0, and then
all datasets would be preserved to disk.

If you want to set max preservemem to 2 gigabytes permanently, for this session and future Stata
sessions, type

. set max_preservemem 2g, permanently

Other uses will occur to you that we should have listed

Frames make doing lots of tasks more convenient, and you will find your own uses for them. Frames

make code faster too. Manipulating objects stored in memory takes less computer time thanmanipulating

disk files.

Learning frames
Here is a tutorial on using frames. In the tutorial, we will sometimes show you a syntax diagram. For

example, we might show you

frame copy framename newframename

frames intro — Introduction to frames 312

When we show syntax diagrams in the tutorial, they are not always the full syntax diagrams. frame
copy, for instance, also allows a replace option, andwemight not only not show it in the syntax diagram

but also not even mention it. You can click on the command to see the full syntax.

The current frame

Everything hinges on the current frame. Stata commands use the data in the current frame. When

you load a dataset,

. sysuse auto
(1978 automobile data)

you are loading it into the current frame. Which frame is that? Type frame to discover its identity:

. frame
(current frame is default)

You can type frame or type pwf, which is a synonym for frame. The letters stand for “print working
frame”. We will type frame in this tutorial, but you may prefer to type pwf because it is shorter. Other
frame commands also have shorter synonyms. We will mention them as we go along.

We just discovered that the current frame is named default. When Stata is launched, that is what

it names the frame it creates for you. You cannot change that, but default is just a name, and you can
rename frames if you wish. You can create other frames too. You can create up to 100 of them.

To rename a frame, use the frame rename command:

frame rename oldname newname

To rename the frame default to genesis, type

. frame rename default genesis

. frame
(current frame is genesis)

Frames can be renamed whether Stata created them or you did. They can be renamed whether they

have data in them or they are empty. Renaming default will not break anything subsequently. Stata
commands operate on the current frame, whatever its name.

Creating new frames

Create new frames using the frame create command:

frame create newframename

We will show you an example in a minute. First, however, if you are going to create a frame with a

new name, you need to know how to find out the names of the frames that currently exist. You do that

using the frames dir command:

frames dir

We recall that we renamed our default frame, but we cannot recall the name that we used. So what

frames are in memory?

. frames dir
genesis 74 x 12; 1978 automobile data

frames intro — Introduction to frames 313

There is one frame in memory, named genesis. It contains a dataset that is 74 × 12, meaning 74

observations and 12 variables. The dataset has a dataset label “1978 automobile data”, but if it did not,

the dataset’s name, auto.dta, would have appeared in its place in frames dir’s output, unless the data
had never been saved to disk. In that case, nothing would have appeared where “1978 automobile data”

appeared.

Now let’s create a new frame named second:

. frame create second

. frame dir
genesis 74 x 12; 1978 automobile data
second 0 x 0

There are now two frames in memory. The new frame is 0 × 0. It is empty.

By the way, frame create has a shorter synonym, mkf. The letters stand for “make frame”. We

could have typed mkf second to make the new frame.

Type frame or frames, it does not matter

You probably did not notice, but we have used frames dir twice so far, but we typed it differently
the second time. We typed

. frames dir

. frame dir

Stata does not care whether you type frame or frames. This indifference applies to all the

frames/frame commands.

Switching frames

frame change (synonym: cwf for “changeworking frame”) switches the identity of the current frame:

frame change framename

We could make second the current frame and switch back to genesis again:
. frames change second
. count
0

. cwf genesis

. count
74

We used Stata’s count command to demonstrate that the current frame really switched. count without
arguments displays the number of observations.

Copying frames

There are two commands for copying frames:

frame copy framename newframename

frame put varlist, into(newframename)

frame put if , into(newframename)

frames intro — Introduction to frames 314

frame copy copies the entire dataset.

frame put copies subsets of the dataset.

In either case, the commands create the frame being copied to.

Dropping frames

To drop existing frames, type

frame drop framename [framename [. . .]]
The current frame cannot be dropped.

Resetting frames

Resetting frames means the following:

1. Drop all the data in all the frames, even if the data have not been saved since they were last

saved.

2. Drop (delete) all the frames.

3. Create a new frame named default, and make it the current frame.

Each of the following commands resets frames:

frames reset

clear frames

clear all

frames reset and clear frames are synonyms.

clear all resets the frames and does more. It returns Stata to as close to just-after-launch status as
possible.

Frame prefix command

The frame prefix command is perhaps the most convenient of the frame commands. Its syntax

command is

frame framename: stata command

The frame prefix command 1) changes the current frame to the frame specified, 2) executes

stata command, and 3) changes the current frame back to what it was.

For instance, say the current frame is default and we have a second frame named second. We type

. frame second: sysuse census, clear

The result would be that frame second would contain census.dta and the current frame would still be
default, just as if we had typed

. frame change second

. sysuse census, clear

. frame change default

frames intro — Introduction to frames 315

Frame prefix has a second feature too. Imagine that in doing the above, we omitted the clear option
when we use the data. Consider what would have happened if we set about typing the three commands

but the data in second had changed since they were last saved:

. frame change second

. sysuse census
no; dataset in memory has changed since last saved
r(4);

What is the current frame? It is second, of course, because we changed to it. Instead of using the two
previous commands, we could have used the frame prefix approach. (The current frame is default.)

. frame second: sysuse census
no; dataset in memory has changed since last saved
r(4);

Even though an error occurred, the current frame is still default! To recover from the error, we do

not have to change back to the original frame. The frame prefix command did that for us.

frame prefix has another syntax when you have more than one command to be executed:

frame framename {
stata_command
stata_command
.
.

}

This syntax is especially useful in programs.

Linking frames

When we say linking, we mean linking as shown in the earlier example when we had separate datasets

on people and counties and combined them in a merged-data kind of way. Linking can do a lot more than

we showed you.

In [D] frlink, we show you how to create a nested linkage to link students (one dataset) to the schools

they attend (a second dataset) and to the counties (a third dataset) in which their schools are located. We

show you an example of linking a generational dataset with itself, so that adult children are linked to

their parents and grandparents, a total of six simultaneous linkages!

Linkages are created by using the frlink command. Its simplest syntaxes are

frlink m:1 varlist, frame(framename)

frlink 1:1 varlist, frame(framename)

These syntaxes create an m:1 or 1:1 link between the current frame and framename based on observations
having equal values of varlist.

Once a link is created, you can use the frget command to copy the appropriate values of variables
from framename to the current frame. Its syntaxes are

frget varlist, from(linkagename)

frget newvar = varname, from(linkagename)

Alternatively, you can use the fralias add command to add an alias to variables from framename.

The alias variables can be used in the current frame similarly to copies created with frget, but alias
variables require less memory. The syntaxes of fralias add are

frames intro — Introduction to frames 316

fralias add varlist, from(linkagename)

fralias add newvar = varname, from(linkagename)

You can use the frval() function in expressions to access appropriate observations of variables in
the linked data. Its syntax is

... frval(linkagename,varname) ...

Ignore the frval() function

While we are on the subject of the frval() function, we should warn you. Also available in [FN] Pro-
gramming functions is frval(). Ignore it. frval() is better. frval() is for use by programmers.

Posting new observations to frames

We used posting to perform simulations in an example earlier. That is one use of it. More generally,

posting solves problems that require transferring data or values from one frame to a new observation in

another.

First, you prepare the other frame to receive the data. frame create, which we already discussed,
has a syntax for doing this. We showed you its first syntax, which is

frame create newframename

The second syntax is

frame create newframename newvarlist

This syntax creates the new frame and creates in it a zero-observation dataset of the new variables spec-

ified. newvarlist really is a new varlist, and that means that you can specify variables types and variable

names. You could type

. frame create results strL(rngstate) double(b1coverage b2coverage)

Alternatively, you can use frame create’s first syntax to create the frame, use frame change to

switch to it, and create the zero-observation dataset yourself. Then, you can switch back to what was the

current frame.

frame post adds observations to the second frame. Its syntax is

frame post framename (exp) (exp) . . . (exp)

The expressions are in the same order as the variables in the second frame.

Saving, modifying, loading, and describing a set of frames

You may want to save several frames for later use. We provide commands for saving a set of frames

in a Stata frameset (.dtas) file and loading saved frames back in memory.

frames save allows you to save a set of frames in a .dtas file. The command provides an option to
automatically save frames that are linked through frlink.

frames modify allows you to modify a Stata frameset (.dtas) file by adding or dropping frames.
You can also replace the contents of an existing frame in the frameset.

frames use allows you to load inmemory frames that have been previously saved with frames save.

frames describe produces a summary of frames in memory or in a file.

frames intro — Introduction to frames 317

Programming with frames
Below we discuss writing Stata programs that deal with multiple frames.

If you are not interested in writing such programs, stop reading.

What follows is not a tutorial. What follows are numbered lists detailing everything you need to know

to write programs that use more than the current frame. That program could implement a command that

does something with frames specified by users. Or it could do something that, as far as users are con-

cerned, uses only the current frame and hidden from them is that your program uses frames to accomplish

certain internal tasks.

We also want to emphasize there still exists a place for programs written in Stata that do not use frames

at all. Perhaps most programs are like that.

Ado-programming with frames

1. tempnames.

Frameswith names created by tempname are automatically dropped (deleted) when the program
generating the temporary name ends.

If the program you write is to create a new frame for the user, give the frame a tempname in your
program, and, at the end, use frame rename to change its name. This way, if an error occurs,
the frame the program may have been in the midst of creating will be dropped automatically.

2. Current frame.

Stata provides the name of the current frame in creturn result c(frame). You can obtain the
name of the current frame by coding

local curframe = c(frame)

Programs that use frames invariably change frames during their execution. Programs need to

ensure the appropriate frame is the current one at the time the program exits. This includes

when the program is successful and when it exits with error.

The successful case is easy enough to handle. At the point your program exits, set the current

frame appropriately. In general, the current frame should be the same as the current frame was

when the program started.

Error cases can be more difficult. Who knows when the user will press break or when the bug

buried in your code will bite? The code could be doing literally anything. Even so, your pro-

gram needs to ensure that the current frame is set appropriately. There is a style of programming

that does this.

Case 1: You are writing new command foo. foo uses frames but in all cases is to leave the
current frame the same as it was initially. The code reads as follows:

program foo
version ...

local curframe = c(frame)
frame ‘curframe’ {

foo_cmd ‘0’
}

end

frames intro — Introduction to frames 318

Write foo cmd as you usually would. As you write foo cmd, you can ignore the current-frame
problem. You can use frame change freely in foo cmd and its subroutines. No matter what
happens, error or success, the program will end with the current frame unchanged.

Case 2: You are writing new command foo. If foo is successful, the new frame will change.

The code reads as follows:

program foo
version ...

local curframe = c(frame)
frame ‘curframe’ {

foo_cmd ‘0’
}

frame change ‘s(frame)’
end

Write foo cmd as you usually would. If execution is successful, however, foo cmd must

sreturn in s(frame) the name of the frame that is to be the current frame. As with case 1,
you can use frame change freely in foo cmd and all of its subroutines.

3. preserve and restore.

For end users, using frames is sometimes a better alternative to using preserve and restore.
Programmers should not, however, interpret that as preserve and restore are out of date and
not to be used in frame programming. preserve and restore in programming have the same
valid use they have always had.

Before frames existed in Stata, a single program could have at most one active preserve in it.
Active means not canceled by restore or restore, not. A program could preserve, later
restore or restore, not, and then preserve again. It would be odd but allowed.

Nowadays, a single program can have up to one active preserve for each frame. If a pro-

gram deals with frames ‘one’ and ‘two’ and it is necessary, it can preserve both of them.
preserve preserves the current frame. To preserve frames ‘one’ and ‘two’, code,

frame ‘one’: preserve
frame ‘two’: preserve

When frames are automatically restored at the end of the program, both frames will be restored.

If you wish to restore frame ‘one’ early and cancel its automatic restoration when the program
ends, code

frame ‘one’: restore

If you instead wish to restore frame ‘one’ now and still have it restored when the program

ends, code

frame ‘one’: restore, preserve

If you instead wish simply to cancel the restoration of frame ‘one’ when the program ends,

code

frame ‘one’: restore, not

In all three cases, frame ‘two’ will still be restored when the program ends.

Any uncanceled automatic restorations when the program ends will re-create any frames that

have been dropped (deleted). Automatic restoration does not change the identity of the current

frame.

frames intro — Introduction to frames 319

Mata programming with frames

1. st frame*() functions.

Mata provides a suite of frame-related functions. They can change frames, create frames, drop

frames, etc.

2. st data(), st sdata(), st data(), and st sdata() functions.

Calls to st data() and its associated functions return the data from the current frame. If you

want data from other frames, change to the other frame first using st framecurrent().

3. st view() and st sview() functions.

Views are views onto the frame that was current at the time the view was created by st view()
or st sview(), and they remain that after creation even when the identity of the current frame
changes. If X is a view onto frame default, it remains a view onto frame default even if the
current frame changes.

Views are how data can be copied between frames. Create a view onto the data in one frame.

Create another view onto the data in the other. Use one view to update the other.

References
Gopal, K. 2023. From datasets to framesets and alias variables: Data management advances in Stata. The Stata

Blog: Not Elsewhere Classified. https://blog.stata.com/2023/09/12/from-datasets-to-framesets-and-alias-variables-

data-management-advances-in-stata/.

Huber, C. 2019. Fun with frames. The Stata Blog: Not Elsewhere Classified. https://blog.stata.com/2019/09/06/fun-with-

frames/.

Also see
[D] frames — Data frames

[D] frget — Copy variables from linked frame

[D] frlink — Link frames

[FN] Programming functions

[M-5] st frame*() — Data frame manipulation

https://blog.stata.com/2023/09/12/from-datasets-to-framesets-and-alias-variables-data-management-advances-in-stata/
https://blog.stata.com/2023/09/12/from-datasets-to-framesets-and-alias-variables-data-management-advances-in-stata/
https://blog.stata.com/2019/09/06/fun-with-frames/
https://blog.stata.com/2019/09/06/fun-with-frames/

frames — Data frames

Description Menu Syntax Also see

Description
This entry provides a quick reference to each of the individual commands and functions related to

data frames.

If you are new to data frames in Stata, please start by reading [D] frames intro.

Data frames are discussed in detail in [D] frames intro.

There is also a set of Mata functions to work with frames. See [M-5] st frame*().

Menu
Data > Frames Manager

Syntax
frame and frames are synonyms. Below, we will use one or the other depending on which one is more
natural given the context.

Display name of current (working) frame

frame pwf (see [D] frame pwf)

frame

pwf

Display names of all frames in memory

frames dir (see [D] frames dir)

Create new, empty frame

frame create newframename (see [D] frame create)

Create new frame with specified variables for use with frame post
frame create newframename newvarlist (see [P] frame post)

Change identity of current (working) frame

frame change framename (see [D] frame change)

cwf framename

320

frames — Data frames 321

Execute command on data in specified frame

frame framename: stata command (see [D] frame prefix)

frame framename {
commands to execute in context of framename

}

Make a copy of a frame

frame copy frame from frame to [, replace] (see [D] frame copy)

Copy subset of variables or observations to a new frame

frame put (see [D] frame put)

Add new observation to frame

frame post framename (exp) (exp) . . . (exp) (see [P] frame post)

Drop (eliminate) frames that are not the current frame

frame drop framename [framename [. . .]] (see [D] frame drop)

Rename existing frame (which can be the current frame)

frame rename oldframename newframename (see [D] frame rename)

Reestablish initial state of having a single, empty frame named default
frames reset (see [D] frames reset)

Link frames

frlink (see [D] frlink)

Get variables from linked frame

frget (see [D] frget)

Add aliases to variables from linked frame

fralias add (see [D] fralias)

Describe alias variables in current frame

fralias describe (see [D] fralias)

Recast alias variables into copies in the current frame

frunalias (see [D] frunalias)

Functions to access variables in another frame

frval(linkvar, varname) (see frval())

frval(framename, varname, i)

frames — Data frames 322

Saving, modifying, loading, and describing a set of frames

frames save (see [D] frames save)

frames modify (see [D] frames modify)

frames use (see [D] frames use)

frames describe (see [D] frames describe)

Also see
[D] frames intro — Introduction to frames

[M-5] st frame*() — Data frame manipulation

frame change — Change identity of current (working) frame

Description Menu Syntax Remarks and examples Also see

Description
frame changemakes the named frame current. This means that any commands you issue after frame

change will run on the data in that frame.

cwf (change working frame) is a synonym for frame change.

Menu
Data > Frames Manager

Syntax
frame change framename

cwf framename

Remarks and examples
frame changemakes the named frame current, or active. After you change to a frame, any commands

you execute work with the data in that frame.

Another way to work with the data in another frame is the frame prefix command. See [D] frame

prefix.

Example 1
Let’s assume we have several frames in memory, including our current frame named default. We

see this by typing frames dir:

. frames dir
cars 74 x 12; 1978 automobile data
default 50 x 13; 1980 Census data by state
work 28534 x 21; National Longitudinal Survey of Young Women, 14-24

years old in 1968

Our next project uses the 1978 automobile data in the cars frame. To change to this frame, we type

. frame change cars

323

frame change — Change identity of current (working) frame 324

We can now work with the data in this frame. For instance, we can describe the data by typing

. describe
Contains data from https://www.stata-press.com/data/r19/auto.dta
Observations: 74 1978 automobile data

Variables: 12 13 Apr 2024 17:45
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

make str18 %-18s Make and model
price int %8.0gc Price
mpg int %8.0g Mileage (mpg)
rep78 int %8.0g Repair record 1978
headroom float %6.1f Headroom (in.)
trunk int %8.0g Trunk space (cu. ft.)
weight int %8.0gc Weight (lbs.)
length int %8.0g Length (in.)
turn int %8.0g Turn circle (ft.)
displacement int %8.0g Displacement (cu. in.)
gear_ratio float %6.2f Gear ratio
foreign byte %8.0g origin Car origin

Sorted by: foreign

At any time, we can change back to the default frame by typing

. frame change default

Also see
[D] frames intro — Introduction to frames

[D] frame prefix — The frame prefix command

frame copy — Make a copy of a frame

Description Quick start Menu Syntax
Option Remarks and examples Also see

Description
frame copy copies an existing frame to a frame with a new name or to an existing frame, replacing

its contents. All data and metadata from frame from are copied.

Quick start
Copy the default frame to a frame named fr1

frame copy default fr1

Copy frame fr1 to existing frame fr2, replacing the data
frame copy fr1 fr2, replace

Menu
Data > Frames Manager

Syntax
frame copy frame from frame to [, replace]

Option
replace specifies that frame to be replaced if it already exists.

Remarks and examples
frame from must be an existing frame. It may be the current frame. frame to may be the name of a

new frame or an existing frame. If it is an existing frame, replace must be specified.

In a programming context within a do-file or an ado-file, if you obtain a temporary name and copy a

frame to that name, the frame will automatically be removed upon conclusion of the do-file or program.

Example 1
Let’s assume we have a frame named default in memory. We want to copy this frame to a new

frame named counties. To do this, we type

. frame copy default counties

325

frame copy — Make a copy of a frame 326

Later, we decide that we need to copy a frame named uscounties to our existing frame named

counties, replacing it

. frame copy uscounties counties, replace

When programming, we might want to copy a frame to a temporary name. To copy a frame named

counties to a temporary name, we could type the following:

. tempname newframe

. frame copy counties ‘newframe’

Also see
[D] frames intro — Introduction to frames

[D] frame put — Copy selected variables or observations to a new frame

[D] frame rename — Rename existing frame

frame create — Create a new frame

Description Menu Syntax Remarks and examples Also see

Description
frame create creates a new, empty frame.

mkf (make frame) is a synonym for frame create.

frame createwith a newvarlist creates a new frame with the specified variables. This syntax is most

often used in combination with frame post for posting results in a new frame, see [P] frame post.

Menu
Data > Frames Manager

Syntax

Create new, empty frame

frame create newframename

mkf newframename

Create new frame with specified variables

frame create newframename newvarlist (see [P] frame post)

Remarks and examples
frame create creates a new, empty frame. After creation, you might use frame change to switch to

that frame, or you might use the frame prefix with use or import to load data for analysis in that frame.

Example 1
To create a new frame named cars, type

. frame create cars

We can now load our 1978 automobile data into new the new frame:

. frame cars: use https://www.stata-press.com/data/r19/auto.dta

Here we loaded data from the web. More often, we will load data from our computer. If auto.dta
was saved in our current working directory, we could have typed

. frame cars: use auto.dta

327

frame create — Create a new frame 328

Also see
[D] frames intro — Introduction to frames

[D] frames — Data frames

[P] frame post — Post results to dataset in another frame

frame drop — Drop frames from memory

Description Menu Syntax Remarks and examples Also see

Description
frame drop eliminates frommemory the specified frames, including any data that are in those frames.

Menu
Data > Frames Manager

Syntax
frame drop framename [framename [. . .]]

Remarks and examples
frame drop eliminates, or removes from memory, the specified frames. Any data in the frames are

dropped when the frames are dropped. The current frame cannot be dropped.

To eliminate all frames frommemory, including the current frame, use frames reset. See [D] frames

reset.

frame drop supports wildcards * and ? in framename: * matches zero or more characters, and ?
matches exactly one character.

Example 1
To drop a frame named cars, type

. frame drop cars

Example 2
To drop all frames with name starting with auto, type

. frame drop auto*

Example 3
To drop all frames with name starting with f followed by exactly three characters, type

. frame drop f???

Also see
[D] frames intro — Introduction to frames

[D] frames — Data frames

[D] frames reset — Drop all frames from memory

329

frame prefix — The frame prefix command

Description Quick start Syntax Remarks and examples Also see

Description
The frame prefix allows you to execute one or more Stata commands in another frame, leaving the

current frame unchanged.

Quick start
Describe the data in frame fr1

frame fr1: describe

Execute a series of commands in frame fr2
frame fr2 {
use mydata
summarize
codebook

}

Syntax
frame framename: stata command

frame framename {
commands to execute in context of framename

}

Remarks and examples
Remarks are presented under the following headings:

Example of interactive use
Example of use in programs

Example of interactive use
You have data in two frames. In your current frame you have data containing detailed information on

sales for your company across four regions. A colleague just sent you an email with a summary dataset

named sales.dta, which is supposed to contain the total sales for each region. You want to make sure
the summary dataset was created from the same base sales information as the detailed dataset.

In your current dataset, you know from summarize that the total sales for the South region were

$532,399 and the total cost of the goods sold was $330,499. You check that the dataset you just received

matches these totals:

. frame create summary

. frame summary: use sales

. frame summary: list if region==”South”

330

frame prefix — The frame prefix command 331

The frame prefix command allowed you to load a dataset in frame summary and run a command on
that data without affecting anything in your current frame.

Example of use in programs
The frame prefix can be used for one-liners, such as above, or it can be used to execute a whole series

of commands on the data in another frame. The nice thing in either case is that no matter what happens

when those commands are executed, whether they complete successfully or exit with error, the current

frame will come back to what it was before you called the frame prefix command. In programs, this
means that you do not have to hold on to the current frame name and change back to it after working in

another frame.

You are writing a program that takes a subset of the current data, performs some manipulations on

that subset, and then graphs the result. The required manipulations would damage the original dataset.

One way to do this would be to

1. create a temporary frame:

tempname tmpframe

2. put a subset of data into it:

frame put if ..., into(‘tmpframe’)

3. perform the needed manipulations and graph the result:

frame ‘tmpframe’ {
some commands which manipulate the data
graph twoway ...

}

At the end of this block of code, any commands that appear next will work against the original frame,

not ‘tmpframe’. You could add a line to drop ‘tmpframe’, but there is no need. Because it has a

temporary name, the frame and the data in it will automatically be dropped when your program or do-file

completes.

An alternative workflow for the above would be to first preserve your data, then manipulate them
in place and obtain your graph. You could then restore the original data. Whether you should use the

frame prefix approach or the preserve and restore approach is up to you. The frame approach is
often faster, but if your dataset in memory is extremely large, you may not want to make another entire

copy of it in memory, even temporarily, and thus, the second approach may be better in such a case.

Also see
[D] frames intro — Introduction to frames

[D] frames — Data frames

frame put — Copy selected variables or observations to a new frame

Description Quick start Menu Syntax Remarks and examples Also see

Description
frame put copies a subset of variables or observations from the current frame to the specified frame.

It works much like Stata’s keep command (see [D] drop), except that the data in the current frame are
left unchanged, while the selected variables or observations are copied to a new frame.

Quick start
Put variables v1, v2, and v3 from the current frame into new frame fr1

frame put v1 v2 v3, into(fr1)

Put all variables whose name begins with v into new frame fr2
frame put v*, into(fr2)

Put all observations where v1 is not missing into new frame fr3
frame put if !missing(v1), into(fr3)

Put the first observation from each cluster identified by cvar into new frame fr4
by cvar: frame put if _n==1, into(fr4)

Menu
Data > Frames Manager

Syntax
Copy selected variables from the current frame to a new frame

frame put varlist, into(newframename)

Copy observations that satisfy specified condition from the current frame to a new frame

frame put [varlist] if , into(newframename)

Copy a range of observations from the current frame to a new frame

frame put [varlist] in [if], into(newframename)

by is allowed with the second syntax of frame put; see [D] by.

332

frame put — Copy selected variables or observations to a new frame 333

Remarks and examples
There are three main workflows for operating on a subset of data you already have in memory. One is

to make use of Stata’s if and in qualifiers with your commands to restrict the observations to be used.
Another is to use preserve to make a temporary copy of the data in memory, then use keep and drop to
make a subset of those data for analysis, and then to use restore to bring the original data back. Finally,
you can leave the data in memory unchanged and use frame put to place a subset of the data in another
frame for analysis. That frame can then be dropped, saved, or left in memory for further analysis.

frame put copies all variable and value labels, characteristics, and notes for any variables copied to
the new frame.

Example 1
To demonstrate frame put, we start with data from the 1980 US Census.

. use https://www.stata-press.com/data/r19/census
(1980 Census data by state)
. describe
Contains data from https://www.stata-press.com/data/r19/census.dta
Observations: 50 1980 Census data by state

Variables: 13 6 Apr 2024 15:43

Variable Storage Display Value
name type format label Variable label

state str14 %-14s State
state2 str2 %-2s Two-letter state abbreviation
region int %-8.0g cenreg Census region
pop long %12.0gc Population
poplt5 long %12.0gc Pop, < 5 year
pop5_17 long %12.0gc Pop, 5 to 17 years
pop18p long %12.0gc Pop, 18 and older
pop65p long %12.0gc Pop, 65 and older
popurban long %12.0gc Urban population
medage float %9.2f Median age
death long %12.0gc Number of deaths
marriage long %12.0gc Number of marriages
divorce long %12.0gc Number of divorces

Sorted by:

frame put — Copy selected variables or observations to a new frame 334

We put data from several variables for all states with a population greater than 5,000,000 into new

frame pop5.

. frame put state region pop* medage death if pop > 5000000, into(pop5)

. frame pop5: describe
Contains data
Observations: 14 1980 Census data by state

Variables: 10

Variable Storage Display Value
name type format label Variable label

state str14 %-14s State
region int %-8.0g cenreg Census region
pop long %12.0gc Population
poplt5 long %12.0gc Pop, < 5 year
pop5_17 long %12.0gc Pop, 5 to 17 years
pop18p long %12.0gc Pop, 18 and older
pop65p long %12.0gc Pop, 65 and older
popurban long %12.0gc Urban population
medage float %9.2f Median age
death long %12.0gc Number of deaths

Sorted by:
Note: Dataset has changed since last saved.

Also see
[D] frames intro — Introduction to frames

[D] frames — Data frames

[D] drop — Drop variables or observations

[D] frame copy — Make a copy of a frame

[P] frame post — Post results to dataset in another frame

frame pwf — Display name of current (working) frame

Description
frame pwf displays the name of the current frame, also known as the working frame. frame by itself

and pwf (print working frame) by itself are synonyms for frame pwf.

Menu
Data > Frames Manager

Syntax
frame pwf

frame

pwf

collect is allowed with frame pwf; see [U] 11.1.10 Prefix commands.

Remarks and examples
You can type any of frame pwf, frame, or pwf to see what the current (working) frame is.

. sysuse auto
(1978 automobile data)
. frame pwf
(current frame is default)

. frame create cars

. frame change cars

. pwf
(current frame is cars)

Stored results
frame pwf stores the following in r():

Macros

r(currentframe) name of current (working) frame

Also see
[D] frames intro — Introduction to frames

[D] frames — Data frames

335

frame rename — Rename existing frame

Description
frame rename changes the name of an existing frame. You can even rename the current frame.

Menu
Data > Frames Manager

Syntax
frame rename oldframename newframename

Remarks and examples
oldframename must be an existing frame. It may be the current frame. newframename must not be

an existing frame.

Example 1
Let’s assume we have several frames in memory, including a frame named default. We see this by

typing frames dir:

. frames dir
cars 74 x 12; 1978 automobile data
default 50 x 13; 1980 Census data by state
work 28534 x 21; National Longitudinal Survey of Young Women, 14-24

years old in 1968

We want to rename the default frame to a new frame named census:

. frame rename default census

We also want to rename the existing frame cars to automobiles:

. frame rename cars automobiles

We can then check the changes with frames dir:

. frames dir
automobiles 74 x 12; 1978 automobile data
census 50 x 13; 1980 Census data by state
work 28534 x 21; National Longitudinal Survey of Young Women, 14-24

years old in 1968

Also see
[D] frames intro — Introduction to frames

[D] frames — Data frames

[D] frame copy — Make a copy of a frame

336

frames describe — Describe frames in memory or in a file

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
frames describe produces a summary of frames in memory or in a Stata frameset (.dtas) file.

Quick start
Describe all frames in memory

frames describe

Describe frames in file myframeset.dtas
frames describe using myframeset

Describe variable var1 in frames A and B in memory
frames describe var1, frames(A B)

Menu
Data > Frames Manager

337

frames describe — Describe frames in memory or in a file 338

Syntax
Describe frames in memory

frames describe [varlist] [, memory options]

Describe frames in a file

frames describe [varlist] using filename [, file options]

If filename is specified without an extension, .dtas is assumed. If filename contains embedded spaces
or other special characters, enclose it in double quotes.

memory options Description

frames(framelist) list of frames to describe

simple display only variable names

short display only general information

fullnames do not abbreviate variable names

numbers display variable number along with name

file options Description

frames(framelist) list of frames to describe

simple display only variable names

short display only general information

Options
Options are presented under the following headings:

Options to describe frames in memory
Options to describe frames in a file

Options to describe frames in memory
frames(framelist) specifies the list of frames to describe.

simple displays only the variable names in a compact format. simple may not be combined with other
options, except for frames().

short suppresses the specific information for each variable. Only the general information (number of
observations, number of variables, and sort order) is displayed.

fullnames specifies that frames describe display the full names of the variables. The default is to
present an abbreviation when the variable name is longer than 15 characters. fullnames may not be
specified with numbers.

numbers specifies that frames describe present the variable number with the variable name. If

numbers is specified, variable names are abbreviated when the name is longer than eight characters.
numbers may not be specified with fullnames.

frames describe — Describe frames in memory or in a file 339

Options to describe frames in a file
frames(framelist) specifies the list of frames to describe.

simple displays only the variable names in a compact format. simple may not be combined with other
options, except for frames().

short suppresses the specific information for each variable. Only the general information (number of
observations, number of variables, and sort order) is displayed.

Remarks and examples
frames describe, with no operands, describes the frames in memory in alphabetical order.

frames describe with the usingmodifier describes frames on disk in the order they were specified
in framelist when saved with frames save, frames(framelist). This ordering is reflected in stored

result r(frames) after frames describe using.

Example 1: Describe frames in memory
After loading multiple datasets in memory with data frames, you can use frames describe to get

a summary of the data in each frame. To demonstrate, below we create one frame with demographic

information from the 1980 census (census.dta) and another with housing data (hsng.dta) from the

same census.

. clear frames

. sysuse census
(1980 Census data by state)
. frame rename default census
. frame create housing
. frame change housing
. use https://www.stata-press.com/data/r19/hsng
(1980 Census housing data)

frames describe — Describe frames in memory or in a file 340

By simply typing frames describe, we get detailed information about the data in each frame, such
as the number of observations and details about all the variables:

. frames describe

Frame: census
Contains data from C:\Program Files\Stata19\ado\base\c\census.dta
Observations: 50 1980 Census data by state

Variables: 13 6 Apr 2024 15:43

Variable Storage Display Value
name type format label Variable label

state str14 %-14s State
state2 str2 %-2s Two-letter state abbreviation
region int %-8.0g cenreg Census region
pop long %12.0gc Population
poplt5 long %12.0gc Pop, < 5 year
pop5_17 long %12.0gc Pop, 5 to 17 years
pop18p long %12.0gc Pop, 18 and older
pop65p long %12.0gc Pop, 65 and older
popurban long %12.0gc Urban population
medage float %9.2f Median age
death long %12.0gc Number of deaths
marriage long %12.0gc Number of marriages
divorce long %12.0gc Number of divorces

Sorted by:

Frame: housing
Contains data from https://www.stata-press.com/data/r19/hsng.dta
Observations: 50 1980 Census housing data

Variables: 12 3 Feb 2024 16:22

Variable Storage Display Value
name type format label Variable label

state str14 %14s State
division int %8.0g division Census division
region int %8.0g region Census region
pop long %10.0g Population in 1980
popgrow float %6.1f Pop. growth 1970-80
popden int %6.1f Pop/sq. mile
pcturban float %8.1f Percent urban
faminc long %8.2f Median family inc., 1979
hsng long %10.0g Hsng units 1980
hsnggrow float %8.1f % housing growth
hsngval long %9.2f Median hsng value
rent long %6.2f Median gross rent

Sorted by: state

In the census data frame, we have information for each state about the median age and the numbers
of children and teens, adults, and senior citizens. In the housing data frame, we have information about
the housing units, median family income, and median housing value.

frames describe describes the frames in memory in alphabetical order. Therefore, we first get a
summary of the census frame and then a summary of the housing frame.

frames describe — Describe frames in memory or in a file 341

If we are interested only in certain variables, we can list them. Below, we describe the variables state
and region, as well as all variables whose names begin with pop, for all frames in memory:

. frames describe state region pop*

Frame: census
Variable Storage Display Value

name type format label Variable label

state str14 %-14s State
region int %-8.0g cenreg Census region
pop long %12.0gc Population
poplt5 long %12.0gc Pop, < 5 year
pop5_17 long %12.0gc Pop, 5 to 17 years
pop18p long %12.0gc Pop, 18 and older
pop65p long %12.0gc Pop, 65 and older
popurban long %12.0gc Urban population

Frame: housing
Variable Storage Display Value

name type format label Variable label

state str14 %14s State
region int %8.0g region Census region
pop long %10.0g Population in 1980
popgrow float %6.1f Pop. growth 1970-80
popden int %6.1f Pop/sq. mile

Furthermore, if we are interested only in describing the data for certain frames, we can list the names

with the frames() option. Below, we are interested in the population variables in the housing frame:

. frames describe pop*, frames(housing)

Frame: housing
Variable Storage Display Value

name type format label Variable label

pop long %10.0g Population in 1980
popgrow float %6.1f Pop. growth 1970-80
popden int %6.1f Pop/sq. mile

We can also skip the variable information altogether with the short option:

. frames describe, frames(housing) short

Frame: housing
Contains data from https://www.stata-press.com/data/r19/hsng.dta
Observations: 50 1980 Census housing data

Variables: 12 3 Feb 2024 16:22
Sorted by: state

frames describe — Describe frames in memory or in a file 342

Example 2: Describe frames in a file
In example 1, we created two frames with different information from the 1980 census. Let’s save

these frames into a file called censuses.dtas:

. frames save censuses, frames(housing census) replace
(file censuses.dtas not found)
file censuses.dtas saved

Now suppose that we are working in a new Stata session and we wish to describe the frames from the

censuses.dtas file:

. clear all

. frames describe using censuses

Frame: housing
Contains data 1980 Census housing data
Observations: 50 28 Mar 2025 19:42

Variables: 12

Variable Storage Display Value
name type format label Variable label

state str14 %14s State
division int %8.0g division Census division
region int %8.0g region Census region
pop long %10.0g Population in 1980
popgrow float %6.1f Pop. growth 1970-80
popden int %6.1f Pop/sq. mile
pcturban float %8.1f Percent urban
faminc long %8.2f Median family inc., 1979
hsng long %10.0g Hsng units 1980
hsnggrow float %8.1f % housing growth
hsngval long %9.2f Median hsng value
rent long %6.2f Median gross rent

Sorted by: state

frames describe — Describe frames in memory or in a file 343

Frame: census
Contains data 1980 Census data by state
Observations: 50 28 Mar 2025 19:42

Variables: 13

Variable Storage Display Value
name type format label Variable label

state str14 %-14s State
state2 str2 %-2s Two-letter state abbreviation
region int %-8.0g cenreg Census region
pop long %12.0gc Population
poplt5 long %12.0gc Pop, < 5 year
pop5_17 long %12.0gc Pop, 5 to 17 years
pop18p long %12.0gc Pop, 18 and older
pop65p long %12.0gc Pop, 65 and older
popurban long %12.0gc Urban population
medage float %9.2f Median age
death long %12.0gc Number of deaths
marriage long %12.0gc Number of marriages
divorce long %12.0gc Number of divorces

Sorted by:

Note that when we describe frames from a file, the first frame listed in the frames save command
will be the first one described. Therefore, we now see the housing frame described first.

You can issue the return list command after frames describe using to see the order in which
the frames were saved.

Stored results
frames describe stores the following in r():

Scalars

r(complevel) compression level (with option using only)

Macros

r(frames) list of frames described

r(first) first frame in r(frames) (with option using only)
r(N) number of observations in each frame

r(k) number of variables in each frame

r(width) width of frames

r(changed) 1 or 0 for each frame in memory: 1 means the data in the frame have changed since last save; 0
means they have not changed

Also see
[D] frames save — Save a set of frames on disk

[D] frames use — Load a set of frames from disk

[D] frames — Data frames

[D] describe — Describe data in memory or in a file

frames dir — Display names of all frames in memory

Description Menu Syntax Remarks and examples Stored results Also see

Description
frames dir lists all frames in memory, along with the dimensions of the data, the label of the data in

each (if any), and an indicator of whether the data in the frame have changed since last saved.

Menu
Data > Frames Manager

Syntax
frames dir

collect is allowed; see [U] 11.1.10 Prefix commands.

Remarks and examples
frames dir shows you at a glance information about all frames in memory.

The first column shows an asterisk if the data in a given frame have changed since they were last

saved. If you try to exit Stata and there are unsaved data in one or more frames, you will receive an error

warning you. You can type frames dir to see frames with unsaved data.

The third column shows the number of observations and variables along with the data label, if any,

for each frame. If there is not a data label, the dataset filename, if there is one, will be displayed.

Example 1
We have been working with data in multiple frames. We now want to see all the frames currently in

memory. To do this, we type

. frames dir
* afewcars 74 x 3; Subset of auto.dta
default 74 x 12; 1978 automobile data

* work 3142 x 10; National Longitudinal Survey of Young Women, 14-24
years old in 1968

Note: Frames marked with * contain unsaved data.

We are reminded of the names and contents of the three frames in memory. We also see that the data

in frames afewcars and work have changed, but those changes have not been saved.

344

frames dir — Display names of all frames in memory 345

Stored results
frames dir stores the following in r():

Macros

r(frames) names of frames in memory

r(changed) 1 or 0 for each frame in memory: 1 means the data in the frame have changed since last save; 0
means they have not changed

Also see
[D] frames intro — Introduction to frames

[D] frames — Data frames

[D] save — Save Stata dataset

frames modify — Modify a set of frames on disk

Description Quick start Menu Syntax Options
Remarks and examples Stored results Also see

Description
frames modify modifies a frameset (.dtas) file by adding frames, dropping frames, or replacing

the content of existing frames in the file.

Quick start
Add frames A, B, and C to file myframeset.dtas

frames modify using myframeset, add(A B C)

Drop frames A and B from file myframeset.dtas
frames modify using myframeset, drop(A B)

Menu
Data > Frames Manager

Syntax
Add frames to a frameset on disk

frames modify using filename, add(framelist [, replace]) [options]

Drop frames from a frameset on disk

frames modify using filename, drop(framelist)

If filename is specified without an extension, .dtas is assumed. If filename contains embedded spaces
or other special characters, enclose it in double quotes.

options Description

nolabel omit value labels from the added frames

orphans save value labels in added frames, even if they are not attached to a variable

emptyok add specified frames even if they have zero observations and zero
variables

346

frames modify — Modify a set of frames on disk 347

Options
add(framelist[, replace]) specifies the frames in memory to be added to the frameset. framelist is

a list of frame names separated by a space. To add all frames in memory to the frameset, specify

add(all). Either add() or drop(), but not both, must be specified.

replace permits frames modify to overwrite frames that already exist in the frameset.

drop(framelist) specifies the frames to be dropped from the frameset. framelist is a list of frame names

separated by a space. Either drop() or add(), but not both, must be specified.

nolabel specifies that value labels be omitted when adding frames to the frameset.

orphans specifies that all value labels be saved with the frames to be added, including those not attached
to any variable.

emptyok specifies that frames be added to the frameset even if they contain zero observations and zero
variables.

Remarks and examples
frames modify allows you to conveniently modify a frameset (.dtas) file. You can add a list of

frames to the frameset, or drop a list of frames from the frameset, without loading the entire frameset

into memory.

frames modify is useful when you have already saved a set of frames with frames save but wish to
modify its contents. However, frames modify has the potential to break linkages, if they exist, between
frames in the frameset. Adding a frame that does not previously exist in the frameset will not affect any

existing links in the frameset. However, if a frame in the frameset was saved with links to other frames,

the linkages will be dropped if you replace the frame without reestablishing the link. If you are not sure

about existing linkages, you should load the frameset with frames use and examine linkages before

using frames modify.

Example 1: Modify an existing frame in the frameset
In frames save, we saved frames census and housing in myframeset.dtas. Below, we re-create

that file:

. frame create census

. frame change census

. sysuse census
(1980 Census data by state)
. frame create housing
. frame change housing
. webuse hsng
(1980 Census housing data)
. frlink 1:1 state, frame(census)
(all observations in frame housing matched)
. frames save myframeset, frames(housing) linked
file myframeset.dtas saved

frames modify — Modify a set of frames on disk 348

Suppose that we wish to modify the contents of the housing frame. This is the current frame. Below,
we drop two variables that we are not interested in, and then we replace the contents of the housing
frame in myframeset.dtas.

. drop popden popgrow

. frames modify using myframeset, add(housing, replace)
frame housing replaced
file myframeset.dtas saved

frames modify reports that the housing frame was replaced and that the frameset file

myframeset.dtas has been saved.

Stored results
frames modify stores the following in r():

Scalars

r(complevel) compression level

r(compsize) size, in bytes, of compressed file

r(compratio) compression ratio, defined as the ratio of compressed size to uncompressed size

Macros

r(fn) pathname of modified frameset file

r(frames) list of frames in the modified frameset

r(added) list of frames added, if add() specified
r(replaced) list of frames replaced

r(dropped) list of frames dropped, if drop() specified

Also see
[D] frames save — Save a set of frames on disk

[D] frames use — Load a set of frames from disk

[D] frames — Data frames

frames reset — Drop all frames from memory

Description Menu Syntax Remarks and examples Also see

Description
frames reset eliminates from memory all frames, including any data in them. It restores Stata to its

initial state of having a single, empty frame named default. clear frames is a synonym for frames
reset.

Menu
Data > Frames Manager

Syntax
frames reset

clear frames

Remarks and examples
frames reset eliminates, or removes from memory, all frames. It then creates a single, empty frame

named default. This is the same as Stata’s initial state when it first starts.

To drop frames, use frame drop. See [D] frame drop.

To drop results, programs, matrices, etc. in addition to frames, use the clear command. See [D] clear.

Example 1
We have numerous frames in memory:

. frames dir
cars 74 x 12; 1978 automobile data
default 50 x 13; 1980 Census data by state
work 28534 x 21; National Longitudinal Survey of Young Women, 14-24

years of age in 1968
(output omitted)

We want to drop all the frames. We do this by typing

. frames reset

We now have the empty frame named default.

. frames dir
default 0 x 0

349

frames reset — Drop all frames from memory 350

Also see
[D] frames intro — Introduction to frames

[D] frames — Data frames

[D] frame drop — Drop frames from memory

[D] clear — Clear memory

frames save — Save a set of frames on disk

Description Quick start Menu Syntax Options
Remarks and examples Stored results Also see

Description
frames save saves a set of frames as a Stata frameset (.dtas) file.

Quick start
Save frames A, B, and C in file myframeset.dtas

frames save myframeset, frames(A B C)

Save, in file myframeset.dtas, frames A and B as well as all frames linked, through frlink, to A and B
frames save myframeset, frames(A B) linked

Menu
Data > Frames Manager

Syntax
frames save filename, frames(framelist) [options]

If filename is specified without an extension, .dtas is assumed. If filename contains embedded spaces
or other special characters, enclose it in double quotes.

options Description

∗ frames(framelist) specify frames to be saved

replace overwrite existing .dtas file
linked save frames linked to those in framelist

relaxed ignore missing linked frames

complevel(#) specify compression level; default is complevel(1)
nolabel omit value labels from the saved frames

orphans save all value labels, even if they are not attached to a variable

emptyok save specified frames even if they have zero observations and zero variables

all save e(sample) with the frames in which it exists; programmer’s option
∗frames(framelist) is required.
all does not appear in the dialog box.

351

frames save — Save a set of frames on disk 352

Options
frames(framelist) specifies the frames to be saved. framelist is a list of frame names separated by a

space. To save all frames in memory, specify frames(all). frames() is required.

replace permits frames save to overwrite filename if it already exists.

linked specifies that all frames linked to those in framelist are also saved. Linkages are established

by the frlink command. Note that if frame A is linked to frame B through frlink, and frame B is
similarly linked to frame C, then saving frame A with the linked option will also save frames B and
C, as well as other frames linked to B and C, and so forth.

relaxed is allowed only with the linked option. relaxed specifies that an error message not be issued
if a linked frame does not exist.

complevel(#) specifies the compression level to be used. #may be any integer from 0 to 9; the default

is complevel(1). complevel(0) means no compression; a larger # means more compression. The
compression level can also be set with set dtascomplevel; type help set dtascomplevel to learn
more. complevel() overrides the dtascomplevel setting.

nolabel specifies that value labels from the saved frames are omitted.

orphans specifies that all value labels be saved, including those not attached to any variable.

emptyok specifies that the frames be saved even if they contain zero observations and zero variables.

The following option is available with frames save but is not shown in the dialog box:

all specifies that e(sample) be saved with the frames in which it exists. all is a programmer’s option.

Remarks and examples
Data frames allow you to work with multiple datasets in memory and to access variables across those

datasets. frames save allows you to save the data from multiple frames into a single file; the resulting

file is referred to as a Stata frameset and uses the .dtas extension. You can simply specify the list of
frames you want to save or specify that the listed frames and those linked to them be saved.

Example 1: Save multiple frames
Suppose that we have two frames in memory and we want to save data from both in a single file. To

demonstrate, we first create a frame named census and load a dataset with population data by state:

. clear all

. frame create census

. frame change census

. sysuse census
(1980 Census data by state)

Next we create a frame named housing in which we load housing data by state:

. frame create housing

. frame change housing

. webuse hsng
(1980 Census housing data)

frames save — Save a set of frames on disk 353

Now we save both frames, census and housing, into a file called myframeset.dtas:

. frames save myframeset, frames(census housing) replace
(file myframeset.dtas not found)
file myframeset.dtas saved

Whenever we wish to load the data frames from myframeset.dtas, we can use frames use.

Example 2: Save linked frames
One advantage of working with data frames is that you can access values from one frame in another

by linking the two frames. Furthermore, when you save data from a frame, you may wish to save data

from the frames it is linked to, which we demonstrate below.

Continuing with our frames from example 1, we can use frame pwf to check which frame is the

working frame:

. frame pwf
(current frame is housing)

Our current frame is housing. We now use frlink to link frame census to frame housing, matching
observations on values of state:

. frlink 1:1 state, frame(census)
(all observations in frame housing matched)

The message indicates that all observations in frame housing matched those in frame census. We can

use frames describe to get a summary of the data in each frame:

. frames describe

Frame: census
Contains data from C:\Program Files\Stata19\ado\base\c\census.dta
Observations: 50 1980 Census data by state

Variables: 13 28 Mar 2025 19:42

Variable Storage Display Value
name type format label Variable label

state str14 %-14s State
state2 str2 %-2s Two-letter state abbreviation
region int %-8.0g cenreg Census region
pop long %12.0gc Population
poplt5 long %12.0gc Pop, < 5 year
pop5_17 long %12.0gc Pop, 5 to 17 years
pop18p long %12.0gc Pop, 18 and older
pop65p long %12.0gc Pop, 65 and older
popurban long %12.0gc Urban population
medage float %9.2f Median age
death long %12.0gc Number of deaths
marriage long %12.0gc Number of marriages
divorce long %12.0gc Number of divorces

Sorted by: state

frames save — Save a set of frames on disk 354

Frame: default
Contains data
Observations: 0

Variables: 0
Sorted by:

Frame: housing
Contains data from https://www.stata-press.com/data/r19/hsng.dta
Observations: 50 1980 Census housing data

Variables: 13 28 Mar 2025 19:42

Variable Storage Display Value
name type format label Variable label

state str14 %14s State
division int %8.0g division Census division
region int %8.0g region Census region
pop long %10.0g Population in 1980
popgrow float %6.1f Pop. growth 1970-80
popden int %6.1f Pop/sq. mile
pcturban float %8.1f Percent urban
faminc long %8.2f Median family inc., 1979
hsng long %10.0g Hsng units 1980
hsnggrow float %8.1f % housing growth
hsngval long %9.2f Median hsng value
rent long %6.2f Median gross rent
census byte %10.0g

Sorted by: state
Note: Dataset has changed since last saved.

We can see that frame housing has a variable named census; this is the variable that frlink created
to store the information needed to link the frames. We can also see that the default frame is empty

because we have not loaded a dataset into that frame.

We can now save frame housing and all frames linked to it by typing the following:

. frames save myframeset, frames(housing) linked replace
file myframeset.dtas saved

This saves frame housing, as well as frame census, because it is linked to frame housing. The
replace option replaces file myframeset.dtas if it already exists.

We now drop frame census using frame drop:

. frame drop census

Note that if we try to save frame housing and the frames linked to it, we get an error message:

. frames save myframeset, frames(housing) linked replace
linked frame does not exist

Frame census is linked from frame housing, but frame census does not
exist. Use option relaxed if you wish to ignore this error and proceed
anyway.

r(111);

frames save — Save a set of frames on disk 355

Stata is attempting to save frame census because it is linked to frame housing, but it does not exist.
To save the frames we specified, and any existing frames linked to them, we can use the relaxed option
to ignore any linked frame that does not exist:

. frames save datasets, frames(housing) linked replace relaxed
(file datasets.dtas not found)
file datasets.dtas saved

We no longer get an error message, but because frame census does not exist, only frame housing gets
saved.

Stored results
frames save stores the following in r():

Scalars

r(complevel) compression level

r(compsize) size, in bytes, of compressed file

r(compratio) compression ratio, defined as the ratio of compressed size to uncompressed size

Macros

r(fn) pathname of saved frameset file

r(frames) list of frames saved, listed in the same order as in option frames(); if frames(all) is used,
then the working frame is listed first, followed by the remaining frames in alphabetical order

r(first) first frame in r(frames)

Also see
[D] frames describe — Describe frames in memory or in a file

[D] frames modify — Modify a set of frames on disk

[D] frames use — Load a set of frames from disk

[D] frames — Data frames

[D] save — Save Stata dataset

frames use — Load a set of frames from disk

Description Quick start Menu Syntax Options
Remarks and examples Stored results Also see

Description
frames use loads into memory a set of frames from a Stata frameset (.dtas) file previously saved

by frames save.

Quick start
Load all frames in file myframeset.dtas

frames use myframeset

Load frames A and B in file myframeset.dtas
frames use myframeset, frames(A B)

Menu
Data > Frames Manager

Syntax
frames use filename [, options]

If filename is specified without an extension, .dtas is assumed. If filename contains embedded spaces
or other special characters, it has to be enclosed in double quotes.

options Description

frames(framelist) specify frames to be used

clear clear all frames in memory and replace them with the frames from disk

replace overwrite existing frames in memory with frames of the same name from
filename

356

frames use — Load a set of frames from disk 357

Options
frames(framelist) specifies the frames to be loaded into memory. framelist is a list of frame names

separated by a space. If frames() is not specified, all frames are loaded. The frames() option does
not change the current working frame; to change the working frame after frames use, use frame
change.

clear clears all frames in memory and replaces them with frames from disk. The new working frame

will be the first frame that was specified in the frames(framelist) option with frames save.

If both clear and frames(framelist) are specified with frames use, the new working frame will be

the first one listed in framelist.

replace replaces frames in memory with frames from filename if the frame names are the same. This

option does not drop from memory existing frames with different names.

Remarks and examples
frames use is used to load a frameset previously saved with frames save. A frameset is a single file

with data from multiple frames. By loading a frameset with frames use, you can resume the work you
were doing with the frames saved with frames save.

frames use will load all the data frames stored in the .dtas file, unless you specify a list with the
frames() option. Additionally, when no other options are specified, the frames will be loaded into

memory, but the current working frame will not be changed, even if it is empty. When frames use is
specified with both the frames() and clear options, the new working frame will be the first frame

listed in the frames() option. When frames use is specified with the clear option but without the
frames() option, the new working frame will be the first frame that was specified in the frames()
option with frames save. Note that the first frame of a .dtas file is stored in r(first) after the

frameset is described with frames describe using.

Example 1
To demonstrate how to load a frameset, we first need to create a frameset. Below, we create frames

census and housing with data from the 1980 census. We then use frames save to store both of these
frames in a file named myframeset.dtas.

. clear frames

. sysuse census
(1980 Census data by state)
. frame rename default census
. frame create housing
. frame change housing
. webuse hsng
(1980 Census housing data)
. frames save myframeset, frames(census housing) replace
(file myframeset.dtas not found)
file myframeset.dtas saved

frames use — Load a set of frames from disk 358

Suppose that at a later time we would like to load the frames in myframeset.dtas. We first clear

any data and frames and then use frames use.

. clear all

. frames use myframeset
census 50 x 13; 1980 Census data by state
housing 50 x 12; 1980 Census housing data

We see in the output above that both frames were loaded into memory. If there is no dataset in memory,

frames use loads the frames from the .dtas file, but the default frame remains the current working
frame, as shown below:

. pwf
(current frame is default)

The output from pwf shows that the current frame is default. frames describe below lists the

frames in alphabetical order and shows that the default frame (labeled Frame: default) is empty:

. frames describe

Frame: census
Contains data
Observations: 50 1980 Census data by state

Variables: 13 28 Mar 2025 19:42

Variable Storage Display Value
name type format label Variable label

state str14 %-14s State
state2 str2 %-2s Two-letter state abbreviation
region int %-8.0g cenreg Census region
pop long %12.0gc Population
poplt5 long %12.0gc Pop, < 5 year
pop5_17 long %12.0gc Pop, 5 to 17 years
pop18p long %12.0gc Pop, 18 and older
pop65p long %12.0gc Pop, 65 and older
popurban long %12.0gc Urban population
medage float %9.2f Median age
death long %12.0gc Number of deaths
marriage long %12.0gc Number of marriages
divorce long %12.0gc Number of divorces

Sorted by:

Frame: default
Contains data
Observations: 0

Variables: 0
Sorted by:

frames use — Load a set of frames from disk 359

Frame: housing
Contains data
Observations: 50 1980 Census housing data

Variables: 12 28 Mar 2025 19:42

Variable Storage Display Value
name type format label Variable label

state str14 %14s State
division int %8.0g division Census division
region int %8.0g region Census region
pop long %10.0g Population in 1980
popgrow float %6.1f Pop. growth 1970-80
popden int %6.1f Pop/sq. mile
pcturban float %8.1f Percent urban
faminc long %8.2f Median family inc., 1979
hsng long %10.0g Hsng units 1980
hsnggrow float %8.1f % housing growth
hsngval long %9.2f Median hsng value
rent long %6.2f Median gross rent

Sorted by: state

If there are frames in memory, frames census and housing in myframeset.dtaswill be loaded into
memory, in addition to the frames already in memory. If there is already a frame in memory with the

same name as the frame you are loading, frames use issues an error message. For example, below we

rename the default frame to census and then run our frames use command once more:

. clear frames

. sysuse census, clear
(1980 Census data by state)
. frame rename default census
. frames use myframeset.dtas
frames in memory are in conflict with frames on disk

Frame census is already in memory. Specify option clear to clear all
frames or option replace to replace only the frames in conflict.

r(4);

To successfully load the frames from myframeset.dtas, we can either use the clear option to clear
all frames from memory,

. frames use myframeset, clear

or use the replace option to replace the frames in conflict:

. frames use myframeset, replace

Stored results
frames use stores the following in r():
Macros

r(fn) pathname of frameset

r(frames) list of frames loaded

frames use — Load a set of frames from disk 360

Also see
[D] frames describe — Describe frames in memory or in a file

[D] frames modify — Modify a set of frames on disk

[D] frames save — Save a set of frames on disk

[D] frames — Data frames

[D] sysuse — Use shipped dataset

[D] use — Load Stata dataset

[D] webuse — Use dataset from Stata website

frget — Copy variables from linked frame

Description Quick start Syntax Options
Remarks and examples Stored results Also see

Description
frget copies variables and their associated metadata from the data in the linked frame to the data in

the current frame. Copymeans copying the relevant observations from the linked frame to the appropriate

observations in the current frame. If youwould like to refer to a variable in another framewithout copying

that variable into the current frame, see [D] fralias.

See [D] frames intro if you do not know what a frame is.

Quick start
Obtain variables v1, v2, and v3 from another frame linked to by linkage lnk

frget v1 v2 v3, from(lnk)

Obtain variables v4 and v5 via linkage lnk, naming them newv4 and newv5 in the current frame
frget newv4=v4 newv5=v5, from(lnk)

Obtain all variables via linkage lnk, prefixing them with l
frget *, from(lnk) prefix(l_)

Obtain all variables via linkage lnk, excluding those matching pattern ind*
frget *, from(lnk) exclude(ind*)

Syntax
frget varlist, from(linkname) [rename options] (1)

frget newvar1 = varname1 [newvar2 = varname2 [. . .]], from(linkname) (2)

linkname is the name of a linkvar in the current frame that was created by frlink; see [D] frlink.

rename options Description

prefix(string) prefix new variable names with string

suffix(string) suffix new variable names with string

exclude(varlist) exclude specified variables

collect is allowed; see [U] 11.1.10 Prefix commands.

Syntax 1 copies the variable names specified by varlist from the frame linked by linkname to the current

frame.

Syntax 2 copies varname1 from the frame linked by linkname to newvar1 in the current frame. Similarly,

varname2 is copied to newvar2 and so on.

Copy means copy and clone. Display formats, variable labels, value labels, notes, and characteristics

are also copied.

361

frget — Copy variables from linked frame 362

Options
from(linkname) specifies the identity of the linked frame from which variables are copied. Linkages to

frames are created by the frlink command. Linkages are usually named for the frame to which they
link. Linkage counties links to frame counties, and so you specify from(counties). If linkage
c links to frame counties, you specify from(c). from() is required.

prefix(string) specifies a string to be prefixed to the names of the new variables created in the current

frame. Say that you type

. frget inc*, from(counties)

to request that variables income and income family be copied to the current frame. If variable

income already exists in the current frame, the command would issue an error message to that effect
and copy neither variable. To copy the two variables, you could type

. frget inc*, from(counties) prefix(c_)

Then the variables would be copied to variables named c income and c income family.

suffix(string) works like prefix(string), the difference being that the string is suffixed rather than
prefixed to the variable names. Both options may be specified if you wish.

exclude(varlist) specifies variables that are not to be copied. An example of the option is

frget *, from(counties) exclude(emp*)

All variables except variables starting with emp would be copied.

More correctly, all variables except emp*, *, and the match variables would be copied because frget
always omits the underscore and match variables. See the explanation below.

Remarks and examples
Remarks are presented under the following headings:

Overview
Everything you need to know about frget

Overview
You have data on people and data on counties. You loaded the datasets and created a linkage named

uscounties by typing

. use people

. frame create uscounties

. frame uscounties: use uscounties

. frlink m:1 countyid, frame(uscounties)

See example 1 in [D] frlink for details.

Among the variables in uscounties.dta is median income. You could copy the variable to the
person data in the current frame by typing either of the following:

. frget median_income, from(uscounties)

. frget medinc = median_income, from(uscounties)

The first command names the copy median income in the current frame. The second names it medinc.

frget — Copy variables from linked frame 363

Everything you need to know about frget
Here is everything you need to know in outline form:

1. What it means to copy a linked variable

2. frget can copy variables one at a time
3. frget allows variable names to be abbreviated
4. frget can bring over groups of variables
5. frget copies all the variables specified, or none of them
6. frget ignores repeated variables
7. How to get all the variables 1: frget *

8. How to get all the variables 2: frget *, prefix()
9. How to create new variables

10. frget copies and clones variables

We make two assumptions in what follows:

A1. The current frame contains data on people. A frame named uscounties contains data on

counties. That is, we assume

. use people

. frame create uscounties

. frame uscounties: use uscounties

A2. The frames are linked on the match variable countyid, which appears in both datasets. The
linkage between the frames is named uscounties, the same name as the frame being linked.
That is, we assume

. frlink m:1 countyid, frame(uscounties)

1. What it means to copy a linked variable

When you type

. frget median_income, from(uscounties)

frget copies variable median income from frame uscounties to the current frame. Well,

we say it copies the variable, but the process is more complicated than that. frget copies the
relevant observations of median income from frame uscounties to the appropriate obser-

vations in the current frame. In the process, frget duplicates some observations and ignores
others.

If the person in observation 1 lives in county 401, then the median income recorded for county

401 in the uscounties frame is copied to observation 1 in the current frame.

If the people in observations 2, 33, and 65 in the current frame reside in county 207, then the

median income recorded for county 207 is duplicated in observations 2, 33, and 65 of the current

frame.

If the person in observation 3 lives in county 599 and there is no county 599 in the uscounties
frame, then missing value . or ”” is stored in observation 3.

A copy of a variable from a linked frame is a copy of the relevant observations of the variable

to the appropriate observations in the current frame when relevant observations exist.

2. frget can copy variables one at a time

To copy variable median income from frame uscounties to the current frame, type

. frget median_income, from(uscounties)

frget — Copy variables from linked frame 364

To instead copy median income to a new variable named medinc in the current frame, type

. frget medinc=median_income, from(uscounties)

3. frget allows variable names to be abbreviated

frget allows abbreviations if you have not set varabbrev off. If median income is the

only variable beginning with median in the linked frame, you can type

. frget median, from(uscounties)

Variable median income will be copied, and the new variable in the current frame will be

named median income.

When using frget’s newvar=varname syntax, you can abbreviate the variable being copied
that appears to the right of the equals sign:

. frget medinc=median, from(uscounties)

4. frget can bring over groups of variables

frget allows you to specify a varlist. Even though you type frget in the current frame, the
varlist is interpreted in the linked frame. You can type

. frget emp*, from(uscounties)

. frget emp* median_income, from(uscounties)

. frget emp* median, from(uscounties)

. frget emp* m*, from(uscounties)

. frget *, from(uscounties)

When you specify a varlist, frget automatically omits the match variable or variables and any
variables starting with an underscore (). First, we will tell you why, and then, we will tell you

a workaround.

We start with a match variable. The match variable(s) in our example is match variable

countyid. The variable has the same name in both frames. Pretend for a moment that frget
did not exclude match variables. Then, if you tried to copy countyid, that would be an error
because frget will not overwrite existing variables. That seems reasonable until you realize
that it would also mean that frget would issue an error if you typed

. frget c*, from(uscounties)

or even if you typed

. frget *, from(uscounties)

frget would issue errors because c* and * would include countyid, which, being the match
variable, already exists in the current frame. frget automatically omits match variables so that
you can type frget c* and frget * and get all the other variables.

frget omits * variables because they tend to be Stata system variables that are valid only in

the dataset in which they appear. You do not want them.

What if you need to get one of these variables? Use the newvar=varname syntax. Type, for
instance,

. frget _myvar=_myvar, frame(uscounties)

Automatic omission is not applied to this syntax.

frget — Copy variables from linked frame 365

5. frget copies all the variables specified, or none of them

frget will not overwrite existing variables. If just one variable in the specified list already

exists in the current frame, frget copies none of the variables. It issues an error.

. frget emp* m*, from(uscounties)
variable mvalues already exists
r(110);

If you want all the m* variables except mvalues, use the exclude() option:

. frget emp* m*, from(uscounties) exclude(mvalues)

If you also want mvalues copied to mvals in the current frame, type

. frget mvals=mvalues, from(uscounties)

6. frget ignores repeated variables

It is not an error to type

. frget employment employment, from(uscounties)

We specified employment twice, but frget ignores that and copies the variable once. This is
convenient because variables can be inadvertently repeated, as in

. frget m* employment-larea, from(uscounties)

Although you cannot see it, variable mds is repeated in the example. m* contains mds, and so
does employment-larea because mds is among the variables stored between them.

When variables are repeated using the newvar=varname syntax, frget does not ignore repeti-
tion. It copies the variables you specify to each of the new variables that you specify:

. frget medinc=income inc=income, from(uscounties)

7. How to get all the variables 1: frget *

To get all the variables, try typing

. frget *, from(uscounties)

This sometimes works. Other times it does not because some of the variables in uscounties
already exist in the current frame. When it does not work, frget lists the variable names that
exist in both frames and, even better, stores them in r(dups). Thus, if you are willing to

exclude those variables, you can type

. frget *, from(uscounties) exclude(‘r(dups)’)

8. How to get all the variables 2: frget *, prefix()

Another way to get all the variables is to type

. frget *, from(uscounties) prefix(c_)

This brings in all the variables under their original names but prefixed with c . The variable

mvalues in the linked frame, for instance, is copied to c mvalues.

Another advantage of this approach is how easily you can drop the copies from the data should

you desire to do so. Type

. drop c_*

frget — Copy variables from linked frame 366

You can choose your own prefix. If you prefer suffixing them, type

. frget *, from(uscounties) suffix(_c)

This names the copies mvalues c, etc. These names are more like the originals, at least if you
use tab completion for typing them. Type the first characters of the original name and press tab.

And if you wish, you can later drop the suffixed variables just as easily as prefixed ones. Type

. drop *_c

9. How to create new variables

Assume that the uscounties frame contains variables total income and population. You
need avg income in the current frame.

One solution would be

. frget total_income population, from(uscounties)

. generate avg_income = total_income/population

Another solution would be to use the frval() function to make the calculation directly:

. generate avg_income =
> frval(uscounties, total_income)/frval(uscounties, population)

Here, however, is perhaps the best solution:

. frame uscounties: generate avg_income = total_income/population

. frget avg_income, from(uscounties)

It is not often that one has the opportunity to save computer time and memory. The gist of this

approach is to create county-level variables in the uscounties frame and then use frget to
get the ones you need.

10. frget copies and clones variables

When frget copies variables, it also copies their display formats, variable labels, value labels,
notes, and characteristics.

The new variables are not just copies. They are clones.

Stored results
frget stores the following in r():

Scalars

r(k) number of variables copied from linked frame

Macros

r(newlist) new variables in the current frame

r(srclist) variables copied from linked frame

r(excluded) variables not copied from linked frame

r(dups) variables already present in the current frame

r(notfound) variables not found in the linked frame

r(dups) is present only if frget exits with an error message because a prospective new variable

name already exists in the current frame.

r(notfound) is present only for syntax 2 when frget exits with an error message because a varname
is not found in the linked frame.

frget — Copy variables from linked frame 367

Also see
[D] frlink — Link frames

[D] fralias —Alias variables from linked frames

[D] frames intro — Introduction to frames

[D] merge — Merge datasets

frlink — Link frames

Description Quick start Syntax Options
Remarks and examples Stored results Also see

Description
frlink creates and helps manage links between datasets in different frames. A link allows the vari-

ables in one frame to be accessed by another. See [D] frames intro if you do not know what a frame

is.

Quick start
Create 1-to-1 linkage to frame fr2 and match on variable matchvar

frlink 1:1 matchvar, frame(fr2)

Create many-to-1 linkage to frame fr3, matching variables v1 and v2 in the current frame to variables
x1 and x2 in frame fr3, naming the linkage lnk

frlink m:1 v1 v2, frame(fr3 x1 x2) generate(lnk)

List names of linkages in current frame

frlink dir

Show details for linkage lnk
frlink describe lnk

Attempt to re-create linkage lnk after data have changed
frlink rebuild lnk

Eliminate linkage lnk
drop lnk

368

frlink — Link frames 369

Syntax
Create linkage between current frame and another

frlink { 1:1 | m:1 } varlist1, frame(frame2 [varlist2]) [generate(linkvar1)]

List names of existing linkages

frlink dir

List details about existing linkage, and verify it is still valid

frlink describe linkvar2

Re-create existing linkage when data have changed or frames are renamed

frlink rebuild linkvar2 [, frame(frame3)]

Drop existing linkage (dropping the variable eliminates the linkage)

drop linkvar2

1:1 and m:1 indicate how observations are to be matched.

varlist1 contains the match variables in the current frame, which we will call frame 1.

linkvar1 is the name to be given to the new variable that frlink creates. The variable is added to the
dataset in frame 1. The variable contains all the information needed to link the frames.

You specify the name for linkvar1 using the generate(linkvar1) option, or you let frlink name it
for you. If frlink() chooses the name, the variable is given the same name as frame2.

linkvar2 is the name of an existing link variable.

collect is allowed with frlink dir and frlink rebuild; see [U] 11.1.10 Prefix commands.

Options
Options are presented under the following headings:

Options for frlink 1:1 and frlink m:1
Options for frlink rebuild

Options for frlink 1:1 and frlink m:1
frame(frame2 [varlist2]) specifies the name of the frame, frame2, to which a linkage is created and

optionally the names of variables in varlist2 on which to match. If varlist2 is not specified, the match

variables are assumed to have the same names in both frames. frame() is required.

To create a link to a frame named counties, you can type

. frlink m:1 countyid, frame(counties)

frlink — Link frames 370

This example omits specification of varlist2, and it works when the match variable countyid has the
same name in both frames. If the variable were named cntycode, however, in the other frame, you
type

. frlink m:1 countyid, frame(counties cntycode)

The rule for matching observations is thus that countyid in the current frame equals cntycode in
the other frame.

You can specify multiple match variables when necessary. For example, you want to match on county

names in US data. County names repeat across the states, so you match on the combined county and

state names by typing

. frlink m:1 countyname statename, frame(counties)

If the match variables had different names in frame counties, such as county and state, you type

. frlink m:1 countyname statename, frame(counties county state)

generate(linkvar1) specifies the name of the new variable that will contain all the information needed

to link the frames. This variable is added to the dataset in frame 1. This option is rarely used.

If this option is not specified, the link variable will then be named the same as the frame name specified

in the frame() option.

Options for frlink rebuild
frame(frame3) specifies a frame name that differs from the existing linkage. frame3 is the new name

of a frame linked by linkvar2.

For instance, yesterday, you created a linkage named george to the data in the frame named george
by typing

. frlink m:1 countyname statename, frame(george)

Today, you loaded the linked data into a frame named counties. To rebuild the linkage so that linkage
george links to the data in frame counties, type

. frlink rebuild george, frame(counties)

If you also wish to rename the linkage to be counties, type

. rename george counties

Then you would have a linkage named counties to the data in the frame named counties.

Remarks and examples
Remarks are presented under the following headings:

Overview of the frlink command
Everything you need to know about linkages
Example 1: A typical m:1 linkage
How link variables work

Advanced examples
Example 2: A complex m:1 linkage
Example 3: A 1:1 linkage, a simple solution to a hard problem

frlink — Link frames 371

Overview of the frlink command
frlink 1:1 and frlink m:1 create linkages between the current frame and another frame you specify.

This adds a new variable to the current frame, known as the link variable. You can use the frget
command to copy variables from the linked frame to the current frame and use the frval() function to
use the other frame’s variables in expressions. You can use the fralias add command to define aliases
of variables from the linked frame in the current frame. An alias is a reference to a variable in another

frame, similar to a copy, but uses very little memory. You cannot modify the observations in a alias

variable.

Linkages are said to be named, but the name is in fact the name of the link variable that frlink
creates.

frlink dir lists the names of existing linkages.

frlink describe linkvar displays details about the specified linkage. It also checks the validity of

the link variable and, if there are problems, tells you how to fix it.

frlink rebuild linkvar re-creates the specified linkvar. If linkvar is invalid, frlink rebuild will
fix it.

Type drop linkvar to delete linkages.

Everything you need to know about linkages
Here is everything you need to know in outline form:

1. A linkage connects one frame to another. Here are the advantages.

1.1 The frval() function.
1.2 The frget command.
1.3 The fralias add command.

2. The frlink command creates linkages.
3. Linkages are named.

4. A linkage is variable added to the data.

5. Drop the link variable, remove the link.

6. Do not modify the contents of the link variable.

7. Linkages are formed based on equality of the match variables.

8. You can specify more than one match variable.

9. Match variables can be named differently in the two frames.

10. Match type: One-to-one or many-to-one matching.

11. Linking can result in unmatched observations.

12. Linkages are directional.

13. How to create nested linkages.

14. Saving and using linked frames.

15. Do’s and don’ts.

What follows will turn you into an expert.

1. A linkage connects one frame to another. Here are the advantages.

Create a linkage and you can access the variables in another frame using the frval() function
and the commands frget and fralias add.

frlink — Link frames 372

1.1 The frval() function. You can type

. generate rel_income = income / frval(counties, median_income)

frval(counties, median income) returns the value of the median income vari-
able in frame counties. If the current frame contained data on people and the county
frame contained data on counties (linked to with link variable counties in the current
frame), the above would produce person income divided by the median income of the

county in which he or she resides. See frval() in [FN] Programming functions.

1.2 The frget command. You can type

(1) . frget median_income, from(counties)
(2) . frget medinc = median_income, from(counties)
(3) . frget median_income pop, from(counties)
(4) . frget median_income pop attr*, from(counties)
(5) . frget median_income pop attr*, from(counties) prefix(c_)

and more . . .

(1) copies median income from frame counties into the data in the current frame.

(2) does the same but names the variable medinc.

(3) copies two variables.

(4) copies lots of variables.

(5) copies lots of variables and renames them to start with c .

This is only a smattering of what frget can do. See [D] frget.

1.3 The fralias add command. You can type

(1) . fralias add median_income, from(counties)
(2) . fralias add medinc = median_income, from(counties)
(3) . fralias add median_income pop, from(counties)
(4) . fralias add median_income pop attr*, from(counties)
(5) . fralias add median_income pop attr*, from(counties) prefix(c_)

and more . . .

(1) alias median income from frame counties so that you can use its observations
in the current frame.

(2) does the same but names the alias variable medinc.

(3) aliases two variables.

(4) aliases lots of variables.

(5) aliases lots of variables and renames them to start with c .

This is only a smattering of what fralias add can do. See [D] fralias.

2. The frlink command creates linkages.

frlink creates a linkage from the current frame to the frame you specify.

. frlink ..., frame(counties)

frlink — Link frames 373

3. Linkages are named.

The command

. frlink ..., frame(counties)

creates a linkage named counties to the frame named counties.

You can specify option generate() to give the linkage a different name. To create a linkage
named c to the frame counties, type

. frlink ..., frame(counties) generate(c)

4. A linkage is a variable added to the data.

The entire physical manifestation of a linkage is the addition of a single variable to the dataset

in the current frame. Typing

. frlink ..., frame(counties)

adds new variable counties to the dataset in the current frame.

. frlink ..., frame(counties) generate(c)

adds new variable c to the dataset in the current frame.

The added variable is known as the “link variable”, or linkvar.

5. Drop the link variable, remove the link.

Because linkages are just a variable, if you drop the variable, you remove the link.

. drop counties

. drop c

6. Do not modify the contents of the link variable.

If you modify the link variable’s contents, you invalidate the linkage. If you are lucky, the next

time you use the frget or fralias add command or the frval() function, they will detect
the problem and issue an error. If not, they will simply produce incorrect results.

. replace counties = ... // Do not do this

. replace c = ... // Do not do this

If you accidentally modify the link variable’s contents, use frlink rebuild to repair it.

. frlink rebuild counties

. frlink rebuild c

7. Linkages are formed based on equality of match variables.

To construct a link to frame counties, type

. frlink ..., frame(counties)

The complete command would have the dots filled in. Part of what needs to appear in place of

the dots are the match variables. Amore complete version of the command is

. frlink ... countyid, frame(counties)

We specified one match variable, countyid.

Linkages are formed by matching observations in the current frame to observations in the other

frame when their match variables are equal.

frlink — Link frames 374

In the example, the match variables are countyid in the current frame and countyid in the
county frame. Observations are matched when the countyid variables are equal.

Let’s unravel that. The data in the current frame are on people. countyid in the current frame
records the county in which each person resides.

Meanwhile, the data in the county frame contains information on counties, such as a county’s

median income. Variable countyid in this frame records the county each observation de-

scribes.

Observations in the two frames are matched when the county in which a person resides equals

the county being described. Once we have formed the linkage by typing

. frlink ... countyid, frame(counties)

if we then type

. generate rel_income = income / frval(counties, median_income)

we obtain the ratio of each person’s income to the median income in the county in which he or

she resides.

8. You can specify more than one match variable.

We just considered the case of one match variable—countyid—in each of the frames:

. frlink ... countyid, frame(counties)

Let’s imagine that instead of containing countyid, the datasets contain countyname. Substi-
tuting countyname for countyid might be insufficient to form the desired linkage:

. frlink ... countyname, frame(counties)

County names in the United States are repeated across states. Monroe County, for instance,

exists in Florida, Mississippi, Texas, and other states. To link the frames, we need to match on

both county and state names:

. frlink ... countyname statename, frame(counties)

Because county and state names, taken together, uniquely identify the locations, the order in

which we specify them is irrelevant:

. frlink ... statename countyname, frame(counties)

9. Match variables can be named differently in the two frames.

When we type

. frlink ... countyname statename, frame(counties)

we are stating the variables countyname and statename appear in both frames. If the names
are different in the two frames, specify the names used in the current frame following the

frlink command, and specify the names used in the other frame in the frame() option, after
the frame’s name:

. frlink ... countyname statename, frame(counties cnty usstate)

countyname and statename are the variable names used in the current frame. The variables
corresponding to them in frame counties are named cnty and usstate.

frlink — Link frames 375

10. Match type: One-to-one or many-to-one matching.

Consider the linkage created by

. frlink ... countyid, frame(counties)

The current frame contains data on persons, and the other frame—counties—contains data

on counties.

All that is needed to turn the above into a complete command is to replace the dots with a

match type, which can be 1:1 or m:1. In this case, the match type should be m:1, and the full
command is

. frlink m:1 countyid, frame(counties)

m:1 stands for many-to-one matching. m:1 means that is okay if more than one observation in
the current frame matches the same observation in the other frame. We specify m:1 because it is
possible that multiple people in the current frame reside in the same county. If five people live

in county 207, all five will match to the observation in frame counties that describes county
207.

The alternative 1:1 means that at most one observation in the current frame can match an

observation in the other frame. Specifying 1:1 would be appropriate for matching person data
in the current frame with more data on him or her in the other frame. If persons were to be

matched on personid and if the other frame were named person2, we type

. frlink 1:1 personid, frame(person2)

Matched would be persons in the current frame who also appeared in the second frame.

If you think about it, 1:1 is a special case of m:1. 1:1means at most one observation matches.
m:1 means one or more observations match. This means that, if

. frlink 1:1 personid, frame(morepersons)

forms the linkage you want, so will

. frlink m:1 personid, frame(morepersons)

So why specify 1:1? We specify 1:1 so that frlink can issue an error message if the result is
not 1:1. When matching people’s data to more data on the same people, if two people in the

first frame matched the same observation in the second, that means

P1. there is an error in the first dataset: the same person appears more than once in it; or

P2. there is an error in variable personid in the first dataset: the personid variable

contains the wrong value; or

P3. we are not thinking clearly and should have specified m:1 instead of 1:1.

You specify 1:1 so that the software can flag situations where the reality is different from your

expectations. Then you fix your data or your thinking.

11. Linking can result in unmatched observations.

Imagine that you have successfully executed

. frlink m:1 countyid, frame(counties)

frlink — Link frames 376

The result will be that each observation in the current frame will be matched or unmatched.

Observations in the current frame are matched when the values of countyid are found in frame
counties. The remaining observations, if any, are unmatched. Unmatched observations are
not an error; they are a characteristic and perhaps a shortcoming of your datasets.

frlink tells you how many unmatched observations there are when you create the linkage.

Function frval() will subsequently return missing values for the unmatched observations. If
you type

. generate relative_income = income/frval(linkvar, median_income)

variable relative income would be missing (.) for the unmatched observations, the same
as if unmatched observations were matched but contained median income==..

frget and alias variables created by fralias add behave similarly. frget sets the unmatched
observations equal to missing in the copied variable. Alias variables return missing values for

unmatched observations.

. frget median_income, from(counties)

. fralias add median_income, from(counties) prefix(a_)

In addition, the link variable in the current frame contains missing values for the unmatched

observations. This is useful. How many observations in the current frame are unmatched? If

you do not remember, type

. count if counties==.

You can look at the data for the unmatched observations.

. browse if counties==.

You can analyze the unmatched data.

. summarize if counties==.

If observations will be useful to you only when they are matched with county data, you can

keep just the matched data by typing

. keep if counties!=.

12. Linkages are directional.

We say that we link the current frame to another frame, but it’s really the other way around.

Data flow to the current frame from the other frame. If you have created the linkage

. frlink m:1 countyid, frame(counties)

then you can access data in frame counties from the current frame, but you cannot access data

in the current frame from frame counties.

13. How to create nested linkages.

Consider separate frames containing data on students, the schools they attend, and the counties

in which the schools are located. Here is the setup:

Current frame: students.dta containing variables for each student’s ID, the ID of

the schools he or she attends, and student characteristics.

Frame schools: schools.dta containing each school’s ID, the ID of the counties in

which the schools are located, and school characteristics.

frlink — Link frames 377

Frame counties: us counties.dta containing each county’s ID and county char-

acteristics.

Here is how you load the datasets into the frames:

. frame create schools

. frame create counties

. use students

. frame schools: use schools

. frame counties: use us_counties

Here is how you link the frames:

. frlink m:1 schoolid, frame(schools)

. frget countyid, from(schools)

. frlink m:1 countyid, frame(counties)

The first command links students with the schools they attend.

The second command copies variable countyid from frame schools to the current frame.

The third command links students with the counties in which their schools are located.

The command that copied countyid into the current frame was necessary so that the students
in the current frame could be linked to the county frame.

Said generically, if you have data in frames A, B, and C, you link frame A to B and link frame

A to C to access all the data from A.

Said negatively, linkages are not transitive. Linking frame A to B and B to C is not sufficient to

allow frame A to access all the data.

14. Saving and using linked frames.

You have created students-linked-to-county data:

. use students

. frame create counties

. frame counties: use us_counties

. frlink m:1 countyid, frame(counties)

To save the datasets so that you can use them later, you need only type

. save students, replace

It is necessary to save students.dta because it has a new variable in it, namely, the linkage

variable counties. It is not necessary to save us counties.dta because it has not changed.

That said, you might still wish to save both files:

. save students, replace

. frame counties: save us_counties, replace

The data in frame counties were not changed, but the sort order of the data changed. Linking
sorts the linked-to frame on its match variables. We recommend you save both datasets.

To later load the data, you type

. use students

. frame create counties

. frame counties: use us_counties

frlink — Link frames 378

You might want to put these lines in a do-file. You could call it usestudents.do. Then,

whenever you wanted to load the data, all you need to do is type

. do usestudents

15. Do’s and don’ts.

We start with the don’ts. There are only three:

Do not modify the contents of the link variable,

. . . but if you do, use frlink rebuild to fix it.

Do not rename the match variables in either frame,

. . . but if you do, drop the link variable, and use frlink m:1 or 1:1 to link the
frames again.

Do not drop the match variables from either frame,

. . . and if you do, we cannot help you.

Everything else is a do, but they come in two flavors. The first is do without qualifications.

The second is also a do, but do it only if you follow it by typing frlink rebuild.

Here are the do’s without qualifications:

Do drop the link variable. That’s how you eliminate the link.

Do rename the link variable.

Do drop observations in the current frame.

Do add new variables in either frame.

Do modify or rename variables in either frame, with the exception of the link and the

match variables.

And here are the do’s with qualification, which is always the same: Type frlink rebuild
afterward.

Do rebuild after adding observations in either or both frames.

Do rebuild after dropping observations in the linked frame.

Do rebuild after modifying the contents of thematch variables in either or both frames.

And remember a rule that always applies:

It is always safe to type frlink rebuild.

If there is no problem, it will do nothing.

If there is a problem, it will fix it unless it cannot,

. . . then it explains why and do nothing to your data.

You are now an expert on linked frames.

Example 1: A typical m:1 linkage
File persons.dta contains data on people. Among its variables is countyid, containing the county

code where each person resides.

frlink — Link frames 379

File txcounty.dta contains data on Texas counties. Among its variables is countyid, the county
code for the county that each observation describes.

Here is how we load and link the datasets:

. use https://www.stata-press.com/data/r19/persons

. frame create txcounty

. frame txcounty: use https://www.stata-press.com/data/r19/txcounty
(Median income in Texas counties)
. frlink m:1 countyid, frame(txcounty)
(all observations in frame default matched)

Linkages are for situations where you want to analyze the data in the current frame using variables

from both frames.

Below, we create new variable relative income in the current frame equal to income (in the current
frame) divided by median income (from the county frame):

. generate relative_income = income / frval(txcounty, median_income)

. summarize relative_income
Variable Obs Mean Std. dev. Min Max

relative_i~e 20 .5501545 .1090887 .352133 .7038001

If we wanted to use median income from the county frame in a linear regression, we would use the

frget command to add median income to the current frame’s data:

. frget median_income, from(txcounty)

. regress income ... median_income ...

We will not do that because persons.dta contains fictional values and is not worth the bother. But
realize what would be possible if these datasets were real and contained more variables:

Get a variable:

frget median_income, from(txcounty)

Get a variable, but change its name:

frget medinc = median_income, from(txcounty)

Get a lot of variables:

frget median* nbus-pop, from(txcounty)

Get a lot of variables, but change their names to begin with c :

frget median* nbus-pop, prefix(c_) from(txcounty)

See [D] frget.

A more memory-efficient option is to use fralias add to create aliases instead of copies. See

[D] fralias.

How link variables work
frlink performs two actions when it creates a link:

1. It adds the link variable to the dataset in the current frame.

2. It sorts the dataset in the other frame by its match variables.

frlink — Link frames 380

In the example above, this means that

1. frlink adds variable txcounty to the data in the current frame.

2. frlink sorts the data in frame txcounty by countyid. (It literally executes frame
txcounty: sort countyid.)

Look at variable txcounty in the first observations of persons.dta in the current frame:
. list in 1/5

personid countyid income txcounty relati~e

1. 1 5 30818 5 .7038001
2. 2 3 30752 3 .4225046
3. 3 2 29673 2 .5230381
4. 4 3 32115 3 .441231
5. 5 2 31189 2 .5497603

Each observation of variable txcounty contains the observation number in frame txcounty that

matches the current observation. The above list says that

obs. 5 of frame txcounty matches obs. 1 of the current frame

obs. 3 of frame txcounty matches obs. 2 of the current frame

obs. 2 of frame txcounty matches obs. 3 of the current frame

obs. 3 of frame txcounty matches obs. 4 of the current frame

obs. 2 of frame txcounty matches obs. 5 of the current frame

. . . assuming the data in frame txcounty are sorted on countyid

Frame txcounty is the other frame. It is the other frame that must be sorted, not the data in the current
frame.

Even so, the assumption is iffy. It is true after frlink creates the linkage because frlink itself sorts
the data. And fralias add, frget, and frval() check the sort order before using the other frame’s
data so that accidents do not happen.

The only way things can go wrong are 1) if you change the contents of the link variable txcounty or
2) you drop or modify the match variable countyid. So do not do that.

Advanced examples
Example 1 showed you how linkages are usually used. We linked person data to county data. We

could show you another example that links student data to school data and student data to county data,

but it amounts to nothing more than example 1, done twice.

We have two more examples to show you, but we admit that they are advanced and abstruse.

The first is an example in which linkage shines, but the solution is seldom useful beyond the particular

example shown.

frlink — Link frames 381

The second concerns 1:1 linkages. If 1:1 is appropriate for your problem, you probably want to

merge the datasets, not link them. You probably want to use merge, not frlink. On occasion, however,
a situation arises where linkage is a better solution. We show you one and provide guidelines on how to

identify other such situations.

Example 2: A complex m:1 linkage
We have a dataset on families and the file is named, naturally enough, family.dta. The dataset

contains information on variables of interest, as all datasets do, but that is not what makes this dataset

interesting, so the variables are simply named x1, x2, . . . , x5. What makes this dataset interesting is that

it contains observations on related adult people. It contains adult children, parents, and grandparents.

Such data are notoriously difficult to process and analyze.

In the dataset, every person is identified by a person ID, called a “pid”. The data also contain the

variables pid m and pid f, which are the pids for the person’s mother and father, if they too are in the
data. The oldest generation in the data has pid m==. and pid f==..

One person in the data is person number 14982. Here are the values of ID variables for 14982:

. list pid* if pid==14982

pid pid_m pid_f

8. 14982 695966 933335

Variables pid m and pid f are the IDs of 14982’s mother and father. The mother is 695966 and the
father, 933335.

Here are the recorded ID variables for 695966, 14982’s mother:

. list pid* if pid==695966

pid pid_m pid_f

431. 695966 186484 238126

14982’s maternal grandmother is 186484 and maternal grandfather, 238126.

Let’s stay with the maternal side of the family. Here are the ID variables for 186484, 14982’s maternal

grandmother:

. list pid* if pid==186484

pid pid_m pid_f

100. 186484 . .

The grandmother’s variables have missing values for her mother’s and father’s ID, so we cannot con-

tinue back further. Nonetheless, there are other people in this dataset just like 14982, people on whom

we have their data, their parents’ data, and their parents’ parents’ data.

frlink — Link frames 382

frlink can link the data so that we have access to all of them. To do that, we will create six linkages,
named

linkage name meaning linkage to

f father

m mother

mm mother’s mother

mf mother’s father

fm father’s mother

ff father’s father

Once we have these six linkages, we will be able to access variables for the person, his or her parents,

and their parents. We will be able to do that using the frval() function or the fralias add and frget
commands.

If we wanted to access x1 using function frval(), we would do so with the following:

value of x1 desired type

own value x1
mother’s value frval(m, x1)
father’s value frval(f, x1)
mother’s mother’s value frval(mm, x1)
mother’s father’s value frval(mf, x1)
father’s mother’s value frval(fm, x1)
father’s father’s value frval(ff, x1)

If we wanted to copy all five variables of interest to the current frame, prefixed by their relationship,

we would do so with the following:

value of x1-x5 desired type

own value x1-x5
mother’s variables frget x1-x5, from(m) prefix(m)
father’s variables frget x1-x5, from(f) prefix(f)
mother’s mother’s variables frget x1-x5, from(mm) prefix(mm)
mother’s father’s variables frget x1-x5, from(mf) prefix(mf)
father’s mother’s variables frget x1-x5, from(fm) prefix(fm)
father’s father’s variables frget x1-x5, from(ff) prefix(ff)

frlink — Link frames 383

Instead, we can alias all five variables of interest to the current frame, prefixed by their relationship,

with the following:

value of x1-x5 desired type

own value x1-x5
mother’s variables fralias add x1-x5, from(m) prefix(m)
father’s variables fralias add x1-x5, from(f) prefix(f)
mother’s mother’s variables fralias add x1-x5, from(mm) prefix(mm)
mother’s father’s variables fralias add x1-x5, from(mf) prefix(mf)
father’s mother’s variables fralias add x1-x5, from(fm) prefix(fm)
father’s father’s variables fralias add x1-x5, from(ff) prefix(ff)

If we combined all 5 variables of interest from all 7 sources, we would have a total of 35 variables

of interest. We could form that dataset by typing just six commands. Before we can do any of this, we

must build the linkages.

To build them, we start in the usual way. We load the data of interest into the current frame and load

into the other frame the data we want to link:

. clear all

. use https://www.stata-press.com/data/r19/family
(Fictional family linkage data)
. frame create family
. frame family: use https://www.stata-press.com/data/r19/family // yes, the same data
(Fictional family linkage data)

We are in fact going to link family.dta to itself, but frlink requires that linkages be made from
the current frame to the other frame. Nonetheless, we will be able to create all six linkages to that single

frame.

To create the first two linkages, we type

. frlink m:1 pid_m, frame(family pid) generate(m)
(355 observations in frame default unmatched)
. frlink m:1 pid_f, frame(family pid) generate(f)
(355 observations in frame default unmatched)

Because we are linking people to people, your natural inclination might be that the matching needs

to be 1:1. That was our inclination too, but when we tried, frlink complained that the data were m:1
and refused. It took us a minute to realize why. Some of the people in the data have the same mother or

father.

We have shown you the commands to build the first two linkages. Four remain to be built. What is

different about these four is that the current frame does not contain the necessary match variable. Think

about forming the mm linkage, which is the maternal grandmother of a person in the current frame. We

need a variable containing the ID of the current person’s mother’s mother or frval(m, pid m). We

could call the variable pid mm, and construct it and the related match variables by typing

frlink — Link frames 384

. generate pid_mm = frval(m, pid_m)
(539 missing values generated)
. generate pid_mf = frval(m, pid_f)
(539 missing values generated)
. generate pid_fm = frval(f, pid_m)
(539 missing values generated)
. generate pid_ff = frval(f, pid_f)
(539 missing values generated)

Alternatively, we could have obtained them by using the frget command:

frget pid_mm = pid_m, from(m)
frget pid_mf = pid_f, from(m)
frget pid_fm = pid_m, from(f)
frget pid_ff = pid_f, from(f)

It does not matter which we use.

Once we have the match variables, we can form the linkages:

. frlink m:1 pid_mm, frame(family pid) generate(mm)
(539 observations in frame default unmatched)
. frlink m:1 pid_mf, frame(family pid) generate(mf)
(539 observations in frame default unmatched)
. frlink m:1 pid_fm, frame(family pid) generate(fm)
(539 observations in frame default unmatched)
. frlink m:1 pid_ff, frame(family pid) generate(ff)
(539 observations in frame default unmatched)

At this point, we are basically done. We are interested, however, in the sample of people for whom

data on their parents and grandparents are available. We can drop the other people from the data in the

current frame.

. drop if pid_m ==. | pid_f ==.
(355 observations deleted)
. drop if pid_mm==. | pid_mf==.
(184 observations deleted)
. drop if pid_fm==. | pid_ff==.
(0 observations deleted)
. count // number of observations remaining
100

We now have our data ready for analysis.

What are the chances that an even 100 people would be left? They would be nil if this were real data.

We manufactured these data, however, so there is no reason to continue to analyze variables x1 through
x5. They contain fictional values, and random.

Example 3: A 1:1 linkage, a simple solution to a hard problem
Most 1:1 cases are better handled by merge. Here is an exception.

You are working with hospital patient data, file discharge1.dta. The file contains vari-

able patientid among other variables, and you receive additional data on the same patients, file

discharge2.dta. Loading the two datasets into separate frames and linking them is easy to do.

frlink — Link frames 385

. use https://www.stata-press.com/data/r19/discharge1, clear

. frame create discharge2

. frame discharge2: use https://www.stata-press.com/data/r19/discharge2

. frlink 1:1 patientid, frame(discharge2)

But should we be doing this at all? Would it not be better to merge discharge1.dta with

discharge2.dta? It usually would be. It would be if you received the following note from George:

Kathy: Here are new data on the 1,980 patients. The data contain the five variables that

were previously omitted. – George.

merge will allow you to add these five new variables. Use it.

The note you received from George, however, reads

Kathy: Here are the data on the 1,980 patients. You’re not going to believe this, but even

though they said there are five values that needed to be updated, they sent all the data

again! Verify their claim, and tell me which variables they updated. – George.

This is a case for linking because you will not have to rename the 19 variables so that you can verify

their claim. The link solution of handling George’s request is easier:

. use https://www.stata-press.com/data/r19/discharge1, clear
(Fictional WA hospital discharges)
. frame create discharge2
. frame discharge2: use https://www.stata-press.com/data/r19/discharge2
(Fictional WA hospital discharges)
. frlink 1:1 patientid, frame(discharge2)
(all observations in frame default matched)
. foreach v of varlist patientid-proc3code {
2. quietly count if ‘v’ != frval(discharge2, ‘v’, discharge2)
3. if (r(N)!=0) {
4. display ”‘v’: ” r(N) ” value(s) changed”
5. }
6. }

sex: 1 value(s) changed
los: 1 value(s) changed
billed: 1 value(s) changed
diag1code: 1 value(s) changed
diag2code: 1 value(s) changed

It turns out that the updated data are just as it was represented to be.

These data had two features that made them a candidate for linking rather than merging:

1. The sample of interest was the observations in the original data, the data in the current frame,

and

2. lots of variables in the two datasets had the same names, and we were interested in both sets of

values.

Let’s now think about other examples. Only some 1:1 problems will have feature 1. 1:1 matches
in which you will subsequently analyze the merged data— merge==3 in merge speak—will all have

feature 1.

Feature 2 arises less often. In the example, the new data updated the old. Linkages make comparing

values easier when the names are the same. Linkages in general make it easier when variable names are

the same, even when there is no reason to compare them. Imagine that both datasets contain a variable

called income, but they are different measures of income. In the combined result, you want them both,

frlink — Link frames 386

so you need to rename one of them. Now imagine that there are hundreds of variables and a handful

share the same names across datasets even though they contain different concepts of whatever is being

measured. Linkages make renaming them easy.

First, link the data:

. frlink personid, frame(newdata)

Then, try to copy all the variables:

. frget *, from(newdata)

The command will either work or tell you the variables that have the same name in both frames.

Imagine that frget lists income and six other variables. You want to copy income, so you rename the
variable:

. frame newdata: rename income farmincome

Now try again:

. frget *, from(newdata)

Of course the command does nothing but repeat the six variables that still have the same names in both

frames. You review the list one last time and decide that you still do not care about those six variables.

Then you type

. frget *, from(newdata) exclude(‘r(dups)’)

This time it works! When variables have the same name, in addition to listing them, frget saves

their names in r(dups). That is why we typed frget *, from(newdata) when we knew we had not

yet resolved all the duplicate names. We wanted frget to set r(dups) so that we could next tell frget
to copy all the variables, except exclude(‘r(dups)’).

Now that we have gotten the variables of interest, we break the link:

. drop newdata

. frame drop newdata

The data in memory are now the same data that we could have coaxed merge into producing had we
done everything right.

Stored results
frlink m:1 and frlink 1:1 store the following in r()
Scalars

r(unmatched) # of observations in the current frame unable to be matched

frlink dir stores the following in r():
Scalars

r(n vars) # of link variables

Macros

r(vars) space-separated list of link-variable names

frlink describe stores nothing in r().

frlink rebuild stores the following in r():
Scalars

r(unmatched) # of observations in the current frame unable to be matched

frlink — Link frames 387

Also see
[D] fralias —Alias variables from linked frames

[D] frget — Copy variables from linked frame

[D] frames intro — Introduction to frames

[D] merge — Merge datasets

frunalias — Change storage type of alias variables

Description Quick start Syntax Remarks and examples Also see

Description
frunalias changes the storage type of alias variables identified in varlist to that of the variable they

reference in another frame. If varlist is not specified, then all alias variables are changed.

frunalias ignores variables that do not have storage type alias.

Quick start
Recast alias variables v1, v2, and v3 to be copies of the variables they reference in another frame

frunalias v1 v2 v3

Recast all alias variables in the current dataset

frunalias

Syntax
frunalias [varlist]

Remarks and examples
If x is an alias variable, linked to a type variable in another frame, then

frunalias x

will recast x to be a type variable. This effectively makes x a copy of the variable from the linked frame.

The following commands change the values in variables they operate on, so by their very nature,

they cannot work with alias variables: cross, dyngen, fillin, the icd suite of commands, recode,
reshape, stack, xpose, the mi suite of commands, and snapspan.

The error message they produce, when they detect alias variables, will mention using frunalias to work
around this restriction.

. xpose, clear
alias variables not allowed

Alias variables detected: var1 and var2.
You could use command frunalias to recast these variables to avoid this
error message.

r(109);

As this message indicates, we could now type

frunalias var1 var2

to make a copy of var1 and var2 in the current frame. Then we can proceed with the xpose command.

388

frunalias — Change storage type of alias variables 389

Also see
[D] fralias —Alias variables from linked frames

[D] frlink — Link frames

[D] frames intro — Introduction to frames

[D] merge — Merge datasets

[M-5] st addalias() —Add alias variable to current Stata dataset

[M-5] st isalias() — Properties of alias variable

generate — Create or change contents of variable

Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description
generate creates a new variable. The values of the variable are specified by = exp.

If no type is specified, the new variable type is determined by the type of result returned by =exp.
A float variable (or a double, according to set type) is created if the result is numeric, and a string
variable is created if the result is a string. In the latter case, if the string variable contains values greater

than 2,045 characters or contains values with a binary 0 (\0), a strL variable is created. Otherwise, a
str# variable is created, where # is the smallest string that will hold the result.

If a type is specified, the result returned by =exp must be a string or numeric according to whether
type is string or numeric. If str is specified, a strL or a str# variable is created using the same rules
as above.

See [D] egen for extensions to generate.

replace changes the contents of an existing variable. Because replace alters data, the command
cannot be abbreviated.

set type specifies the default storage type assigned to new variables (such as those created by

generate) when the storage type is not explicitly specified.

Quick start
Create numeric variable newv1 equal to v1 + 2

generate newv1 = v1 + 2

Same as above, but use type byte and label the values of newv1 with value label mylabel
generate byte newv1:mylabel = v1 + 2

String variable newv2 equal to “my text”
generate newv2 = ”my text”

Variable newv3 equal to the observation number
generate newv3 = _n

Replace newv3 with observation number within each value of catvar
by catvar: replace newv3 = _n

Binary indicator for first observation within each value of catvar after sorting on v2
bysort catvar (v2): generate byte first = _n==1

Same as above, but for last observation

bysort catvar (v2): generate byte last = _n==_N

Combined datetime variable newv4 from %td formatted date and %tc formatted time
generate double newv4 = cofd(date) + time

390

generate — Create or change contents of variable 391

Menu
generate

Data > Create or change data > Create new variable

replace
Data > Create or change data > Change contents of variable

Syntax
Create new variable

generate [type] newvar[:lblname] = exp [if] [in]

[, before(varname) | after(varname)]

Replace contents of existing variable

replace oldvar = exp [if] [in] [, nopromote]

Specify default storage type assigned to new variables

set type { float | double } [, permanently]

type is one of byte | int | long | float | double | str | str1 | str2 | . . . | str2045.
See Description below for an explanation of str. For the other types, see [U] 12 Data.
by is allowed with generate and replace; see [D] by.

Options
before(varname) or after(varname)may be used with generate to place the newly generated vari-

able in a specific position within the dataset. These options are primarily used by the Data Editor

and are of limited use in other contexts. A more popular alternative for most users is order (see

[D] order).

nopromote prevents replace from promoting the variable type to accommodate the change. For in-

stance, consider a variable stored as an integer type (byte, int, or long), and assume that you

replace some values with nonintegers. By default, replace changes the variable type to a floating
point (float or double) and thus correctly stores the changed values. Similarly, replace promotes
byte and int variables to longer integers (int and long) if the replacement value is an integer but is
too large in absolute value for the current storage type. replace promotes strings to longer strings.
nopromote prevents replace from doing this; instead, the replacement values are truncated to fit

into the current storage type.

permanently specifies that, in addition to making the change right now, the new limit be remembered

and become the default setting when you invoke Stata.

generate — Create or change contents of variable 392

Remarks and examples
Remarks are presented under the following headings:

generate and replace
set type
Video examples

generate and replace
generate and replace are used to create new variables and to modify the contents of existing vari-

ables, respectively. You can do anything with replace that you can do with generate. The only differ-
ence between the commands is that replace requires that the variable already exist, whereas generate
requires that the variable be new. Because Stata is an interactive system, we force a distinction between

replacing existing values and generating new ones so that you do not accidentally replace valuable data

while thinking that you are creating a new piece of information.

Detailed descriptions of expressions are given in [U] 13 Functions and expressions.

Also see [D] edit.

See [D] fralias for creating alias variables that reference other variables in a linked frame. replace
may notmake changes to alias variables; see [D] frunalias for advice on how to get around this restriction.

Example 1
We have a dataset containing the variable age2, which we have previously defined as age^2 (that is,

age2). We have changed some of the age data and now want to correct age2 to reflect the new values:

. use https://www.stata-press.com/data/r19/genxmpl1
(Wages of women)
. generate age2=age^2
variable age2 already defined
r(110);

When we attempt to re-generate age2, Stata refuses, telling us that age2 is already defined. We could

drop age2 and then re-generate it, or we could use the replace command:

. replace age2=age^2
(204 real changes made)

When we use replace, we are informed of the number of actual changes made to the dataset.

You can explicitly specify the storage type of the new variable being created by putting the type, such

as byte, int, long, float, double, or str8, in front of the variable name. For example, you could type
generate double revenue = qty * price. Not specifying a type is equivalent to specifying float
if the variable is numeric, or, more correctly, it is equivalent to specifying the default type set by the

set type command; see below. If the variable is alphanumeric, not specifying a type is equivalent to
specifying str#, where # is the length of the largest string in the variable.

You may also specify a value label to be associated with the new variable by including “:lblname”
after the variable name. This is seldom done because you can always associate the value label later by

using the label values command; see [U] 12.6.3 Value labels.

generate — Create or change contents of variable 393

Example 2
Among the variables in our dataset is name, which contains the first and last name of each person. We

wish to create a new variable called lastname, which we will then use to sort the data. name is a string
variable.

. use https://www.stata-press.com/data/r19/genxmpl2, clear

. list name

name

1. Johanna Roman
2. Dawn Mikulin
3. Malinda Vela
4. Kevin Crow
5. Zachary Bimslager

. generate lastname=word(name,2)

. describe
Contains data from https://www.stata-press.com/data/r19/genxmpl2.dta
Observations: 5

Variables: 2 18 Jan 2024 12:24

Variable Storage Display Value
name type format label Variable label

name str17 %17s
lastname str9 %9s

Sorted by:
Note: Dataset has changed since last saved.

Stata is smart. Even though we did not specify the storage type in our generate statement, Stata knew to

create a str9 lastname variable, because the longest last name is Bimslager, which has nine characters.

Example 3
We wish to create a new variable, age2, that represents the variable age squared. We realize that

because age is an integer, age2will also be an integer and will certainly be less than 32,740. We therefore

decide to store age2 as an int to conserve memory:

. use https://www.stata-press.com/data/r19/genxmpl3, clear

. generate int age2=age^2
(9 missing values generated)

Preceding age2 with int told Stata that the variable was to be stored as an int. After creating the new
variable, Stata informed us that nine missing values were generated. generate informs us whenever it
produces missing values.

See [U] 13 Functions and expressions and [U] 26 Working with categorical data and factor vari-

ables for more information and examples. Also see [D] recode for a convenient way to recode categorical

variables.

generate — Create or change contents of variable 394

Technical note
If you specify the if or in qualifier, the = exp is evaluated only for those observations that meet the

specified condition or are in the specified range (or both, if both if and in are specified). The other

observations of the new variable are set to missing:

. use https://www.stata-press.com/data/r19/genxmpl3, clear

. generate int age2=age^2 if age>30
(290 missing values generated)

Example 4
replace can be used to change just one value, as well as to make sweeping changes to our data. For

instance, say that we enter data on the first five odd and even positive integers and then discover that we

made a mistake:

. use https://www.stata-press.com/data/r19/genxmpl4, clear

. list

odd even

1. 1 2
2. 3 4
3. -8 6
4. 7 8
5. 9 10

The third observation is wrong; the value of odd should be 5, not −8. We can use replace to correct
the mistake:

. replace odd=5 in 3
(1 real change made)

We could also have corrected the mistake by typing replace odd=5 if odd==-8.

set type
When you create a new numeric variable and do not specify the storage type for it, say, by typing

generate y=x+2, the new variable is made a float if you have not previously issued the set type
command. If earlier in your session you typed set type double, the new numeric variable would be

made a double.

Video examples
How to create a new variable that is calculated from other variables

How to identify and replace unusual data values

https://www.youtube.com/watch?v=E_wCh0rf4p8
https://www.youtube.com/watch?v=jIiHb0gsyVo

generate — Create or change contents of variable 395

References
Newson, R. B. 2004. Stata tip 13: generate and replace use the current sort order. Stata Journal 4: 484–485.

Royston, P. 2013. marginscontplot: Plotting the marginal effects of continuous predictors. Stata Journal 13: 510–527.

Also see
[D] compress — Compress data in memory

[D] corr2data — Create dataset with specified correlation structure

[D] drawnorm — Draw sample from multivariate normal distribution

[D] dyngen — Dynamically generate new values of variables

[D] edit — Browse or edit data with Data Editor

[D] egen — Extensions to generate

[D] encode — Encode string into numeric and vice versa

[D] fralias —Alias variables from linked frames

[D] frunalias — Change storage type of alias variables

[D] label — Manipulate labels

[D] recode — Recode categorical variables

[D] rename — Rename variable

[U] 12 Data

[U] 13 Functions and expressions

https://www.stata-journal.com/article.html?article=dm0008
https://www.stata-journal.com/article.html?article=gr0056

gsort — Ascending and descending sort

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
gsort arranges observations to be in ascending or descending order of the specified variables and so

differs from sort in that sort produces ascending-order arrangements only; see [D] sort.

Each varname can be numeric or a string.

The observations are placed in ascending order of varname if + or nothing is typed in front of the

name and are placed in descending order if - is typed.

Quick start
Sort dataset in memory by ascending values of v1, equivalent to sort

gsort v1

Sort dataset in memory by descending values of v1
gsort -v1

Sort dataset by ascending values of v1 and descending values of v2
gsort v1 -v2

Create newv for use in subsequent by operations
gsort v1 -v2, generate(newv)

Place missing values of descending-order v2 at the top of the dataset instead of the end
gsort v1 -v2, mfirst

Menu
Data > Sort

396

gsort — Ascending and descending sort 397

Syntax
gsort [+ | -] varname [[+ | -] varname . . .] [, generate(newvar) mfirst]

Options
generate(newvar) creates newvar containing 1, 2, 3, . . . for each group denoted by the ordered data.

This is useful when using the ordering in a subsequent by operation; see [U] 11.5 by varlist: construct
and examples below.

mfirst specifies that missing values be placed first in descending orderings rather than last.

Remarks and examples
gsort is almost a plug-compatible replacement for sort, except that you cannot specify a general

varlist with gsort. For instance, sort alpha-gammameans to sort the data in ascending order of alpha,
within equal values of alpha; sort on the next variable in the dataset (presumably beta), within equal
values of alpha and beta; etc. gsort alpha-gamma would be interpreted as gsort alpha -gamma,
meaning to sort the data in ascending order of alpha and, within equal values of alpha, in descending
order of gamma.

Example 1
The difference in varlist interpretation aside, gsort can be used in place of sort. To list the 10

lowest-priced cars in the data, we might type

. use https://www.stata-press.com/data/r19/auto

. gsort price

. list make price in 1/10

or, if we prefer,

. gsort +price

. list make price in 1/10

To list the 10 highest-priced cars in the data, we could type

. gsort -price

. list make price in 1/10

gsort can also be used with string variables. To list all the makes in reverse alphabetical order, we
might type

. gsort -make

. list make

Example 2
gsort can be used with multiple variables. Given a dataset on hospital patients with multiple obser-

vations per patient, typing

gsort — Ascending and descending sort 398

. use https://www.stata-press.com/data/r19/bp3

. gsort id time

. list id time bp

lists each patient’s blood pressures in the order the measurements were taken. If we typed

. gsort id -time

. list id time bp

then each patient’s blood pressures would be listed in reverse time order.

Technical note
Say that we wished to attach to each patient’s records the lowest and highest blood pressures observed

during the hospital stay. The easier way to achieve this result is with egen’s min() and max() functions:

. egen lo_bp = min(bp), by(id)

. egen hi_bp = max(bp), by(id)

See [D] egen. Here is how we could do it with gsort:

. use https://www.stata-press.com/data/r19/bp3, clear

. gsort id bp

. by id: generate lo_bp = bp[1]

. gsort id -bp

. by id: generate hi_bp = bp[1]

. list, sepby(id)

This works, even in the presence of missing values of bp, because such missing values are placed last
within arrangements, regardless of the direction of the sort.

Technical note
Assume that we have a dataset containing x for which we wish to obtain the forward and reverse

cumulatives. The forward cumulative is defined as 𝐹(𝑋) = the fraction of observations such that

x ≤ 𝑋. Again let’s ignore the easier way to obtain the forward cumulative, which would be to use

Stata’s cumul command,

. set obs 100

. generate x = rnormal()

. cumul x, gen(cum)

(see [R] cumul). Eschewing cumul, we could type

. sort x

. by x: generate cum = _N if _n==1

. replace cum = sum(cum)

. replace cum = cum/cum[_N]

That is, we first place the data in ascending order of x; we used sort but could have used gsort. Next,
for each observed value of x, we generated cum containing the number of observations that take on that
value (you can think of this as the discrete density). We summed the density, obtaining the distribution,

and finally normalized it to sum to 1.

gsort — Ascending and descending sort 399

The reverse cumulative 𝐺(𝑋) is defined as the fraction of data such that x ≥ 𝑋. To obtain this, we

could try simply reversing the sort:

. gsort -x

. by x: generate rcum = _N if _n==1

. replace rcum = sum(rcum)

. replace rcum = rcum/rcum[_N]

This would work, except for one detail: Stata will complain that the data are not sorted in the second

line. Stata complains because it does not understand descending sorts (gsort is an ado-file). To remedy
this problem, gsort’s generate() option will create a new grouping variable that is in ascending order

(thus satisfying Stata’s narrow definition) and that is, in terms of the groups it defines, identical to that

of the true sort variables:

. gsort -x, gen(revx)

. by revx: generate rcum = _N if _n==1

. replace rcum = sum(rcum)

. replace rcum = rcum/rcum[_N]

Also see
[D] sort — Sort data

hexdump — Display hexadecimal report on file

Description Syntax Options
Remarks and examples Stored results Also see

Description
hexdump displays a hexadecimal dump of a file or, optionally, a report analyzing the dump.

Syntax
hexdump filename [, options]

options Description

analyze display a report on the dump rather than the dump itself

tabulate display a full tabulation of the ASCII and extended ASCII characters in the
analyze report

noextended do not display printable extended ASCII characters

results store results containing the frequency with which each character code was
observed; programmer’s option

from(#) dump or analyze first byte of the file; default is to start at first byte, from(0)
to(#) dump or analyze last byte of the file; default is to continue to the end of the file

Options
analyze specifies that a report on the dump, rather than the dump itself, be presented.

tabulate specifies in the analyze report that a full tabulation of theASCII and extendedASCII characters
also be presented.

noextended specifies that hexdump not display printable extended ASCII characters, characters in the

range 161–254 or, equivalently, 0xa1–0xfe. (hexdump does not display characters 128–160 and 255.)

results is for programmers. It specifies that, in addition to other stored results, hexdump store r(c0),
r(c1), . . . , r(c255), containing the frequency with which each character code was observed.

from(#) specifies the first byte of the file to be dumped or analyzed. The default is to start at the first
byte of the file, from(0).

to(#) specifies the last byte of the file to be dumped or analyzed. The default is to continue to the end
of the file.

Remarks and examples
hexdump is useful when you are having difficulty reading a file with infile, infix, or import

delimited. Sometimes, the reason for the difficulty is that the file does not contain what you think it
contains, or that it does contain the format you have been told, and looking at the file in text mode is

either not possible or not revealing enough.

400

hexdump — Display hexadecimal report on file 401

Pretend that we have the file myfile.raw containing

Datsun 210 4589 35 5 1
VW Scirocco 6850 25 4 1
Merc. Bobcat 3829 22 4 0
Buick Regal 5189 20 3 0
VW Diesel 5397 41 5 1
Pont. Phoenix 4424 19 . 0
Merc. Zephyr 3291 20 3 0
Olds Starfire 4195 24 1 0
BMW 320i 9735 25 4 1

We will use myfile.raw with hexdump to produce output that looks like the following:

. hexdump myfile.raw
character

hex representation representation
address 0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef

0 4461 7473 756e 2032 3130 2020 2020 2034 Datsun 210 4
10 3538 3920 2033 3520 2035 2020 310a 5657 589 35 5 1.VW
20 2053 6369 726f 6363 6f20 2020 2036 3835 Scirocco 685
30 3020 2032 3520 2034 2020 310a 4d65 7263 0 25 4 1.Merc

40 2e20 426f 6263 6174 2020 2033 3832 3920 . Bobcat 3829
50 2032 3220 2034 2020 300a 4275 6963 6b20 22 4 0.Buick
60 5265 6761 6c20 2020 2035 3138 3920 2032 Regal 5189 2
70 3020 2033 2020 300a 5657 2044 6965 7365 0 3 0.VW Diese

80 6c20 2020 2020 2035 3339 3720 2034 3120 l 5397 41
90 2035 2020 310a 506f 6e74 2e20 5068 6f65 5 1.Pont. Phoe
a0 6e69 7820 2034 3432 3420 2031 3920 202e nix 4424 19 .
b0 2020 300a 4d65 7263 2e20 5a65 7068 7972 0.Merc. Zephyr

c0 2020 2033 3239 3120 2032 3020 2033 2020 3291 20 3
d0 300a 4f6c 6473 2053 7461 7266 6972 6520 0.Olds Starfire
e0 2034 3139 3520 2032 3420 2031 2020 300a 4195 24 1 0.
f0 424d 5720 3332 3069 2020 2020 2020 2039 BMW 320i 9
100 3733 3520 2032 3520 2034 2020 310a 735 25 4 1.

hexdump — Display hexadecimal report on file 402

hexdump can also produce output that looks like the following:

. hexdump myfile.raw, analyze
Line-end characters Line length (tab=1)
\r\n (Windows) 0 minimum 29
\r by itself (Mac) 0 maximum 29
\n by itself (Unix) 9

Space/separator characters Number of lines 9
[blank] 99 EOL at EOF? yes
[tab] 0
[comma] (,) 0 Length of first 5 lines

Control characters Line 1 29
binary 0 0 Line 2 29
CTL excl. \r, \n, \t 0 Line 3 29
DEL 0 Line 4 29
Extended (128-159,255) 0 Line 5 29

ASCII printable
A-Z 20
a-z 61 File format ASCII
0-9 77
Special (!@#$ etc.) 4
Extended (160-254) 0

Total 270
Observed were:

\n blank . 0 1 2 3 4 5 6 7 8 9 B D M O P R S V W Z a b c d e f g h i k l
n o p r s t u x y

Of the two forms of output, the second is often the more useful because it summarizes the file, and the

length of the summary is not a function of the length of the file. Here is the summary for a file that is

just over 4 MB long:

. hexdump bigfile.raw, analyze
Line-end characters Line length (tab=1)
\r\n (Windows) 147,456 minimum 29
\r by itself (Mac) 0 maximum 30
\n by itself (Unix) 2

Space/separator characters Number of lines 147,458
[blank] 1,622,039 EOL at EOF? yes
[tab] 0
[comma] (,) 0 Length of first 5 lines

Control characters Line 1 30
binary 0 0 Line 2 30
CTL excl. \r, \n, \t 0 Line 3 30
DEL 0 Line 4 30
Extended (128-159,255) 0 Line 5 30

ASCII printable
A-Z 327,684
a-z 999,436 File format ASCII
0-9 1,261,587
Special (!@#$ etc.) 65,536
Extended (160-254) 0

Total 4,571,196
Observed were:

\n \r blank . 0 1 2 3 4 5 6 7 8 9 B D M O P R S V W Z a b c d e f g h i
k l n o p r s t u x y

hexdump — Display hexadecimal report on file 403

Here is the same file but with a subtle problem:

. hexdump badfile.raw, analyze
Line-end characters Line length (tab=1)
\r\n (Windows) 147,456 minimum 30
\r by itself (Mac) 0 maximum 90
\n by itself (Unix) 0

Space/separator characters Number of lines 147,456
[blank] 1,622,016 EOL at EOF? yes
[tab] 0
[comma] (,) 0 Length of first 5 lines

Control characters Line 1 30
binary 0 8 Line 2 30
CTL excl. \r, \n, \t 4 Line 3 30
DEL 0 Line 4 30
Extended (128-159,255) 24 Line 5 30

ASCII printable
A-Z 327,683
a-z 999,426 File format BINARY
0-9 1,261,568
Special (!@#$ etc.) 65,539
Extended (160-254) 16

Total 4,571,196
Observed were:

\0 ^C ^D ^G \n \r ^U blank & . 0 1 2 3 4 5 6 7 8 9 B D E M O P R S U V W
Z a b c d e f g h i k l n o p r s t u v x y } ~ E^A E^C E^I E^M E^P
ë é ö 255

In the above, the line length varies between 30 and 90 (we were told that each line would be 30 characters

long). Also the file contains what hexdump, analyze labeled control characters. Finally, hexdump,
analyze declared the file to be BINARY rather than ASCII.

We created the second file by removing two valid lines from bigfile.raw (60 characters) and sub-
stituting 60 characters of binary junk. We would defy you to find the problem without using hexdump,
analyze. You would succeed, but only after much work. Remember, this file has 147,456 lines, and
only two of them are bad. If you print 1,000 lines at random from the file, your chances of listing the bad

part are only 0.013472. To have a 50% chance of finding the bad lines, you would have to list 52,000

lines, which is to say, review about 945 pages of output. On those 945 pages, each line would need to

be drawn at random. More likely, you would list lines in groups, and that would greatly reduce your

chances of encountering the bad lines.

The situation is not as dire as we make it out to be because, were you to read badfile.raw by using
infile, it would complain, and here it would tell you exactly where it was complaining. Still, at that
point you might wonder whether the problem was with how you were using infile or with the data.
Moreover, our 60 bytes of binary junk experiment corresponds to transmission error. If the problem were

instead that the person who constructed the file constructed two of the lines differently, infile might
not complain, but later you would notice some odd values in your data (because obviously you would

review the summary statistics, right?). Here hexdump, analyzemight be the only way you could prove
to yourself and others that the raw data need to be reconstructed.

hexdump — Display hexadecimal report on file 404

Technical note
In the full hexadecimal dump,

. hexdump myfile.raw
character

hex representation representation
address 0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef

0 4461 7473 756e 2032 3130 2020 2020 2034 Datsun 210 4
10 3538 3920 2033 3520 2035 2020 310d 0a56 589 35 5 1..V
20 5720 5363 6972 6f63 636f 2020 2020 3638 W Scirocco 68
30 3530 2020 3235 2020 3420 2031 0d0a 4d65 50 25 4 1..Me

(output omitted)

addresses (listed on the left) are listed in hexadecimal. Above, 10 means decimal 16, 20 means decimal
32, and so on. Sixteen characters are listed across each line.

In some other dump, you might see something like

. hexdump myfile2.raw
character

hex representation representation
address 0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef

0 4461 7473 756e 2032 3130 2020 2020 2034 Datsun 210 4
10 3538 3920 2033 3520 2035 2020 3120 2020 589 35 5 1
20 2020 2020 2020 2020 2020 2020 2020 2020
*

160 2020 2020 2020 0a56 5720 5363 6972 6f63 .VW Sciroc
170 636f 2020 2020 3638 3530 2020 3235 2020 co 6850 25

(output omitted)

The * in the address field indicates that the previous line is repeated until we get to hexadecimal address
160 (decimal 352).

hexdump — Display hexadecimal report on file 405

Stored results
hexdump, analyze and hexdump, results store the following in r():

Scalars

r(Windows) number of \r\n
r(Mac) number of \r by itself
r(Unix) number of \n by itself
r(blank) number of blanks

r(tab) number of tab characters

r(comma) number of comma (,) characters

r(ctl) number of binary 0s; A–Z, excluding \r, \n, \t; DELs; and 128–159, 255
r(uc) number of A–Z

r(lc) number of a–z

r(digit) number of 0–9

r(special) number of printable special characters (!@#, etc.)

r(extended) number of printable extended characters (160–254)

r(filesize) number of characters

r(lmin) minimum line length

r(lmax) maximum line length

r(lnum) number of lines

r(eoleof) 1 if EOL at EOF, 0 otherwise

r(l1) length of 1st line

r(l2) length of 2nd line

r(l3) length of 3rd line

r(l4) length of 4th line

r(l5) length of 5th line

r(c0) number of binary 0s (results only)
r(c1) number of binary 1s (^A) (results only)
r(c2) number of binary 2s (^B) (results only)
.

r(c255) number of binary 255s (results only)

Macros

r(format) ASCII, EXTENDED ASCII, or BINARY

Also see
[D] filefilter — Convert ASCII or binary patterns in a file

[D] type — Display contents of a file

icd — Introduction to ICD commands

Description Remarks and examples References Also see

Description
This entry provides a brief introduction to the basic concepts of the International Classification of

Diseases (ICD). If you are not familiar with ICD terminology, we recommend that you read this entry

before proceeding to the individual command entries.

This entry also provides an overview of the format of the codes from each coding system that Stata’s

icd commands support. Stata supports 9th revision codes (ICD-9) and 10th revision codes (ICD-10). For
ICD-9, Stata uses codes from the United States’s Clinical Modification, the ICD-9-CM. For ICD-10, Stata

uses the World Health Organization’s (WHO’s) codes for international morbidity and mortality reporting

and the United States’s Clinical Modification (ICD-10-CM) and Procedure Coding System (ICD-10-PCS).

We encourage you to read this entry to ensure that you choose the correct command and that your data

are properly formatted for using the icd suite of commands.

Finally, this entry provides information about using the icd commands with multiple diagnosis or

procedure codes at one time. None of the commands accepts a varlist, so we illustrate methods for

working with multiple codes.

If you are familiar with ICD coding and the icd commands in Stata, you may want to skip to the

command-specific entries for details about syntax and examples.

Commands for ICD-9 codes

icd9 ICD-9-CM diagnosis codes

icd9p ICD-9-CM procedure codes

Commands for ICD-10 codes

icd10 ICD-10 diagnosis codes

icd10cm ICD-10-CM diagnosis codes

icd10pcs ICD-10-PCS procedure codes

Remarks and examples
Remarks are presented under the following headings:

Introduction to ICD coding
Terminology
Diagnosis codes
Procedure codes
Working with multiple codes

Introduction to ICD coding
The icd commands in Stata work with four different diagnosis and procedure coding systems: ICD-

9-CM, ICD-10, ICD-10-CM, and ICD-10-PCS.

406

icd — Introduction to ICD commands 407

The International Classification of Diseases (ICD) coding systemwas developed by and is copyrighted

by the World Health Organization (WHO). The ICD coding system is used for standardized mortality re-

porting and, by many countries, for reporting of morbidity and coding of diagnoses during healthcare

encounters. Since 1999, the ICD system has been under its 10th revision, ICD-10 (World Health Organi-

zation 2011). These codes provide information only about diagnoses, not about procedures.

The United States and some other countries have also developed country-specific coding systems

that are extensions of WHO’s system. These systems are used for coding information about healthcare

encounters. In the United States, the coding system is referred to as the International Classification of

Diseases, Clinical Modification. These codes are maintained and distributed by the National Center for

Health Statistics (NCHS) at the US Centers for Disease Control and Prevention (CDC) and by the Centers

for Medicare and Medicaid Services (CMS).

Terminology
The icd9 and icd10 entries assume knowledge of common terminology used in the ICD-9-CM doc-

umentation from the NCHS or CMS or in the ICD-10 revision manuals from WHO. The following brief

definitions are provided as a reference.

edition. The ICD-9-CM and ICD-10 each have editions, which represent major periodic changes. ICD-9-CM

is currently in its sixth edition (National Center for Health Statistics 2011). ICD-10 is currently in its

fifth edition (World Health Organization 2011).

version. In the ICD-9-CM coding system, the version number is a sequential number assigned by CMS

that is updated each Federal Fiscal Year when new codes are released. The last version was 32, which

was published on October 1, 2014. In ICD-10-CM/PCS, the version corresponds to the Federal Fiscal

Year.

update. In the ICD-10 coding system, an update may occur each year. The update is not issued with a

number but may be identified by the year in which it occurred.

category code. A category code is the portion of the ICD code that precedes the period. It may represent

a single disease or a group of related diseases or conditions.

valid code. Avalid code is one that may be used for reporting in the current version of the ICD-10-CM/PCS

or current update to the ICD-10 edition. What constitutes a valid code changes over time.

defined code. A defined code is any code that is currently valid, was valid at a previous time, or has

meaning as a grouping of codes. See [D] icd9, [D] icd9p, [D] icd10, [D] icd10cm, and [D] icd10pcs

for information about how the individual commands treat defined codes.

Diagnosis codes
Let’s begin with the diagnostic codes processed by icd9. An ICD-9-CM diagnosis code may have one

of two formats. Most use the format

{0–9,V}{0–9}{0–9}[.][0–9[0–9]]

while E-codes have the format

E{0–9}{0–9}{0–9}[.][0–9]

where braces, { }, indicate required items and brackets, [], indicate optional items.

icd — Introduction to ICD commands 408

ICD-9-CM codes begin with a digit from 0 to 9, the letter V, or the letter E. E-codes are always followed
by three digits and may have another digit in the fifth place. All other codes are followed by two digits

and may have up to two more digits.

The format of an ICD-10 diagnosis code is

{A–T,V–Z}{0–9}{0–9}[.][0–9]

Each ICD-10 code begins with a single letter followed by two digits. It may have an additional third

digit after the period.

ICD-10-CM diagnosis codes have up to seven characters; otherwise, the format is like that for ICD-10

codes. Each ICD-10-CM code begins with a single letter followed by a digit. However, ICD-10-CM permits

the third character to be a digit, the letter A, or the letter B. This forms the category code. The fourth and

fifth characters may be used to make up any potential subcategory code. For certain diagnoses, there exist

only three-, four- or five-character codes, so the diagnosis code and (sub)category code are equivalent.

Finally, the sixth and seventh characters provide additional detail. A peculiarity of the ICD-10-CM cod-

ing system is that it is not strictly hierarchical. The letter X is used as a placeholder if a subcategory has

not been defined at a particular level. For example, the code J09 indicates influenza due to an identi-

fied virus. There is no subcategory for J09, so the fourth character is an X, and additional detail about

complications is provided in the fifth character.

Codes in ICD-10-CM may have up to four more alpha-numeric characters after the period. Only codes

with the finest level of detail under a category code are considered valid.

Diagnosis codes must be stored in a string variable (see [D] Data types). For codes from either

revision, the period separating the category code from the other digits is treated as implied if it is not

present.

Technical note
There are defined five- and six-character ICD-10 codes. However, these codes are not part of the

standard four-character system codified byWHO for international morbidity and mortality reporting and

are not considered valid by icd10. See [D] icd10 for additional details about these codes and options for
using icd10 with them.

Technical note
ICD-10 codes U00–U49 are reserved for use by WHO for provisional assignment of new diseases.

Codes U50–U99 may be used for research to identify subjects with specific conditions under study for

which there is no defined ICD-10 code (World Health Organization 2011).

If you are working in one of these specialized cases, see the technical note in Creating new variables

under Remarks and examples of [D] icd10.

Procedure codes
The ICD-9-CM coding system also includes procedure codes. The format of ICD-9-CM procedure codes

is

{0–9}{0–9}[.][0–9[0–9]]

icd — Introduction to ICD commands 409

The general format of an ICD-10-PCS procedure code is a three-character category code followed by

four alpha-numeric characters after an (implied) period. The full codes are always seven characters long

and may be any combination of letters and numbers.

Procedure codes must be stored in a string variable.

Working with multiple codes
Oftentimes, multiple diagnoses or procedures are recorded for each observation. None of the icd

commands accepts a varlist, but you can still work with multiple diagnosis or multiple procedure records.

To use the icd commands with more than one diagnosis or procedure variable at a time, you must either
first reshape your data or use a loop; see [D] reshape and [P] forvalues.

Example 1: Summarizing information from multiple variables
In example 1 of [D] icd9, we add a variable indicating whether each diagnosis code was invalid or

undefined. Here we use the same extract from the National Hospital Discharge Survey (NHDS).

It is often more useful to add a single variable that summarizes the results from several diagnosis

or procedure variables. For example, we may wish to add a variable indicating whether a particular

diagnosis code or range of codes appeared in any field. Summary variables can be created from the

results of the check subcommand with option generate() or the generate subcommand with option
range() or option category().

Suppose that we want a single variable that contains the number of improperly formatted or undefined

codes that each discharge had. To illustrate, we use the nhds2010 dataset, keeping the variables for

discharge identifier (recid), patient age, and patient sex, as well as the three diagnosis variables. We

list the first ten observations below.

. use https://www.stata-press.com/data/r19/nhds2010
(Adult same-day discharges, 2010)
. keep recid age sex dx1 dx2 dx3
. list in 1/10, noobs

age sex dx1 dx2 dx3 recid

85 Female 4414 99811 14275 84
23 Male 25013 3572 -2506 105
63 Male 51909 1489 -V146 255
43 Female 9678 E8528 8 651
25 Female V271 64421 16564 696

57 Female 5409 V1582 2V106 779
61 Female 27651 V1087 7V436 814
60 Male 9951 462 -2724 826
22 Male 42789 5409 -2780 833
49 Male 5770 29181 14255 863

icd — Introduction to ICD commands 410

The data are in wide form, so we specify reshape longwith stub dx because our diagnosis codes are
in dx1, dx2, and dx3. The observation identifier, recid, is specified in i(). reshape creates the new
variable dxnum for us.

. reshape long dx, i(recid) j(dxnum)
(j = 1 2 3)
Data Wide -> Long

Number of observations 2,210 -> 6,630
Number of variables 6 -> 5
j variable (3 values) -> dxnum
xij variables:

dx1 dx2 dx3 -> dx

The output shows that dxnum has 3 values, so we know that all three diagnosis variables were recognized

by reshape.

. list in 1/9, sepby(recid) noobs

recid dxnum dx age sex

84 1 4414 85 Female
84 2 99811 85 Female
84 3 14275 85 Female

105 1 25013 23 Male
105 2 3572 23 Male
105 3 -2506 23 Male

255 1 51909 63 Male
255 2 1489 63 Male
255 3 -V146 63 Male

Notice that our data on recid, age, and sex are retained and duplicated for each new observation. If

you are working with a large dataset, you may wish to drop variables other than a merge key and your

diagnosis (or procedure) variables to conserve space and speed up reshape.

After we reshape, we create prob using icd9 check, an indicator for whether there was a problem
with a given diagnosis code. We then use egen to create anyprob, the total number of codes that had a
problem within each recid. See [D] egen for information about summary functions.

. icd9 check dx, generate(prob)
(dx contains 358 missing values)
dx contains invalid codes:

1. Invalid placement of period 0
2. Too many periods 0
3. Code too short 177
4. Code too long 0
5. Invalid 1st char (not 0-9, E, or V) 875
6. Invalid 2nd char (not 0-9) 128
7. Invalid 3rd char (not 0-9) 0
8. Invalid 4th char (not 0-9) 0
9. Invalid 5th char (not 0-9) 36

10. Code not defined 778

Total 1,994

icd — Introduction to ICD commands 411

. generate anyprob=prob>0

. by recid, sort: egen numprobs=total(anyprob)

. list recid dxnum dx anyprob numprobs in 1/9, sepby(recid) noobs

recid dxnum dx anyprob numprobs

84 1 4414 0 1
84 2 99811 0 1
84 3 14275 1 1

105 1 25013 0 1
105 2 3572 0 1
105 3 -2506 1 1

255 1 51909 0 1
255 2 1489 0 1
255 3 -V146 1 1

Before we reshape, we drop prob and anyprob because they are specific to diagnosis variables. By
construction, numprobs is constant within recid, so we do not specify it when we reshape.

. drop prob anyprob

. reshape wide dx, i(recid) j(dxnum)
(j = 1 2 3)
Data Long -> Wide

Number of observations 6,630 -> 2,210
Number of variables 6 -> 7
j variable (3 values) dxnum -> (dropped)
xij variables:

dx -> dx1 dx2 dx3

. list in 1/3, noobs

recid dx1 dx2 dx3 age sex numprobs

84 4414 99811 14275 85 Female 1
105 25013 3572 -2506 23 Male 1
255 51909 1489 -V146 63 Male 1

The three diagnosis variables are restored to the dataset. We have added a single variable showing

the total number of codes with problems for each record.

Example 2: Adding multiple variables from ICD codes
Now suppose that rather than creating a summary variable flagging any problem as we did in exam-

ple 1, we want a new variable for each diagnosis variable indicating whether there is a coding problem. In

example 1 of [D] icd9, we icd9 check each diagnosis variable separately, which requires us to type the
command three times. While this is not burdensome for 3 variables, the full NHDS includes 14 diagnosis

variables, for which we almost certainly would not want to type separate commands.

icd — Introduction to ICD commands 412

The easiest way to accomplish this is with a loop. We use forvalues because our codes all end in a
number.

. use https://www.stata-press.com/data/r19/nhds2010, clear
(Adult same-day discharges, 2010)
. forvalues i=1/3 {
2. icd9 check dx‘i’, generate(dx‘i’_prob)
3. }

(dx1 contains defined ICD-9-CM codes; no missing values)
(dx2 contains defined ICD-9-CM codes; 179 missing values)
(dx3 contains 179 missing values)
dx3 contains invalid codes:

1. Invalid placement of period 0
2. Too many periods 0
3. Code too short 177
4. Code too long 0
5. Invalid 1st char (not 0-9, E, or V) 875
6. Invalid 2nd char (not 0-9) 128
7. Invalid 3rd char (not 0-9) 0
8. Invalid 4th char (not 0-9) 0
9. Invalid 5th char (not 0-9) 36

10. Code not defined 778

Total 1,994

This is exactly what we obtain in example 1 of [D] icd9.

If our variables had not been numbered sequentially, we could have either renamed them or used

foreach; see [P] foreach.

The methods shown above will work for any of the icd9, icd9p, icd10, icd10cm, or icd10pcs data
management commands.

References
Baum, C. F., and N. J. Cox. 2007. Stata tip 45: Getting those data into shape. Stata Journal 7: 268–271.

Centers for Disease Control and Prevention. 2016. ICD-10-CM Official Guidelines for Coding and Reporting FY 2017

(October 1, 2016 - September 30, 2017). https://www.cdc.gov/nchs/data/icd/10cmguidelines 2017 final.pdf.

Gallacher, D., and F. Achana. 2018. Assessing the health economic agreement of different data source. Stata Journal 18:

223–233.

Juul, S., and M. Frydenberg. 2021. An Introduction to Stata for Health Researchers. 5th ed. College Station, TX: Stata

Press.

National Center for Health Statistics. 2011. International Classification of Diseases, Ninth Revision, Clinical Modifica-

tion. https://ftp.cdc.gov/pub/Health Statistics/NCHS/Publications/ICD9-CM/2011/.

———. 2012. National Hospital Discharge Survey: 2010 Public Use Data File Documentation.

https://ftp.cdc.gov/pub/Health Statistics/NCHS/Dataset Documentation/NHDS/NHDS 2010 Documentation.pdf.

World Health Organization. 2011. International Statistical Classification of Diseases and Related Health Problems. Vol. 2,

2016 Edition. Instruction manual. https://www.who.int/publications/m/item/international-statistical-classification-of-

diseases-and-related-health-problems---volume-2.

https://www.stata-journal.com/article.html?article=dm0031
https://www.cdc.gov/nchs/data/icd/10cmguidelines_2017_final.pdf
https://www.stata-journal.com/article.html?article=st0521
https://www.stata-press.com/books/introduction-stata-health-researchers/
https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Publications/ICD9-CM/2011/
https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/NHDS/NHDS_2010_Documentation.pdf
https://www.who.int/publications/m/item/international-statistical-classification-of-diseases-and-related-health-problems---volume-2
https://www.who.int/publications/m/item/international-statistical-classification-of-diseases-and-related-health-problems---volume-2

icd — Introduction to ICD commands 413

Also see
[D] icd9 — ICD-9-CM diagnosis codes

[D] icd9p — ICD-9-CM procedure codes

[D] icd10 — ICD-10 diagnosis codes

[D] icd10cm — ICD-10-CM diagnosis codes

[D] icd10pcs — ICD-10-PCS procedure codes

icd9 — ICD-9-CM diagnosis codes

Description Quick start Menu Syntax Options
Remarks and examples Stored results References Also see

Description
icd9 is a suite of commands for working with ICD-9-CM diagnosis codes from the 16th version

(effective October 1998) to the 32nd version. To see the current version of the ICD-9-CM diagnosis codes

and any changes that have been applied, type icd9 query.

icd9 check, icd9 clean, and icd9 generate are datamanagement commands. icd9 check verifies
that a variable contains defined ICD-9-CM diagnosis codes and provides a summary of any problems

encountered. icd9 clean standardizes the format of the codes. icd9 generate can create a binary

indicator variable for whether the code is in a specified set of codes, a variable containing a corresponding

higher-level code, or a variable containing the description of the code.

icd9 lookup and icd9 search are interactive utilities. icd9 lookup displays descriptions of the
codes specified on the command line. icd9 search looks for relevant ICD-9-CM diagnosis codes from

keywords given on the command line.

Quick start
Determine whether ICD-9-CM diagnosis codes in diag1 are invalid, and store reasons in invalid

icd9 check diag1, generate(invalid)

Standardize display of codes in diag2 to remove all periods, and align codes by padding with spaces
icd9 clean diag2, pad

Create descr3 as the diagnosis code prepended to short description of diagnosis code in diag3
icd9 generate descr3 = diag3, description long

Create diabetes as an indicator for a diabetes diagnosis in diag4 using ICD-9-CM codes 250.xx

icd9 generate diabetes = diag4, range(25000/25093)

Look up descriptions for ICD-9-CM diagnosis codes E827.0 to E828.9

icd9 lookup E8270/E8289

Menu
Data > ICD codes > ICD-9

414

icd9 — ICD-9-CM diagnosis codes 415

Syntax
Verify that variable contains defined codes

icd9 check varname [if] [in] [, any list generate(newvar)]

Clean variable and verify format of codes

icd9 clean varname [if] [in] [, dots pad]

Generate new variable from existing variable

icd9 generate newvar = varname [if] [in] , category

icd9 generate newvar = varname [if] [in] , description [long end]

icd9 generate newvar = varname [if] [in] , range(codelist)

Display code descriptions

icd9 lookup codelist

Search for codes from descriptions

icd9 search [”]text[”] [[”]text[”] ...] [, or]

Display ICD-9 code source

icd9 query

codelist is
icd9code (the particular code)

icd9code* (all codes starting with)

icd9code/icd9code (the code range)

or any combination of the above, such as 001* 018/019 E* 018.02. icd9codes must be typed with

leading 0s. For example, type 001; typing 1 will result in an error.

collect is allowed with icd9 check, icd9 clean, and icd9 lookup; see [U] 11.1.10 Prefix commands.

The icd9 suite of commands does not allow alias variables; see [D] frunalias for advice on how to get around this restriction.

icd9 — ICD-9-CM diagnosis codes 416

Options
Options are presented under the following headings:

Options for icd9 check
Options for icd9 clean
Options for icd9 generate
Option for icd9 search

Options for icd9 check
any tells icd9 check to verify that the codes fit the format of ICD-9-CM diagnosis codes but not to check

whether the codes are defined.

list specifies that icd9 check list the observation number, the invalid or undefined ICD-9-CM diagnosis

code, and the reason the code is invalid or whether it is an undefined code.

generate(newvar) specifies that icd9 check create a new variable containing, for each observation,

0 if the observation contains a defined code or is missing. Otherwise, it contains a number from 1

to 10. The positive numbers indicate the kind of problem and correspond to the listing produced by

icd9 check.

Options for icd9 clean
dots specifies that the period be included in the final format. If dots is not specified, then all periods

are removed.

pad specifies that icd9 clean pad the codes with spaces, front and back, to make the (implied) dots

align vertically in listings. Specifying padmakes the resulting codes look better when used with most
other Stata commands.

Options for icd9 generate
category, description, and range(codelist) specify the contents of the new variable that icd9

generate is to create. You do not need to icd9 clean varname before using icd9 generate; it
will accept any supported format or combination of formats.

category creates a new variable that contains ICD-9-CM diagnosis category codes. The resulting

variable may be used with the other icd9 subcommands. For diagnosis codes, the category code
is the first three characters, except for E-codes, when it is the first four characters.

description creates newvar containing descriptions of the ICD-9-CM diagnosis codes.

long is for use with description. It specifies that the code be prepended to the text describing
the code.

end modifies long (specifying end implies long) and places the code at the end of the string.

range(codelist) creates a new indicator variable equal to 1 when the ICD-9-CM diagnosis code is in

the range specified, equal to 0 when the ICD-9-CM diagnosis code is not in the range, and equal to

missing when varname is missing.

Option for icd9 search
or specifies that ICD-9-CM diagnosis codes be searched for descriptions that contain any word specified

with icd9 search. The default is to list only descriptions that contain all the words specified.

icd9 — ICD-9-CM diagnosis codes 417

Remarks and examples
Remarks are presented under the following headings:

Using icd9 and icd9p
Verifying and cleaning variables
Interactive utilities
Creating new variables

If you have not yet read Introduction to ICD coding in [D] icd, please do so before using the icd9
commands.

Using icd9 and icd9p
The ICD-9-CM coding system includes diagnosis and procedure codes. Some examples of diagnosis

codes are 552.3 (Diaphragmatic hernia with obstruction) and E871.0 (Foreign object left in body during

surgical operation). Some example of procedure codes are 01.2 (Craniotomy and craniectomy) and 55.23

(Closed renal biopsy).

Many datasets record (and some people write) codes without the period; for example, diagnosis code

550.1 may appear as 5501. The icd9 commands understand both ways of recording codes. The com-
mands are also insensitive to codes recorded with or without leading and trailing blanks. For E-codes

and V-codes, the icd9 commands are case insensitive. All the following codes are acceptable formats.

diagnosis procedure
001 27.62
001. 72

00581 32.6
552.3 97.11
E800.2 872

e8002 5523
v82.2 08.51

Important note: What constitutes a valid code changes between versions. For the rest of this entry, a

defined code is any code that is currently valid, was valid at some point since version 16 (V16, effective

1 October 1998), or has meaning as a grouping of codes. The list of valid codes and their associated

descriptions is from the US Centers for Medicare and Medicaid Services (CMS). These codes are jointly

maintained and distributed by the US Centers for Disease Control and Prevention’s National Center for

Health Statistics and by CMS (Centers for Disease Control and Prevention 2013).

In icd9, descriptions that end with an asterisk (*) are used to denote codes that are invalid for medical
coding purposes but are defined as a category code or a subcategory code that has been further subdivided.

For example, diagnosis code 001 (Cholera) is invalid without a fourth digit but is defined as a category

code, so its description appears as cholera*. CMS does not distribute short descriptions of category and

subcategory codes that are defined but not valid for coding. To ensure that Stata reports that these codes

are defined, we added them to the dataset icd9 uses with a description of *.

Codes that were valid in the past, but no longer are, have descriptions that end with a hash mark (#).
For example, the diagnosis code 645.01 was deleted between V16 and V18. It remains a defined code,

and its description appears as prolonged preg-delivered#.

icd9 — ICD-9-CM diagnosis codes 418

To view the current version of ICD-9-CM diagnosis codes in Stata, its source, and a log of changes that

have been made to the list of ICD-9-CM codes since the icd9 commands were implemented, type

. icd9 query
ICD9 Diagnostic Code Mapping Data for use with Stata, History

(output omitted)

V32
Dataset obtained 26aug2014 from

<http://www.cms.gov/Medicare/Coding/ICD9ProviderDiagnosticCodes/
> codes.html>, by selecting the ’Version 32...’ file. Can be gotten
directly via
<http://www.cms.gov/Medicare/Coding/ICD9ProviderDiagnosticCodes/
> Downloads/ICD-9-CM-v32-master-descriptions.zip>. After unzipping, the
useful file name is ”CMS32_DESC_SHORT_DX.txt (there are other files we
did not use).”

09oct2014: V32 put into Stata distribution
BETWEEN V31 and V32: There were no additional codes.
BETWEEN V31 and V32: 0 codes were deleted.
BETWEEN V31 and V32: There were no description changes.
(output omitted)

Throughout the remainder of this entry, we use nhds2010.dta, an extract of adult same-day dis-
charges from the 2010 National Hospital Discharge Survey (NHDS). Below we describe the data and
list the first five observations for the diagnosis and procedure code variables.

. use https://www.stata-press.com/data/r19/nhds2010
(Adult same-day discharges, 2010)
. describe
Contains data from https://www.stata-press.com/data/r19/nhds2010.dta
Observations: 2,210 Adult same-day discharges, 2010

Variables: 15 30 Jan 2024 15:03
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

ageu byte %8.0g ageu Units for age
age byte %8.0g Age
sex byte %8.0g sex Sex
race byte %8.0g race Race
month byte %8.0g Discharge month
status byte %8.0g status Discharge status
region byte %8.0g region Region
atype byte %8.0g atype Type of admission
dx1 str5 %9s Diagnosis 1
dx2 str5 %9s Diagnosis 2
dx3 str5 %9s Diagnosis 3 (imported incorrectly)
dx3corr str5 %9s Diagnosis 3 (corrected)
pr1 str4 %9s Procedure 1
wgt int %12.0g Frequency weight
recid float %9.0g Order of record (raw data)

Sorted by: recid

icd9 — ICD-9-CM diagnosis codes 419

. list recid dx1 dx2 dx3 pr1 in 1/5

recid dx1 dx2 dx3 pr1

1. 84 4414 99811 14275 3834
2. 105 25013 3572 -2506
3. 255 51909 1489 -V146
4. 651 9678 E8528 8
5. 696 V271 64421 16564 7359

Verifying and cleaning variables
icd9 check verifies that varname contains defined ICD-9-CM codes and, if not, provides a full report

on the problems. It is a good idea to begin with this command and fix any potential problems before

proceeding to other icd9 commands. However, the check subcommand is also useful for tracking down
problems when any of the other icd9 commands tell you that the “variable does not contain ICD-9 codes”.

icd9 clean modifies the variable to ensure consistency and to make subsequent output look better.
This is not strictly necessary because all icd9 commands work equally well with cleaned or uncleaned
codes. icd9 clean also can be used to verify that the codes in a variable conform with the ICD-9-CM

diagnosis format, without checking to see whether the codes are defined.

Example 1: Checking the validity of a variable
We noticed when we listed our data that dx3 appears to be padded with dashes instead of spaces. As a

preemptive step, we replace the dashes with spaces by using the subinstr() function because the icd9
commands ignore spaces.

. replace dx3=subinstr(dx3,”-”,” ”,.)
(1,009 real changes made)
. list recid dx1 dx2 dx3 pr1 in 1/5

recid dx1 dx2 dx3 pr1

1. 84 4414 99811 14275 3834
2. 105 25013 3572 2506
3. 255 51909 1489 V146
4. 651 9678 E8528 8
5. 696 V271 64421 16564 7359

Now that we have replaced the characters we know will be a problem, we can icd9 check the diag-
nosis variables. We add the generate() option so that we can identify any observations with invalid
codes.

. icd9 check dx1, generate(prob1)
(dx1 contains defined ICD-9-CM codes; no missing values)
. icd9 check dx2, generate(prob2)
(dx2 contains defined ICD-9-CM codes; 179 missing values)

icd9 — ICD-9-CM diagnosis codes 420

. icd9 check dx3, generate(prob3)
(dx3 contains 277 missing values)
dx3 contains invalid codes:

1. Invalid placement of period 0
2. Too many periods 0
3. Code too short 79
4. Code too long 0
5. Invalid 1st char (not 0-9, E, or V) 0
6. Invalid 2nd char (not 0-9) 128
7. Invalid 3rd char (not 0-9) 0
8. Invalid 4th char (not 0-9) 0
9. Invalid 5th char (not 0-9) 0

10. Code not defined 793

Total 1,000

We see that all codes in dx1 are valid and all discharges have a primary diagnosis recorded. Likewise,
all codes in dx2 are defined, and we see that 179 observations did not have a second diagnosis.

However, icd9 check reports that 1,000 of the 2,210 observations on dx3 have some sort of prob-
lem: 79 codes are too short, 128 have an invalid second character, and 793 are undefined. After some

investigation, we discover that when we imported the data, we started reading from the wrong position

in the file. Hereafter, we use the correctly imported variable, dx3corr.

. icd9 check dx3corr
(dx3corr contains defined ICD-9-CM codes; 356 missing values)

Rather than typing the icd9 check command once for each variable, we could have checked all three
simultaneously. See Working with multiple codes in [D] icd.

Example 2: Standardizing the format of codes
If we plan to do any reporting with these codes later, we may want to make them more readable.

Suppose we want to report the primary diagnosis and procedure for each discharge. We can use icd9
clean with the dots and pad options to add the period between the category code and any subsequent
digits and to align the periods.

. icd9 clean dx1, dots pad
(2210 changes made)

Using icd9 cleanwith undefined codes will not result in an error message. So if you are using codes
from a country other than the United States, the clean subcommand can still be used to standardize the
format of your codes and check for correct placement of the period.

Interactive utilities
icd9 search looks for relevant ICD-9-CM diagnosis codes from the description given on the command

line, and icd9 lookup lists the descriptions of codes given on the command line. The two commands
complement each other.

icd9 — ICD-9-CM diagnosis codes 421

Example 3: Finding diagnosis codes
Suppose that we want to identify the observations for which the primary diagnosis is congestive heart

failure (CHF). As part of a quick exploratory analysis, we can use icd9 search to find ICD-9-CM codes

that we may want to use to define our study population. We use the terms “heart failure” and “chf”. We

enclose “heart failure” in quotation marks and use the or option so that icd9 search looks for either
term.

. icd9 search ”heart failure” chf, or
5 matches found:

398.91 rheumatic heart failure
428 heart failure*
428.0 chf nos
428.1 left heart failure
428.9 heart failure nos

Because the descriptions are abbreviated, we are concerned that some of the 428 codes may be left

out. So we use icd9 lookup to list a range of codes.

. icd9 lookup 428*
19 matches found:

428 heart failure*
428.0 chf nos
428.1 left heart failure
428.2 *
428.20 systolic hrt failure nos
428.21 ac systolic hrt failure
428.22 chr systolic hrt failure
428.23 ac on chr syst hrt fail
428.3 *
428.30 diastolc hrt failure nos
428.31 ac diastolic hrt failure
428.32 chr diastolic hrt fail
428.33 ac on chr diast hrt fail
428.4 *
428.40 syst/diast hrt fail nos
428.41 ac syst/diastol hrt fail
428.42 chr syst/diastl hrt fail
428.43 ac/chr syst/dia hrt fail
428.9 heart failure nos

The same result could be found by typing

. icd9 lookup 428/4289

if we knew that 428.9 was the last code in the 428 category.

Creating new variables
icd9 generate produces new variables based on existing variables containing (cleaned or uncleaned)

ICD-9-CM diagnosis codes. icd9 generate, category creates newvar containing the category code that
corresponds to the code in the existing variable. icd9 generate, description creates newvar con-
taining the abbreviated textual description of the ICD-9-CM diagnosis code. icd9 generate, range()
produces numeric newvar containing 1 if varname records an ICD-9-CM diagnosis code in the range listed

and containing 0 otherwise.

icd9 — ICD-9-CM diagnosis codes 422

Example 4: Creating an indicator variable
We review the list of codes we found in example 3 and decide that we will use 398.91 and all of

the 428 codes in our definition of a CHF diagnosis. Now we can use icd9 generate with the range()
option to create an indicator variable.

. icd9 generate chf = dx1, range(398.91 428*)

. tabulate chf [fweight=wgt]
chf Freq. Percent Cum.

0 563,048 97.88 97.88
1 12,192 2.12 100.00

Total 575,240 100.00

After tabulating the results, we see that about 2.1% of all same-day discharges were for CHF in 2010.

Technical note
The dataset that supports icd9 includes all codes that were added or deleted between V16 and the last

version (V32). However, the descriptions were updated with each new version. If you are using icd9
generate with option description for codes from a version other than 32, please review the icd9
query log for any changes to descriptions between the version you are using and version 32.

Example 5: Combining commands for reporting
The icd9 generate commands are useful in isolation, but their real power comes when they are

combined. For example, suppose that we want to make a graph showing the number of discharges in

each diagnosis category for ICD-9-CM chapter 4, “Diseases of Blood and Blood-Forming Organs”. We

could use several generate commands and string functions, but icd9 generate greatly reduces our

work.

First, we extract the category code from the detailed diagnosis code. Then, because the icd9 com-
mands work equally well with complete codes or category codes, we can use icd9 generate with the
range(280/289) option to create an indicator variable for whether the discharge had a primary diagnosis
in chapter 4.

. icd9 generate dx1cat = dx1, category

. icd9 generate ch4 = dx1cat, range(280/289)

Next, we create a variable with the descriptions of the category codes in chapter 4.

. icd9 generate ch4des = dx1cat if ch4==1, description long

Finally, we use graph hbar to make a horizontal bar graph showing the frequencies of same-day

discharges by diagnosis category.

icd9 — ICD-9-CM diagnosis codes 423

. graph hbar (count) [fweight=wgt], over(ch4des) ytitle(Discharges)
> title(Diseases of Blood and Blood-Forming Organs, span)
> subtitle(Same-day Discharges (2010), span)

0 1,000 2,000 3,000
Discharges

 289 other blood disease*

 288 wbc disorders*

 287 purpura & oth hemor cond*

 285 anemia nec/nos*

 284 aplastic anemia*

 283 acq hemolytic anemia*

 282 heredit hemolytic anemia*

 281 other deficiency anemia*

 280 iron deficiency anemias*

Same-day Discharges (2010)

Diseases of Blood and Blood-Forming Organs

See [G-2] graph bar for information about customizing the graph above. For more information about

graphing results, see [G-2] graph.

Stored results
icd9 check stores the following in r():

Scalars

r(e#) number of errors of type #

r(esum) total number of errors

icd9 clean stores the following in r():

Scalars

r(N) number of changes

icd9 lookup stores the following in r():

Scalars

r(N) number of codes found

References
Centers for Disease Control and Prevention. 2013. International Classification of Diseases, Ninth Revision, Clinical

Modification (ICD-9-CM). https://www.cdc.gov/nchs/icd/icd9cm.htm.

National Center for Health Statistics. 2011. International Classification of Diseases, Ninth Revision, Clinical Modifica-

tion. https://ftp.cdc.gov/pub/Health Statistics/NCHS/Publications/ICD9-CM/2011/.

———. 2012. National Hospital Discharge Survey: 2010 Public Use Data File Documentation.

https://ftp.cdc.gov/pub/Health Statistics/NCHS/Dataset Documentation/NHDS/NHDS 2010 Documentation.pdf.

https://www.cdc.gov/nchs/icd/icd9cm.htm
https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Publications/ICD9-CM/2011/
https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/NHDS/NHDS_2010_Documentation.pdf

icd9 — ICD-9-CM diagnosis codes 424

Also see
[D] icd — Introduction to ICD commands

[D] icd9p — ICD-9-CM procedure codes

[D] icd10cm — ICD-10-CM diagnosis codes

[D] frunalias — Change storage type of alias variables

icd9p — ICD-9-CM procedure codes

Description Quick start Menu Syntax Options
Remarks and examples Stored results References Also see

Description
icd9p is a suite of commands for working with ICD-9-CM procedure codes from the 16th version

(effective October 1998) to the 32nd version. To see the current version of the ICD-9-CM procedure codes

and any changes that have been applied, type icd9p query.

icd9p check, icd9p clean, and icd9p generate are data management commands. icd9p check
verifies that a variable contains defined ICD-9-CM procedure codes and provides a summary of any prob-

lems encountered. icd9p clean standardizes the format of the codes. icd9p generate can create

a binary indicator variable for whether the code is in a specified set of codes, a variable containing a

corresponding higher-level code, or a variable containing the description of the code.

icd9p lookup and icd9p search are interactive utilities. icd9p lookup displays descriptions of
the codes specified on the command line. icd9p search looks for relevant ICD-9-CM procedure codes

from keywords given on the command line.

Quick start
Determine whether ICD-9-CM procedure codes in proc1 are invalid, and store reasons in invalid

icd9p check proc1, generate(invalid)

Standardize display of codes in proc2 to remove all periods
icd9p clean proc2

Create descr3 as the procedure code prepended to short description of procedure code in proc3
icd9p generate descr3 = proc3, description long

Create eye as an indicator for eye surgery in proc4 using ICD-9-CM procedure codes 16.1 through 16.99

icd9p generate eye = proc4, range(16*)

Look up descriptions for ICD-9-CM procedure codes 25.0 through 25.4 and 25.9 through 25.99

icd9p lookup 25.0/25.4 25.9*

Menu
Data > ICD codes > ICD-9

425

icd9p — ICD-9-CM procedure codes 426

Syntax
Verify that variable contains defined codes

icd9p check varname [if] [in] [, any list generate(newvar)]

Clean variable and verify format of codes

icd9p clean varname [if] [in] [, dots pad]

Generate new variable from existing variable

icd9p generate newvar = varname [if] [in] , category

icd9p generate newvar = varname [if] [in] , description [long end]

icd9p generate newvar = varname [if] [in] , range(codelist)

Display code descriptions

icd9p lookup codelist

Search for codes from descriptions

icd9p search [”]text[”] [[”]text[”] ...] [, or]

Display ICD-9 code source

icd9p query

codelist is
icd9code (the particular code)

icd9code* (all codes starting with)

icd9code/icd9code (the code range)

or any combination of the above, such as 50.21 37.7* 88.71/88.79. icd9codes must be typed with
leading 0s. For example, type 01; typing 1 will result in an error.

collect is allowed with icd9p check, icd9p clean, and icd9p lookup; see [U] 11.1.10 Prefix commands.

The icd9p suite of commands does not allow alias variables; see [D] frunalias for advice on how to get around this restriction.

icd9p — ICD-9-CM procedure codes 427

Options
Options are presented under the following headings:

Options for icd9p check
Options for icd9p clean
Options for icd9p generate
Option for icd9p search

Options for icd9p check
any tells icd9p check to verify that the codes fit the format of ICD-9-CM procedure codes but not to

check whether the codes are defined.

list specifies that icd9p check list the observation number, the invalid or undefined ICD-9-CM proce-

dure code, and the reason the code is invalid or whether it is an undefined code.

generate(newvar) specifies that icd9p check create a new variable containing, for each observation,

0 if the observation contains a defined code or is missing. Otherwise, it contains a number from 1

to 10. The positive numbers indicate the kind of problem and correspond to the listing produced by

icd9p check.

Options for icd9p clean
dots specifies that the period be included in the final format. If dots is not specified, then all periods

are removed.

pad specifies that icd9p clean pad the codes with spaces, front and back, to make the (implied) dots
align vertically in listings. Specifying padmakes the resulting codes look better when used with most
other Stata commands.

Options for icd9p generate
category, description, and range(codelist) specify the contents of the new variable that icd9p

generate is to create. You do not need to icd9p clean varname before using icd9p generate; it
will accept any supported format or combination of formats.

category creates a new variable that contains ICD-9-CM procedure category codes. The resulting

variable may be used with the other icd9p subcommands. For procedure codes, the category code
is the first two characters.

description creates newvar containing descriptions of the ICD-9-CM procedure codes.

long is for use with description. It specifies that the code be prepended to the text describing
the code.

end modifies long (specifying end implies long) and places the code at the end of the string.

range(codelist) creates a new indicator variable equal to 1 when the ICD-9-CM procedure code is in

the range specified, equal to 0 when the ICD-9-CM procedure code is not in the range, and equal to

missing when varname is missing.

Option for icd9p search
or specifies that ICD-9-CM procedure codes be searched for descriptions that contain any word specified

with icd9p search. The default is to list only descriptions that contain all the words specified.

icd9p — ICD-9-CM procedure codes 428

Remarks and examples
Remarks are presented under the following headings:

Verifying and cleaning variables
Interactive utilities
Creating new variables

If you have not yet read Introduction to ICD coding in [D] icd, please do so before using the icd9p
commands. Please also seeUsing icd9 and icd9p in [D] icd9 for information about Stata’s implementation

of the ICD-9 coding system.

Throughout the remainder of this entry, we use nhds2010.dta, an extract of adult same-day dis-
charges from the 2010 National Hospital Discharge Survey (NHDS). Below we describe the data.

. use https://www.stata-press.com/data/r19/nhds2010
(Adult same-day discharges, 2010)
. describe
Contains data from https://www.stata-press.com/data/r19/nhds2010.dta
Observations: 2,210 Adult same-day discharges, 2010

Variables: 15 30 Jan 2024 15:03
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

ageu byte %8.0g ageu Units for age
age byte %8.0g Age
sex byte %8.0g sex Sex
race byte %8.0g race Race
month byte %8.0g Discharge month
status byte %8.0g status Discharge status
region byte %8.0g region Region
atype byte %8.0g atype Type of admission
dx1 str5 %9s Diagnosis 1
dx2 str5 %9s Diagnosis 2
dx3 str5 %9s Diagnosis 3 (imported incorrectly)
dx3corr str5 %9s Diagnosis 3 (corrected)
pr1 str4 %9s Procedure 1
wgt int %12.0g Frequency weight
recid float %9.0g Order of record (raw data)

Sorted by: recid

Verifying and cleaning variables
icd9p check verifies that varname contains defined ICD-9-CM procedure codes and, if not, provides

a full report on the problems. It is a good idea to begin with this command and fix any potential problems

before proceeding to other icd9p commands. However, the check subcommand is also useful for track-
ing down problems when any of the other icd9p commands tell you that the “variable does not contain
ICD-9 codes”.

icd9p clean modifies the variable to ensure consistency and to make subsequent output look better.
This is not strictly necessary because all icd9p commands work equally well with cleaned or uncleaned
codes. icd9p clean also can be used to verify that the codes in a variable conform with the ICD-9-CM

procedure format, without checking to see whether the codes are defined.

icd9p — ICD-9-CM procedure codes 429

Example 1: Standardizing the format of codes
If we plan to do any reporting with the codes in our data, we may want to make them more readable.

Suppose we want to report the primary procedure for each discharge. We can use icd9p clean with the
dots option to add the period between the category code and any subsequent digits.

. icd9p clean pr1, dots pad
(821 changes made)
. list recid pr1 in 1/5

recid pr1

1. 84 38.34
2. 105
3. 255
4. 651
5. 696 73.59

Using icd9p cleanwith undefined codeswill not result in an errormessage. So if you are using codes
from a country other than the United States, the clean subcommand can still be used to standardize the
format of your codes and check for correct placement of the period.

Interactive utilities
icd9p search looks for relevant ICD-9-CM procedure codes from the description given on the com-

mand line, and icd9p lookup lists the descriptions of codes given on the command line. The two com-
mands complement each other.

Example 2: Finding procedure code descriptions
If we wanted to find the corresponding abbreviated description for procedure code 38.34, we would

type

. icd9p lookup 38.34
1 match found:

38.34 aorta resection & anast

If you are curious, the cryptic result translates into resection with anastomosis of the aorta.

To find a list of other procedure codes for resection with anastomosis and their descriptions, we could

type icd9p lookup 38.3*. Or if we were interested in finding codes for procedures on the aorta, we
could type

. icd9p search aorta
(output omitted)

Creating new variables
icd9p generate produces new variables based on existing variables containing (cleaned or un-

cleaned) ICD-9-CM procedure codes. icd9p generate, category creates newvar containing the cat-

egory code that corresponds to the code in the existing variable. icd9p generate, description

icd9p — ICD-9-CM procedure codes 430

creates newvar containing the abbreviated textual description of the ICD-9-CM procedure code. icd9p
generate, range() produces numeric newvar containing 1 if varname records an ICD-9-CM procedure

code in the range listed and containing 0 otherwise.

Example 3: Adding descriptions to codes
In example 4 of [D] icd9, we created an indicator variable for whether a patient had congestive heart

failure (CHF). We may want to know what procedures were performed for patients with CHF. We check

the procedure codes in pr1 and then generate a new variable with their descriptions. We include the long
option so that we can see the ICD-9-CM procedure code as well.

. icd9p check pr1
(pr1 contains defined ICD-9-CM procedure codes; 1389 missing values)
. icd9p generate pr1descr = pr1, description long
. tabulate pr1descr [fweight=wgt] if chf==1, missing sort

label for pr1 Freq. Percent Cum.

7,185 58.93 58.93
37.22 left heart cardiac cath 1,906 15.63 74.57
92.05 c-vasc scan/isotop funct 1,027 8.42 82.99

88.72 dx ultrasound-heart 776 6.36 89.35
03.31 spinal tap 498 4.08 93.44

39.95 hemodialysis 388 3.18 96.62
34.91 thoracentesis 138 1.13 97.75

99.60 cardiopulm resuscita nos 112 0.92 98.67
37.94 implt/repl carddefib tot 110 0.90 99.57
89.44 cardiac stress test nec 52 0.43 100.00

Total 12,192 100.00

We see that the majority of same-day discharges (58.9%) did not involve any procedure. When a proce-

dure was performed, the most common was left heart cardiac catheterization (15.6%).

Technical note
The dataset that supports icd9p includes all codes that were added or deleted between V16 and the

last version (V32). However, the descriptions were updated with each new version. If you are using

icd9p generate with option description for codes from a version other than 32, please review the

icd9p query log for any changes to descriptions between the version you are using and version 32.

icd9p — ICD-9-CM procedure codes 431

Stored results
icd9p check stores the following in r():

Scalars

r(e#) number of errors of type #

r(esum) total number of errors

icd9p clean stores the following in r():

Scalars

r(N) number of changes

icd9p lookup stores the following in r():

Scalars

r(N) number of codes found

References
National Center for Health Statistics. 2011. International Classification of Diseases, Ninth Revision, Clinical Modifica-

tion. https://ftp.cdc.gov/pub/Health Statistics/NCHS/Publications/ICD9-CM/2011/.

———. 2012. National Hospital Discharge Survey: 2010 Public Use Data File Documentation.

https://ftp.cdc.gov/pub/Health Statistics/NCHS/Dataset Documentation/NHDS/NHDS 2010 Documentation.pdf.

Also see
[D] icd — Introduction to ICD commands

[D] icd9 — ICD-9-CM diagnosis codes

[D] icd10pcs — ICD-10-PCS procedure codes

[D] frunalias — Change storage type of alias variables

https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Publications/ICD9-CM/2011/
https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/NHDS/NHDS_2010_Documentation.pdf

icd10 — ICD-10 diagnosis codes

Description Quick start Menu Syntax
Options Remarks and examples Stored results Acknowledgments
References Also see

Description
icd10 is a suite of commands for working with the World Health Organization’s (WHO’s) ICD-10

diagnosis codes from the second edition (2003) to the sixth edition (2019). To see the current version of

the ICD-10 diagnosis codes and any changes that have been applied, type icd10 query.

icd10 check, icd10 clean, and icd10 generate are data management commands. icd10 check
verifies that a variable contains defined ICD-10 diagnosis codes and provides a summary of any problems

encountered. icd10 clean standardizes the format of the codes. icd10 generate can create a binary
indicator variable for whether the code is in a specified set of codes, a variable containing a corresponding

higher-level code, or a variable containing the description of the code.

icd10 lookup and icd10 search are interactive utilities. icd10 lookup displays descriptions of
the codes specified on the command line. icd10 search looks for relevant ICD-10 diagnosis codes from
keywords given on the command line.

Quick start
Determine whether ICD-10 diagnosis codes in diag1 are invalid, and store reasons in invalid

icd10 check diag1, generate(invalid)

Standardize display of codes in diag2 to add a period and left-align codes
icd10 clean diag2, replace

Generate descr3 as descriptions of the diagnosis codes in diag3
icd10 generate descr3 = diag3, description

Generate binary indicator for malignant or benign neoplasm, as indicated by an ICD-10 code beginning

with C or D in diag4
icd10 generate cancer = diag4, range(C* D*)

Look up current descriptions for ICD-10 diagnosis codesW70 throughW79

icd10 lookup W70/W79

Look up codes where the description contains the words “delivery” or “birth”

icd10 search delivery birth, or

Menu
Data > ICD codes > ICD-10

432

icd10 — ICD-10 diagnosis codes 433

Syntax
Verify that variable contains defined codes

icd10 check varname [if] [in] [, checkopts]

Clean variable and verify format of codes

icd10 clean varname [if] [in], {generate(newvar) | replace} [cleanopts]

Generate new variable from existing variable

icd10 generate newvar = varname [if] [in], {category | short} [check]

icd10 generate newvar = varname [if] [in], description [genopts]

icd10 generate newvar = varname [if] [in], range(codelist) [check]

Display code descriptions

icd10 lookup codelist [, version(#)]

Search for codes from descriptions

icd10 search [”]text[”] [[”]text[”] ...] [, searchopts]

Display ICD-10 version

icd10 query

codelist is one of the following:

icd10code (the particular code)

icd10code* (all codes starting with)

icd10code/icd10code (the code range)

or any combination of the above, such as A27.0 G40* Y60/Y69.9.

checkopts Description

fmtonly check only format of the codes

summary frequency of each invalid or undefined code

list list observations with invalid or undefined ICD-10 codes

generate(newvar) create new variable marking invalid codes

version(#) year to check codes against; default is version(2019)

icd10 — ICD-10 diagnosis codes 434

cleanopts Description

∗ generate(newvar) create new variable containing cleaned codes
∗ replace replace existing codes with the cleaned codes

check check that variable contains ICD-10 codes before cleaning

nodots format codes without a period

pad add space to the right of three-character codes

∗ Either generate() or replace is required.

genopts Description

addcode(begin | end) add code to the beginning or end of the description

pad add spaces to the right of the code; must specify addcode(begin)
nodots format codes without a period; must specify addcode()
check check that variable contains ICD-10 codes before generating new variable

version(#) select description from year #; default is version(2019)

searchopts Description

or match any keyword

matchcase match case of keywords

version(#) search description from year #; default is all

collect is allowed with icd10 check and icd10 clean; see [U] 11.1.10 Prefix commands.

The icd10 suite of commands does not allow alias variables; see [D] frunalias for advice on how to get around this restriction.

Options
Options are presented under the following headings:

Options for icd10 check
Options for icd10 clean
Options for icd10 generate
Option for icd10 lookup
Options for icd10 search

Warning: The option descriptions are brief and use jargon. Please read Introduction to ICD coding in

[D] icd before using the icd10 command.

Options for icd10 check
fmtonly tells icd10 check to verify that the codes fit the format of ICD-10 diagnosis codes but not to

check whether the codes are defined.

summary specifies that icd10 check should report the frequency of each invalid or undefined code that
was found in the data. Codes are displayed in descending order by frequency. summary may not be
combined with list.

list specifies that icd10 check list the observation number, the invalid or undefined ICD-10 diagnosis

code, and the reason the code is invalid or whether it is an undefined code. listmay not be combined
with summary.

icd10 — ICD-10 diagnosis codes 435

generate(newvar) specifies that icd10 check create a new variable containing, for each observation,

0 if the observation contains a defined code. Otherwise, it contains a number from 1 to 8 if the code is

invalid, 99 if the code is undefined, or missing if the code is missing. The positive numbers indicate

the kind of problem and correspond to the listing produced by icd10 check.

version(#) specifies the version of the codes that icd10 check should reference. # may be any value
between 2003, which is the second edition of ICD-10 without any updates applied, and 2019, which is

the sixth edition of ICD-10. The appropriate value of # should be determined from the data source.

The default is version(2019).

Options for icd10 clean
generate(newvar) and replace specify how the formatted values of varname are to be handled. You

must specify either generate() or replace.

generate() specifies that the cleaned values be placed in the new variable specified in newvar.

replace specifies that the existing values of varname be replaced with the formatted values.

check specifies that icd10 clean should first check that varname contains codes that fit the format of
ICD-10 diagnosis codes. Specifying the check option will slow down icd10 clean.

nodots specifies that the period be removed in the final format.

pad specifies that spaces be added to the end of the codes to make the (implied) dots align vertically in
listings. The default is to left-align codes without adding spaces.

Options for icd10 generate
category, short, description, and range(codelist) specify the contents of the new variable that

icd10 generate is to create. You do not need to icd10 clean varname before using icd10
generate; it will accept any supported format or combination of formats.

category and short generate a new variable that also contains ICD-10 diagnosis codes. The resulting

variable may be used with the other icd10 subcommands.

category specifies to extract the three-character category code from the ICD-10 diagnosis code.

short is designed for users who have data with greater specificity than the standard four-character
ICD-10 codes. short will reduce five- and six-character codes to their first four characters.

Three- and four-character codes are left as they are.

description creates newvar containing descriptions of the ICD-10 diagnosis codes.

range(codelist) creates a new indicator variable equal to 1 when the ICD-10 diagnosis code is in the

range specified, equal to 0 when the ICD-10 diagnosis code is not in the range, and equal to missing

when varname is missing.

addcode(begin | end) specifies that the code should be includedwith the text describing the code. Spec-
ifying addcode(begin) will prepend the code to the text. Specifying addcode(end) will append
the code to the text.

pad specifies that the code that is to be added to the description should be padded spaces to the right of
the code so that the start of description text is aligned for all codes. pad may be specified only with
addcode(begin).

icd10 — ICD-10 diagnosis codes 436

nodots specifies that the code that is added to the description should be formatted without a period.

nodots may be specified only if addcode() is also specified.

check specifies that icd10 generate should first check that varname contains codes that fit the format
of ICD-10 diagnosis codes. Specifying the check option will slow down the generate subcommand.

version(#) specifies the version of the codes that icd10 generate should reference. # may be any
value between 2003, which is the second edition of ICD-10 without any updates applied, and 2019,

which is the sixth edition of ICD-10. The appropriate value of # should be determined from the data

source. The default is version(2019).

Option for icd10 lookup
version(#) specifies the version of the codes that icd10 lookup should reference. #may be any value

between 2003, which is the second edition of ICD-10 without any updates applied, and 2019, which is

the sixth edition of ICD-10. The appropriate value of # should be determined from the data source.

The default is version(2019).

Options for icd10 search
or specifies that ICD-10 diagnosis codes be searched for descriptions that contain any word specified with

icd10 search. The default is to list only descriptions that contain all the words specified.

matchcase specifies that icd10 search should match the case of the keywords given on the command
line. The default is to perform a case-insensitive search.

version(#) specifies the version of the codes that icd10 search should reference. #may be any value
between 2003, which is the second edition of ICD-10 without any updates applied, and 2019, which is

the sixth edition of ICD-10.

By default, descriptions for all versions are searched, meaning that codes that changed descriptions

and that have descriptions in multiple versions that contain the search terms will be duplicated. To

ensure a list of unique code values, specify the version number.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Managing datasets with ICD-10 codes
Creating new variables

If you have not yet read Introduction to ICD coding in [D] icd, please do so before using the icd10
commands.

Introduction
The general format of an ICD-10 diagnosis code is

{A–Z}{0–9}{0–9}[.][0–9]

The code begins with a single letter followed by two digits. It may have an additional third digit after

the period.

icd10 — ICD-10 diagnosis codes 437

For example, in the ICD-10 coding system, E11.0 (Type 2 diabetes mellitus: With coma) and C56

(Malignant neoplasm of ovary) are diagnosis codes, although some datasets record (and some people

write) E110 rather than E11.0. The icd10 commands understand both ways of recording codes. The

commands are also insensitive to codes recorded with or without leading and trailing blanks and are case

insensitive.

All the following are acceptable formats to record codes in Stata.

N94.0
M32

K12
F102
x40

The list of defined codes and their associated descriptions is provided under license from the World

Health Organization (WHO); see [R]Copyright ICD-10. To view the current license and a log of changes

that WHO has made to the list of ICD-10 codes since the icd10 commands were implemented in Stata,
type

. icd10 query
ICD-10 Version and Change Log

License agreement
ICD-10 codes used by permission of the World Health Organization (WHO),

from: International Statistical Classification of Diseases and
Related Health Problems, Tenth Revision (ICD-10) 2010 Edition. Vols.
1-3. Geneva, World Health Organization, 2011.

See copyright icd10 for the ICD-10 copyright notification.
Edition 2019
The ICD-10 data were obtained from WHO on 27feb2023.
All updates scheduled for implementation through 01jan2023 have been

applied.
Between 2016 and 2019:

137 codes added, 23 codes deleted, 58 code descriptions changed.
(output omitted)

Technical note
Codes can have up to two more digits to form five- and six-character codes. Supplemental subdivi-

sions of ICD-10 codes may occur at the fifth and sixth characters. These supplemental subdivisions are

primarily used to indicate anatomical site and additional information about the diagnosis, for example,

whether a fracture was open or closed (World Health Organization 2011). However, these codes are

not part of the standard four-character system codified byWHO for international morbidity and mortality

reporting and are not considered valid by icd10.

If your data contain these longer codes, you can use icd10 generate with option short to shorten
your codes to the relevant four-character subcategory code. Any existing three- and four-character codes

in the data are left as they were originally.

icd10 — ICD-10 diagnosis codes 438

Managing datasets with ICD-10 codes
The icd10 suite of commands has three data management commands. icd10 check verifies that the

ICD-10 codes in varname are valid. icd10 clean standardizes the format of ICD-10 codes in varname.

And icd10 generate produces a new variable from an existing variable containing ICD-10 codes. It will

create a variable containing the associated category code, a description of the code, or a binary indicator

for whether the code is in a specified set of codes.

Example 1: Checking the validity of a variable
Although not necessary, a good place to start is with icd10 check. The commands in the icd10 suite

will return an error message if the codes in your data are not valid. Running icd10 check is a good way
to avoid error messages later.

australia10.dta contains total deaths in 2010 for males and females from Australia, taken from

theWHOMortality Database . Below we list the first 10 observations.
. use https://www.stata-press.com/data/r19/australia10
(Australian mortality data, 2010)
. list in 1/10, sepby(cause) noobs

cause sex deaths

A020 Male 1
A020 Female 4

A021 Male 3
A021 Female 1

A047 Male 16
A047 Female 25

A048 Female 4

A049 Male 1
A049 Female 1

A063 Male 1

Wewill specify the generate() option to create a new variable called prob that will indicate that the
code in cause is valid (prob = 0) or will indicate a value of 1 through 8 for the reason the code is not

valid. icd10 check also creates a value of 99, which indicates that the code is not defined but otherwise
conforms to the formatting requirements for ICD-10 codes.

icd10 — ICD-10 diagnosis codes 439

. icd10 check cause, generate(prob)
(cause contains no missing values)
cause contains undefined codes:

1. Invalid placement of period 0
2. Too many periods 0
3. Code too short 0
4. Code too long 0
5. Invalid 1st char (not A-Z) 0
6. Invalid 2nd char (not 0-9) 0
7. Invalid 3rd char (not 0-9) 0
8. Invalid 4th char (not 0-9) 0

77. Valid only for previous versions 9
88. Valid only for later versions 0
99. Code not defined 0

Total 9

icd10 check reports that there are six observations with undefined codes. In this case, this is because
we failed to specify that the data were reported using the ICD-10 codes from 2010.

. drop prob

. icd10 check cause, generate(prob) year(2010)
(cause contains defined codes; no missing values)

We see now that there are no errors in our dataset.

Example 2: Standardizing the format of codes
If we plan to do any reporting with these codes later, we may want to make them more readable, so

we use icd10 clean. This command will automatically add a dot after the third character and change
the display format of the diagnosis variable so that it is left aligned. We specify replace so that the

standardized codes are placed in the existing cause variable.

When we listed our data before, they were sorted by cause of death and showed very few deaths

assigned to the first several codes. It might be more interesting to see the most frequent causes of death.

So before we list the data this time, we sort them in descending order with gsort.

icd10 — ICD-10 diagnosis codes 440

. icd10 clean cause, replace
variable cause was str4 now str5
(2,921 real changes made)
. gsort -deaths
. list cause sex deaths in 1/10, sepby(cause)

cause sex deaths

1. I21.9 Male 5,057
2. I21.9 Female 4,885

3. C34.9 Male 4,859

4. I25.9 Male 3,805
5. I25.9 Female 3,636

6. F03 Female 3,517

7. C61 Male 3,236

8. I64 Female 3,204

9. C34.9 Female 3,130

10. C50.9 Female 2,842

Now it is clear that we have a mix of three- and four-character codes.

Example 3: Looking up a single code
In example 2, we see that the highest number of reported deaths for men and women is for code I21.9.

If we were curious about what this code is, we could type

. icd10 lookup I21.9
I21.9 Acute myocardial infarction, unspecified

and we would see that these are deaths from acute myocardial infarction, commonly known as heart

attacks. Because the icd10 commands are case insensitive and do not care whether we use the dot, we
could have typed i21.9, I219, or i219, and Stata would have returned the same results.

Creating new variables
We now proceed to create new variables for later use.

Example 4: Creating an indicator variable
Suppose that after watching several high-action nature shows on television, we now believe that death

due to shark attack is common in Australia. It did not show up in our top-ten list above, but we would

like to see how many deaths we have in our data. We can look up the code usingWHO’s interactive web

utility (http://apps.who.int/classifications/icd10/browse/2010/en/) and then use icd10 generate with

the range() option to create an indicator for whether death occurred by shark bite (shark).

http://apps.who.int/classifications/icd10/browse/2010/en/

icd10 — ICD-10 diagnosis codes 441

. icd10 generate shark=cause, range(W56)

. tabulate shark [fweight=deaths]
shark Freq. Percent Cum.

0 143,472 100.00 100.00
1 1 0.00 100.00

Total 143,473 100.00

Reality was not nearly as exciting as television—there was only one death with a code relating to shark

bite in Australia in 2010.

If we wanted to study something less sensational, we could expand the icd10rangelist to a more

complex list of codes. For example, perhaps we want to study the number of deaths from myocardial

infarction (MI) and complications that occurred afterward. We might pick codes I21.0 through I21.9,

I22.0 through I22.9, and I23.0 through I23.8. We could create the variable mi by typing

. icd10 generate mi=cause, range(I210/I219 I220/I229 I230/I238)

. tabulate mi [fweight=deaths]
mi Freq. Percent Cum.

0 133,522 93.06 93.06
1 9,951 6.94 100.00

Total 143,473 100.00

We see that 9,951 deaths were from MI or complications thereof, which equates to about 6.9% of all

deaths in Australia in 2010. It appears that hearts are far more dangerous than sharks.

Technical note
WHO reserves codes in categories U00 through U49 for the provisional assignment of new diseases

and designates codes U50 through U99 for research purposes (World Health Organization 2011).

In general, codes in categories U50 through U99 are treated as undefined. This means that you do

not need to take any special steps as long as your codes fit within the accepted four-character format.

However, if you wish to exclude U codes from the commands, you can use the if qualifier.

With the exception of icd10 generate with the description option, the icd10 commands will

continue to work as normal with undefined U codes. As a rule, icd10 generate with the description
option will return missing values for codes U50 through U99. Note that some of these codes, however,

are defined and considered valid by icd10 becauseWHO has distributed descriptions for them. For these

codes, icd10 generate with option description will return results. The affected codes vary by year.

icd10 — ICD-10 diagnosis codes 442

Stored results
icd10 check stores the following in r():

Scalars

r(e#) number of errors of type #

r(esum) total number of errors

r(miss) number of missing values

r(N) number of nonmissing values

icd10 clean stores the following in r():

Scalars

r(N) number of changes

icd10 lookup and icd10 search store the following in r():

Scalars

r(N codes) number of codes found

Acknowledgments
We thank the World Health Organization for making ICD-10 codes available to Stata users. See

[R] Copyright ICD-10 for allowed usage.

We thank Joe Canner, who while at Yale University School of Medicine, wrote mycd10 and mycd10p,
which provide many utilities for ICD-10 diagnosis and procedure codes. The commands rely on a user-

supplied ICD-10 lookup dataset for diagnosis codes and ICD-10-PCS codes from the US Centers for Medi-

care and Medicaid Services for procedure codes.

References
de Kraker, M. E. A., M. Wolkewitz, P. G. Davey, H. Grundmann, and Burden Study Group. 2011. Clinical impact of

antimicrobial resistance in European hospitals: Excess mortality and length of hospital stay related to methicillin-

resistant staphylococcus aureus bloodstream infections.AntimicrobialAgents and Chemotherapy 55: 1598–1605. https:

//doi.org/10.1128/AAC.01157-10.

Klevens, R. M., M. A. Morrison, J. Nadle, S. Petit, K. Gershman, S. Ray, L. H. Harrison, R. Lynfield, G. Dumyati,

J. M. Townes, A. S. Craig, E. R. Zell, G. E. Fosheim, L. K. McDougal, R. B. Carey, and S. K. Fridkin. 2007. Invasive

methicillin-resistant Staphylococcus aureus infections in the United States. Journal of theAmericanMedicalAssociation

298: 1763–1771. https://doi.org/10.1001/jama.298.15.1763.

World Health Organization. 2011. International Statistical Classification of Diseases and Related Health Problems. Vol. 2,

2016 Edition. Instruction manual. https://www.who.int/publications/m/item/international-statistical-classification-of-

diseases-and-related-health-problems---volume-2.

Also see
[D] icd — Introduction to ICD commands

[D] icd10cm — ICD-10-CM diagnosis codes

[D] frunalias — Change storage type of alias variables

https://doi.org/10.1128/AAC.01157-10
https://doi.org/10.1128/AAC.01157-10
https://doi.org/10.1001/jama.298.15.1763
https://www.who.int/publications/m/item/international-statistical-classification-of-diseases-and-related-health-problems---volume-2
https://www.who.int/publications/m/item/international-statistical-classification-of-diseases-and-related-health-problems---volume-2

icd10cm — ICD-10-CM diagnosis codes

Description Quick start Menu Syntax Options
Remarks and examples Stored results Acknowledgments Reference Also see

Description
icd10cm is a suite of commands for working with ICD-10-CM diagnosis codes from US federal fiscal

year 2016 to the present. To see the current version of the ICD-10-CM diagnosis codes and any changes

that have been applied, type icd10cm query.

icd10cm check, icd10cm clean, and icd10cm generate are data management commands.

icd10cm check verifies that a variable contains defined ICD-10-CM diagnosis codes and provides a sum-

mary of any problems encountered. icd10cm clean standardizes the format of the codes. icd10cm
generate can create a binary indicator variable for whether the code is in a specified set of codes, a

variable containing a corresponding higher-level code, or a variable containing the description of the

code.

icd10cm lookup and icd10cm search are interactive utilities. icd10cm lookup displays descrip-
tions of the codes specified on the command line. icd10cm search looks for relevant ICD-10-CM diag-

nosis codes from keywords given on the command line.

Quick start
Determine whether ICD-10-CM diagnosis codes in diag1 are invalid, and store reasons in invalid

icd10cm check diag1, generate(invalid)

Standardize display of codes in diag2 to add a period and left-align codes
icd10cm clean diag2, replace

Generate descr3 as the diagnosis code prepended to the short description of diagnosis code in diag3
icd10cm generate descr3 = diag3, description addcode(begin)

Generate mhypertn as an indicator for a maternal hypertension diagnosis in diag4 using ICD-10-CM

codes O16.1 through O16.5 or O16.9

icd10cm generate mhypertn = diag4, range(O161/O165 O169)

Look up descriptions for ICD-10-CM diagnosis codes T46.1X1, T46.1X1A, T46.1X1D, and T46.1X1S

icd10cm lookup T46.1X1*

Look up codes where the description contains the words “delivery” or “birth”

icd10cm search delivery birth, or

Menu
Data > ICD codes > ICD-10-CM

443

icd10cm — ICD-10-CM diagnosis codes 444

Syntax
Verify that variable contains defined codes

icd10cm check varname [if] [in] [, checkopts]

Clean variable and verify format of codes

icd10cm clean varname [if] [in], {generate(newvar) | replace} [cleanopts]

Generate new variable from existing variable

icd10cm generate newvar = varname [if] [in], category [check]

icd10cm generate newvar = varname [if] [in], description [genopts]

icd10cm generate newvar = varname [if] [in], range(codelist) [check]

Display code descriptions

icd10cm lookup codelist [, version(#)]

Search for codes from descriptions

icd10cm search [”]text[”] [[”]text[”] ...] [, searchopts]

Display ICD-10-CM version

icd10cm query

codelist is one of the following:

icd10code (the particular code)

icd10code* (all codes starting with)

icd10code/icd10code (the code range)

or any combination of the above, such as A27.0 G40* Y60/Y69.9.

checkopts Description

fmtonly check only format of the codes

summary frequency of each invalid or undefined code

list list observations with invalid or undefined ICD-10-CM codes

generate(newvar) create new variable marking invalid codes

version(#) fiscal year to check codes against; default is the current year

icd10cm — ICD-10-CM diagnosis codes 445

cleanopts Description

∗ generate(newvar) create new variable containing cleaned codes
∗ replace replace existing codes with the cleaned codes

check check that variable contains ICD-10-CM codes before cleaning

nodots format codes without a period

pad add space to the right of codes shorter than seven characters

∗ Either generate() or replace is required.

genopts Description

addcode(begin | end) add code to the beginning or end of the description

pad add spaces to the right of the code; must specify addcode(begin)
nodots format codes without a period; must specify addcode()
check check that variable contains ICD-10-CM codes before generating new

variable

long use long description rather than short

version(#) select description from fiscal year #; default is the current year

searchopts Description

or match any keyword

matchcase match case of keywords

version(#) search description from fiscal year #; default is all

collect is allowed with icd10cm check and icd10cm clean; see [U] 11.1.10 Prefix commands.

The icd10cm suite of commands does not allow alias variables; see [D] frunalias for advice on how to get around this
restriction.

Options
Options are presented under the following headings:

Options for icd10cm check
Options for icd10cm clean
Options for icd10cm generate
Option for icd10cm lookup
Options for icd10cm search

Options for icd10cm check
fmtonly tells icd10cm check to verify that the codes fit the format of ICD-10-CM diagnosis codes but

not to check whether the codes are defined.

summary specifies that icd10cm check should report the frequency of each invalid or undefined code
that was found in the data. Codes are displayed in descending order by frequency. summary may not
be combined with list.

list specifies that icd10cm check list the observation number, the invalid or undefined ICD-10-CM

diagnosis code, and the reason the code is invalid or whether it is an undefined code. list may not
be combined with summary.

icd10cm — ICD-10-CM diagnosis codes 446

generate(newvar) specifies that icd10cm check create a new variable containing, for each observa-

tion, 0 if the observation contains a defined code. Otherwise, it contains a number from 1 to 11 if the

code is invalid, 77 if the code is valid only for a previous version, 88 if the code is valid only for a

later version, 99 if the code is undefined, or missing if varname is missing.. The positive numbers

indicate the kind of problem and correspond to the listing produced by icd10cm check.

version(#) specifies the version of the codes that icd10cm check should reference. # indicates the

federal fiscal year for the codes. For example, use 2016 for federal fiscal year 2016 (FFY-2016),

which is October 1, 2015 to September 30, 2016. icd10cm supports all years after the United States
officially adopted ICD-10-CM. The appropriate value of # should be determined from the data source.

The default is the current year.

Warning: The default value of version() will change over time so that the most recent codes are
used. Using the default value rather than specifying a specific version may change results after a new

version of the codes is introduced.

Options for icd10cm clean
generate(newvar) and replace specify how the formatted values of varname are to be handled. You

must specify either generate() or replace.

generate() specifies that the cleaned values be placed in the new variable specified in newvar.

replace specifies that the existing values of varname be replaced with the formatted values.

check specifies that icd10cm clean should first check that varname contains codes that fit the format
of ICD-10-CM diagnosis codes. Specifying the check option will slow down icd10cm clean.

nodots specifies that the period be removed in the final format.

pad specifies that spaces be added to the end of the codes to make the (implied) dots align vertically in
listings. The default is to left-align codes without adding spaces.

Options for icd10cm generate
category, description, and range(codelist) specify the contents of the new variable that icd10cm

generate is to create. You do not need to icd10cm clean varname before using icd10cm generate;
it will accept any supported format or combination of formats.

category specifies to extract the three-character category code from the ICD-10-CM diagnosis code.

The resulting variable may be used with the other icd10cm subcommands.

description creates newvar containing descriptions of the ICD-10-CM diagnosis codes.

range(codelist) creates a new indicator variable equal to 1 when the ICD-10-CM diagnosis code is in

the range specified, equal to 0 when the ICD-10-CM diagnosis code is not in the range, and equal to

missing when varname is missing.

addcode(begin | end) specifies that the code should be includedwith the text describing the code. Spec-
ifying addcode(begin) will prepend the code to the text. Specifying addcode(end) will append
the code to the text.

pad specifies that the code that is to be added to the description should be padded spaces to the right of
the code so that the start of description text is aligned for all codes. pad may be specified only with
addcode(begin).

icd10cm — ICD-10-CM diagnosis codes 447

nodots specifies that the code that is added to the description should be formatted without a period.

nodots may be specified only if addcode() is also specified.

check specifies that icd10cm generate should first check that varname contains codes that fit the for-
mat of ICD-10-CM diagnosis codes. Specifying the check option will slow down the generate sub-
command.

long specifies that the long description of the code be used rather than the short (abbreviated) descrip-
tion.

version(#) specifies the version of the codes that icd10cm generate should reference. # indicates
the federal fiscal year for the codes. For example, use 2016 for federal fiscal year 2016 (FFY-2016),
which is October 1, 2015 to September 30, 2016. icd10cm supports all years after the United States
officially adopted ICD-10-CM. The appropriate value of # should be determined from the data source.

The default is the current year.

Warning: The default value of version() will change over time so that the most recent codes are
used. Using the default value rather than specifying a specific version may change results after a new

version of the codes is introduced.

Option for icd10cm lookup
version(#) specifies the version of the codes that icd10cm lookup should reference. # indicates the

federal fiscal year for the codes. For example, use 2016 for federal fiscal year 2016 (FFY-2016),

which is October 1, 2015 to September 30, 2016. icd10cm supports all years after the United States
officially adopted ICD-10-CM. The appropriate value of # should be determined from the data source.

The default is the current year.

Warning: The default value of version() will change over time so that the most recent codes are
used. Using the default value rather than specifying a specific version may change results after a new

version of the codes is introduced.

Options for icd10cm search
or specifies that ICD-10-CM diagnosis codes be searched for descriptions that contain any word specified

with icd10cm search. The default is to list only descriptions that contain all the words specified.

matchcase specifies that icd10cm search should match the case of the keywords given on the com-
mand line. The default is to perform a case-insensitive search.

version(#) specifies the version of the codes that icd10cm search should reference. # indicates the
federal fiscal year for the codes. For example, use 2016 for federal fiscal year 2016 (FFY-2016),

which is October 1, 2015 to September 30, 2016. icd10cm supports all years after the United States
officially adopted ICD-10-CM.

By default, descriptions for all versions are searched, meaning that codes that changed descriptions

and that have descriptions in multiple versions that contain the search terms will be duplicated. To

ensure a list of unique code values, specify the version number.

icd10cm — ICD-10-CM diagnosis codes 448

Remarks and examples
Remarks are presented under the following headings:

Introduction
Managing datasets with ICD-10-CM codes
Interactive utilities

If you have not yet read Introduction to ICD coding in [D] icd, please do so before using the icd10cm
commands.

Introduction
The general format of an ICD-10-CM diagnosis code is a three-character category code followed by up

to four characters after an (implied) period. The first character is always a letter and the second character

is always a number, but the remaining characters may be any combination of letters and numbers.

Some examples of ICD-10-CM diagnosis codes are B69 (cysticercosis) and W20.0XXA (struck by

falling object in cave-in, initial encounter). Many datasets record (and some people write) codes without

the period; for example, the code I74.3 may appear as I743. The icd10cm commands understand both
ways of recording codes. The commands are also insensitive to codes recorded with or without leading

and trailing blanks and are case insensitive.

All the following are acceptable formats to record codes in Stata:

T37.0X3A
A25.1

C52
a80.0
z8261

Important note: What constitutes a valid code changes between versions. For the rest of this entry, a

defined code is any code that is currently valid, was valid at some point since the ICD-10-CM coding system

was introduced, or has a meaning as a grouping of codes. The list of valid codes and their associated

descriptions is from the US Centers for Disease Control and Prevention’s National Center for Health

Statistics (Centers for Disease Control and Prevention 2013). The ICD-10-CM is a licensed adaptation of

the ICD-10, which is copyrighted by the World Health Organization (WHO); see [R] Copyright ICD-10.

To view the current version of the ICD-10-CM diagnosis codes in Stata, its source, and a log of changes

that have been made to the list of ICD-10-CM diagnosis codes since the icd10cm commands were imple-
mented, type

. icd10cm query
ICD-10-CM Diagnosis Code Version and Change Log

Note
The ICD-10 coding system is copyrighted by the World Health Organization.

The ICD-10-CM is the WHO’s authorized adaptation for use in the
United States. It is maintained by the National Center for Health
Statistics (NCHS), at the Center for Disease Control and Prevention.
Stata obtains the ICD-10-CM data from the NCHS website.

See copyright icd10 for the ICD-10 copyright notification.
(output omitted)

icd10cm — ICD-10-CM diagnosis codes 449

Managing datasets with ICD-10-CM codes
The icd10cm suite of commands has three data management commands. icd10cm check verifies that

the ICD-10-CM diagnosis codes in varname are valid. icd10cm clean standardizes the format of ICD-10-
CM diagnosis codes in varname. And icd10cm generate produces a new variable from an existing

variable containing ICD-10-CM diagnosis codes.

Examples in this section use hosp2015.dta, a fictional sample of inpatient hospital discharges

in Washington State from July 2015 to December 2015. The data were simulated based on the

Comprehensive Hospital Abstract Reporting System (CHARS); see https://www.doh.wa.gov/Dataand

StatisticalReports/HealthcareinWashington/HospitalandPatientData/HospitalDischargeDataCHARS.

Examples analyzing the procedure codes for this dataset may be found in [D] icd10pcs.

. use https://www.stata-press.com/data/r19/hosp2015
(Fictional WA hospital discharges)
. describe
Contains data from https://www.stata-press.com/data/r19/hosp2015.dta
Observations: 3,935 Fictional WA hospital discharges

Variables: 18 6 Apr 2024 13:10

Variable Storage Display Value
name type format label Variable label

hospid str5 %9s Hospital ID
age byte %11.0g age Age (years)
sex byte %8.0g sex Sex
ins byte %9.0g ins Insurance type
los byte %19.0g los Length of stay (days)
atype byte %9.0g admtype Admission type
asource byte %18.0g admsrc Admission source
aday byte %8.0g day Admission day of week
dmonth int %tm Discharge month
dstatus byte %22.0g status Discharge status
died byte %8.0g Patient died (1=yes)
diag1 str7 %9s Diagnosis 1
diag2 str7 %9s Diagnosis 2
diag3 str7 %9s Diagnosis 3
proc1 str7 %9s Procedure 1
proc2 str7 %9s Procedure 2
proc3 str7 %9s Procedure 3
billed float %8.2fc Amount billed ($1,000s)

Sorted by: hospid dmonth

Although not necessary, it is a good idea to begin with icd10cm check and fix any potential problems
before proceeding to other icd10cm commands. By default, it verifies that varname contains defined
ICD-10-CM diagnosis codes and, if not, tabulates the type of problems encountered.

Example 1: Checking the validity of a variable
We want to verify that the primary diagnosis code (diag1) contains only valid ICD-10-CM diagno-

sis codes. Because any discharges that use ICD-10-CM diagnosis codes in our data will be from Octo-

ber 1, 2015 to December 31, 2015, we use version(2016) to specify the FFY-2016 version of ICD-10-CM.
If there are invalid or undefined codes in our data, we want to see what the codes are, their frequency,

and the reason they were not valid, so we add the summary option.

https://www.doh.wa.gov/DataandStatisticalReports/HealthcareinWashington/HospitalandPatientData/HospitalDischargeDataCHARS
https://www.doh.wa.gov/DataandStatisticalReports/HealthcareinWashington/HospitalandPatientData/HospitalDischargeDataCHARS

icd10cm — ICD-10-CM diagnosis codes 450

. icd10cm check diag1, version(2016) summary
(diag1 contains no missing values)
diag1 contains invalid codes:

1. Invalid placement of period 0
2. Too many periods 0
3. Code too short 0
4. Code too long 0
5. Invalid 1st char (not A-Z) 1,916
6. Invalid 2nd char (not 0-9) 0
7. Invalid 3rd char (not 0-9 A or B) 0
8. Invalid 4th char (not 0-9 or A-Z) 0
9. Invalid 5th char (not 0-9 or A-Z) 0

10. Invalid 6th char (not 0-9 or A-Z) 0
11. Invalid 7th char (not 0-9 or A-Z) 0
77. Valid only for previous versions 0
88. Valid only for later versions 0
99. Code not defined 32

Total 1,948
Summary of invalid and undefined codes

diag1 Count Problem

0389 91 Invalid 1st char
65421 57 Invalid 1st char
64511 45 Invalid 1st char
71536 33 Invalid 1st char
66411 31 Invalid 1st char
(output omitted)
4940 1 Invalid 1st char
4270 1 Invalid 1st char
1570 1 Invalid 1st char
53550 1 Invalid 1st char
64413 1 Invalid 1st char

It looks like the records with problems used ICD-9-CM codes instead of ICD-10-CM codes. We could

confirm our suspicion by using icd9 check or icd9 lookup to see whether the codes are defined in the
ICD-9-CM coding system.

Because our data span the date the US switched to ICD-10-CM (October 1, 2015), we create an indicator

for whether the record should use ICD-10-CM based on the date of discharge (dmonth). We then run

icd10cm check again for only these records.

. generate use10 = (dmonth>=tm(2015m10))

. icd10cm check diag1 if use10==1, version(2016)
(diag1 contains defined codes; no missing values)

All the problems in diag1 are before the switch, so we proceed without concern about our data.

In the generate command above, we used the tm() function, which lets us easily provide date values
to Stata in string form; see [D] Datetime for more information about working with dates.

If we wanted to check codes in more than one diagnosis variable, we could use a foreach loop or
reshape our data; see Working with multiple codes in [D] icd. Also, additional options for icd10cm
check help you identify the source of any errors. For example, you can obtain a list of observations that
have invalid codes. See Options for icd10cm check.

icd10cm — ICD-10-CM diagnosis codes 451

icd10cm clean formats the variable to ensure consistency and to make subsequent output from other

commands such as list and tabulate look better. icd10cm clean also can be used to verify that

the codes in a variable conform to the ICD-10-CM format, without checking to see whether the codes are

defined.

Example 2: Creating a variable with standardized codes
We would like to find the frequency of each primary diagnosis in our dataset. We can use tabulate

with the sort option to see the most common primary diagnoses first.

So that the codes in diag1 are more readable in the tabulate output, we first use icd10cm clean.
This adds a period after the three-character category code. We specify the pad option to make sure our
codes align and store the result in the new variable pdx.

. icd10cm clean diag1 if use10==1, pad generate(pdx)
(1,955 missing values generated)
. tabulate pdx, sort

pdx Freq. Percent Cum.

A41.9 105 5.30 5.30
O48.0 40 2.02 7.32
I21.4 37 1.87 9.19
O70.1 36 1.82 11.01
M17.11 33 1.67 12.68
O34.21 28 1.41 14.09
J96.01 21 1.06 15.15
M16.11 21 1.06 16.21
J18.9 20 1.01 17.22
O70.0 20 1.01 18.23

(output omitted)

Total 1,980 100.00

Notice that we used if with the use10 variable we created in example 1 to restrict icd10cm clean to
just those diagnosis codes where the ICD-10-CM coding system should have been applied.

Aside from validating values of codes, the icd10cm command is primarily used to create inputs for
other Stata commands. For example, in example 5 of [D] icd9, we show how to graph the frequency of

category codes with descriptions, and in example 3 of [D] icd10pcs, we calculate average billed amounts

over different procedures.

Example 3: Creating a variable indicating diagnosis
In example 2, we found that the most common primary diagnosis code in our data is A41.9, a code

for a type of sepsis (a complication of infection).

Suppose we are interested in differences in length of stay (los) for discharges with and without a
primary diagnosis of sepsis. We can use icd10cm generate with the range() option to search records
for other diagnosis codes starting with A40, A41, and A42, which also indicate a sepsis diagnosis.

. icd10cm generate sepsis=diag1 if use10==1, range(A40* A41* A42*)

An informal way to examine differences is to plot the average length of stay for discharges with and

without a sepsis diagnosis. We first label the values of our sepsis variable so that it displays nicely in
the graph.

icd10cm — ICD-10-CM diagnosis codes 452

. label define sepsis 0 ”No sepsis” 1 ”Sepsis”

. label values sepsis sepsis

. graph hbar los, over(sepsis) ytitle(”Average length of stay (days)”)

0 2 4 6
Average length of stay (days)

Sepsis

No sepsis

More formally, we could include the new sepsis indicator as a factor variable in a regression model.

Interactive utilities
icd10cm lookup and icd10cm search are interactive tools. You can use them without having any

ICD-10-CM diagnosis data in memory.

icd10cm lookup lists the descriptions of codes given on the command line, and icd10cm search
looks for relevant ICD-10-CM diagnosis codes from the specified keywords. The two commands comple-

ment each other.

Example 4: Finding diagnosis codes from descriptions
In example 3, we specified codes for sepsis as any code starting with A40, A41, or A42. Suppose we

want to look for other relevant codes. We can search the descriptions of the ICD-10-CM codes to locate

codes of interest.

. icd10cm search sepsis, version(2016)
A02.1 Salmonella sepsis
A22.7 Anthrax sepsis
A26.7 Erysipelothrix sepsis
A32.7 Listerial sepsis
(output omitted)

Note that icd10cm search is case insensitive. If you want icd10cm search to respect the case of
the search terms you type, specify the matchcase option.

Using icd10cm lookup is similar to icd10pcs lookup. See example 4 in [D] icd10pcs.

icd10cm — ICD-10-CM diagnosis codes 453

Stored results
icd10cm check stores the following in r():

Scalars

r(e#) number of errors of type #

r(esum) total number of errors

r(miss) number of missing values

r(N) number of nonmissing values

icd10cm clean stores the following in r():

Scalars

r(N) number of changes

icd10cm lookup and icd10cm search store the following in r():

Scalars

r(N codes) number of codes found

Acknowledgments
We thank the Washington State Department of Health’s Center for Health Statistics for providing us

with access to its 2015 Comprehensive Hospital Abstract Reporting System (CHARS) inpatient dataset.

The hosp2015 dataset used here was partially simulated based on information from the 2015 limited use

CHARS. We also thank Jeanne M. Sears (retired) of the University of Washington for bringing the CHARS

to our attention.

We thank Joe Canner, who while at Yale University School of Medicine, wrote mycd10 and mycd10p,
which provide many utilities for ICD-10 diagnosis and procedure codes. The commands rely on a user-

supplied ICD-10 lookup dataset for diagnosis codes and ICD-10-PCS codes from the US Centers for Medi-

care and Medicaid Services for procedure codes.

Reference
Centers for Disease Control and Prevention. 2013. International Classification of Diseases, Ninth Revision, Clinical

Modification (ICD-9-CM). https://www.cdc.gov/nchs/icd/icd9cm.htm.

Also see
[D] icd — Introduction to ICD commands

[D] icd9 — ICD-9-CM diagnosis codes

[D] icd10 — ICD-10 diagnosis codes

[D] icd10pcs — ICD-10-PCS procedure codes

[D] frunalias — Change storage type of alias variables

https://www.cdc.gov/nchs/icd/icd9cm.htm

icd10pcs — ICD-10-PCS procedure codes

Description Quick start Menu Syntax Options
Remarks and examples Stored results Acknowledgments Also see

Description
icd10pcs is a suite of commands for working with ICD-10-PCS procedure codes from US federal fiscal

year 2016 to the present. To see the current version of the ICD-10-PCS procedure codes and any changes

that have been applied, type icd10pcs query.

icd10pcs check, icd10pcs clean, and icd10pcs generate are data management commands.

icd10pcs check verifies that a variable contains defined ICD-10-PCS procedure codes and provides

a summary of any problems encountered. icd10pcs clean standardizes the format of the codes.

icd10pcs generate can create a binary indicator variable for whether the code is in a specified set

of codes, a variable containing a corresponding higher-level code, or a variable containing the descrip-

tion of the code.

icd10pcs lookup and icd10pcs search are interactive utilities. icd10pcs lookup displays de-
scriptions of the codes specified on the command line. icd10pcs search looks for relevant ICD-10-PCS
procedure codes from keywords given on the command line.

Quick start
Determine whether ICD-10-PCS procedure codes in proc1 are invalid, and store reasons in invalid

icd10pcs check proc1, generate(invalid)

Standardize display of codes in proc2 to add a period and left-align codes
icd10pcs clean proc2, replace

Check that the codes in proc3 conform to ICD-10-PCS formatting rules, and if so, create main as the

corresponding three-character category code

icd10pcs generate main = proc3, category check

Generate descr4 as the current short description of procedure code in proc4
icd10pcs generate descr4 = proc4, description

Look up current descriptions for procedure codes 081.23J4 through 081.Y3Z3

icd10pcs lookup 081.23J4/081.Y3Z3

Look up codes where the description from FFY-2016 contains the word “foot”

icd10pcs search foot, version(2016)

Menu
Data > ICD codes > ICD-10-PCS

454

icd10pcs — ICD-10-PCS procedure codes 455

Syntax
Verify that variable contains defined codes

icd10pcs check varname [if] [in] [, checkopts]

Clean variable and verify format of codes

icd10pcs clean varname [if] [in], {generate(newvar) | replace} [cleanopts]

Generate new variable from existing variable

icd10pcs generate newvar = varname [if] [in], category [check]

icd10pcs generate newvar = varname [if] [in], description [genopts]

icd10pcs generate newvar = varname [if] [in], range(codelist) [check]

Display code descriptions

icd10pcs lookup codelist [, version(#)]

Search for codes from descriptions

icd10pcs search [”]text[”] [[”]text[”] ...] [, searchopts]

Display ICD-10-PCS version

icd10pcs query

codelist is one of the following:

icd10code (the particular code)

icd10code* (all codes starting with)

icd10code/icd10code (the code range)

or any combination of the above, such as 041.E09P 2W3* BQ2L/BQ2LZZZ.

checkopts Description

fmtonly check only format of the codes

summary frequency of each invalid or undefined code

list list observations with invalid or undefined ICD-10-PCS codes

generate(newvar) create new variable marking invalid codes

version(#) fiscal year to check codes against; default is the current year

icd10pcs — ICD-10-PCS procedure codes 456

cleanopts Description

∗ generate(newvar) create new variable containing cleaned codes
∗ replace replace existing codes with the cleaned codes

check check that variable contains ICD-10-PCS codes before cleaning

nodots format codes without a period

∗ Either generate() or replace is required.

genopts Description

addcode(begin | end) add code to the beginning or end of the description

nodots format codes without a period; must specify addcode()
check check that variable contains ICD-10-PCS codes before generating new

variable

long use long description rather than short

version(#) select description from fiscal year #; default is the current year

searchopts Description

or match any keyword

matchcase match case of keywords

version(#) search description from fiscal year #; default is all

collect is allowed with icd10pcs check and icd10pcs clean; see [U] 11.1.10 Prefix commands.

The icd10pcs suite of commands does not allow alias variables; see [D] frunalias for advice on how to get around this
restriction.

Options
Options are presented under the following headings:

Options for icd10pcs check
Options for icd10pcs clean
Options for icd10pcs generate
Option for icd10pcs lookup
Options for icd10pcs search

Options for icd10pcs check
fmtonly tells icd10pcs check to verify that the codes fit the format of ICD-10-PCS procedure codes but

not to check whether the codes are defined.

summary specifies that icd10pcs check should report the frequency of each invalid or undefined code
that was found in the data. Codes are displayed in descending order by frequency. summary may not
be combined with list.

list specifies that icd10pcs check list the observation number, the invalid or undefined ICD-10-PCS

procedure code, and the reason the code is invalid or whether it is an undefined code. list may not
be combined with summary.

icd10pcs — ICD-10-PCS procedure codes 457

generate(newvar) specifies that icd10pcs check create a new variable containing, for each observa-

tion, 0 if the observation contains a defined code. Otherwise, it contains a number from 1 to 11 if

the code is invalid, 77 if the code is valid only for a previous version, 88 if the code is valid only for

a later version, 99 if the code is undefined, or missing if the code is missing. The positive numbers

indicate the kind of problem and correspond to the listing produced by icd10pcs check.

version(#) specifies the version of the codes that icd10pcs check should reference. # indicates the
federal fiscal year for the codes. For example, use 2016 for federal fiscal year 2016 (FFY-2016),

which is October 1, 2015 to September 30, 2016. icd10pcs supports all years after the United States
officially adopted ICD-10-PCS. The appropriate value of # should be determined from the data source.

The default is the current year.

Warning: The default value of version() will change over time so that the most recent codes are
used. Using the default value rather than specifying a specific version may change results after a new

version of the codes is introduced.

Options for icd10pcs clean
generate(newvar) and replace specify how the formatted values of varname are to be handled. You

must specify either generate() or replace.

generate() specifies that the cleaned values be placed in the new variable specified in newvar.

replace specifies that the existing values of varname be replaced with the formatted values.

check specifies that icd10pcs clean should first check that varname contains codes that fit the format
of ICD-10-PCS procedure codes. Specifying the check option will slow down icd10pcs clean.

nodots specifies that the period be removed in the final format.

Options for icd10pcs generate
category, description, and range(codelist) specify the contents of the new variable that icd10pcs

generate is to create. You do not need to icd10pcs clean varname before using icd10pcs
generate; it will accept any supported format or combination of formats.

category specifies to extract the three-character category code from the ICD-10-PCS procedure code.

The resulting variable may be used with the other icd10pcs subcommands.

description creates newvar containing descriptions of the ICD-10-PCS procedure codes.

range(codelist) creates a new indicator variable equal to 1 when the ICD-10-PCS procedure code is in

the range specified, equal to 0 when the ICD-10-PCS procedure code is not in the range, and equal

to missing when varname is missing.

addcode(begin | end) specifies that the code should be includedwith the text describing the code. Spec-
ifying addcode(begin) will prepend the code to the text. Specifying addcode(end) will append
the code to the text.

nodots specifies that the code that is added to the description should be formatted without a period.

nodots may be specified only if addcode() is also specified.

check specifies that icd10pcs generate should first check that varname contains codes that fit the

format of ICD-10-PCS procedure codes. Specifying the check option will slow down the generate
subcommand.

icd10pcs — ICD-10-PCS procedure codes 458

long specifies that the long description of the code be used rather than the short (abbreviated) descrip-
tion.

version(#) specifies the version of the codes that icd10pcs generate should reference. # indicates
the federal fiscal year for the codes. For example, use 2016 for federal fiscal year 2016 (FFY-2016),
which is October 1, 2015 to September 30, 2016. icd10pcs supports all years after the United States
officially adopted ICD-10-PCS. The appropriate value of # should be determined from the data source.

The default is the current year.

Warning: The default value of version() will change over time so that the most recent codes are
used. Using the default value rather than specifying a specific version may change results after a new

version of the codes is introduced.

Option for icd10pcs lookup
version(#) specifies the version of the codes that icd10pcs lookup should reference. # indicates

the federal fiscal year for the codes. For example, use 2016 for federal fiscal year 2016 (FFY-2016),
which is October 1, 2015 to September 30, 2016. icd10pcs supports all years after the United States
officially adopted ICD-10-PCS. The appropriate value of # should be determined from the data source.

The default is the current year.

Warning: The default value of version() will change over time so that the most recent codes are
used. Using the default value rather than specifying a specific version may change results after a new

version of the codes is introduced.

Options for icd10pcs search
or specifies that ICD-10-PCS procedure codes be searched for descriptions that contain any word specified

with icd10pcs search. The default is to list only descriptions that contain all the words specified.

matchcase specifies that icd10pcs search should match the case of the keywords given on the com-
mand line. The default is to perform a case-insensitive search.

version(#) specifies the version of the codes that icd10pcs search should reference. # indicates

the federal fiscal year for the codes. For example, use 2016 for federal fiscal year 2016 (FFY-2016),
which is October 1, 2015 to September 30, 2016. icd10pcs supports all years after the United States
officially adopted ICD-10-PCS.

By default, descriptions for all versions are searched, meaning that codes that changed descriptions

and that have descriptions in multiple versions that contain the search terms will be duplicated. To

ensure a list of unique code values, specify the version number.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Managing datasets with ICD-10-PCS codes
Interactive utilities

If you have not yet read Introduction to ICD coding in [D] icd, please do so before using the icd10pcs
commands.

icd10pcs — ICD-10-PCS procedure codes 459

Introduction
The general format of an ICD-10-PCS procedure code is a three-character category code followed by

four alpha-numeric characters after an (implied) period. The full codes are always seven characters long

and may be any combination of letters and numbers.

Some examples of ICD-10-PCS procedure codes are 081 (Eye, Bypass) and 0GT.D0ZZ (Resection of

Aortic Body, Open Approach). Many datasets record (and some people write) codes without the period;

for example, the code 090.KXZZ may appear as 090KXZZ. The icd10pcs commands understand both
ways of recording codes. The commands are also insensitive to codes recorded with or without leading

and trailing blanks and are case insensitive.

All the following are acceptable formats to record codes in Stata:

03R
0jj

00f53zz
0TL.C0ZZ
091

Important note: What constitutes a valid code changes between versions. For the rest of this entry, a

defined code is any code that is currently valid, was valid at some point since the ICD-10-CM/PCS coding

system was introduced, or has a meaning as a grouping of codes. The list of valid codes and their

associated descriptions is from the US Centers for Medicare and Medicaid Services (CMS).

To view the current version of the ICD-10-PCS procedure codes in Stata, its source, and a log of changes

that have been made to the list of ICD-10-PCS procedure codes since the icd10pcs commands were

implemented, type

. icd10pcs query
ICD-10-PCS Procedure Code Version and Change Log

Note
Stata obtains the ICD-10-PCS dataset from the Centers for Medicare and

Medicaid Services website.
(output omitted)

Managing datasets with ICD-10-PCS codes
The icd10pcs suite of commands has three data management commands. icd10pcs check verifies

that the ICD-10-PCS procedure codes in varname are valid. icd10pcs clean standardizes the format of
ICD-10-PCS procedure codes in varname. And icd10pcs generate produces a new variable from an

existing variable containing ICD-10-PCS procedure codes.

Examples in this section use hosp2015.dta, a fictional sample of inpatient hospital discharges

in Washington state from July 2015 to December 2015. The data were simulated based on the

Comprehensive Hospital Abstract Reporting System (CHARS); see https://www.doh.wa.gov/Dataand

StatisticalReports/HealthcareinWashington/HospitalandPatientData/HospitalDischargeDataCHARS.

Examples analyzing the diagnosis codes for this dataset can be found in [D] icd10cm.

. use https://www.stata-press.com/data/r19/hosp2015
(Fictional WA hospital discharges)

icd10pcs check is the primary subcommand for validating ICD-10-PCS procedure codes. However,

if you just want to verify that the codes conform to the formatting rules for ICD-10-PCS procedure, you

can use the check option with icd10pcs clean or icd10pcs generate.

https://www.doh.wa.gov/DataandStatisticalReports/HealthcareinWashington/HospitalandPatientData/HospitalDischargeDataCHARS
https://www.doh.wa.gov/DataandStatisticalReports/HealthcareinWashington/HospitalandPatientData/HospitalDischargeDataCHARS

icd10pcs — ICD-10-PCS procedure codes 460

Example 1: Checking for valid code values
You use icd10pcs check just like you do icd10cm check. Because the data are from federal fiscal

year 2016, we specify version(2016).

In example 1 of [D] icd10cm, we found that we needed to account for the date of the admission when

we used the icd10cm commands. The same is true of the icd10pcs commands because the two systems
were implemented simultaneously. We preemptively exclude records before October 2015 here.

. drop if dmonth < tm(2015m10)
(1,955 observations deleted)
. icd10pcs check proc1, version(2016)
(proc1 contains defined codes; 594 missing values)

We find that there are no errors in the coding of the proc1 variable and that 594 records in our dataset
did not have any procedure at all.

If we wanted to check codes in more than one procedure variable, we could use a foreach loop or
reshape our data; see Working with multiple codes in [D] icd. With large datasets, it is generally faster

to use a loop.

It is a good idea to begin with icd10pcs check and fix any potential problems before proceeding

to other icd10pcs commands. The icd10pcs check command with the generate() or list option
is also useful for tracking down problems when any of the other icd10pcs commands tell you that the
variable “contains invalid codes”.

icd10pcs clean formats the variable to ensure consistency and to make subsequent output from

other commands such as list and tabulate look better. icd10pcs clean also can be used to verify
that the codes in a variable conform to the ICD-10-CM format, without checking to see whether the codes

are defined.

Example 2: Cleaning an existing variable
We standardize all the ICD-10-PCS procedure codes in proc1 to include a period after the third char-

acter. We specify the replace option rather than the generate() option so that the values in proc1 are
replaced with their formatted values.

. icd10pcs clean proc1, replace
variable proc1 was str7 now str8
(1,980 real changes made)

icd10pcs clean reports that 1,980 values were replaced. If we wanted to standardize to a format
without the period, we could have specified the nodots option.

Aside from validating values of codes, the icd10pcs command is primarily used to create inputs for
other Stata commands. For example, in example 5 of [D] icd9, we show how to graph the frequency of

category codes with descriptions, and in example 3 of [D] icd10cm, we show how to graph summary

statistics by diagnosis.

Example 3: Creating an indicator for common procedures
If we use tabulate on the primary procedure code (proc1) the same way we did for the primary

diagnosis in example 2, we find that the three most frequent primary procedure codes in our data are

10E0XZZ, 10D00Z1, and 0SRC0J9. Suppose we want to know the average billed amount (billed) for
all admissions that had one of these procedure codes in the primary procedure field.

icd10pcs — ICD-10-PCS procedure codes 461

Our first step is to create an indicator for whether one of these codes is present in proc1. Then, we
summarize billed over the three top values of proc1 by using tabulate; see [R] tabulate, summa-

rize().

. icd10pcs generate top3 = proc1, range(10E0XZZ 10D00Z1 0SRC0J9)

. tabulate proc1 if top3==1, summarize(billed) freq means
Summary of Amount
billed ($1,000s)

Procedure 1 Mean Freq.

0SR.C0J9 60.62 40
10D.00Z1 27.55 92
10E.0XZZ 14.05 180

Total 24.00 312

We find that the highest average billed amount for the top three codes is for ICD-10-PCS procedure

code 0SR.C0J9. There are 40 discharges in our dataset with this code as their principal procedure, and

their average billed amount is about $60,620.

Interactive utilities
icd10pcs lookup and icd10pcs search are interactive tools. You can use themwithout having any

ICD-10-PCS procedure data in memory.

icd10pcs lookup lists the descriptions of codes given on the command line, and icd10pcs search
looks for relevant ICD-10-PCS procedure codes from the specified keywords. The two commands com-

plement each other.

Example 4: Finding procedure code descriptions
Suppose we wanted to find the short descriptions of the most frequent codes in our dataset. We can

supply icd10pcs lookup with the same list of codes we used in example 3.
. icd10pcs lookup 10E0XZZ 10D00Z1 0SRC0J9, version(2016)

0SR.C0J9 Replace of R Knee Jt with Synth Sub, Cement, Open Approach
10D.00Z1 Extraction of POC, Low Cervical, Open Approach
10E.0XZZ Delivery of Products of Conception, External Approach

We see, for example, that ICD-10-PCS procedure code 0SR.C0J9 is for a type of knee replacement

surgery.

Using icd10pcs search is similar to using icd10cm search. See example 4 in [D] icd10cm.

icd10pcs — ICD-10-PCS procedure codes 462

Stored results
icd10pcs check stores the following in r():

Scalars

r(e#) number of errors of type #

r(esum) total number of errors

r(miss) number of missing values

r(N) number of nonmissing values

icd10pcs clean stores the following in r():

Scalars

r(N) number of changes

icd10pcs lookup and icd10pcs search store the following in r():

Scalars

r(N codes) number of codes found

Acknowledgments
We thank the Washington State Department of Health’s Center for Health Statistics for providing us

with access to its 2015 Comprehensive Hospital Abstract Reporting System (CHARS) inpatient dataset.

The hosp2015 dataset used here was partially simulated based on information from the 2015 limited use

CHARS. We also thank Jeanne M. Sears (retired) of the University of Washington for bringing the CHARS

to our attention.

We thank Joe Canner, who while at Yale University School of Medicine, wrote mycd10 and mycd10p,
which provide many utilities for ICD-10 diagnosis and procedure codes. The commands rely on a user-

supplied ICD-10 lookup dataset for diagnosis codes and ICD-10-PCS codes from the US Centers for Medi-

care and Medicaid Services for procedure codes.

Also see
[D] icd — Introduction to ICD commands

[D] icd9p — ICD-9-CM procedure codes

[D] icd10cm — ICD-10-CM diagnosis codes

[D] frunalias — Change storage type of alias variables

import — Overview of importing data into Stata

Description Remarks and examples References Also see

Description
This entry provides a quick reference for determining which method to use for reading non-Stata data

into memory. See [U] 22 Entering and importing data for more details.

Remarks and examples
Remarks are presented under the following headings:

Summary of the different methods
import excel
import delimited
jdbc
odbc
infile (free format)—infile without a dictionary
infix (fixed format)
infile (fixed format)—infile with a dictionary
import sas
import sasxport5 and import sasxport8
import spss
import fred
import haver (Windows only)
import haverdirect (Windows only)
import dbase
spshape2dta

Examples
Video example

Summary of the different methods

import excel

∘ import excel reads worksheets from Microsoft Excel (.xls and .xlsx) files.

∘ Entire worksheets can be read, or custom cell ranges can be read.

∘ See [D] import excel.

import delimited

∘ import delimited reads text-delimited files.

∘ The data can be tab-separated or comma-separated. A custom delimiter may also be specified.

∘ An observation must be on only one line.

∘ The first line in the file can optionally contain the names of the variables.

∘ See [D] import delimited.

463

import — Overview of importing data into Stata 464

jdbc

∘ Java Database Connectivity (JDBC) is an application programming interface for the programming

language Java. The jdbc command allows you to connect to, load data from, insert data into, and
execute queries on a database using JDBC.

∘ See [D] jdbc.

odbc

∘ ODBC, an acronym for Open DataBase Connectivity, is a standard for exchanging data between pro-

grams. Stata supports the ODBC standard for importing data via the odbc command and can read from
any ODBC data source on your computer.

∘ See [D] odbc.

infile (free format)—infile without a dictionary

∘ The data can be space-separated, tab-separated, or comma-separated.

∘ Strings with embedded spaces or commas must be enclosed in quotes (even if tab- or comma-

separated).

∘ An observation can be on more than one line, or there can even be multiple observations per line.

∘ See [D] infile (free format).

infix (fixed format)

∘ The data must be in fixed-column format.

∘ An observation can be on more than one line.

∘ infix has simpler syntax than infile (fixed format).

∘ See [D] infix (fixed format).

infile (fixed format)—infile with a dictionary

∘ The data may be in fixed-column format.

∘ An observation can be on more than one line.

∘ ASCII or EBCDIC data can be read.

∘ infile (fixed format) has the most capabilities for reading data.

∘ See [D] infile (fixed format).

import sas

∘ import sas reads Version 7 SAS (.sas7bdat) files.

∘ import sas will also read value-label information from a .sas7bcat file.

∘ See [D] import sas.

import — Overview of importing data into Stata 465

import sasxport5 and import sasxport8

∘ import sasxport5 reads SAS XPORT Version 5 Transport format files.

∘ import sasxport5 will also read value-label information from a formats.xpf XPORT file.

∘ import sasxport8 reads SAS XPORT Version 8 Transport format files.

∘ See [D] import sasxport5 and [D] import sasxport8.

import spss

∘ import spss reads IBM SPSS Statistics (.sav and .zsav) files.

∘ See [D] import spss.

import fred

∘ import fred reads Federal Reserve Economic Data.

∘ To use import fred, you must have a valid API key obtained from the St. Louis Federal Reserve.

∘ See [D] import fred.

import haver (Windows only)

∘ import haver reads data from Haver Analytics (https://www.haver.com/) databases.

∘ See [D] import haver.

import haverdirect (Windows only)

∘ import haverdirect reads data from Haver Analytics (https://www.haver.com/) cloud servers.

∘ See [D] import haverdirect.

import dbase

∘ import dbase reads a version III or version IV dBase (.dbf) file.

∘ See [D] import dbase.

spshape2dta

∘ spshape2dta translates the .dbf and .shp files of a shapefile into two Stata datasets.

∘ See [SP] spshape2dta.

Examples

Example 1: Tab-separated data
begin example1.raw

1 0 1 John Smith m
0 0 1 Paul Lin m
0 1 0 Jan Doe f
0 0 . Julie McDonald f

end example1.raw

https://www.haver.com/
https://www.haver.com/

import — Overview of importing data into Stata 466

contains tab-separated data. The type command with the showtabs option shows the tabs:

. type example1.raw, showtabs
1<T>0<T>1<T>John Smith<T>m
0<T>0<T>1<T>Paul Lin<T>m
0<T>1<T>0<T>Jan Doe<T>f
0<T>0<T>.<T>Julie McDonald<T>f

It could be read in by

. import delimited a b c name gender using example1

Example 2: Comma-separated data
begin example2.raw

a,b,c,name,gender
1,0,1,John Smith,m
0,0,1,Paul Lin,m
0,1,0,Jan Doe,f
0,0,,Julie McDonald,f

end example2.raw

could be read in by

. import delimited using example2

Example 3: Tab-separated data with double-quoted strings
begin example3.raw

1 0 1 ”John Smith” m
0 0 1 ”Paul Lin” m
0 1 0 ”Jan Doe” f
0 0 . ”Julie McDonald” f

end example3.raw

contains tab-separated data with strings in double quotes.

. type example3.raw, showtabs
1<T>0<T>1<T>”John Smith”<T>m
0<T>0<T>1<T>”Paul Lin”<T>m
0<T>1<T>0<T>”Jan Doe”<T>f
0<T>0<T>.<T>”Julie McDonald”<T>f

It could be read in by

. infile byte (a b c) str15 name str1 gender using example3

or

. import delimited a b c name gender using example3

or

. infile using dict3

import — Overview of importing data into Stata 467

where the dictionary dict3.dct contains

begin dict3.dct
infile dictionary using example3 {

byte a
byte b
byte c
str15 name
str1 gender

}
end dict3.dct

Example 4: Space-separated data with double-quoted strings
begin example4.raw

1 0 1 ”John Smith” m
0 0 1 ”Paul Lin” m
0 1 0 ”Jan Doe” f
0 0 . ”Julie McDonald” f

end example4.raw

could be read in by

. infile byte (a b c) str15 name str1 gender using example4

or

. infile using dict4

where the dictionary dict4.dct contains

begin dict4.dct
infile dictionary using example4 {

byte a
byte b
byte c
str15 name
str1 gender

}
end dict4.dct

Example 5: Fixed-column format
begin example5.raw

101mJohn Smith
001mPaul Lin
010fJan Doe
00 fJulie McDonald

end example5.raw

could be read in by

. infix a 1 b 2 c 3 str gender 4 str name 5-19 using example5

or

. infix using dict5a

import — Overview of importing data into Stata 468

where dict5a.dct contains

begin dict5a.dct
infix dictionary using example5 {

a 1
b 2
c 3

str gender 4
str name 5-19

}
end dict5a.dct

or

. infile using dict5b

where dict5b.dct contains

begin dict5b.dct
infile dictionary using example5 {

byte a %1f
byte b %1f
byte c %1f
str1 gender %1s
str15 name %15s

}
end dict5b.dct

Example 6: Fixed-column format with headings
begin example6.raw

line 1 : a heading
There are a total of 4 lines of heading.
The next line contains a useful heading:
----+----1----+----2----+----3----+----4----+-
1 0 1 m John Smith
0 0 1 m Paul Lin
0 1 0 f Jan Doe
0 0 f Julie McDonald

end example6.raw

could be read in by

. infile using dict6a

where dict6a.dct contains

begin dict6a.dct
infile dictionary using example6 {
_firstline(5)

byte a
byte b

_column(17) byte c %1f
str1 gender

_column(33) str15 name %15s
}

end dict6a.dct

or could be read in by

. infix 5 first a 1 b 9 c 17 str gender 25 str name 33-46 using example6

import — Overview of importing data into Stata 469

or could be read in by

. infix using dict6b

where dict6b.dct contains

begin dict6b.dct
infix dictionary using example6 {
5 first

a 1
b 9
c 17

str gender 25
str name 33-46

}
end dict6b.dct

Example 7: Fixed-column format with observations spanning multiple lines
begin example7.raw

a b c gender name
1 0 1
m
John Smith
0 0 1
m
Paul Lin
0 1 0
f
Jan Doe
0 0
f
Julie McDonald

end example7.raw

could be read in by

. infile using dict7a

where dict7a.dct contains

begin dict7a.dct
infile dictionary using example7 {
_firstline(2)

byte a
byte b
byte c

_line(2)
str1 gender

_line(3)
str15 name %15s

}
end dict7a.dct

or, if we wanted to include variable labels,

. infile using dict7b

import — Overview of importing data into Stata 470

where dict7b.dct contains

begin dict7b.dct
infile dictionary using example7 {
_firstline(2)

byte a ”Question 1”
byte b ”Question 2”
byte c ”Question 3”

_line(2)
str1 gender ”Gender of subject”

_line(3)
str15 name %15s

}
end dict7b.dct

infix could also read these data,

. infix 2 first 3 lines a 1 b 3 c 5 str gender 2:1 str name 3:1-15 using example7

or the data could be read in by

. infix using dict7c

where dict7c.dct contains

begin dict7c.dct
infix dictionary using example7 {
2 first

a 1
b 3
c 5

str gender 2:1
str name 3:1-15

}
end dict7c.dct

or the data could be read in by

. infix using dict7d

where dict7d.dct contains

begin dict7d.dct
infix dictionary using example7 {
2 first

a 1
b 3
c 5

/
str gender 1

/
str name 1-15

}
end dict7d.dct

import — Overview of importing data into Stata 471

Video example
Copy/paste data from Excel into Stata

References
Crow, K. 2017a. Importing Twitter data into Stata. The Stata Blog: Not Elsewhere Classified. https://blog.stata.com/2017/

07/25/importing-twitter-data-into-stata/.

———. 2017b. Importing WRDS data into Stata. The Stata Blog: Not Elsewhere Classified. https://blog.stata.com/2017/

09/19/importing-wrds-data-into-stata/.

———. 2018a. Web scraping NBA data into Stata. The Stata Blog: Not Elsewhere Classified. https://blog.stata.com/

2018/10/10/web-scraping-nba-data-into-stata/.

———. 2018b.Web scraping NFL data into Stata. The Stata Blog: Not Elsewhere Classified. https://blog.stata.com/2018/

08/13/web-scraping-nfl-data-into-stata/.

Dicle, M. F., and J. D. Levendis. 2011. Importing financial data. Stata Journal 11: 620–626.

Fontenay, S. 2018. sdmxuse: Command to import data from statistical agencies using the SDMX standard. Stata Journal

18: 863–870.

Jakubowski, M., and A. Pokropek. 2019. piaactools: A program for data analysis with PIAAC data. Stata Journal 19:

112–128.

Also see
[D] edit — Browse or edit data with Data Editor

[D] export — Overview of exporting data from Stata

[D] input — Enter data from keyboard

[U] 22 Entering and importing data

https://www.youtube.com/watch?v=iCvZ9pvPy-8
https://blog.stata.com/2017/07/25/importing-twitter-data-into-stata/
https://blog.stata.com/2017/07/25/importing-twitter-data-into-stata/
https://blog.stata.com/2017/09/19/importing-wrds-data-into-stata/
https://blog.stata.com/2017/09/19/importing-wrds-data-into-stata/
https://blog.stata.com/2018/10/10/web-scraping-nba-data-into-stata/
https://blog.stata.com/2018/10/10/web-scraping-nba-data-into-stata/
https://blog.stata.com/2018/08/13/web-scraping-nfl-data-into-stata/
https://blog.stata.com/2018/08/13/web-scraping-nfl-data-into-stata/
https://www.stata-journal.com/article.html?article=dm0061
https://www.stata-journal.com/article.html?article=dm0097
https://doi.org/10.1177/1536867X19830909

import dbase — Import and export dBase files

Description Quick start Menu Syntax
Options for import dbase Options for export dbase Remarks Stored results
Also see

Description
import dbase reads into memory a version III or version IV dBase (.dbf) file. export dbase ex-

ports data in memory to a version IV dBase (.dbf) file.

Stata has other commands for importing data. If you are not sure that import dbase will do what
you are looking for, see [D] import and [U] 22 Entering and importing data.

Quick start
Load the contents of the dBase file called mydata.dbf

import dbase mydata

Write data in memory to a version IV dBase file called mydata.dbf
export dbase mydata

Same as above, but export only variables v1 and v2
export dbase v1 v2 using mydata

Menu
import dbase
File > Import > dBase (*.dbf)

export dbase
File > Export > dBase (*.dbf)

472

import dbase — Import and export dBase files 473

Syntax
Load a dBase file

import dbase [using] filename [, clear case(preserve | lower | upper)]

Save data in memory to a dBase file

export dbase [using] filename [if] [in] [, datafmt replace]

Save subset of variables in memory to a dBase file

export dbase [varlist] using filename [if] [in] [, datafmt replace]

If filename is specified without an extension, .dbf is assumed for both import dbase and export
dbase. If filename contains embedded spaces, enclose it in double quotes.

collect is allowed with import dbase; see [U] 11.1.10 Prefix commands.

Options for import dbase
clear specifies that it is okay to replace the data in memory, even though the current data have not been

saved to disk.

case(preserve | lower | upper) specifies the case of the variable names after import. The default is
case(preserve).

Options for export dbase
datafmt specifies that all variables be exported using their display format. For example, the number

1000 with a display format of %7.2f would export as 1000.00, not 1000. The default is to use the
raw, unformatted value when exporting.

replace specifies that filename be replaced if it already exists.

Remarks
import dbase reads into memory a version III or version IV dBase (.dbf) file. If the dBase file is

not version III or IV, import dbase will issue an error. dBase files are often paired with shapefiles for
storing geometric location data. To import a shapefile, see [SP] spshape2dta.

export dbase exports data in memory to a version IV dBase (.dbf) file. dBase version IV has

several file limitations when exporting.

1. Unicode is not supported.

2. Data cannot be more than 2 GB in size.

3. Data in memory must be less than 1,000,000,000 observations.

4. Data in memory must have less than 255 variables.

5. Variable names cannot exceed 10 characters in length.

import dbase — Import and export dBase files 474

6. Maximum string variable length is 255 characters.

7. Data width must be less than 4,000.

If your data in memory exceed any of these limits, export dbase will issue an error when trying to

export the data.

To demonstrate the use of import dbase and export dbase, we will first load autornd.dta and
export it as a dBase file named auto.dbf.

. use https://www.stata-press.com/data/r19/autornd
(1978 automobile data)
. export dbase auto.dbf
file auto.dbf saved

To import the data back into Stata, we need only to specify the filename. import dbase assumes an

extension of .dbf.

. import dbase auto, clear
(3 vars, 74 obs)

We could verify that our data loaded correctly by using list or browse.

Stored results
import dbase stores the following in r():

Scalars

r(N) number of observations imported

r(k) number of variables imported

Also see
[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

[SP] spshape2dta — Translate shapefile to Stata format

import delimited — Import and export delimited text data

Description Quick start Menu
Syntax Options for import delimited Options for export delimited
Remarks and examples Stored results Also see

Description
import delimited reads into memory a text file in which there is one observation per line and the

values are separated by commas, tabs, or some other delimiter. The two most common types of text

data to import are comma-separated values (.csv) text files and tab-separated text files, often .txt files.
Similarly, export delimited writes Stata’s data to a text file.

Stata has other commands for importing data. If you are not sure that import delimited will do

what you are looking for, see [D] import and [U] 22 Entering and importing data.

Quick start
Load comma-delimited mydata.csv with the variable names on the first row

import delimited mydata

Same as above, but with variable names in row 5 and an ignorable header in the first 4 rows

import delimited mydata, varnames(5)

Load only columns 2 to 300 and the first 1,000 rows with variable names in row 1

import delimited mydata, colrange(2:300) rowrange(:1000)

Load tab-delimited data from mydata.txt
import delimited mydata.txt, delimiters(tab)

Load semicolon-delimited data from mydata.txt
import delimited mydata.txt, delimiters(”;”)

Force columns 2 to 6 to be read as string to preserve leading zeros

import delimited mydata, stringcols(2/6)

Load comma-delimited mydata2.csv without variable names in row 1 and with two variables to be

named v1 and v2
import delimited v1 v2 using mydata

Export data in memory to mydata.csv
export delimited mydata

Same as above, but export only v1 and v2
export delimited v1 v2 using mydata

Same as above, but output numeric values for variables with value labels

export delimited v1 v2 using mydata, nolabel

475

import delimited — Import and export delimited text data 476

Menu
import delimited
File > Import > Text data (delimited, *.csv, ...)

export delimited

File > Export > Text data (delimited, *.csv, ...)

Syntax
Load a delimited text file

import delimited [using] filename [, import delimited options]

Rename specified variables from a delimited text file

import delimited extvarlist using filename [, import delimited options]

Save data in memory to a delimited text file

export delimited [using] filename [if] [in] [, export delimited options]

Save subset of variables in memory to a delimited text file

export delimited [varlist] using filename [if] [in] [, export delimited options]

If filename is specified without an extension, .csv is assumed for both import delimited and export
delimited. If filename contains embedded spaces, enclose it in double quotes.

extvarlist specifies variable names of imported columns.

import delimited — Import and export delimited text data 477

import delimited options Description

delimiters(”chars”[, collapse | asstring]) use chars as delimiters

varnames(# | nonames) treat row # of data as variable names or the
data do not have variable names

case(preserve | lower | upper) preserve the case or read variable names as
lowercase (the default) or uppercase

asfloat import all floating-point data as floats
asdouble import all floating-point data as doubles
encoding(encoding) specify the encoding of the text file being

imported

emptylines(skip | include) specify how to handle empty lines in data;
default is emptylines(skip)

stripquotes(yes | no | default) remove or keep double quotes in data

bindquotes(loose | strict | nobind) specify how to handle double quotes in data

maxquotedrows(# | unlimited) number of rows of data allowed inside a quoted
string when bindquote(strict) is specified

rowrange([start][:end]) row range of data to load

colrange([start][:end]) column range of data to load

parselocale(locale) specify the locale to use for interpreting
numbers in the text file being imported

decimalseparator(character) character to use for the decimal separator when
parsing numbers

groupseparator(character) character to use for the grouping separator when
parsing numbers

numericcols(numlist | all) force specified columns to be numeric

stringcols(numlist | all) force specified columns to be string

clear replace data in memory

favorstrfixed favor storing string variables as str# rather
than strL

collect is allowed with import delimited; see [U] 11.1.10 Prefix commands.

favorstrfixed does not appear in the dialog box.

export delimited options Description

Main

delimiter(”char” | tab) use char as delimiter

novarnames do not write variable names on the first line

nolabel output numeric values (not labels) of labeled
variables

datafmt use the variables’ display format upon export

quote always enclose strings in double quotes

replace overwrite existing filename

import delimited — Import and export delimited text data 478

Options for import delimited
delimiters(”chars”[, collapse | asstring]) allows you to specify other separation characters. For

instance, if values in the file are separated by a semicolon, specify delimiters(”;”). By default,
import delimited will check if the file is delimited by tabs or commas based on the first line of

data. Specify delimiters(”\t”) to use a tab character, or specify delimiters(”whitespace”)
to use whitespace as a delimiter.

collapse forces import delimited to treat multiple consecutive delimiters as just one delimiter.

asstring forces import delimited to treat chars as one delimiter. By default, each character in
chars is treated as an individual delimiter.

varnames(# | nonames) specifies where or whether variable names are in the data. By default, import
delimited tries to determine whether the file includes variable names. import delimited trans-
lates the names in the file to valid Stata variable names. The original names from the file are stored

unmodified as variable labels.

varnames(#) specifies that the variable names are in row # of the data; any data before row # should

not be imported.

varnames(nonames) specifies that the variable names are not in the data.

case(preserve | lower | upper) specifies the case of the variable names after import. The default is
case(lowercase).

asfloat imports floating-point data as type float. The default storage type of the imported variables
is determined by set type.

asdouble imports floating-point data as type double. The default storage type of the imported variables
is determined by set type.

encoding(encoding) specifies the encoding of the text file to be read. If encoding() is not spec-

ified, the file will be scanned to try to automatically determine the correct encoding. import
delimited uses encodings available in Java, a list of which can be found at https://www.oracle.

com/java/technologies/javase/jdk11-suported-locales.html.

Option charset() is a synonym for encoding().

emptylines(skip | include) specifies how import delimited handles empty lines in data. skip
(the default) specifies that empty lines to be processed as observations should be skipped. include
specifies that empty lines to be processed as observations should be included. The resulting observa-

tions in Stata will simply contain missing values.

stripquotes(yes | no | default) tells import delimited how to handle double quotes. yes causes
all double quotes to be stripped. no leaves double quotes in the data unchanged. default automat-
ically strips quotes that can be identified as binding quotes. default also will identify two adjacent
double quotes as a single double quote because some software encodes double quotes that way.

bindquotes(loose | strict | nobind) specifies how import delimited handles double quotes in

data. Specifying loose (the default) tells import delimited that it must have a matching open

and closed double quote on the same line of data. strict tells import delimited that once it finds
one double quote on a line of data, it should keep searching through the data for the matching double

quote even if that double quote is on another line. Specifying nobind tells import delimited to

ignore double quotes for binding.

https://www.oracle.com/java/technologies/javase/jdk11-suported-locales.html
https://www.oracle.com/java/technologies/javase/jdk11-suported-locales.html

import delimited — Import and export delimited text data 479

maxquotedrows(# | unlimited) specifies the number of rows allowed inside a quoted string when

parsing the file to import. The default is maxquotedrows(20). If this option is specified without
bindquote(strict), then maxquotedrows() will be ignored.

Option maxquotedrows(0) is a synonym for maxquotedrows(unlimited).

rowrange([start][:end]) specifies a range of rows within the data to load. start and end are integer

row numbers.

colrange([start][:end]) specifies a range of variables within the data to load. start and end are integer
column numbers.

parselocale(locale) specifies the locale to use for interpreting numbers in the text file being imported.
This option invokes an alternative parsing method and can result in slightly different behavior than

not specifying this option. The default is to not use a locale when parsing numbers where the behavior

is to treat . as the decimal separator. A list of available locales can be found at https://www.oracle.

com/technetwork/java/javase/java8locales-2095355.html.

decimalseparator(character) specifies the character to use for interpreting the decimal separator

when parsing numbers. This option implicitly invokes option parselocale() with your system’s
default locale. parselocale(locale) can be specified to override the default system locale.

groupseparator(character) specifies the character to use for interpreting the grouping separator when
parsing numbers. This option implicitly invokes option parselocale() with your system’s default
locale. parselocale(locale) can be specified to override the default system locale.

numericcols(numlist | all) forces the data type of the column numbers in numlist to be numeric.

Specifying all will import all data as numeric.

stringcols(numlist | all) forces the data type of the column numbers in numlist to be string. Spec-
ifying all will import all data as strings.

clear specifies that it is okay to replace the data in memory, even though the current data have not been
saved to disk.

The following option is available with import delimited but is not shown in the dialog box:

favorstrfixed forces import delimited to favor storing strings as a str#.

By default, import delimitedwill attempt to save space by importing string data as a strL if doing
so will save space. The favorstrfixed option prevents the space-saving calculation from occurring,

causing strings to be stored as a str# unless the string is larger than a str# can hold. In that case,
strL must be used. See [R] Limits for details about the maximum size of a str#.

Options for export delimited

� � �
Main �

delimiter(”char” | tab) allows you to specify other separation characters. For instance, if you want
the values in the file to be separated by a semicolon, specify delimiter(”;”). The default delimiter
is a comma.

delimiter(tab) specifies that a tab character be used as the delimiter.

novarnames specifies that variable names not be written in the first line of the file; the file is to contain
data values only.

https://www.oracle.com/technetwork/java/javase/java8locales-2095355.html
https://www.oracle.com/technetwork/java/javase/java8locales-2095355.html

import delimited — Import and export delimited text data 480

nolabel specifies that the numeric values of labeled variables be written into the file rather than the

label associated with each value.

datafmt specifies that all variables be exported using their display format. For example, the number
1000 with a display format of %4.2f would export as 1000.00, not 1000. The default is to use the
raw, unformatted value when exporting.

quote specifies that string variables always be enclosed in double quotes. The default is to only double
quote strings that contain spaces or the delimiter.

replace specifies that filename be replaced if it already exists.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Importing a text file

Using other delimiters
Specifying variable types

Exporting to a text file
Video example

Introduction
import delimited reads into memory a text file in which there is one observation per line and the

values are separated by commas, tabs, or some other delimiter. The two most common types of text

data to import are comma-separated values (.csv) text files and tab-separated text files, often .txt files.
import delimited will automatically detect either a comma or a tab as the delimiter.

Similarly, export delimited writes Stata data to a text file. By default, export delimited uses a
comma as the delimiter, but you may specify another delimiter.

Imported string data containing ASCII or UTF-8 will always display correctly in the Data Editor and

Results window. Imported string data containing extended ASCII may not display correctly unless you

specify the character encoding using the encoding() option to convert the extended ASCII to UTF-8.

Exported text files are UTF-8 encoded.

If you are not sure that import delimited will do what you are looking for, see [D] import and

[U] 22 Entering and importing data for information about Stata’s other commands for importing data.

import delimited — Import and export delimited text data 481

Importing a text file
Suppose we have a .csv data file such as the following auto.csv, which contains variable names

and data for different cars.

. copy https://www.stata.com/examples/auto.csv auto.csv

. type auto.csv
make,price,mpg,rep78,foreign
”AMC Concord”,4099,22,3,”Domestic”
”AMC Pacer”,4749,17,3,”Domestic”
”AMC Spirit”,3799,22,,”Domestic”
”Buick Century”,4816,20,3,”Domestic”
”Buick Electra”,7827,15,4,”Domestic”
”Buick LeSabre”,5788,18,3,”Domestic”
”Buick Opel”,4453,26,,”Domestic”
”Buick Regal”,5189,20,3,”Domestic”
”Buick Riviera”,10372,16,3,”Domestic”
”Buick Skylark”,4082,19,3,”Domestic”

We would like to import these data into Stata for subsequent analysis.

Example 1: Importing all data
To import the complete dataset, we need to specify only the filename. import delimited assumes

an extension of .csv. If our data were stored in a .txt file instead, we would need to specify the file
extension. Here we enclose auto in double quotes (” ”). We do this to remind you to use quotes for

filenames with spaces, but it is not necessary here.

. import delimited ”auto”
(encoding automatically selected: ISO-8859-1)
(5 vars, 10 obs)

We can verify that our data loaded correctly by using list or browse.

. list

make price mpg rep78 foreign

1. AMC Concord 4099 22 3 Domestic
2. AMC Pacer 4749 17 3 Domestic
3. AMC Spirit 3799 22 . Domestic
4. Buick Century 4816 20 3 Domestic
5. Buick Electra 7827 15 4 Domestic

6. Buick LeSabre 5788 18 3 Domestic
7. Buick Opel 4453 26 . Domestic
8. Buick Regal 5189 20 3 Domestic
9. Buick Riviera 10372 16 3 Domestic

10. Buick Skylark 4082 19 3 Domestic

Notice that import delimited automatically assigned the variable names such as make and price
based on the first row of the data. If the variable names were located on, for example, line 3, we would

have specified varnames(3), and import delimited would have ignored the first two rows. If our file
did not contain any variable names, we would have specified varnames(nonames).

import delimited — Import and export delimited text data 482

Example 2: Importing a subset of the data
import delimited also allows you to import a subset of the text data by using the rowrange()

and colrange() options. Use rowrange() to specify which observations you want to import and

colrange() to specify which variables you want to import.

Suppose that we want only cars that were manufactured by AMC. We can use the drop command to
drop the cars manufactured by Buick after we import the data. If we know the rows in which AMC cars

are located, we can also restrict our import to just those rows. Because foreign is constant, we also
want to skip the last column.

To import rows 1 through 3 of the data in auto.csv, we need to specify rowrange(2:4) because
the first row of the file contains the variable names. To import the first four columns, we need to also

specify colrange(1:4).

. clear

. import delimited ”auto”, rowrange(2:4) colrange(1:4)
(encoding automatically selected: ISO-8859-1)
(4 vars, 3 obs)
. list

make price mpg rep78

1. AMC Concord 4099 22 3
2. AMC Pacer 4749 17 3
3. AMC Spirit 3799 22 .

import delimited still used the first line of the file to obtain the variable names even though we did
not start our rowrange() specification with 1. rowrange() controls only which rows are read as data
to be imported into Stata.

Using other delimiters

Many delimited files use commas or tabs; other common delimiters are semicolons and whitespace.

import delimited detects commas and tabs by default but can handle other characters. Suppose that
you had the auto.txt file, which contains the following data.

”AMC Concord” 4099 22 3 ”Domestic”
”AMC Pacer” 4749 17 3 ”Domestic”
”AMC Spirit” 3799 22 NA ”Domestic”
”Buick Century” 4816 20 3 ”Domestic”
”Buick Electra” 7827 15 4 ”Domestic”
”Buick LeSabre” 5788 18 3 ”Domestic”
”Buick Opel” 4453 26 NA ”Domestic”
”Buick Regal” 5189 20 3 ”Domestic”
”Buick Riviera” 10372 16 3 ”Domestic”
”Buick Skylark” 4082 19 3 ”Domestic”

These data are whitespace delimited. If you use import delimited without any options, you will
not get the results you expect.

. clear

. import delimited ”auto.txt”
(encoding automatically selected: ISO-8859-1)
(1 var, 10 obs)

import delimited — Import and export delimited text data 483

When import delimited tries to read data that have no tabs or commas, it is fooled into thinking
that the data contain just one variable.

Example 3: Changing the delimiter
We can use the delimiters() option to import the data correctly. delimiters(” ”) tells import

delimited to use spaces (“ ”) as the delimiter. Adding the collapse suboption will treat multiple

consecutive space delimiters as one delimiter.

. clear

. import delimited ”auto.txt”, delimiters(” ”, collapse)
(encoding automatically selected: ISO-8859-1)
(5 vars, 10 obs)
. describe
Contains data
Observations: 10

Variables: 5

Variable Storage Display Value
name type format label Variable label

v1 str13 %13s
v2 int %8.0g
v3 byte %8.0g
v4 str2 %9s
v5 str8 %9s

Sorted by:
Note: Dataset has changed since last saved.

The data that were imported now contain the correct number of variables and observations.

Because import delimited did not find variable names in the first row of auto.txt, Stata assigned
default names of v# to the imported variables. If we wanted to specify our own names, we could have
instead submitted

. clear

. import delimited make price mpg rep78 foreign using auto.txt,
> delimiters(” ”, collapse)
(encoding automatically selected: ISO-8859-1)
(5 vars, 10 obs)

Specifying variable types

The data in a file may contain a combination of string and numeric variables. import delimited
will generally determine the correct data type for each variable. However, you may want to force a

different data type by using the numericcols() or stringcols() option. For example, string values
may be used to indicate missing values in a numeric variable, or you may want to import numeric values

as strings to preserve leading zeros.

Another common case where you want to control the import type is when your data contain identifiers

or other large numeric values. In this case, you should specify the asdouble option to avoid introducing
duplicate values or losing values after the import.

import delimited — Import and export delimited text data 484

Example 4: Specify the storage type
Continuing with example 3, we know that the fourth variable, rep78, should be a numeric variable.

But it was imported as a string because the value NA was used for missing values.

. list

make price mpg rep78 foreign

1. AMC Concord 4099 22 3 Domestic
2. AMC Pacer 4749 17 3 Domestic
3. AMC Spirit 3799 22 NA Domestic
4. Buick Century 4816 20 3 Domestic
5. Buick Electra 7827 15 4 Domestic

6. Buick LeSabre 5788 18 3 Domestic
7. Buick Opel 4453 26 NA Domestic
8. Buick Regal 5189 20 3 Domestic
9. Buick Riviera 10372 16 3 Domestic

10. Buick Skylark 4082 19 3 Domestic

To force rep78 to have a numeric storage type, we can use the numericcols(4) option.

. clear

. import delimited make price mpg rep78 foreign using ”auto.txt”,
> delimiters(” ”, collapse) numericcols(4)
(encoding automatically selected: ISO-8859-1)
(5 vars, 10 obs)
. describe
Contains data
Observations: 10

Variables: 5

Variable Storage Display Value
name type format label Variable label

make str13 %13s
price int %8.0g
mpg byte %8.0g
rep78 int %8.0g
foreign str8 %9s

Sorted by:
Note: Dataset has changed since last saved.

import delimited — Import and export delimited text data 485

. list

make price mpg rep78 foreign

1. AMC Concord 4099 22 3 Domestic
2. AMC Pacer 4749 17 3 Domestic
3. AMC Spirit 3799 22 . Domestic
4. Buick Century 4816 20 3 Domestic
5. Buick Electra 7827 15 4 Domestic

6. Buick LeSabre 5788 18 3 Domestic
7. Buick Opel 4453 26 . Domestic
8. Buick Regal 5189 20 3 Domestic
9. Buick Riviera 10372 16 3 Domestic

10. Buick Skylark 4082 19 3 Domestic

rep78 is now stored as an int variable, and the NA values are replaced by ., the system missing value

for numeric variables.

Exporting to a text file
export delimited creates text files from the Stata dataset in memory. A comma-separated .csv file

is created by default, but you can change the delimiter by specifying the delimiter() option and the
file extension by specifying it with the filename.

Example 5: Export all data
We want to export the data from example 4 to myauto.csv. We can use the type command to see

the contents of the file.

. export delimited ”myauto”
file myauto.csv saved
. type ”myauto.csv”
make,price,mpg,rep78,foreign
AMC Concord,4099,22,3,Domestic
AMC Pacer,4749,17,3,Domestic
AMC Spirit,3799,22,,Domestic
Buick Century,4816,20,3,Domestic
Buick Electra,7827,15,4,Domestic
Buick LeSabre,5788,18,3,Domestic
Buick Opel,4453,26,,Domestic
Buick Regal,5189,20,3,Domestic
Buick Riviera,10372,16,3,Domestic
Buick Skylark,4082,19,3,Domestic

Example 6: Export a subset of the data
You can also export a subset of the data inmemory by typing a variable list, specifying an if condition,

specifying a range with an in condition, or a combination of the three. For example, here we export only
the first 5 observations of the make, mpg, and rep78 variables.

. export delimited make mpg rep78 in 1/5 using ”myauto”, replace
file myauto.csv saved

import delimited — Import and export delimited text data 486

If you open myauto.csv, you will see that only the 5 observations shown in example 5 appear in the
file. We specified the replace option because we previously exported data to myauto.csv. If we had
not specified replace, we would have received an error message.

Video example
Importing delimited data

Stored results
import delimited stores the following in r():

Scalars

r(N) number of observations imported

r(k) number of variables imported

Macros

r(delimiter) delimiters used when importing the file

r(encoding) encoding used when importing the file

Also see
[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

https://www.youtube.com/watch?v=60RBNsqzL6I&feature=youtu.be

import excel — Import and export Excel files

Description Quick start Menu Syntax
Options for import excel Options for export excel Remarks and examples Stored results
References Also see

Description
import excel loads an Excel file, also known as a workbook, into Stata. import excel filename,

describe lists available sheets and ranges of an Excel file. export excel saves data in memory to an
Excel file. Excel 1997/2003 (.xls) files and Excel 2007/2010 (.xlsx) files can be imported, exported,
and described using import excel, export excel, and import excel, describe.

import excel and export excel are supported on Windows, Mac, and Linux.

import excel and export excel look at the file extension, .xls or .xlsx, to determine which

Excel format to read or write.

For performance, import excel imposes a size limit of 40 MB for Excel 2007/2010 (.xlsx) files.
Be warned that importing large .xlsx files can severely affect your machine’s performance.

import excel auto first looks for auto.xls and then looks for auto.xlsx if auto.xls is not found
in the current directory.

The default file extension for export excel is .xlsx if a file extension is not specified.

Quick start
Check the contents of Excel file mydata.xls before importing

import excel mydata, describe

Same as above, but for mydata.xlsx
import excel mydata.xlsx, describe

Load data from mydata.xls
import excel mydata

Same as above, but load data from cells A1:G10 of mysheet
import excel mydata, cellrange(A1:G10) sheet(mysheet)

Read first row as lowercase variable names

import excel mydata, firstrow case(lower)

Import only v1 and v2
import excel v1 v2 using mydata

Save data in memory to mydata.xlsx
export excel mydata

Same as above, but export variables v1, v2, and v3
export excel v1 v2 v3 using mydata

487

import excel — Import and export Excel files 488

Menu
import excel
File > Import > Excel spreadsheet (*.xls;*.xlsx)

export excel
File > Export > Data to Excel spreadsheet (*.xls;*.xlsx)

Syntax
Load an Excel file

import excel [using] filename [, import excel options]

Load subset of variables from an Excel file

import excel extvarlist using filename [, import excel options]

Describe contents of an Excel file

import excel [using] filename, describe

Save data in memory to an Excel file

export excel [using] filename [if] [in] [, export excel options]

Save subset of variables in memory to an Excel file

export excel [varlist] using filename [if] [in] [, export excel options]

import excel options Description

sheet(”sheetname”) Excel worksheet to load

cellrange([start][:end]) Excel cell range to load

firstrow treat first row of Excel data as variable names

case(preserve | lower | upper) preserve the case (the default) or read variable names
as lowercase or uppercase when using firstrow

allstring[(”format”)] import all Excel data as strings; optionally, specify the
numeric display format

clear replace data in memory

locale(”locale”) specify the locale used by the workbook; has no
effect on Microsoft Windows

allstring(”format”) and locale() do not appear in the dialog box.

import excel — Import and export Excel files 489

export excel options Description

Main

sheet(”sheetname”[, modify | replace]) save to Excel worksheet

cell(start) start (upper-left) cell in Excel to begin saving to

firstrow(variables | varlabels) save variable names or variable labels to first row

nolabel export values instead of value labels

keepcellfmt when writing data, preserve the cell style and
format of existing worksheet

replace overwrite Excel file

Advanced

datestring(”datetime format”) save dates as strings with a datetime format

missing(”repval”) save missing values as repval

locale(”locale”) specify the locale used by the workbook; has no
effect on Microsoft Windows

collect is allowed with import excel; see [U] 11.1.10 Prefix commands.

locale() does not appear in the dialog box.

extvarlist specifies variable names of imported columns. An extvarlist is one or more of any of the

following:

varname

varname=columnname

Example: import excel make mpg weight price using auto.xlsx, clear imports columns A,

B, C, and D from the Excel file auto.xlsx.

Example: import excel make=A mpg=B price=D using auto.xlsx, clear imports columns A,

B, and D from the Excel file auto.xlsx. Column C and any columns after D are skipped.

Options for import excel
sheet(”sheetname”) imports the worksheet named sheetname in the workbook. The default is to import

the first worksheet.

cellrange([start][:end]) specifies a range of cells within the worksheet to load. start and end are

specified using standard Excel cell notation, for example, A1, BC2000, and C23.

firstrow specifies that the first row of data in the Excel worksheet consists of variable names. This

option cannot be used with extvarlist. firstrow uses the first row of the cell range for variable

names if cellrange() is specified. import excel translates the names in the first row to valid Stata

variable names. The original names in the first row are stored unmodified as variable labels.

case(preserve | lower | upper) specifies the case of the variable names readwhen using the firstrow
option. The default is case(preserve), meaning to preserve the variable name case. Only theASCII
letters in names are changed to lowercase or uppercase. Unicode characters beyond ASCII range are

not changed.

allstring[(”format”)] forces import excel to import all Excel data as string data. You can specify
the numeric display format used to convert the numeric data to string using the optional argument

format. See [D] format.

import excel — Import and export Excel files 490

clear clears data in memory before loading data from the Excel workbook.

The following option is available with import excel but is not shown in the dialog box:

locale(”locale”) specifies the locale used by the workbook. You might need this option when working
with extended ASCII character sets. This option has no effect on Microsoft Windows. The default

locale is UTF-8.

Options for export excel

� � �
Main �

sheet(”sheetname”[, modify | replace]) saves to the worksheet named sheetname. If there is no

worksheet named sheetname in the workbook, a new sheet named sheetname is created. If this option

is not specified, the first worksheet of the workbook is used. If sheetname does exist in the workbook,

you can either modify or replace the worksheet.

modify exports data to the worksheet without changing the cells outside the exported range. This

option cannot be specified with replace, nor when overwriting the Excel workbook.

replace clears the worksheet before the data are exported to it. replace cannot be specified with
modify, nor when overwriting the Excel workbook.

cell(start) specifies the start (upper-left) cell in the Excel worksheet to begin saving to. By default,
export excel saves starting in the first row and first column of the worksheet.

firstrow(variables | varlabels) specifies that the variable names or the variable labels be saved in
the first row in the Excel worksheet. The variable name is used if there is no variable label for a given

variable.

nolabel exports the underlying numeric values instead of the value labels.

keepcellfmt specifies that, when writing data, export excel should preserve the existing worksheet’s
cell style and format. By default, export excel does not preserve a cell’s style or format.

replace overwrites an existing Excel workbook. replace cannot be specified when modifying

or replacing a given worksheet: export excel ..., sheet(””, modify) or export excel ...
sheet(””, replace).

� � �
Advanced �

datestring(”datetime format”) exports all datetime variables as strings formatted by date-

time format. See [D] Datetime display formats.

missing(”repval”) exports missing values as repval. repval can be either string or numeric. Without

specifying this option, export excel exports the missing values as empty cells.

The following option is available with export excel but is not shown in the dialog box:

locale(”locale”) specifies the locale used by the workbook. You might need this option when working
with extended ASCII character sets. The default locale is UTF-8.

import excel — Import and export Excel files 491

Remarks and examples
To demonstrate the use of import excel and export excel, we will first load auto.dta and export

it as an Excel file named auto.xlsx:

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. export excel auto, firstrow(variables)
file auto.xlsx saved

Now we can import from the auto.xlsx file we just created, telling Stata to clear the current data
from memory and to treat the first row of the worksheet in the Excel file as variable names:

. import excel auto.xlsx, firstrow clear
(12 vars, 74 obs)
. describe
Contains data
Observations: 74

Variables: 12

Variable Storage Display Value
name type format label Variable label

make str17 %17s make
price int %10.0gc price
mpg byte %10.0g mpg
rep78 byte %10.0g rep78
headroom double %10.0g headroom
trunk byte %10.0g trunk
weight int %10.0gc weight
length int %10.0g length
turn byte %10.0g turn
displacement int %10.0g displacement
gear_ratio double %14.2f gear_ratio
foreign str8 %9s foreign

Sorted by:
Note: Dataset has changed since last saved.

We can also import a subrange of the cells in the Excel file:

. import excel auto.xlsx, cellrange(:D70) firstrow clear
(4 vars, 69 obs)
. describe
Contains data
Observations: 69

Variables: 4

Variable Storage Display Value
name type format label Variable label

make str17 %17s make
price int %10.0gc price
mpg byte %10.0g mpg
rep78 byte %10.0g rep78

Sorted by:
Note: Dataset has changed since last saved.

import excel — Import and export Excel files 492

Both .xls and .xlsx files are supported by import excel and export excel. If a file extension
is not specified with export excel, .xlsx is assumed, because this format is more common and is

compatible with more applications that also can read from Excel files. To save the data in memory as a

.xls file, specify the extension:

. use https://www.stata-press.com/data/r19/auto, clear
(1978 automobile data)
. export excel auto.xls
file auto.xls saved

To export a subset of variables and overwrite the existing auto.xlsx Excel file, specify a variable
list and the replace option:

. export excel make mpg weight using auto, replace
file auto.xlsx saved

For additional examples illustrating import excel and export excel, see Mitchell (2020,

chap. 2–3).

Technical note: Excel data size limits
For an Excel .xls-type workbook, the worksheet size limits are 65,536 rows by 256 columns. The

string size limit is 255 characters.

For an Excel .xlsx-type workbook, the worksheet size limits are 1,048,576 rows by 16,384 columns.
The string size limit is 32,767 characters.

Technical note: Dates and times
Excel has two different date systems, the “1900 Date System” and the “1904 Date System”. Excel

stores a date and time as an integer representing the number of days since a start date plus a fraction of

a 24-hour day.

In the 1900 Date System, the start date is 00Jan1900; in the 1904 Date System, the start date is

01Jan1904. In the 1900 Date System, there is another artificial date, 29feb1900, besides 00Jan1900.

import excel translates 29feb1900 to 28feb1900 and 00Jan1900 to 31dec1899.

See Converting Excel dates in [D] Datetime values from other software for a discussion of the

relationship between Stata datetimes and Excel datetimes.

Technical note: Mixed data types
Because Excel’s data type is cell based, import excel may encounter a column of cells with mixed

data types. In such a case, the following rules are used to determine the variable type in Stata of the

imported column.

• If the column contains at least one cell with nonnumerical text, the entire column is imported as a

string variable.

• If an all-numerical column contains at least one cell formatted as a date or time, the entire column

is imported as a Stata date or datetime variable. import excel imports the column as a Stata date
if all date cells in Excel are dates only; otherwise, a datetime is used.

import excel — Import and export Excel files 493

Video example
Import Excel data into Stata

Stored results
import excel filename, describe stores the following in r():

Scalars

r(N worksheet) number of worksheets in the Excel workbook

Macros

r(worksheet #) name of worksheet # in the Excel workbook

r(range #) available cell range for worksheet # in the Excel workbook

References
Crow, K. 2012. Using import excel with real world data. The Stata Blog: Not Elsewhere Classified. https://blog.stata.

com/2012/06/25/using-import-excel-with-real-world-data/.

Jeanty, P. W. 2013. Dealing with identifier variables in data management and analysis. Stata Journal 13: 699–718.

Mitchell, M. N. 2020. Data Management Using Stata: A Practical Handbook. 2nd ed. College Station, TX: Stata Press.

Also see
[D] Datetime — Date and time values and variables

[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

[M-5] docx*() — Generate Office Open XML (.docx) file

[M-5] xl() — Excel file I/O class

[RPT] putexcel — Export results to an Excel file

https://www.youtube.com/watch?v=N5ZFgzN2_7c
https://blog.stata.com/2012/06/25/using-import-excel-with-real-world-data/
https://blog.stata.com/2012/06/25/using-import-excel-with-real-world-data/
https://www.stata-journal.com/article.html?article=dm0071
https://www.stata-press.com/books/data-management-using-stata/

import fred — Import data from Federal Reserve Economic Data

Description Quick start Menu Syntax Options
Remarks and examples Stored results References Also see

Description
import fred imports data from the Federal Reserve Economic Data (FRED) into Stata. import fred

supports data on FRED as well as historical vintage data on Archival FRED (ALFRED). freddescribe
and fredsearch provide tools to describe series in the database and to search FRED for data based on

keywords and tags.

Quick start
Before running any of the commands below, you will need to obtain a FRED key and set it using set
fredkey.

Import series code1 and code2 from FRED

import fred code1 code2

Import vintage series code1 and code2 as available on September 15, 2008, and September 15, 2009,
from FRED

import fred code1 code2, vintage(2008-9-15 2009-9-15)

Display metadata describing series code1 and code2
freddescribe code1 code2

Search FRED for series matching keywords “investment” and “share” and tagged with “pwt” and “usa”

fredsearch investment share, tags(pwt usa)

Menu
File > Import > Federal Reserve Economic Data (FRED)

494

import fred — Import data from Federal Reserve Economic Data 495

Syntax
Set FRED key

set fredkey key [, permanently]

Import FRED data

import fred series list [, options]

or

import fred, serieslist(filename) [options]

Describe series

freddescribe series list [, detail realtime(start end)]

Search series

fredsearch keyword list [, search options]

key is a valid API key, which is provided by the St. Louis Federal Reserve and may be obtained from

https://research.stlouisfed.org/docs/api/api key.html.

series list is a list of FRED codes, for example, FEDFUNDS.

keyword list is a list of keywords.

options Description

∗ serieslist(filename) specify series IDs using a file

daterange(start end) restrict to only observations within specified date range

aggregate(frequency[, method]) specify the aggregation level and aggregation type

realtime(start end) import historical vintages between specified dates

vintage(datespec) import historical data by vintage dates

nrobs import only new and revised observations

initial import only first value for each observation in a series

long import data in long format

nosummary suppress summary table

clear clear data in memory before importing FRED series

∗ serieslist() is required if series list is not specified.

collect is allowed with fredsearch; see [U] 11.1.10 Prefix commands.

clear does not appear in the dialog box.

If start and end are provided as dates, they must be daily dates using notation of the form 31Jan2016,
2016-01-31, 2016/01/31, or 01/31/2016.

datespec may be
date a daily date

date1 date2 . . . date𝑛 a list of daily dates

all all available dates

https://research.stlouisfed.org/docs/api/api_key.html

import fred — Import data from Federal Reserve Economic Data 496

search options Description

idonly require keywords to appear in series IDs only

tags(tag list) search by tag list

taglist list tags present in current search results

sort(sortby[, sortorder]) list matched series in order specified by sortby

detail list full metainformation for each search result

saving(filename[, replace]) save series information to filename.dta

saving() does not appear in the dialog box.

Options
Options are presented under the following headings:

Option for set fredkey
Options for import fred
Options for freddescribe
Options for fredsearch

Option for set fredkey
permanently specifies that, in addition to setting the key for the current Stata session, the key be re-

membered and become the default key when you invoke Stata.

Options for import fred
serieslist(filename) allows you to import the series specified in filename. The series file must contain

a variable called seriesid that contains the IDs of the series you wish to import. serieslist() is
required if series list is not specified.

daterange(start end) specifies that only observations between the start date and end date should

be imported. start and end must be specified as either a daily date or a missing value (.).
Use daterange(. end) to import all observations from the first available through end. Use

daterange(start .) to import from start through the most recently available date.

aggregate(frequency[, method]) specifies that the data should be imported at a lower frequency than
the series’ native frequency along with an optional method of aggregation.

frequency may be daily, weekly, biweekly, monthly, quarterly, semiannual, annual,
weekly ending friday, weekly ending thursday, weekly ending wednesday, weekly
ending tuesday, weekly ending monday, weekly ending sunday, weekly ending
saturday, biweekly ending wednesday, or biweekly ending monday.

method may be avg (the within-period average), sum (the within-period sum), or eop (the end-of-

period value). The default is avg.

realtime(start end) specifies a real-time period betweenwhich all vintages for each series are imported.
The vintage available on start is imported, as are all vintages released between start and end. Either

of start or end may be replaced by a missing value (.). If start is a missing value, then all vintages
from the first available up through end are imported. If end is a missing value, then all vintages from

start up through the most recent available are imported. realtime() may not be combined with

vintage().

import fred — Import data from Federal Reserve Economic Data 497

vintage(datespec) imports historical vintage data according to datespec. datespec may either be a list
of daily dates or all. When datespec is a list of dates, the specified series are imported as they were

available on the dates in datespec. When datespec is all, all vintages of the specified series are
imported. vintage() may not be combined with realtime().

nrobs specifies that only observations that are new or revised in each vintage be imported. Old and

unrevised observations are imported as the missing value .u.

initial specifies that only the first value for each observation of the series be imported. This option
may not be combined with nrobs.

long specifies that each series be imported in long format.

nosummary suppresses the summary table.

The following option is available with import fred but is not shown in the dialog box:

clear specifies that the data in memory should be replaced with the imported FRED data.

Options for freddescribe
detail displays full metainformation available about series list.

realtime(start end) provides historical vintage information about series list during the real-time pe-

riod specified by start and end. Either start or end may be replaced by a missing value (.). If start
is a missing value, then all vintages from the first available up through end are described. If end is a

missing value, then all vintages from start up through the most recent available are described.

Options for fredsearch
idonly specifies that the keywords in keyword list be found in series IDs rather than elsewhere in the

metadata.

tags(tag list) searches for series that have all the tags specified in tag list. The complete list of avail-

able tags is provided by FRED. Tags form a space-separated list. Tags are case-sensitive and all FRED

tags are in lowercase.

taglist lists all the tags present in the current search results.

sort(sortby[, sortorder]) lists the search results in the order specified by sortby.
When searching series, sortby may be popularity, id, title, lastupdated, frequency,
obsstart, obsend, units, or seasonaladj. By default, popularity is used.

When searching with the taglist option, sortby may be name or series count. name means the
tag name, and series count is the count of series associated with the tag in the search results. By
default, series count is used.

You can optionally change the order of the search results from descending (descending) to as-

cending (ascending) order. The default order when searching by popularity, lastupdated, or
series count is descending; otherwise, the default sort order is ascending.

detail lists full metainformation for each series that appears in the search results.

import fred — Import data from Federal Reserve Economic Data 498

The following option is available with fredsearch but is not shown in the dialog box:

saving(filename[, replace]) saves the search results to a file. The filename may then be specified in
the serieslist() option of import fred to import the series located by the search. The optional
replace specifies that filename be overwritten if it exists.

Remarks and examples
Remarks are presented under the following headings:

Introduction and setup
The FRED interface
Advanced imports using the import fred command
Importing historical vintage data
Searching, saving, and retrieving series information
Describing series

Introduction and setup
import fred imports data from the Federal Reserve Economic Data (FRED) into Stata. FRED is main-

tained by the Economic Research Division of the Federal Reserve Bank of St. Louis and contains hun-

dreds of thousands of economic and financial time series. FRED includes data from a variety of sources,

including the Federal Reserve, the Penn World Table, Eurostat, the World Bank, and US statistical agen-

cies, among others. import fred extends freduse discussed in Drukker (2006).

Series in FRED are updated and revised over time as new observations are added and as older obser-

vations are revised in light of more complete source information. The series are updated on an annual,

quarterly, monthly, weekly, or daily basis, depending on the series. Each time a series is updated or

revised, a new “vintage” is created. The archived data, or historical vintage data, are data in their unre-

vised form as they would have been available on a particular date in history. These data are fromArchival

FRED, or ALFRED. import fred can import data from either FRED or ALFRED.

FRED data can be imported using the import fred command or using the FRED interface. If you are

exploring FRED, learning the names of series, or importing series occasionally, we recommend using the

FRED interface. If you already know the names of the series that you would like to import or if you

repeatedly download series as they are updated, we recommend using the import fred command. You
may also use the FRED interface to learn series names that you subsequently specify in import fred
commands. See The FRED interface below to learn more about using this tool.

Whether you plan to use the FRED interface or the import fred command, you must first have a valid
API key. API keys are provided by the St. Louis Federal Reserve and may be obtained from https://re-

search.stlouisfed.org/docs/api/api key.html. The key will be a 32-character alphanumeric string. You

will be prompted to enter this key the first time you open the FRED interface. Alternatively, you can type

. set fredkey key, permanently

where key is your API key.

Example 1: A basic search and import
Suppose we want monthly data on the exchange rate between the US dollar and the Japanese Yen. We

can use fredsearch to find the name of this series in FRED.

https://research.stlouisfed.org/docs/api/api_key.html
https://research.stlouisfed.org/docs/api/api_key.html

import fred — Import data from Federal Reserve Economic Data 499

. fredsearch us dollar yen exchange rate monthly

Series ID Title Data range Frequency

EXJPUS Japanese Yen to U.... 1971-01-01 to 2025-02-01 Monthly

Total: 1

The output says that EXJPUS is the name that FRED uses for this series. When we performed this

search, 2025-02-01 was the last available observation. More data will be available when you type this

command, so the endpoint of the data range will be more recent.

Having learned from the output that EXJPUS is the name that FRED uses for this series, we use import
fred to import it.

. import fred EXJPUS
Summary

Series ID Nobs Date range Frequency

EXJPUS 650 1971-01-01 to 2025-02-01 Monthly

of series imported: 1
highest frequency: Monthly
lowest frequency: Monthly

The output says that 650 monthly observations on EXJPUS were imported.

To clarify what we imported, we can describe the imported data and list the first five observations.

. describe
Contains data
Observations: 650

Variables: 3

Variable Storage Display Value
name type format label Variable label

datestr str10 %-10s observation date
daten int %td numeric (daily) date
EXJPUS float %9.0g Japanese Yen to U.S. Dollar Spot

Exchange Rate

Sorted by: datestr
Note: Dataset has changed since last saved.

. list datestr daten EXJPUS in 1/5

datestr daten EXJPUS

1. 1971-01-01 01jan1971 358.02
2. 1971-02-01 01feb1971 357.545
3. 1971-03-01 01mar1971 357.5187
4. 1971-04-01 01apr1971 357.5032
5. 1971-05-01 01may1971 357.413

Each series in FRED is paired with a string variable that records the daily date for each observation.

import fred imports this daily date variable as the string variable datestr, and it creates daten, which
is a Stata datetime variable that encodes the date in datestr. EXJPUS contains the observations on the
FRED series EXJPUS.

import fred — Import data from Federal Reserve Economic Data 500

Each series has metadata associated with it that is stored in the characteristics and may be viewed

with the char list command. We now list out the metadata on EXJPUS.

. char list EXJPUS[]
EXJPUS[Title]: Japanese Yen to U.S. Dollar Spot Exchange Rate
EXJPUS[Series_ID]: EXJPUS
EXJPUS[Source]: Board of Governors of the Federal Reserve Syste..
EXJPUS[Release]: G.5 Foreign Exchange Rates
EXJPUS[Seasonal_Adjustment]:

Not Seasonally Adjusted
EXJPUS[Date_Range]: 1971-01-01 to 2025-02-01
EXJPUS[Frequency]: Monthly
EXJPUS[Units]: Japanese Yen to One U.S. Dollar
EXJPUS[Last_Updated]: 2025-03-03 15:19:41-06
EXJPUS[Notes]: Averages of daily figures. Noon buying rates in..

See [P] char for more about characteristics.

The FRED interface
The names of FRED series are not predictable. The FRED interface makes it easy to find series, to

import series, and to explore the thousands of series by keyword searches or by browsing by category,

release type, source, or release date.

Selecting

File > Import > Federal Reserve Economic Data (FRED)

from the menu opens the FRED interface.

import fred — Import data from Federal Reserve Economic Data 501

In the top left-hand corner, the drop-down menu defaults to Search FRED, which searches for se-
ries by keywords that appear in those series’ metadata. From this menu, we can also select Browse by
category, Browse by release, Browse by source, and Search by release date.

Browse by category finds series by browsing through FRED defined categories, such as Production
& Business Activity.

Browse by release finds series by browsing through FRED defined release types, such as the BEA
Regions Employment and Unemployment and the Consumer Price Index.

Browse by source finds series by browsing through sources, such as the Bank of England, the US
Bureau of the Census, and the University of Pennsylvania.

Search by release date finds regularly released series that were updated in a specified date range.

Example 2: Finding and importing series with the FRED interface
Suppose we want to import series measuring the real gross domestic product (GDP) in the US and the

three-month Treasury bill interest rate, known as the Federal Funds Rate. We can use a keyword search

and a then browse by category to find and select them for import.

After selecting

File > Import > Federal Reserve Economic Data (FRED)

to open the control panel, we type real gross domestic product us in the Keywords field and click
on the Search button, which produces

import fred — Import data from Federal Reserve Economic Data 502

Clicking on GDPC1 and then on theAdd button adds GDPC1 to list of series to import.

import fred — Import data from Federal Reserve Economic Data 503

Now, we want to add the interest rate series. We select Browse by category from the drop-down

menu in the top left-hand corner.

import fred — Import data from Federal Reserve Economic Data 504

We double-click on Money, Banking, & Finance to get a list of subcategories.

import fred — Import data from Federal Reserve Economic Data 505

Next, we double-click on Interest Rates to get a list of interest-rate categories. Scrolling down,
we find Treasury Bills.

import fred — Import data from Federal Reserve Economic Data 506

We double-click on Treasury Bills to produce a list of interest-rate series. We click on TB3MS and
then on theAdd button to add it the list of series to be imported.

Clicking on import brings up a dialog box that allows us to restrict the imported observations.

import fred — Import data from Federal Reserve Economic Data 507

We click OK to import all available observations.

The output from the command issued by the control panel was

. import fred GDPC1 TB3MS
Summary

Series ID Nobs Date range Frequency

GDPC1 312 1947-01-01 to 2024-10-01 Quarterly
TB3MS 1094 1934-01-01 to 2025-02-01 Monthly

of series imported: 2
highest frequency: Monthly
lowest frequency: Quarterly

The number of observations and the date ranges will differ when you follow these same steps using

the FRED interface, because more data have been made available.

import fred — Import data from Federal Reserve Economic Data 508

Example 3: Refining a search using tags
Suppose that we want to find and import data on the median income in each US state and the District of

Columbia for each available year. After opening the control panel, typing median household income
in the Keywords box, and clicking on the Search button, we see

import fred — Import data from Federal Reserve Economic Data 509

This keyword search finds thousands more series than the 51 we want. To filter the found series by

the tag state, we expand the Geography Types category, click on state, and then click on theAdd to
filters button, which produces

There are still too many series. To filter the series by the tag real, we expand the Concepts category,
click on real, and then click on theAdd to filters button, which produces the desired 51 series.

import fred — Import data from Federal Reserve Economic Data 510

After selecting the 51 series, we add them to the import list by clicking on theAdd button. We could

now import them by clicking on the Import button.

Advanced imports using the import fred command
FRED data users commonly import series of different frequencies.

Example 4: Importing series with different frequencies
Suppose we wish to import current data on US real GDP, the price level, and the interest rate. These

data are stored in FRED with the series IDs “GDPC1”, “GDPDEF”, and “FEDFUNDS”, so we supply those

names to import fred.
. import fred GDPC1 GDPDEF FEDFUNDS
Summary

Series ID Nobs Date range Frequency

GDPC1 312 1947-01-01 to 2024-10-01 Quarterly
GDPDEF 312 1947-01-01 to 2024-10-01 Quarterly
FEDFUNDS 848 1954-07-01 to 2025-02-01 Monthly

of series imported: 3
highest frequency: Monthly
lowest frequency: Quarterly

FEDFUNDS is a monthly series, while GDPC1 and GDPDEF are quarterly series. To further illustrate, we
list the observations on each variable from 1959 using the list command.

import fred — Import data from Federal Reserve Economic Data 511

. list if year(daten)==1959, separator(3)

datestr daten GDPC1 GDPDEF FEDFUNDS

85. 1959-01-01 01jan1959 3352.129 15.224 2.48
86. 1959-02-01 01feb1959 . . 2.43
87. 1959-03-01 01mar1959 . . 2.8

88. 1959-04-01 01apr1959 3427.667 15.248 2.96
89. 1959-05-01 01may1959 . . 2.9
90. 1959-06-01 01jun1959 . . 3.39

91. 1959-07-01 01jul1959 3430.057 15.307 3.47
92. 1959-08-01 01aug1959 . . 3.5
93. 1959-09-01 01sep1959 . . 3.76

94. 1959-10-01 01oct1959 3439.832 15.367 3.98
95. 1959-11-01 01nov1959 . . 4
96. 1959-12-01 01dec1959 . . 3.99

FRED provides all series in daily date format, and each observation is recorded as existing on the first

day of the period. For example, a monthly series records the observation in 1959 January as existing

on 01Jan1959; a quarterly series records the observation in 1959 Q1 as existing on 01Jan1959. When

importing series of different frequencies, the lower-frequency series will appear to contain gaps; these

gaps are filled with missing values.

Example 5: Importing series at a desired frequency
Continuing with example 4, at times you may wish to import a high-frequency series at a particular

lower frequency. This is accomplished with the aggregate() option. There are three aggregation meth-
ods available: you may take the within-period average, the sum, or the end-of-period value. The default

is to take the within-period average.

. import fred GDPC1 GDPDEF FEDFUNDS, aggregate(quarterly) clear
Summary

Series ID Nobs Date range Frequency

GDPC1 312 1947-01-01 to 2024-10-01 Quarterly
GDPDEF 312 1947-01-01 to 2024-10-01 Quarterly
FEDFUNDS 282 1954-07-01 to 2024-10-01 Quarterly

of series imported: 3
highest frequency: Quarterly
lowest frequency: Quarterly

. list if year(daten)==1959, separator(4)

datestr daten GDPC1 GDPDEF FEDFUNDS

49. 1959-01-01 01jan1959 3352.129 15.224 2.57
50. 1959-04-01 01apr1959 3427.667 15.248 3.08
51. 1959-07-01 01jul1959 3430.057 15.307 3.58
52. 1959-10-01 01oct1959 3439.832 15.367 3.99

import fred — Import data from Federal Reserve Economic Data 512

The monthly series FEDFUNDS has been reduced to quarterly frequency. The value of FEDFUNDS for

the first quarter of 1959, 2.57, is the average of its values for the three months in that quarter. The date

variable daten now stores the first date of each quarter.

Example 6: Importing a subset of observations
The daterange() option causes import fred to restrict importing of data to only observations

within the specified beginning and ending dates. daterange() takes two arguments, both of which

must be either daily dates or missing (.). If a missing value is used for the first date, then all observa-
tions from the beginning up to the end date are imported. If a missing value is used for the second date,

then all observations from the first date through the most current are imported.

Returning to example 4, wemay wish to import only data between 1984 and 2005 for GDPC1, GDPDEF,

and FEDFUNDS.

. import fred GDPC1 GDPDEF FEDFUNDS, daterange(1984-01-15 2005-12-31) clear
Summary

Series ID Nobs Date range Frequency

GDPC1 88 1984-01-01 to 2005-10-01 Quarterly
GDPDEF 88 1984-01-01 to 2005-10-01 Quarterly
FEDFUNDS 264 1984-01-01 to 2005-12-01 Monthly

of series imported: 3
highest frequency: Monthly
lowest frequency: Quarterly

Note that GDPC1 and GDPDEF now have 88 observations rather than 278; similarly, FEDFUNDS has

264 observations rather than 745.

Importing historical vintage data
In example 1, we imported monthly data on the exchange rate between the USDollar and the Japanese

Yen. The observations on EXJPUS listed in that example were observed end-of-day values. In contrast,

the values in many FRED series, like the US real gross domestic product series (GDPC1), are estimates.
The values of observed series do not change over time. The values of estimated series change over time

because the rules that define them change over time. A set of rules is known as a vintage.

FRED contains the most recent vintage of a given series. At times, you may wish to import prior

vintages or to view the series as it would have been seen on a particular date in history. ALFRED contains

prior vintages of economic data and allows you to import data as they were seen on a particular date in

history. For example, you may import the real GDP series that you would have had access to on October

15, 2008.

By default, import fred imports data from the current vintage. The vintage() and realtime()
options allow you to import data from prior vintages. You can request a single date, multiple dates, all

vintages between two dates in history, or the complete revision history.

import fred — Import data from Federal Reserve Economic Data 513

Example 7: Importing vintages by date
We wish to import the gross national product (GNP) series as it would have been available on Septem-

ber 16, 2008 and September 16, 2009, so we specify these dates in the vintage() option. We also use

the daterange() option to import only observations since 2006:

. import fred GNPC96, vintage(2008-09-16 2009-09-16) daterange(2006-01-01 .)
> clear
Summary

Series ID Nobs Date range Frequency

GNPC96_20080916 10 2006-01-01 to 2008-04-01 Quarterly
GNPC96_20090916 14 2006-01-01 to 2009-04-01 Quarterly

of series imported: 2
highest frequency: Quarterly
lowest frequency: Quarterly

. list, separator(4) abbreviate(16)

datestr daten GNPC96_20080916 GNPC96_20090916

1. 2006-01-01 01jan2006 11286.5 12994.2
2. 2006-04-01 01apr2006 11365.1 13035.4
3. 2006-07-01 01jul2006 11370.8 13025.1
4. 2006-10-01 01oct2006 11426.5 13129.5

5. 2007-01-01 01jan2007 11419.1 13160.5
6. 2007-04-01 01apr2007 11541.7 13275.9
7. 2007-07-01 01jul2007 11719.9 13451.5
8. 2007-10-01 01oct2007 11758.3 13563.3

9. 2008-01-01 01jan2008 11760.9 13525.4
10. 2008-04-01 01apr2008 11835.9 13533.7
11. 2008-07-01 01jul2008 . 13470.7
12. 2008-10-01 01oct2008 . 13240.5

13. 2009-01-01 01jan2009 . 13018.1
14. 2009-04-01 01apr2009 . 12991.6

We specified one series and two vintage dates, so we have imported two series. Each vintage is named

with the series requested and the date that it was requested. For example, the series GNPC96 20080916
reports real GNP as it was available on 16 September 2008. Note that the series is appended with the date

requested, not the date the vintage was released.

These two vintages of GNPC96 differ dramatically because they are on different scales. The output
also illustrates that, as of 16 September 2008, data on GNPC96 were only available through 1April 2008.

Example 8: Importing vintages by real-time period
You may also wish to obtain the complete vintage history of a series between two dates. For example,

we import all the vintages of real GNP from December 2007 through July 2010 by specifying this date

range in the realtime() option.

import fred — Import data from Federal Reserve Economic Data 514

. import fred GNPC96, realtime(2007-12-01 2010-07-31) clear
Summary

Series ID Nobs Date range Frequency

GNPC96_20071201 243 1947-01-01 to 2007-07-01 Quarterly
GNPC96_20071220 243 1947-01-01 to 2007-07-01 Quarterly
GNPC96_20080327 244 1947-01-01 to 2007-10-01 Quarterly
GNPC96_20080529 245 1947-01-01 to 2008-01-01 Quarterly
GNPC96_20080626 245 1947-01-01 to 2008-01-01 Quarterly
GNPC96_20080731 245 1947-01-01 to 2008-01-01 Quarterly
GNPC96_20080828 246 1947-01-01 to 2008-04-01 Quarterly
GNPC96_20080926 246 1947-01-01 to 2008-04-01 Quarterly
GNPC96_20081125 247 1947-01-01 to 2008-07-01 Quarterly
GNPC96_20081223 247 1947-01-01 to 2008-07-01 Quarterly
GNPC96_20090326 248 1947-01-01 to 2008-10-01 Quarterly
GNPC96_20090529 249 1947-01-01 to 2009-01-01 Quarterly
GNPC96_20090625 249 1947-01-01 to 2009-01-01 Quarterly
GNPC96_20090731 249 1947-01-01 to 2009-01-01 Quarterly
GNPC96_20090817 249 1947-01-01 to 2009-01-01 Quarterly
GNPC96_20090827 250 1947-01-01 to 2009-04-01 Quarterly
GNPC96_20090930 250 1947-01-01 to 2009-04-01 Quarterly
GNPC96_20091124 251 1947-01-01 to 2009-07-01 Quarterly
GNPC96_20091222 251 1947-01-01 to 2009-07-01 Quarterly
GNPC96_20100326 252 1947-01-01 to 2009-10-01 Quarterly
GNPC96_20100527 253 1947-01-01 to 2010-01-01 Quarterly
GNPC96_20100625 253 1947-01-01 to 2010-01-01 Quarterly
GNPC96_20100730 253 1947-01-01 to 2010-01-01 Quarterly
GNPC96_20100731 253 1947-01-01 to 2010-01-01 Quarterly

of series imported: 24
highest frequency: Quarterly
lowest frequency: Quarterly

Each series contains the data from a vintage, and each series’ name is appended with the date that the

vintage was released.

Different vintages of a series may not be directly comparable. For example, the units of a series may

change over time. The different vintages must be converted to a common unit before they are analyzed,

and it is crucial that you be aware of the units of the vintages you are analyzing.

Note that there is slightly different behavior depending on whether you specify vintage dates or import

all vintages within a real-time period. If you specify a list of dates, then each vintage will be named

series date. On the other hand, if you import every vintage between two dates using the realtime()
option, then each vintagewill be named series vintage date. This behavior follows FRED’s behavior
when handling vintages.

Searching, saving, and retrieving series information
fredsearch finds series that match keywords or tags. Around 5,000 tags are supplied by FRED. You

can also search by keywords, which will search for the keyword anywhere in the metadata of a series.

You can save the names of the series found by a search to a file and then import these series. The

following example uses tags in combination with keywords to import median income per capita for states

in the United States.

import fred — Import data from Federal Reserve Economic Data 515

Example 9: Using the search engine
Suppose we wish to import median income per capita for each state. This requires us to identify 51

series, one for each state and the District of Columbia. The series IDs may follow some pattern, but it is

not immediately obvious what those IDs are. We could use the FRED interface, as in example 3, or we

could use fredsearch to search for the relevant series, save the IDs to a file, and use that file to load the
correct series. This example takes the latter approach.

The fredsearch command invokes the search engine. fredsearch keywords allows you to search

for keywords anywhere in the series metadata. The tags() option allows you to filter the search results
using some of FRED’s 5,000 designated tags.

. fredsearch median household income, tags(state real)

Series ID Title Data range Frequency

MEHOINUSNYA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSCAA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSTXA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSMIA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSFLA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSMNA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSDCA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSAZA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSMAA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSUTA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSPAA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSALA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSOHA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSINA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSILA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSNJA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSCTA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSCOA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSVAA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSKYA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSOKA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSNCA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSMOA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSWIA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSRIA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSWAA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSHIA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSGAA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSMSA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSARA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSIAA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSWVA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSSCA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSNEA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
MEHOINUSNHA672N Real Median Househ... 1984-01-01 to 2023-01-01 Annual
(output omitted)

Total: 51

In the above search command, we searched FRED for all series containing “median”, “household”,

and “income” somewhere in their metadata, and restricted the search to series with the tags “state” (for

states) and “real” (for inflation-adjusted series). The result is 51 series, one for each state and the District

of Columbia.

import fred — Import data from Federal Reserve Economic Data 516

fredsearch provides information about series but does not import them. We can save the search

results to a file, then import all series that matched our search results:

. fredsearch median household income, tags(state real) saving(myfile.dta)
(51 series added to myfile.dta)
. import fred, serieslist(myfile.dta) clear
Summary

Series ID Nobs Date range Frequency

MEHOINUSNYA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSCAA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSTXA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSMIA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSFLA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSMNA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSDCA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSAZA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSMAA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSUTA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSPAA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSALA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSOHA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSINA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSILA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSNJA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSCTA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSCOA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSVAA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSKYA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSOKA672N 40 1984-01-01 to 2023-01-01 Annual
MEHOINUSNCA672N 40 1984-01-01 to 2023-01-01 Annual
(output omitted)

of series imported: 51
highest frequency: Annual
lowest frequency: Annual

This example showed how to quickly import 51 series formedian household income by state. Asimilar

procedure can quickly isolate and import the roughly 200 series that report data on infant mortality by

country or the roughly 200 series that report the investment share of GDP by country.

Describing series
freddescribe provides facilities to describe series based on their metadata. freddescribe se-

ries list provides a brief summary of series list. The series are only described, not imported.

With the detail option, detailed series metadata are displayed, including the full title of the series,
the source agency, the source data release, seasonal adjustment, date range for which observations exist,

frequency of observations, units, date and time that the series was last updated, and notes, which contain

FRED’s notes about the series. Finally, the full metadata includes a list of all vintage dates associated

with the series.

Specifying the realtime(start end) option on freddescribe provides information about a se-

ries by a real-time period. This option allows you to see how a series’ units have changed over time.

freddescribe will display the series description for each vintage between the specified start and end
dates.

import fred — Import data from Federal Reserve Economic Data 517

freddescribe, realtime(. end) describes all vintages from the first available vintage up to that

of end. Similarly, freddescribe,realtime(start .) describes all vintages from start up through the

most current vintage available.

Example 10: Describing series
Suppose we wish to knowwhat vintages are available for real GDP, whose FRED series name is GDPC1.

We use freddescribe with the detail option to list all the vintages.
. freddescribe GDPC1, detail

GDPC1

Title: Real Gross Domestic Product
Source: U.S. Bureau of Economic Analysis
Release: Gross Domestic Product
Seasonal adjustment: Seasonally Adjusted Annual Rate
Date range: 1947-01-01 to 2024-10-01
Frequency: Quarterly
Units: Billions of Chained 2017 Dollars
Last updated: 2025-03-27 08:03:25-05
Notes: BEA Account Code: A191RX Real gross domestic product i...
Vintage dates: 1991-12-04 1991-12-20 1992-01-29 1992-02-28 1992-03-26

1992-04-28 1992-05-29 1992-06-25 1992-07-30 1992-08-27
1992-09-24 1992-10-27 1992-11-25 1992-12-22 1993-01-28
1993-02-26 1993-03-26 1993-04-29 1993-05-28 1993-06-23
1993-07-29 1993-08-31 1993-09-29 1993-10-28 1993-12-01
1993-12-22 1994-01-28 1994-03-01 1994-03-31 1994-04-28
1994-05-27 1994-06-29 1994-07-29 1994-08-26 1994-09-29
1994-10-28 1994-11-30 1994-12-22 1995-01-27 1995-03-01
1995-03-31 1995-04-28 1995-05-31 1995-06-30 1995-07-28
1995-08-30 1995-09-29 1995-10-27 1996-01-19 1996-02-23

(output omitted)

Total: 1

Vintages since 1991 are available for download. If we had not specified detail, only the series name,
start and end date, and frequency would have been displayed.

import fred — Import data from Federal Reserve Economic Data 518

Example 11: Obtaining historical descriptions
Information for real GNP in the United States is contained in FRED series GNPC96. Real GNP is ex-

pressed in the units of some base year, and over time the base year changes. In this example, we will

examine how the units for GNPC96 have changed over time by requesting a description of all vintages up
through December 31, 2015 using the realtime() option.

. freddescribe GNPC96, realtime(. 2015-12-31)

Series ID Real time Units

GNPC96 1958-12-21 to 1959-02-18 Billions of 1957 Dollars
GNPC96 1959-02-19 to 1965-08-18 Billions of 1954 Dollars
GNPC96 1965-08-19 to 1976-01-15 Billions of 1958 Dollars
GNPC96 1976-01-16 to 1985-12-19 Billions of 1972 Dollars
GNPC96 1985-12-20 to 1991-12-03 Billions of 1982 Dollars
GNPC96 1991-12-04 to 1996-01-18 Billions of 1987 Dollars
GNPC96 1996-01-19 to 1999-10-28 Billions of Chained 1992 Dollars
GNPC96 1999-10-29 to 2003-12-09 Billions of Chained 1996 Dollars
GNPC96 2003-12-10 to 2009-07-30 Billions of Chained 2000 Dollars
GNPC96 2009-07-31 to 2013-07-30 Billions of Chained 2005 Dollars
GNPC96 2013-07-31 to 2015-12-31 Billions of Chained 2009 Dollars

Total: 11

Vintages for this series begin in 1958. Anew row signifies a change in units. There are 11 total changes

in units in GNPC96. Every vintage of GNPC96 between 2009-07-31 and 2013-07-30, for example, is in the
units “Billions of chained 2005 dollars”. Meanwhile, vintages since 2013-07-30 are in units “Billions of

chained 2009 dollars”. Real GNP vintages from 2010 and 2014 will not be immediately comparable due

to the difference in units; they should be converted into a common unit before analysis.

import fred — Import data from Federal Reserve Economic Data 519

Additional information by real-time period can be obtained by specifying the detail option. We can

inspect the details of vintages since 2008:

. freddescribe GNPC96, detail realtime(2007-12-31 2013-01-15)

GNPC96 2007-12-31 to 2009-07-30

Title: Real Gross National Product
Source: U.S. Bureau of Economic Analysis
Release: Gross Domestic Product
Seasonal adjustment: Seasonally Adjusted Annual Rate
Date range: 1947-01-01 to 2009-01-01
Frequency: Quarterly
Units: Billions of Chained 2000 Dollars
Last updated: 2009-06-25 10:47:06-05
Notes: BEA Account Code: A001RX1 A Guide to the National Inco...
Vintage dates: 2008-03-27 2008-05-29 2008-06-26 2008-07-31 2008-08-28

2008-09-26 2008-11-25 2008-12-23 2009-03-26 2009-05-29
2009-06-25

GNPC96 2009-07-31 to 2013-01-15

Title: Real Gross National Product
Source: U.S. Bureau of Economic Analysis
Release: Gross Domestic Product
Seasonal adjustment: Seasonally Adjusted Annual Rate
Date range: 1947-01-01 to 2012-07-01
Frequency: Quarterly
Units: Billions of Chained 2005 Dollars
Last updated: 2012-12-20 08:17:16-06
Notes: BEA Account Code: A001RX1 A Guide to the National Inco...
Vintage dates: 2009-07-31 2009-08-17 2009-08-27 2009-09-30 2009-11-24

2009-12-22 2010-03-26 2010-05-27 2010-06-25 2010-07-30
2010-08-27 2010-09-30 2010-11-23 2010-12-22 2011-03-25
2011-05-26 2011-06-24 2011-07-29 2011-08-26 2011-09-29
2011-11-22 2011-12-22 2012-03-29 2012-05-31 2012-06-28
2012-07-27 2012-08-29 2012-09-27 2012-11-29 2012-12-20

Total: 2

The detail option provides much of the same information as it did without realtime(), but now a

new detail block is provided for each vintage where the details themselves change. Most of the details

remain constant across vintages, but in this example, “Units” and “Date range” are different for each

block.

The vintage list is now separated, with each vintage falling into the appropriate describe block. For
example, all vintages of GNPC96 in 2010 have metainformation corresponding to the block that describes

vintages from 2009-07-31 to 2013-01-15.

Stored results
fredsearch stores the following in r():

Scalars

r(series ids) list of series IDs contained in the search results

import fred — Import data from Federal Reserve Economic Data 520

References
Drukker, D. M. 2006. Importing Federal Reserve economic data. Stata Journal 6: 384–386.

Schenck, D. 2017. Importing data with import fred. The Stata Blog: Not Elsewhere Classified. https://blog.stata.com/

2017/08/08/importing-data-with-import-fred/.

Also see
[D] import — Overview of importing data into Stata

[D] import delimited — Import and export delimited text data

[D] import haver — Import data from Haver Analytics databases

[D] odbc — Load, write, or view data from ODBC sources

[TS] tsset — Declare data to be time-series data

https://www.stata-journal.com/article.html?article=st0110
https://blog.stata.com/2017/08/08/importing-data-with-import-fred/
https://blog.stata.com/2017/08/08/importing-data-with-import-fred/

import haver — Import data from Haver Analytics databases

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
Haver Analytics (https://www.haver.com) provides economic and financial databases to which you

can purchase access. The import haver command allows you to use those databases with Stata. The
import haver command is provided only with Stata for Windows.

import haver seriesdblist loads data from one or more Haver databases into Stata’s memory.

import haver seriesdblist, describe describes the contents of one or more Haver databases.

If a database is specified without a suffix, then the suffix .dat is assumed.

import haver accesses Haver Analytics databases that reside on your local network. For access-

ing Haver Analytics cloud databases, see [D] import haverdirect. The two commands employ a near-

identical syntax.

Quick start
Describe available time span, frequency of measurement, and source of series E for net fixed assets and

consumer durables from the Haver Analytics CAPSTOCK database

import haver E@CAPSTOCK, describe

Load all available observations for quarterly series ASACX and ASAHS from the US1PLUS database

import haver (ASACX ASAHS)@US1PLUS

Same as above, but restrict data to the first quarter of 2000 through the fourth quarter of 2010

import haver (ASACX ASAHS)@US1PLUS, fin(2000q1,2010q4)

Menu
File > Import > Haver Analytics database

521

https://www.haver.com

import haver — Import data from Haver Analytics databases 522

Syntax
Load Haver data

import haver seriesdblist [, load options]

Load Haver data using a dataset of Haver series descriptions stored in memory

import haver, frommemory [load options]

Describe contents of Haver database

import haver seriesdblist, describe [describe options]

Specify the directory where the Haver databases are stored

set haverdir ”path” [, permanently]

load options Description

fin([datestring], [datestring]) load data within specified date range

fwithin([datestring], [datestring]) same as fin() but exclude the endpoints of range
tvar(varname) create time variable varname

case(lower | upper) read variable names as lowercase or uppercase

hmissing(misval) record missing values as misval

aggmethod(strict | relaxed | force) set how temporal aggregation calculations deal with
missing data

frommemory load data using file in memory

clear clear data in memory before loading Haver database

frommemory and clear do not appear in the dialog box.

describe options Description

∗ describe describe contents of seriesdblist

detail list full-series information table for each series

saving(filename[, verbose replace]) save series information to filename.dta
frame(framename[, verbose replace]) save series information to framename

∗describe is required.

collect is allowed with import haver; see [U] 11.1.10 Prefix commands.

seriesdblist is one or more of the following:

dbfile

series@dbfile

(series series . . .)@dbfile

import haver — Import data from Haver Analytics databases 523

dbfile is the name of a Haver Analytics database and series contains a Haver Analytics series. Wildcards

? and * are allowed in series. series and dbfile are not case sensitive.

Example: import haver gdp@usecon
Import series GDP from the USECON database.

Example: import haver gdp@usecon c1*@ifs
Import series GDP from the USECON database, and import any series that starts with c1 from the IFS

database.

Note: You must specify a path to the database if you did not use the set haverdir command.

Example: import haver gdp@”C:\data\usecon” c1*@”C:\data\ifs”

If you do not specify a path to the database and you did not set haverdir, then import haverwill look
in the current working directory for the database.

Options
Options are presented under the following headings:

Options for import haver
Options for import haver, describe
Option for set haverdir

Options for import haver
fin([datestring], [datestring]) specifies the date range of the data to be loaded. datestring must

adhere to the Stata default for the different frequencies. See [D] Datetime display formats. Exam-

ples are 23mar2012 (daily and weekly), 2000m1 (monthly), 2003q4 (quarterly), and 1998 (annually).

fin(1jan1999, 31dec1999)would mean from and including 1 January 1999 through 31 December

1999. Note that weekly data must be specified as daily data because Haver-week data are conceptually

different from Stata-week data.

fin() also determines the aggregation frequency. If you want to retrieve data in a frequency that is
lower than the one in which the data are stored, specify the dates in option fin() accordingly. For
example, to retrieve series that are stored in quarterly frequency into an annual dataset, you can type

fin(1980,2010).

If the first datestring is not specified, the first date in the series is used as the start of the date range.

If the second datestring is not specified, the last date in the series is used as the end of the date range.

fwithin([datestring], [datestring]) functions the same as fin(), except that the endpoints of the
range will be excluded in the loaded data.

tvar(varname) specifies the name of the time variable Stata will create. The default is tvar(time).
The tvar() variable is the name of the variable that you would use to tsset the data after loading,
although doing so is unnecessary because import haver automatically tssets the data for you.

case(lower | upper) specifies the case of the variable names after import. The default is case(lower).

import haver — Import data from Haver Analytics databases 524

hmissing(misval) specifies which of Stata’s 27 missing values (., .a, . . . , .z) to record when there are
missing values in the Haver database.

Two kinds of missing values can be distinguished. The first occurs when Haver has recorded a Haver

missing value within the time span covered by a series; by default, these are stored as . by Stata, but

you can use hmissing() to specify that a different extended missing-value code be used. The second
occurs when nothing is recorded because the data do not span the entire range; these missing values

are always stored as . by Stata. The hmissing() option does not apply to these observations.

See [U] 12.2.1 Missing values for more information on extended missing values.

aggmethod(strict | relaxed | force) specifies a method of temporal aggregation in the presence of
missing observations. aggmethod(strict) is the default aggregation method.

Most Haver series of higher-than-annual frequency have an aggregation type that determines how

data can be aggregated. The three aggregation types are average (AVG), sum (SUM), and end of period

(EOP). Each aggregation method behaves differently for each aggregation type.

An aggregated span is a time period expressed in the original frequency. The goal is to aggregate

the data in an aggregation span to a single observation in the (lower) target frequency. For example,

1973m1–1973m3 is an aggregated span for quarterly aggregation to 1973q1.

strict aggregation method:

1) (Average) The aggregated value is the average value if no observation in the aggregated span

is missing; otherwise, the aggregated value is missing.

2) (Sum) The aggregated value is the sum if no observation in the aggregated span is missing;

otherwise, the aggregated value is missing.

3) (End of period) The aggregated value is the series value in the last period in the aggregated

span, be it missing or not.

relaxed aggregation method:

1) (Average) The aggregated value is the average value as long as there is one nonmissing data

point in the aggregated span; otherwise, the aggregated value is missing.

2) (Sum) The aggregated value is the sum if no observation in the aggregated span is missing;

otherwise, the aggregated value is missing.

3) (End of period) The aggregated value is the last available nonmissing data point in the aggre-

gated span; otherwise, the aggregated value is missing. For the last aggregated span of the

series, the strict aggregation method is applied.

force aggregation method:

1) (Average) The aggregated value is the average value as long as there is one nonmissing data

point in the aggregated span; otherwise, the aggregated value is missing.

2) (Sum) The aggregated value is the sum if there is at least one nonmissing data point in the

aggregated span; otherwise, the aggregated value is missing.

3) (End of period) The aggregated value is the last available nonmissing data point in the aggre-

gated span; otherwise, the aggregated value is missing. This rule is also applied to the last

aggregated span of the series.

import haver — Import data from Haver Analytics databases 525

The following options are available with import haver but are not shown in the dialog box:

frommemory specifies that each observation of the dataset in memory specify the information for a Haver
series to be imported. The dataset in memory must contain variables named path, file, and series.
The observations in path specify paths to Haver databases, the observations in file specify Haver
databases, and the observations in series specify the series to import.

clear clears the data in memory before loading the Haver database.

Options for import haver, describe
describe describes the contents of one or more Haver databases.

detail specifies that a detailed report of all the information available on the variables be presented.

saving(filename[, verbose replace]) saves the series meta-information to a Stata dataset. By de-
fault, the series meta-information is not displayed to the Results window, but you can use the verbose
suboption to display it. replace specifies that filename be overwritten if it exists.

saving() saves a Stata dataset that can subsequently be used with the frommemory option.

frame(framename[, verbose replace]) stores the series meta-information to a Stata frame. By de-
fault, the series meta-information is not displayed to the Results window, but you can use the verbose
suboption to display it. replace specifies that framename be overwritten if it exists.

frame() stores a Stata frame that can subsequently be used with the frommemory option. You must
frame change to the specified framename before using import haver with the frommemory option
to load the data.

Option for set haverdir
permanently specifies that in addition to making the change right now, the haverdir setting be re-

membered and become the default setting when you invoke Stata.

Remarks and examples
Remarks are presented under the following headings:

Installation
Setting the path to Haver databases
Download example Haver databases
Determining the contents of a Haver database
Loading a Haver database
Loading a Haver database from a describe file
Temporal aggregation
Daily and weekly data

Installation
Haver Analytics (https://www.haver.com) provides more than 200 economic and financial databases

in the form of .dat files to which you can purchase access. The import haver command provides easy
access to those databases from Stata. import haver is provided only with Stata for Windows.

https://www.haver.com

import haver — Import data from Haver Analytics databases 526

Setting the path to Haver databases
If you want to retrieve data from HaverAnalytics databases, you must discover the directory in which

the databases are stored. This will most likely be a network location. If you do not know the directory,

contact your technical support staff or Haver Analytics (https://www.haver.com). Once you have deter-

mined the directory location—for example, H:\haver files—you can save it by using the command

. set haverdir ”H:\haver_files\”, permanently

Using the permanently option will preserve the Haver directory information between Stata sessions.
Once the Haver directory is set, you can start retrieving data. For example, if you are subscribing to the

USECON database, you can type

. import haver gdp@usecon

to load the GDP series into Stata. If you did not use set haverdir, you would type

. import haver gdp@”H:\haver_files\usecon”

The directory path passed to set haverdir is saved in the creturn value c(haverdir). You can
view it by typing

. display ”‘c(haverdir)’”

Download example Haver databases
There are three example Haver databases you can download to your working directory. Run the copy

commands below to download HAVERD, HAVERW, and HAVERMQA.

. copy https://www.stata.com/haver/HAVERD.DAT haverd.dat

. copy https://www.stata.com/haver/HAVERD.IDX haverd.idx

. copy https://www.stata.com/haver/HAVERW.DAT haverw.dat

. copy https://www.stata.com/haver/HAVERW.IDX haverw.idx

. copy https://www.stata.com/haver/HAVERMQA.DAT havermqa.dat

. copy https://www.stata.com/haver/HAVERMQA.IDX havermqa.idx

To use these files, you need to make sure your Haver directory is not set:

. set haverdir ””

https://www.haver.com

import haver — Import data from Haver Analytics databases 527

Determining the contents of a Haver database
import haver seriesdblist, describe displays the contents of a Haver database. If no series is

specified, then all series are described. Below, we describe the Haver database haverd.dat, which we
already have on our computer and in our current directory.

. import haver haverd, describe
Dataset: haverd

Variable Description Time span Frequency Source

FXTWB Nominal Broad Trade-W.. 03jan2005-02mar2012 Daily FRB
FXTWM Nominal Trade-Weighte.. 03jan2005-02mar2012 Daily FRB
FXTWOTP Nominal Trade-Weighte.. 03jan2005-02mar2012 Daily FRB

Summary

Number of series described: 3
Series not found: 0

By default, each line of the output corresponds to one Haver series. Specifying detail displays more
information about each series, and specifying seriesname@ allows us to restrict the output to the series
that interests us:

. import haver FXTWB@haverd, describe detail

FXTWB Nominal Broad Trade-Weighted Exchange Value of the US$ (1/97=100)

Frequency: Daily Time span: 03jan2005-02mar2012
Number of observations: 1870 Date modified: 07mar2012 11:27:33
Aggregation type: AVG Decimal precision: 4
Difference type: 0 Magnitude: 0
Data type: INDEX Group: R03
Primary geography code: 111 Secondary geography code:
Source: FRB Source description: Federal Reserv..

Summary

Number of series described: 1
Series not found: 0

You can describe multiple Haver databases with one command:

. import haver haverd haverw, describe
(output omitted)

To restrict the output to the series that interest us for each database, you could type

. import haver (FXTWB FXTWOTP)@haverd FARVSN@haverw, describe
(output omitted)

import haver — Import data from Haver Analytics databases 528

Loading a Haver database
import haver seriesdblist loads Haver databases. If no series is specified, then all series are loaded.

. import haver haverd, clear
Summary

Haver data retrieval: 10 Jul 2024 11:59:42
Number of series requested: 3
Number of database(s) used: 1 (HAVERD)

All series have been successfully retrieved.
Frequency

Highest Haver frequency: Daily
Lowest Haver frequency: Daily

Frequency of Stata dataset: Daily

The table produced by import haver seriesdblist displays a summary of the loaded data and fre-

quency information about the loaded data. For other queries, there may be additional output about query

errors and query notes; this is shown only if needed.

The dataset now contains a time variable and three variables retrieved from the HAVERD database:

. describe
Contains data
Observations: 1,870

Variables: 4

Variable Storage Display Value
name type format label Variable label

time double %td
fxtwb_haverd double %10.0g Nominal Broad Trade-Weighted

Exchange Value of the US$
(1/97=100)

fxtwm_haverd double %10.0g Nominal Trade-Weighted Exch Value
of US$ vs Major Currencies
(3/73=100)

fxtwotp_haverd double %10.0g Nominal Trade-Weighted Exchange
Value of US$ vs OITP (1/97=100)

Sorted by: time
Note: Dataset has changed since last saved.

import haver — Import data from Haver Analytics databases 529

Haver databases include the followingmeta-information about each variable, although the information

available will vary depending on the series:

HaverDB database name

Series series name

DateTimeMod date and time the series was last modified

Frequency frequency of series (from daily to annual) as it is stored in the Haver database

Magnitude magnitude of the data

DecPrecision number of decimals to which the variable is recorded

DifType relevant within Haver software only: if equal to 1, percentage calculations are not allowed
AggType temporal aggregation type (one of AVG, SUM, or EOP; or, if not defined, one of NA or

NA ANNUAL)
DataType type of data (for example, ratio, index, US$, or percentage)

Group Haver series group to which the variable belongs

Geography1 primary geography code

Geography2 secondary geography code (missing if not applicable)

StartDate start date for data as it is stored in the Haver database

EndDate end date for data as it is stored in the Haver database

Source Haver code associated with the source for the data

SourceDescription description of Haver code associated with the source for the data

When a variable is loaded, this meta-information is stored in variable characteristics (see [P] char).

Those characteristics can be viewed using char list:

. char list fxtwb_haverd[]
fxtwb_haverd[HaverDB]: HAVERD
fxtwb_haverd[Series]: FXTWB
fxtwb_haverd[DateTimeMod]: 07mar2012 11:27:33
fxtwb_haverd[Frequency]: Daily
fxtwb_haverd[Magnitude]: 0
fxtwb_haverd[DecPrecision]: 4
fxtwb_haverd[DifType]: 0
fxtwb_haverd[AggType]: AVG
fxtwb_haverd[DataType]: INDEX
fxtwb_haverd[Group]: R03
fxtwb_haverd[Geography1]: 111
fxtwb_haverd[StartDate]: 03jan2005
fxtwb_haverd[EndDate]: 02mar2012
fxtwb_haverd[Source]: FRB
fxtwb_haverd[SourceDescription]:

Federal Reserve Board

You can load multiple Haver databases/series with one command. To load the series FXTWB and

FXTWOTP from the HAVERD database and all series that start with V from the HAVERMQA database, you

would type

. import haver (FXTWB FXTWOTP)@haverd V*@havermqa, clear
(output omitted)

import haver automatically tssets the data for you. You can issue tsset to see how the data are

currently set.

Loading a Haver database from a describe file
You often need to search through the series information of a Haver database or databases to see which

series you would like to load. You can do this by saving the output of import haver, describe to a
Stata dataset with the saving(filename) option. The dataset created can be used by import haver,
frommemory to load data from the described Haver databases. For example, here we search through the

series information of database HAVERMQA.

import haver — Import data from Haver Analytics databases 530

. import haver havermqa, describe saving(my_desc_file)
(output omitted)

. use my_desc_file, clear

. describe
Contains data from my_desc_file.dta
Observations: 161

Variables: 8 10 Jul 2024 11:59

Variable Storage Display Value
name type format label Variable label

path str1 %-9s Path to Haver file
file str8 %-9s Haver filename
series str7 %-9s Series name
description str80 %-80s Series description
startdate str7 %-9s Start date
enddate str7 %-9s End date
frequency str9 %-9s Frequency
source str3 %-9s Source

Sorted by:

The resulting dataset contains information on the 164 series in HAVERMQA. Suppose that we want

to retrieve all monthly series whose description includes the word “Yield”. We need to keep only the

observations from our dataset where the frequency variable equals “Monthly” and where the description

variable contains “Yield”.

. keep if frequency==”Monthly” & strpos(description,”Yield”)
(152 observations deleted)

To load the selected series into Stata, we type

. import haver, frommemory clear

Note: We must clear the described data in memory to load the selected series. If you do not want
to lose the changes you made to the description dataset, you must save it before using import haver,
frommemory.

The frame(framename) option works similarly to the saving(filename) option, but instead of sav-
ing a file to disk, frame() stores the metadata in a frame. See [D] frames for more information on data

frames.

Temporal aggregation
If you request series with different frequencies, the higher-frequency data will be aggregated to the

lowest frequency. For example, if you request a monthly and a quarterly series, the monthly series will be

aggregated. In rare cases, a series cannot be aggregated to a lower frequency and so will not be retrieved.

A list of these series will be stored in r(noaggtype).

The options fin() and fwithin() are useful for aggregating series by hand.

import haver — Import data from Haver Analytics databases 531

Daily and weekly data
Daily and weekly queries require additional explanations because these frequencies are implemented

differently in Haver databases than in Stata datasets. A Haver daily series refers to a business daily

frequency, which is five days per week and counts only Monday through Friday as observations. An

exact match for Haver daily is Stata’s business daily frequency (%tb), which uses a business-day calendar
that excludes weekends and includes all weekdays throughout the year. Stata’s daily frequency (%td),
by contrast, counts all seven days of a week. This frequency is called 7-daily in Haver databases.

The implementations of the weekly frequency also differ between Haver and Stata. Haver’s imple-

mentation counts one week after another, without any reference to the calendar year, thereby allowing

for years that mostly have 52 observations but sometimes have 53 observations. Each Haver weekly data

series has a value set for its controlling-day-of-week (CDOW) property. This is typically the weekday on

which the data are released by the source. This information is preserved in a Stata characteristic called

cdow. For example, the cdow characteristic for series SP100@WEEKLY is Friday.

Stata’s %tw frequency counts weeks from the beginning of the year and caps the week number at 52.

There are two ways in which Haver’s weekly frequency can be exactly matched in Stata: either in Stata’s

daily frequency (%td) in combination with a delta of seven days (see [TS] tsset) or in a datetime business
calendar (%tb), which here should count only one particular weekday as a valid business day.

The above discrepancies in frequency implementations are resolved in import haver in the following
way: any query that exclusively consists of one or more of Haver 7-daily, Haver daily, or Haver weekly

series results in a Stata dataset of Stata daily frequencies (%td). In that dataset,

Haver 7-daily series receive rows for all seven days of the week covered by their span.

Haver daily series receive rows for five days of the week (Monday through Friday) covered by

their span.

Haver weekly series are assigned dates that correspond to their CDOW. For example, se-

ries SP100@WEEKLY has a CDOW of Friday and, at the time of writing, covers the time span

06jan1989–31may2024. Thus, in the Stata dataset, SP100@WEEKLY receives rows with dates 06jan1989,
13jan1989, . . . , 24may2024, 31may2024 (these are all Fridays).

Note that if a query combines Haver 7-daily series and Haver daily series with one or more Haver

weekly series, aggregation to weekly values is performed. For Haver 7-daily series, the values Monday

through Sunday are aggregated to a single value, and the resulting (Haver weekly) series receives a CDOW

of Sunday, with corresponding (Sunday) rows in the dataset. Similarly, for Haver daily series, the values

Monday through Friday are aggregated to a single value, and the resulting (Haver weekly) series receives

a CDOW of Friday, with corresponding (Friday) rows in the dataset.

Once you have queried your daily and weekly series, you may want to use Stata’s tsset or business
calendar features to further tailor the dataset toward your needs. Several ways for you to do this were

indicated above.

When you aggregate Haver daily and Haver weekly series to lower frequencies (for example,

monthly), the above considerations are not relevant. Another issue with these data is Haver aggregation

modes. Haver daily and Haver weekly series often contain missing values due to events such as national

holidays. When you aggregate to a lower frequency under the default aggregation mode strict, such
missing values then result in aggregated values that are also set to missing. In such cases, you may want

to consider using aggregation modes relaxed or force. See option aggmethod() for more details.

import haver — Import data from Haver Analytics databases 532

Stored results
import haver stores the following in r():

Scalars

r(k requested) number of series requested

r(k noaggtype) number of series dropped because of invalid aggregation type

r(k nodisagg) number of series dropped because their frequency is lower than that of the output dataset

r(k notinrange) number of series dropped because data were out of the date range specified in fwithin()
or fin()

r(k notfound) number of series not found in the database

Macros

r(dbnamelist) list of Haver databases used in command

r(noaggtype) list of series dropped because of invalid aggregation type

r(nodisagg) list of series dropped because their frequency is lower than that of the output dataset

r(notinrange) list of series dropped because data were out of the date range specified in fwithin() or
fin()

r(notfound) list of series not found in the database

import haver, describe stores the following in r():

Scalars

r(k described) number of series described

r(k notfound) number of series not found in the database

Macros

r(notfound) list of series not found in the database

Also see
[D] import — Overview of importing data into Stata

[D] import delimited — Import and export delimited text data

[D] import fred — Import data from Federal Reserve Economic Data

[D] import haverdirect — Import data from Haver Analytics cloud servers

[D] jdbc — Load, write, or view data from a database with a Java API

[D] odbc — Load, write, or view data from ODBC sources

[TS] tsset — Declare data to be time-series data

import haverdirect — Import data from Haver Analytics cloud servers

Description Quick start Syntax Options
Remarks and examples Stored results Also see

Description
Haver Analytics (https://www.haver.com) provides economic and financial databases to which you

can purchase access. The import haverdirect command allows you to use those databases with Stata
from Haver Analytics cloud servers. The import haverdirect command is provided only with Stata
for Windows.

import haverdirect seriesdblist loads data from one or more Haver databases into Stata’s memory.

import haverdirect seriesdblist, describe describes the contents of one or more Haver

databases.

import haverdirect accesses Haver Analytics cloud databases. For accessing locally stored

databases, see [D] import haver. The two commands employ a near-identical syntax.

Quick start
Describe available time span, frequency of measurement, and source for all foreign exchange rates from

the Haver Analytics FXRATES database

import haverdirect FXRATES, describe

Load all available observations for quarterly series YCP and YCTL from the USECON database

import haverdirect (YCP YCTL)@USECON

Same as above, but restrict data to the first quarter of 2020 through the fourth quarter of 2023

import haverdirect (YCP YCTL)@USECON, fin(2020q1,2023q4)

533

https://www.haver.com

import haverdirect — Import data from Haver Analytics cloud servers 534

Syntax
Authenticate with Haver Analytics cloud servers

import haverdirect, authenticate

Load Haver data

import haverdirect seriesdblist [, load options]

Load Haver data using a dataset of Haver series descriptions stored in memory

import haverdirect, frommemory [load options]

Describe contents of Haver database

import haverdirect seriesdblist, describe [describe options]

load options Description

fin([datestring], [datestring]) load data within specified date range

fwithin([datestring], [datestring]) same as fin() but exclude the endpoints of range
tvar(varname) create time variable varname

case(lower | upper) read variable names as lowercase or uppercase

hmissing(misval) record missing values as misval

aggmethod(strict | relaxed | force) set how temporal aggregation calculations deal with
missing data

frommemory load data using file in memory

clear clear data in memory before loading Haver database

describe options Description

∗ describe describe contents of seriesdblist

detail list full-series information table for each series

saving(filename[, verbose replace]) save series information to filename.dta
frame(framename[, verbose replace]) save series information to framename

∗describe is required.

collect is allowed with import haverdirect; see [U] 11.1.10 Prefix commands.

seriesdblist is one or more of the following:

dbfile

series@dbfile
(series series . . .)@dbfile

import haverdirect — Import data from Haver Analytics cloud servers 535

dbfile is the name of a Haver Analytics database and series contains a Haver Analytics series. Wildcards

? and * are allowed in series. series and dbfile are not case sensitive.

Example: import haverdirect gdp@usecon
Import series GDP from the USECON database.

Example: import haverdirect gdp@usecon c1*@ifs
Import series GDP from the USECON database, and import any series that starts with c1 from the IFS

database.

Options
Options are presented under the following headings:

Options for import haverdirect
Options for import haverdirect, describe

Options for import haverdirect
fin([datestring], [datestring]) specifies the date range of the data to be loaded. datestring must

adhere to the Stata default for the different frequencies. See [D] Datetime display formats. Exam-

ples are 23mar2012 (daily and weekly), 2000m1 (monthly), 2003q4 (quarterly), and 1998 (annually).

fin(1jan1999, 31dec1999)would mean from and including 1 January 1999 through 31 December

1999. Note that weekly data must be specified as daily data because Haver-week data are conceptually

different from Stata-week data.

fin() also determines the aggregation frequency. If you want to retrieve data in a frequency that is
lower than the one in which the data are stored, specify the dates in option fin() accordingly. For
example, to retrieve series that are stored in quarterly frequency into an annual dataset, you can type

fin(1980,2010).

If the first datestring is not specified, the first date in the series is used as the start of the date range.

If the second datestring is not specified, the last date in the series is used as the end of the date range.

fwithin([datestring], [datestring]) functions the same as fin(), except that the endpoints of the
range will be excluded in the loaded data.

tvar(varname) specifies the name of the time variable Stata will create. The default is tvar(time).
The tvar() variable is the name of the variable that you would use to tsset the data after loading,
although doing so is unnecessary because import haverdirect automatically tssets the data for
you.

case(lower | upper) specifies the case of the variable names after import. The default is case(lower).
hmissing(misval) specifies which of Stata’s 27 missing values (., .a, . . . , .z) to record when there are

missing values in the Haver database.

Two kinds of missing values can be distinguished. The first occurs when Haver has recorded a Haver

missing value within the time span covered by a series; by default, these are stored as . by Stata, but

you can use hmissing() to specify that a different extended missing-value code be used. The second
occurs when nothing is recorded because the data do not span the entire range; these missing values

are always stored as . by Stata. The hmissing() option does not apply to these observations.

See [U] 12.2.1 Missing values for more information on extended missing values.

import haverdirect — Import data from Haver Analytics cloud servers 536

aggmethod(strict | relaxed | force) specifies a method of temporal aggregation in the presence of
missing observations. aggmethod(strict) is the default aggregation method.

Most Haver series of higher-than-annual frequency have an aggregation type that determines how

data can be aggregated. The three aggregation types are average (AVG), sum (SUM), and end of period

(EOP). Each aggregation method behaves differently for each aggregation type.

An aggregated span is a time period expressed in the original frequency. The goal is to aggregate

the data in an aggregation span to a single observation in the (lower) target frequency. For example,

1973m1–1973m3 is an aggregated span for quarterly aggregation to 1973q1.

strict aggregation method:

1) (Average) The aggregated value is the average value if no observation in the aggregated span

is missing; otherwise, the aggregated value is missing.

2) (Sum) The aggregated value is the sum if no observation in the aggregated span is missing;

otherwise, the aggregated value is missing.

3) (End of period) The aggregated value is the series value in the last period in the aggregated

span, be it missing or not.

relaxed aggregation method:

1) (Average) The aggregated value is the average value as long as there is one nonmissing data

point in the aggregated span; otherwise, the aggregated value is missing.

2) (Sum) The aggregated value is the sum if no observation in the aggregated span is missing;

otherwise, the aggregated value is missing.

3) (End of period) The aggregated value is the last available nonmissing data point in the aggre-

gated span; otherwise, the aggregated value is missing. For the last aggregated span of the

series, the strict aggregation method is applied.

force aggregation method:

1) (Average) The aggregated value is the average value as long as there is one nonmissing data

point in the aggregated span; otherwise, the aggregated value is missing.

2) (Sum) The aggregated value is the sum if there is at least one nonmissing data point in the

aggregated span; otherwise, the aggregated value is missing.

3) (End of period) The aggregated value is the last available nonmissing data point in the aggre-

gated span; otherwise, the aggregated value is missing. This rule is also applied to the last

aggregated span of the series.

frommemory specifies that each observation of the dataset in memory specify the information for a Haver
series to be imported. The dataset in memory must contain variables named database and series.
The observations in database specify Haver databases, and the observations in series specify the
series to import.

clear clears the data in memory before loading the Haver database.

Options for import haverdirect, describe
describe describes the contents of one or more Haver databases.

detail specifies that a detailed report of all the information available on the variables be presented.

import haverdirect — Import data from Haver Analytics cloud servers 537

saving(filename[, verbose replace]) saves the series meta-information to a Stata dataset. By de-
fault, the series meta-information is not displayed to the Results window, but you can use the verbose
suboption to display it. replace specifies that filename be overwritten if it exists.

saving() saves a Stata dataset that can subsequently be used with the frommemory option.

frame(framename[, verbose replace]) stores the series meta-information to a Stata frame. By de-
fault, the series meta-information is not displayed to the Results window, but you can use the verbose
suboption to display it. replace specifies that framename be overwritten if it exists.

frame() stores a Stata frame that can subsequently be used with the frommemory option. You must
frame change to the specified framename before using import haverdirectwith the frommemory
option to load the data.

Remarks and examples
Remarks are presented under the following headings:

Installation
Authentication
Determining the contents of a Haver database
Loading a Haver database
Loading a Haver database from a describe file
Temporal aggregation
Daily and weekly data

Installation
Haver Analytics (https://www.haver.com) provides more than 200 economic and financial databases.

The import haverdirect command provides easy access to those databases from Stata. To use this

command, you must subscribe to HaverAnalytics services to access HaverAnalytics cloud servers. Also,

HaverAnalytics DLXVG3Direct software must be installed on your system for authentication with Haver

Analytics cloud servers.

import haverdirect is provided only for Stata for Windows.

Authentication
If you want to retrieve data from HaverAnalytics cloud servers, you must authenticate with the cloud

servers. import haverdirect requires that the Haver Analytics DLXVG3 Direct client software be in-
stalled on your system for authentication when accessing Haver Analytics cloud servers.

By default, import haverdirect will try to authenticate using the DLXVG3 Direct client software.

If you do not have an authentication token, you will be prompted for a email and password to receive an

emailed login code. Once you have completed authentication using DLXVG3 Direct software, you can

use import haverdirect. There might be cases where your authentication token expires while Stata is
open. In these rare cases, type

import haverdirect, authenticate

For more information on the authentication process, please contact Haver Analytics.

https://www.haver.com

import haverdirect — Import data from Haver Analytics cloud servers 538

Determining the contents of a Haver database
import haverdirect seriesdblist, describe displays the contents of a Haver database. If no series

is specified, then all series are described. Below, we describe the Haver database FXRATES.
. import haverdirect FXRATES, describe
Dataset: FXRATES

Variable Description Time span Frequency Source

A023 Synthetic Euro calcul.. 1980m1-2024m6 Monthly FRB
A112 Foreign Exchange Rate.. 1947m1-2024m6 Monthly FRB
A122 Synthetic Euro calcul.. 1980m1-2024m6 Monthly FRB
A124 Synthetic Euro calcul.. 1980m1-2024m6 Monthly FRB
(output omitted)

By default, each line of the output corresponds to one Haver series. Specifying detail displays more
information about each series, and specifying seriesname@ allows us to restrict the output to the series
that interests us:

. import haverdirect A228@FXRATES, describe detail

A228 Chile: Exchange Rate: Market or Par (Average, Peso/US$)

Frequency: Monthly Time span: 1957m4-2024m6
Number of observations: 807 Date modified: 28jun2024 15:01:00
Aggregation type: AVG Decimal precision: 3
Difference type: 0 Magnitude: 0
Data type: LC/US$ Group: N29
Primary geography code: 228 Secondary geography code: 111
Source: IMF Source description: International ..

Summary

Number of series described: 1
Series not found: 0

Data are regularly added to Haver databases, so output such as the endpoint of the time span may differ

when you run this command.

You can describe multiple Haver databases with one command:

. import haverdirect USARC23 FXRATES, describe
(output omitted)

To restrict the output to the series that interest us for each database, you could type

. import haverdirect (A223 A228)@FXRATES ZDLAM@USECON, describe
(output omitted)

Note: Whether you have access to the USARC23 or USECON database depends on your subscription

with Haver Analytics.

import haverdirect — Import data from Haver Analytics cloud servers 539

Loading a Haver database
import haverdirect seriesdblist loads Haver databases. If no series is specified, then all series are

loaded.

. import haverdirect (A223 A228)@FXRATES, clear
Summary

Haver data retrieval: 10 Jul 2024 11:59:52
Number of series requested: 2
Number of database(s) used: 1 (FXRATES)

All series have been successfully retrieved.
Frequency

Highest Haver frequency: Monthly
Lowest Haver frequency: Monthly

Frequency of Stata dataset: Monthly

The table produced by import haverdirect seriesdblist displays a summary of the loaded data and
frequency information about the loaded data. For other queries, there may be additional output about

query errors and query notes; this is shown only if needed.

The dataset now contains a time variable and two variables retrieved from the FXRATES database:

. describe
Contains data
Observations: 807

Variables: 3

Variable Storage Display Value
name type format label Variable label

time double %tm
a223_fxrates double %10.0g Foreign Exchange Rate: Brazil

(Real/US$)
a228_fxrates double %10.0g Chile: Exchange Rate: Market or

Par (Average, Peso/US$)

Sorted by: time
Note: Dataset has changed since last saved.

import haverdirect — Import data from Haver Analytics cloud servers 540

Haver databases include the followingmeta-information about each variable, although the information

available will vary depending on the series:

HaverDB database name

Series series name

Path DLX Direct software

DateTimeMod date and time the series was last modified

Frequency frequency of series (from daily to annual) as it is stored in the Haver database

Magnitude magnitude of the data (for example, 0 for an index, 6 for millions)
DecPrecision number of decimals to which the variable is recorded

DifType relevant within Haver software only: if equal to 1, percentage calculations are not allowed
AggType temporal aggregation type (one of AVG, SUM, or EOP; or, if not defined, one of NA or

NA ANNUAL)
DataType type of data (for example, ratio, index, US$, or percentage)

Group Haver series group to which the variable belongs

Geography1 primary geography code

Geography2 secondary geography code (missing if not applicable)

StartDate start date for data as it is stored in the Haver database

EndDate end date for data as it is stored in the Haver database

Source Haver code associated with the source for the data

SourceDescription description of Haver code associated with the source for the data

When a variable is loaded, this meta-information is stored in variable characteristics (see [P] char).

Those characteristics can be viewed using char list.

You can load multiple Haver databases and series with one command. To load the series UYMSPT and

UYOEE from the USARC23 database and all series that start with A22 from the FXRATES database, you

would type

. import haverdirect (UYMSPT UYOEE)@USARC23 A22*@FXRATES, clear
(output omitted)

import haverdirect automatically tssets the data for you. You can issue tsset to see how the

data are currently set.

import haverdirect — Import data from Haver Analytics cloud servers 541

Loading a Haver database from a describe file
You often need to search through the series information of a Haver database or databases to see

which series you would like to load. You can do this by saving the output of import haverdirect,
describe to a Stata dataset with the saving(filename) option. The dataset created can be used by

import haverdirect, frommemory to load data from the described Haver databases. For example,

here we search through the series information of database USARC23. Because the database contains more

than 20,000 series, fetching its metadata may take up to a minute.

. import haverdirect USARC23, describe saving(my_desc_file)
(output omitted)

. use my_desc_file, clear

. describe
Contains data from my_desc_file.dta
Observations: 21,409

Variables: 8 10 Jul 2024 12:00

Variable Storage Display Value
name type format label Variable label

path str19 %-19s Path to Haver file
file str7 %-9s Haver filename
series str8 %-9s Series name
description str80 %-80s Series description
startdate str9 %-9s Start date
enddate str9 %-9s End date
frequency str9 %-9s Frequency
source str8 %-9s Source

Sorted by:

The resulting dataset contains information on the 21,409 series in USARC23. Suppose that we want

to retrieve all quarterly series whose description includes the word “Goods”. We need to keep only the

observations from our dataset where the frequency variable equals “Quarterly” and where the description

variable contains “Goods”.

. keep if frequency==”Quarterly” & strpos(description,”Goods”)
(21,059 observations deleted)

To load the selected series into Stata, we type

. import haverdirect, frommemory clear

Note: We must clear the described data in memory to load the selected series. If you do not

want to lose the changes you made to the description dataset, you must save it before using import
haverdirect, frommemory.

The frame(framename) option works similarly to the saving(filename) option, but instead of sav-
ing a file to disk, frame() stores the metadata in a frame. See [D] frames for more information on data

frames.

import haverdirect — Import data from Haver Analytics cloud servers 542

Temporal aggregation
If you request series with different frequencies, the higher-frequency data will be aggregated to the

lowest frequency. For example, if you request a monthly and a quarterly series, the monthly series will be

aggregated. In rare cases, a series cannot be aggregated to a lower frequency and so will not be retrieved.

A list of these series will be stored in r(noaggtype).

The options fin() and fwithin() are useful for aggregating series by hand.

Daily and weekly data
Daily and weekly queries require additional explanations because these frequencies are implemented

differently in Haver databases than in Stata datasets. A Haver daily series refers to a business daily

frequency, which is five days per week and counts only Monday through Friday as observations. An

exact match for Haver daily is Stata’s business daily frequency (%tb), which uses a business-day calendar
that excludes weekends and includes all weekdays throughout the year. Stata’s daily frequency (%td),
by contrast, counts all seven days of a week. This frequency is called 7-daily in Haver databases.

The implementations of the weekly frequency also differ between Haver and Stata. Haver’s imple-

mentation counts one week after another, without any reference to the calendar year, thereby allowing

for years that mostly have 52 observations but sometimes have 53 observations. Each Haver weekly data

series has a value set for its controlling-day-of-week (CDOW) property. This is typically the weekday on

which the data are released by the source. This information is preserved in a Stata characteristic called

cdow. For example, the cdow characteristic for series SP100@WEEKLY is Friday.

Stata’s %tw frequency counts weeks from the beginning of the year and caps the week number at 52.

There are two ways in which Haver’s weekly frequency can be exactly matched in Stata: either in Stata’s

daily frequency (%td) in combination with a delta of seven days (see [TS] tsset) or in a datetime business
calendar (%tb), which here should count only one particular weekday as a valid business day.

The above discrepancies in frequency implementations are resolved in import haverdirect in the
following way: any query that exclusively consists of one or more of Haver 7-daily, Haver daily, or

Haver weekly series results in a Stata dataset of Stata daily frequencies (%td). In that dataset,

Haver 7-daily series receive rows for all seven days of the week covered by their span.

Haver daily series receive rows for five days of the week (Monday through Friday) covered by

their span.

Haver weekly series are assigned dates that correspond to their CDOW. For example, se-

ries SP100@WEEKLY has a CDOW of Friday and, at the time of writing, covers the time span

06jan1989–31may2024. Thus, in the Stata dataset, SP100@WEEKLY receives rows with dates 06jan1989,
13jan1989, . . . , 24may2024, 31may2024 (these are all Fridays).

Note that if a query combines Haver 7-daily series and Haver daily series with one or more Haver

weekly series, aggregation to weekly values is performed. For Haver 7-daily series, the values Monday

through Sunday are aggregated to a single value, and the resulting (Haver weekly) series receives a CDOW

of Sunday, with corresponding (Sunday) rows in the dataset. Similarly, for Haver daily series, the values

Monday through Friday are aggregated to a single value, and the resulting (Haver weekly) series receives

a CDOW of Friday, with corresponding (Friday) rows in the dataset.

Once you have queried your daily and weekly series, you may want to use Stata’s tsset or business
calendar features to further tailor the dataset toward your needs. Several ways for you to do this were

indicated above.

import haverdirect — Import data from Haver Analytics cloud servers 543

When you aggregate Haver daily and Haver weekly series to lower frequencies (for example,

monthly), the above considerations are not relevant. Another issue with these data is Haver aggregation

modes. Haver daily and Haver weekly series often contain missing values due to events such as national

holidays. When you aggregate to a lower frequency under the default aggregation mode strict, such
missing values then result in aggregated values that are also set to missing. In such cases, you may want

to consider using aggregation modes relaxed or force. See option aggmethod() for more details.

Stored results
import haverdirect stores the following in r():

Scalars

r(k requested) number of series requested

r(k noaggtype) number of series dropped because of invalid aggregation type

r(k nodisagg) number of series dropped because their frequency is lower than that of the output dataset

r(k notinrange) number of series dropped because data were out of the date range specified in fwithin()
or fin()

r(k notfound) number of series not found in the database

Macros

r(dbnamelist) list of Haver databases used in command

r(noaggtype) list of series dropped because of invalid aggregation type

r(nodisagg) list of series dropped because their frequency is lower than that of the output dataset

r(notinrange) list of series dropped because data were out of the date range specified in fwithin() or
fin()

r(notfound) list of series not found in the database

import haverdirect, describe stores the following in r():

Scalars

r(k described) number of series described

r(k notfound) number of series not found in the database

Macros

r(notfound) list of series not found in the database

Also see
[D] import — Overview of importing data into Stata

[D] import delimited — Import and export delimited text data

[D] import fred — Import data from Federal Reserve Economic Data

[D] import haver — Import data from Haver Analytics databases

[D] jdbc — Load, write, or view data from a database with a Java API

[D] odbc — Load, write, or view data from ODBC sources

[TS] tsset — Declare data to be time-series data

import sas — Import SAS files

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
import sas reads into memory a version 7 or higher SAS (.sas7bdat) file. It can also import SAS

value labels from a .sas7bcat file. import sas can import up to 32,766 variables at one time (up to
2,048 variables in Stata/BE). If your SAS file contains more variables than this, you can break up the SAS

file into multiple Stata datasets. You can also import SAS value labels from a .sas7bcat file.

Quick start
Import the SAS file myfile.sas7bdat into Stata

import sas myfile

Same as above, but replace the data in memory

import sas myfile, clear

Same as above, but import only variables x1 and x2
import sas x1 x2 using myfile, clear

Import data from SAS file myfile and value labels from file labels.sas7bcat
import sas myfile, bcat(labels)

Menu
File > Import > SAS data (*.sas7bdat)

544

import sas — Import SAS files 545

Syntax
Load a SAS file (*.sas7bdat)

import sas [using] filename [, options]

Load a subset of a SAS file (*.sas7bdat)

import sas [namelist] [if] [in] using filename [, options]

If filename is specified without an extension, .sas7bdat is assumed. If filename contains embedded

spaces, enclose it in double quotes.

namelist specifies SAS variable names to be imported.

options Description

bcat(filename𝑣𝑙) load value labels defined in filename𝑣𝑙 into memory

case(lower | upper | preserve) read variable names as lowercase or uppercase;
the default is to preserve the case

clear replace data in memory

encoding(”encoding”) specify the file encoding; see help encodings

collect is allowed; see [U] 11.1.10 Prefix commands.

encoding() does not appear in the dialog box.

Options
bcat(filename𝑣𝑙) specifies that the value labels defined in filename𝑣𝑙 be loaded into memory along with

the dataset. If filename𝑣𝑙 is specified without an extension, .sas7bcat is assumed. If filename𝑣𝑙
contains embedded spaces, enclose it in double quotes.

SAS does not assign value labels to variables; therefore, you must use the label values command
to assign the value labels to specific variables after importing them.

case(lower | upper | preserve) specifies the case of the variable names after import. The default is
case(preserve).

clear specifies that it is okay to replace the data in memory, even though the current data have not been
saved to disk.

The following option is available with import sas but is not shown in the dialog box:

encoding(”encoding”) specifies the encoding of the file. If your file has an incorrect encoding specified
in the file header, you can use this option to specify the correct encoding. See help encodings for
details.

Remarks and examples
import sas reads into memory version 7 or higher SAS (.sas7bdat) files. If a SAS variable name

from the file does not conform to a Stata variable name, a generic v# name will be assigned, and the
original variable name will be stored as a characteristic for the variable. If a SAS variable label is too long,

it will be truncated to 80 characters. The original variable label will be stored as a variable characteristic.

If a SAS data label is too long, it will be truncated to 80 characters, and the original label will be stored

as a data characteristic.

import sas — Import SAS files 546

Example 1: Importing a SAS file into Stata
We can import SAS files into Stata, either by selecting the entire file or by selecting subsets of the data,

with import sas. For example, we have the SAS file auto.sas7bdat, which contains data on automo-
biles, and we have value labels for these data stored in formats.sas7bcat. Below, we demonstrate
how to import these data into Stata. To follow along, download these files to your working directory by

typing the copy commands below:

. copy https://www.stata.com/sampledata/auto.sas7bdat auto.sas7bdat

. copy https://www.stata.com/sampledata/formats.sas7bcat formats.sas7bcat

To load the file auto.sas7bdat into Stata’s memory, we type

. import sas auto.sas7bdat
(12 vars, 74 obs)

We can instead import only the variables make, weight, and foreign from auto.sas7bdat. We use

the bcat() option to add the value labels defined in the formats.sas7bcat file and the clear option
to replace the data in memory without saving them.

. import sas make weight foreign using auto, bcat(formats) clear
(3 vars, 74 obs)
. list in 1/5

make weight foreign

1. AMC Concord 2930 0
2. AMC Pacer 3350 0
3. AMC Spirit 2640 0
4. Buick Century 3250 0
5. Buick Electra 4080 0

We list the value labels that we imported using label list

. label list
ORIGIN:

0 Domestic
1 Foreign

ORIGIN contains value labels for the variable foreign. We need to use the label values command
to apply this label to foreign. Then, we save the data with these labels attached.

. label values foreign ORIGIN

. list in 1/5

make weight foreign

1. AMC Concord 2930 Domestic
2. AMC Pacer 3350 Domestic
3. AMC Spirit 2640 Domestic
4. Buick Century 3250 Domestic
5. Buick Electra 4080 Domestic

. save myauto
file myauto.dta saved

import sas — Import SAS files 547

Stored results
import sas stores the following in r():

Scalars

r(N) number of observations imported

r(k) number of variables imported

Also see
[D] import sasxport5 — Import and export data in SAS XPORT Version 5 format

[D] import sasxport8 — Import and export data in SAS XPORT Version 8 format

[D] import — Overview of importing data into Stata

import sasxport5 — Import and export data in SAS XPORT Version 5 format

Description Quick start
Menu Syntax
Options for import sasxport5 Options for export sasxport5
Remarks and examples Stored results
Technical appendix Also see

Description
import sasxport5 and export sasxport5 convert data from and to SASXPORTVersion 5 Transport

format. The US Food and Drug Administration uses this SAS XPORT Transport format as the format for

datasets submitted with new drug and new device applications (NDAs).

export sasxport5 saves the data in memory as a SAS XPORT Transport (.xpt) file. If needed, this
command also creates formats.xpf—an additional XPORT file—containing the value-label definitions.

These files can be easily read into SAS.

import sasxport5 reads into memory data from a SASXPORTTransport (.xpt) file. When available,

this command also reads the value-label definitions stored in formats.xpf or FORMATS.xpf.

import sasxport5, describe describes the contents of a SAS XPORT Version 5 Transport file.

Quick start
Describe the contents of SAS XPORT Version 5 Transport file mydata.xpt

import sasxport5 mydata, describe

Load the contents of mydata.xpt into memory
import sasxport5 mydata

Same as above, and ignore the accompanying SAS formats file formats.xpf
import sasxport5 mydata, novallabels

Save data in memory to mydata.xpt
export sasxport5 mydata

Same as above, but rename variables to meet SAS XPORT restrictions

export sasxport5 mydata, rename

Same as above, and do not save value labels

export sasxport5 mydata, rename replace vallabfile(none)

Save v1, v2, and v3 to mydata.xpt, where time variable tvar is equal to 2010
export sasxport5 v1 v2 v3 using mydata if tvar==2010

548

import sasxport5 — Import and export data in SAS XPORT Version 5 format 549

Menu
import sasxport5
File > Import > SAS XPORT Version 5 (*.xpt)

export sasxport5
File > Export > SAS XPORT Version 5 (*.xpt)

Syntax
Import SAS XPORT Version 5 Transport file into Stata

import sasxport5 filename [, import options]

Describe contents of SAS XPORT Version 5 Transport file

import sasxport5 filename, describe [member(mbrname)]

Export data in memory to a SAS XPORT Version 5 Transport file

export sasxport5 filename [if] [in] [, export options]
export sasxport5 varlist using filename [if] [in] [, export options]

If filename is specified without an extension, .xpt is assumed. If filename contains embedded spaces,
enclose it in double quotes.

import options Description

clear replace data in memory

novallabels ignore accompanying formats.xpf file if it exists
member(mbrname) member to use; seldom used

collect is allowed with import sasxport5; see [U] 11.1.10 Prefix commands.

export options Description

Main

rename rename variables and value labels to meet SAS XPORT restrictions

replace overwrite files if they already exist

vallabfile(xpf) save value labels in formats.xpf
vallabfile(sascode) save value labels in SAS command file

vallabfile(both) save value labels in formats.xpf and in a SAS command file
vallabfile(none) do not save value labels

import sasxport5 — Import and export data in SAS XPORT Version 5 format 550

Options for import sasxport5
describe describes the contents of the SASXPORTVersion 5 Transport file. This option can be combined

only with member().

clear specifies that it is okay to replace the data in memory, even though the current data have not been
saved to disk.

novallabels specifies that value-label definitions stored in formats.xpf or FORMATS.xpf not be

looked for or loaded. By default, if variables are labeled in filename.xpt, then import sasxport5
looks for formats.xpf to obtain and load the value-label definitions. If the file is not found, Stata
looks for FORMATS.xpf. If that file is not found, a warning message is issued.

import sasxport5 can use only a formats.xpf or FORMATS.xpf file to obtain value-label defini-
tions. import sasxport5 cannot understand value-label definitions from a SAS command file.

member(mbrname) specifies a member of the .xpt file. Although no longer often used, the original

XPORT definition allowed multiple datasets to be placed in one file. The member() option allows you
to read these old files, selecting only specific datasets (members) to be used by import sasxport5.
You can obtain a list of member names by using import sasxport5, describe. By default, only
the first member is used, unless describe is specified, in which case all members are described.

Because it is rare for an XPORT file to have more than one member, this option is seldom used.

Options for export sasxport5

� � �
Main �

rename specifies that export sasxport5 may rename variables and value labels to attempt to meet the
SAS XPORT restrictions, which are that names be no more than eight bytes long and that there be no

distinction between uppercase and lowercase letters. Note that rename does not remove characters
beyond the normal ASCII range, such as most Unicode characters and all extended ASCII characters.

SAS may or may not support such characters in variable labels and value labels.

We recommend specifying the rename option. If this option is specified, any name violating the

restrictions is changed to a different but related name in the file. The name changes are listed. The

new names are used only in the file; the names of the variables and value labels in memory remain

unchanged.

If rename is not specified and one or more names violate the XPORT restrictions, an error message

will be issued and no file will be saved. The alternative to the rename option is that you can rename
variables yourself with the rename command:

. rename mylongvariablename myname

See [D] rename. Renaming value labels yourself is more difficult. The easiest way to rename value

labels is to use label save, edit the resulting file to change the name, execute the file by using do,
and reassign the new value label to the appropriate variables by using label values:

. label save mylongvaluelabel using myfile.do

. doedit myfile.do (change mylongvaluelabel to, say, mlvlab)

. do myfile.do

. label values myvar mlvlab

See [D] label and [R] do for more information about renaming value labels.

import sasxport5 — Import and export data in SAS XPORT Version 5 format 551

replace permits export sasxport5 to overwrite existing filename.xpt, formats.xpf, and file-

name.sas files.

vallabfile(xpf | sascode | both | none) specifies whether and how value labels are to be stored. SAS

XPORT Transport files do not really have value labels. Value-label definitions can be preserved in one

of two ways:

1. In an additional SAS XPORT Version 5 Transport file whose data contain the value-label defini-

tions

2. In a SAS command file that will create the value labels

export sasxport5 can create either or both of these files.

vallabfile(xpf), the default, specifies that value labels be written into a separate SASXPORTTrans-
port file named formats.xpf. Thus, export sasxport5 creates two files: filename.xpt, containing
the data, and formats.xpf, containing the value labels. No formats.xpf file is created if there are
no value labels.

SAS users can easily use the resulting .xpt and .xpf XPORT files.

See https://www.sas.com/govedu/fda/macro.html, and click on the FDA Submission Standards tab.

Then, click on the Processing Data Sets Code tab that appears below the “FDA and SAS Technology”

text for SAS-providedmacros for reading the XPORT files. The SASmacro fromexp() reads the XPORT
files into SAS. The SAS macro toexp() creates XPORT files. When obtaining the macros, remember

to save the macros at SAS’s webpage as a plain text file and to remove the examples at the bottom.

If the SAS macro file is saved as C:\project\macros.mac and the files mydat.xpt and

formats.xpf created by export sasxport5 are in C:\project\, the following SAS commands

would create the corresponding SAS dataset and format library and list the data:

SAS commands

%include ”C:\project\macros.mac” ;
%fromexp(C:\project, C:\project) ;
libname library ’C:\project’ ;
data _null_ ; set library.mydat ; put _all_ ; run ;
proc print data = library.mydat ;
quit ;

vallabfile(sascode) specifies that the value labels be written into a SAS command file, file-

name.sas, containing SAS proc format and related commands. Thus, export sasxport5 creates
two files: filename.xpt, containing the data, and filename.sas, containing the value labels. SAS

users may wish to edit the resulting filename.sas file to change the “libname datapath” and “libname
xptfile xport” lines at the top to correspond to the location that they desire. export sasxport5 sets
the location to the current working directory at the time export sasxport5 was issued. No .sas
file will be created if there are no value labels.

vallabfile(both) specifies that both the actions described above be taken and that three files be
created: filename.xpt, containing the data; formats.xpf, containing the value labels in XPORT for-

mat; and filename.sas, containing the value labels in SAS command-file format.

vallabfile(none) specifies that value-label definitions not be saved. Only one file is created:

filename.xpt, which contains the data.

https://www.sas.com/govedu/fda/macro.html

import sasxport5 — Import and export data in SAS XPORT Version 5 format 552

Remarks and examples
All users, of course, may use these commands to transfer data between SAS and Stata, but there are

limitations in the SAS XPORT Transport format, such as the eight-character limit on the names of vari-

ables (specifying export sasxport5’s rename option works around that). For a complete listing of

limitations and issues concerning the SAS XPORT Transport format and an explanation of how export
sasxport5 and import sasxport5 work around these limitations, see Technical appendix below.

Remarks are presented under the following headings:

Saving XPORT files for transferring to SAS
Determining the contents of XPORT files received from SAS
Using XPORT files received from SAS

Saving XPORT files for transferring to SAS

Example 1: Exporting data to XPORT files
To demonstrate, we first load auto.dta. To save only variables make, mpg, and weight in

auto sub.xpt, we type
. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. export sasxport5 make mpg weight using auto_sub
file auto_sub.xpt saved

We can save all the variables in the data to auto.xpt and save the value labels in formats.xpf.
We specify the rename option to rename variable names and value labels that are too long or are case
sensitive.

. export sasxport5 auto, rename
the following variable(s) were renamed in the output file:

displacement -> DISPLACE
gear_ratio -> GEAR_RAT

file auto.xpt saved
file formats.xpf saved

Alternatively, we can save the data in auto.xpt and save the value labels to a formats.xpf file and
in a SAS command file auto.sas. We include the replace option to allow replacement of the files we

created with our previous command.

. export sasxport5 auto, rename replace vallabfile(both)
the following variable(s) were renamed in the output file:

displacement -> DISPLACE
gear_ratio -> GEAR_RAT

file auto.xpt saved
file auto.sas saved
file formats.xpf saved

If we instead wanted to save the value labels only in the SAS command file, we could have typed

. export sasxport5 auto, rename replace vallabfile(sas)

If we did not want to save the value labels at all, thus creating only auto.xpt, we could have typed

. export sasxport5 typed, rename replace vallabfile(none)

import sasxport5 — Import and export data in SAS XPORT Version 5 format 553

Determining the contents of XPORT files received from SAS

Example 2: Describing XPORT files
To investigate the contents of the auto.xpt file we created above, we can type

. import sasxport5 auto, describe
data from auto.xpt, member(auto)
obs: 74 28mar25:19:45:21

vars: 12 (date shown exactly as recorded in file)
size: 8,140

variable variable value
name type label variable label

make str18 Make and model
price numeric Price
mpg numeric Mileage (mpg)
rep78 numeric Repair record 1978
headroom numeric Headroom (in.)
trunk numeric Trunk space (cu. ft.)
weight numeric Weight (lbs.)
length numeric Length (in.)
turn numeric Turn circle (ft.)
displace numeric Displacement (cu. in.)
gear_rat numeric Gear ratio
foreign numeric origin Car origin

Using XPORT files received from SAS

Example 3: Importing XPORT files
To read data from auto.xpt and obtain value labels from formats.xpf, we can type

. import sasxport5 auto, clear

Stored results
import sasxport5, describe stores the following in r():

Scalars

r(N) number of observations

r(k) number of variables

r(size) size of data

r(n members) number of members

Macros

r(members) names of members

import sasxport5 — Import and export data in SAS XPORT Version 5 format 554

Technical appendix
Technical details concerning the SAS XPORTVersion 5 Transport format and how export sasxport5

and import sasxport5 handle issues regarding the format are presented under the following headings:
A1. Overview of SAS XPORT Transport format
A2. Implications for writing XPORT datasets from Stata
A3. Implications for reading XPORT datasets into Stata

A1. Overview of SAS XPORT Transport format
A SAS XPORT Transport file may contain one or more separate datasets, known as members. It is

rare for a SAS XPORT Transport file to contain more than one member. See https://support.sas.com/tech-

sup/technote/ts140.pdf for the SAS technical document describing the layout of the SAS XPORT Transport

file.

A SAS XPORT dataset (member) is subject to certain restrictions:

1. The dataset may contain only 9,999 variables.

2. The names of the variables and value labels may not be longer than eight characters and are

case insensitive; for example, myvar, Myvar, MyVar, and MYVAR are all the same name.

3. Variable labels may not be longer than 40 characters.

4. The contents of a variable may be numeric or string:

a. Numeric variables may be integer or floating but may not be smaller than 5.398e–79

or greater than 9.046e+74, absolutely. Numeric variables may contain missing, which

may be ., . , .a, .b, . . . , .z.

b. String variables may not exceed 200 characters. String variables are recorded in a

“padded” format, meaning that, when variables are read, it cannot be determined

whether the variable had trailing blanks.

5. Value labels are not written in the XPORT dataset. Suppose that you have variable sex in the
data with values 0 and 1 and that the values are labeled for gender (0 = male, and 1 = female).

When the dataset is written in SAS XPORT Transport format, you can record that the variable

label gender is associated with the sex variable, but you cannot record the association with
the value labels male and female.

Value-label definitions are typically stored in a second XPORT dataset or in a text file containing

SAS commands. You can use the vallabfile() option of export sasxport5 to produce these
datasets or files.

https://support.sas.com/techsup/technote/ts140.pdf
https://support.sas.com/techsup/technote/ts140.pdf

import sasxport5 — Import and export data in SAS XPORT Version 5 format 555

Value labels and formats are recorded in the same position in an XPORT file, meaning that names

corresponding to formats used in SAS cannot be used. Thus, value labels may not be named

best, binary, comma, commax, d, date, datetime, dateampm, day, ddmmyy,
dollar, dollarx, downame, e, eurdfdd, eurdfde, eurdfdn, eurdfdt, eurdfdwn,
eurdfmn, eurdfmy, eurdfwdx, eurdfwkx, float, fract, hex, hhmm, hour, ib,
ibr, ieee, julday, julian, percent, minguo, mmddyy, mmss, mmyy, monname,
month, monyy, negparen, nengo, numx, octal, pd, pdjulg, pdjuli, pib, pibr, pk,
pvalue, qtr, qtrr, rb, roman, s370ff, s370fib, s370fibu, s370fpd, s370fpdu,
s370fpib, s370frb, s370fzd, s370fzdl, s370fzds, s370fzdt, s370fzdu, ssn,
time, timeampm, tod, weekdate, weekdatx, weekday, worddate, worddatx,
wordf, words, year, yen, yymm, yymmdd, yymon, yyq, yyqr, z, zd, or any upper-
case variation of these.

We refer to this as the “Known Reserved Word List” in this documentation. Other words may

also be reserved by SAS; the technical documentation for the SAS XPORT Transport format pro-

vides no guidelines. This list was created by examining the formats defined in SAS Language

Reference: Dictionary, Version 8. If SAS adds new formats, the list will grow.

6. A flaw in the XPORT design can make it impossible, in rare instances, to determine the exact

number of observations in a dataset. This problem can occur only if 1) all variables in the dataset

are string and 2) the sum of the lengths of all the string variables is less than 80. Actually, the

above is the restriction, assuming that the code for reading the dataset is written well. If it is

not, the flaw could occur if 1) the last variable or variables in the dataset are string and 2) the

sum of the lengths of all variables is less than 80.

To prevent stumbling over this flaw, make sure that the last variable in the dataset is not a string

variable. This is always sufficient to avoid the problem.

7. There is no provision for saving the Stata concepts notes and characteristics.

A2. Implications for writing XPORT datasets from Stata
Stata datasets for the most part fit well into the SASXPORTTransport format. With the same numbering

scheme as above,

1. Stata refuses to write the dataset if it contains more than 9,999 variables.

2. Stata issues an error message if any variable or label name violates the naming restrictions, or

if the rename option is specified, Stata fixes any names that violate the restrictions.

Whether or not rename is specified, names will be recorded without regard to case: you do not
have to name all your variables with all lowercase or all uppercase letters. Stata verifies that

ignoring case does not lead to problems, complaining or, if option rename is specified, fixing
them.

3. Stata truncates variable labels to 40 characters to fit within the XPORT limit.

4. Stata treats variable contents as follows:

a. If a numeric variable records a value greater than 9.046e+74 in absolute value, Stata

issues an error message. If a variable records a value less than 5.398e–79 in absolute

value, 0 is written.

import sasxport5 — Import and export data in SAS XPORT Version 5 format 556

b. If you have string variables longer than 200 characters, Stata issues an error message.

Also, if any string variable has trailing blanks, Stata issues an error message. To

remove trailing blanks from string variable s, you can type

. replace s = rtrim(s)

To remove leading and trailing blanks, type

. replace s = trim(s)

5. Value-label names are written in the XPORT dataset. The contents of the value label are not writ-

ten in the same XPORT dataset. By default, formats.xpf, a second XPORT dataset, is created

containing the value-label definitions.

SAS recommends creating a formats.xpf file containing the value-label definitions (what SAS
calls format definitions). They have provided SAS macros, making the reading of .xpt and

formats.xpf files easy. See https://www.sas.com/govedu/fda/macro.html for details.

Alternatively, a SAS command file containing the value-label definitions can be produced. The

vallabfile() option of export sasxport5 is used to indicate which, if any, of the formats
to use for recording the value-label definitions.

If a value-label name matches a name on the Known Reserved Word List, and the rename
option is not specified, Stata issues an error message.

If a variable has no value label, the following format information is recorded:

Stata format SAS format

%td. . . MMDDYY10.
%-td. . . MMDDYY10.
%#s $CHAR#.
%-#s $CHAR#.
% #s $CHAR#.
all other BEST12.

6. If you have a dataset that could provoke the XPORT design flaw, a warning message is issued.

Remember, the best way to avoid this flaw is to ensure that the last variable in the dataset is

numeric. This is easily done. You could, for instance, type

. generate ignoreme = 0

. export sasxport ...

7. Because the XPORT file format does not support notes and characteristics, Stata ignores them

when it creates the XPORT file. You may wish to incorporate important notes into the documen-

tation that you provide to the user of your XPORT file.

https://www.sas.com/govedu/fda/macro.html

import sasxport5 — Import and export data in SAS XPORT Version 5 format 557

A3. Implications for reading XPORT datasets into Stata
Reading SAS XPORTVersion 5 Transport format files into Stata is easy, but sometimes there are issues

to consider:

1. If there are too many variables, Stata issues an error message. If you are using Stata/MP or

Stata/SE, you can increase the maximum number of variables with the set maxvar command;
see [D] memory.

2. The XPORT variable-naming restrictions are more restrictive than those of Stata, so no problems

should arise. However, Stata reserves the following names:

all, b, byte, coef, cons, double, float, if, in, int, long, n, N, pi,
pred, rc, skip, str#, strL, using, with

If the XPORT file contains variables with any of these names, Stata issues an error message.

Also, the error message

. import sasxport5 ...
________ already defined
r(110);

indicates that the XPORT file was incorrectly prepared by some other software and that two or

more variables share the same name.

3. The XPORT variable-label-length limit is more restrictive than that of Stata, so no problems can

arise.

4. Variable contents may cause problems:

a. The range of numeric variables in anXPORT dataset is a subset of that allowed by Stata,

so no problems can arise. All variables are brought back as doubles; we recommend
that you run compress after loading the dataset:

. import sasxport5 ...

. compress

See [D] compress.

Stata has no missing-value code corresponding to . . If any value records . , then

.u is stored.

b. String variables are brought back as recorded but with all trailing blanks stripped.

5. Value-label names are read directly from the XPORT dataset. Any value-label definitions are

obtained from a separate XPORT dataset, if available. If a value-label name matches any in the

Known Reserved Word List, no value-label name is recorded, and instead, the variable display

format is set to %9.0g, %10.0g, or %td.

The %td Stata format is used when the following SAS formats are encountered:

DATE, EURDFDN, JULDAY, MONTH, QTRR, YEAR, DAY, EURDFDWN, JULIAN, MONYY,
WEEKDATE, YYMM, DDMMYY, EURDFMN, MINGUO, NENGO, WEEKDATX, YYMMDD, DOWNAME,
EURDFMY, MMDDYY, PDJULG, WEEKDAY, YYMON, EURDFDD, EURDFWDX, MMYY, PDJULI,
WORDDATE, YYQ, EURDFDE, EURDFWKX, MONNAME, QTR, WORDDATX, YYQR

If the XPORT file indicates that one or more variables have value labels, import sasxport5
looks for the value-label definitions in formats.xpf, another XPORT file. If it does not find this
file, it looks for FORMATS.xpf. If this file is not found, import sasxport5 issues a warning
message unless the novallabels option is specified.

import sasxport5 — Import and export data in SAS XPORT Version 5 format 558

Stata does not allow value-label ranges or string variables with value labels. If the .xpt file or
formats.xpf file contains any of these, an error message is issued. The novallabels option
allows you to read the data, ignoring all value labels.

6. If a dataset is read that provokes the all-stringsXPORT design flaw, the dataset with theminimum

number of possible observations is returned, and a warning message is issued. This duplicates

the behavior of SAS.

7. SAS XPORT format does not allow notes or characteristics, so no issues can arise.

Also see
[D] import sas — Import SAS files

[D] import sasxport8 — Import and export data in SAS XPORT Version 8 format

[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

import sasxport8 — Import and export data in SAS XPORT Version 8 format

Description Quick start Menu
Syntax Options for import sasxport8 Options for export sasxport8
Remarks and examples Stored results Also see

Description
import sasxport8 and export sasxport8 import and export data from and to SAS XPORTVersion

8 Transport format.

To import and export datasets from and to SAS XPORT Version 5 Transport format, see [D] import

sasxport5.

Quick start
Load the contents of mydata.v8xpt into memory, replacing the data in memory

import sasxport8 mydata, clear

Same as above, but read variable names as lowercase

import sasxport8 mydata, clear case(lower)

Save data in memory to mydata.v8xpt, replacing the existing file
export sasxport8 mydata, replace

Save v1 and v2 to mydata.v8xpt, and save their corresponding value labels in a SAS command file,

mydata.sas
export sasxport8 v1 v2 using mydata, replace vallabfile

Menu
import sasxport8
File > Import > SAS XPORT Version 8 (*.v8xpt)

export sasxport8
File > Export > SAS XPORT Version 8 (*.v8xpt)

559

import sasxport8 — Import and export data in SAS XPORT Version 8 format 560

Syntax
Import SAS XPORT Version 8 Transport file into Stata

import sasxport8 filename [, import options]

Export data in memory to a SAS XPORT Version 8 Transport file

export sasxport8 filename [if] [in] [, export options]
export sasxport8 varlist using filename [if] [in] [, export options]

If filename is specified without an extension, .v8xpt is assumed. If filename contains embedded spaces,
enclose it in double quotes.

import options Description

case(lower | upper | preserve) read variable names as lowercase or uppercase;
the default is to preserve the case

clear replace data in memory

collect is allowed with import sasxport8; see [U] 11.1.10 Prefix commands.

export options Description

Main

replace overwrite files if they already exist

vallabfile save value labels in SAS command file

Options for import sasxport8
case(lower | upper | preserve) specifies the case of the variable names after import. The default is

case(preserve).

clear specifies that it is okay to replace the data in memory, even though the current data have not been
saved to disk.

Options for export sasxport8

� � �
Main �

replace permits export sasxport8 to overwrite the existing filename.v8xpt.

vallabfile specifies that the value labels be written into a SAS command file, filename.sas, con-
taining SAS proc format and related commands. Thus, export sasxport8 creates two files: file-
name.v8xpt, containing the data, and filename.sas, containing the value labels. SAS users may wish
to edit the resulting filename.sas file to change the “libname datapath” and “libname xptfile xport”
lines at the top to correspond to the location that they desire. export sasxport8 sets the location to
the current working directory at the time export sasxport8was issued. No .sas file will be created
if there are no value labels.

import sasxport8 — Import and export data in SAS XPORT Version 8 format 561

Remarks and examples
To save the data in memory as a SAS XPORT Version 8 Transport file, type

. export sasxport8 filename

To read a SAS XPORT Version 8 Transport file into Stata, type

. import sasxport8 filename

Stata will read into memory the XPORT file filename.v8xpt containing the data.

To demonstrate the use of export sasxport8 and import sasxport8, we will first load auto.dta
and export these data to a SAS V8XPORT named auto.v8xpt:

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. export sasxport8 auto
file auto.v8xpt saved

We can export a subset of the data that includes only the variables make, mpg, and weight to a file
named auto sub.v8xpt.

. export sasxport8 make mpg weight using auto_sub
file auto_sub.v8xpt saved

Now, we import the data from auto sub.v8xpt that we just created.

. import sasxport8 auto_sub, clear
(3 vars, 74 obs)
. describe
Contains data
Observations: 74 1978 automobile data

Variables: 3

Variable Storage Display Value
name type format label Variable label

make str17 %17s Make and model
mpg byte %10.0g Mileage (mpg)
weight int %15.4g Weight (lbs.)

Sorted by:
Note: Dataset has changed since last saved.

Stored results
import sasxport8 stores the following in r():

Scalars

r(N) number of observations imported

r(k) number of variables imported

import sasxport8 — Import and export data in SAS XPORT Version 8 format 562

Also see
[D] import sas — Import SAS files

[D] import sasxport5 — Import and export data in SAS XPORT Version 5 format

[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

import spss — Import and export SPSS files

Description Quick start Menu
Syntax Options for import spss Option for export spss
Remarks and examples Stored results Also see

Description
import spss reads into memory a version 16 or higher IBM SPSS Statistics (.sav) file or a version 21

or higher compressed IBM SPSS Statistics (.zsav) file. import spss can import up to 32,766 variables
at one time (up to 2,048 in Stata/BE). If your SPSS file contains more variables than this, you can break

up the SPSS file into multiple Stata datasets.

export spss writes Stata’s data to an IBM SPSS Statistics (.sav) file.

Quick start
Import the IBM SPSS Statistics file myfile.sav into Stata

import spss myfile

Same as above, but replace the data in memory

import spss myfile, clear

Same as above, but import only variables x1 and x4
import spss x1 x4 using myfile, clear

Import the compressed IBM SPSS Statistics file compfile.zsav into Stata
import spss compfile, zsav

Same as above, but read variable names as lowercase

import spss compfile, zsav case(lower)

Export data in memory to mydata.sav
export spss mydata

Same as above, but export only variables v1 and v2
export spss v1 v2 using mydata

Menu
import spss
File > Import > SPSS data (*.sav)

export spss
File > Export > SPSS data (*.sav)

563

import spss — Import and export SPSS files 564

Syntax
Load an IBM SPSS Statistics file (*.sav)

import spss [using] filename [, options]

Load a compressed IBM SPSS Statistics file (*.zsav)

import spss [using] filename, zsav [options]

Load a subset of an IBM SPSS Statistics file (*.sav)

import spss [namelist] [if] [in] using filename [, options]

Load a subset of a compressed IBM SPSS Statistics file (*.zsav)

import spss [namelist] [if] [in] using filename, zsav [options]

Save data in memory to an IBM SPSS Statistics file (*.sav)

export spss [using] filename [if] [in] [, replace]

Save subset of variables in memory to an IBM SPSS Statistics file (*.sav)

export spss [varlist] using filename [if] [in] [, replace]

If filename is specified without an extension, .sav is assumed unless you specify the zsav option, in
which case extension .zsav is assumed. If filename contains embedded spaces, enclose it in double
quotes.

namelist specifies SPSS variable names to be imported.

options Description

case(lower | upper | preserve) read variable names as lowercase or uppercase;
the default is to preserve the case

clear replace data in memory

encoding(”encoding”) specify the file encoding; see help encodings

collect is allowed with import spss; see [U] 11.1.10 Prefix commands.

encoding() does not appear in the dialog box.

import spss — Import and export SPSS files 565

Options for import spss
zsav indicates the file to load is a compressed IBM SPSS Statistics file.

case(lower | upper | preserve) specifies the case of the variable names after import. The default is
case(preserve).

clear specifies that it is okay to replace the data in memory, even though the current data have not been
saved to disk.

The following option is available with import spss but is not shown in the dialog box:

encoding(”encoding”) specifies the encoding of the file. If your file has an incorrect encoding specified
in the file header, you can use this option to specify the correct encoding. See help encodings for
details.

Option for export spss
replace specifies that filename be replaced if it already exists.

Remarks and examples
import spss reads into memory a version 16 or higher IBM SPSS Statistics (.sav) file or a version 21

or higher compressed IBM SPSS Statistics (.zsav) file. If an SPSS variable name from the file does not

conform to a Stata variable name, a generic v# name will be assigned, and the original variable name will
be stored as a characteristic for the variable. If an SPSS variable label is too long, it will be truncated to 80

characters, and the original variable label will be stored as a variable characteristic. All value labels for

string variables will be ignored. Value labels for numeric variables will be named labels# and attached
to the corresponding variable.

export spss exports the Stata dataset in memory, or a subset of the dataset, to an IBM SPSS Statistics

(.sav) file.

import spss — Import and export SPSS files 566

Example 1: Importing an SPSS file into Stata
We can import SPSS files into Stata, either by selecting the entire file or by selecting subsets of the data,

with import spss. For example, we have the SPSS file auto.sav, which contains data on automobiles.
Below, we demonstrate how to import these data into Stata. To follow along, download this file to your

working directory by typing the copy command below:

. copy https://www.stata.com/sampledata/auto.sav auto.sav

We first load the entire auto.sav file into Stata by typing

. import spss auto
(12 vars, 74 obs)
. describe
Contains data
Observations: 74

Variables: 12

Variable Storage Display Value
name type format label Variable label

make str17 %17s
price int %5.0f
mpg byte %2.0f
rep78 byte %1.0f
headroom double %3.1f
trunk byte %2.0f
weight int %4.0f
length int %3.0f
turn byte %2.0f
displacement int %3.0f
gear_ratio double %4.2f
foreign byte %1.0f

Sorted by:
Note: Dataset has changed since last saved.

import spss — Import and export SPSS files 567

We can instead import only variables make and weight into memory from auto.sav. We include

the clear option to replace the data in memory without saving them.

. import spss make weight using auto, clear
(2 vars, 74 obs)
. describe
Contains data
Observations: 74

Variables: 2

Variable Storage Display Value
name type format label Variable label

make str17 %17s
weight int %4.0f

Sorted by:
Note: Dataset has changed since last saved.

Example 2: Export all Stata data to an SPSS file
We have a data on food consumption. The data is currently in the Stata .dta format. We would like

to export the data to an IBM SPSS Statistics file. We first load the Stata dataset and then export the data

to a file named food consumption.sav:

. use https://www.stata-press.com/data/r19/food_consumption, clear
(Food consumption)
. export spss food_consumption
file food_consumption.sav saved

Stored results
import spss stores the following in r():

Scalars

r(N) number of observations imported

r(k) number of variables imported

Also see
[D] import — Overview of importing data into Stata

[D] export — Overview of exporting data from Stata

infile (fixed format) — Import text data in fixed format with a dictionary

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
infile using reads a dataset that is stored in text form. infile using does this by first reading

dfilename—a “dictionary” that describes the format of the data file—and then reads the file containing

the data. The dictionary is a file you create with the Do-file Editor or an editor outside Stata.

Strings containing plain ASCII or UTF-8 are imported correctly. Strings containing extended ASCII

will not be imported (that is, displayed) correctly; you can use Stata’s replace command with the

ustrfrom() function to convert extended ASCII to UTF-8. If ebcdic is specified, the data will be con-
verted from EBCDIC to ASCII as they are imported. The dictionary in all cases must be ASCII.

If using filename is not specified, the data are assumed to begin on the line following the closing

brace. If using filename is specified, the data are assumed to be located in filename.

The data may be in the same file as the dictionary or in another file. infile with a dictionary can
import both numeric and string data. Individual strings may be up to 100,000 bytes long. Strings longer

than 2,045 bytes are imported as strLs (see [U] 12.4.8 strL).

Another variation on infile omits the intermediate dictionary; see [D] infile (free format). This

variation is easier to use but will not read fixed-format files. On the other hand, although infile with a
dictionary will read free-format files, infile without a dictionary is even better at it.

An alternative to infile using for reading fixed-format files is infix; see [D] infix (fixed format).

infix provides fewer features than infile using but is easier to use.

Stata has other commands for reading data. If you are not certain that infile using will do what
you are looking for, see [D] import and [U] 22 Entering and importing data.

Quick start
For dictionary file mydata.dct that reads int-type v1 and str10-type v2

dictionary {
int v1
str10 v2

}

Import data from mydata.raw with instructions for reading the data contained in dictionary file

mydata.dct
infile using mydata.dct, using(mydata.raw)

Same as above

infile using mydata, using(mydata)

Same as above, but import data from mydata.txt
infile using mydata, using(mydata.txt)

568

infile (fixed format) — Import text data in fixed format with a dictionary 569

Same as above, but read only the first 10 observations

infile using mydata in 1/10, using(mydata.txt)

Read only observations where catvar is equal to 4 or 5
infile using mydata if catvar==4 | catvar==5, using(mydata.txt)

Menu
File > Import > Text data in fixed format with a dictionary

Syntax
infile using dfilename [if] [in] [, options]

If dfilename is specified without an extension, .dct is assumed. If dfilename contains embedded spaces,
remember to enclose it in double quotes.

options Description

Main

using(filename) text dataset filename

clear replace data in memory

Options

automatic create value labels from nonnumeric data

ebcdic treat text dataset as EBCDIC

A dictionary is a text file that is created with the Do-file Editor or an editor outside Stata. This file

specifies how Stata should read fixed-format data from a text file. The syntax for a dictionary is

begin dictionary file
[infile] dictionary [using filename] {

* comments may be included freely
_lrecl(#)
_firstlineoffile(#)
_lines(#)
_line(#)
_newline[(#)]
_column(#)

_skip[(#)]
[type] varname [:lblname] [% infmt] [”variable label”]

}
(your data might appear here)

end dictionary file

where % infmt is { %[#[.#]]{f|g|e} | %[#]s | %[#]S }

infile (fixed format) — Import text data in fixed format with a dictionary 570

Options

� � �
Main �

using(filename) specifies the name of a file containing the data. If using() is not specified, the data
are assumed to follow the dictionary in dfilename, or if the dictionary specifies the name of some

other file, that file is assumed to contain the data. If using(filename) is specified, filename is used
to obtain the data, even if the dictionary says otherwise. If filename is specified without an extension,

.raw is assumed.

If filename contains embedded spaces, remember to enclose it in double quotes.

clear specifies that it is okay for the new data to replace what is currently in memory. To ensure that

you do not lose something important, infile using will refuse to read new data if other data are

already in memory. clear allows infile using to replace the data in memory. You can also drop
the data yourself by typing drop all before reading new data.

� � �
Options �

automatic causes Stata to create value labels from the nonnumeric data it reads. It also automatically

widens the display format to fit the longest label.

ebcdic specifies that the data be stored using EBCDIC character encoding rather than the default ASCII

encoding and that the data be converted from EBCDIC to ASCII as they are imported.

Dictionary directives
*marks comment lines. Wherever you wish to place a comment, begin the line with a *. Comments can

appear many times in the same dictionary.

lrecl(#) is used only for reading datasets that do not have end-of-line delimiters (carriage return,

line feed, or some combination of these). Such files are often produced by mainframe computers and

are either coded in EBCDIC or have been translated from EBCDIC into ASCII. lrecl() specifies the
logical record length. lrecl() requests that infile act as if a line ends every # bytes.

lrecl() appears only once, and typically not at all, in a dictionary.

firstlineoffile(#) (abbreviation first()) is also rarely specified. It states the line of the file
where the data begin. You do not need to specify first()when the data follow the dictionary; Stata

can figure that out for itself. However, you might specify first() when reading data from another

file in which the first line does not contain data because of headers or other markers.

first() appears only once, and typically not at all, in a dictionary.

lines(#) states the number of lines per observation in the file. Simple datasets typically have

lines(1). Large datasets often have many lines (sometimes called records) per observation.

lines() is optional, even when there is more than one line per observation because infile can

sometimes figure it out for itself. Still, if lines(1) is not right for your data, it is best to specify the
correct number through lines(#).

lines() appears only once in a dictionary.

line(#) tells infile to jump to line # of the observation. line() is not the same as lines().
Consider a file with lines(4), meaning four lines per observation. line(2) says to jump to the
second line of the observation. line(4) says to jump to the fourth line of the observation. You

infile (fixed format) — Import text data in fixed format with a dictionary 571

may jump forward or backward. infile does not care, and there is no inefficiency in going forward
to line(3), reading a few variables, jumping back to line(1), reading another variable, and

jumping forward again to line(3).

You need not ensure that, at the end of your dictionary, you are on the last line of the observation.

infile knows how to get to the next observation because it knows where you are and it knows

lines(), the total number of lines per observation.

line() may appear many times in a dictionary.

newline[(#)] is an alternative to line(). newline(1), which may be abbreviated newline, goes
forward one line. newline(2) goes forward two lines. We do not recommend using newline()
because line() is better. If you are currently on line 2 of an observation and want to get to line 6,
you could type newline(4), but your meaning is clearer if you type line(6).

newline() may appear many times in a dictionary.

column(#) jumps to column # (in bytes) of the current line. You may jump forward or backward within
a line. column() may appear many times in a dictionary.

skip[(#)] jumps forward # columns on the current line. skip() is just an alternative to column().
skip() may appear many times in a dictionary.

[type] varname [:lblname] [% infmt] [”variable label”] instructs infile to read a variable. The simplest
form of this instruction is the variable name itself: varname.

At all times, infile is on some column of some line of an observation. infile starts on column 1 of
line 1, so pretend that is where we are. Given the simplest directive, ‘varname’, infile goes through
the following logic:

If the current column is blank, it skips forward until there is a nonblank column (or until the end of

the line). If it just skipped all the way to the end of the line, it stores a missing value in varname. If it

skipped to a nonblank column, it begins collecting what is there until it comes to a blank column or

the end of the line. These are the data for varname. Then it sets the current column to wherever it is.

The logic is a bit more complicated. For instance, when skipping forward to find the data, infile
might encounter a quote. If so, it then collects the characters for the data by skipping forward until

it finds the matching quote. If you specified a % infmt, then infile skips the skipping-forward step
and simply collects the specified number of bytes. If you specified a %S infmt, then infile does not
skip leading or trailing blanks. Nevertheless, the general logic is (optionally) skip, collect, and reset.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Reading free-format files
Reading fixed-format files
Numeric formats
String formats
Specifying column and line numbers
Examples of reading fixed-format files
Reading fixed-block files
Reading EBCDIC files

infile (fixed format) — Import text data in fixed format with a dictionary 572

Introduction
infile using follows a two-step process to read your data. You type something like infile using

descript, and

1. infile using reads the file descript.dct, which tells infile about the format of the data; and

2. infile using then reads the data according to the instructions recorded in descript.dct.

descript.dct (the file could be named anything) is called a dictionary, and descript.dct is just a
text file that you create with the Do-file Editor or an editor outside Stata.

As for the data, they can be in the same file as the dictionary or in a different file. It does not matter.

Reading free-format files
Another variation of infile for reading free-format files is described in [D] infile (free format). We

will refer to this variation as infile without a dictionary. The distinction between the two variations is
in the treatment of line breaks. infile without a dictionary does not consider them significant. infile
with a dictionary does.

A line, also known as a record, physical record, or physical line (as opposed to observations, logical

records, or logical lines), is a string of characters followed by the line terminator. If you were to type the

file, a line is what would appear on your screen if your screen were infinitely wide. Your screen would

have to be infinitely wide so that there would be no possibility that one line could take more than one

line of your screen, thus fooling you into thinking that there are multiple lines when there is only one.

A logical line, on the other hand, is a sequence of one or more physical lines that represent one

observation of your data. infile with a dictionary does not spontaneously go to new physical lines; it

goes to a new line only between observations and when you tell it to. infilewithout a dictionary, on the
other hand, goes to a new line whenever it needs to, which can be right in the middle of an observation.

Thus consider the following little bit of data, which is for three variables:

5 4
1 9 3
2

How do you interpret these data?

Here is one interpretation: There are 3 observations. The first is 5, 4, and missing. The second is 1,

9, and 3. The third is 2, missing, and missing. That is the interpretation that infile with a dictionary
makes.

Here is another interpretation: There are 2 observations. The first is 5, 4, and 1. The second is 9, 3,

and 2. That is the interpretation that infile without a dictionary makes.

Which is right? You would have to ask the person who entered these data. The question is, are the

line breaks significant? Do they mean anything? If the line breaks are significant, you use infile with
a dictionary. If the line breaks are not significant, you use infile without a dictionary.

The other distinction between the two infiles is that infile with a dictionary does not process

comma-separated–value format. If your data are comma-separated, tab-separated, or otherwise delim-

ited, see [D] import delimited or [D] infile (free format).

infile (fixed format) — Import text data in fixed format with a dictionary 573

Example 1: A simple dictionary with data
Outside Stata, we have typed into the file highway.dct information on the accident rate per million

vehicle miles along a stretch of highway, the speed limit on that highway, and the number of access points

(on-ramps and off-ramps) per mile. Our file contains

begin highway.dct, example 1
infile dictionary {

acc_rate spdlimit acc_pts
}
4.58 55 4.6
2.86 60 4.4
1.61 . 2.2
3.02 60 4.7

end highway.dct, example 1

This file can be read by typing the commands below. Stata displays the dictionary and reads the data:

. infile using highway
infile dictionary {

acc_rate spdlimit acc_pts
}
(4 observations read)
. list

acc_rate spdlimit acc_pts

1. 4.58 55 4.6
2. 2.86 60 4.4
3. 1.61 . 2.2
4. 3.02 60 4.7

Example 2: Specifying variable labels
We can include variable labels in a dictionary so that after we infile the data, the data will be fully

labeled. We could change highway.dct to read

begin highway.dct, example 2
infile dictionary {
* This is a comment and will be ignored by Stata
* You might type the source of the data here.

acc_rate ”Acc. Rate/Million Miles”
spdlimit ”Speed Limit (mph)”
acc_pts ”Access Pts/Mile”

}
4.58 55 4.6
2.86 60 4.4
1.61 . 2.2
3.02 60 4.7

end highway.dct, example 2

Now when we type infile using highway, Stata not only reads the data but also labels the variables.

Example 3: Specifying variable storage types
We can indicate the variable types in the dictionary. For instance, if we wanted to store acc rate as

a double and spdlimit as a byte, we could change highway.dct to read

infile (fixed format) — Import text data in fixed format with a dictionary 574

begin highway.dct, example 3
infile dictionary {
* This is a comment and will be ignored by Stata
* You might type the source of the data here.
double acc_rate ”Acc. Rate/Million Miles”
byte spdlimit ”Speed Limit (mph)”

acc_pts ”Access Pts/Mile”
}
4.58 55 4.6
2.86 60 4.4
1.61 . 2.2
3.02 60 4.7

end highway.dct, example 3

Because we do not indicate the variable type for acc pts, it is given the default variable type float (or
the type specified by the set type command).

Example 4: Reading string variables
By specifying the types, we can read string variables as well as numeric variables. For instance,

begin emp.dct
infile dictionary {
* data on employees
str20 name ”Name”

age ”Age”
int sex ”Sex coded 0 male 1 female”

}
”Lisa Gilmore” 25 1
Branton 32 1
’Bill Ross’ 27 0

end emp.dct

The strings can be delimited by single or double quotes, and quotes may be omitted altogether if the

string contains no blanks or other special characters.

Example 5: Specifying value labels
You may attach value labels to variables in the dictionary by using the colon notation:

begin emp2.dct
infile dictionary {
* data on name, sex, and age
str16 name ”Name”

sex:sexlbl ”Sex”
int age ”Age”

}
”Arthur Doyle” Male 22
”Mary Hope” Female 37
”Guy Fawkes” Male 48
”Karen Cain” Female 25

end emp2.dct

If you want the value labels to be created automatically, you must specify the automatic option on the
infile command. These data could be read by typing infile using emp2, automatic, assuming the
dictionary and data are stored in the file emp2.dct.

infile (fixed format) — Import text data in fixed format with a dictionary 575

Example 6: Separate the dictionary and data files
The data need not be in the same file as the dictionary. We might leave the highway data in

highway.raw and write a dictionary called highway.dct describing the data:

begin highway.dct, example 4
infile dictionary using highway {
* This dictionary reads the file highway.raw. If the
* file were called highway.txt, the first line would
* read ”dictionary using highway.txt”

acc_rate ”Acc. Rate/Million Miles”
spdlimit ”Speed Limit (mph)”
acc_pts ”Access Pts/Mile”

}
end highway.dct, example 4

Example 7: Ignoring the top of a file
The firstlineoffile() directive allows us to ignore lines at the top of the file. Consider the

following raw dataset:

begin mydata.raw
The following data were entered by Marsha Martinez. It was checked by
Helen Troy.
id income educ sex age
1024 25000 HS Male 28
1025 27000 C Female 24

end mydata.raw

Our dictionary might read

begin mydata.dct
infile dictionary using mydata {

_first(4)
int id ”Identification Number”
income ”Annual income”
str2 educ ”Highest educ level”
str6 sex
byte age

}
end mydata.dct

Example 8: Data spread across multiple lines
The line() and lines() directives tell Stata how to read our data when there are multiple records

per observation. We have the following in mydata2.raw:

infile (fixed format) — Import text data in fixed format with a dictionary 576

begin mydata2.raw
id income educ sex age
1024 25000 HS
Male
28
1025 27000 C
Female
24
1035 26000 HS
Male
32
1036 25000 C
Female
25

end mydata2.raw

We can read this with a dictionary mydata2.dct, which we will just let Stata list as it simultaneously
reads the data:

. infile using mydata2, clear
infile dictionary using mydata2 {

_first(2) * Begin reading on line 2
_lines(3) * Each observation takes 3 lines.
int id ”Identification Number” * Since _line is not specified, Stata
income ”Annual income” * assumes that it is 1.
str2 educ ”Highest educ level”
_line(2) * Go to line 2 of the observation.
str6 sex * (values for sex are located on line 2)
_line(3) * Go to line 3 of the observation.
int age * (values for age are located on line 3)

}
(4 observations read)
. list

id income educ sex age

1. 1024 25000 HS Male 28
2. 1025 27000 C Female 24
3. 1035 26000 HS Male 32
4. 1036 25000 C Female 25

Here is the really good part: we read these variables in order, but that was not necessary. We could just

as well have used the dictionary:

begin mydata2p.dct
infile dictionary using mydata2 {

_first(2)
_lines(3)
_line(1) int id ”Identification number”

income ”Annual income”
str2 educ ”Highest educ level”

_line(3) int age
_line(2) str6 sex

}
end mydata2p.dct

We would have obtained the same results just as quickly, the only difference being that our variables in

the final dataset would be in the order specified: id, income, educ, age, and sex.

infile (fixed format) — Import text data in fixed format with a dictionary 577

Technical note
You can use newline to specify where breaks occur, if you prefer:

begin highway.dct, example 5
infile dictionary {

acc_rate ”Acc. Rate/Million Miles”
spdlimit ”Speed Limit (mph)”

_newline acc_pts ”Access Pts/Mile”
}
4.58 55
4.6
2.86 60
4.4
1.61 .
2.2
3.02 60
4.7

end highway.dct, example 5

The line reading ‘1.61 .’ could have been read 1.61 (without the period), and the results would have
been unchanged. Because dictionaries do not go to new lines automatically, a missing value is assumed

for all values not found in the record.

Reading fixed-format files
Values in formatted data are sometimes packed one against the other with no intervening blanks. For

instance, the highway data might appear as

begin highway.raw, example 6
4.58554.6
2.86604.4
1.61 2.2
3.02604.7

end highway.raw, example 6

The first four columns of each record represent the accident rate; the next two columns, the speed limit;

and the last three columns, the number of access points per mile.

To read these data, you must specify the % infmt in the dictionary. Numeric % infmts are denoted by
a leading percent sign (%) followed optionally by a string of the form 𝑤 or 𝑤.𝑑, where 𝑤 and 𝑑 stand

for two integers. The first integer, 𝑤, specifies the width of the format. The second integer, 𝑑, specifies
the number of digits that are to follow the decimal point. 𝑑 must be less than or equal to 𝑤. Finally, a
character denoting the format type (f, g, or e) is appended. For example, %9.2f specifies an f format
that is nine characters wide and has two digits following the decimal point.

Numeric formats
The f format indicates that infile is to attempt to read the data as a number. When you do not

specify the % infmt in the dictionary, infile assumes the %f format. The width, 𝑤, being missing means
that infile is to attempt to read the data in free format.

As it starts reading each observation, infile reads a record into its buffer and sets a column pointer
to 1, indicating that it is currently on the first column. When infile processes a %f format, it moves the
column pointer forward through white space. It then collects the characters up to the next occurrence of

infile (fixed format) — Import text data in fixed format with a dictionary 578

white space and attempts to interpret those characters as a number. The column pointer is left at the first

occurrence of white space following those characters. If the next variable is also free format, the logic

repeats.

When you explicitly specify the field width 𝑤, as in %𝑤f, infile does not skip leading white space.
Instead, it collects the next 𝑤 characters starting at the column pointer and attempts to interpret the result

as a number. The column pointer is left at the old value of the column pointer plus 𝑤, that is, on the first
character following the specified field.

Example 9: Specifying the width of fields
If the data above were stored in highway.raw, we could create the following dictionary to read the

data:

begin highway.dct, example 6
infile dictionary using highway {

acc_rate %4f ”Acc. Rate/Million Miles”
spdlimit %2f ”Speed Limit (mph)”
acc_pts %3f ”Access Pts/Mile

}
end highway.dct, example 6

When we explicitly indicate the field width, infile does not skip intervening characters. The first four
columns are used for the variable acc rate, the next two for spdlimit, and the last three for acc pts.

Technical note
The 𝑑 specification in the %𝑤.𝑑f indicates the number of implied decimal places in the data. For

instance, the string 212 read in a %3.2f format represents the number 2.12. Do not specify 𝑑 unless your
data have elements of this form. The 𝑤 alone is sufficient to tell infile how to read data in which the

decimal point is explicitly indicated.

When you specify 𝑑, Stata takes it only as a suggestion. If the decimal point is explicitly indicated in
the data, that decimal point always overrides the 𝑑 specification. Decimal points are also not implied if

the data contain an E, e, D, or d, indicating scientific notation.

Fields are right-justified before implying decimal points. Thus ‘2 ’, ‘ 2 ’, and ‘ 2’ are all read as 0.2
by the %3.1f format.

Technical note
The g and e formats are the same as the f format. You can specify any of these letters interchangeably.

The letters g and e are included as a convenience to those familiar with Fortran, in which the e format
indicates scientific notation. For example, the number 250 could be indicated as 2.5E+02 or 2.5D+02.
Fortran programmers would refer to this as an E7.5 format, and in Stata, this format would be indicated
as %7.5e. In Stata, however, you need specify only the field width 𝑤, so you could read this number by
using %7f, %7g, or %7e.

The g format is really a Fortran output format that indicates a freer format than f. In Stata, the two
formats are identical.

Throughout this section, you may freely substitute the g or e formats for the f format.

infile (fixed format) — Import text data in fixed format with a dictionary 579

Technical note
Be careful to distinguish between % fmts and % infmts. % fmts are also known as display formats—they

describe how a variable is to look when it is displayed; see [U] 12.5 Formats: Controlling how data

are displayed. % infmts are also known as input formats—they describe how a variable looks when you

input it. For instance, there is an output date format, %td, but there is no corresponding input format.
(See [U] 25 Working with dates and times for recommendations on how to read dates.) For the other

formats, we have attempted to make the input and output definitions as similar as possible. Thus we

include g, e, and f % infmts, even though they all mean the same thing, because g, e, and f are also

% fmts.

String formats
The s and S formats are used for reading strings. The syntax is %𝑤s or %𝑤S, where the 𝑤 is optional.

If you do not specify the field width, your strings must either be enclosed in quotes (single or double) or

not contain any characters other than letters, numbers, and “ ”.

This may surprise you, but the s format can be used for reading numeric variables, and the f format
can be used for reading string variables! When you specify the field width, 𝑤, in the %𝑤f format, all
embedded blanks in the field are removed before the result is interpreted. They are not removed by the

%𝑤s format.
For instance, the %3f format would read “- 2”, “-2 ”, or “ -2” as the number −2. The %3s format

would not be able to read “- 2” as a number, because the sign is separated from the digit, but it could read

“ -2” or “-2 ”. The %𝑤f format removes blanks; datasets written by some Fortran programs separate the
sign from the number.

There are, however, some side effects of this practice. The string “2 2” will be read as 22 by a %3f
format. Most Fortran compilers would read this number as 202. The %3s format would issue a warning
and store a missing value.

Now consider reading the string “a b” into a string variable. Using a %3s format, Stata will store it as
it appears: a b. Using a %3f format, however, it will be stored as ab—the middle blank will be removed.

%𝑤S is a special case of %𝑤s. A string read with %𝑤s will have leading and trailing blanks removed,
but a string read with %𝑤S will not have them removed.

Examples using the %s format are provided below, after we discuss specifying column and line num-
bers.

Specifying column and line numbers
column() jumps to the specified column. For instance, the documentation of some dataset indicates

that the variable age is recorded as a two-digit number in column 47. You could read this by coding
column(47) age %2f

After typing this, you are now at column 49, so if immediately following age there were a one-digit

number recording sex as 0 or 1, you could code

column(47) age %2f
sex %1f

infile (fixed format) — Import text data in fixed format with a dictionary 580

or, if you wanted to be explicit about it, you could instead code

column(47) age %2f
column(49) sex %1f

It makes no difference. If at column 50 there were a one-digit code for race and you wanted to read it
but skip reading the sex code, you could code

column(47) age %2f
column(50) race %1f

You could equivalently skip forward using skip():

column(47) age %2f
skip(1) race %1f

One advantage of column() over skip is that it lets you jump forward or backward in a record. If you
wanted to read race and then age, you could code

column(50) race %1f
column(47) age %2f

If the data you are reading have multiple lines per observation (sometimes said as multiple records

per observation), you can tell infile how many lines per record there are by using lines():

lines(4)

lines() appears only once in a dictionary. Good style says that it should be placed near the top of the
dictionary, but Stata does not care.

When you want to go to a particular line, include the line() directive. In our example, let’s assume
that race, sex, and age are recorded on the second line of each observation:

lines(4)
line(2)

column(47) age %2f
column(50) race %1f

Let’s assume that id is recorded on line 1.

lines(4)
line(1)

column(1) id %4f
line(2)

column(47) age %2f
column(50) race %1f

line() works like column() in that you can jump forward or backward, so these data could just as
well be read by

lines(4)
line(2)

column(47) age %2f
column(50) race %1f

line(1)
column(1) id %4f

Remember that this dataset has four lines per observation, and yet we have never referred to line(3) or
line(4). That is okay. Also, at the end of our dictionary, we are on line 1, not line 4. That is okay, too.
infile will still get to the next observation correctly.

infile (fixed format) — Import text data in fixed format with a dictionary 581

Technical note
Another way to move between records is newline(). newline() is to line() as skip() is to

column(), which is to say, newline() can only go forward. There is one difference: skip() has
its uses, whereas newline() is useful only for backward capability with older versions of Stata.

skip() has its uses because sometimes we think in columns and sometimes we think in widths.

Some data documentation might include the sentence, “At column 54 are recorded the answers to the

25 questions, with one column allotted to each.” If we want to read the answers to questions 1 and 5, it

would indeed be natural to code

column(54) q1 %1f
skip(3)

q5 %1f

Nobody has ever read data documentation with the statement, “Demographics are recorded on record

2, and two records after that are the income values.” The documentation would instead say, “Record

2 contains the demographic information and record 4, income.” The newline() way of thinking is

based on what is convenient for the computer, which does, after all, have to move past a certain number

of records. That, however, is no reason for making you think that way.

Before that thought occurred to us, Stata users specified newline() to go forward a number of

records. They still can, so their old dictionaries will work. When you use newline() and do not specify
lines(), you must move past the correct number of records so that, at the end of the dictionary, you
are on the last record. In this mode, when Stata reexecutes the dictionary to process the next observation,

it goes forward one record.

Examples of reading fixed-format files

Example 10: A file with two lines per observation
In this example, each observation occupies two lines. The first 2 observations in the dataset are

John Dunbar 10001 101 North 42nd Street
1010111111
Sam K. Newey Jr. 10002 15663 Roustabout Boulevard
0101000000

The first observation tells us that the name of the respondent is John Dunbar; that his ID is 10001; that

his address is 101 North 42nd Street; and that his answers to questions 1–10 were yes, no, yes, no, yes,

yes, yes, yes, yes, and yes.

The second observation tells us that the name of the respondent is Sam K. Newey Jr.; that his ID is

10002; that his address is 15663 Roustabout Boulevard; and that his answers to questions 1–10 were no,

yes, no, yes, no, no, no, no, no, and no.

To see the layout within the file, we can temporarily add two rulers to show the appropriate columns:

----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
John Dunbar 10001 101 North 42nd Street
1010111111
Sam K. Newey Jr. 10002 15663 Roustabout Boulevard
0101000000
----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

infile (fixed format) — Import text data in fixed format with a dictionary 582

Each observation in the data appears in two physical lines within our text file. We had to check in our

editor to be sure that there really were new-line characters (for example, “hard returns”) after the address.

This is important because some programs will wrap output for you so that one line may appear as many

lines. The two seemingly identical files will differ in that one has a hard return and the other has a soft

return added only for display purposes.

In our data, the name occupies columns 1–32; a person identifier occupies columns 33–37; and the

address occupies columns 40–80. Our worksheet revealed that the widest address ended in column 80.

The text file containing these data is called fname.txt. Our dictionary file looks like this:

begin fname.dct
infile dictionary using fname.txt {
*
* Example reading in data where observations extend across more
* than one line. The next line tells infile there are 2 lines/obs:
*
_lines(2)
*

str50 name %32s ”Name of respondent”
_column(33) long id %5f ”Person id”
_skip(2) str50 addr %41s ”Address”
_line(2)
_column(1) byte q1 %1f ”Question 1”

byte q2 %1f ”Question 2”
byte q3 %1f ”Question 3”
byte q4 %1f ”Question 4”
byte q5 %1f ”Question 5”
byte q6 %1f ”Question 6”
byte q7 %1f ”Question 7”
byte q8 %1f ”Question 8”
byte q9 %1f ”Question 9”
byte q10 %1f ”Question 10”

}
end fname.dct

Up to five pieces of information may be supplied in the dictionary for each variable: the location of

the data, the storage type of the variable, the name of the variable, the input format, and the variable

label.

Thus the str50 line says that the first variable is to be given a storage type of str50, called name,
and is to have the variable label “Name of respondent”. The %32s is the input format, which tells Stata
how to read the data. The s tells Stata not to remove any embedded blanks; the 32 tells Stata to go across
32 columns when reading the data.

The next line says that the second variable is to be assigned a storage type of long, named id, and
be labeled “Person id”. Stata should start reading the information for this variable in column 33. The f
tells Stata to remove any embedded blanks, and the 5 says to read across five columns.

The third variable is to be given a storage type of str50, called addr, and be labeled “Address”. The
skip(2) directs Stata to skip two columns before beginning to read the data for this variable, and the
%41s instructs Stata to read across 41 columns and not to remove embedded blanks.

line(2) instructs Stata to go to line 2 of the observation.

The remainder of the data is 0/1 coded, indicating the answers to the questions. It would be convenient

if we could use a shorthand to specify this portion of the dictionary, but wemust supply explicit directives.

infile (fixed format) — Import text data in fixed format with a dictionary 583

Technical note
In the preceding example, there were two pieces of information about location: where the data begin

for each variable (the column(), skip(), line()) and how many columns the data span (the %32s,
%5f, %41s, %1f). In our dictionary, some of this information was redundant. After reading name, Stata
had finished with 32 columns of information. Unless instructed otherwise, Stata would proceed to the

next column—column 33—to begin reading information about id. The column(33)was unnecessary.

The skip(2) was necessary, however. Stata had read 37 columns of information and was ready to
look at column 38. Although the address information does not begin until column 40, columns 38 and

39 contain blanks. Because these are leading blanks instead of embedded blanks, Stata would just ignore

them without any trouble. The problem is with the %41s. If Stata begins reading the address information
from column 38 and reads 41 columns, Stata would stop reading in column 78 (78 − 41 + 1 = 38), but

the widest address ends in column 80. We could have omitted the skip(2) if we had specified an input
format of %43s.

The line(2) was necessary, although we could have read the second line by coding newline
instead.

The column(1) could have been omitted. After the line(), Stata begins in column 1.

See the next example for a dataset in which both pieces of location information are required.

Example 11: Manipulating the column pointer
The following file contains six variables in a variety of formats. In the dictionary, we read the variables

fifth and sixth out of order by forcing the column pointer.

begin example.dct
infile dictionary {

first %3f
double second %2.1f

third %6f
_skip(2) str4 fourth %4s
_column(21) sixth %4.1f
_column(18) fifth %2f

}
1.2125.7e+252abcd 1 .232
1.3135.7 52efgh2 5
1.41457 52abcd 3 100.
1.5155.7D+252efgh04 1.7
16 16 .57 52abcd 5 1.71

end example.dct

Assuming that the above is stored in a file called example.dct, we can infile and list it by typing

. infile using example
infile dictionary {

first %3f
double second %2.1f

third %6f
_skip(2) str4 fourth %4s
_column(21) sixth %4.1f
_column(18) fifth %2f

}
(5 observations read)

infile (fixed format) — Import text data in fixed format with a dictionary 584

. list

first second third fourth sixth fifth

1. 1.2 1.2 570 abcd .232 1
2. 1.3 1.3 5.7 efgh .5 2
3. 1.4 1.4 57 abcd 100 3
4. 1.5 1.5 570 efgh 1.7 4
5. 16 1.6 .57 abcd 1.71 5

Reading fixed-block files

Technical note
The lrecl(#) directive is used for reading datasets that do not have end-of-line delimiters (carriage

return, line feed, or some combination of these). Such datasets are typical of IBM mainframes, where

they are known as fixed block, or FB. The abbreviation LRECL is IBMmainframe jargon for logical record

length.

In a fixed-block dataset, each # characters are to be interpreted as a record. For instance, consider the

data

1 21
2 42
3 63

In fixed-block format, these data might be recorded as

begin mydata.ibm
1 212 423 63

end mydata.ibm

and you would be told, on the side, that the LRECL is 4. If you then pass along that information to infile,
it can read the data:

begin mydata.dct
infile dictionary using mydata.ibm {

_lrecl(4)
int id
int age

}
end mydata.dct

When you do not specify the lrecl(#) directive, infile assumes that each line ends with the

standard text EOL delimiter (which can be a line feed, a carriage return, a line feed followed by a carriage

return, or a carriage return followed by a line feed). When you specify lrecl(#), infile reads the
data in blocks of # characters and then acts as if that is a line.

A common mistake in processing fixed-block datasets is to use an incorrect LRECL value, such as 160

when it is really 80. To understand what can happen, pretend that you thought the LRECL in your data

was 6 rather than 4. Taking the characters in groups of 6, the data appear as

1 212
423 63

infile (fixed format) — Import text data in fixed format with a dictionary 585

Stata cannot verify that you have specified the correct LRECL, so if the data appear incorrect, verify that

you have the correct number.

The maximum LRECL infile allows is 524,275.

Reading EBCDIC files
In the previous section, we discussed the lrecl(#) directive that is often necessary for files that

originated on mainframes and do not have end-of-line delimiters.

Such files sometimes are not even plain text files. Sometimes, these files have an alternate character

encoding known as extended binary coded decimal interchange code (EBCDIC). The EBCDIC encoding

was created in the 1960s by IBM for its mainframes.

Because EBCDIC is a different character encoding, we cannot even show you a printed example; it

would be unreadable. Nevertheless, Stata can convert EBCDIC files to ASCII (see [D] filefilter) and can

read data from EBCDIC files.

If you have a data file encoded with EBCDIC, you undoubtedly also have a description of it from which

you can create a dictionary that includes the LRECL of the file (EBCDIC files do not typically have end-of-

line delimiters) and the character positions of the fields in the file. You create a dictionary for an EBCDIC

file just as you would for a plain text file, using the Do-file Editor or another text editor, and being sure to

use the lrecl() directive in the dictionary to specify the LRECL. You then simply specify the ebcdic
option for infile, and Stata will convert the characters in the file from EBCDIC to ASCII on the fly:

. infile using mydict, ebcdic

Also see
[D] infile (free format) — Import unformatted text data

[D] infix (fixed format) — Import text data in fixed format

[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

[U] 22 Entering and importing data

infile (free format) — Import unformatted text data

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
infile reads into memory from a disk a dataset that is not in Stata format.

Here we discuss using infile to read free-format data, meaning datasets in which Stata does not

need to know the formatting information. Another variation on infile allows reading fixed-format

data; see [D] infile (fixed format). Yet another alternative is import delimited, which is easier to use
if your data are tab- or comma-separated and contain 1 observation per line. Stata has other commands

for reading data, too. If you are not certain that infile will do what you are looking for, see [D] import

and [U] 22 Entering and importing data.

After the data are read into Stata, they can be saved in a Stata-format dataset; see [D] save.

Quick start
Import unformatted text data from mydata1.raw, and name the imported float variables v1, v2, and

v3
infile v1 v2 v3 using mydata1

Same as above, but skip 1 variable in the original file between v1 and v2
infile v1 _skip(1) v2 v3 using mydata1

Same as above, and indicate that v1 is a byte variable, v2 is a string variable of length 30, and v3 is a
double variable

infile byte v1 _skip(1) str30 v2 double v3 using mydata1

Also read v4 as a double
infile byte v1 _skip(1) str30 v2 double(v3 v4) using mydata1

Import unformatted text data from mydata2.raw where 74 observations on v1, v2, and v3 are stored in
rows instead of columns

infile v1 v2 v3 using mydata2, byvariable(74)

Same as above, but import mydata2.csv
infile v1 v2 v3 using mydata2.csv, byvariable(74)

Menu
File > Import > Unformatted text data

586

infile (free format) — Import unformatted text data 587

Syntax
infile varlist [skip[(#)] [varlist [skip[(#)] . . .]]] using filename [if] [in]

[, options]

If filename is specified without an extension, .raw is assumed. If filename contains embedded spaces,
remember to enclose it in double quotes.

options Description

Main

clear replace data in memory

Options

automatic create value labels from nonnumeric data

byvariable(#) organize external file by variables; # is number of observations

Options

� � �
Main �

clear specifies that it is okay for the new data to replace the data that are currently in memory. To ensure

that you do not lose something important, infile will refuse to read new data if data are already in

memory. clear allows infile to replace the data in memory. You can also drop the data yourself
by typing drop all before reading new data.

� � �
Options �

automatic causes Stata to create value labels from the nonnumeric data it reads. It also automatically

widens the display format to fit the longest label.

byvariable(#) specifies that the external data file is organized by variables rather than by observa-

tions. All the observations on the first variable appear, followed by all the observations on the second

variable, and so on. Time-series datasets sometimes come in this format.

Remarks and examples
This section describes infile features for reading data in free or comma-separated–value format.

Remarks are presented under the following headings:

Reading free-format data
Reading comma-separated data
Specifying variable types
Reading string variables
Skipping variables
Skipping observations
Reading time-series data

infile (free format) — Import unformatted text data 588

Reading free-format data
In free format, data are separated by one or more white-space characters—blanks, tabs, or new lines

(carriage return, line feed, or carriage-return/line feed combinations). Thus one observation may span

any number of lines.

Numeric missing values are indicated by single periods (“.”).

Example 1
In the file highway.raw, we have information on the accident rate per million vehicle miles along

a stretch of highway, the speed limit on that highway, and the number of access points (on-ramps and

off-ramps) per mile. Our file contains

begin highway.raw, example 1
4.58 55 4.6
2.86 60 4.4
1.61 . 2.2
3.02 60
4.7

end highway.raw, example 1

We can read these data by typing

. infile acc_rate spdlimit acc_pts using highway
(4 observations read)
. list

acc_rate spdlimit acc_pts

1. 4.58 55 4.6
2. 2.86 60 4.4
3. 1.61 . 2.2
4. 3.02 60 4.7

The spacing of the numbers in the original file is irrelevant.

Technical note
Missing values need not be indicated by one period. The third observation on the speed limit is missing

in example 1. The raw data file indicates this by recording one period. Let’s assume, instead, that the

missing value was indicated by the word unknown. Thus the raw data file appears as

begin highway.raw, example 2
4.58 55 4.6
2.86 60 4.4
1.61 unknown 2.2
3.02 60
4.7

end highway.raw, example 2

Here is the result of infiling these data:

. infile acc_rate spdlimit acc_pts using highway
’unknown’ cannot be read as a number for spdlimit[3]
(4 observations read)

infile (free format) — Import unformatted text data 589

infile warned us that it could not read the word unknown, stored a missing, and then continued to read
the rest of the dataset. Thus aside from the warning message, results are unchanged.

Because not all packages indicatemissing data in the sameway, this feature can be useful when reading

data. Whenever infile sees something that it does not understand, it warns you, records a missing, and
continues. If, on the other hand, the missing values were recorded not as unknown but as, say, 99, Stata
would have had no difficulty reading the number, but it would also have stored 99 rather than missing.

To convert such coded missing values to true missing values, see [D] mvencode.

Reading comma-separated data
In comma-separated–value format, data are separated by commas. You may mix comma-

separated–value and free formats. Missing values are indicated either by single periods or by multiple

commas that serve as placeholders, or both. As with free format, 1 observation may span any number of

input lines.

Example 2
We can modify the format of highway.raw used in example 1 without affecting infile’s ability to

read it. The dataset can be read with the same command, and the results would be the same if the file

instead contained

begin highway.raw, example 3
4.58,55 4.6
2.86, 60,4.4
1.61,,2.2
3.02,60
4.7

end highway.raw, example 3

Specifying variable types
The variable names you type after the word infile are new variables. The syntax for a new variable

is

[type] new varname[:label name]

A full discussion of this syntax can be found in [U] 11.4 varname and varlists. As a quick review, new

variables are, by default, of type float. This default can be overridden by preceding the variable name
with a storage type (byte, int, long, float, double, or str#) or by using the set type command. A
list of variables placed in parentheses will be given the same type. For example,

double(first var second var . . . last var)

causes first var second var . . . last var to all be of type double.

There is also a shorthand syntax for variable names with numeric suffixes. The varlist var1-var4 is
equivalent to specifying var1 var2 var3 var4.

infile (free format) — Import unformatted text data 590

Example 3
In the highway example, we could infile the data acc rate, spdlimit, and acc pts and force

the variable spdlimit to be of type int by typing

. infile acc_rate int spdlimit acc_pts using highway, clear
(4 observations read)

We could force all variables to be of type double by typing

. infile double(acc_rate spdlimit acc_pts) using highway, clear
(4 observations read)

We could call the three variables v1, v2, and v3 and make them all of type double by typing

. infile double(v1-v3) using highway, clear
(4 observations read)

Reading string variables
By explicitly specifying the types, you can read string variables, as well as numeric variables.

Example 4
Typing infile str20 name age sex using myfile would read

begin myfile.raw
”Sherri Holliday” 25 1
Branton 32 1
”Bill Ross” 27,0

end myfile.raw

or even

begin myfile.raw, variation 2
’Sherri Holliday’ 25,1 ”Branton” 32
1,’Bill Ross’, 27,0

end myfile.raw, variation 2

The spacing is irrelevant, and either single or double quotes may be used to delimit strings. The quotes do

not count when calculating the length of strings. Quotes may be omitted altogether if the string contains

no blanks or other special characters (anything other than letters, numbers, or underscores).

Typing

. infile str20 name age sex using myfile, clear
(3 observations read)

makes name a str20 and age and sex floats. We might have typed

. infile str20 name age int sex using myfile, clear
(3 observations read)

to make sex an int or

. infile str20 name int(age sex) using myfile, clear
(3 observations read)

to make both age and sex ints.

infile (free format) — Import unformatted text data 591

Technical note
infile can also handle nonnumeric data by using value labels. We will briefly review value labels,

but you should see [U] 12.6.3 Value labels for a complete description.

A value label is a mapping from the set of integers to words. For instance, if we had a variable called

sex in our data that represented the sex of the individual, we might code 0 for male and 1 for female. We

could then just remember that every time we see a value of 0 for sex, that observation refers to a male,
whereas 1 refers to a female.

Even better, we could inform Stata that 0 represents males and 1 represents females by typing

. label define sexfmt 0 ”Male” 1 ”Female”

Then we must tell Stata that this coding scheme is to be associated with the variable sex. This is typically
done by typing

. label values sex sexfmt

Thereafter, Stata will print Male rather than 0 and Female rather than 1 for this variable.

Stata has the ability to turn a value label around. It can go not only from numeric codes to words such

as “Male” and “Female” but also from words to numeric codes. We tell infile the value label that goes
with each variable by placing a colon (:) after the variable name and typing the name of the value label.
Before we do that, we use the label define command to inform Stata of the coding.

Let’s assume that we wish to infile a dataset containing the words Male and Female and that we
wish to store numeric codes rather than the strings themselves. This will result in considerable data

compression, especially if we store the numeric code as a byte. We have a dataset named persons.raw
that contains name, sex, and age:

begin persons.raw
”Arthur Doyle” Male 22
”Mary Hope” Female 37
”Guy Fawkes” Male 48
”Carrie House” Female 25

end persons.raw

Here is how we read and encode it at the same time:

. label define sexfmt 0 ”Male” 1 ”Female”

. infile str16 name sex:sexfmt age using persons
(4 observations read)
. list

name sex age

1. Arthur Doyle Male 22
2. Mary Hope Female 37
3. Guy Fawkes Male 48
4. Carrie House Female 25

infile (free format) — Import unformatted text data 592

The str16 in the infile command applies only to the name variable; sex is a numeric variable, which
we can prove by typing

. list, nolabel

name sex age

1. Arthur Doyle 0 22
2. Mary Hope 1 37
3. Guy Fawkes 0 48
4. Carrie House 1 25

Technical note
When infile is directed to use a value label and it finds an entry in the file that does not match any

of the codings recorded in the label, it prints a warning message and stores missing for the observation.

By specifying the automatic option, you can instead have infile automatically add new entries to the

value label.

Say that we have a dataset containing three variables. The first, region of the country, is a character

string; the remaining two variables, which we will just call var1 and var2, contain numbers. We have

stored the data in a file called geog.raw:

begin geog.raw
”NE” 31.23 87.78
’NCntrl’ 29.52 98.92
South 29.62 114.69
West 28.28 218.92
NE 17.50 44.33
NCntrl 22.51 55.21

end geog.raw

The easiest way to read this dataset is to type

. infile str6 region var1 var2 using geog

making region a string variable. We do not want to do this, however, because we are practicing for

reading a dataset like this containing 20,000 observations. If region were numerically encoded and

stored as a byte, there would be a 5-byte saving per observation, reducing the size of the data by 100,000
bytes. We also do not want to bother with first creating the value label. Using the automatic option,
infile creates the value label automatically as it encounters new regions.

. infile byte region:regfmt var1 var2 using geog, automatic clear
(6 observations read)
. list, sep(0)

region var1 var2

1. NE 31.23 87.78
2. NCntrl 29.52 98.92
3. South 29.62 114.69
4. West 28.28 218.92
5. NE 17.5 44.33
6. NCntrl 22.51 55.21

infile (free format) — Import unformatted text data 593

infile automatically created and defined a new value label called regfmt. We can use the label list
command to view its contents:

. label list regfmt
regfmt:

1 NE
2 NCntrl
3 South
4 West

The value label need not be undefined before we use infilewith the automatic option. If the value
label regfmt had been previously defined as

. label define regfmt 2 ”West”

the result of label list after the infile would have been

regfmt:
2 West
3 NE
4 NCntrl
5 South

The automatic option is convenient, but there is one reason for using it. Suppose that we had a

dataset containing, among other things, information about an individual’s sex. We know that the sex

variable is supposed to be coded male and female. If we read the data by using the automatic option
and if one of the records contains fmlae, then infile will blindly create a third sex rather than print a
warning.

Skipping variables
Specifying skip instead of a variable name directs infile to ignore the variable in that location.

This feature makes it possible to extract manageable subsets from large disk datasets. A number of

contiguous variables can be skipped by specifying skip(#), where # is the number of variables to

ignore.

Example 5
In the highway example from example 1, the data file contained three variables: acc rate,

spdlimit, and acc pts. We can read the first two variables by typing

. infile acc_rate spdlimit _skip using highway
(4 observations read)

We can read the first and last variables by typing

. infile acc_rate _skip acc_pts using highway, clear
(4 observations read)

We can read the first variable by typing

. infile acc_rate _skip(2) using highway, clear
(4 observations read)

skipmay be specified more than once. If we had a dataset containing four variables—say, a, b, c, and
d—and we wanted to read just a and c, we could type infile a skip c skip using filename.

infile (free format) — Import unformatted text data 594

Skipping observations
Subsets of observations can be extracted by specifying if exp, which also makes it possible to extract

manageable subsets from large disk datasets. Do not, however, use the variable N in exp. Use the in
range qualifier to refer to observation numbers within the disk dataset.

Example 6
Again referring to the highway example, if we type

. infile acc_rate spdlimit acc_pts if acc_rate>3 using highway, clear
(2 observations read)

only observations for which acc rate is greater than 3 will be infiled. We can type

. infile acc_rate spdlimit acc_pts in 2/4 using highway, clear
(eof not at end of obs)
(3 observations read)

to read only the second, third, and fourth observations.

Reading time-series data
If you are dealing with time-series data, you may receive datasets organized by variables rather than

by observations. All the observations on the first variable appear, followed by all the observations on the

second variable, and so on. The byvariable(#) option specifies that the external data file is organized
in this way. You specify the number of observations in the parentheses, because infile needs to know
that number to read the data properly. You can also mark the end of one variable’s data and the beginning

of another’s data by placing a semicolon (“;”) in the raw data file. You may then specify a number larger

than the number of observations in the dataset and leave it to infile to determine the actual number of
observations. This method can also be used to read unbalanced data.

Example 7
We have time-series data on 4 years recorded in the file time.raw. The dataset contains information

on year, amount, and cost, and is organized by variable:

begin time.raw
1980 1981 1982 1983
14 17 25 30
120 135 150
180

end time.raw

We can read these data by typing

. infile year amount cost using time, byvariable(4) clear
(4 observations read)
. list

year amount cost

1. 1980 14 120
2. 1981 17 135
3. 1982 25 150
4. 1983 30 180

infile (free format) — Import unformatted text data 595

If the data instead contained semicolonsmarking the end of each series and had no information for amount

in 1983, the raw data might appear as

1980 1981 1982 1983 ;
14 17 25 ;
120 135 150
180 ;

We could read these data by typing

. infile year amount cost using time, byvariable(100) clear
(4 observations read)
. list

year amount cost

1. 1980 14 120
2. 1981 17 135
3. 1982 25 150
4. 1983 . 180

Also see
[D] infile (fixed format) — Import text data in fixed format with a dictionary

[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

[U] 22 Entering and importing data

infix (fixed format) — Import text data in fixed format

Description Quick start Menu Syntax Options Remarks and examples Also see

Description
infix reads into memory from a disk dataset that is not in Stata format. infix requires that the

data be in fixed-column format. Note that the column is byte based. The number of columns means the

number of bytes in the file. The text file filename is treated as a stream of bytes, no encoding is assumed.

If string data are encoded as ASCII or UTF-8, they will be imported correctly.

In the first syntax, if using filename2 is not specified on the command line and using filename is not
specified in the dictionary, the data are assumed to begin on the line following the closing brace. infix
reads the data in a two-step process. You first create a disk file describing how the data are recorded.

You tell infix to read that file—called a dictionary—and from there, infix reads the data. The data
can be in the same file as the dictionary or in a different file.

In its second syntax, you tell infix how to read the data right on the command line with no interme-

diate file.

infile and import delimited are alternatives to infix. infile can also read data in fixed for-
mat—see [D] infile (fixed format)—and it can read data in free format—see [D] infile (free format).

Most people think that infix is easier to use for reading fixed-format data, but infile has more fea-
tures. If your data are not fixed format, you can use import delimited; see [D] import delimited.

import delimited allows you to specify the source file’s encoding and then performs a conversion to
UTF-8 encoding during import. If you are not certain that infix will do what you are looking for, see
[D] import and [U] 22 Entering and importing data.

Quick start
Read v1 from columns 1 to 6 and v2 from column 7 using mydata.raw

infix v1 1-6 v2 7 using mydata

Same as above, but read v1 as a string variable
infix str v1 1-6 v2 7 using mydata

Same as above, but for 2-line records with v2 in column 1 of the second line
infix 2 lines 1: v1 1-6 2: v2 1 using mydata

Same as above, but for mydata.txt
infix 2 lines 1: v1 1-6 2: v2 1 using mydata.txt

Same as above, but with data beginning on line 3

infix 3 firstlineoffile 2 lines 1: v1 1-6 2: v2 1 using mydata.txt

Same as above, but with instructions for reading the data contained in dictionary file mydata.dct
infix using mydata, using(mydata.txt)

Menu
File > Import > Text data in fixed format

596

infix (fixed format) — Import text data in fixed format 597

Syntax
infix using dfilename [if] [in] [, using(filename2) clear]

infix specifications using filename [if] [in] [, clear]

If dfilename is specified without an extension, .dct is assumed. If dfilename contains embedded spaces,
remember to enclose it in double quotes. dfilename, if it exists, contains

begin dictionary file
infix dictionary [using filename] {

* comments preceded by asterisk may appear freely
specifications

}
(your data might appear here)

end dictionary file

If filename is specified without an extension, .raw is assumed. If filename contains embedded spaces,
remember to enclose it in double quotes.

specifications is

firstlineoffile
lines
#:
/
[byte | int | float | long | double | str] varlist [#:]#[-#]

Options

� � �
Main �

using(filename2) specifies the name of a file containing the data. If using() is not specified, the data
are assumed to follow the dictionary in dfilename, or if the dictionary specifies the name of some other

file, that file is assumed to contain the data. If using(filename2) is specified, filename2 is used to

obtain the data, even if the dictionary says otherwise. If filename2 is specified without an extension,

.raw is assumed. If filename2 contains embedded spaces, remember to enclose it in double quotes.

clear specifies that it is okay for the new data to replace what is currently in memory. To ensure that you

do not lose something important, infix will refuse to read new data if data are already in memory.

clear allows infix to replace the data in memory. You can also drop the data yourself by typing
drop all before reading new data.

Specifications
firstlineoffile (abbreviation first) is rarely specified. It states the line of the file at which the

data begin. You need not specify first when the data follow the dictionary; infix can figure that
out for itself. You can specify first when only the data appear in a file and the first few lines of that

file contain headers or other markers.

first appears only once in the specifications.

infix (fixed format) — Import text data in fixed format 598

lines states the number of lines per observation in the file. Simple datasets typically have “1 lines”.
Large datasets often have many lines (sometimes called records) per observation. lines is optional,
even when there is more than one line per observation, because infix can sometimes figure it out for
itself. Still, if 1 lines is not right for your data, it is best to specify the appropriate number of lines.

lines appears only once in the specifications.

#: tells infix to jump to line # of the observation. Consider a file with 4 lines, meaning four lines
per observation. 2: says to jump to the second line of the observation. 4: says to jump to the fourth
line of the observation. You may jump forward or backward: infix does not care, and there is no
inefficiency in going forward to 3:, reading a few variables, jumping back to 1:, reading another
variable, and jumping back again to 3:.

You need not ensure that, at the end of your specification, you are on the last line of the observation.

infix knows how to get to the next observation because it knows where you are and it knows lines,
the total number of lines per observation.

#: may appear many times in the specifications.

/ is an alternative to #:. / goes forward one line. // goes forward two lines. We do not recommend

using / because #: is better. If you are currently on line 2 of an observation and want to get to line 6,
you could type ////, but your meaning is clearer if you type 6:.

/ may appear many times in the specifications.

[byte | int | float | long | double | str] varlist [#:]#[-#] instructs infix to read a variable or,

sometimes, more than one.

The simplest form of this is varname #, such as sex 20. That says that variable varname be read

from column # of the current line; that variable sex be read from column 20; and that here, sex is a

one-digit number.

varname #-#, such as age 21-23, says that varname be read from the column range specified; that

age be read from columns 21 through 23; and that here, age is a three-digit number.

You can prefix the variablewith a storage type. str name 25-44means to read the string variable name
from columns 25 through 44. Note that the string variable name consists of 44−25+1 = 20 bytes. If

you do not specify str, the variable is assumed to be numeric. You can specify the numeric subtype
if you wish. If you specify str, infix will automatically assign the appropriate string variable type,
str# or strL. Imported strings may be up to 100,000 bytes.

You can specify more than one variable, with or without a type. byte q1-q5 51-55 means read

variables q1, q2, q3, q4, and q5 from columns 51 through 55 and store the five variables as bytes.

Finally, you can specify the line on which the variable(s) appear. age 2:21-23 says that age is to

be obtained from the second line, columns 21 through 23. Another way to do this is to put together

the #: directive with the input-variable directive: 2: age 21-23. There is a difference, but not with
respect to reading the variable age. Let’s consider two alternatives:

1: str name 25-44 age 2:21-23 q1-q5 51-55
1: str name 25-44 2: age 21-23 q1-q5 51-55

The difference is that the first directive says that variables q1 through q5 are on line 1, whereas the
second says that they are on line 2.

When the colon is put in front, it indicates the line on which variables are to be found when we

do not explicitly say otherwise. When the colon is put inside, it applies only to the variable under

consideration.

infix (fixed format) — Import text data in fixed format 599

Remarks and examples
Remarks are presented under the following headings:

Two ways to use infix
Reading string variables
Reading data with multiple lines per observation
Reading subsets of observations

Two ways to use infix
There are two ways to use infix. One is to type the specifications that describe how to read the

fixed-format data on the command line:

. infix acc_rate 1-4 spdlimit 6-7 acc_pts 9-11 using highway.raw

The other is to type the specifications into a file,

begin highway.dct, example 1
infix dictionary using highway.raw {

acc_rate 1-4
spdlimit 6-7
acc_pts 9-11

}
end highway.dct, example 1

and then, in Stata, type

. infix using highway.dct

The method you use makes no difference to Stata. The first method is more convenient if there are only

a few variables, and the second method is less prone to error if you are reading a big, complicated file.

The second method allows two variations, the one we just showed—where the data are in another

file—and one where the data are in the same file as the dictionary:

begin highway.dct, example 2
infix dictionary {

acc_rate 1-4
spdlimit 6-7
acc_pts 9-11

}
4.58 55 .46
2.86 60 4.4
1.61 2.2
3.02 60 4.7

end highway.dct, example 2

Note that in the first example, the top line of the file read infix dictionary using highway.raw,
whereas in the second, the line reads simply infix dictionary. When you do not say where the data

are, Stata assumes that the data follow the dictionary.

Example 1
So, let’s complete the example we started. We have a dataset on the accident rate per million vehicle

miles along a stretch of highway, the speed limit on that highway, and the number of access points per

mile. We have created the dictionary file, highway.dct, which contains the dictionary and the data:

infix (fixed format) — Import text data in fixed format 600

begin highway.dct, example 2
infix dictionary {

acc_rate 1-4
spdlimit 6-7
acc_pts 9-11

}
4.58 55 .46
2.86 60 4.4
1.61 2.2
3.02 60 4.7

end highway.dct, example 2

We created this file outside Stata by using an editor or word processor. In Stata, we now read the data.

infix lists the dictionary so that we will know the directives it follows:

. infix using highway
infix dictionary {

acc_rate 1-4
spdlimit 6-7
acc_pts 9-11

}
(4 observations read)
. list

acc_rate spdlimit acc_pts

1. 4.58 55 .46
2. 2.86 60 4.4
3. 1.61 . 2.2
4. 3.02 60 4.7

We simply typed infix using highway rather than infix using highway.dct. When we do not

specify the file extension, infix assumes that we mean .dct.

Reading string variables
When you do not say otherwise in your specification—either in the command line or in the dictio-

nary—infix assumes that variables are numeric. You specify that a variable is a string by placing str
in front of its name:

. infix id 1-6 str name 7-36 age 38-39 str sex 41 using employee.raw

or

begin employee.dct
infix dictionary using employee.raw {

id 1-6
str name 7-36
age 38-39
str sex 40

}
end employee.dct

infix (fixed format) — Import text data in fixed format 601

Reading data with multiple lines per observation
When a dataset has multiple lines per observation—sometimes called multiple records per observa-

tion—you specify the number of lines per observation by using lines, and you specify the line on which
the elements appear by using #:. For example,

. infix 2 lines 1: id 1-6 str name 7-36 2: age 1-2 str sex 4 using emp2.raw

or

begin emp2.dct
infix dictionary using emp2.raw {

2 lines
1:

id 1-6
str name 7-36

2:
age 1-2
str sex 4

}
end emp2.dct

There are many different ways to do the same thing.

Example 2
Consider the following raw data:

begin mydata.raw
id income educ / sex age / rcode, answers to questions 1-5
1024 25000 HS

Male 28
1 1 9 5 0 3

1025 27000 C
Female 24
0 2 2 1 1 3

1035 26000 HS
Male 32
1 1 0 3 2 1

1036 25000 C
Female 25
1 3 1 2 3 2

end mydata.raw

This dataset has three lines per observation, and the first line is just a comment. One possible method

for reading these data is

begin mydata1.dct
infix dictionary using mydata {

2 first
3 lines
1: id 1-4

income 6-10
str educ 12-13

2: str sex 6-11
int age 13-14

3: rcode 6
q1-q5 7-16

}
end mydata1.dct

infix (fixed format) — Import text data in fixed format 602

although we prefer

begin mydata2.dct
infix dictionary using mydata {

2 first
3 lines

id 1: 1-4
income 1: 6-10
str educ 1:12-13
str sex 2: 6-11
age 2:13-14
rcode 3: 6
q1-q5 3: 7-16

}
end mydata2.dct

Either method will read these data, so we will use the first and then explain why we prefer the second.

. infix using mydata1
infix dictionary using mydata {

2 first
3 lines
1: id 1-4

income 6-10
str educ 12-13

2: str sex 6-11
int age 13-14

3: rcode 6
q1-q5 7-16

}
(4 observations read)
. list in 1/2

id income educ sex age rcode q1 q2 q3 q4 q5

1. 1024 25000 HS Male 28 1 1 9 5 0 3
2. 1025 27000 C Female 24 0 2 2 1 1 3

What is better about the second is that the location of each variable is completely documented on each

line—the line number and column. Because infix does not care about the order in which we read the
variables, we could take the dictionary and jumble the lines, and it would still work. For instance,

begin mydata3.dct
infix dictionary using mydata {

2 first
3 lines

str sex 2: 6-11
rcode 3: 6
str educ 1:12-13
age 2:13-14
id 1: 1-4
q1-q5 3: 7-16
income 1: 6-10

}
end mydata3.dct

infix (fixed format) — Import text data in fixed format 603

will also read these data even though, for each observation, we start on line 2, go forward to line 3, jump

back to line 1, and end up on line 1. It is not inefficient to do this because infix does not really jump
to record 2, then record 3, then record 1 again, etc. infix takes what we say and organizes it efficiently.
The order in which we say it makes no difference, except that the order of the variables in the resulting

Stata dataset will be the order we specify.

Here the reordering is senseless, but in real datasets, reordering variables is often desirable. Moreover,

we often construct dictionaries, realize that we omitted a variable, and then go back and modify them.

By making each line complete, we can add new variables anywhere in the dictionary and not worry that,

because of our addition, something that occurs later will no longer read correctly.

Reading subsets of observations
If you wanted to read only the information about males from some raw data file, you might type

. infix id 1-6 str name 7-36 age 38-39 str sex 41 using employee.raw
> if sex==”M”

If your specification was instead recorded in a dictionary, you could type

. infix using employee.dct if sex==”M”

In another dataset, if you wanted to read just the first 100 observations, you could type

. infix 2 lines 1: id 1-6 str name 7-36 2: age 1-2 str sex 4 using emp2.raw
> in 1/100

or if the specification was instead recorded in a dictionary and you wanted observations 101–573, you

could type

. infix using emp2.dct in 101/573

Also see
[D] infile (fixed format) — Import text data in fixed format with a dictionary

[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

[U] 22 Entering and importing data

input — Enter data from keyboard

Description Quick start Syntax Options
Remarks and examples Reference Also see

Description
input allows you to type data directly into the dataset in memory.

For most users, edit is a better way to add observations to the dataset because it automatically adjusts
the storage type of variables, if required, to accommodate new values.

Quick start
Create numeric v1, v2, and v3, and input data directly into Stata

input v1 v2 v3

Same as above, but create v1 and v2 as type int, v3 as type byte
input int (v1 v2) byte v3

Add data on string v4 of length 10
input str10 v4

Input data for all existing variables

input

Same as above, but add observations by typing strings associated with value labels of existing variables

instead of numeric data

input, label

Syntax
input [varlist] [, automatic label]

Options
automatic causes Stata to create value labels from the nonnumeric data it encounters. It also automat-

ically widens the display format to fit the longest label. Specifying automatic implies label, even
if you do not explicitly type the label option.

label allows you to type the labels (strings) instead of the numeric values for variables associated with
value labels. New value labels are not automatically created unless automatic is specified.

604

input — Enter data from keyboard 605

Remarks and examples
If no data are in memory, you must specify varlist when you type input. Stata will then prompt you

to enter the new observations until you type end.

Example 1
We have data on the accident rate per million vehicle miles along a stretch of highway, along with the

speed limit on that highway. We wish to type these data directly into Stata:

. input
nothing to input
r(104);

Typing input by itself does not provide enough information about our intentions. Stata needs to know
the names of the variables we wish to create.

. input acc_rate spdlimit
acc_rate spdlimit

1. 4.58 55
2. 2.86 60
3. 1.61 .
4. end

.

We typed input acc rate spdlimit, and Stata responded by repeating the variable names and prompt-
ing us for the first observation. We entered the values for the first two observations, pressing Return after

each value was entered. For the third observation, we entered the accident rate (1.61), but we entered

a period (.) for missing because we did not know the corresponding speed limit for the highway. Af-

ter entering data for the fourth observation, we typed end to let Stata know that there were no more

observations.

We can now list the data to verify that we have entered the data correctly:

. list

acc_rate spdlimit

1. 4.58 55
2. 2.86 60
3. 1.61 .

If you have data in memory and type input without varlist, you will be prompted to enter more

information on all the variables. This continues until you type end.

Example 2: Adding observations
We now have another observation that we wish to add to the dataset. Typing input by itself tells

Stata that we wish to add new observations:

. input
acc_rate spdlimit

4. 3.02 60
5. end

.

input — Enter data from keyboard 606

Stata reminded us of the names of our variables and prompted us for the fourth observation. We entered

the numbers 3.02 and 60 and pressed Return. Stata then prompted us for the fifth observation. We could

add as many new observations as we wish. Because we needed to add only 1 observation, we typed end.
Our dataset now has 4 observations.

You may add new variables to the data in memory by typing input followed by the names of the new
variables. Stata will begin by prompting you for the first observation, then the second, and so on, until

you type end or enter the last observation.

Example 3: Adding variables
In addition to the accident rate and speed limit, we now obtain data on the number of access points

(on-ramps and off-ramps) per mile along each stretch of highway. We wish to enter the new data.

. input acc_pts
acc_pts

1. 4.6
2. 4.4
3. 2.2
4. 4.7

.

When we typed input acc pts, Stata responded by prompting us for the first observation. There are
4.6 access points per mile for the first highway, so we entered 4.6. Stata then prompted us for the

second observation, and so on. We entered each of the numbers. When we entered the final observation,

Stata automatically stopped prompting us—we did not have to type end. Stata knows that there are 4
observations in memory, and because we are adding a new variable, it stops automatically.

We can, however, type end anytime we wish, and Stata fills the remaining observations on the new
variables with missing. To illustrate this, we enter one more variable to our data and then list the result:

. input junk
junk

1. 1
2. 2
3. end

. list

acc_rate spdlimit acc_pts junk

1. 4.58 55 4.6 1
2. 2.86 60 4.4 2
3. 1.61 . 2.2 .
4. 3.02 60 4.7 .

You can input string variables by using input, but you must remember to indicate explicitly that the
variables are strings by specifying the type of the variable before the variable’s name.

Example 4: Inputting string variables
String variables are indicated by the types str# or strL. For str#, # represents the storage length,

or maximum length, in bytes of the variable. You can create variables up to str2045. You can create
strL variables of arbitrary length.

input — Enter data from keyboard 607

For text with only plainASCII characters, the length in bytes is equivalent to the number of characters

displayed. For instance, a str4 variable has a maximum length of 4, meaning that it can contain the

strings a, ab, abc, and abcd, but not abcde. Unicode characters beyond the plain ASCII range take 2,

3, or 4 bytes each. Thus the same str4 variable could contain the strings á, áb, and ábc, but not ábcd
because á takes two bytes to store. If you are using input with strings containing Unicode characters,
you should allow extra room in your str# specification. See [U] 12.4.2 Handling Unicode strings.

Strings shorter than the maximum length can be stored in the variable, but strings longer than the

maximum length cannot.

Although a str80 variable can store strings shorter than 80 characters, you should not make all your
string variables str80 because Stata allocates space for strings on the basis of their maximum length.

Thus doing so would waste the computer’s memory.

Let’s assume that we have no data in memory and wish to enter the following data:

. input str16 name age str6 sex
name age sex

1. ”Arthur Doyle” 22 male
2. ”Mary Hope” 37 ”female”
3. Guy Fawkes 48 male

’Fawkes’ cannot be read as a number
3. ”Guy Fawkes” 48 male
4. ”Kriste Yeager” 25 female
5. end

.

We first typed input str16 name age str6 sex, meaning that name is to be a str16 variable and sex
a str6 variable. Because we did not specify anything about age, Stata made it a numeric variable.

Stata then prompted us to enter our data. On the first line, the name is Arthur Doyle, which we typed

in double quotes. The double quotes are not really part of the string; they merely delimit the beginning

and end of the string. We followed that with Mr. Doyle’s age, 22, and his sex, male. We did not bother

to type double quotes around the word male because it contained no blanks or special characters. For
the second observation, we typed the double quotes around female; it changed nothing.

In the third observation, we omitted the double quotes around the name, and Stata informed us that

Fawkes could not be read as a number and reprompted us for the observation. When we omitted the

double quotes, Stata interpreted Guy as the name, Fawkes as the age, and 48 as the sex. This would have
been okay with Stata, except for one problem: Fawkes looks nothing like a number, so Stata complained
and gave us another chance. This time, we remembered to put the double quotes around the name.

Stata was satisfied, and we continued. We entered the fourth observation and typed end. Here is our
dataset:

. list

name age sex

1. Arthur Doyle 22 male
2. Mary Hope 37 female
3. Guy Fawkes 48 male
4. Kriste Yeager 25 female

input — Enter data from keyboard 608

Example 5: Specifying numeric storage types
Just as we indicated the string variables by placing a storage type in front of the variable name, we

can indicate the storage type of our numeric variables as well. Stata has five numeric storage types:

byte, int, long, float, and double. When you do not specify the storage type, Stata assumes that the

variable is a float. See the definitions of numbers in [U] 12 Data.

There are two reasons for explicitly specifying the storage type: to induce more precision or to con-

serve memory. The default type float has plenty of precision for most circumstances because Stata

performs all calculations in double precision, no matter how the data are stored. If you were storing

nine-digit Social Security numbers, however, you would want to use a different storage type, or the last

digit would be rounded. long would be the best choice; double would work equally well, but it would
waste memory.

Sometimes you do not need to store a variable as float. If the variable contains only integers between
−32,767 and 32,740, it can be stored as an int and would take only half the space. If a variable contains
only integers between −127 and 100, it can be stored as a byte, which would take only half again as
much space. For instance, in example 4 we entered data for agewithout explicitly specifying the storage
type; hence, it was stored as a float. It would have been better to store it as a byte. To do that, we
would have typed

. input str16 name byte age str6 sex
name age sex

1. ”Arthur Doyle” 22 male
2. ”Mary Hope” 37 ”female”
3. ”Guy Fawkes” 48 male
4. ”Kriste Yeager” 25 female
5. end

.

Stata understands several shorthands. For instance, typing

. input int(a b) c

allows you to input three variables—a, b, and c—and makes both a and b ints and c a float. Remem-
ber, typing

. input int a b c

would make a an int but both b and c floats. Typing

. input a long b double(c d) e

would make a a float, b a long, c and d doubles, and e a float.

Stata has a shorthand for variable names with numeric suffixes. Typing v1-v4 is equivalent to typing
v1 v2 v3 v4. Thus typing

. input int(v1-v4)

inputs four variables and stores them as ints.

Technical note
The rest of this section deals with using input with value labels. If you are not familiar with value

labels, see [U] 12.6.3 Value labels.

input — Enter data from keyboard 609

Value labels map numbers into words and vice versa. There are two aspects to the process. First,

we must define the association between numbers and words. We might tell Stata that 0 corresponds

to Male and 1 corresponds to Female by typing label define sexlbl 0 ”Male” 1 ”Female”. The
correspondences are named, and here we have named the 0↔Male 1↔Female correspondence sexlbl.

Next we must associate this value label with a variable. If we had already entered the data and the

variable were called sex, we would do this by typing label values sex sexlbl. We would have

entered the data by typing 0s and 1s, but at least now when we list the data, we would see the words
rather than the underlying numbers.

We can do better than that. After defining the value label, we can associate the value label with the

variable at the time we input the data and tell Stata to use the value label to interpret what we type:

. label define sexlbl 0 ”Male” 1 ”Female”

. input str16 name byte(age sex:sexlbl), label
name age sex

1. ”Arthur Doyle” 22 male
2. ”Mary Hope” 37 ”female”
3. ”Guy Fawkes” 48 male
4. ”Kriste Yeager” 25 female
5. end

.

After defining the value label, we typed our input command. We added the label option at the end of
the command, and we typed sex:sexlbl for the name of the sex variable. The byte(...) around age
and sex:sexlbl was not really necessary; it merely forced both age and sex to be stored as bytes.

Let’s first decipher sex:sexlbl. sex is the name of the variable we want to input. The :sexlbl
part tells Stata that the new variable is to be associated with the value label named sexlbl. The label
option tells Stata to look up any strings we type for labeled variables in their corresponding value label

and substitute the number when it stores the data. Thus when we entered the first observation of our

data, we typed male for Mr. Doyle’s sex, even though the corresponding variable is numeric. Rather

than complaining that “”male” could not be read as a number”, Stata accepted what we typed, looked up
the number corresponding to male, and stored that number in the data.

That Stata has actually stored a number rather than the words male or female is almost irrelevant.
Whenever we list the data or make a table, Stata will use the words male and female just as if those
words were actually stored in the dataset rather than their numeric codings:

. list

name age sex

1. Arthur Doyle 22 male
2. Mary Hope 37 female
3. Guy Fawkes 48 male
4. Kriste Yeager 25 female

. tabulate sex
sex Freq. Percent Cum.

male 2 50.00 50.00
female 2 50.00 100.00

Total 4 100.00

input — Enter data from keyboard 610

It is only almost irrelevant because we can use the underlying numbers in statistical analyses. For

instance, if we were to ask Stata to calculate the mean of sex by typing summarize sex, Stata would
report 0.5. We would interpret that to mean that one-half of our sample is female.

Value labels are permanently associated with variables, so once we associate a value label with a

variable, we never have to do so again. If we wanted to add another observation to these data, we could

type

. input, label
name age sex

5. ”Mark Esman” 26 male
6. end

.

Technical note
The automatic option automates the definition of the value label. In the previous example, we

informed Stata that male corresponds to 0 and female corresponds to 1 by typing label define sexlbl
0 ”Male” 1 ”Female”. It was not necessary to explicitly specify themapping. Specifying the automatic
option tells Stata to interpret what we type as follows:

First, see if the value is a number. If so, store that number and be done with it. If it is not a number,

check the value label associated with the variable in an attempt to interpret it. If an interpretation exists,

store the corresponding numeric code. If one does not exist, add a new numeric code corresponding to

what was typed. Store that new number and update the value label so that the new correspondence is

never forgotten.

We can use these features to reenter our age and sex data. Before reentering the data, we drop all
and label drop all to prove that we have nothing up our sleeve:

. drop _all

. label drop _all

. input str16 name byte(age sex:sexlbl), automatic
name age sex

1. ”Arthur Doyle” 22 male
2. ”Mary Hope” 37 ”female”
3. ”Guy Fawkes” 48 male
4. ”Kriste Yeager” 25 female
5. end

.

We previously defined the value label sexlbl so that Male corresponded to 0 and Female corresponded
to 1. The label that Stata automatically created is slightly different but is just as good:

. label list sexlbl
sexlbl:

1 Male
2 Female

Reference
Kohler, U. 2005. Stata tip 16: Using input to generate variables. Stata Journal 5: 134.

https://www.stata-journal.com/article.html?article=dm0010

input — Enter data from keyboard 611

Also see
[D] edit — Browse or edit data with Data Editor

[D] import — Overview of importing data into Stata

[D] save — Save Stata dataset

[U] 22 Entering and importing data

insobs — Add or insert observations

Description Menu Syntax Options
Remarks and examples Acknowledgment Also see

Description
insobs inserts new observations into the dataset. The number of new observations to insert is speci-

fied by obs. This command is primarily used by the Data Editor and is of limited use in other contexts.

Amore popular alternative for programmers is set obs; see [D] obs.

If option before(inspos) or after(inspos) is specified, the new observations are inserted into the

middle of the dataset, and the insert position is controlled by inspos. Note that inspos must be a posi-

tive integer between 1 and the total number of observations N. If the dataset is empty, before() and
after() may not be specified.

Menu
Data > Create or change data > Add or insert observations

Syntax
Add new observations at the end of the dataset

insobs obs

Insert new observations into the middle of the dataset

insobs obs, before(inspos) | after(inspos)

Options
before(inspos) and after(inspos) inserts new observations before and after, respectively, inspos into

the dataset. These options are primarily used by the Data Editor and are of limited use in other

contexts. A more popular alternative for most users is order; see [D] order.

612

insobs — Add or insert observations 613

Remarks and examples

Example 1
insobs can be useful for creating artificial datasets. For instance, if we wanted to create a new dataset

with 100 observations, we could type

. clear

. insobs 100
(100 observations added)

Example 2
We are using auto.dta, but for our specific example, we need the dataset to have more observations

than those provided in this dataset. To solve this problem, we could type

. sysuse auto, clear
(1978 automobile data)
. insobs 10
(10 observations added)

Typing insobs without an option adds the observations at the end of the dataset. Say that instead of
the end, we wanted to add five new observations before observation 20. We would type

. sysuse auto, clear
(1978 automobile data)
. insobs 5, before(20)
(5 observations added)

Acknowledgment
This commandwas inspired by insob, which was written by Bas Straathof of CPBNetherlands Bureau

for Economic Policy Analysis.

Also see
[D] edit — Browse or edit data with Data Editor

[D] obs — Increase the number of observations in a dataset

inspect — Display simple summary of data’s attributes

Description Quick start Menu Syntax
Remarks and examples Stored results Also see

Description
The inspect command provides a quick summary of a numeric variable that differs from the sum-

mary provided by summarize or tabulate. It reports the number of negative, zero, and positive values;
the number of integers and nonintegers; the number of unique values; and the number of missing; and it

produces a small histogram. Its purpose is not analytical but is to allow you to quickly gain familiarity

with unknown data.

Quick start
Summary of all numeric variables in the dataset

inspect

Summary of v1 for each level of catvar
bysort catvar: inspect v1

Summary of v1 if v2 is greater than 30
inspect v1 if v2 > 30

Menu
Data > Describe data > Inspect variables

Syntax
inspect [varlist] [if] [in]

by and collect are allowed; see [U] 11.1.10 Prefix commands.

Remarks and examples
Typing inspect by itself produces an inspection for all the variables in the dataset. If you specify a

varlist, an inspection of just those variables is presented.

Example 1
inspect is not a replacement or substitute for summarize and tabulate. It is instead a data man-

agement or information tool that lets us quickly gain insight into the values stored in a variable.

614

inspect — Display simple summary of data’s attributes 615

For instance, we receive data that purport to be on automobiles, and among the variables in the dataset

is one called mpg. Its variable label is Mileage (mpg), which is surely suggestive. We inspect the

variable,

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. inspect mpg
mpg: Mileage (mpg) Number of observations

Total Integers Nonintegers
Negative - - -
Zero - - -
Positive 74 74 -

#
Total 74 74 -
. Missing -

12 41 74
(21 unique values)

and we discover that the variable is never missing; all 74 observations in the dataset have some value

for mpg. Moreover, the values are all positive and are all integers, as well. Among those 74 observations

are 21 unique (different) values. The variable ranges from 12 to 41, and we are provided with a small

histogram that suggests that the variable appears to be what it claims.

Example 2
Bob, a coworker, presents us with some census data. Among the variables in the dataset is one called

region, which is labeled Census region and is evidently a numeric variable. We inspect this variable:

. use https://www.stata-press.com/data/r19/bobsdata
(1980 Census data by state)
. inspect region
region: Census region Number of observations

Total Integers Nonintegers
Negative - - -
Zero - - -

Positive 50 50 -
#
Total 50 50 -
. Missing -

1 5 50
(5 unique values)

region is labeled but 1 value is NOT documented in the label.

In this dataset something may be wrong. region takes on five unique values. The variable has a value
label, however, and one of the observed values is not documented in the label. Perhaps there is a typo-

graphical error.

inspect — Display simple summary of data’s attributes 616

Example 3
There was indeed an error. Bob fixes it and returns the data to us. Here is what inspect produces

now:

. use https://www.stata-press.com/data/r19/census
(1980 Census data by state)
. inspect region
region: Census region Number of observations

Total Integers Nonintegers
Negative - - -
Zero - - -

Positive 50 50 -
#
Total 50 50 -
Missing -

1 4 50
(4 unique values)

region is labeled and all values are documented in the label.

Example 4
We receive data on the climate in 956 US cities. The variable tempjan records the Average January

temperature in degrees Fahrenheit. The results of inspect are

. use https://www.stata-press.com/data/r19/citytemp
(City temperature data)
. inspect tempjan
tempjan: Average January temperature Number of observations

Total Integers Nonintegers
Negative - - -
Zero - - -
Positive 954 78 876
#
Total 954 78 876

. # # # . Missing 2

2.2 72.6 956
(More than 99 unique values)

In two of the 956 observations, tempjan is missing. Of the 954 cities that have a recorded tempjan, all
are positive, and 78 of them are integer values. tempjan varies between 2.2 and 72.6. There are more
than 99 unique values of tempjan in the dataset. (Stata stops counting unique values after 99.)

inspect — Display simple summary of data’s attributes 617

Stored results
inspect stores the following in r():

Scalars

r(N) number of observations

r(N neg) number of negative observations

r(N 0) number of observations equal to 0

r(N pos) number of positive observations

r(N negint) number of negative integer observations

r(N posint) number of positive integer observations

r(N unique) number of unique values or . if more than 99

r(N undoc) number of undocumented values or . if not labeled

Also see
[D] codebook — Describe data contents

[D] compare — Compare two variables

[D] describe — Describe data in memory or in a file

[D] ds — Compactly list variables with specified properties

[D] isid — Check for unique identifiers

[R] lv — Letter-value displays

[R] summarize — Summary statistics

[R] table — Table of frequencies, summaries, and command results

[R] tabulate oneway — One-way table of frequencies

[R] tabulate, summarize() — One- and two-way tables of summary statistics

[R] tabulate twoway — Two-way table of frequencies

ipolate — Linearly interpolate (extrapolate) values

Description Quick start Menu Syntax Options
Remarks and examples Methods and formulas References Also see

Description
ipolate creates in newvar a linear interpolation of yvar on xvar for missing values of yvar.

Because interpolation requires that yvar be a function of xvar, yvar is also interpolated for tied values

of xvar. When yvar is not missing and xvar is neither missing nor repeated, the value of newvar is just

yvar.

Quick start
Create y2 containing a linear interpolation of y1 on x for observations with missing values of y1 or tied

values of x
ipolate y1 x, generate(y2)

Same as above, but use interpolation and extrapolation

ipolate y1 x, generate(y2) epolate

Same as above, but perform calculation separately for each level of catvar
by catvar: ipolate y1 x, generate(y2) epolate

Menu
Data > Create or change data > Other variable-creation commands > Linearly interpolate/extrapolate values

618

ipolate — Linearly interpolate (extrapolate) values 619

Syntax
ipolate yvar xvar [if] [in] , generate(newvar) [epolate]

by is allowed; see [D] by.

Options
generate(newvar) is required and specifies the name of the new variable to be created.

epolate specifies that values be both interpolated and extrapolated. Interpolation only is the default.

Remarks and examples

Example 1
We have data points on y and x, although sometimes the observations on y are missing. We believe

that y is a function of x, justifying filling in the missing values by linear interpolation:

. use https://www.stata-press.com/data/r19/ipolxmpl1

. list, sep(0)

x y

1. 0 .
2. 1 3
3. 1.5 .
4. 2 6
5. 3 .
6. 3.5 .
7. 4 18

. ipolate y x, gen(y1)
(1 missing value generated)
. ipolate y x, gen(y2) epolate
. list, sep(0)

x y y1 y2

1. 0 . . 0
2. 1 3 3 3
3. 1.5 . 4.5 4.5
4. 2 6 6 6
5. 3 . 12 12
6. 3.5 . 15 15
7. 4 18 18 18

ipolate — Linearly interpolate (extrapolate) values 620

Example 2
We have a dataset of circulations for 10 magazines from 1980 through 2003. The identity of the

magazines is recorded in magazine, circulation is recorded in circ, and the year is recorded in year.
In a few of the years, the circulation is not known, so we want to fill it in by linear interpolation.

. use https://www.stata-press.com/data/r19/ipolxmpl2, clear

. by magazine: ipolate circ year, gen(icirc)

When the by prefix is specified, interpolation is performed separately for each group.

Methods and formulas
The value 𝑦 at 𝑥 is found by finding the closest points (𝑥0, 𝑦0) and (𝑥1, 𝑦1), such that 𝑥0 < 𝑥 and

𝑥1 > 𝑥 where 𝑦0 and 𝑦1 are observed, and calculating

𝑦 = 𝑦1 − 𝑦0
𝑥1 − 𝑥0

(𝑥 − 𝑥0) + 𝑦0

If epolate is specified and if (𝑥0, 𝑦0) and (𝑥1, 𝑦1) cannot be found on both sides of 𝑥, the two closest
points on the same side of 𝑥 are found, and the same formula is applied.

If there are multiple observations with the same value for 𝑥0, then 𝑦0 is taken as the average of the

corresponding 𝑦 values for those observations. (𝑥1, 𝑦1) is handled in the same way.

References
Cox, N. J. 2023. Speaking Stata: Replacing missing values: The easiest problems. Stata Journal 23: 884–896.

Meijering, E. 2002. A chronology of interpolation: From ancient astronomy to modern signal and image processing.

Proceedings of the IEEE 90: 319–342. https://doi.org/10.1109/5.993400.

Also see
[MI] mi impute — Impute missing values

https://doi.org/10.1177/1536867X231196519
https://doi.org/10.1109/5.993400

isid — Check for unique identifiers

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
isid checks whether the specified variables uniquely identify the observations.

Quick start
Verify that idvar uniquely identifies observations

isid idvar

Verify that idvar uniquely identifies observations within panels identified by pvar
isid idvar pvar

Same as above

isid pvar idvar

Same as above, and indicate that the data should be sorted by pvar and idvar
isid pvar idvar, sort

Verify that idvar uniquely identifies observations in mydata.dta
isid idvar using mydata.dta

Menu
Data > Data utilities > Check for unique identifiers

Syntax
isid varlist [using filename] [, sort missok]

Options
sort indicates that the dataset be sorted by varlist.

missok indicates that missing values are permitted in varlist.

621

isid — Check for unique identifiers 622

Remarks and examples

Example 1
Suppose that we want to check whether the mileage ratings (mpg) uniquely identify the observations

in our auto dataset.

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. isid mpg
variable mpg does not uniquely identify the observations
r(459);

isid returns an error and reports that there are multiple observations with the same mileage rating. We

can locate those observations manually:

. sort mpg

. by mpg: generate nobs = _N

. list make mpg if nobs >1, sepby(mpg)

make mpg

1. Linc. Continental 12
2. Linc. Mark V 12

(output omitted)

68. Dodge Colt 30
69. Mazda GLC 30

72. Subaru 35
73. Datsun 210 35

Example 2
isid is useful for checking a time-series panel dataset. For this type of dataset, we usually need

two variables to identify the observations: one that labels the individual IDs and another that labels the

periods. Before we set the data using tsset, we want to make sure that there are no duplicates with the
same panel ID and time. Suppose that we have a dataset that records the yearly gross investment of 10

companies for 20 years. The panel and time variables are company and year.

. use https://www.stata-press.com/data/r19/grunfeld, clear

. isid company year

isid reports no error, so the two variables company and year uniquely identify the observations. There-
fore, we should be able to tsset the data successfully:

. tsset company year
Panel variable: company (strongly balanced)
Time variable: year, 1935 to 1954

Delta: 1 year

isid — Check for unique identifiers 623

Technical note
The sort option is a convenient shortcut, especially when combined with using. The command

. isid patient_id date using newdata, sort

is equivalent to

. preserve

. use newdata, clear

. sort patient_id date

. isid patient_id date

. save, replace

. restore

Also see
[D] describe — Describe data in memory or in a file

[D] ds — Compactly list variables with specified properties

[D] duplicates — Report, tag, or drop duplicate observations

[D] lookfor — Search for string in variable names and labels

[D] codebook — Describe data contents

[D] inspect — Display simple summary of data’s attributes

jdbc — Load, write, or view data from a database with a Java API

Description Quick start Syntax Options Remarks and examples
Stored results References Also see

Description
jdbc allows you to load data from a database, execute SQL statements on a database, and insert data

into a database using Java Database Connectivity (JDBC). JDBC is an application programming interface

(API) for the programming language Java and defines how a client (Stata) can access a database. jdbc is
oriented toward relational databases or nonrelational database-management systems that have rectangular

data. NoSQL databases will not work with jdbc.

jdbc connect stores all database connection settings for subsequent jdbc commands.

jdbc add stores database connection settings as a data source name for a Stata session.

jdbc remove removes a stored data source name for a Stata session.

jdbc list displays all stored data source names for a Stata session.

jdbc showdbs produces a list of all databases for a given URL.

jdbc showtables retrieves a list of table names available from a specified database.

jdbc describe lists column names and data types associated with a specified table.

jdbc load reads a database table into Stata’s memory. You can load a table specified in the table()
option or load an ODBC table generated by an SQL SELECT statement specified in the exec() option.

jdbc insert writes data from memory to a database table. The data can be appended to an existing

table or replace an existing table.

jdbc exec allows for most SQL statements to be issued directly to any database. Statements that

produce output, such as SELECT, have their output neatly displayed. By using Stata’s ado-language, you

can also generate SQL commands on the fly to do positional updates or whatever the situation requires.

Quick start
Store connection settings to database myDB

jdbc connect, jar(”mysql-connector-java-5.1.49.jar”) ///
driverclass(”com.mysql.jdbc.Driver”) ///
url(”jdbc:mysql://https://www.stata.com/myDB:3306”) ///
user(”stata”) password(”stata”)

List available table names in database myDB
jdbc showtables

Describe the column names and data types in table MyTable from myDB
jdbc describe ”MyTable”

Load MyTable into memory from myDB
jdbc load, table(”MyTable”)

624

jdbc — Load, write, or view data from a database with a Java API 625

Syntax
Store JDBC connection settings for all jdbc commands

jdbc connect {DataSourceName | , connect options }

Add JDBC connection settings as a data source name for the current Stata session

jdbc add DataSourceName, connect options

Remove JDBC connection settings and data source name for the current Stata session

jdbc remove {DataSourceName | all }

List stored data source names and URLs for the current Stata session

jdbc list

List all databases for a given connection

jdbc showdbs

Retrieve available table names from specified data source

jdbc showtables [”SearchString”]

List column names and data types associated with specified table

jdbc describe ”TableName”

Import data from a database

jdbc load, { table(”TableName”) | exec(”SqlStmtList”) } [load options]

Export data to a database

jdbc insert [varlist] [if] [in], table(”TableName”) [insert options]

Allow SQL statements to be issued directly to a database

jdbc exec ”SqlStmtList”

DataSourceName is a name used to store connection settings.

SearchString is a database table name search string; SQL wildcard characters like % and are allowed.

TableName is the name of a table in the database.

SqlStmtList may be one valid SQL statement or a list of SQL statements separated by semicolons.

jdbc — Load, write, or view data from a database with a Java API 626

connect options Description

∗ jar(”JarFileName”) JAR file name of JDBC driver
∗ jarpath(”DirectoryName”) directory where the driver JAR file is stored along with driver

dependencies
∗ driverclass(”ClassName”) Java class name for JDBC driver
∗ url(”URL”) database URL
∗ user(”UserID”) user ID of user establishing connection
∗ password(”Password”) password of user establishing connection

connprop(”ConnectionProperty”) driver-specific connection property

clear clear current connection settings from memory;
available only with jdbc connect

∗Either jar(”JarFileName”) or jarpath(”DirectoryName”) and driverclass(”ClassName”), url(”URL”),
user(”UserID”), and password(”Password”) are required with jdbc add. These options are also required with jdbc
connect when DataSourceName is not specified.

load options Description

∗ table(”TableName”) name of table stored in the database
∗ exec(”SqlStmtList”) SQL SELECT statements to generate a table to be read into Stata

rows(#) fetch # result set rows from database; default is rows(10)
clear replace data in memory

case(lower | upper | preserve) import variable names as lowercase or uppercase; the default
is to preserve the case

∗Either table(”TableName”) or exec(”SqlStmtList”) must be specified.

insert options Description

∗ table(”TableName”) name of table stored in the database

rows(#) build memory result set with # of rows; default is rows(1)
overwrite clear data in table before data in memory are written to the

table

∗table(”TableName”) is required.

JarFileName is the name of the JDBC driver JAR file.

ClassName is the Java class name stored in the JDBC driver JAR file.

URL is the database URL.

UserID is the user ID.

Password is the user’s password.

Options
Options are presented under the following headings:

Options for jdbc connect and jdbc add
Options for jdbc load
Options for jdbc insert

jdbc — Load, write, or view data from a database with a Java API 627

Options for jdbc connect and jdbc add
jar(”JarFileName”) specifies the JDBC driver JAR file installed along your ado-path. Either jar() or

jarpath() is required with jdbc add. Also, if DataSourceName is not specified, either jar() or
jarpath() is required with jdbc connect for jdbc showdbs, jdbc showtables, jdbc describe,
jdbc load, jdbc insert, and jdbc exec to work. jar() may not be combined with jarpath().

jarpath(”DirectoryName”) specifies the directory where the JDBC driver JAR files are installed along
your ado-path. Either jarpath() or jar() is required with jdbc add. Also, if DataSourceName is
not specified, either jarpath() or jar() is required with jdbc connect for jdbc showdbs, jdbc
showtables, jdbc describe, jdbc load, jdbc insert, and jdbc exec to work. jarpath() may
not be combined with jar().

driverclass(”ClassName”) specifies the Java class name stored in the JDBC driver JAR file installed
along your ado-path. driverclass() is required with jdbc add. Also, if DataSourceName is not
specified, driverclass() is required with jdbc connect for jdbc showdbs, jdbc showtables,
jdbc describe, jdbc load, jdbc insert, and jdbc exec to work.

url(”URL”) specifies the URL to the database the user is attempting to establish the connection to.

url() is required with jdbc add. Also, if DataSourceName is not specified, url() is required with
jdbc connect for jdbc showdbs, jdbc showtables, jdbc describe, jdbc load, jdbc insert,
and jdbc exec to work. The driver URL syntax is as follows:

jdbc:Database type://Host:Port/Database name?connection properties

user(”UserID”) specifies the user ID of the user attempting to establish the connection to a database.

user() is required with jdbc add. Also, ifDataSourceName is not specified, user() is required with
jdbc connect for jdbc showdbs, jdbc showtables, jdbc describe, jdbc load, jdbc insert,
and jdbc exec to work.

password(”Password”) specifies the password of the user attempting to establish the connection

to a database. password() is required with jdbc add. Also, if DataSourceName is not spec-

ified, password() is required with jdbc connect for jdbc showdbs, jdbc showtables, jdbc
describe, jdbc load, jdbc insert, and jdbc exec to work.

connprop(”ConnectionProperty”) specifies the driver-specific connection properties. A connection

property is a key value pair that is separated by a colon and delimited by a semicolon. For example,

jdbc connect, ... connprop(”characterEncoding:ISO‑8859-1;”)

These properties can also be set in the url() option.

clear clears the current connection settings from memory. This option may only be specified with jdbc
connect and may not be combined with any other connect options.

Options for jdbc load
table(”TableName”) specifies the name of the table stored in a specified database. Either the table()

option or the exec() option—but not both—is required with the jdbc load command.

jdbc — Load, write, or view data from a database with a Java API 628

exec(”SqlStmtList”) allows you to issue an SQL SELECT statement to generate a table to be read into

Stata. Multiple SQL statements can be issued, with the last SQL statement being a SELECT. Each

statement should be delimited by a semicolon. For example,

local sql ///
”CREATE TEMPORARY TABLE t(a INT, b INT); INSERT INTO t VALUES (1,2); ///
SELECT * FROM t;”

jdbc load, exec(”‘sql’”)

An error message is returned if the SQL statements are invalid SQL. Either the table() option or the
exec() option—but not both—is required with the jdbc load command.

rows(#) specifies the number of rows to be fetched from the database result set for each network call.

This option may help improve command performance. The default is rows(10). Some drivers do
not support this feature. Note that setting rows() to a large number might require you to change the
amount of heap memory allocated for the JVM with the java set heapmax command.

clear permits the data to be loaded, even if there are data already in memory, and even if that data have
changed since the data were last saved.

case(lower | upper | preserve) specifies the case of the variable names after loading. The default is
case(preserve).

Options for jdbc insert
table(”TableName”) specifies the name of the table stored in a specified database.

rows(#) specifies the number of result set rows to be sent to the database for each network call. This
option may help improve command performance. The default result set size is 1. This option does

not work with datasets that contain strLs. Some drivers do not support this feature. Note that setting
the rows(#) to a large number might require you to change the amount of heap memory allocated for
the JVM with the java set heapmax command.

overwrite allows data to be dropped from a database table before the Stata data in memory are written

to the table. All data from the table are erased, not just the data from the variable columns that will

be replaced.

Remarks and examples
jdbc allows you to connect to, load data from, insert data into, and execute queries on a database

using JDBC. First, you specify the connection settings with jdbc connect, including the URL for the

database you are connecting to and your user ID and password. Thereafter, you can use jdbc showdbs,
jdbc showtables, jdbc describe, jdbc load, jdbc insert, and jdbc exec. These commands al-
low you to execute statements on a database and load data to and from Stata; they will use the connection

information you specified with jdbc connect to open a connection and perform the specified task.

If you will be connecting to multiple databases frequently, you can store the connection settings for

each database under a data source name with jdbc add. Then, whenever you wish to connect to a

database, simply use jdbc connect, and specify the data source name. This avoids having to specify all
the connection information every time you wish to connect to a different database.

jdbc — Load, write, or view data from a database with a Java API 629

Remarks are presented under the following headings:

JDBC drivers
Connecting to a database
Data source names
Exploring a database
Loading data from a database
Inserting data into a database
Executing SQL on a database

JDBC drivers
To use jdbc, you must first download and install your database vendor JDBC driver JAR file. To see

information on Stata’s current JDBC implementation, click here.

Once you have downloaded the appropriate driver, you must install the driver along Stata’s ado-path.

If the file is compressed, you can use Stata’s unzipfilewith the downloaded file to extract the .jar file.
Once extracted, place the .jar file along your ado-path so Stata can add it to the Java virtual machine
(JVM) class-path. You can use java query to check to see whether Stata has loaded your driver along
the JVM class-path.

Most users should place the .jar files in the PERSONAL directory or the current working directory.
System administrators may wish to place them in the SITE directory if they have a network installation
and want to make them available to all users.

Connecting to a database
jdbc connect stores all database connection settings for commands jdbc showdbs, jdbc

showtables, jdbc describe, jdbc load, jdbc insert, and jdbc exec. Options jar(),
driverclass(), url(), user(), and password() are required, unless you have already saved that

information under a data source name and you are specifying thatDataSourceNamewith jdbc connect.

If you try to use these commands before setting your connection properties, you will receive the

following error message:

. jdbc showtables
Connection failed
JDBC driver class not found
r(681);

Technical note
Storing your database name, user ID, and password in a Stata do-file, ado-file, or log file can be a

security risk. Your database vendor might have software called a wallet that can store this information

securely on your machine.

Example 1: Creating a connection
Below, we create a connection string for the JDBC driver in Stata:

. jdbc connect, jar(”mysql-connector-java-8.0.22.jar”)
> driverclass(”com.mysql.cj.jdbc.Driver”)
> url(”jdbc:mysql://localhost:3306/myDB”)
> user(”stata”) password(”stata_pass”)

https://www.stata.com/support/faqs/data-management/configuring-jdbc/

jdbc — Load, write, or view data from a database with a Java API 630

Going forward, when we issue the jdbc showdbs, jdbc showtables, jdbc describe, jdbc load,
jdbc insert, or jdbc exec command, each will use this information to connect to the database myDB.

Example 2: Using macros
You can also use macros to make your do-file more readable and easier to change database settings.

. local jar ”mysql-connector-java-8.0.22.jar”

. local driverclass ”com.mysql.cj.jdbc.Driver”

. local url ”jdbc:mysql://localhost:3306/myDB”

. local user ”stata”

. local pass ”stata_pass”

. jdbc connect, jar(”‘jar’”) driverclass(”‘driverclass’”)
> url(”‘url’”) user(”‘user’”) password(”‘pass’”)

Data source names
If you would like to have database connection settings stored and ready for jdbc to use every time

you start a Stata session, you can place jdbc add in your profile.do to store these settings; see

[GSW] B.3 Executing commands every time Stata is started, [GSM] B.1 Executing commands ev-

ery time Stata is started, or [GSU] B.1 Executing commands every time Stata is started.

Use jdbc list to see the current session’s stored connection settings and jdbc remove to remove
stored settings.

Exploring a database
jdbc showdbs, jdbc showtables, and jdbc describe are used, respectively, to list database

names, table names, and table columns of a connection. Use these commands to search for data to

load from your connection.

Example 3: Listing table names
jdbc showtables is used to list table names available from a specified database. To list all the tables

stored in database myDB, type
. jdbc showtables
Database: myDB

Tables

auto

jdbc — Load, write, or view data from a database with a Java API 631

Example 4: Listing column names and data types
jdbc describe displays the column names and JDBC data types of the table listed. To describe the

auto table, type

. jdbc describe ”auto”
Table: auto

column name column type

make VARCHAR
price INT
mpg INT
rep78 SMALLINT
headroom FLOAT
trunk SMALLINT
weight SMALLINT
length SMALLINT
turn SMALLINT
displacement SMALLINT
gear_ratio FLOAT
domestic VARCHAR

Loading data from a database
jdbc load is used to load a database table into Stata’s memory; this can be an existing table or a

subset of a table created by a series of SQL statements.

Example 5: Loading a table
To load a database table listed in the jdbc showtables output, specify the table name in the table()

option.

. jdbc load, table(”auto”)
74 observations loaded
. describe
Contains data
Observations: 74

Variables: 12

Variable Storage Display Value
name type format label Variable label

make str19 %19s make
price long %12.0g price
mpg long %12.0g mpg
rep78 int %8.0g rep78
headroom float %9.0g headroom
trunk int %8.0g trunk
weight int %8.0g weight
length int %8.0g length
turn int %8.0g turn
displacement int %8.0g displacement
gear_ratio float %9.0g gear_ratio
domestic str18 %18s domestic

Sorted by:
Note: Dataset has changed since last saved.

jdbc — Load, write, or view data from a database with a Java API 632

Example 6: Loading part of a table
If your database table is large and the memory on your computer is limited, it is a good idea to limit the

amount of data loaded from the database using a SELECT statement in the exec() option. For example,
instead of loading the whole table as we did above, we can just load the mpg column:

. jdbc load, exec(”SELECT mpg FROM auto;”)
74 observations loaded
. describe
Contains data
Observations: 74

Variables: 1

Variable Storage Display Value
name type format label Variable label

mpg long %12.0g mpg

Sorted by:
Note: Dataset has changed since last saved.

Technical note
When Stata loads a table, data are converted from JDBC data types to Stata data types. Stata does

not support all JDBC data types. If the column cannot be read because of incompatible data types, Stata

will issue a note and skip a column. The following table lists the supported JDBC data types and their

corresponding Stata data types:

jdbc — Load, write, or view data from a database with a Java API 633

JDBC data type Stata data type

BOOLEAN byte
BIT byte
TINYINT byte
SMALLINT int
INTEGER long
ROWID str
BIGINT str
REAL float
FLOAT float
NUMERIC double
DECIMAL double
DOUBLE double
DATE double
TIME double
TIMESTAMP double
TIME WITH TIMEZONE str
TIMESTAMP WITH TIMEZONE str
BINARY strL
VARBINARY strL
LONGVARBINARY strL
BLOB strL
CHAR str/strL
VARCHAR str/strL
LONGVARCHAR str/strL
NCHAR str/strL
NVARCHAR str/strL
LONGNVARCHAR str/strL
NCLOB str/strL
CLOB str/strL
STRUCT skipped
ARRAY skipped
SQLXML skipped
NULL skipped
OTHER skipped
REF CURSOR skipped
JAVA OBJECT skipped
DISTINCT skipped
REF skipped
DATALINK skipped

Stata is a UTF-8 application, so all string data should be encoded as UTF-8. This can be set using a

driver connection property. Check your database vendor or driver documentation to see how your string

data is encoded by default to see whether this property should be set.

. jdbc connect, ... connprop(”characterEncoding:UTF8;”)

Inserting data into a database
jdbc insert inserts data in memory into a database table. The database table and the Stata varlist

must have the same column and variable names, number of columns, and compatible data types for the

insert to work correctly. By default, observations are appended to the database table. When you insert

data, mapping of the data types are the same as jdbc load, with one exception, Stata bytes. Stata bytes
are mapped to SMALLINTs because some database vendors’ (SQLServer) BYTE data type is unsigned.

jdbc — Load, write, or view data from a database with a Java API 634

Example 7: Inserting data into a table
Below, we insert the data in memory into the table auto.

. jdbc insert, table(auto)
74 rows inserted

To replace the table with the data in memory, use the option overwrite.

. jdbc insert, table(auto) overwrite
74 rows affected
74 rows inserted

Executing SQL on a database
You use jdbc exec to execute SQL commands on the database. If an SQL command returns a result

set, like SELECT, that result set will be displayed in the Stata Results window.

Example 8: Executing SQL commands
To use jdbc insert, you must have a table already created in your database. If you do not, you can

use jdbc exec to create a table in your database. For example, one might create a table in a MySQL

database with the SQL command below:

#delimit ;
local create_table_sql ‘”CREATE TABLE auto (

make varchar(19) NOT NULL,
price int,
mpg int,
rep78 smallint,
headroom float,
trunk smallint,
weight smallint,
length smallint,
turn smallint,
displacement smallint,
gear_ratio float,
domestic varchar(18)

);”’ ;

jdbc exec ”‘create_table_sql’”

If your SQL statement contains double quotes, you must enclose your statement in compound double

quotes, as we did with the statement above.

jdbc — Load, write, or view data from a database with a Java API 635

Stored results
jdbc showdbs stores the following in r():

Scalars

r(n dbs) number of databases displayed

jdbc showtables stores the following in r():

Scalars

r(n tables) number of tables displayed

jdbc describe stores the following in r():

Scalars

r(k) number of columns displayed

jdbc load stores the following in r():

Scalars

r(k) number of variables loaded

r(N) number of observations loaded

jdbc insert stores the following in r():

Scalars

r(k) number of columns inserted

r(N) number of rows inserted

References
Crow, K. 2017. Importing WRDS data into Stata. The Stata Blog: Not Elsewhere Classified. https://blog.stata.com/2017/

09/19/importing-wrds-data-into-stata/.

———. 2022. Wharton Research Data Services, Stata 17, and JDBC. The Stata Blog: Not Elsewhere Classified. https:

//blog.stata.com/2022/01/27/wharton-research-data-services-stata-17-and-jdbc/.

Also see
[D] odbc — Load, write, or view data from ODBC sources

[D] import — Overview of importing data into Stata

[D] export — Overview of exporting data from Stata

https://blog.stata.com/2017/09/19/importing-wrds-data-into-stata/
https://blog.stata.com/2017/09/19/importing-wrds-data-into-stata/
https://blog.stata.com/2022/01/27/wharton-research-data-services-stata-17-and-jdbc/
https://blog.stata.com/2022/01/27/wharton-research-data-services-stata-17-and-jdbc/

joinby — Form all pairwise combinations within groups

Description Quick start Menu
Syntax Options Remarks and examples
Acknowledgment References Also see

Description
joinby joins, within groups formed by varlist, observations of the dataset in memory with filename,

a Stata-format dataset. By join we mean to form all pairwise combinations. If filename is specified

without an extension, .dta is assumed.

If varlist is not specified, joinby takes as varlist the set of variables common to the dataset in memory
and in filename.

Observations unique to one or the other dataset are ignored unless unmatched() specifies differently.
Whether you load one dataset and join the other or vice versa makes no difference in the number of

resulting observations.

If there are common variables between the two datasets, however, the combined dataset will contain

the values from the master data for those observations. This behavior can be modified with the update
and replace options.

Quick start
Form pairwise combinations of observations from mydata1.dta in memory with those from

mydata2.dta using all common variables and drop unmatched observations
joinby using mydata2

Same as above, but join on v1, v2, and v3
joinby v1 v2 v3 using mydata2

Same as above, but include unmatched observations only from mydata2.dta and add merge indicating
whether the variable was in both datasets or only the using dataset

joinby v1 v2 v3 using mydata2, unmatched(using)

Same as above, but include unmatched observations only from mydata1.dta
joinby v1 v2 v3 using mydata2, unmatched(master)

Same as above, but name the variable indicating the source of the observation newv
joinby v1 v2 v3 using mydata2, unmatched(master) _merge(newv)

Replace missing data in mydata1.dta with values from mydata2.dta
joinby v1 v2 v3 using mydata2, update

Replace missing and conflicting data in mydata1.dta with values from mydata2.dta
joinby v1 v2 v3 using mydata2, update replace

Menu
Data > Combine datasets > Form all pairwise combinations within groups

636

joinby — Form all pairwise combinations within groups 637

Syntax
joinby [varlist] using filename [, options]

options Description

Options

When observations match:

update replace missing data in memory with values from filename

replace replace all data in memory with values from filename

When observations do not match:

unmatched(none) ignore all; the default

unmatched(both) include from both datasets

unmatched(master) include from data in memory

unmatched(using) include from data in filename

merge(varname) varname marks source of resulting observation; default is merge
nolabel do not copy value-label definitions from filename

varlist may not contain strLs.

Options

� � �
Options �

update varies the action that joinby takes when an observation is matched. By default, values from the

master data are retained when the same variables are found in both datasets. If update is specified,
however, the values from the using dataset are retained where the master dataset contains missing.

replace, allowed with update only, specifies that nonmissing values in the master dataset be replaced
with corresponding values from the using dataset. A nonmissing value, however, will never be re-

placed with a missing value.

unmatched(none | both | master | using) specifies whether observations unique to one of the datasets
are to be kept, with the variables from the other dataset set to missing. Valid values are

none ignore all unmatched observations (default)

both include unmatched observations from the master and using data

master include unmatched observations from the master data

using include unmatched observations from the using data

merge(varname) specifies the name of the variable that will mark the source of the resulting obser-
vation. The default name is merge(merge). To preserve compatibility with earlier versions of
joinby, merge is generated only if unmatched is specified.

nolabel prevents Stata from copying the value-label definitions from the dataset on disk into the dataset

inmemory. Even if you do not specify this option, label definitions from the disk dataset do not replace

label definitions already in memory.

joinby — Form all pairwise combinations within groups 638

Remarks and examples
The following, admittedly artificial, example illustrates joinby.

Example 1
We have two datasets: child.dta and parent.dta. Both contain a family id variable, which

identifies the people who belong to the same family.

. use https://www.stata-press.com/data/r19/child
(Data on Children)
. describe
Contains data from https://www.stata-press.com/data/r19/child.dta
Observations: 5 Data on Children

Variables: 4 11 Dec 2024 21:08

Variable Storage Display Value
name type format label Variable label

family_id int %8.0g Family ID number
child_id byte %8.0g Child ID number
x1 byte %8.0g
x2 int %8.0g

Sorted by: family_id
. list

family~d child_id x1 x2

1. 1025 3 11 320
2. 1025 1 12 300
3. 1025 4 10 275
4. 1026 2 13 280
5. 1027 5 15 210

. use https://www.stata-press.com/data/r19/parent
(Data on Parents)
. describe
Contains data from https://www.stata-press.com/data/r19/parent.dta
Observations: 6 Data on Parents

Variables: 4 11 Dec 2024 03:06

Variable Storage Display Value
name type format label Variable label

family_id int %8.0g Family ID number
parent_id float %9.0g Parent ID number
x1 float %9.0g
x3 float %9.0g

Sorted by:

joinby — Form all pairwise combinations within groups 639

. list, sep(0)

family~d parent~d x1 x3

1. 1030 10 39 600
2. 1025 11 20 643
3. 1025 12 27 721
4. 1026 13 30 760
5. 1026 14 26 668
6. 1030 15 32 684

We want to join the information for the parents and their children. The data on parents are in memory,

and the data on children are posted at https://www.stata-press.com.

. joinby family_id using https://www.stata-press.com/data/r19/child

. describe
Contains data
Observations: 8 Data on Parents

Variables: 6

Variable Storage Display Value
name type format label Variable label

family_id int %8.0g Family ID number
parent_id float %9.0g Parent ID number
x1 float %9.0g
x3 float %9.0g
child_id byte %8.0g Child ID number
x2 int %8.0g

Sorted by:
Note: Dataset has changed since last saved.

. list, sepby(family_id) abbrev(12)

family_id parent_id x1 x3 child_id x2

1. 1025 11 20 643 3 320
2. 1025 11 20 643 4 275
3. 1025 11 20 643 1 300
4. 1025 12 27 721 1 300
5. 1025 12 27 721 3 320
6. 1025 12 27 721 4 275

7. 1026 13 30 760 2 280
8. 1026 14 26 668 2 280

1. family id of 1027, which appears only in child.dta, and family id of 1030, which appears only
in parent.dta, are not in the combined dataset. Observations for which the matching variables are
not in both datasets are omitted.

https://www.stata-press.com

joinby — Form all pairwise combinations within groups 640

2. The x1 variable is in both datasets. Values for this variable in the joined dataset are the values from
parent.dta—the dataset in memory when we issued the joinby command. If we had child.dta
in memory and parent.dta on disk when we requested joinby, the values for x1 would have been
those from child.dta. Values from the dataset in memory take precedence over the dataset on disk.

Acknowledgment
joinby was written by Jeroen Weesie of the Department of Sociology at Utrecht University, The

Netherlands.

References
Baum, C. F. 2016. An Introduction to Stata Programming. 2nd ed. College Station, TX: Stata Press.

Mazrekaj, D., and J. Wursten. 2021. Stata tip 142: joinby is the real merge m:m. Stata Journal 21: 1065–1068.

Also see
[D] append —Append datasets

[D] cross — Form every pairwise combination of two datasets

[D] fillin — Rectangularize dataset

[D] merge — Merge datasets

[D] save — Save Stata dataset

[U] 23 Combining datasets

https://www.stata-press.com/books/introduction-stata-programming/
https://doi.org/10.1177/1536867X211063416

label — Manipulate labels

Description Quick start Menu Syntax Options
Remarks and examples Stored results References Also see

Description
label data attaches a label (up to 80 characters) to the dataset in memory. Dataset labels are dis-

played when you use the dataset and when you describe it. If no label is specified, any existing label
is removed.

label variable attaches a label (up to 80 characters) to a variable. If no label is specified, any

existing variable label is removed.

label define creates a value label named lblname, which is a set of individual numeric values and
their corresponding labels. lblname can contain up to 65,536 individual labels; each individual label can

be up to 32,000 characters long.

label values attaches a value label to varlist. If . is specified instead of lblname, any existing value

label is detached from that varlist. The value label, however, is not deleted. The syntax label values
varname (that is, nothing following the varname) acts the same as specifying the ..

label dir lists the names of value labels stored in memory.

label list lists the names and contents of value labels stored in memory.

label copy makes a copy of an existing value label.

label drop eliminates value labels.

label save saves value label definitions in a do-file. This is particularly useful for value labels that
are not attached to a variable because these labels are not saved with the data. By default, .do is the

filename extension used.

See [D] label language for information on the label language command.

Quick start
Label the dataset “My data”

label data ”My data”

Label v1 “First variable”
label variable v1 ”First variable”

Define value label named mylabel1
label define mylabel1 1 ”Value 1” 2 ”Value 2”

Add labels for values 0 and 3 to mylabel1
label define mylabel1 0 ”Value 0” 3 ”Value 3”, add

Copy mylabel1 to mylabel2
label copy mylabel1 mylabel2

Redefine value 0 in mylabel2 to mean “Null”
label define mylabel2 0 ”Null”, modify

641

label — Manipulate labels 642

Apply value label mylabel1 to v1
label values v1 mylabel1

Save all currently defined value labels to mylabels.do for use with other datasets
label save using mylabels.do

List names and contents of all value labels

label list

Drop all value labels

label drop _all

Menu
label data
Data > Data utilities > Label utilities > Label dataset

label variable
Data > Variables Manager

label define
Data > Variables Manager

label values
Data > Variables Manager

label list
Data > Data utilities > Label utilities > List value labels

label copy
Data > Data utilities > Label utilities > Copy value labels

label drop
Data > Variables Manager

label save
Data > Data utilities > Label utilities > Save value labels as do-file

label — Manipulate labels 643

Syntax
Label dataset

label data [”label”]

Label variable

label variable varname [”label”]

Define value label

label define lblname # ”label” [# ”label” [. . .]] [, add modify replace nofix]

Assign value label to variables

label values varlist lblname [, nofix]

Remove value labels

label values varlist [.]

List names of value labels

label dir

List names and contents of value labels

label list [lblname [lblname [. . .]]]

Copy value label

label copy lblname lblname [, replace]

Drop value labels

label drop { lblname [lblname [. . .]] | all }

Save value labels in do-file

label save [lblname [lblname [. . .]]] using filename [, replace]

Labels for variables and values in multiple languages

label language . . . (see [D] label language)

where # is an integer or an extended missing value (.a, .b, . . . , .z).

collect is allowed with label dir, label language, and label list; see [U] 11.1.10 Prefix commands.

label — Manipulate labels 644

Options
add allows you to add #↔ label correspondences to lblname. If add is not specified, you may create

only new lblnames. If add is specified, you may create new lblnames or add new entries to existing

lblnames.

modify allows you to modify or delete existing #↔ label correspondences and add new correspon-

dences. Specifying modify implies add, even if you do not type the add option.

replace, with label define, allows an existing value label to be redefined. replace, with label
copy, allows an existing value label to be copied over. replace, with label save, allows filename
to be replaced.

nofix prevents display formats from being widened according to the maximum length of the value label.

Consider label values myvar mylab, and say that myvar has a %9.0g display format right now. Say
that the maximum length of the strings in mylab is 12 characters. label values would change the
format of myvar from %9.0g to %12.0g. nofix prevents this.

nofix is also allowed with label define, but it is relevant only when you are modifying an existing
value label. Without the nofix option, label define finds all the variables that use this value label
and considers widening their display formats. nofix prevents this.

Remarks and examples
See [U] 12.6 Dataset, variable, and value labels for a complete description of labels. This entry

deals only with details not covered there.

Remarks are presented under the following headings:

Overview
Video examples

Overview
Value labels save us the trouble of having to remember how our variables are coded. For example,

if we have a variable recording the region where people live, we might not remember if a value of 1

referred to east or west. We can use label define to create a value label attaching the labels east and
west to numeric values 1 and 2. We can then attach these codings to our region variable with label
values so that our labels will be displayed in the output of certain summary statistics and estimation
commands instead of their corresponding numeric values. The suite of label commands makes it easy
to create and manipulate these labels.

Example 1: Creating a value label
Although describe shows the names of the value labels, those value labels may not exist. Stata

does not consider it an error to label the values of a variable with a nonexistent label. When this occurs,

Stata still shows the association on describe but otherwise acts as if the variable’s values are unlabeled.
This way, you can associate a value label name with a variable before creating the corresponding label.

Similarly, you can define labels that you have not yet used.

label — Manipulate labels 645

. use https://www.stata-press.com/data/r19/hbp4

. describe
Contains data from https://www.stata-press.com/data/r19/hbp4.dta
Observations: 1,130

Variables: 7 22 Jan 2024 11:12

Variable Storage Display Value
name type format label Variable label

id str10 %10s Record identification number
city byte %8.0g
year int %8.0g
age_grp byte %8.0g
race byte %8.0g
hbp byte %8.0g
female byte %8.0g sexlbl

Sorted by:

The dataset is using the value label sexlbl. Let’s define the value label yesno:

. label define yesno 0 ”No” 1 ”Yes”

label dir shows you the value labels that you have actually defined:

. label dir
yesno
sexlbl

We have two value labels stored in memory: yesno and sexlbl.

We can display the contents of a value label with the label list command:

. label list yesno
yesno:

0 No
1 Yes

The value label yesno labels the values 0 as no and 1 as yes.

If you do not specify the name of the value label on the label list command, Stata lists all the value
labels:

. label list
yesno:

0 No
1 Yes

sexlbl:
0 Male
1 Female

You can add new codings to an existing value label by using the add option with the label define
command. You can modify existing codings by using the modify option. You can redefine a value label
by specifying the replace option.

label — Manipulate labels 646

Example 2: Modifying a value label
The value label yesno codes 0 as no and 1 as yes. You might wish later to add a third coding: 2 as

maybe. Typing label define with no options results in an error:

. label define yesno 2 maybe
label yesno already defined
r(110);

If you do not specify the add, modify, or replace options, label define can be used only to create
new value labels. The add option lets you add codings to an existing value label:

. label define yesno 2 maybe, add

. label list yesno
yesno:

0 No
1 Yes
2 maybe

Perhaps you have accidentally mislabeled a value. For instance, 2 may not mean “maybe” but may

instead mean “don’t know”. add does not allow you to change an existing label:

. label define yesno 2 ”Don’t know”, add
invalid attempt to modify label
r(180);

Instead, you would specify the modify option:

. label define yesno 2 ”Don’t know”, modify

. label list yesno
yesno:

0 No
1 Yes
2 Don’t know

In this way, Stata attempts to protect you from yourself. If you type label define with no options,
you can only create a new value label—you cannot accidentally change an existing one. If you specify

the add option, you can add new labels to an existing value label, but you cannot accidentally change

any existing label. If you specify the modify option, which you may not abbreviate, you can change any
existing label.

You can even use the modify option to eliminate existing labels. To do this, you map the numeric
code to a null string, that is, ””:

. label define yesno 2 ””, modify

. label list yesno
yesno:

0 No
1 Yes

You can eliminate entire value labels by using the label drop command.

label — Manipulate labels 647

Example 3: Dropping value labels
We currently have two value labels stored in memory—sexlbl and yesno—as shown by the label

dir command:

. label dir
yesno
sexlbl

The dataset that we have in memory uses only one of the labels—sexlbl. describe reports that yesno
is not being used:

. describe
Contains data from https://www.stata-press.com/data/r19/hbp4.dta
Observations: 1,130

Variables: 7 22 Jan 2024 11:12

Variable Storage Display Value
name type format label Variable label

id str10 %10s Record identification number
city byte %8.0g
year int %8.0g
age_grp byte %8.0g
race byte %8.0g
hbp byte %8.0g
female byte %8.0g sexlbl

Sorted by:
Note: Dataset has changed since last saved.

We can eliminate the value label yesno by typing

. label drop yesno

. label dir
sexlbl

We could eliminate all the value labels in memory by typing

. label drop _all

. label dir

label — Manipulate labels 648

The value label sexlbl, which no longer exists, was associated with the variable female. Even after
dropping the value label, sexlbl is still associated with the variable:

. describe
Contains data from https://www.stata-press.com/data/r19/hbp4.dta
Observations: 1,130

Variables: 7 22 Jan 2024 11:12

Variable Storage Display Value
name type format label Variable label

id str10 %10s Record identification number
city byte %8.0g
year int %8.0g
age_grp byte %8.0g
race byte %8.0g
hbp byte %8.0g
female byte %8.0g sexlbl

Sorted by:
Note: Dataset has changed since last saved.

If we wanted to disassociate this nonexistent value label from the variable it was attached to, we could

issue the label values command without specifying a value label name.

Example 4: Copying a value label
label copy is useful when you want to create a new value label that is similar to an existing value

label. For example, assume that we currently have the value label yesno in memory:

. label list yesno
yesno:

1 Yes
2 No

Assume that we have some variables in our dataset coded with 1 and 2 for “yes” and “no” and that
we have some other variables coded with 1 for “yes”, 2 for “no”, and 3 for “maybe”.

We could make a copy of value label yesno and then add the new coding to that copy:

. label copy yesno yesnomaybe

. label define yesnomaybe 3 ”Maybe”, add

. label list
yesnomaybe:

1 Yes
2 No
3 Maybe

yesno:
1 Yes
2 No

Example 5: Saving value labels
Data and variable labels are automatically stored with your dataset when you save it. You might

have more value labels stored in memory than are actually used in the dataset, but only those value

labels that are attached to variables will be stored with a dataset unless you use save’s orphans option.

label — Manipulate labels 649

Conversely, the use command drops all in-memory labels before loading the new dataset along with any

labels it might contain. You might want to store a value label not currently in use or move a value label

from one dataset to another. The label save command allows you to do this.

For example, assume that we currently have the value label yesnomaybe in memory:

. label list yesnomaybe
yesnomaybe:

1 Yes
2 No
3 Maybe

We have a dataset stored on disk called survey.dta to which we wish to add this value label. We

might use survey and then retype the label define yesnomaybe command. Retyping the label would
not be too tedious here but if the value label in memory mapped, say, the 50 states of the United States,

retyping it would be irksome. label save provides an alternative:

. label save yesnomaybe using ynfile
file ynfile.do saved

Typing label save yesnomaybe using ynfile caused Stata to create a do-file called ynfile.do con-
taining the definition of the yesnomaybe value label. Because we did not specify an extension for our
file, .dowas assumed. Also, if we had not specified a value label name, all value labels would have been
stored in ynfile.do.

To see the contents of the file, we can use the type command:

. type ynfile.do
label define yesnomaybe 1 ‘”Yes”’, modify
label define yesnomaybe 2 ‘”No”’, modify
label define yesnomaybe 3 ‘”Maybe”’, modify

We can now use our new dataset, survey.dta:

. use survey, clear
(Household survey data)
. label dir

Using the new dataset causes Stata to eliminate all value labels stored in memory. The label yesnomaybe
is now gone. Because we saved it in the file ynfile.do, however, we can get it back by typing either
do ynfile or run ynfile. If we type do, we will see the commands in the file execute. If we type run,
the file will execute silently:

. run ynfile

. label dir
yesnomaybe

The value label is now restored just as if we had typed it from the keyboard.

Technical note
You can also use the label save command to more easily edit value labels. You can save a label in

a file, leave Stata and use your word processor or editor to edit the label, and then return to Stata. Using

do or run, you can load the edited values.

label — Manipulate labels 650

Video examples
How to label variables

How to label the values of categorical variables

Stored results
label list stores the following in r():

Scalars

r(k) number of mapped values, including missings

r(min) minimum nonmissing value label

r(max) maximum nonmissing value label

r(hasemiss) 1 if extended missing values labeled, 0 otherwise

label dir stores the following in r():

Macros

r(names) names of value labels

References
Bjärkefur, K., L. Cardoso de Andrade, and B. Daniels. 2020. iefieldkit: Commands for primary data collection and

cleaning. Stata Journal 20: 892–915.

———. 2023. iefieldkit: Commands for primary data collection and cleaning (update). Stata Journal 23: 875–883.

Klein, D. 2019. Extensions to the label commands. Stata Journal 19: 867–882.

Long, J. S. 2009. The Workflow of Data Analysis Using Stata. College Station, TX: Stata Press.

Weesie, J. 2005a. Value label utilities: labeldup and labelrename. Stata Journal 5: 154–161.

———. 2005b. Multilingual datasets. Stata Journal 5: 162–187.

Also see
[D] label language — Labels for variables and values in multiple languages

[D] labelbook — Label utilities

[D] encode — Encode string into numeric and vice versa

[D] varmanage — Manage variable labels, formats, and other properties

[U] 12.6 Dataset, variable, and value labels

https://www.youtube.com/watch?v=l5QM2RzU3VM
https://www.youtube.com/watch?v=CiSIeQVWxW0
https://doi.org/10.1177/1536867X20976321
https://doi.org/10.1177/1536867X20976321
https://doi.org/10.1177/1536867X231196496
https://doi.org/10.1177/1536867X19893630
https://www.stata-press.com/books/wdaus.html
https://www.stata-journal.com/article.html?article=dm0012
https://www.stata-journal.com/article.html?article=dm0013

label language — Labels for variables and values in multiple languages

Description Quick start Menu Syntax
Option Remarks and examples Stored results Methods and formulas
References Also see

Description
label language lets you create and use datasets that contain different sets of data, variable, and

value labels. A dataset might contain one set in English, another in German, and a third in Spanish. A

dataset may contain up to 100 sets of labels.

We will write about the different sets as if they reflect different spoken languages, but you need not

use the multiple sets in this way. You could create a dataset with one set of long labels and another set

of shorter ones.

One set of labels is in use at any instant, but a dataset may contain multiple sets. You can choose

among the sets by typing

. label language languagename

When other Stata commands produce output (such as describe and tabulate), they use the currently
set language. When you define or modify the labels by using the other label commands (see [D] label),
you modify the current set.

label language (without arguments)
lists the available languages and the name of the current one. The current language refers to the

labels you will see if you used, say, describe or tabulate. The available languages refer to the
names of the other sets of previously created labels. For instance, you might currently be using

the labels in en (English), but labels in de (German) and es (Spanish) may also be available.

label language languagename

changes the labels to those of the specified language. For instance, if label language revealed
that en, de, and eswere available, typing label language dewould change the current language
to German.

label language languagename, new
allows you to create a new set of labels and collectively name them languagename. You may name

the set as you please, as long as the name does not exceed 24 characters. If the labels correspond to

spoken languages, we recommend that you use the language’s ISO 639-1 two-letter code, such as

en for English, de for German, and es for Spanish. A list of codes for popular languages is listed

in the appendix below. For a complete list, see

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes.

label language languagename, rename
changes the name of the label set currently in use. If the label set in use were named default and
you now wanted to change that to en, you could type label language en, rename.

Our choice of the name default in the example was not accidental. If you have not yet used

label language to create a new language, the dataset will have one language, named default.

label language languagename, delete
deletes the specified label set. If languagename is also the current language, one of the other

available languages becomes the current language.

651

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

label language — Labels for variables and values in multiple languages 652

Quick start
Name unnamed default language en for English

label language en, rename

Create new set of labels in French named fr
label language fr, new

Change current label language from English to French

label language fr

List defined languages

label language

Delete English label set

label language en, delete

Menu
Data > Data utilities > Label utilities > Set label language

Syntax
List defined languages

label language

Change labels to specified language name

label language languagename

Create new set of labels with specified language name

label language languagename, new [copy]

Rename current label set

label language languagename, rename

Delete specified label set

label language languagename, delete

collect is allowed; see [U] 11.1.10 Prefix commands.

Option
copy is used with label language, new and copies the labels from the current language to the new

language.

label language — Labels for variables and values in multiple languages 653

Remarks and examples
Remarks are presented under the following headings:

Creating labels in the first language
Creating labels in the second and subsequent languages
Creating labels from a clean slate
Creating labels from a previously existing language
Switching languages
Changing the name of a language
Deleting a language
Appendix: Selected ISO 639-1 two-letter codes

Creating labels in the first language
You can begin by ignoring the label language command. You create the data, variable, and value

labels just as you would ordinarily; see [D] label.

. label data ”1978 automobile data”

. label variable foreign ”Car type”

. label values foreign origin

. label define origin 0 ”Domestic” 1 ”Foreign”

At some point—at the beginning, the middle, or the end—rename the language appropriately. For

instance, if the labels you defined were in English, type

. label language en, rename

label language, rename simply changes the name of the currently set language. You may change
the name as often as you wish.

Creating labels in the second and subsequent languages
After creating the first language, you can create a new language by typing

. label language newlanguagename, new

or by typing the two commands

. label language existinglanguagename

. label language newlanguagename, new copy

In the first case, you start with a clean slate: no data, variable, or value labels are defined. In the

second case, you start with the labels from existinglanguagename, and you can make the changes from

there.

Creating labels from a clean slate
To create new labels in the language named de, type

. label language de, new

If you were now to type describe, you would find that there are no data, variable, or value labels.
You can define new labels in the usual way:

. label data ”1978 automobil daten”

. label variable foreign ”Art auto”

. label values foreign origin_de

. label define origin_de 0 ”Innen” 1 ”Ausländisch”

label language — Labels for variables and values in multiple languages 654

Creating labels from a previously existing language
It is sometimes easier to start with the labels from a previously existing language, which you can then

translate:

. label language en

. label language de, new copy

If you were now to type describe, you would see the English-language labels, even though the new
language is named de. You can then work to translate the labels:

. label data ”1978 automobil daten”

. label variable foreign ”Art auto”

Typing describe, you might also discover that the variable foreign has the value label origin. Do
not change the contents of the value label. Instead, create a new value label:

. label define origin_de 0 ”Innen” 1 ”Ausländisch”

. label values foreign origin_de

Creating value labels with the copy option is no different from creating them from a clean slate, except

that you start with an existing set of labels from another language. Using describe can make it easier
to translate them.

Switching languages
You can discover the names of the previously defined languages by typing

. label language

You can switch to a previously defined language—say, to en—by typing

. label language en

Changing the name of a language
To change the name of a previously defined language make it the current language and then specify

the rename option:
. label language de
. label language German, rename

You may rename a language as often as you wish:

. label language de, rename

Deleting a language
To delete a previously defined language, such as de, type

. label language de, delete

The delete option deletes the specified language and, if the language was also the currently set

language, resets the current language to one of the other languages or to default if there are none.

label language — Labels for variables and values in multiple languages 655

Appendix: Selected ISO 639-1 two-letter codes
You may name languages as you please. You may name German labels Deutsch, German, Aleman,

or whatever else appeals to you. For consistency across datasets, if the language you are creating is a

spoken language, we suggest that you use the ISO 639-1 two-letter codes. Some of them are listed below,

and the full list can be found at https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes.

Two-letter English name of

code language

ar Arabic

bn Bengali

cs Czech

de German

do Danish

el Greek

en English

es Spanish; Castillian

fa Persian

fi Finnish

fr French

ga Irish

he Hebrew

hi Hindi

is Icelandic

it Italian

ja Japanese

ko Korean

lt Lithuanian

lv Latvian

nl Dutch; Flemish

no Norwegian

pa Punjabi

pl Polish

pt Portuguese

ro Romanian; Moldavian

ru Russian

sk Slovak

sr Serbian

sv Swedish

te Telugu

tr Turkish

uk Ukrainian

ur Urdu

zh Chinese

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

label language — Labels for variables and values in multiple languages 656

Stored results
label language without arguments stores the following in r():

Scalars

r(k) number of languages defined

Macros

r(languages) list of languages, listed one after the other

r(language) name of current language

Methods and formulas
This section is included for programmers who wish to access or extend the services label language

provides.

Language sets are implemented using [P] char. The names of the languages and the name of the

current language are stored in

dta[lang list] list of defined languages

dta[lang c] currently set language

If these characteristics are undefined, results are as if each contained the word “default”. Do not
change the contents of the above two macros except by using label language.

For each language languagename except the current language, data, variable, and value labels are

stored in

dta[lang v languagename] data label

varname[lang v languagename] variable label

varname[lang l languagename] value-label name

References
Golbe, D. L. 2010. Stata tip 83: Merging multilingual datasets. Stata Journal 10: 152–156.

Weesie, J. 2005. Multilingual datasets. Stata Journal 5: 162–187.

Also see
[D] label — Manipulate labels

[D] labelbook — Label utilities

[D] codebook — Describe data contents

https://www.stata-journal.com/article.html?article=dm0046
https://www.stata-journal.com/article.html?article=dm0013

labelbook — Label utilities

Description Quick start Menu Syntax
Options Remarks and examples Stored results Acknowledgments
References Also see

Description
labelbook displays information for the value labels specified or, if no labels are specified, all the

labels in the data.

For multilingual datasets (see [D] label language), labelbook lists the variables to which value labels
are attached in all defined languages.

numlabel prefixes numeric values to value labels. For example, a value mapping of 2 ->
”catholic” will be changed to 2 -> ”2. catholic”. See option mask() for the different formats.

Stata commands that display the value labels also show the associated numeric values. Prefixes are

removed with the remove option.

uselabel is a programmer’s command that reads the value-label information from the currently

loaded dataset or from an optionally specified filename.

uselabel creates a dataset in memory that contains only that value-label information. The new

dataset has four variables named label, lname, value, and trunc; is sorted by lname value; and has
1 observation per mapping. Value labels can be longer than the maximum string length in Stata; see

[R] Limits. The new variable trunc contains 1 if the value label is truncated to fit in a string variable in
the dataset created by uselabel.

uselabel complements label, save, which produces a text file of the value labels in a format that
allows easy editing of the value-label texts.

Specifying no list or all is equivalent to specifying all value labels. Value-label names may not be
abbreviated or specified with wildcards.

Quick start
Codebook of all currently defined value labels

labelbook

Same as above, but only include labels mylabel1, mylabel2, and mylabel3
labelbook mylabel1 mylabel2 mylabel3

Same as above, and check that value labels are unique to the first 8 characters

labelbook mylabel1 mylabel2 mylabel3, length(8)

Prefix numeric values to mylabel1 with the number separated from the text by a hyphen

numlabel mylabel1, add mask(”# - ”)

Remove a prefixed numeric value from a value label when the “# -” mask was used

numlabel mylabel1, remove mask(”# - ”)

657

labelbook — Label utilities 658

Menu
labelbook
Data > Data utilities > Label utilities > Produce codebook of value labels

numlabel
Data > Data utilities > Label utilities > Prepend values to value labels

uselabel
Data > Data utilities > Label utilities > Create dataset from value labels

Syntax
Produce a codebook describing value labels

labelbook [lblname-list] [, labelbook options]

Prefix numeric values to value labels

numlabel [lblname-list] , { add | remove } [numlabel options]

Make dataset containing value-label information

uselabel [lblname-list] [using filename] [, clear var]

labelbook options Description

alpha alphabetize label mappings

length(#) check if value labels are unique to length #; default is length(12)
list(#) list maximum of # mappings; default is list(32000)
problems describe potential problems in a summary report

detail do not suppress detailed report on variables or value labels

collect is allowed with labelbook; see [U] 11.1.10 Prefix commands.

numlabel options Description

∗ add prefix numeric values to value labels
∗ remove remove numeric values from value labels

mask(str) mask for formatting numeric labels; default mask is ”#. ”
force force adding or removing of numeric labels

detail provide details about value labels, where some labels are prefixed with
numbers and others are not

∗ Either add or remove must be specified.

Options
Options are presented under the following headings:

Options for labelbook
Options for numlabel
Options for uselabel

labelbook — Label utilities 659

Options for labelbook
alpha specifies that the list of value-label mappings be sorted alphabetically on label. The default is to

sort the list on value.

length(#) specifies the minimum length that labelbook checks to determine whether shortened value
labels are still unique. It defaults to 12, the width used by most Stata commands. labelbook also
reports whether value labels are unique at their full length.

list(#) specifies the maximum number of value-label mappings to be listed. If a value label defines

more mappings, a random subset of # mappings is displayed. By default, labelbook displays all

mappings. list(0) suppresses the listing of the value-label definitions.

problems specifies that a summary report be produced describing potential problems that were diag-

nosed:

1. Value label has gaps in mapped values (for example, values 0 and 2 are labeled, while 1 is not)

2. Value label strings contain leading or trailing blanks

3. Value label contains duplicate labels, that is, there are different values that map into the same string

4. Value label contains duplicate labels at length 12

5. Value label contains numeric → numeric mappings

6. Value label contains numeric → null string mappings

7. Value label is not used by variables

detail may be specified only with problems. It specifies that the detailed report on the variables or
value labels not be suppressed.

Options for numlabel
add specifies that numeric values be prefixed to value labels. Value labels that are already numlabeled

(using the same mask) are not modified.

remove specifies that numeric values be removed from the value labels. If you added numeric values by

using a nondefault mask, you must specify the same mask to remove them. Value labels that are not

numlabeled or are numlabeled using a different mask are not modified.

mask(str) specifies a mask for formatting the numeric labels. In the mask, # is replaced by the numeric
label. The default mask is ”#. ” so that numeric value 3 is shown as ”3. ”. Spaces are relevant. For
the mask ”[#]”, numeric value 3 would be shown as ”[3]”.

force specifies that adding or removing numeric labels be performed, even if some value labels are

numlabeled using the mask and others are not. Here only labels that are not numlabeled will be
modified.

detail specifies that details be provided about the value labels that are sometimes, but not always,

numlabeled using the mask.

Options for uselabel
clear permits the dataset to be created, even if the dataset already in memory has changed since it was

last saved.

var specifies that the varlists using value label vl be returned in r(vl).

labelbook — Label utilities 660

Remarks and examples
Remarks are presented under the following headings:

labelbook
Diagnosing problems
numlabel
uselabel

labelbook
labelbook produces a detailed report of the value labels in your data. You can restrict the report to

a list of labels, meaning that no abbreviations or wildcards will be allowed. labelbook is a companion
command to [D] codebook, which describes the data, focusing on the variables.

For multilingual datasets (see [D] label language), labelbook lists the variables to which value labels
are attached in any of the languages.

Example 1
We request a labelbook report for value labels in a large dataset on the internal organization of

households. We restrict output to three value labels: agree5 (used for five-point Likert-style items),

divlabor (division of labor between husband and wife), and noyes for simple no-or-yes questions.

. use https://www.stata-press.com/data/r19/labelbook1

. labelbook agree5 divlabor noyes

Value label agree5

Values Labels
Range: [1,5] String length: [8,11]

N: 5 Unique at full length: yes
Gaps: no Unique at length 12: yes

Missing .*: 0 Null string: no
Leading/trailing blanks: no

Numeric -> numeric: no
Definition

1 -- disagree
2 - disagree
3 indifferent
4 + agree
5 ++ agree

Variables: rs056 rs057 rs058 rs059 rs060 rs061 rs062 rs063 rs064 rs065
rs066 rs067 rs068 rs069 rs070 rs071 rs072 rs073 rs074 rs075
rs076 rs077 rs078 rs079 rs080 rs081

labelbook — Label utilities 661

Value label divlabor

Values Labels
Range: [1,7] String length: [7,16]

N: 7 Unique at full length: yes
Gaps: no Unique at length 12: yes

Missing .*: 0 Null string: no
Leading/trailing blanks: yes

Numeric -> numeric: no
Definition

1 wife only
2 wife >> husband
3 wife > husband
4 equally
5 husband > wife
6 husband >> wife
7 husband only

Variables: hm01_a hm01_b hm01_c hm01_d hm01_e hn19 hn21 hn25_a hn25_b
hn25_c hn25_d hn25_e hn27_a hn27_b hn27_c hn27_d hn27_e hn31
hn36 hn38 hn42 hn46_a hn46_b hn46_c hn46_d hn46_e ho01_a ho01_b
ho01_c ho01_d ho01_e

Value label noyes

Values Labels
Range: [1,2] String length: [2,16]

N: 4 Unique at full length: yes
Gaps: no Unique at length 12: yes

Missing .*: 2 Null string: no
Leading/trailing blanks: no

Numeric -> numeric: no
Definition

1 no
2 yes

.a not applicable

.b ambiguous answer
Variables: hb12 hd01_a hd01_b hd03 hd04_a hd04_b he03_a he03_b hlat hn09_b

hn24_a hn34 hn49 hu05_a hu06_1c hu06_2c hx07_a hx08 hlat2
hfinish rh02 rj10_01 rk16_a rk16_b rl01 rl03 rl08_a rl08_b
rl09_a rs047 rs048 rs049 rs050 rs051 rs052 rs053 rs054 rs093
rs095 rs096 rs098

The report is largely self-explanatory. Extended missing values are denoted by “.*”. In the definition
of the mappings, the leading 12 characters of longer value labels are underlined to make it easier to check

that the value labels still make sense after truncation. The following example emphasizes this feature.

The option alpha specifies that the value-label mappings be sorted in alphabetical order by the label

strings rather than by the mapped values.

labelbook — Label utilities 662

. use https://www.stata-press.com/data/r19/labelbook2

. labelbook sports, alpha

Value label sports

Values Labels
Range: [1,5] String length: [16,23]

N: 4 Unique at full length: yes
Gaps: yes Unique at length 12: no

Missing .*: 0 Null string: no
Leading/trailing blanks: no

Numeric -> numeric: no
Definition

5 college baseball
4 college basketball
2 professional baseball
1 professional basketball

Variables: active passive

The report includes information about potential problems in the data. These are discussed in greater

detail in the next section.

Diagnosing problems
labelbook can diagnose a series of potential problems in the value-label mappings. labelbook

produces warning messages for a series of problems:

1. Gaps in the labeled values (for example, values 0 and 2 are labeled, whereas 1 is not) may occur when

value labels of the intermediate values have not been defined.

2. Leading or trailing blanks in the value labels may distort Stata output.

3. Stata allows you to define blank labels, that is, the mapping of a number to the empty string. Below

we give you an example of the unexpected output that may result. Blank labels are most often the

result of a mistaken value-label definition, for instance, the expansion of a nonexisting macro in the

definition of a value label.

4. Stata does not require that the labels within each value label consist of unique strings, that is, that

different values be mapped into different strings. For instance, you might accidentally define the

value label gender as
label define gender 1 female 2 female

You will probably catch most of the problems, but in more complicated value labels, it is easy to miss

the error. labelbook finds such problems and displays a warning.

5. Stata allows long value labels (32,000 characters), so labels can be long. However, some commands

may need to display truncated value labels, typically at length 12. Consequently, even if the value

labels are unique, the truncated value labels may not be, which can cause problems. labelbookwarns
you for value labels that are not unique at length 12.

6. Stata allows value labels that can be interpreted as numbers. This is sometimes useful, but it can

cause highly misleading output. Think about tabulating a variable for which the associated value

label incorrectly maps 1 into “2”, 2 into “3”, and 3 into “1”. labelbook looks for such problematic
labels and warns you if they are found.

labelbook — Label utilities 663

7. In Stata, value labels are defined as separate objects that can be associatedwithmore than one variable:

label define labname # str # str ...
label value varname1 labname
label value varname2 labname
...

If you forget to associate a variable label with a variable, Stata considers the label unused and drops

its definition. labelbook reports unused value labels so that you may fix the problem.

The related command codebook reports on two other potential problems concerning value labels:

a. A variable is value labeled, but some values of the variable are not labeled. You may have

forgotten to define a mapping for some values, or you generated a variable incorrectly; for

example, your sex variable has an unlabeled value 3, and you are not working in experimental
genetics!

b. A variable has been associated with an undefined value label.

labelbook can also be invoked with the problems option, specifying that only a report on potential
problems be displayed without the standard detailed description of the value labels.

Technical note
The following two examples demonstrate some features of value labels that may be difficult to un-

derstand. In the first example, we encode a string variable with blank strings of various sizes; that is,
we turn a string variable into a value-labeled numeric variable. Then we tabulate the generated variable.

. clear all

. set obs 5
Number of observations (_N) was 0, now 5.
. generate str10 horror = substr(” ”, 1, _n)
. encode horror, gen(Ihorror)
. tabulate horror

horror Freq. Percent Cum.

1 20.00 20.00
1 20.00 40.00
1 20.00 60.00
1 20.00 80.00
1 20.00 100.00

Total 5 100.00

It may look as if you have discovered a bug in Stata because there are no value labels in the first column

of the table. This happened because we encoded a variable with only blank strings, so the associated value

label maps integers into blank strings.

. label list Ihorror
Ihorror:

1
2
3
4
5

In the first column of the table, tabulate displayed the value-label texts, just as it should. Because
these texts are all blank, the first column is empty. As illustrated below, labelbook would have warned
you about this odd value label.

labelbook — Label utilities 664

Our second example illustrates what could go wrong with numeric values stored as string values. We

want to turn this into a numeric variable, but we incorrectly encode the variable rather than using the
appropriate command, destring.

. generate str10 horror2 = string(_n+1)

. encode horror2, gen(Ihorror2)

. tabulate Ihorror2
Ihorror2 Freq. Percent Cum.

2 1 20.00 20.00
3 1 20.00 40.00
4 1 20.00 60.00
5 1 20.00 80.00
6 1 20.00 100.00

Total 5 100.00
. tabulate Ihorror2, nolabel

Ihorror2 Freq. Percent Cum.

1 1 20.00 20.00
2 1 20.00 40.00
3 1 20.00 60.00
4 1 20.00 80.00
5 1 20.00 100.00

Total 5 100.00
. label list Ihorror2
Ihorror2:

1 2
2 3
3 4
4 5
5 6

labelbook skips the detailed descriptions of the value labels and reports only the potential problems
in the value labels if the problems option is specified. This report would have alerted you to the problems
with the value labels we just described.

. use https://www.stata-press.com/data/r19/data_in_trouble, clear

. labelbook, problem
Potential problems in dataset https://www.stata-press.com/data/r19/

> data_in_trouble.dta
Potential problem Value labels

Numeric -> numeric Ihorror2
Leading or trailing blanks Ihorror

Numeric -> null str Ihorror

Running labelbook, problems and codebook, problems on new data might catch a series of an-

noying problems.

labelbook — Label utilities 665

numlabel
The numlabel command allows you to prefix numeric codes to value labels. The reason you might

want to do this is best seen in an example using the automobile data. First, we create a value label for

the variable rep78 (repair record in 1978),
. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. label define repair 1 ”very poor” 2 ”poor” 3 ”medium” 4 good 5 ”very good”
. label values rep78 repair

and tabulate it.

. tabulate rep78
Repair

record 1978 Freq. Percent Cum.

very poor 2 2.90 2.90
poor 8 11.59 14.49

medium 30 43.48 57.97
good 18 26.09 84.06

very good 11 15.94 100.00

Total 69 100.00

Suppose that we want to recode the variable by joining the categories poor and very poor. To do this,

we need the numerical codes of the categories, not the value labels. However, Stata does not display

both the numeric codes and the value labels. We could redisplay the table with the nolabel option. The
numlabel command provides a simple alternative: it modifies the value labels so that they also contain
the numeric codes.

. numlabel, add

. tabulate rep78
Repair

record 1978 Freq. Percent Cum.

1. very poor 2 2.90 2.90
2. poor 8 11.59 14.49

3. medium 30 43.48 57.97
4. good 18 26.09 84.06

5. very good 11 15.94 100.00

Total 69 100.00

If you do not like the way the numeric codes are formatted, you can use numlabel to change the

formatting. First, we remove the numeric codes again:

. numlabel repair, remove

In this example, we specified the name of the label. If we had not typed it, numlabel would have
removed the codes from all the value labels. We can include the numeric codes while specifying a mask:

labelbook — Label utilities 666

. numlabel, add mask(”[#] ”)

. tabulate rep78
Repair record

1978 Freq. Percent Cum.

[1] very poor 2 2.90 2.90
[2] poor 8 11.59 14.49

[3] medium 30 43.48 57.97
[4] good 18 26.09 84.06

[5] very good 11 15.94 100.00

Total 69 100.00

numlabel prefixes rather than postfixes the value labels with numeric codes. Because value labels
can be fairly long (up to 80 characters), Stata usually displays only the first 12 characters.

uselabel
uselabel is of interest primarily to programmers. Here we briefly illustrate it with the auto dataset.

Example 2
. use https://www.stata-press.com/data/r19/auto, clear
(1978 automobile data)
. uselabel
. describe
Contains data
Observations: 2

Variables: 4

Variable Storage Display Value
name type format label Variable label

lname str6 %9s
value byte %10.0g
label str8 %9s
trunc byte %8.0g

Sorted by: lname value
Note: Dataset has changed since last saved.

. list

lname value label trunc

1. origin 0 Domestic 0
2. origin 1 Foreign 0

uselabel created a dataset containing the labels and values for the value label origin.

The maximum length of the text associated with a value label is 32,000 characters, whereas the maxi-

mum length of a string variable in a Stata dataset is 2,045. uselabel uses only the first 2,045 characters
of the label. The trunc variable will record a 1 if the text was truncated for this reason.

labelbook — Label utilities 667

Stored results
labelbook stores the following in r():

Macros

r(names) lblname-list

r(gaps) gaps in mapped values

r(blanks) leading or trailing blanks

r(null) name of value label containing null strings

r(nuniq) duplicate labels

r(nuniq sh) duplicate labels at length 12

r(ntruniq) duplicate labels at maximum string length

r(notused) not used by any of the variables

r(numeric) name of value label containing mappings to numbers

uselabel stores the following in r():

Macros

r(lblname) list of variables that use value label lblname (only when var option is specified)

Acknowledgments
labelbook and numlabel were written by Jeroen Weesie of the Department of Sociology at Utrecht

University, The Netherlands. A command similar to numlabel was written by J. M. Lauritsen (2001) of

Odense Universiteshospital, Denmark.

References
Lauritsen, J. M. 2001. dm84: labjl: Adding numerical codes to value labels. Stata Technical Bulletin 59: 6–7. Reprinted

in Stata Technical Bulletin Reprints, vol. 10, pp. 35–37. College Station, TX: Stata Press.

Weesie, J. 1997. dm47: Verifying value label mappings. Stata Technical Bulletin 37: 7–8. Reprinted in Stata Technical

Bulletin Reprints, vol. 7, pp. 39–40. College Station, TX: Stata Press.

Also see
[D] codebook — Describe data contents

[D] describe — Describe data in memory or in a file

[D] ds — Compactly list variables with specified properties

[D] encode — Encode string into numeric and vice versa

[D] label — Manipulate labels

[U] 12.6 Dataset, variable, and value labels

[U] 15 Saving and printing output—log files

https://www.stata.com/products/stb/journals/stb59.pdf
https://www.stata.com/products/stb/journals/stb37.pdf

list — List values of variables

Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description
list displays the values of variables. If no varlist is specified, the values of all the variables are

displayed. Also see browse in [D] edit.

Quick start
List the data in memory

list

List only data in variables v1, v2, and v3
list v1 v2 v3

Same as above, but include only the first 10 observations and suppress numbering

list v1 v2 v3 in f/10, noobs

Same as above, but list the last 10 observations

list v1 v2 v3 in -10/l, noobs

Draw separator line every 10 observations, and repeat header row every 20 observations

list v1 v2 v3, separator(10) header(20)

Same as above, but also show a footer row of variable names

list v1 v2 v3, separator(10) header(20) footer

Same as above, but draw separator line between values of v1 and do not show the header and footer

list v1 v2 v3, sepby(v1) noheader

Same as above, but draw separator line before and after observation 4, with a header

list v1 v2 v3, sepbyexp(_n==4)

Add the mean and sum of the observations at the end of the table, and suppress separator and divider

lines

list v1 v2 v3, mean sum clean

Menu
Data > Describe data > List data

668

list — List values of variables 669

Syntax
list [varlist] [if] [in] [, options]

flist is equivalent to list with the fast option.

options Description

Main

compress compress width of columns in both table and display formats

nocompress use display format of each variable

fast synonym for nocompress; no delay in output of large datasets
abbreviate(#) abbreviate variable names to # display columns; default is ab(8)
string(#) truncate string variables to # display columns

noobs do not list observation numbers

fvall display all levels of factor variables

Options

table force table format

display force display format

header display variable header once; default is table mode

noheader suppress variable header

header(#) display variable header every # lines

footer display variable names as a footer

clean force table format with no divider or separator lines

divider draw divider lines between columns

separator(#) draw a separator line every # lines; default is separator(5)
sepby(varlist2) draw a separator line whenever varlist2 values change

sepbyexp(exp) draw a separator line whenever value of exp changes

ds use double-spaced lines

nolabel display numeric codes rather than label values

Summary

mean[(varlist2)] add line reporting the mean for the (specified) variables

sum[(varlist2)] add line reporting the sum for the (specified) variables

N[(varlist2)] add line reporting the number of nonmissing values for the (specified)
variables

labvar(varname) substitute Mean, Sum, or N for value of varname in added line reporting
mean, sum, or 𝑁

Advanced

constant[(varlist2)] separate and list variables that are constant only once

notrim suppress string trimming

absolute display overall observation numbers when using by varlist:
relative display relative observation numbers for a subset of observations

specified by qualifiers if and in
nodotz display numerical values equal to .z as field of blanks
subvarname substitute characteristic for variable name in header

linesize(#) columns per line; default is linesize(79)

list — List values of variables 670

varlist may contain factor variables; see [U] 11.4.3 Factor variables.

varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by is allowed with list; see [D] by.

Options

� � �
Main �

compress and nocompress change the width of the columns in both table and display formats. By

default, list examines the data and allocates the needed width to each variable. For instance, a

variable might be a string with a %18s format, and yet the longest string will be only 12 characters

long. Or a numeric variable might have a %9.0g format, and yet, given the values actually present,

the widest number needs only four columns.

nocompress prevents list from examining the data. Widths will be set according to the display

format of each variable. Output generally looks better when nocompress is not specified, but for
very large datasets (say, 1,000,000 observations or more), nocompress can speed up the execution
of list.

compress allows list to engage in a little more compression than it otherwise would by telling list
to abbreviate variable names to fewer than eight characters.

fast is a synonym for nocompress. fastmay be of interest to those with very large datasets who wish
to see output appear without delay.

abbreviate(#) is an alternative to compress that allows you to specify the minimum abbreviation

of variable names to be considered. For example, you could specify abbreviate(16) if you never
wanted variables abbreviated to less than 16 display columns. For most users, the number of display

columns is equal to the number of characters. However, some languages, such as Chinese, Japanese,

and Korean (CJK), require two display columns per character.

string(#) specifies that when string variables are listed, they be truncated to # display columns in the
output. Any value that is truncated will be appended with “..” to indicate the truncation. string()
is useful for displaying just a part of long strings.

noobs suppresses the listing of the observation numbers.

fvall specifies that the entire dataset be used to determine how many levels are in any factor variables

specified in varlist. The default is to determine the number of levels by using only the observations

in the if and in qualifiers.

� � �
Options �

table and display determine the style of output. By default, list determines whether to use table
or display on the basis of the width of your screen and the linesize() option, if you specify it.

table forces table format. Forcing table format when list would have chosen otherwise generally
produces impossible-to-read output because of the linewraps. However, if you are logging out-

put in SMCL format and plan to print the output on wide paper later, specifying table can be a
reasonable thing to do.

display forces display format.

list — List values of variables 671

header, noheader, header(#), and footer specify how the variable header or footer is to be displayed.

header is the default in table mode and displays the variable header once, at the top of the table.

noheader suppresses the header altogether.

header(#) redisplays the variable header every # observations. For example, header(10) would
display a new header every 10 observations.

footer displays variable names as a footer. With footer, a variable header is also displayed; footer
cannot be combined with noheader.

The default in display mode is to display the variable names interweaved with the data:

1. make price mpg rep78 headroom trunk weight length
AMC Concord 4,099 22 3 2.5 11 2,930 186

turn displa~t gear_r~o foreign
40 121 3.58 Domestic

However, if you specify header, the header is displayed once, at the top of the table:

make price mpg rep78 headroom trunk weight length

turn displa~t gear_r~o foreign

1. AMC Concord 4,099 22 3 2.5 11 2,930 186

40 121 3.58 Domestic

clean is a better alternative to table when you want to force table format and your goal is to produce
more readable output on the screen. clean implies table, and it removes dividing and separating
lines, which is what makes wrapped table output nearly impossible to read. Blank separator lines may

be included by specifying the ds option.

divider, separator(#), sepby(varlist2), sepbyexp(exp), and ds specify how dividers and separator

lines should be displayed. These five options affect only table format.

divider specifies that divider lines be drawn between columns. The default is to not display a divider.

separator(#) and sepby(varlist2) indicate when separator lines should be drawn between rows.
To make these separator lines blank, specify the ds option.

separator(#) specifies how often separator lines should be drawn between rows. The default is

separator(5), meaning every 5 observations. You may specify separator(0) to suppress
separators altogether.

sepby(varlist2) specifies that a separator line be drawn whenever any of the variables in

sepby(varlist2) change their values; up to 10 variables may be specified. You need not make
sure the data were sorted on sepby(varlist2) before issuing the list command. The variables
in sepby(varlist2) also need not be among the variables being listed.

sepbyexp(exp) specifies that a separator line be drawn whenever the value of exp changes. exp can
be any expression and does not necessarily have to refer to the variables being listed.

list — List values of variables 672

ds specifies that the lines be double spaced, meaning that a blank separator line be inserted after every
observation. To control when blank separator lines are inserted, specify ds with separator(#),
sepby(varlist2), or sepbyexp(exp).

By default, separator lines are suppressed when specifying the clean option unless ds is specified,
in which case blank separator lines will be used.

nolabel specifies that numeric codes be displayed rather than the label values.

� � �
Summary �

mean, sum, N, mean(varlist2), sum(varlist2), and N(varlist2) all specify that lines be added to the output
reporting the mean, sum, or number of nonmissing values for the (specified) variables. If you do not

specify the variables, all numeric variables in the varlist following list are used.

labvar(varname) is for use with mean[()], sum[()], and N[()]. list displays Mean, Sum, or N where
the observation number would usually appear to indicate the end of the table—where a row represents

the calculated mean, sum, or number of observations.

labvar(varname) changes that. Instead, Mean, Sum, or N is displayed where the value for varname
would be displayed. For instance, you might type

. list group costs profits, sum(costs profits) labvar(group)

group costs profits

1. 1 47 5
2. 2 123 10
3. 3 22 2

Sum 192 17

and then also specify the noobs option to suppress the observation numbers.

� � �
Advanced �

constant and constant(varlist2) specify that variables that do not vary observation by observation
be separated out and listed only once.

constant specifies that list determine for itself which variables are constant.

constant(varlist2) allows you to specify which of the constant variables you want listed separately.
list verifies that the variables you specify really are constant and issues an error message if they
are not.

constant and constant() respect if exp and in range. If you type

. list if group==3

variable xmight be constant in the selected observations, even though the variable varies in the entire
dataset.

notrim affects how string variables are listed. The default is to trim strings at the width implied by

the widest possible column given your screen width (or linesize(), if you specified that). notrim
specifies that strings not be trimmed. notrim implies clean (see above) and, in fact, is equivalent to
the clean option, so specifying either makes no difference.

list — List values of variables 673

absolute affects output only when list is prefixed with by varlist:. Observation numbers are dis-
played, but the overall observation numbers are used rather than the observation numbers within each

by-group. For example, if the first group had 4 observations and the second had 2, by default the

observations would be numbered 1, 2, 3, 4 and 1, 2. If absolute is specified, the observations will
be numbered 1, 2, 3, 4 and 5, 6.

relative affects output only when a subset of observations is listed by using qualifiers if and in.
Observation numbers are displayed, but the observations are numbered 1, 2, 3, etc. When list is
prefixed with by varlist: and relative is specified, relative observation numbers will be used for
each subgroup formed by varlist.

nodotz is a programmer’s option that specifies that numerical values equal to .z be listed as a field of
blanks rather than as .z.

subvarname is a programmer’s option. If a variable has the characteristic var[varname] set, then the
contents of that characteristic will be used in place of the variable’s name in the headers.

linesize(#) specifies the width of the page to be used for determining whether table or display format
should be used and for formatting the resulting table. Specifying a value of linesize() that is wider
than your screen width can produce truly ugly output on the screen, but that output can nevertheless

be useful if you are logging output and plan to print the log later on a wide printer.

Remarks and examples
list, typed by itself, lists all the observations and variables in the dataset. If you specify varlist, only

those variables are listed. Specifying one or both of in range and if exp limits the observations listed.

list respects line size. That is, if you resize the Results window (in windowed versions of Stata)

before running list, it will take advantage of the available horizontal space. Stata for Unix(console)
users can instead use the set linesize command to take advantage of this feature; see [R] log.

listmay not display all the large strings. You have two choices: 1) you can specify the clean option,
which makes a different, less attractive listing, or 2) you can increase line size, as discussed above.

list — List values of variables 674

Example 1
list has two output formats, known as table and display. The table format is suitable for listing a

few variables, whereas the display format is suitable for listing an unlimited number of variables. Stata

chooses automatically between those two formats:

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. list in 1/2

1. make price mpg rep78 headroom trunk weight length
AMC Concord 4,099 22 3 2.5 11 2,930 186

turn displa~t gear_r~o foreign
40 121 3.58 Domestic

2. make price mpg rep78 headroom trunk weight length
AMC Pacer 4,749 17 3 3.0 11 3,350 173

turn displa~t gear_r~o foreign
40 258 2.53 Domestic

. list make mpg weight displ rep78 in 1/5

make mpg weight displa~t rep78

1. AMC Concord 22 2,930 121 3
2. AMC Pacer 17 3,350 258 3
3. AMC Spirit 22 2,640 121 .
4. Buick Century 20 3,250 196 3
5. Buick Electra 15 4,080 350 4

The first case is an example of display format; the second is an example of table format. The table

format is more readable and takes less space, but it is effective only if the variables can fit on one line

across the screen. Stata chose to list all 12 variables in display format, but when the varlist was restricted

to five variables, Stata chose table format.

If you are dissatisfied with Stata’s choice, you can decide for yourself. You can specify the display
option to force display format and the nodisplay option to force table format.

Technical note
If you have long string variables in your data—say, str75 or longer—by default, list displays only

the first 70 or so characters of each; the exact number is determined by the width of your Results window.

The first 70 or so characters will be shown followed by “. . .”. If you need to see the entire contents of

the string, you can

1. specify the clean option, which makes a different (and uglier) style of list, or

2. make your Results window wider [Stata for Unix(console) users: increase set linesize].

list — List values of variables 675

Technical note
Among the things that determine the widths of the columns, the variable names play a role. Left

to itself, list will never abbreviate variable names to fewer than eight characters. You can use the

compress option to abbreviate variable names to fewer characters than that.

Technical note
When Stata lists a string variable in table output format, the variable is displayed right-justified by

default.

When Stata lists a string variable in display output format, it decides whether to display the variable

right-justified or left-justified according to the display format for the string variable; see [U] 12.5 For-

mats: Controlling how data are displayed. In our previous example, make has a display format of

%-18s.

. describe make
Variable Storage Display Value

name type format label Variable label

make str18 %-18s Make and model

The negative sign in the %-18s instructs Stata to left-justify this variable. If the display format had been
%18s, Stata would have right-justified the variable.

The foreign variable appears to be string, but if we describe it, we see that it is not:

. describe foreign
Variable Storage Display Value

name type format label Variable label

foreign byte %8.0g origin Car origin

foreign is stored as a byte, but it has an associated value label named origin; see [U] 12.6.3 Value
labels. Stata decides whether to right-justify or left-justify a numeric variable with an associated value

label by using the same rule used for string variables: it looks at the display format of the variable.

Here the display format of %8.0g tells Stata to right-justify the variable. If the display format had been
%-8.0g, Stata would have left-justified this variable.

Technical note
You can list the variables in any order. When you specify the varlist, list displays the variables in

the order you specify. You may also include variables more than once in the varlist.

list — List values of variables 676

Example 2
Sometimes you may wish to suppress the observation numbers. You do this by specifying the noobs

option:

. list make mpg weight displ foreign in 46/55, noobs

make mpg weight displa~t foreign

Plym. Volare 18 3,330 225 Domestic
Pont. Catalina 18 3,700 231 Domestic
Pont. Firebird 18 3,470 231 Domestic
Pont. Grand Prix 19 3,210 231 Domestic
Pont. Le Mans 19 3,200 231 Domestic

Pont. Phoenix 19 3,420 231 Domestic
Pont. Sunbird 24 2,690 151 Domestic
Audi 5000 17 2,830 131 Foreign
Audi Fox 23 2,070 97 Foreign
BMW 320i 25 2,650 121 Foreign

After seeing the table, we decide that we want to separate the “Domestic” observations from the

“Foreign” observations, so we specify sepby(foreign).

. list make mpg weight displ foreign in 46/55, noobs sepby(foreign)

make mpg weight displa~t foreign

Plym. Volare 18 3,330 225 Domestic
Pont. Catalina 18 3,700 231 Domestic
Pont. Firebird 18 3,470 231 Domestic
Pont. Grand Prix 19 3,210 231 Domestic
Pont. Le Mans 19 3,200 231 Domestic
Pont. Phoenix 19 3,420 231 Domestic
Pont. Sunbird 24 2,690 151 Domestic

Audi 5000 17 2,830 131 Foreign
Audi Fox 23 2,070 97 Foreign
BMW 320i 25 2,650 121 Foreign

list — List values of variables 677

Example 3
We want to add vertical lines in the table to separate the variables, so we specify the divider option.

We also want to draw a horizontal line after every 2 observations, so we specify separator(2).

. list make mpg weight displ foreign in 46/55, divider separator(2)

make mpg weight displa~t foreign

46. Plym. Volare 18 3,330 225 Domestic
47. Pont. Catalina 18 3,700 231 Domestic

48. Pont. Firebird 18 3,470 231 Domestic
49. Pont. Grand Prix 19 3,210 231 Domestic

50. Pont. Le Mans 19 3,200 231 Domestic
51. Pont. Phoenix 19 3,420 231 Domestic

52. Pont. Sunbird 24 2,690 151 Domestic
53. Audi 5000 17 2,830 131 Foreign

54. Audi Fox 23 2,070 97 Foreign
55. BMW 320i 25 2,650 121 Foreign

After seeing the table, we decide that we do not want to abbreviate displacement, so we specify
abbreviate(12).

. list make mpg weight displ foreign in 46/55, divider sep(2) abbreviate(12)

make mpg weight displacement foreign

46. Plym. Volare 18 3,330 225 Domestic
47. Pont. Catalina 18 3,700 231 Domestic

48. Pont. Firebird 18 3,470 231 Domestic
49. Pont. Grand Prix 19 3,210 231 Domestic

50. Pont. Le Mans 19 3,200 231 Domestic
51. Pont. Phoenix 19 3,420 231 Domestic

52. Pont. Sunbird 24 2,690 151 Domestic
53. Audi 5000 17 2,830 131 Foreign

54. Audi Fox 23 2,070 97 Foreign
55. BMW 320i 25 2,650 121 Foreign

list — List values of variables 678

Technical note
You can suppress the use of value labels by specifying the nolabel option. For instance, the foreign

variable in the examples above really contains numeric codes, with 0 meaning Domestic and 1 meaning
Foreign. When we list the variable, however, we see the corresponding value labels rather than the
underlying numeric code:

. list foreign in 51/55

foreign

51. Domestic
52. Domestic
53. Foreign
54. Foreign
55. Foreign

Specifying the nolabel option displays the underlying numeric codes:

. list foreign in 51/55, nolabel

foreign

51. 0
52. 0
53. 1
54. 1
55. 1

list — List values of variables 679

Example 4
With the separator(#) option, a separator line is drawn every # observations. With the

sepby(varlist) option, a separator line is drawn every time varlist values change. The sepbyexp(exp)
option allows more flexible conditions for drawing a separator line: a line is drawn every time expres-

sion exp changes. For example, you may want a separator line whenever a string variable starts with a

different letter of the alphabet:

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. sort make
. list make weight in 1/15, sepbyexp(substr(make,1,1))

make weight

1. AMC Concord 2,930
2. AMC Pacer 3,350
3. AMC Spirit 2,640
4. Audi 5000 2,830
5. Audi Fox 2,070

6. BMW 320i 2,650
7. Buick Century 3,250
8. Buick Electra 4,080
9. Buick LeSabre 3,670

10. Buick Opel 2,230
11. Buick Regal 3,280
12. Buick Riviera 3,880
13. Buick Skylark 3,400

14. Cad. Deville 4,330
15. Cad. Eldorado 3,900

You can separate observations based on the value of a numerical variable, for example, weight in the

thousands, two thousands, etc.:

. sort weight

. list make weight in 1/10, sepbyexp(floor(weight/1000))

make weight

1. Honda Civic 1,760
2. Plym. Champ 1,800
3. Ford Fiesta 1,800
4. Renault Le Car 1,830
5. VW Rabbit 1,930
6. Mazda GLC 1,980
7. VW Scirocco 1,990

8. Datsun 210 2,020
9. VW Diesel 2,040

10. Subaru 2,050

list — List values of variables 680

Observations can be delineated based on more elaborate expressions. For example, in daily time-

series data, weekdays can be separated from weekend days as follows. (Function dow() returns the day
of the week, where 0 = Sunday, 1 = Monday, . . . , 6 = Saturday.)

. use https://www.stata-press.com/data/r19/tsline2
(Simulated data of calories consumed for 365 days)
. sort day
. generate dow = dow(day)
. list day dow in 1/14, sepbyexp(dow==0 | dow==6)

day dow

1. 01jan2002 2
2. 02jan2002 3
3. 03jan2002 4
4. 04jan2002 5

5. 05jan2002 6
6. 06jan2002 0

7. 07jan2002 1
8. 08jan2002 2
9. 09jan2002 3

10. 10jan2002 4
11. 11jan2002 5

12. 12jan2002 6
13. 13jan2002 0

14. 14jan2002 1

References
Cox, N. J. 2017. Speaking Stata: Tables as lists: The groups command. Stata Journal 17: 760–773.

Harrison, D. A. 2006. Stata tip 34: Tabulation by listing. Stata Journal 6: 425–427.

Also see
[D] edit — Browse or edit data with Data Editor

[P] display — Display strings and values of scalar expressions

[P] tabdisp — Display tables

[R] table — Table of frequencies, summaries, and command results

https://www.stata-journal.com/article.html?article=st0496
https://www.stata-journal.com/article.html?article=dm0023

lookfor — Search for string in variable names and labels

Description Quick start Syntax Remarks and examples
Stored results Reference Also see

Description
lookfor helps you find variables by searching for string among all variable names and labels. If

multiple strings are specified, lookfor will search for each of them separately. You may search for a

phrase by enclosing string in double quotes.

Quick start
Search variable names and variable labels for the phrase “my text” regardless of case

lookfor ”my text”

Search for “word1” or “word2”

lookfor word1 word2

Syntax
lookfor string [string [. . .]]

collect is allowed; see [U] 11.1.10 Prefix commands.

Remarks and examples

Example 1
lookfor finds variables by searching for string, ignoring case, among the variable names and labels.

. use https://www.stata-press.com/data/r19/nlswork
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)
. lookfor code
Variable Storage Display Value

name type format label Variable label

idcode int %8.0g NLS ID
ind_code byte %8.0g Industry of employment
occ_code byte %8.0g Occupation

Three variable names contain the word code.

. lookfor married
Variable Storage Display Value

name type format label Variable label

msp byte %8.0g 1 if married, spouse present
nev_mar byte %8.0g 1 if never married

Two variable labels contain the word married.

681

lookfor — Search for string in variable names and labels 682

. lookfor gnp
Variable Storage Display Value

name type format label Variable label

ln_wage float %9.0g ln(wage/GNP deflator)

lookfor ignores case, so lookfor gnp found GNP in a variable label.

Example 2
If multiple strings are specified, all variable names or labels containing any of the strings are listed.

. lookfor code married
Variable Storage Display Value

name type format label Variable label

idcode int %8.0g NLS ID
msp byte %8.0g 1 if married, spouse present
nev_mar byte %8.0g 1 if never married
ind_code byte %8.0g Industry of employment
occ_code byte %8.0g Occupation

To search for a phrase, enclose string in double quotes.

. lookfor ”never married”
Variable Storage Display Value

name type format label Variable label

nev_mar byte %8.0g 1 if never married

Stored results
lookfor stores the following in r():

Macros

r(varlist) the varlist of found variables

Reference
Cox, N. J. 2010. Speaking Stata: Finding variables. Stata Journal 10: 281–296.

Also see
[D] describe — Describe data in memory or in a file

[D] ds — Compactly list variables with specified properties

https://www.stata-journal.com/article.html?article=dm0048

memory — Memory management

Description Quick start Syntax Options
Remarks and examples Stored results Also see

Description
Memory usage and settings are described here.

memory displays a report on Stata’s current memory usage.

query memory displays the current values of Stata’s memory settings.

set maxvar, set niceness, set min memory, set max memory, and set segmentsize change

the values of the memory settings.

If you are a Unix user, see Serious bug in Linux OS under Remarks and examples below.

Quick start
Display memory usage report

memory

Display memory settings

query memory

Increase the maximum number of variables to 8,000 in Stata/MP or Stata/SE

set maxvar 8000

Set maximum memory allocation to avoid potential memory allocation bug in Linux

set max_memory 16g, permanently

683

memory — Memory management 684

Syntax
Display memory usage report

memory

Display memory settings

query memory

Modify memory settings

set maxvar # [, permanently]

set niceness # [, permanently]

set min memory amt [, permanently]

set max memory amt [, permanently]

set segmentsize amt [, permanently]

where amt is #[b | k | m | g], and the default unit is b.

Parameter Default Minimum Maximum

maxvar 5000 2048 120000 (MP)

5000 2048 32767 (SE)

2048 2048 2048 (BE)

niceness 5 0 10

min memory 0 0 max memory
max memory . 2×segmentsize .
segmentsize 32m 1m 32g (64-bit)

Notes:

1. The maximum number of variables in your dataset is limited to maxvar. The default value
of maxvar is 5,000 for Stata/MP and Stata/SE, and 2,048 for Stata/BE. With Stata/MP and

Stata/SE, this default value may be increased by using set maxvar. The default value is fixed
for Stata/BE.

2. Most users do not need to read beyond this point. Stata’s memory management is completely

automatic. If, however, you are using the Linux operating system, see Serious bug in Linux OS

under Remarks and examples below.

3. The maximum number of observations is fixed at 1,099,511,627,775 for Stata/MP and is fixed

at 2,147,483,619 for Stata/SE and Stata/BE regardless of computer size or memory settings.

Depending on the amount of memory on your computer, you may face a lower practical limit.

See help obs advice.

memory — Memory management 685

4. max memory specifies the maximum amount of memory Stata can use to store your data. The

default of missing (.) means all the memory the operating system is willing to supply. There

are three reasons to change the value from missing to a finite number.

1. You are a Linux user; see Serious bug in Linux OS under Remarks and examples

below.

2. You wish to reduce the chances of accidents, such as typing expand 100000 with

a large dataset in memory and actually having Stata do it. You would rather see an

insufficient-memory error message. Set max memory to the amount of physical mem-
ory on your computer or more than that if you are willing to use virtual memory.

3. You are a system administrator; see Notes for system administrators under Remarks

and examples below.

5. The remaining memory parameters—niceness, min memory, and segment size—affect

efficiency only; they do not affect the size of datasets you can analyze.

6. Memory amounts for min memory, max memory, and segmentsizemay be specified in bytes,
kilobytes, megabytes, or gigabytes; suffix b, k, m, or g to the end of the number. The following
are equivalent ways of specifying 1 gigabyte:

1073741824
1048576k
1024m
1g

Suffix k is defined as (multiply by) 1024, m is defined as 10242, and g is defined as 10243.

7. 64-bit computers can theoretically provide up to 18,446,744,073,709,551,616 bytes of mem-

ory, equivalent to 17,179,869,184 gigabytes, 16,777,216 terabytes, 16,384 petabytes, or 16 ex-

abytes. Real computers have less.

8. Stata allocates memory for data in units of segmentsize. Smaller values of segmentsize can
result in more efficient use of available memory but require Stata to jump around more. The

default provides a good balance. We recommend resetting segmentsize only if your computer
has large amounts of memory.

9. If you have large amounts of memory and you use it to process large datasets, you may wish to

increase segmentsize. Suggested values are

memory segmentsize
32g 64m

64g 128m

128g 256m

256g 512m

512g 1g

1024g 2g

10. niceness affects how soon Stata gives back unused segments to the operating system. If Stata

releases them too soon, it often needs to turn around and get them right back. If Stata waits

too long, Stata is consuming memory that it is not using. One reason to give memory back is

to be nice to other users on multiuser systems or to be nice to yourself if you are running other

processes.

memory — Memory management 686

The default value of 5 is defined to provide good performance. Waiting times are currently

defined as

niceness waiting time (m:s)

10 0:00.000

9 0:00.125

8 0:00.500

7 0:01

6 0:30

5 1:00

4 5:00

3 10:00

2 15:00

1 20:00

0 30:00

Niceness 10 corresponds to being totally nice. Niceness 0 corresponds to being an inconsider-

ate, self-centered, totally selfish jerk.

11. min memory specifies an amount of memory Stata will not fall below. For instance, you have
a long do-file. You know that late in the do-file, you will need 8 gigabytes. You want to ensure

that the memory will be available later. At the start of your do-file, you set min memory 8g.

12. Concerning min memory and max memory, be aware that Stata allocates memory in

segmentsize blocks. Both min memory and max memory are rounded down. Thus the actual
minimum memory Stata will reserve will be

segmentsize*trunc(min memory/segmentsize)

The effective maximum memory is calculated similarly. (Stata does not round up min memory
because some users set min memory equal to max memory.)

Options
permanently specifies that, in addition to making the change right now, the new limit be remembered

and become the default setting when you invoke Stata.

once is not shown in the syntax diagram but is allowed with set niceness, set min memory, set
max memory, and set segmentsize. It is for use by system administrators; see Notes for system

administrators under Remarks and examples below.

Remarks and examples
Remarks are presented under the following headings:

Examples
Serious bug in Linux OS
Notes for system administrators

memory — Memory management 687

Examples
Here is our memory-usage report after we load auto.dta that comes with Stata using Stata/MP:

. sysuse auto
(1978 automobile data)
. memory
Memory usage

Used Allocated

Data 3,182 100,663,296
strLs 0 0

Data & strLs 3,182 100,663,296

Data & strLs 3,182 100,663,296
Variable names, %fmts, ... 4,178 396,279
Overhead 1,081,344 1,082,136
Stata matrices 0 0
ado-files 53,718 53,718
Stored results 0 0
Mata matrices 10,880 10,880
Mata functions 2,720 2,720
set maxvar usage 4,636,521 4,636,521
Other 3,497 3,497

Total 5,773,999 106,849,047

We could then obtain the current memory-settings report by typing

. query memory

Memory settings
set maxvar 5000 2048-120000; max. vars allowed
set niceness 5 0-10
set min_memory 0 0-1600g
set max_memory . 32m-1600g or .
set segmentsize 32m 1m-32g
set adosize 1000 kilobytes
set max_preservemem 1g 0-1600g

Serious bug in Linux OS
If you use Linux OS, we strongly suggest that you set max memory. Here’s why:

“By default, Linux follows an optimistic memory allocation strategy. This means that when

malloc() returns non-NULL there is no guarantee that the memory really is available. This is

a really bad bug. In case it turns out that the system is out of memory, one or more processes

will be killed by the infamous OOM killer. In case Linux is employed under circumstances

where it would be less desirable to suddenly lose some randomly picked processes, and

moreover the kernel version is sufficiently recent, one can switch off this overcommitting

behavior using [. . .]”

– Output from Unix command man malloc.

What this means is that Stata requests memory from Linux, Linux says yes, and then later when Stata

uses that memory, the memory might not be available and Linux crashes Stata, or worse. The Linux

documentation writer exercised admirable restraint. This bug can cause Linux itself to crash. It is easy.

memory — Memory management 688

The proponents of this behavior call it “optimistic memory allocation”. We will, like the documenta-

tion writer, refer to it as a bug.

The bug is fixable. Type man malloc at the Unix prompt for instructions. Note that man malloc is an
instruction of Unix, not Stata. If the bug is not mentioned, perhaps it has been fixed. Before assuming

that, we suggest using a search engine to search for “linux optimistic memory allocation”.

Alternatively, Stata can live with the bug if you set max memory. Find out how much physical mem-

ory is on your computer and set max memory to that. If you want to use virtual memory, you might
set it larger, just make sure your Linux system can provide the requested memory. Specify the option

permanently so you only need to do this once. For example,
. set max_memory 16g, permanently

Doing this does not guarantee that the bug does not bite, but it makes it unlikely.

Notes for system administrators
System administrators can set max memory, min memory, and niceness so that Stata users cannot

change them. They can also do this with max preservemem (see [P] preserve). You may want to do
this on shared computers to prevent individual users from hogging resources.

There is no reason you would want to do this on users’ personal computers.

You can also set segmentsize, but there is no reason to do this even on shared systems.

The instructions are to create (or edit) the text file sysprofile.do in the directory where the Stata
executable resides. Add the lines

set min_memory 0, once
set max_memory 16g, once
set niceness 5, once

The file must be plain text, and there must be end-of-line characters at the end of each line, including the

last line. Blank lines at the end are recommended.

The 16g on set max memory is merely for example. Choose an appropriate number.

The values of 0 for min memory and 5 for niceness are recommended.

Stored results
memory stores all reported numbers in r(). StataCorp may change what memory reports, and you

should not expect the same r() results to exist in future versions of Stata. To see the stored results from
memory, type return list, all.

Also see
[P] creturn — Return c-class values

[R] query — Display system parameters

[U] 6 Managing memory

merge — Merge datasets

Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description
merge joins corresponding observations from the dataset currently in memory (called the master

dataset) with those from filename.dta (called the using dataset), matching on one or more key vari-

ables. merge can perform match merges (one-to-one, one-to-many, many-to-one, and many-to-many),

which are often called joins by database people. merge can also perform sequential merges, which have

no equivalent in the relational database world.

merge is for adding new variables from a second dataset to existing observations. You use merge, for
instance, when combining hospital patient and discharge datasets. If you wish to add new observations to

existing variables, then see [D] append. You use append, for instance, when adding current discharges
to past discharges.

To link datasets in separate frames, you can use the frlink and fralias add commands. Linking
and merging solve similar problems, and each is better than the other in some ways. You may prefer

linking, for instance, when dealing with an individual-level dataset and a county-level dataset. Linking

also works well when you have nested linkages such as linking a county dataset, a school-within-county

dataset, and a student-within-school dataset or when you need to link a dataset to itself. See [D] frlink

and [D] fralias for more information and examples.

By default, merge creates a new variable, merge, containing numeric codes concerning the source
and the contents of each observation in the merged dataset. These codes are explained below in the match

results table.

Key variables cannot be strLs.

If filename is specified without an extension, then .dta is assumed.

Quick start
One-to-one merge of mydata1.dta in memory with mydata2.dta on v1

merge 1:1 v1 using mydata2

Same as above, and also treat v2 as a key variable and name the new variable indicating the merge result

for each observation newv
merge 1:1 v1 v2 using mydata2, generate(newv)

Same as above, but keep only v3 from mydata2.dta and use default merge result variable merge
merge 1:1 v1 v2 using mydata2, keepusing(v3)

Same as above, but keep only observations in both datasets

merge 1:1 v1 v2 using mydata2, keepusing(v3) keep(match)

Same as above

merge 1:1 v1 v2 using mydata2, keepusing(v3) keep(3)

689

merge — Merge datasets 690

Same as above, but assert that all observations should match or return an error otherwise

merge 1:1 v1 v2 using mydata2, keepusing(v3) assert(3)

Replace missing data in mydata1.dta with values from mydata2.dta
merge 1:1 v1 v2 using mydata2, update

Replace missing and conflicting data in mydata1.dta with values from mydata2.dta
merge 1:1 v1 v2 using mydata2, update replace

Many-to-one merge on v1 and v2
merge m:1 v1 v2 using mydata2

One-to-many merge on v1 and v2
merge 1:m v1 v2 using mydata2

Menu
Data > Combine datasets > Merge two datasets

merge — Merge datasets 691

Syntax
One-to-one merge on specified key variables

merge 1:1 varlist using filename [, options]

Many-to-one merge on specified key variables

merge m:1 varlist using filename [, options]

One-to-many merge on specified key variables

merge 1:m varlist using filename [, options]

Many-to-many merge on specified key variables

merge m:m varlist using filename [, options]

One-to-one merge by observation

merge 1:1 n using filename [, options]

options Description

Options

keepusing(varlist) variables to keep from using data; default is all

generate(newvar) name of new variable to mark merge results; default is merge
nogenerate do not create merge variable
nolabel do not copy value-label definitions from using

nonotes do not copy notes from using

update update missing values of same-named variables in master with values
from using

replace replace all values of same-named variables in master with nonmissing
values from using (requires update)

noreport do not display match result summary table

force allow string/numeric variable type mismatch without error

Results

assert(results) specify required match results

keep(results) specify which match results to keep

sorted do not sort; dataset already sorted

sorted does not appear in the dialog box.

Options

� � �
Options �

keepusing(varlist) specifies the variables from the using dataset that are kept in the merged dataset.

By default, all variables are kept. For example, if your using dataset contains 2,000 demographic

characteristics but you want only sex and age, then type merge . . ., keepusing(sex age)

merge — Merge datasets 692

generate(newvar) specifies that the variable containing match results information should be named

newvar rather than merge.

nogenerate specifies that merge not be created. This would be useful if you also specified

keep(match), because keep(match) ensures that all values of merge would be 3.

nolabel specifies that value-label definitions from the using file be ignored. This option should be rare,

because definitions from the master are already used.

nonotes specifies that notes in the using dataset not be added to the merged dataset; see [D] notes.

update and replace both perform an update merge rather than a standard merge. In a standard merge,

the data in the master are the authority and inviolable. For example, if the master and using datasets

both contain a variable age, then matched observations will contain values from the master dataset,

while unmatched observations will contain values from their respective datasets.

If update is specified, then matched observations will update missing values from the master dataset

with values from the using dataset. Nonmissing values in the master dataset will be unchanged.

If replace is specified, then matched observations will contain values from the using dataset, unless

the value in the using dataset is missing.

Specifying either update or replace affects the meanings of the match codes. See Treatment of

overlapping variables for details.

noreport specifies that merge not present its summary table of match results.

force allows string/numeric variable type mismatches, resulting in missing values from the using

dataset. If omitted, merge issues an error; if specified, merge issues a warning.

� � �
Results �

assert(results) specifies the required match results. The possible results are

Numeric Equivalent

code word (results) Description

1 master observation appeared in master only

2 using observation appeared in using only

3 match observation appeared in both

4 match update observation appeared in both, missing values updated

5 match conflict observation appeared in both, conflicting nonmissing
values

Codes 4 and 5 can arise only if the update option is specified. If codes of both
4 and 5 could pertain to an observation, then 5 is used.

Numeric codes and words are equivalent when used in the assert() or keep() options.

The following synonyms are allowed: masters for master, usings for using, matches
and matched for match, match updates for match update, and match conflicts for

match conflict.

Using assert(match master) specifies that the merged file is required to include only matched

master or using observations and unmatched master observations, and may not include unmatched

using observations. Specifying assert() results in merge issuing an error message if there are match
results you did not explicitly allow.

merge — Merge datasets 693

The order of the words or codes is not important, so all the following assert() specifications would
be the same:

assert(match master)

assert(master matches)

assert(1 3)

When the match results contain codes other than those allowed, return code 9 is returned, and the

merged dataset with the unanticipated results is left in memory to allow you to investigate.

keep(results) specifies which observations are to be kept from the merged dataset. Using keep(match
master) specifies keeping onlymatched observations and unmatchedmaster observations after merg-
ing.

keep() differs from assert() because it selects observations from the merged dataset rather than

enforcing requirements. keep() is used to pare the merged dataset to a given set of observations when
you do not care if there are other observations in the merged dataset. assert() is used to verify that
only a given set of observations is in the merged dataset.

You can specify both assert() and keep(). If you require matched observations and un-

matched master observations but you want only the matched observations, then you could specify

assert(match master) keep(match).

assert() and keep() are convenience options whose functionality can be duplicated using merge
directly.

. merge ..., assert(match master) keep(match)

is identical to

. merge ...

. assert _merge==1 | _merge==3

. keep if _merge==3

The following option is available with merge but is not shown in the dialog box:

sorted specifies that the master and using datasets are already sorted by varlist. If the datasets are

already sorted, then merge runs a little more quickly; the difference is hardly detectable, so this option
is of interest only where speed is of the utmost importance.

Remarks and examples
Remarks are presented under the following headings:

Overview
Basic description
1:1 merges
m:1 merges
1:m merges
m:m merges
Sequential merges
Treatment of overlapping variables
Sort order
Troubleshooting m:m merges
Working with alias variables
Examples
Video example

merge — Merge datasets 694

Overview
merge 1:1 varlist . . . specifies a one-to-one match merge. varlist specifies variables common to

both datasets that together uniquely identify single observations in both datasets. For instance, suppose

you have a dataset of customer information, called customer.dta, and have a second dataset of other
information about roughly the same customers, called other.dta. Suppose further that both datasets
identify individuals by using the pid variable, and there is only one observation per individual in each
dataset. You would merge the two datasets by typing

. use customer

. merge 1:1 pid using other

Reversing the roles of the two files would be fine. Choosing which dataset is the master and which

is the using matters only if there are overlapping variable names. 1:1 merges are less common than 1:m
and m:1 merges.

merge 1:m and merge m:1 specify one-to-many and many-to-one match merges, respectively. To

illustrate the two choices, suppose you have a dataset containing information about individual hospitals,

called hospitals.dta. In this dataset, each observation contains information about one hospital, which
is uniquely identified by the hospitalid variable. You have a second dataset called discharges.dta,
which contains information on individual hospital stays by many different patients. discharges.dta
also identifies hospitals by using the hospitalid variable. You would like to join all the information in
both datasets. There are two ways you could do this.

merge 1:m varlist . . . specifies a one-to-many match merge.

. use hospitals

. merge 1:m hospitalid using discharges

would join the discharge data to the hospital data. This is a 1:m merge because hospitalid uniquely
identifies individual observations in the dataset in memory (hospitals), but could correspond to many
observations in the using dataset.

merge m:1 varlist . . . specifies a many-to-one match merge.

. use discharges

. merge m:1 hospitalid using hospitals

would join the hospital data to the discharge data. This is an m:1merge because hospitalid can corre-
spond to many observations in the master dataset, but uniquely identifies individual observations in the

using dataset.

merge m:m varlist . . . specifies a many-to-many match merge. This is allowed for completeness, but

it is difficult to imagine an example of when it would be useful. For an m:m merge, varlist does not

uniquely identify the observations in either dataset. Matching is performed by combining observations

with equal values of varlist; within matching values, the first observation in the master dataset is matched

with the first matching observation in the using dataset; the second, with the second; and so on. If there

is an unequal number of observations within a group, then the last observation of the shorter group is

used repeatedly to match with subsequent observations of the longer group. Use of merge m:m is not
encouraged.

merge 1:1 n performs a sequential merge. n is not a variable name; it is Stata syntax for ob-

servation number. A sequential merge performs a one-to-one merge on observation number. The first

observation of the master dataset is matched with the first observation of the using dataset; the second,

merge — Merge datasets 695

with the second; and so on. If there is an unequal number of observations, the remaining observations

are unmatched. Sequential merges are dangerous, because they require you to rely on sort order to know

that observations belong together. Use this merge at your own risk.

Basic description
Think of merge as being master + using = merged result.

Call the dataset in memory the master dataset, and the dataset on disk the using dataset. This way we

have general names that are not dependent on individual datasets.

Suppose we have two datasets,

master in memory on disk in file filename

id age id wgt

1 22 1 130
2 56 2 180
5 17 4 110

Wewould like to join together the age andweight information. We notice that the id variable identifies
unique observations in both datasets: if you tell me the id number, then I can tell you the one observation
that contains information about that id. This is true for both the master and the using datasets.

Because id uniquely identifies observations in both datasets, this is a 1:1merge. We can bring in the

dataset from disk by typing

. merge 1:1 id using filename

in memory in filename.dta
master + using = merged result

id age id wgt id age wgt

1 22 1 130 1 22 130 (matched)
2 56 2 180 2 56 180 (matched)
5 17 4 110 5 17 . (master only)

4 . 110 (using only)

The original data in memory are called the master data. The data in filename.dta are called the using
data. After merge, the merged result is left in memory. The id variable is called the key variable. Stata
jargon is that the datasets were merged on id.

Observations for id==1 existed in both the master and using datasets and so were combined in the
merged result. The same occurred for id==2. For id==5 and id==4, however, no matches were found
and thus each became a separate observation in the merged result. Thus each observation in the merged

result came from one of three possible sources:

Numeric Equivalent

code word Description

1 master originally appeared in master only

2 using originally appeared in using only

3 match originally appeared in both

merge — Merge datasets 696

merge encodes this information into new variable merge, which merge adds to the merged result:

in memory in filename.dta
master + using = merged result

id age id wgt id age wgt _merge

1 22 1 130 1 22 130 3
2 56 2 180 2 56 180 3
5 17 4 110 5 17 . 1

4 . 110 2

Note: Above we show the master and using data sorted by id before merging; this was for illustrative
purposes. The dataset resulting from a 1:1merge will have the same data, regardless of the sort order of
the master and using datasets.

The formal definition for merge behavior is the following: Start with the first observation of the

master. Find the corresponding observation in the using data, if there is one. Record the matched or un-

matched result. Proceed to the next observation in the master dataset. When you finish working through

the master dataset, work through unused observations from the using data. By default, unmatched ob-

servations are kept in the merged data, whether they come from the master dataset or the using dataset.

Remember this formal definition. It will serve you well.

1:1 merges
The example shown above is called a 1:1 merge, because the key variable uniquely identified each

observation in each of the datasets.

A variable or variable list uniquely identifies the observations if each distinct value of the variable(s)

corresponds to one observation in the dataset.

In some datasets, multiple variables are required to identify the observations. Imagine data obtained

by observing patients at specific points in time so that variables pid and time, taken together, identify
the observations. Below we have two such datasets and run a 1:1 merge on pid and time,

. merge 1:1 pid time using filename

master + using = merged result

pid time x1 pid time x2 pid time x1 x2 _merge

14 1 0 14 1 7 14 1 0 7 3
14 2 0 14 2 9 14 2 0 9 3
14 4 0 16 1 2 14 4 0 . 1
16 1 1 16 2 3 16 1 1 2 3
16 2 1 17 1 5 16 2 1 3 3
17 1 0 17 2 2 17 1 0 5 3

17 2 . 2 2

This is a 1:1 merge because the combination of the values of pid and time uniquely identifies ob-
servations in both datasets.

By default, there is nothing about a 1:1 merge that implies that all, or even any of, the observations
match. Above five observations matched, one observation was only in the master (subject 14 at time 4),

and another was only in the using (subject 17 at time 2).

merge — Merge datasets 697

m:1 merges
In an m:1 merge, the key variable or variables uniquely identify the observations in the using data,

but not necessarily in the master data. Suppose you had person-level data within regions and you wished

to bring in regional data. Here is an example:

. merge m:1 region using filename

master + using = merged result

id region a region x id region a x _merge

1 2 26 1 15 1 2 26 13 3
2 1 29 2 13 2 1 29 15 3
3 2 22 3 12 3 2 22 13 3
4 3 21 4 11 4 3 21 12 3
5 1 24 5 1 24 15 3
6 5 20 6 5 20 . 1

. 4 . 11 2

To bring in the regional information, we need to merge on region. The values of region identify
individual observations in the using data, but it is not an identifier in the master data.

We show the merged dataset sorted by id because this makes it easier to see how the merged dataset

was constructed. For each observation in the master data, merge finds the corresponding observation in
the using data. merge combines the values of the variables in the using dataset to the observations in the
master dataset.

1:m merges
1:m merges are similar to m:1, except that now the key variables identify unique observations in the

master dataset. Any datasets that can be merged using an m:1 merge may be merged using a 1:m merge
by reversing the roles of the master and using datasets. Here is the same example as used previously,

with the master and using datasets reversed:

. merge 1:m region using filename

master + using = merged result

region x id region a region x id a _merge

1 15 1 2 26 1 15 2 29 3
2 13 2 1 29 1 15 5 24 3
3 12 3 2 22 2 13 1 26 3
4 11 4 3 21 2 13 3 22 3

5 1 24 3 12 4 21 3
6 5 20 4 11 . . 1

5 . 6 20 2

This merged result is identical to the merged result in the previous section, except for the sort order and

the contents of merge. This time, we show themerged result sorted by region rather than id. Reversing
the roles of the files causes a reversal in the 1s and 2s for merge: where merge was previously 1, it
is now 2, and vice versa. These exchanged merge values reflect the reversed roles of the master and
using data.

merge — Merge datasets 698

For each observation in the master data, merge found the corresponding observation(s) in the us-

ing data and then wrote down the matched or unmatched result. Once the master observations were

exhausted, merge wrote down any observations from the using data that were never used.

m:m merges
m:m specifies a many-to-many merge and is a bad idea. In an m:m merge, observations are matched

within equal values of the key variable(s), with the first observation being matched to the first; the sec-

ond, to the second; and so on. If the master and using have an unequal number of observations within

the group, then the last observation of the shorter group is used repeatedly to match with subsequent

observations of the longer group. Thus m:m merges are dependent on the current sort order—something

which should never happen.

Because m:m merges are such a bad idea, we are not going to show you an example. If you think that

you need an m:mmerge, then you probably need to work with your data so that you can use a 1:m or m:1
merge. Tips for this are given in Troubleshooting m:m merges below.

Sequential merges
In a sequentialmerge, there are no key variables. Observations arematched solely on their observation

number:

. merge 1:1 _n using filename

master + using = merged result

x1 x2 x1 x2 _merge

10 7 10 7 3
30 2 30 2 3
20 1 20 1 3
5 9 5 9 3

3 . 3 2

In the example above, the using data are longer than the master, but that could be reversed. In most

cases where sequential merges are appropriate, the datasets are expected to be of equal length, and you

should type

. merge 1:1 _n using filename, assert(match) nogenerate

Sequential merges, like m:mmerges, are dangerous. Both depend on the current sort order of the data.

Treatment of overlapping variables
When performing merges of any type, the master and using datasets may have variables in common

other than the key variables. We will call such variables overlapping variables. For instance, if the

variables in the master and using datasets are

master: id, region, sex, age, race
using: id, sex, bp, race

and id is the key variable, then the overlapping variables are sex and race.

merge — Merge datasets 699

By default, merge treats values from the master as inviolable. When observations match, it is the

master’s values of the overlapping variables that are recorded in the merged result.

If you specify the update option, however, then all missing values of overlapping variables in

matched observations are replaced with values from the using data. Because of this new behavior, the

merge codes change somewhat. Codes 1 and 2 keep their old meaning. Code 3 splits into codes 3, 4, and

5. Codes 3, 4, and 5 are filtered according to the following rules; the first applicable rule is used.

5 corresponds to matched observations where at least one overlapping variable had conflicting

nonmissing values.

4 corresponds to matched observations where at least one missing value was updated, but there
were no conflicting nonmissing values.

3 means observations matched, and there were neither updated missing values nor conflicting

nonmissing values.

If you specify both the update and replace options, then the merge==5 cases are updated with

values from the using data.

Sort order
As we have mentioned, in the 1:1, 1:m, and m:1match merges, the sort orders of the master and using

datasets do not affect the data in the merged dataset. This is not the case of m:m, which we recommend
you never use.

Sorting is used by merge internally for efficiency, so the merged result can be produced most quickly
when the master and using datasets are already sorted by the key variable(s) before merging. You are

not required to have the dataset sorted before using merge, however, because merge will sort behind the
scenes, if necessary. If the using dataset is not sorted, then a temporary copy is made and sorted to ensure

that the current sort order on disk is not affected.

All of this is to reassure you that 1) your datasets on disk will not be modified by merge and 2) despite
the fact that our discussion has ignored sort issues, merge is, in fact, efficient behind the scenes.

It hardly makes any difference in run times, but if you know that the master and using data are already

sorted by the key variable(s), then you can specify the sorted option. All that will be saved is the time
merge would spend discovering that fact for itself.

Themerged result produced by merge orders the variables and observations in a special and sometimes
useful way. If you think of datasets as tables, then the columns for the new variables appear to the right

of what was the master. If the master data originally had 𝑘 variables, then the new variables will be the

(𝑘 + 1)st, (𝑘 + 2)nd, and so on. The new observations are similarly ordered so that they all appear at the

end of what was the master. If the master originally had 𝑁 observations, then the new observations, if

any, are the (𝑁 +1)st, (𝑁 +2)nd, and so on. Thus the original master data can be found from the merged

result by extracting the first 𝑘 variables and first 𝑁 observations. If merge with the update option was
specified, however, then be aware that the extracted master may have some updated values.

If you care about the ordering of observations in the data after a merge, then you should sort the data

after the merge. You should sort it in such a way that it has a unique ordering; see Sorting with ties in

[D] sort. If, against this recommendation, you wish to have a reproducible ordering after a merge, then

read the next paragraph. But be forewarned; just because something is reproducible does not mean it is

useful. Again, see Sorting with ties.

merge — Merge datasets 700

The resulting dataset after any merge is unsorted. That is to say, if you type describe, the “Sorted
by” result will be empty. That is not to say that the data will not be ordered; a dataset always has an

order. After 1:1merges, the ordering will always be in the original order of the master dataset, with any
additional observations from the using dataset at the bottom and in their order from the using dataset. For

all other merges, you will need to go to some effort to ensure a reproducible ordering. For m:1, 1:m, and
m:mmerges, youmust first sort themaster and using datasets by themerge keys and by other variables that
will produce a unique ordering of the dataset. You may have to create those other variables. (See Sorting

with ties for obtaining a unique sort.) After m:1 merges, the ordering will be the original ordering of the
master data with any unmatched observations from the using dataset appended to the bottom in their order

from the using dataset. After 1:m and m:m merges, the ordering is difficult to explain. Regardless, the
ordering will be the same if you repeat the merge after uniquely sorting each dataset—it is reproducible.

Troubleshooting m:m merges
First, if you think you need to perform an m:m merge, then we suspect you are wrong. If you would

like to match every observation in the master to every observation in the using with the same values of

the key variable(s), then you should be using joinby; see [D] joinby.

If you still want to use merge, then it is likely that you have forgotten one or more key variables that
could be used to identify observations within groups. Perhaps you have panel data with 4 observations

on each subject, and you are thinking that what you need to do is

. merge m:m subjectid using filename

Ask yourself if you have a variable that identifies observation within panel, such as a sequence number

or a time. If you have, say, a time variable, then you probably should try something like

. merge 1:m subjectid time using filename

(You might need a 1:1 or m:1 merge; 1:m was arbitrarily chosen for the example.)

If you do not have a time or time-like variable, then ask yourself if there is a meaning to matching the

first observations within subject, the second observations within subject, and so on. If so, then there is a

concept of sequence within subject.

Suppose you do indeed have a sequence concept, but in your dataset it is recorded via the ordering

of the observations. Here you are in a dangerous situation because any kind of sorting would lose the

identity of the first, second, and 𝑛th observation within subject. Your first goal should be to fix this
problem by creating an explicit sequence variable from the current ordering—your merge can come

later.

Start with your master data. Type

. sort subjectid, stable

. by subjectid: generate seqnum = _n

Do not omit sort’s stable option. That is what will keep the observations in the same order within
subject. Save the data. Perform these same three steps on your using data.

After fixing the datasets, you can now type

. merge 1:m subjectid seqnum using filename

If you do not think there is a meaning to being the first, second, and 𝑛th observation within subject,
then you need to ask yourself what it means to match the first observations within subjectid, the second
observations within subjectid, and so on. Would it make equal sense to match the first with the third,

merge — Merge datasets 701

the second with the fourth, or any other haphazard matching? If so, then there is no real ordering, so

there is no real meaning to merging. You are about to obtain a haphazard result; you need to rethink your

merge.

Working with alias variables
merge allows alias variables in the master and using datasets, with the following restrictions. An alias

variable with a broken linkage will cause merge to exit with an informative error message; see [D] fralias
for examples.

If a key variable in the master dataset is an alias, then it must be an alias with the same linkage in the

using dataset; otherwise, you get something like the following error message:

variable keyvar is alias in master data but float in using data
Key variables (on which observations are matched) may be type alias,
but their alias characteristics must match between the master and
using datasets for the merged data to be correct and complete. When
alias characteristics do not match, or when a master key variable is
alias but the using key variable is not, you could use command
frunalias to recast the key variables in the master data
to avoid this error message.

r(106);

If an overlapping variable in the master dataset is an alias, then it must be an alias with the same

linkage in the using dataset; otherwise, you get something like the following error message:

variable ovar is alias in master data but float in using data
You could use command frunalias to recast ovar in the master data to avoid
this error message.

r(106);

Examples

Example 1: A 1:1 merge
We have two datasets, one of which has information about the size of old automobiles and the other

of which has information about their expense:

. use https://www.stata-press.com/data/r19/autosize
(1978 automobile data)
. list

make weight length

1. Toyota Celica 2,410 174
2. BMW 320i 2,650 177
3. Cad. Seville 4,290 204
4. Pont. Grand Prix 3,210 201
5. Datsun 210 2,020 165

6. Plym. Arrow 3,260 170

merge — Merge datasets 702

. use https://www.stata-press.com/data/r19/autoexpense
(1978 automobile data)
. list

make price mpg

1. Toyota Celica 5,899 18
2. BMW 320i 9,735 25
3. Cad. Seville 15,906 21
4. Pont. Grand Prix 5,222 19
5. Datsun 210 4,589 35

We can see that these datasets contain different information about nearly the same cars—the autosize
file has one more car. We would like to get all the information about all the cars into one dataset.

Because we are adding new variables to old variables, this is a job for the merge command. We need

only to decide what type of match merge we need.

Looking carefully at the datasets, we see that the make variable, which identifies the cars in each of
the two datasets, also identifies individual observations within the datasets. What this means is that if

you tell me the make of car, I can tell you the one observation that corresponds to that car. Because this

is true for both datasets, we should use a 1:1 merge.

We will start with a clean slate to show the full process:

. use https://www.stata-press.com/data/r19/autosize
(1978 automobile data)
. merge 1:1 make using https://www.stata-press.com/data/r19/autoexpense

Result Number of obs

Not matched 1
from master 1 (_merge==1)
from using 0 (_merge==2)

Matched 5 (_merge==3)

. list

make weight length price mpg _merge

1. BMW 320i 2,650 177 9,735 25 Matched (3)
2. Cad. Seville 4,290 204 15,906 21 Matched (3)
3. Datsun 210 2,020 165 4,589 35 Matched (3)
4. Plym. Arrow 3,260 170 . . Master only (1)
5. Pont. Grand Prix 3,210 201 5,222 19 Matched (3)

6. Toyota Celica 2,410 174 5,899 18 Matched (3)

The merge is successful—all the data are present in the combined dataset, even that from the one car that

has only size information. If we wanted only those makes for which all information is present, it would

be up to us to drop the observations for which merge < 3.

merge — Merge datasets 703

Example 2: Requiring matches
Suppose we had the same setup as in the previous example, but we erroneously think that we have all

the information on all the cars. We could tell merge that we expect only matches by using the assert
option.

. use https://www.stata-press.com/data/r19/autosize, clear
(1978 automobile data)
. merge 1:1 make using https://www.stata-press.com/data/r19/autoexpense,
> assert(match)
merge: after merge, not all observations matched

(merged result left in memory)
r(9);

merge tells us that there is a problem with our assumption. To see how many mismatches there were,

we can tabulate merge:

. tabulate _merge
_merge Freq. Percent Cum.

master only (1) 1 16.67 16.67
matched (3) 5 83.33 100.00

Total 6 100.00

If we would like to list the problem observation, we can type

. list if _merge < 3

make weight length price mpg _merge

4. Plym. Arrow 3,260 170 . . master only (1)

If we were convinced that all data should be complete in the two datasets, we would have to rectify

the mismatch in the original datasets.

Example 3: Keeping just the matches
Once again, suppose that we had the same datasets as before, but this time we want the final dataset

to have only those observations for which there is a match. We do not care if there are mismatches—all

that is important are the complete observations. By using the keep(match) option, we will guarantee
that this happens. Because we are keeping only those observations for which the key variable matches,

there is no need to generate the merge variable. We could do the following:

. use https://www.stata-press.com/data/r19/autosize, clear
(1978 automobile data)
. merge 1:1 make using https://www.stata-press.com/data/r19/autoexpense,
> keep(match) nogenerate

Result Number of obs

Not matched 0
Matched 5

merge — Merge datasets 704

. list

make weight length price mpg

1. BMW 320i 2,650 177 9,735 25
2. Cad. Seville 4,290 204 15,906 21
3. Datsun 210 2,020 165 4,589 35
4. Pont. Grand Prix 3,210 201 5,222 19
5. Toyota Celica 2,410 174 5,899 18

Example 4: Many-to-one matches
We have two datasets: one has salespeople in regions and the other has regional data about sales. We

would like to put all the information into one dataset. Here are the datasets:

. use https://www.stata-press.com/data/r19/sforce, clear
(Sales Force)
. list

region name

1. N Cntrl Krantz
2. N Cntrl Phipps
3. N Cntrl Willis
4. NE Ecklund
5. NE Franks

6. South Anderson
7. South Dubnoff
8. South Lee
9. South McNeil

10. West Charles

11. West Cobb
12. West Grant

. use https://www.stata-press.com/data/r19/dollars
(Regional Sales & Costs)
. list

region sales cost

1. N Cntrl 419,472 227,677
2. NE 360,523 138,097
3. South 532,399 330,499
4. West 310,565 165,348

We can see that the region would be used to match observations in the two datasets, and this time we

see that region identifies individual observations in the dollars dataset but not in the sforce dataset.
This means we will have to use either an m:1 or a 1:m merge. Here we will open the sforce dataset
and then merge the dollars dataset. This will be an m:1 merge, because region does not identify

individual observations in the dataset in memory but does identify them in the using dataset. Here is the

command and its result:

merge — Merge datasets 705

. use https://www.stata-press.com/data/r19/sforce
(Sales Force)
. merge m:1 region using https://www.stata-press.com/data/r19/dollars
(label region already defined)

Result Number of obs

Not matched 0
Matched 12 (_merge==3)

. list

region name sales cost _merge

1. N Cntrl Krantz 419,472 227,677 Matched (3)
2. N Cntrl Phipps 419,472 227,677 Matched (3)
3. N Cntrl Willis 419,472 227,677 Matched (3)
4. NE Ecklund 360,523 138,097 Matched (3)
5. NE Franks 360,523 138,097 Matched (3)

6. South Anderson 532,399 330,499 Matched (3)
7. South Dubnoff 532,399 330,499 Matched (3)
8. South Lee 532,399 330,499 Matched (3)
9. South McNeil 532,399 330,499 Matched (3)

10. West Charles 310,565 165,348 Matched (3)

11. West Cobb 310,565 165,348 Matched (3)
12. West Grant 310,565 165,348 Matched (3)

We can see from the result that all the values of region were matched in both datasets. This is a rare
occurrence in practice!

Had we had the dollars dataset in memory and merged in the sforce dataset, we would have done
a 1:m merge.

We would now like to use a series of examples that shows how merge treats nonkey variables, which
have the same names in the two datasets. We will call these “overlapping” variables.

merge — Merge datasets 706

Example 5: Overlapping variables
Here are two datasets whose only purpose is for this illustration:

. use https://www.stata-press.com/data/r19/overlap1, clear

. list, sepby(id)

id seq x1 x2

1. 1 1 1 1
2. 1 2 1 .
3. 1 3 1 2
4. 1 4 . 2

5. 2 1 . 1
6. 2 2 . 2
7. 2 3 1 1
8. 2 4 1 2
9. 2 5 .a 1

10. 2 6 .a 2

11. 3 1 . .a
12. 3 2 . 1
13. 3 3 . .
14. 3 4 .a .a

15. 10 1 5 8

. use https://www.stata-press.com/data/r19/overlap2

. list

id bar x1 x2

1. 1 11 1 1
2. 2 12 . 1
3. 3 14 . .a
4. 20 18 1 1

We can see that id can be used as the key variable for putting the two datasets together. We can also see

that there are two overlapping variables: x1 and x2.

merge — Merge datasets 707

We will start with a simple m:1 merge:

. use https://www.stata-press.com/data/r19/overlap1

. merge m:1 id using https://www.stata-press.com/data/r19/overlap2
Result Number of obs

Not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)

Matched 14 (_merge==3)

. list, sepby(id)

id seq x1 x2 bar _merge

1. 1 1 1 1 11 Matched (3)
2. 1 2 1 . 11 Matched (3)
3. 1 3 1 2 11 Matched (3)
4. 1 4 . 2 11 Matched (3)

5. 2 1 . 1 12 Matched (3)
6. 2 2 . 2 12 Matched (3)
7. 2 3 1 1 12 Matched (3)
8. 2 4 1 2 12 Matched (3)
9. 2 5 .a 1 12 Matched (3)

10. 2 6 .a 2 12 Matched (3)

11. 3 1 . .a 14 Matched (3)
12. 3 2 . 1 14 Matched (3)
13. 3 3 . . 14 Matched (3)
14. 3 4 .a .a 14 Matched (3)

15. 10 1 5 8 . Master only (1)

16. 20 . 1 1 18 Using only (2)

Careful inspection shows that for the matched id, the values of x1 and x2 are still the values that were
originally in the overlap1 dataset. This is the default behavior of merge—the data in the master dataset

are the authority and are kept intact.

merge — Merge datasets 708

Example 6: Updating missing data
Now we would like to investigate the update option. Used by itself, it will replace missing values in

the master dataset with values from the using dataset:

. use https://www.stata-press.com/data/r19/overlap1, clear

. merge m:1 id using https://www.stata-press.com/data/r19/overlap2, update
Result Number of obs

Not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)

Matched 14
not updated 5 (_merge==3)
missing updated 4 (_merge==4)
nonmissing conflict 5 (_merge==5)

. list, sepby(id)

id seq x1 x2 bar _merge

1. 1 1 1 1 11 Matched (3)
2. 1 2 1 1 11 Missing updated (4)
3. 1 3 1 2 11 Nonmissing conflict (5)
4. 1 4 1 2 11 Nonmissing conflict (5)

5. 2 1 . 1 12 Matched (3)
6. 2 2 . 2 12 Nonmissing conflict (5)
7. 2 3 1 1 12 Matched (3)
8. 2 4 1 2 12 Nonmissing conflict (5)
9. 2 5 . 1 12 Missing updated (4)

10. 2 6 . 2 12 Nonmissing conflict (5)

11. 3 1 . .a 14 Matched (3)
12. 3 2 . 1 14 Matched (3)
13. 3 3 . .a 14 Missing updated (4)
14. 3 4 . .a 14 Missing updated (4)

15. 10 1 5 8 . Master only (1)

16. 20 . 1 1 18 Using only (2)

Looking through the resulting dataset observation by observation, we can see both what the update
option updated as well as how the merge variable gets its values.

merge — Merge datasets 709

The following is a listing that shows what is happening, where x1 m and x2 m come from the master

dataset (overlap1), x1 u and x2 u come from the using dataset (overlap2), and x1 and x2 are the

values that appear when using merge with the update option.

id x1_m x1_u x1 x2_m x2_u x2 _merge

1. 1 1 1 1 1 1 1 matched (3)
2. 1 1 1 1 . 1 1 missing updated (4)
3. 1 1 1 1 2 1 2 nonmissing conflict (5)
4. 1 . 1 1 2 1 2 nonmissing conflict (5)

5. 2 . . . 1 1 1 matched (3)
6. 2 . . . 2 1 2 nonmissing conflict (5)
7. 2 1 . 1 1 1 1 matched (3)
8. 2 1 . 1 2 1 2 nonmissing conflict (5)
9. 2 .a . . 1 1 1 missing updated (4)

10. 2 .a . . 2 1 2 nonmissing conflict (5)

11. 3a .a .a matched (3)
12. 3 . . . 1 .a 1 matched (3)
13. 3a .a missing updated (4)
14. 3 .a . . .a .a .a missing updated (4)

15. 10 5 . 5 8 . 8 master only (1)

16. 20 . 1 1 . 1 1 using only (2)

From this, we can see two important facts: if there are both a conflict and an updated value, the value

of merge will reflect that there was a conflict, and missing values in the master dataset are updated by
missing values in the using dataset.

Example 7: Updating all common observations
We would like to see what happens if the update and replace options are specified. The replace

option extends the action of update to use nonmissing values of the using dataset to replace values in
the master dataset. The values of merge are unaffected by using both update and replace.

. use https://www.stata-press.com/data/r19/overlap1, clear

. merge m:1 id using https://www.stata-press.com/data/r19/overlap2, update replace
Result Number of obs

Not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)

Matched 14
not updated 5 (_merge==3)
missing updated 4 (_merge==4)
nonmissing conflict 5 (_merge==5)

merge — Merge datasets 710

. list, sepby(id)

id seq x1 x2 bar _merge

1. 1 1 1 1 11 Matched (3)
2. 1 2 1 1 11 Missing updated (4)
3. 1 3 1 1 11 Nonmissing conflict (5)
4. 1 4 1 1 11 Nonmissing conflict (5)

5. 2 1 . 1 12 Matched (3)
6. 2 2 . 1 12 Nonmissing conflict (5)
7. 2 3 1 1 12 Matched (3)
8. 2 4 1 1 12 Nonmissing conflict (5)
9. 2 5 . 1 12 Missing updated (4)

10. 2 6 . 1 12 Nonmissing conflict (5)

11. 3 1 . .a 14 Matched (3)
12. 3 2 . 1 14 Matched (3)
13. 3 3 . .a 14 Missing updated (4)
14. 3 4 . .a 14 Missing updated (4)

15. 10 1 5 8 . Master only (1)

16. 20 . 1 1 18 Using only (2)

Example 8: More on the keep() option
Suppose we would like to use the update option, as we did above, but we would like to keep only

those observations for which the value of the key variable, id, was found in both datasets. This will
be more complicated than in our earlier example, because the update option splits the matches into

matches, match updates, and match conflicts. We must either use all of these code words in the

keep option or use their numerical equivalents, 3, 4, and 5. Here the latter is simpler.

. use https://www.stata-press.com/data/r19/overlap1, clear

. merge m:1 id using https://www.stata-press.com/data/r19/overlap2, update
> keep(3 4 5)

Result Number of obs

Not matched 0
Matched 14

not updated 5 (_merge==3)
missing updated 4 (_merge==4)
nonmissing conflict 5 (_merge==5)

merge — Merge datasets 711

. list, sepby(id)

id seq x1 x2 bar _merge

1. 1 1 1 1 11 Matched (3)
2. 1 2 1 1 11 Missing updated (4)
3. 1 3 1 2 11 Nonmissing conflict (5)
4. 1 4 1 2 11 Nonmissing conflict (5)

5. 2 1 . 1 12 Matched (3)
6. 2 2 . 2 12 Nonmissing conflict (5)
7. 2 3 1 1 12 Matched (3)
8. 2 4 1 2 12 Nonmissing conflict (5)
9. 2 5 . 1 12 Missing updated (4)

10. 2 6 . 2 12 Nonmissing conflict (5)

11. 3 1 . .a 14 Matched (3)
12. 3 2 . 1 14 Matched (3)
13. 3 3 . .a 14 Missing updated (4)
14. 3 4 . .a 14 Missing updated (4)

Example 9: A one-to-many merge
As a final example, we would like show one example of a 1:m merge. There is nothing conceptually

different here; what is interesting is the order of the observations in the final dataset:

. use https://www.stata-press.com/data/r19/overlap2, clear

. merge 1:m id using https://www.stata-press.com/data/r19/overlap1
Result Number of obs

Not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)

Matched 14 (_merge==3)

merge — Merge datasets 712

. list, sepby(id)

id bar x1 x2 seq _merge

1. 1 11 1 1 1 Matched (3)

2. 2 12 . 1 1 Matched (3)

3. 3 14 . .a 1 Matched (3)

4. 20 18 1 1 . Master only (1)

5. 1 11 1 1 2 Matched (3)
6. 1 11 1 1 3 Matched (3)
7. 1 11 1 1 4 Matched (3)

8. 2 12 . 1 2 Matched (3)
9. 2 12 . 1 3 Matched (3)

10. 2 12 . 1 4 Matched (3)
11. 2 12 . 1 5 Matched (3)
12. 2 12 . 1 6 Matched (3)

13. 3 14 . .a 2 Matched (3)
14. 3 14 . .a 3 Matched (3)
15. 3 14 . .a 4 Matched (3)

16. 10 . 5 8 1 Using only (2)

We can see here that the first four observations come from the master dataset, and all additional

observations, whether matched or unmatched, come below these observations. This illustrates that the

master dataset is always in the upper-left corner of the merged dataset.

Video example
How to merge files into a single dataset

References
Canette, I. 2014. Using resampling methods to detect influential points. The Stata Blog: Not Elsewhere Classified. https:

//blog.stata.com/2014/05/08/using-resampling-methods-to-detect-influential-points/.

Chatfield, M. D. 2015. precombine: Acommand to examine𝑛 ≥ 2 datasets before combining. Stata Journal 15: 607–626.
Golbe, D. L. 2010. Stata tip 83: Merging multilingual datasets. Stata Journal 10: 152–156.

Gould, W.W. 2011a. Merging data, part 1: Merges gone bad. The Stata Blog: Not Elsewhere Classified. https://blog.stata.

com/2011/04/18/merging-data-part-1-merges-gone-bad/.

———. 2011b. Merging data, part 2: Multiple-key merges. The Stata Blog: Not Elsewhere Classified. https://blog.stata.

com/2011/05/27/merging-data-part-2-multiple-key-merges/.

Mazrekaj, D., and J. Wursten. 2021. Stata tip 142: joinby is the real merge m:m. Stata Journal 21: 1065–1068.

Wasi, N., and A. Flaaen. 2015. Record linkage using Stata: Preprocessing, linking, and reviewing utilities. Stata Journal

15: 672–697.

https://www.youtube.com/watch?v=niGZBRyyDuY
https://blog.stata.com/2014/05/08/using-resampling-methods-to-detect-influential-points/
https://blog.stata.com/2014/05/08/using-resampling-methods-to-detect-influential-points/
https://www.stata-journal.com/article.html?article=dm0081
https://www.stata-journal.com/article.html?article=dm0046
https://blog.stata.com/2011/04/18/merging-data-part-1-merges-gone-bad/
https://blog.stata.com/2011/04/18/merging-data-part-1-merges-gone-bad/
https://blog.stata.com/2011/05/27/merging-data-part-2-multiple-key-merges/
https://blog.stata.com/2011/05/27/merging-data-part-2-multiple-key-merges/
https://doi.org/10.1177/1536867X211063416
https://www.stata-journal.com/article.html?article=dm0082

merge — Merge datasets 713

Also see
[D] append —Append datasets

[D] cross — Form every pairwise combination of two datasets

[D] fralias —Alias variables from linked frames

[D] frget — Copy variables from linked frame

[D] frlink — Link frames

[D] frunalias — Change storage type of alias variables

[D] joinby — Form all pairwise combinations within groups

[D] save — Save Stata dataset

[U] 23 Combining datasets

Missing values — Quick reference for missing values

Description
This entry provides a quick reference for Stata’s missing values.

Remarks and examples
Stata has 27 numeric missing values:

., the default, which is called the system missing value or sysmiss

and

.a, .b, .c, . . . , .z, which are called the extended missing values.

Numeric missing values are represented by large positive values. The ordering is

all nonmissing numbers < . < .a < .b < · · · < .z

Thus the expression

age > 60

is true if variable age is greater than 60 or missing.

To exclude missing values, ask whether the value is less than ‘.’.

. list if age > 60 & age < .

To specify missing values, ask whether the value is greater than or equal to ‘.’. For instance,

. list if age >=.

Stata has one string missing value, which is denoted by ”” (blank).

References
Cox, N. J. 2010. Stata tip 84: Summing missings. Stata Journal 10: 157–159.

———. 2015. Speaking Stata: A set of utilities for managing missing values. Stata Journal 15: 1174–1185.

Also see
[U] 12.2.1 Missing values

714

https://www.stata-journal.com/article.html?article=dm0047
https://www.stata-journal.com/article.html?article=dm0085

mkdir — Create directory

Description Quick start Syntax Option Remarks and examples Also see

Description
mkdir creates a new directory (folder).

Quick start
Create mysubdir in the current working directory

mkdir mysubdir

Same as above, but make mysubdir readable by everyone regardless of default permissions
mkdir mysubdir, public

Create mysubdir in C:\mydir using Stata for Windows

mkdir c:\mydir\mysubdir

Create mysubdir in ~/mydir using Stata for Mac or Unix

mkdir ~/mydir/mysubdir

Create my folder in C:\my dir using Stata for Windows

mkdir ”c:\my dir\my folder”

Syntax
mkdir directoryname [, public]

Double quotes may be used to enclose directoryname, and the quotes must be used if directoryname

contains embedded spaces.

Option
public specifies that directoryname be readable by everyone; otherwise, the directory will be created

according to the default permissions of your operating system.

715

mkdir — Create directory 716

Remarks and examples
Examples:

Windows

. mkdir myproj

. mkdir c:\projects\myproj

. mkdir ”c:\My Projects\Project 1”

Mac and Unix

. mkdir myproj

. mkdir ~/projects/myproj

Also see
[D] cd — Change directory

[D] copy — Copy file from disk or URL

[D] dir — Display filenames

[D] erase — Erase a disk file

[D] rmdir — Remove directory

[D] shell — Temporarily invoke operating system

[D] type — Display contents of a file

[U] 11.6 Filenaming conventions

mvencode — Change missing values to numeric values and vice versa

Description Quick start Menu Syntax
Options Remarks and examples Acknowledgment Also see

Description
mvencode changes missing values in the specified varlist to numeric values.

mvdecode changes occurrences of a numlist in the specified varlist to a missing-value code.

Missing-value codes may be sysmiss (.) and the extended missing-value codes .a, .b, . . . , .z.

String variables in varlist are ignored.

Quick start
Replace all missing values in v1 with 99

mvencode v1, mv(99)

Replace extended missing value .a with 888 and .b with 999 in v2
mvencode v2, mv(.a=888 \ .b=999)

Replace .a with 888, .b with 999, and other missing values with 99 in numeric variables
mvencode _all, mv(.a=888 \ .b=999 \ else=99)

Same as above, but only for observations where catvar equals 1
mvencode _all if catvar==1, mv(.a=888 \ .b=999 \ else=99)

Replace 888 and 999 with system missing . in all numeric variables

mvdecode _all, mv(888 999)

Same as above, but replace 888 with .a and 999 with .b
mvdecode _all, mv(888=.a \ 999=.b)

Menu
mvencode
Data > Create or change data > Other variable-transformation commands > Change missing values to numeric

mvdecode
Data > Create or change data > Other variable-transformation commands > Change numeric values to missing

717

mvencode — Change missing values to numeric values and vice versa 718

Syntax
Change missing values to numeric values

mvencode varlist [if] [in] , mv(# | mvc = # [\ mvc = #...] [\ else = #]) [override]

Change numeric values to missing values

mvdecode varlist [if] [in] , mv(numlist | numlist =mvc [\ numlist =mvc ...])

where mvc is one of . | .a | .b | . . . | .z

Options

� � �
Main �

mv(# | mvc = # [\ mvc = #...] [\ else = #]) is required and specifies the numeric values to which the
missing values are to be changed.

mv(#) specifies that all types of missing values be changed to #.

mv(mvc=#) specifies that occurrences of missing-value code mvc be changed to #. Multiple transfor-

mation rules may be specified, separated by a backward slash (\). The list may be terminated by the
special rule else=#, specifying that all types of missing values not yet transformed be set to #.

Examples: mv(9), mv(.=99\.a=98\.b=97), mv(.=99\ else=98)

mv(numlist | numlist=mvc [\ numlist =mvc ...]) is required and specifies the numeric values that are
to be changed to missing values.

mv(numlist=mvc) specifies that the values in numlist be changed to missing-value codemvc. Multiple

transformation rules may be specified, separated by a backward slash (\). See [P] numlist for the

syntax of a numlist.

Examples: mv(9), mv(99=.\98=.a\97=.b), mv(99=.\ 100/999=.a)

override specifies that the protection provided by mvencode be overridden. Without this option,

mvencode refuses to make the requested change if any of the numeric values are already used in

the data.

Remarks and examples
Remarks are presented under the following headings:

Overview
Video example

Overview
Youmay occasionally read data in which missing (for example, a respondent failed to answer a survey

question or the data were not collected) is coded with a special numeric value. Popular codings are 9,

99, −9, −99, and the like. If missing were encoded as −99, then

. mvdecode _all, mv(-99)

mvencode — Change missing values to numeric values and vice versa 719

would translate the special code to the Stata missing value “.”. Use this command cautiously because,
even if −99 were not a special code, all −99s in the data would be changed to missing.

Sometimes different codes are used to represent different reasons for missing values. For instance,

98 may be used for “refused to answer” and 99 for “not applicable”. Extended missing values (.a, .b,
and so on) may be used to code these differences.

. mvdecode _all, mv(98=.a\ 99=.b)

Conversely, you might need to export data to software that does not understand that “.” indicates a
missing value, so you might code missing with a special numeric value. To change all missings to −99,

you could type

. mvencode _all, mv(-99)

To change extended missing values back to numeric values, type

. mvencode _all, mv(.a=98\ .b=99)

This would leave sysmiss and all other extended missing values unchanged. To encode in addition

sysmiss . to 999 and all other extended missing values to 97, you might type

. mvencode _all, mv(.=999\ .a=98\ .b=99\ else=97)

mvencode will automatically recast variables upward, if necessary, so even if a variable is stored as a
byte, its missing values can be recoded to, say, 999. Also mvencode refuses to make the change if #
(−99 here) is already used in the data, so you can be certain that your coding is unique. You can override

this feature by including the override option.

Be aware of another potential problem with encoding and decoding missing values: value labels are

not automatically adapted to the changed codings. You have to do this yourself. For example, the value

label divlabormaps the value 99 to the string “not applicable”. You used mvdecode to recode 99 to .a
for all variables that are associated with this label. To fix the value label, clear the mapping for 99 and

define it again for .a.

. label define divlabor 99 ””, modify

. label define divlabor .a ”not applicable”, add

Example 1
Our automobile dataset contains 74 observations and 12 variables. Let’s first attempt to translate the

missing values in the data to 1:

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. mvencode _all, mv(1)

make: string variable ignored
rep78: already 1 in 2 observations

foreign: already 1 in 22 observations
no action taken
r(9);

Our attempt failed. mvencode first informed us that make is a string variable—this is not a problem but is

reported merely for our information. String variables are ignored by mvencode. It next informed us that
rep78 was already coded 1 in 2 observations and that foreign was already coded 1 in 22 observations.
Thus 1 would be a poor choice for encoding missing values because, after encoding, we could not tell a

real 1 from a coded missing value 1.

mvencode — Change missing values to numeric values and vice versa 720

We could force mvencode to encode the data with 1, anyway, by typing mvencode all, mv(1)
override. That would be appropriate if the 1s in our data already represented missing data. They do
not, however, so we code missing as 999:

. mvencode _all, mv(999)
make: string variable ignored
rep78: 5 missing values

This worked, and we are informed that the only changes necessary were to 5 observations of rep78.

Example 2
Let’s now pretend that we just read in the automobile data from some raw dataset in which all the

missing values were coded 999. We can convert the 999s to real missings by typing

. mvdecode _all, mv(999)
make: string variable ignored
rep78: 5 missing values

We are informed that make is a string variable, so it was ignored, and that rep78 contained 5 observations
with 999. Those observations have now been changed to contain missing.

Video example
How to convert missing value codes to missing values

Acknowledgment
These versions of mvencode and mvdecode were written by Jeroen Weesie of the Department of

Sociology at Utrecht University, The Netherlands.

Also see
[D] generate — Create or change contents of variable

[D] recode — Recode categorical variables

https://www.youtube.com/watch?v=6HV2773-dVM

notes — Place notes in data

Description Quick start Menu Syntax
Remarks and examples Reference Also see

Description
notes attaches notes to the dataset in memory. These notes become a part of the dataset and are saved

when the dataset is saved and retrieved when the dataset is used; see [D] save and [D] use. notes can be
attached generically to the dataset or specifically to a variable within the dataset.

Quick start
Attach “My note about data” to current dataset

notes: My note about data

Add note “There is one note for v1” to v1
notes v1: There is one note for v1

Add note “A note was added to v2 on” and a time stamp for the note

notes v2: A note was added to v2 on TS

Add note “Data have changed” to the dataset

notes: Data have changed

Remove the first note from the dataset

notes drop _dta in 1

Renumber notes after removing a note from the dataset

notes renumber _dta

Same as above, but for a variable

notes renumber v1

List all notes

notes

List notes for the dataset but omit notes applied to variables

notes _dta

List only notes for variables

notes *

Search all notes for the word “check”

notes search check

721

notes — Place notes in data 722

Menu
notes (add)
Data > Variables Manager

notes list and notes search
Data > Data utilities > Notes utilities > List or search notes

notes replace

Data > Variables Manager

notes drop
Data > Variables Manager

notes renumber
Data > Data utilities > Notes utilities > Renumber notes

Syntax
Attach notes to dataset

notes [evarname]: text

List all notes

notes

List specific notes

notes [list] evarlist [in #[/#]]

Search for a text string across all notes in all variables and dta

notes search [sometext]

Replace a note

notes replace evarname in # : text

Drop notes

notes drop evarlist [in #[/#]]

Renumber notes

notes renumber evarname

where evarname is dta or a varname, evarlist is a varlist that may contain the dta, and # is a number
or the letter l.

If text includes the letters TS surrounded by blanks, the TS is removed, and a time stamp is substituted in
its place.

notes — Place notes in data 723

Remarks and examples
Remarks are presented under the following headings:

How notes are numbered
Attaching and listing notes
Selectively listing notes
Searching and replacing notes
Deleting notes
Warnings
Video example

How notes are numbered
Notes are numbered sequentially, with the first note being 1. Say the myvar variable has four notes

numbered 1, 2, 3, and 4. If you type notes drop myvar in 3, the remaining notes will be numbered 1,
2, and 4. If you now add another note, it will be numbered 5. That is, notes are not renumbered and new

notes are added immediately after the highest numbered note. Thus, if you now dropped notes 4 and 5,

the next note added would be 3.

You can renumber notes by using notes renumber. Going back to when myvar had notes numbered
1, 2, and 4 after dropping note 3, if you typed notes renumber myvar, the notes would be renumbered
1, 2, and 3. If you added a new note after that, it would be numbered 4.

Attaching and listing notes
A note is nothing formal; it is merely a string of text reminding you to do something, cautioning you

against something, or saying anything else you might feel like jotting down. People who work with real

data invariably end up with paper notes plastered around their terminal saying things like, “Send the new

sales data to Bob”, “Check the income variable in salary95; I don’t believe it”, or “The gender dummy
was significant!” It would be better if these notes were attached to the dataset.

Adding a note to your dataset requires typing note or notes (they are synonyms), a colon (:), and
whatever you want to remember. The note is added to the dataset currently in memory.

. note: Send copy to Bob once verified.

You can replay your notes by typing notes (or note) by itself.

. notes
_dta:
1. Send copy to Bob once verified.

Once you resave your data, you can replay the note in the future, too. You add more notes just as you did

the first:

. note: Mary wants a copy, too.

. notes
_dta:
1. Send copy to Bob once verified.
2. Mary wants a copy, too.

notes — Place notes in data 724

You can place time stamps on your notes by placing the word TS (in capitals) in the text of your note:

. note: TS merged updates from JJ&F

. notes
_dta:
1. Send copy to Bob once verified.
2. Mary wants a copy, too.
3. 19 Apr 2024 15:38 merged updates from JJ&F

Notes may contain SMCL directives:

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. note: check reason for missing values in {cmd:rep78}
. notes
_dta:
1. from Consumer Reports with permission
2. check reason for missing values in rep78

The notes we have added so far are attached to the dataset generically, which is why Stata prefixes them

with dta when it lists them. You can attach notes to variables:

. note mpg: is the 44 a mistake? Ask Bob.

. note mpg: what about the two missing values?

. notes
_dta:
1. Send copy to Bob once verified.
2. Mary wants a copy, too.
3. 19 Apr 2024 15:38 merged updates from JJ&F

mpg:
1. is the 44 a mistake? Ask Bob.
2. what about the two missing values?

Up to 9,999 generic notes can be attached to dta, and another 9,999 notes can be attached to each
variable.

Selectively listing notes
Typing notes by itself lists all the notes. In full syntax, notes is equivalent to typing notes all

in 1/l. Here are some variations:
notes dta list all generic notes
notes mpg list all notes for variable mpg
notes dta mpg list all generic notes and mpg notes
notes dta in 3 list generic note 3
notes dta in 3/5 list generic notes 3–5
notes mpg in 3/5 list mpg notes 3–5
notes dta in 3/l list generic notes 3 through last

Searching and replacing notes
You had a bad day yesterday, and you want to recheck the notes that you added to your dataset.

Fortunately, you always put a time stamp on your notes.

. notes search ”29 Jan”
_dta:
2. 29 Jan 2024 13:40 check reason for missing values in foreign

notes — Place notes in data 725

Good thing you checked. It is rep78 that has missing values.

. notes replace _dta in 2: TS check reason for missing values in rep78
(note 2 for _dta replaced)

. notes
_dta:
1. from Consumer Reports with permission
2. 30 Jan 2024 12:32 check reason for missing values in rep78

Deleting notes
notes drop works much like listing notes, except that typing notes drop by itself does not delete

all notes; you must type notes drop all. Here are some variations:

notes drop dta delete all generic notes
notes drop dta in 3 delete generic note 3
notes drop dta in 3/5 delete generic notes 3–5
notes drop dta in 3/l delete generic notes 3 through last
notes drop mpg in 4 delete mpg note 4

Warnings
• Notes are stored with the data, and as with other updates you make to the data, the additions and

deletions are not permanent until you save the data; see [D] save.

• The maximum length of one note is 67,784 characters for Stata/MP, Stata/SE, and Stata/BE.

Video example
How to add notes to a variable

Reference
Long, J. S. 2009. The Workflow of Data Analysis Using Stata. College Station, TX: Stata Press.

Also see
[D] codebook — Describe data contents

[D] describe — Describe data in memory or in a file

[D] ds — Compactly list variables with specified properties

[D] save — Save Stata dataset

[D] varmanage — Manage variable labels, formats, and other properties

[U] 12.8 Characteristics

https://www.youtube.com/watch?v=wMDHD7REHr4
https://www.stata-press.com/books/wdaus.html

obs — Increase the number of observations in a dataset

Description Quick start Syntax Remarks and examples Also see

Description
set obs changes the number of observations in the current dataset. # must be at least as large as the

current number of observations. If there are variables in memory, the values of all new observations are

set to missing.

Quick start
Add 100 observations with no observations currently in memory

set obs 100

Add 100 observations with 100 observations currently in memory

set obs 200

Syntax
set obs #

Remarks and examples

Example 1
set obs can be useful for creating artificial datasets. For instance, if we wanted to graph the function

𝑦 = 𝑥2 over the range 1–100, we could type

. drop _all

. set obs 100
Number of observations (_N) was 0, now 100.
. generate x = _n
. generate y = x^2
. scatter y x
(graph omitted)

Example 2
If we want to add an extra data point in a program, we could type

. local np1 = _N + 1

. set obs ‘np1’
Number of observations (_N) was 0, now 1.

or

. set obs ‘=_N + 1’

726

obs — Increase the number of observations in a dataset 727

Also see
[D] describe — Describe data in memory or in a file

[D] insobs —Add or insert observations

odbc — Load, write, or view data from ODBC sources

Description Quick start Menu Syntax
Options Remarks and examples Reference Also see

Description
odbc allows you to load, write, and view data from Open DataBase Connectivity (ODBC) sources

into Stata. ODBC is a standardized set of function calls for accessing data stored in both relational and

nonrelational database-management systems. By default on Unix platforms, iODBC is the ODBC driver

manager Stata uses, but you can use unixODBC by using the command set odbcmgr unixodbc.

ODBC’s architecture consists of four major components (or layers): the client interface, the ODBC

driver manager, the ODBC drivers, and the data sources. Stata provides odbc as the client interface. The
system is illustrated as follows:

odbc list produces a list of ODBC data source names to which Stata can connect.

odbc query retrieves a list of table names available from a specified data source’s system catalog.

odbc describe lists column names and types associated with a specified table.

odbc load reads an ODBC table into memory. You can load an ODBC table specified in the table()
option or load an ODBC table generated by an SQL SELECT statement specified in the exec() option. In
both cases, you can choose which columns and rows of the ODBC table to read by specifying extvarlist

and if and in conditions. extvarlist specifies the columns to be read and allows you to rename variables.
For example,

. odbc load id=ID name=”Last Name”, table(Employees) dsn(Northwind)

reads two columns, ID and Last Name, from the Employees table of the Northwind data source. It will
also rename variable ID to id and variable Last Name to name.

odbc insert writes data from memory to an ODBC table. The data can be appended to an existing

table or replace an existing table.

odbc exec allows for most SQL statements to be issued directly to any ODBC data source. Statements

that produce output, such as SELECT, have their output neatly displayed. By using Stata’s ado language,

you can also generate SQL commands on the fly to do positional updates or whatever the situation requires.

odbc sqlfile provides a “batch job” alternative to the odbc exec command. A file is specified that

contains any number of any length SQL commands. Every SQL command in this file should be delimited

by a semicolon and must be constructed as pure SQL. Stata macros and ado-language syntax are not

permitted. The advantage in using this command, as opposed to odbc exec, is that only one connection
is established for multiple SQL statements. A similar sequence of SQL commands used via odbc exec

728

odbc — Load, write, or view data from ODBC sources 729

would require constructing an ado-file that issued a command and, thus, a connection for every SQL

command. Another slight difference is that any output that might be generated from an SQL command is

suppressed by default. A loud option is provided to toggle output back on.

set odbcdriver unicode specifies that the ODBC driver is a Unicode driver (the default). set
odbcdriver ansi specifies that the ODBC driver is anANSI driver. You must restart Stata for the setting
to take effect.

set odbcmgr iodbc specifies that the ODBC driver manager is iODBC (the default). set odbcmgr
unixodbc specifies that the ODBC driver manager is unixODBC.

Quick start
List all defined data source names (DSNs) to which Stata can connect

odbc list

List available table names in MyDSN
odbc query ”MyDSN”

Describe the column names and data types in table MyTable from MyDSN
odbc describe ”MyTable”, dsn(”MyDSN”)

Load MyTable into memory from MyDSN
odbc load, table(”MyTable”) dsn(”MyDSN”)

Menu
odbc load
File > Import > ODBC data source

odbc insert
File > Export > ODBC data source

odbc — Load, write, or view data from ODBC sources 730

Syntax
List ODBC sources to which Stata can connect

odbc list

Retrieve available names from specified data source

odbc query [”DataSourceName”, verbose schema connect options]

List column names and types associated with specified table

odbc describe [”TableName”, connect options]

Import data from an ODBC data source

odbc load [extvarlist] [if] [in] , { table(”TableName”) | exec(”SqlStmt”) }
[load options connect options]

Export data to an ODBC data source

odbc insert [varlist] [if] [in], table(”TableName”)

{dsn(”DataSourceName”) | connectionstring(”ConnectStr”)}
[insert options connect options]

Allow SQL statements to be issued directly to ODBC data source

odbc exec(”SqlStmt”) ,

{dsn(”DataSourceName”) | connectionstring(”ConnectStr”)}
[connect options]

Batch job alternative to odbc exec

odbc sqlfile(”filename”) ,

{dsn(”DataSourceName”) | connectionstring(”ConnectStr”)}
[loud connect options]

Specify ODBC driver type

set odbcdriver { unicode | ansi } [, permanently]

Specify ODBC driver manager (Mac and Unix only)

set odbcmgr { iodbc | unixodbc } [, permanently]

odbc — Load, write, or view data from ODBC sources 731

DataSourceName is the name of the ODBC source (database, spreadsheet, etc.)

ConnectStr is a valid ODBC connection string

TableName is the name of a table within the ODBC data source

SqlStmt is an SQL SELECT statement

filename is pure SQL commands separated by semicolons

extvarlist contains

sqlvarname

varname = sqlvarname

connect options Description

user(UserID) user ID of user establishing connection

password(Password) password of user establishing connection

dialog(noprompt) do not display ODBC connection-information dialog, and
do not prompt user for connection information

dialog(prompt) display ODBC connection-information dialog

dialog(complete) display ODBC connection-information dialog only if there
is not enough information

dialog(required) display ODBC connection-information dialog only if there
is not enough mandatory information provided

∗ dsn(”DataSourceName”) name of data source
∗ connectionstring(”ConnectStr”) ODBC connection string

∗dsn(”DataSourceName”) is not allowed with odbc query. You may not specify both DataSourceName and
connectionstring() with odbc query. Either dsn() or connectionstring() is required with odbc insert, odbc
exec, and odbc sqlfile.

load options Description

∗ table(”TableName”) name of table stored in data source
∗ exec(”SqlStmt”) SQL SELECT statement to generate a table to be read into Stata

clear load dataset even if there is one in memory

noquote alter Stata’s internal use of SQL commands; seldom used

lowercase read variable names as lowercase

sqlshow show all SQL commands issued

allstring read all variables as strings

datestring read date-formatted variables as strings

multistatement allow multiple SQL statements delimited by ; when using exec()
bigintasdouble store BIGINT columns as Stata doubles on 64-bit operating systems

∗Either table(”TableName”) or exec(”SqlStmt”) must be specified with odbc load.

odbc — Load, write, or view data from ODBC sources 732

insert options Description

∗ table(”TableName”) name of table stored in data source

overwrite clear data in ODBC table before data in memory is written to the table

insert default mode of operation for the odbc insert command
quoted quote all values with single quotes as they are inserted in ODBC table

sqlshow show all SQL commands issued

as(”varlist”) ODBC variables on the data source that correspond to the variables in
Stata’s memory

block use block inserts

∗table(”TableName”) is required for odbc insert.

Options
user(UserID) specifies the user ID of the user attempting to establish the connection to the data source.

By default, Stata assumes that the user ID is the same as the one specified in the previous odbc
command or is empty if user() has never been specified in the current session of Stata.

password(Password) specifies the password of the user attempting to establish the connection to the
data source. By default, Stata assumes that the password is the same as the one previously specified

or is empty if the password has not been used during the current session of Stata. Typically, the

password() option will not be specified apart from the user() option.

dialog(noprompt | prompt | complete | required) specifies the mode the ODBCDriverManager uses

to display the ODBC connection-information dialog to prompt for more connection information.

noprompt is the default value. The ODBC connection-information dialog is not displayed, and you are
not prompted for connection information. If there is not enough information to establish a connection

to the specified data source, an error is returned.

prompt causes the ODBC connection-information dialog to be displayed.

complete causes the ODBC connection-information dialog to be displayed only if there is not enough
information, even if the information is not mandatory.

required causes the ODBC connection-information dialog to be displayed only if there is not enough
mandatory information provided to establish a connection to the specified data source. You are

prompted only for mandatory information; controls for information that is not required to connect

to the specified data source are disabled.

dsn(”DataSourceName”) specifies the name of a data source, as listed by the odbc list command.

If a name contains spaces, it must be enclosed in double quotes. By default, Stata assumes that the

data source name is the same as the one specified in the previous odbc command. This option is

not allowed with odbc query. Either the dsn() option or the connectionstring() option may be
specified with odbc describe and odbc load, and one of these options must be specified with odbc
insert, odbc exec, and odbc sqlfile.

connectionstring(”ConnectStr”) specifies a connection string rather than the name of a data source.
Stata does not assume that the connection string is the same as the one specified in the previous

odbc command. EitherDataSourceName or the connectionstring() option may be specified with
odbc query; either the dsn() option or the connectionstring() option can be specified with odbc
describe and odbc load, and one of these options must be specified with odbc insert, odbc exec,
and odbc sqlfile.

odbc — Load, write, or view data from ODBC sources 733

table(”TableName”) specifies the name of an ODBC table stored in a specified data source’s system

catalog, as listed by the odbc query command. If a table name contains spaces, it must be enclosed
in double quotes. Either the table() option or the exec() option—but not both—is required with

the odbc load command.

exec(”SqlStmt”) allows you to issue an SQL SELECT statement to generate a table to be read into Stata.

An error message is returned if the SELECT statement is an invalid SQL statement. The statement must
be enclosed in double quotes. Either the table() option or the exec() option—but not both—is

required with the odbc load command.

clear permits the data to be loaded, even if there is a dataset already in memory, and even if that dataset
has changed since the data were last saved.

noquote alters Stata’s internal use of SQL commands, specifically those relating to quoted table names,
to better accommodate various drivers. This option has been particularly helpful for DB2 drivers.

lowercase causes all the variable names to be read as lowercase.

sqlshow is a useful option for showing all SQL commands issued to the ODBC data source from the odbc
insert or odbc load command. This can help you debug any issues related to inserting or loading.

allstring causes all variables to be read as string data types.

datestring causes all date- and time-formatted variables to be read as string data types.

multistatement specifies that multiple SQL statements delimited by ; be allowed when using the

exec() option. Some drivers do not support multiple SQL statements.

bigintasdouble specifies that data stored in 64-bit integer (BIGINT) database columns be con-

verted to Stata doubles. If any integer value is larger than 9,007,199,254,740,965 or less than

−9,007,199,254,740,992, this conversion is not possible, and odbc load will issue an error message.

overwrite allows data to be cleared from an ODBC table before the data in memory are written to the

table. All data from the ODBC table are erased, not just the data from the variable columns that will

be replaced.

insert appends data to an existing ODBC table and is the default mode of operation for the odbc insert
command.

quoted is useful for ODBC data sources that require all inserted values to be quoted. This option specifies
that all values be quoted with single quotes as they are inserted into an ODBC table.

as(”varlist”) allows you to specify theODBC variables on the data source that correspond to the variables
in Stata’s memory. If this option is specified, the number of variables must equal the number of

variables being inserted, even if some names are identical.

loud specifies that output be displayed for SQL commands.

verbose specifies that odbc query list any data source alias, nickname, typed table, typed view, and
view along with tables so that you can load data from these table types.

schema specifies that odbc query return schema names with the table names from a data source. Note:

The schema names returned from odbc query will also be used with the odbc describe and odbc
load commands. When using odbc load with a schema name, you might also need to specify the
noquote option because some drivers do not accept quotes around table or schema names.

block specifies that odbc insert use block inserts to speed up data-writing performance. Some drivers
do not support block inserts.

odbc — Load, write, or view data from ODBC sources 734

permanently (set odbcdriver and set odbcmgr only) specifies that, in addition to making the change
right now, the setting be remembered and become the default setting when you invoke Stata.

Remarks and examples
When possible, the examples in this manual entry are developed using the Northwind sample

database that is automatically installed with Microsoft Access. If you do not have Access, you can still

use odbc, but you will need to consult the documentation for your other ODBC sources to determine how
to set them up.

Remarks are presented under the following headings:

Unicode and ODBC
Setting up the data sources
Listing ODBC data source names
Listing available table names from a specified data source’s system catalog
Describing a specified table
Loading data from ODBC sources

Unicode and ODBC
Stata supports accessing databases with Unicode data through Unicode ODBC drivers on the following

platforms:

• Microsoft Windows through ODBC driver manager (version 3.5 or higher).

• Unix through unixODBC driver manager with ODBC drivers compiled for unixODBC. Stata does not

support Unicode drivers when using iODBC as your driver manager. Stata requires that the driver

support UTF-8.

• macOS through unixODBC driver manager with ODBC drivers compiled for unixODBC. Stata does not

support Unicode drivers when using iODBC as your driver manager. Stata requires that the driver

support UTF-8.

Stata supports non-Unicode databases through ASCII drivers with all driver managers.

Setting up the data sources
Before using Stata’s ODBC commands, you must register your ODBC database with the ODBC Data

Source Administrator. This process varies depending on platform, but the following example shows the

steps necessary for Windows.

UsingWindows 10, follow these steps to create an ODBCUser Data Source for the Northwind sample
database:

1. On the Start page, type ODBC Data Sources. From the list that appears, select theODBCData

Sources Desktop App.

2. In the Data Sources (ODBC) dialog box,

a. click on the User DSN tab;

b. click onAdd...;

c. chooseMicrosoftAccess Driver (*.mdb,*.accdb) on the Create NewData Source dialog box;

and

odbc — Load, write, or view data from ODBC sources 735

d. click on Finish.

3. In the ODBC Microsoft Access Setup dialog box, type Northwind in the Data Source Name
field and click on Select.... Locate the Northwind.mdb database and click on OK to finish

creating the data source.

Using Windows 7, follow these steps to create an ODBC User Data Source for the Northwind sample
database:

1. From the Start Menu, select the Control Panel.

2. In the Control Panel window, click on System and Security >Administrative Tools.

3. In the Data Sources (ODBC) dialog box,

a. click on the User DSN tab;

b. click onAdd...;

c. chooseMicrosoftAccess Driver (*.mdb,*.accdb) on the Create NewData Source dialog box;

and

d. click on Finish.

4. In the ODBC Microsoft Access Setup dialog box, type Northwind in the Data Source Name
field and click on Select.... Locate the Northwind.mdb database and click on OK to finish

creating the data source.

Technical note
In earlier versions of Windows, the exact location of the Data Source (ODBC) dialog varies, but it is

always somewhere within the Control Panel.

Listing ODBC data source names
odbc list is used to produce a list of data source names to which Stata can connect. For a specific

data source name to be shown in the list, the data source has to be registered with the ODBC Data Source

Administrator. See Setting up the data sources for information on how to do this.

Example 1
. odbc list
Data Source Name Driver

dBASE Files Microsoft Access dBASE Driver (*.dbf, *.ndx
Excel Files Microsoft Excel Driver (*.xls, *.xlsx, *.xl
MS Access Database Microsoft Access Driver (*.mdb, *.accdb)
Northwind Microsoft Access Driver (*.mdb, *.accdb)

In the above list, Northwind is one of the sample Microsoft Access databases that Access installs by

default.

odbc — Load, write, or view data from ODBC sources 736

Listing available table names from a specified data source’s system catalog
odbc query is used to list table names available from a specified data source.

Example 2
. odbc query ”Northwind”
DataSource: Northwind
Path : C:\Program Files\Microsoft Office\Office\Samples\Northwind.accdb

Customers
Employee Privileges
Employees
Inventory Transaction Types
Inventory Transactions
Invoices
Order Details
Order Details Status
Orders
Orders Status
Orders Tax Status
Privileges
Products
Purchase Order Details
Purchase Order Status
Purchase Orders
Sales Reports
Shippers
Strings
Suppliers

odbc — Load, write, or view data from ODBC sources 737

Describing a specified table
odbc describe is used to list column (variable) names and their SQL data types that are associated

with a specified table.

Example 3
Here we specify that we want to list all variables in the Employees table of the Northwind data

source.

. odbc describe ”Employees”, dsn(”Northwind”)
DataSource: Northwind (query)
Table: Employees (load)

Variable Name Variable Type

ID COUNTER
Company VARCHAR
Last Name VARCHAR
First Name VARCHAR
E-mail Address VARCHAR
Job Title VARCHAR
Business Phone VARCHAR
Home Phone VARCHAR
Mobile Phone VARCHAR
Fax Number VARCHAR
Address LONGCHAR
City VARCHAR
State/Province VARCHAR
ZIP/Postal Code VARCHAR
Country/Region VARCHAR
Web Page LONGCHAR
Notes LONGCHAR
Attachments LONGCHAR

Loading data from ODBC sources
odbc load is used to load an ODBC table into memory.

To load an ODBC table listed in the odbc query output, specify the table name in the table() option
and the data source name in the dsn() option.

Example 4
We want to load the Employees table from the Northwind data source.

. clear

. odbc load, table(”Employees”) dsn(”Northwind”)
E-mail_Address invalid name
- converted E-mail_Address to var5
State/Province invalid name
- converted State/Province to var13
ZIP/Postal_Code invalid name
- converted ZIP/Postal_Code to var14
Country/Region invalid name
- converted Country/Region to var15

odbc — Load, write, or view data from ODBC sources 738

. describe
Contains data
Observations: 9

Variables: 18

Variable Storage Display Value
name type format label Variable label

ID long %12.0g
Company str17 %17s
Last_Name str14 %14s Last Name
First_Name str7 %9s First Name
var5 str28 %28s E-mail Address
Job_Title str21 %21s Job Title
Business_Phone str13 %13s Business Phone
Home_Phone str13 %13s Home Phone
Mobile_Phone str1 %9s Mobile Phone
Fax_Number str13 %13s Fax Number
Address strL %9s
City str8 %9s
var13 str2 %9s State/Province
var14 str5 %9s ZIP/Postal Code
var15 str3 %9s Country/Region
Web_Page strL %9s Web Page
Notes strL %9s
Attachments strL %9s

Sorted by:
Note: Dataset has changed since last saved.

Technical note
When Stata loads the ODBC table, data are converted from SQL data types to Stata data types. Stata

does not support all SQL data types. If the column cannot be read because of incompatible data types,

Stata will issue a note and skip a column. The following table lists the supported SQL data types and their

corresponding Stata data types:

odbc — Load, write, or view data from ODBC sources 739

SQL data type Stata data type

SQL BIT byte
SQL TINYINT

SQL SMALLINT int

SQL INTEGER long

SQL DECIMAL double
SQL NUMERIC

SQL FLOAT double
SQL DOUBLE
SQL REAL double

SQL BIGINT string

SQL CHAR string
SQL VARCHAR
SQL LONGVARCHAR
SQL WCHAR
SQL WVARCHAR
SQL WLONGVARCHAR

SQL TIME
SQL DATE
SQL TIMESTAMP
SQL TYPE TIME double
SQL TYPE DATE
SQL TYPE TIMESTAMP

SQL BINARY
SQL VARBINARY
SQL LONGVARBINARY

You can also load an ODBC table generated by an SQL SELECT statement specified in the exec()
option.

Example 5
Suppose that, from the Northwind data source, we want a list of all the customers who have placed

orders. We might use the SQL SELECT statement

SELECT DISTINCT c.ID, c.Company
FROM Customers c
INNER JOIN Orders o

ON c.[Customer ID] = o.CustomerID

To load the table into Stata, we use odbc load with the exec() option.

odbc — Load, write, or view data from ODBC sources 740

. odbc load, exec(‘”SELECT DISTINCT c.ID, c.Company FROM Customers c INNER JOIN
> Orders o ON c.ID = o.[Customer ID]”’) dsn(”Northwind”) clear
. describe
Contains data
Observations: 15

Variables: 2

Variable Storage Display Value
name type format label Variable label

ID long %12.0g
Company str10 %10s

Sorted by:
Note: Dataset has changed since last saved.

The extvarlist is optional. It allows you to choose which columns (variables) are to be read and to

rename variables when they are read.

Example 6
Suppose that we want to load the ID column and the Last Name column from the Employees table

of the Northwind data source. Moreover, we want to rename ID as id and Last Name as name.

. odbc load id=ID name=”Last Name”, table(”Employees”) dsn(”Northwind”) clear

. describe
Contains data
Observations: 9

Variables: 2

Variable Storage Display Value
name type format label Variable label

id long %12.0g ID
name str14 %14s Last Name

Sorted by:
Note: Dataset has changed since last saved.

The if and in qualifiers allow you to choose which rows are to be read. You can also use a WHERE
clause in the SQL SELECT statement to select the rows to be read.

odbc — Load, write, or view data from ODBC sources 741

Example 7
Suppose that we want the information from the Order Details table, where Quantity is greater

than 50. We can specify the if and in qualifiers,

. odbc load if Quantity>50, table(”Order Details”) dsn(”Northwind”) clear

. sum Quantity
Variable Obs Mean Std. Dev. Min Max

Quantity 10 177.7 94.21966 87 300

or we can issue the SQL SELECT statement directly:

. odbc load, exec(”SELECT * FROM [Order Details] WHERE Quantity>50”)
> dsn(”Northwind”) clear
. sum Quantity

Variable Obs Mean Std. Dev. Min Max

Quantity 10 177.7 94.21966 87 300

Example 8
To use odbc insert, you must have an SQL table already created in your data source. If you do not,

you can use odbc exec to create a table in your data source. For example, one might create a table in an
Oracle database with the SQL command below:

#delimit ;
local cols ‘” ID NUMBER(5,0),

PAY NUMBER(8,2),
TITLE NVARCHAR2(18),

LOCATION VARCHAR(40)”; ;
#delimit cr
odbc exec(‘”CREATE TABLE JOB_TYPES (‘cols’);”’), dsn(oracle_dsn) ///

user(username) password(password)

You must create a table using the correct data type for each table column for your data to transfer

correctly. Note that the SQL syntax to create a table differs across data sources, as do column data types.

Reference
Crow, K. 2017. Importing WRDS data into Stata. The Stata Blog: Not Elsewhere Classified. https://blog.stata.com/2017/

09/19/importing-wrds-data-into-stata/.

Also see
[D] jdbc — Load, write, or view data from a database with a Java API

[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

https://blog.stata.com/2017/09/19/importing-wrds-data-into-stata/
https://blog.stata.com/2017/09/19/importing-wrds-data-into-stata/

order — Reorder variables in dataset

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
order relocates varlist to a position depending on which option you specify. If no option is specified,

order relocates varlist to the beginning of the dataset in the order in which the variables are specified.

Quick start
Move v1 to the beginning of the dataset

order v1

Same as above, but instead move v1 to the end of the dataset
order v1, last

Move v3 before v2
order v3, before(v2)

Move x and z after y
order x z, after(y)

Alphabetize y, x, and z, and move them to the beginning of the dataset

order y x z, alphabetic

Alphabetize x, y, z, v3, v2, and v1, and sort numbers in sequential order
order x y z v*, sequential

Menu
Data > Data utilities > Change order of variables

742

order — Reorder variables in dataset 743

Syntax
order varlist [, options]

options Description

first move varlist to beginning of dataset; the default

last move varlist to end of dataset

before(varname) move varlist before varname

after(varname) move varlist after varname

alphabetic alphabetize varlist and move it to beginning of dataset

sequential alphabetize varlist keeping numbers sequential and move it to
beginning of dataset

Options
first shifts varlist to the beginning of the dataset. This is the default.

last shifts varlist to the end of the dataset.

before(varname) shifts varlist before varname.

after(varname) shifts varlist after varname.

alphabetic alphabetizes varlist and moves it to the beginning of the dataset. For example, here is a
varlist in alphabetic order: a x7 x70 x8 x80 z. If combined with another option, alphabetic just
alphabetizes varlist, and the movement of varlist is controlled by the other option.

sequential alphabetizes varlist, keeping variables with the same ordered letters but with differing ap-
pended numbers in sequential order. varlist is moved to the beginning of the dataset. For example,

here is a varlist in sequential order: a x7 x8 x70 x80 z.

Remarks and examples

Example 1
When using order, you must specify a varlist, but you do not need to specify all the variables in the

dataset. For example, we want to move the make and mpg variables to the front of the auto dataset.

order — Reorder variables in dataset 744

. use https://www.stata-press.com/data/r19/auto4
(1978 automobile data)
. describe
Contains data from https://www.stata-press.com/data/r19/auto4.dta
Observations: 74 1978 automobile data

Variables: 6 6 Apr 2024 00:20

Variable Storage Display Value
name type format label Variable label

price int %8.0gc Price
weight int %8.0gc Weight (lbs.)
mpg byte %8.0g Mileage (mpg)
make str17 %-17s Make and model
length int %8.0g Length (in.)
rep78 byte %8.0g Repair record 1978

Sorted by:
. order make mpg
. describe
Contains data from https://www.stata-press.com/data/r19/auto4.dta
Observations: 74 1978 automobile data

Variables: 6 6 Apr 2024 00:20

Variable Storage Display Value
name type format label Variable label

make str17 %-17s Make and model
mpg byte %8.0g Mileage (mpg)
price int %8.0gc Price
weight int %8.0gc Weight (lbs.)
length int %8.0g Length (in.)
rep78 byte %8.0g Repair record 1978

Sorted by:

We now want length to be the last variable in our dataset, so we could type order make mpg price
weight rep78 length, but it would be easier to use the last option:

. order length, last

. describe
Contains data from https://www.stata-press.com/data/r19/auto4.dta
Observations: 74 1978 automobile data

Variables: 6 6 Apr 2024 00:20

Variable Storage Display Value
name type format label Variable label

make str17 %-17s Make and model
mpg byte %8.0g Mileage (mpg)
price int %8.0gc Price
weight int %8.0gc Weight (lbs.)
rep78 byte %8.0g Repair record 1978
length int %8.0g Length (in.)

Sorted by:

order — Reorder variables in dataset 745

We now change our mind and decide that we prefer that the variables be alphabetized.

. order _all, alphabetic

. describe
Contains data from https://www.stata-press.com/data/r19/auto4.dta
Observations: 74 1978 automobile data

Variables: 6 6 Apr 2024 00:20

Variable Storage Display Value
name type format label Variable label

length int %8.0g Length (in.)
make str17 %-17s Make and model
mpg byte %8.0g Mileage (mpg)
price int %8.0gc Price
rep78 byte %8.0g Repair record 1978
weight int %8.0gc Weight (lbs.)

Sorted by:

Technical note
If your data contain variables named year1, year2, . . . , year19, year20, specify the sequential

option to obtain this ordering. If you specify the alphabetic option, year10will appear between year1
and year11.

Also see
[D] describe — Describe data in memory or in a file

[D] ds — Compactly list variables with specified properties

[D] edit — Browse or edit data with Data Editor

[D] rename — Rename variable

outfile — Export dataset in text format

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
outfilewrites data to a disk file in plain text format, which can be read by other programs. The new

file is not in Stata format; see [D] save for instructions on saving data for later use in Stata.

The data saved by outfile can be read back by infile; see [D] import. If filename is specified

without an extension, .raw is assumed unless the dictionary option is specified, in which case .dct
is assumed. If your filename contains embedded spaces, remember to enclose it in double quotes.

Quick start
Export current dataset to space-separated mydata.raw

outfile using mydata

Same as above, but export only v1, v2, and v3
outfile v1 v2 v3 using mydata

Same as above, but export to comma-separated mydata.csv
outfile v1 v2 v3 using mydata.csv, comma

Export current dataset in Stata’s dictionary format to myfile.dct
outfile v1 v2 v3 using mydata, dictionary

Do not allow observations to break across lines

outfile using mydata, wide

Menu
File > Export > Text data (fixed- or free-format)

746

outfile — Export dataset in text format 747

Syntax
outfile [varlist] using filename [if] [in] [, options]

options Description

Main

dictionary write the file in Stata’s dictionary format

nolabel output numeric values (not labels) of labeled variables; the default
is to write labels in double quotes

noquote do not enclose strings in double quotes

comma write file in comma-separated (instead of space-separated) format

wide force one observation per line (no matter how wide)

Advanced

rjs right-justify string variables; the default is to left-justify

fjs left-justify if format width < 0; right-justify if format width > 0

runtogether all on one line, no quotes, no space between, and ignore formats

missing retain missing values; use only with comma

replace overwrite the existing file

replace does not appear in the dialog box.

Options

� � �
Main �

dictionary writes the file in Stata’s data dictionary format. See [D] infile (fixed format) for a descrip-

tion of dictionaries. comma, missing, and wide are not allowed with dictionary.

nolabel causes Stata to write the numeric values of labeled variables. The default is to write the labels
enclosed in double quotes.

noquote prevents Stata from placing double quotes around the contents of strings, meaning string vari-

ables and value labels.

comma causes Stata to write the file in comma-separated–value format. In this format, values are sepa-
rated by commas rather than by blanks. Missing values are written as two consecutive commas unless

missing is specified.

wide causes Stata to write the data with 1 observation per line. The default is to split observations into
lines of 80 characters or fewer, but strings longer than 80 characters are never split across lines.

� � �
Advanced �

rjs and fjs affect how strings are justified; you probably do not want to specify either of these options.

By default, outfile outputs strings left-justified in their field.

If rjs is specified, strings are output right-justified. rjs stands for “right-justified strings”.

If fjs is specified, strings are output left- or right-justified according to the variable’s format: left-
justified if the format width is negative and right-justified if the format width is positive. fjs stands
for “format-justified strings”.

outfile — Export dataset in text format 748

runtogether is a programmer’s option that is valid only when all variables of the specified varlist are
of type string. runtogether specifies that the variables be output in the order specified, without
quotes, with no spaces between, and ignoring the display format attached to each variable. Each

observation ends with a new line character.

missing, valid only with comma, specifies that missing values be retained. When comma is specified

without missing, missing values are changed to null strings (””).

The following option is available with outfile but is not shown in the dialog box:

replace permits outfile to overwrite an existing dataset.

Remarks and examples
outfile enables data to be sent to a disk file for processing by a non-Stata program. Each observation

is written as one or more records that will not exceed 80 characters unless you specify the wide option.
Each column other than the first is prefixed by two blanks.

outfile is careful to put the data in columns in case you want to read the data by using formatted
input. String variables and value labels are output in left-justified fields by default. You can change this

behavior by using the rjs or fjs options.

Numeric variables are output right-justified in the field width specified by their display format. A

numeric variable with a display format of %9.0gwill be right-justified in a nine-character field. Commas
are not written in numeric variables, even if a comma format is used.

If you specify the dictionary option, the data are written in the same way, but preceding the data,
outfile writes a data dictionary describing the contents of the file.

Example 1: Basic usage
We have entered into Stata some data on seven employees in our firm. The data contain employee

name, employee identification number, salary, and sex:

. list

name empno salary sex

1. Carl Marks 57213 24,000 male
2. Irene Adler 47229 27,000 female
3. Adam Smith 57323 24,000 male
4. David Wallis 57401 24,500 male
5. Mary Rogers 57802 27,000 female

6. Carolyn Frank 57805 24,000 female
7. Robert Lawson 57824 22,500 male

The last variable in our data, sex, is really a numeric variable, but it has an associated value label.

If we now wish to use a program other than Stata with these data, we must somehow get the data

over to that other program. The standard Stata-format dataset created by save will not do the job—it is

written in a special format that only Stata understands. Most programs, however, understand plain text

datasets, such as those produced by a text editor. We can tell Stata to produce such a dataset by using

outfile. Typing outfile using employee creates a dataset called employee.raw that contains all
the data. We can use the Stata type command to review the resulting file:

outfile — Export dataset in text format 749

. outfile using employee

. type employee.raw
”Carl Marks” 57213 24000 ”male”
”Irene Adler” 47229 27000 ”female”
”Adam Smith” 57323 24000 ”male”
”David Wallis” 57401 24500 ”male”
”Mary Rogers” 57802 27000 ”female”
”Carolyn Frank” 57805 24000 ”female”
”Robert Lawson” 57824 22500 ”male”

We see that the file contains the four variables and that Stata has surrounded the string variables with

double quotes.

Technical note
The nolabel option prevents Stata from substituting value-label strings for the underlying numeric

values; see [U] 12.6.3 Value labels. The last variable in our data is really a numeric variable:

. outfile using employ2, nolabel

. type employ2.raw
”Carl Marks” 57213 24000 0
”Irene Adler” 47229 27000 1
”Adam Smith” 57323 24000 0
”David Wallis” 57401 24500 0
”Mary Rogers” 57802 27000 1
”Carolyn Frank” 57805 24000 1
”Robert Lawson” 57824 22500 0

Technical note
If you do not want Stata to place double quotes around the contents of string variables, you can specify

the noquote option:

. outfile using employ3, noquote

. type employ3.raw
Carl Marks 57213 24000 male
Irene Adler 47229 27000 female
Adam Smith 57323 24000 male
David Wallis 57401 24500 male
Mary Rogers 57802 27000 female
Carolyn Frank 57805 24000 female
Robert Lawson 57824 22500 male

Example 2: Overwriting an existing file
Stata never writes over an existing file unless explicitly told to do so. For instance, if the file

employee.raw already exists and we attempt to overwrite it by typing outfile using employee, here
is what would happen:

. outfile using employee
file employee.raw already exists
r(602);

outfile — Export dataset in text format 750

We can tell Stata that it is okay to overwrite a file by specifying the replace option:

. outfile using employee, replace

Technical note
Some programs prefer data to be separated by commas rather than by blanks. Stata produces such a

dataset if you specify the comma option:

. outfile using employee, comma replace

. type employee.raw
”Carl Marks”,57213,24000,”male”
”Irene Adler”,47229,27000,”female”
”Adam Smith”,57323,24000,”male”
”David Wallis”,57401,24500,”male”
”Mary Rogers”,57802,27000,”female”
”Carolyn Frank”,57805,24000,”female”
”Robert Lawson”,57824,22500,”male”

Example 3: Creating data dictionaries
Finally, outfile can create data dictionaries that infile can read. Dictionaries are perhaps the best

way to organize your raw data. A dictionary describes your data so that you do not have to remember the

order of the variables, the number of variables, the variable names, or anything else. The file in which

you store your data becomes self-documenting so that you can understand the data in the future. See

[D] infile (fixed format) for a full description of data dictionaries.

When you specify the dictionary option, Stata writes a .dct file:

. outfile using employee, dict replace

. type employee.dct
dictionary {

str15 name ‘”Employee name”’
float empno ‘”Employee number”’
float salary ‘”Annual salary”’
float sex :sexlbl ‘”Sex”’

}
”Carl Marks” 57213 24000 ”male”
”Irene Adler” 47229 27000 ”female”
”Adam Smith” 57323 24000 ”male”
”David Wallis” 57401 24500 ”male”
”Mary Rogers” 57802 27000 ”female”
”Carolyn Frank” 57805 24000 ”female”
”Robert Lawson” 57824 22500 ”male”

outfile — Export dataset in text format 751

Example 4: Working with dates
We have historical data on the S&P 500 for the month of January 2001.

. use https://www.stata-press.com/data/r19/outfilexmpl, clear
(S&P 500)
. describe
Contains data from https://www.stata-press.com/data/r19/outfilexmpl.dta
Observations: 21 S&P 500

Variables: 6 6 Apr 2024 16:02
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

date int %td Date
open float %9.0g Opening price
high float %9.0g High price
low float %9.0g Low price
close float %9.0g Closing price
volume int %12.0gc Volume (thousands)

Sorted by: date

The date variable has a display format of %td so that it is displayed as ddmmmyyyy.

. list

date open high low close volume

1. 02jan2001 1320.28 1320.28 1276.05 1283.27 11,294
2. 03jan2001 1283.27 1347.76 1274.62 1347.56 18,807
3. 04jan2001 1347.56 1350.24 1329.14 1333.34 21,310
4. 05jan2001 1333.34 1334.77 1294.95 1298.35 14,308
5. 08jan2001 1298.35 1298.35 1276.29 1295.86 11,155

6. 09jan2001 1295.86 1311.72 1295.14 1300.8 11,913
7. 10jan2001 1300.8 1313.76 1287.28 1313.27 12,965
8. 11jan2001 1313.27 1332.19 1309.72 1326.82 14,112
9. 12jan2001 1326.82 1333.21 1311.59 1318.55 12,760

10. 16jan2001 1318.32 1327.81 1313.33 1326.65 12,057

11. 17jan2001 1326.65 1346.92 1325.41 1329.47 13,491
12. 18jan2001 1329.89 1352.71 1327.41 1347.97 14,450
13. 19jan2001 1347.97 1354.55 1336.74 1342.54 14,078
14. 22jan2001 1342.54 1353.62 1333.84 1342.9 11,640
15. 23jan2001 1342.9 1362.9 1339.63 1360.4 12,326

16. 24jan2001 1360.4 1369.75 1357.28 1364.3 13,090
17. 25jan2001 1364.3 1367.35 1354.63 1357.51 12,580
18. 26jan2001 1357.51 1357.51 1342.75 1354.95 10,980
19. 29jan2001 1354.92 1365.54 1350.36 1364.17 10,531
20. 30jan2001 1364.17 1375.68 1356.2 1373.73 11,498

21. 31jan2001 1373.73 1383.37 1364.66 1366.01 12,953

outfile — Export dataset in text format 752

We outfile our data and use the type command to view the result.

. outfile using sp

. type sp.raw
”02jan2001” 1320.28 1320.28 1276.05 1283.27 11294
”03jan2001” 1283.27 1347.76 1274.62 1347.56 18807
”04jan2001” 1347.56 1350.24 1329.14 1333.34 21310
”05jan2001” 1333.34 1334.77 1294.95 1298.35 14308
”08jan2001” 1298.35 1298.35 1276.29 1295.86 11155
”09jan2001” 1295.86 1311.72 1295.14 1300.8 11913
”10jan2001” 1300.8 1313.76 1287.28 1313.27 12965
”11jan2001” 1313.27 1332.19 1309.72 1326.82 14112
”12jan2001” 1326.82 1333.21 1311.59 1318.55 12760
”16jan2001” 1318.32 1327.81 1313.33 1326.65 12057
”17jan2001” 1326.65 1346.92 1325.41 1329.47 13491
”18jan2001” 1329.89 1352.71 1327.41 1347.97 14450
”19jan2001” 1347.97 1354.55 1336.74 1342.54 14078
”22jan2001” 1342.54 1353.62 1333.84 1342.9 11640
”23jan2001” 1342.9 1362.9 1339.63 1360.4 12326
”24jan2001” 1360.4 1369.75 1357.28 1364.3 13090
”25jan2001” 1364.3 1367.35 1354.63 1357.51 12580
”26jan2001” 1357.51 1357.51 1342.75 1354.95 10980
”29jan2001” 1354.92 1365.54 1350.36 1364.17 10531
”30jan2001” 1364.17 1375.68 1356.2 1373.73 11498
”31jan2001” 1373.73 1383.37 1364.66 1366.01 12953

The date variable, originally stored as an int, was outfiled as a string variable. Whenever Stata outfiles

a variable with a date format, Stata outfiles the variable as a string.

Also see
[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

[U] 22 Entering and importing data

pctile — Create variable containing percentiles

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment Also see

Description
pctile creates a new variable containing the percentiles of exp, where the expression exp is typically

just another variable.

xtile creates a new variable that categorizes exp by its quantiles. If the cutpoints(varname) option
is specified, it categorizes exp using the values of varname as category cutpoints. For example, varname

might contain percentiles of another variable, generated by pctile.

pctile is a programmer’s command that computes up to 4,096 percentiles and places the results
in r(); see [U] 18.8 Accessing results calculated by other programs. summarize, detail computes
some percentiles (1, 5, 10, 25, 50, 75, 90, 95, and 99th); see [R] summarize.

Quick start
Create qrt1 containing the quartiles of v

pctile qrt1 = v, nq(4)

Same as above, and create percent containing the percentages
pctile qrt1 = v, nq(4) genp(percent)

Same as above, but apply sampling weights wvar1
pctile qrt1 = v [pweight=wvar1], nq(4) genp(percent)

Create dec1 containing the deciles of v
pctile dec1 = v, nq(10)

Same as above, but create dec2 indicating to which decile each observation belongs
xtile dec2 = v, nq(10)

Same as above, but apply frequency weights wvar2
xtile dec2 = v [fweight=wvar2], nq(10)

Compute the 10th and 90th percentiles, and store them in r(r1) and r(r2)
pctile v, percentiles(10 90)

Menu
pctile
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Create variable of percentiles

xtile
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Create variable of quantiles

753

pctile — Create variable containing percentiles 754

Syntax
Create variable containing percentiles

pctile [type] newvar = exp [if] [in] [weight] [, pctile options]

Create variable containing quantile categories

xtile newvar = exp [if] [in] [weight] [, xtile options]

Compute percentiles and store them in r()

pctile varname [if] [in] [weight] [, pctile options]

pctile options Description

Main

nquantiles(#) number of quantiles; default is nquantiles(2)
genp(newvar𝑝) generate newvar𝑝 variable containing percentages

altdef use alternative formula for calculating percentiles

xtile options Description

Main

nquantiles(#) number of quantiles; default is nquantiles(2)
cutpoints(varname) use values of varname as cutpoints

altdef use alternative formula for calculating percentiles

pctile options Description

nquantiles(#) number of quantiles; default is nquantiles(2)
percentiles(numlist) calculate percentiles corresponding to the specified percentages

altdef use alternative formula for calculating percentiles

collect is allowed with pctile; see [U] 11.1.10 Prefix commands.

aweights, fweights, and pweights are allowed (see [U] 11.1.6 weight), except when the altdef option is specified, in
which case no weights are allowed.

Options

� � �
Main �

nquantiles(#) specifies the number of quantiles. It computes percentiles corresponding to percentages
100 𝑘/𝑚 for 𝑘 = 1, 2, . . . , 𝑚 − 1, where 𝑚 = #. For example, nquantiles(10) requests that the
10th, 20th, . . . , 90th percentiles be computed. The default is nquantiles(2); that is, the median is
computed.

genp(newvar𝑝) (pctile only) specifies a new variable to be generated containing the percentages cor-

responding to the percentiles.

pctile — Create variable containing percentiles 755

altdef uses an alternative formula for calculating percentiles. The default method is to invert the em-
pirical distribution function by using averages, (𝑥𝑖 + 𝑥𝑖+1)/2, where the function is flat (the default
is the same method used by summarize; see [R] summarize). The alternative formula uses an inter-

polation method. See Methods and formulas at the end of this entry. Weights cannot be used when

altdef is specified.

cutpoints(varname) (xtile only) requests that xtile use the values of varname, rather than quan-
tiles, as cutpoints for the categories. All values of varname are used, regardless of any if or in
restriction; see the technical note in the xtile section below.

percentiles(numlist) (pctile only) requests percentiles corresponding to the specified percentages.
Percentiles are placed in r(r1), r(r2), . . . , etc. For example, percentiles(10(20)90) requests
that the 10th, 30th, 50th, 70th, and 90th percentiles be computed and placed into r(r1), r(r2),
r(r3), r(r4), and r(r5). Up to 4,096 (inclusive) percentiles can be requested. See [P] numlist for

the syntax of a numlist.

Remarks and examples
Remarks are presented under the following headings:

pctile
xtile
pctile

pctile
pctile creates a new variable containing percentiles. You specify the number of quantiles that you

want, and pctile computes the corresponding percentiles. Here we use Stata’s auto dataset and com-
pute the deciles of mpg:

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. pctile pct = mpg, nq(10)
. list pct in 1/10

pct

1. 14
2. 17
3. 18
4. 19
5. 20

6. 22
7. 24
8. 25
9. 29

10. .

pctile — Create variable containing percentiles 756

If we use the genp() option to generate another variable with the corresponding percentages, it is easier
to distinguish between the percentiles.

. drop pct

. pctile pct = mpg, nq(10) genp(percent)

. list percent pct in 1/10

percent pct

1. 10 14
2. 20 17
3. 30 18
4. 40 19
5. 50 20

6. 60 22
7. 70 24
8. 80 25
9. 90 29

10. . .

summarize, detail calculates standard percentiles.

. summarize mpg, detail
Mileage (mpg)

Percentiles Smallest
1% 12 12
5% 14 12
10% 14 14 Obs 74
25% 18 14 Sum of wgt. 74
50% 20 Mean 21.2973

Largest Std. dev. 5.785503
75% 25 34
90% 29 35 Variance 33.47205
95% 34 35 Skewness .9487176
99% 41 41 Kurtosis 3.975005

summarize, detail can calculate only these particular percentiles. The pctile and pctile com-

mands allow you to compute any percentile.

pctile — Create variable containing percentiles 757

Weights can be used with pctile, xtile, and pctile:

. drop pct percent

. pctile pct = mpg [w=weight], nq(10) genp(percent)
(analytic weights assumed)
. list percent pct in 1/10

percent pct

1. 10 14
2. 20 16
3. 30 17
4. 40 18
5. 50 19

6. 60 20
7. 70 22
8. 80 24
9. 90 28

10. . .

The result is the same, no matter which weight type you specify—aweight, fweight, or pweight.

xtile
xtile creates a categorical variable that contains categories corresponding to quantiles. We illustrate

this with a simple example. Suppose that we have a variable, bp, containing blood pressure measure-
ments:

. use https://www.stata-press.com/data/r19/bp1, clear

. list

bp

1. 98
2. 100
3. 104
4. 110
5. 120

6. 120
7. 120
8. 120
9. 125

10. 130

11. 132

pctile — Create variable containing percentiles 758

xtile can be used to create a variable, quart, that indicates the quartiles of bp.

. xtile quart = bp, nq(4)

. list bp quart, sepby(quart)

bp quart

1. 98 1
2. 100 1
3. 104 1

4. 110 2
5. 120 2
6. 120 2
7. 120 2
8. 120 2

9. 125 3

10. 130 4
11. 132 4

The categories created are

(−∞, 𝑥[25]], (𝑥[25], 𝑥[50]], (𝑥[50], 𝑥[75]], (𝑥[75], +∞)

where 𝑥[25], 𝑥[50], and 𝑥[75] are, respectively, the 25th, 50th (median), and 75th percentiles of bp. We

could use the pctile command to generate these percentiles:

. pctile pct = bp, nq(4) genp(percent)

. list bp quart percent pct, sepby(quart)

bp quart percent pct

1. 98 1 25 104
2. 100 1 50 120
3. 104 1 75 125

4. 110 2 . .
5. 120 2 . .
6. 120 2 . .
7. 120 2 . .
8. 120 2 . .

9. 125 3 . .

10. 130 4 . .
11. 132 4 . .

xtile can categorize a variable on the basis of any set of cutpoints, not just percentiles. Suppose that
we wish to create the following categories for blood pressure:

(−∞, 100], (100, 110], (110, 120], (120, 130], (130, +∞)

pctile — Create variable containing percentiles 759

To do this, we simply create a variable containing the cutpoints,

. input class
class

1. 100
2. 110
3. 120
4. 130
5. end

and then use xtile with the cutpoints() option:

. xtile category = bp, cutpoints(class)

. list bp class category, sepby(category)

bp class category

1. 98 100 1
2. 100 110 1

3. 104 120 2
4. 110 130 2

5. 120 . 3
6. 120 . 3
7. 120 . 3
8. 120 . 3

9. 125 . 4
10. 130 . 4

11. 132 . 5

The cutpoints can, of course, come from anywhere. They can be the quantiles of another variable or

the quantiles of a subgroup of the variable. Suppose that we had a variable, case, that indicated whether
an observation represented a case (case = 1) or control (case = 0).

. use https://www.stata-press.com/data/r19/bp2, clear

. list in 1/11, sep(4)

bp case

1. 98 1
2. 100 1
3. 104 1
4. 110 1

5. 120 1
6. 120 1
7. 120 1
8. 120 1

9. 125 1
10. 130 1
11. 132 1

pctile — Create variable containing percentiles 760

We can categorize the cases on the basis of the quantiles of the controls. To do this, we first generate

a variable, pct, containing the percentiles of the controls’ blood pressure data:

. pctile pct = bp if case==0, nq(4)

. list pct in 1/4

pct

1. 104
2. 117
3. 124
4. .

Then we use these percentiles as cutpoints to classify bp: for all subjects.

. xtile category = bp, cutpoints(pct)

. gsort -case bp

. list bp case category in 1/11, sepby(category)

bp case category

1. 98 1 1
2. 100 1 1
3. 104 1 1

4. 110 1 2

5. 120 1 3
6. 120 1 3
7. 120 1 3
8. 120 1 3

9. 125 1 4
10. 130 1 4
11. 132 1 4

Technical note
In the last example, if we wanted to categorize only cases, we could have issued the command

. xtile category = bp if case==1, cutpoints(pct)

Most Stata commands follow the logic that using an if exp is equivalent to dropping observations that
do not satisfy the expression and running the command. This is not true of xtilewhen the cutpoints()
option is used. (When the cutpoints() option is not used, the standard logic is true.) xtile uses all
nonmissing values of the cutpoints() variable whether or not these values belong to observations that
satisfy the if expression.

If you do not want to use all the values in the cutpoints() variable as cutpoints, simply set the ones
that you do not need to missing. xtile does not care about the order of the values or whether they are
separated by missing values.

pctile — Create variable containing percentiles 761

Technical note
Quantiles are not always unique. If we categorize our blood pressure data by quintiles rather than

quartiles, we get

. use https://www.stata-press.com/data/r19/bp1, clear

. xtile quint = bp, nq(5)

. pctile pct = bp, nq(5) genp(percent)

. list bp quint pct percent, sepby(quint)

bp quint pct percent

1. 98 1 104 20
2. 100 1 120 40
3. 104 1 120 60

4. 110 2 125 80
5. 120 2 . .
6. 120 2 . .
7. 120 2 . .
8. 120 2 . .

9. 125 4 . .

10. 130 5 . .
11. 132 5 . .

The 40th and 60th percentile are the same; they are both 120. When two (or more) percentiles are the

same, they are given the lower category number.

pctile
pctile is a programmer’s command. It computes percentiles and stores them in r(); see

[U] 18.8 Accessing results calculated by other programs.

pctile — Create variable containing percentiles 762

You can use pctile to compute quantiles, just as you can with pctile:

. use https://www.stata-press.com/data/r19/auto, clear
(1978 automobile data)
. _pctile weight, nq(10)
. return list
scalars:

r(r1) = 2020
r(r2) = 2160
r(r3) = 2520
r(r4) = 2730
r(r5) = 3190
r(r6) = 3310
r(r7) = 3420
r(r8) = 3700
r(r9) = 4060

The percentiles() option (abbreviation p()) can be used to compute any percentile you wish:

. _pctile weight, p(10, 33.333, 45, 50, 55, 66.667, 90)

. return list
scalars:

r(r1) = 2020
r(r2) = 2640
r(r3) = 2830
r(r4) = 3190
r(r5) = 3250
r(r6) = 3400
r(r7) = 4060

pctile, pctile, and xtile each have an option that uses an alternative definition of percentiles,
based on an interpolation scheme; see Methods and formulas below.

. _pctile weight, p(10, 33.333, 45, 50, 55, 66.667, 90) altdef

. return list
scalars:

r(r1) = 2005
r(r2) = 2639.985
r(r3) = 2830
r(r4) = 3190
r(r5) = 3252.5
r(r6) = 3400.005
r(r7) = 4060

The default formula inverts the empirical distribution function. The default formula is more commonly

used, although some consider the “alternative” formula to be the standard definition. One drawback of

the alternative formula is that it does not have an obvious generalization to noninteger weights.

Technical note
summarize, detail computes the 1st, 5th, 10th, 25th, 50th (median), 75th, 90th, 95th, and 99th per-

centiles. There is no real advantage in using pctile to compute these percentiles. Both summarize,
detail and pctile use the same internal code. pctile is slightly faster because summarize,
detail computes a few extra things. The value of pctile is its ability to compute percentiles other
than these standard ones.

pctile — Create variable containing percentiles 763

Stored results
pctile and pctile store the following in r():

Scalars

r(r#) value of #-requested percentile

Methods and formulas
The default formula for percentiles is as follows: Let 𝑥(𝑗) refer to the 𝑥 in ascending order for 𝑗 =

1, 2, . . . , 𝑛. Let 𝑤(𝑗) refer to the corresponding weights of 𝑥(𝑗); if there are no weights, 𝑤(𝑗) = 1. Let

𝑁 = ∑𝑛
𝑗=1 𝑤(𝑗).

To obtain the 𝑝th percentile, which we will denote as 𝑥[𝑝], let 𝑃 = 𝑁𝑝/100, and let

𝑊(𝑖) =
𝑖

∑
𝑗=1

𝑤(𝑗)

Find the first index, 𝑖, such that 𝑊(𝑖) > 𝑃. The 𝑝th percentile is then

𝑥[𝑝] =
⎧{
⎨{⎩

𝑥(𝑖−1) + 𝑥(𝑖)

2
if 𝑊(𝑖−1) = 𝑃

𝑥(𝑖) otherwise

When the altdef option is specified, the following alternative definition is used. Here weights are
not allowed.

Let 𝑖 be the integer floor of (𝑛 + 1)𝑝/100; that is, 𝑖 is the largest integer 𝑖 ≤ (𝑛 + 1)𝑝/100. Let ℎ be

the remainder ℎ = (𝑛 + 1)𝑝/100 − 𝑖. The 𝑝th percentile is then

𝑥[𝑝] = (1 − ℎ)𝑥(𝑖) + ℎ𝑥(𝑖+1)

where 𝑥(0) is taken to be 𝑥(1) and 𝑥(𝑛+1) is taken to be 𝑥(𝑛).

xtile produces the categories

(−∞, 𝑥[𝑝1]], (𝑥[𝑝1], 𝑥[𝑝2]], . . . , (𝑥[𝑝𝑚−2], 𝑥[𝑝𝑚−1]], (𝑥[𝑝𝑚−1], +∞)

numbered, respectively, 1, 2, . . . , 𝑚, based on the 𝑚 quantiles given by the 𝑝𝑘th percentiles, where 𝑝𝑘 =
100 𝑘/𝑚 for 𝑘 = 1, 2, . . . , 𝑚 − 1.

If 𝑥[𝑝𝑘−1] = 𝑥[𝑝𝑘], the 𝑘th category is empty. All elements 𝑥 = 𝑥[𝑝𝑘−1] = 𝑥[𝑝𝑘] are put in the (𝑘 − 1)th
category: (𝑥[𝑝𝑘−2], 𝑥[𝑝𝑘−1]].

If xtile is used with the cutpoints(varname) option, the categories are

(−∞, 𝑦(1)], (𝑦(1), 𝑦(2)], . . . , (𝑦(𝑚−1), 𝑦(𝑚)], (𝑦(𝑚), +∞)

and they are numbered, respectively, 1, 2, . . . , 𝑚 + 1, based on the 𝑚 nonmissing values of varname:

𝑦(1), 𝑦(2), . . . , 𝑦(𝑚).

pctile — Create variable containing percentiles 764

Acknowledgment
xtile is based on a command originally posted on Statalist (see [U] 3.2.4 The Stata Forum) by

Philip Ryan of the Discipline of Public Health at the University of Adelaide, Australia.

Also see
[R] centile — Report centile and confidence interval

[R] summarize — Summary statistics

[U] 18.8 Accessing results calculated by other programs

putmata — Put Stata variables into Mata and vice versa

Description Quick start Syntax
Options for putmata Options for getmata Remarks and examples
Stored results Reference Also see

Description
putmata exports the contents of Stata variables to Mata vectors and matrices.

getmata imports the contents of Mata vectors and matrices to Stata variables.

putmata and getmata are useful for creating solutions to problems more easily solved in Mata. The

commands are also useful in teaching.

Quick start
Create a Mata vector for each Stata variable in memory

putmata *

Same as above, but create a vector only for nonmissing values of idvar, v1, and v2
putmata idvar v1 v2, omitmissing

Place variables v1 and v2 into column vectors x1 and x2
putmata idvar x1=v1 x2=v2

Create Mata matrix X from v1 and v2
putmata X=(v1 v2)

Create Stata variables newv1 and newv2 from Mata matrix X
getmata (newv1 newv2)=X

Replace v1 and v2 with columns from Mata matrix X
getmata (v1 v2)=X, replace

Same as above, and match observations using idvarMata vector

getmata (v1 v2)=X, replace id(idvar)

765

putmata — Put Stata variables into Mata and vice versa 766

Syntax
putmata putlist [if] [in] [, putmata options]

getmata getlist [, getmata options]

putmata options Description

omitmissing omit observations with missing values

view create vectors and matrices as views, not as copies

replace replace existing Mata vectors and matrices

A putlist can be as simple as a list of Stata variable names. See below for details.

getmata options Description

double create Stata variables as doubles
update update existing Stata variables

replace replace existing Stata variables

id(name) match observations with rows based on equal values of variable name
and matrix name; id(varname=vecname) is also allowed

force allow nonconformable matrices; usually, id() is preferable

A getlist can be as simple as a list of Mata vector names. See below for details.

collect is allowed with putmata and getmata; see [U] 11.1.10 Prefix commands.

Definition of putlist for use with putmata:

A putlist is one or more of any of the following:

*
varname

varlist

vecname=varname
matname=(varlist)
matname=([varlist] # [varlist] [...])

Example: putmata *
Creates a vector in Mata for each of the Stata variables in memory. Vectors contain the same data

as Stata variables. Vectors have the same names as the corresponding variables.

Example: putmata mpg weight displ
Creates a vector in Mata for each variable specified. Vectors have the same names as the corre-

sponding variables. In this example, displ is an abbreviation for the variable displacement;
thus the vector will also be named displacement.

Example: putmata mileage=mpg pounds=weight
Creates a vector for each variable specified. Vector names differ from the corresponding variable

names. In this example, vectors will be named mileage and pounds.

Example: putmata y=mpg X=(weight displ)
Creates 𝑁 × 1 Mata vector y equal to Stata variable mpg, and creates 𝑁 × 2 Mata matrix X

containing the values of Stata variables weight and displacement.

putmata — Put Stata variables into Mata and vice versa 767

Example: putmata y=mpg X=(weight displ 1)
Creates𝑁 ×1Mata vector y containing mpg, and creates𝑁 ×3Mata matrixX containing weight,
displacement, and a column of 1s. After typing this example, you could enter Mata and type

invsym(X’X)*X’y to obtain the regression coefficients.

Syntactical elements may be combined. It is valid to type

. putmata mpg foreign X=(weight displ) Z=(foreign 1)

No matter how you specify the putlist, you will need to specify the replace option if some or all vectors
already exist in Mata:

. putmata mpg foreign X=(weight displ) Z=(foreign 1), replace

Definition of getlist for use with getmata:

A getlist is one or more of any of the following:

vecname

varname=vecname
(varname varname . . . varname)=matname
(varname*)=matname

Example: getmata x1 x2
Creates a Stata variable for each Mata vector specified. Variables will have the same names as the

corresponding vectors. Names may not be abbreviated.

Example: getmata myvar1=x1 myvar2=x2
Creates a Stata variable for each Mata vector specified. Variable names will differ from the corre-

sponding vector names.

Example: getmata (firstvar secondvar)=X
Creates one Stata variable corresponding to each column of the Mata matrix specified. In this

case, the matrix has two columns, and corresponding variables will be named firstvar and

secondvar. If the matrix had three columns, then three variable names would need to be specified.

Example: getmata (myvar*)=X
Creates one Stata variable corresponding to each column of the Mata matrix specified. Variables

will be named myvar1, myvar2, etc. The matrix may have any number of columns, even zero!

Syntactical elements may be combined. It is valid to type

. getmata r1 r2 final=r3 (rplus*)=X

No matter how you specify the getlist, you will need to specify the replace or update option if some
or all variables already exist in Stata:

. getmata r1 r2 final=r3 (rplus*)=X, replace

Options for putmata
omitmissing specifies that observations containing a missing value in any of the numeric variables

specified be omitted from the vectors and matrices created in Mata. In

. putmata y=mpg X=(weight displ 1), omitmissing

rows would be omitted from y and X in which the corresponding observation contained missing in
any of mpg, weight, or displ. In this case, specifying omitmissing would be equivalent to typing

putmata — Put Stata variables into Mata and vice versa 768

. putmata y=mpg X=(weight displ 1) if !missing(mpg) & !missing(weight) ///
& !missing(displ)

All vectors and matrices created by a single putmata command will have the same number of rows
(observations). That is true whether you specify if, in, or the omitmissing option.

view specifies that putmata create views rather than copies of the Stata data in the Mata vectors and

matrices. Views require less memory than copies and offer the advantage (and disadvantage) that

changes in the Stata data are immediately reflected in the Mata vectors and matrices, and vice versa.

If you specify numeric constants using the matname=(...) syntax, matname is created as a copy

even if the view option is specified. Other vectors and matrices created by the command, however,
would be views.

Use of the view option with putmata often obviates the need to use getmata to import results back
into Stata.

Warning 1: Mata records views as “this vector is a view onto variable 3, observations 2 through 5 and

7”. If you change the order of the variables, the order of the observations, or drop variables once the

views are created, then the contents of the views will change.

Warning 2: When assigning values in Mata to view vectors, code

v[] = ...

not v =

To have changes reflected in the underlying Stata data, you must update the elements of the view v,
not redefine it. To update all the elements of v, you literally code v[.]. In the matrix case, you code
X[.,.].

replace specifies that existing Mata vectors or matrices be replaced should that be necessary.

Options for getmata
double specifies that Stata numeric variables be created as doubles. The default is that they be created

as floats. Actually, variables start out as floats or doubles, but then they are compressed (see
[D] compress).

update and replace are alternatives. They have the same meaning unless the id() or force option is
specified.

When id() or force is not specified, both replace and update specify that it is okay to replace the
values in existing Stata variables. By default, vectors can be posted to new Stata variables only.

When id() or force is specified, replace and update allow posting of values of existing variables,

just as usual. The options differ in how the posting is performedwhen the id() or force option causes
only a subset of the observations of the variables to be updated. update specifies that the remaining
values be left as they are. replace specifies that the remaining values be set to missing, just as if the
existing variable(s) were being created for the first time.

id(name) and id(varname=vecname) specify how the rows in the Mata vectors and matrices match the

observations in the Stata data. Observation 𝑖matches row 𝑗 if variable name[𝑖] equals vector name[𝑗],
or in the second syntax, if varname[𝑖] = vecname[𝑗]. The ID variable (vector) must contain values

that uniquely identify the observations (rows). Only in observations that contain matching values will

the variable be modified. Values in observations that have no match will not be modified or will be

set to missing, as appropriate; values in the ID vector that have no match will be ignored.

putmata — Put Stata variables into Mata and vice versa 769

Example: You wish to run a regression of y on x1 and x2 on the males in the data and use that result to
obtain the fitted values for the males. Stata already has commands that will do this, namely, regress
y x1 x2 if male followed by predict yhat if male. For instructional purposes, let’s say you wish
to do this in Mata. You type

. putmata myid y X=(x1 x2 1) if male

. mata
: b = invsym(X’X)*X’y
: yhat = X*b
: end
. getmata yhat, id(myid)

The new Stata variable yhat will contain the predicted values for males and missing values for the
females. If the yhat variable already existed, you would type

. getmata yhat, id(myid) replace

or

. getmata yhat, id(myid) update

The replace option would set the female observations to missing. The update option would leave
the female observations unchanged.

If you do not have an identification variable, create one first by typing generate myid = n.

force specifies that it is okay to post vectors and matrices with fewer or with more rows than the number
of observations in the data. The force option is an alternative to id(), and usually, id() is the

appropriate choice.

If you specify force and if there are fewer rows in the vectors and matrices than observations in the
data, new variables will be padded with missing values. If there are more rows than observations,

observations will be added to the data and previously existing variables will be padded with missing

values.

Remarks and examples
Remarks are presented under the following headings:

Use of putmata
Use of putmata and getmata
Using putmata and getmata on subsets of observations
Using views
Constructing do-files

Use of putmata
In this example, we will use Mata to make a calculation and report the result, but we will not post

results back to Stata. We will use putmata but not getmata.

Consider solving for b the set of linear equations

y = Xb (1)

where y: 𝑁 × 1, X: 𝑁 × 𝑘, and b: 𝑘 × 1. If 𝑁 = 𝑘, then y = Xb amounts to solving 𝑘 equations for 𝑘
unknowns, and the solution is

b = X−1y (2)
That solution is obtained by premultiplying both sides of (1) by X−1.

putmata — Put Stata variables into Mata and vice versa 770

When 𝑁 > 𝑘, (2) can be used to obtain least-square results if matrix inversion is appropriately de-
fined. Assume that you wish to demonstrate this when matrix inversion is defined as the Moore–Penrose

generalized inverse for nonsquare matrices. The demonstration can be obtained by typing

. sysuse auto, clear

. regress mpg weight displacement

. putmata y=mpg X=(weight displacement 1)

. mata
: pinv(X)*y
: end
. _

The Mata expression pinv(X)*y will display a 3× 1 column vector. The elements of the vector will

equal the coefficients reported by regress mpg weight displacement.

For your information, theMoore–Penrose inverse of rectangularmatrixX: 𝑁×𝑘 is a 𝑘×𝑁 rectangular

matrix. Among other properties, pinv(X)*X = I, where I is the 𝑘 × 𝑘 identity matrix. You can

demonstrate that using Mata, too:

. mata: pinv(X)*X

Use of putmata and getmata
In this example, we will use Mata to calculate a result that we wish to post back to Stata. We will use

both putmata and getmata.

Some problems are more easily solved in Mata than in Stata. For instance, say that you need to create

new Stata variable D from existing variable C, defined as

D[𝑖] = sum(C[𝑗] − C[𝑖]) for all C[𝑗] > C[𝑖]

where 𝑖 and 𝑗 index observations.
This problem can be solved in Stata, but the solution is elusive to most people. The solution is more

natural in Mata because the Mata solution corresponds almost letter for letter with the mathematical

statement of the problem. If C and D were Mata vectors rather than Stata variables, the solution would be

D = J(rows(C), 1, 0)
for (i=1; i<=rows(C); i++) {

for (j=1; j<=rows(C); j++) {
if (C[j]>C[i]) D[i] = D[i] + (C[j] - C[i])

}
}

The most difficult part of this solution to understand is the first line, D = J(rows(C), 1, 0), and
that is because you may not be familiar with Mata’s J() function. D = J(rows(C), 1, 0) creates a

rows(C) × 1 column vector of 0s. The arguments of J() are in just that order.

C and D are not vectors in Mata, or at least they are not yet. Using getmata, we can create vector C
from variable C and run our Mata solution. Then using putmata, we can post Mata vector D back to new
Stata variable D. The solution includes these three steps, also shown in the do-file below:

(1) In Stata, use putmata to create vector C in Mata equal to variable C in Stata: putmata C.

(2) Use Mata to solve the problem, creating new Mata vector D.

(3) In Stata again, use getmata to create new variable D equal to Mata vector D.

putmata — Put Stata variables into Mata and vice versa 771

Because of the typing involved in the solution, we would package the code in a do-file:

begin myfile.do
use mydata, clear
putmata C (1)

mata: (2)
D = J(rows(C), 1, 0)
for (i=1; i<=rows(C); i++) {

for (j=1; j<=rows(C); j++) {
if (C[j]>C[i]) D[i] = D[i] + (C[j] - C[i])

}
}
end
getmata D (3)
save mydata, replace

end myfile.do

With myfile.do now in place, in Stata we would type

. do myfile

Notes:

(1) Our program might be better if we changed putmata C to read putmata C, replace and if we
changed getmata D to read getmata D, replace. As things are right now, typing do myfile
works, but if we were then to run it a second time, it would not work. Stata would encounter the

putmata command and issue an error that matrix C already exists. Even if Stata got through
that, it would encounter the getmata command and issue an error that variable D already exists.
Perhaps that is an advantage. You cannot run myfile.do again without dropping matrix C and
variable D. If you consider that a disadvantage, however, include the replace option.

(2) In our solution, we entered Mata by typing mata:, which is to say, mata with a colon. Inter-
actively, we usually enter Mata by just typing mata. The colon affects how Mata treats errors.

When working interactively, we want Mata to note errors but then to continue running so we

can correct ourselves. In do-files, we want Mata to note the error and stop. That is the differ-

ence between mata without the colon and mata with the colon. Remember to use mata: when

writing do-files.

(3) Rather than specify the replace option, you could modify the do-file to drop any preexisting
Mata vector C and any preexisting variable D. To drop vector C, in Mata you can type mata
drop C, or in Stata, you can type mata: mata drop C. To drop variable D, in Stata you can type
drop D. You must worry that the variables do not exist, so in your do-file, you would code

capture mata: mata drop C
capture drop D

Rather than dropping vector C, you might prefer just to clear Mata:

clear mata

Using putmata and getmata on subsets of observations
putmata can be used to create Mata vectors that contain a subset of the observations in the Stata data,

and getmata can be used to fetch such vectors back into Stata. Thus you can work with only the males
or only outcomes in which failures are observed, and so on. Below we work with only the observations

in which C does not contain missing values.

putmata — Put Stata variables into Mata and vice versa 772

In the create-variable-D-from-C example above, we assumed that there were no missing values in C,
or at least we did not consider the issue. It turns out that our code produces several missing values in the

presence of just one missing value in C. Perhaps, if there are missing values, we want to exclude them
from our calculation. We could complicate our Mata code to handle that. We could modify our Mata

code to read

use mydata, clear
putmata C
D = J(rows(C), 1, 0)
for (i=1; i<=rows(C); i++) {

if (C[i]>=.) D[i] = . // new
else for (j=1; j<=rows(C); j++) {

if (C[j]<.) { // new
if (C[j]>C[i]) D[i] = D[i] + (C[j] - C[i])

}
}

}
end
getmata D
save mydata, replace

Easier, however, is simply to restrict Mata vector C to the nonmissing elements of Stata variable C,
which we could do by replacing putmata C with

putmata C if !missing(C)

or, equivalently,

putmata C, omitmissing

Whichever way we coded it, if the data contained 100 observations and variable C contained 82 non-
missing values, newMata vector Cwould contain 82 rows rather than 100. The observations correspond-
ing to missing(C) would be omitted from the vector, and that means we could run our original Mata

solution without modification.

There is, however, an issue. At the end of our code when we post the Mata solution vector D to

Stata variable D—getmata D—we will need to specify which of the 100 observations are to receive the

82 results stored in the vector. getmata has an option to handle this situation—id(varname), where
varname is the name of an identification variable.

An identification variable is a variable that takes on different values for each observation in the data.

The values could be 1, 2, . . . , 100; or they could be 1.25, −2, . . . , 16.5; or they could be Nick, Bill, . . . ,

Mary. The values can be numeric or string, and they need not be in order. All that is important is that the

variable contain a unique (different) value in each observation. Possibly, the data already contain such a

variable. If not, you can create one by typing

generate fid = _n

When we use putmata to create vector C, we will need simultaneously to create vector fid containing
the selected values of variable fid, which we can do by adding fid to the putlist:

putmata fid C if !missing(C)

The above command creates two vectors in Mata: fid and C. When we post the resulting vector D
back to Stata, we will specify the id(fid) option to indicate into which observations getmata is to post
the results:

getmata D, id(fid)

putmata — Put Stata variables into Mata and vice versa 773

The id(fid) option is taken to mean that there exists a variable named fid and a vector named fid.
It is by comparing the values in each that getmata determines how the rows of the vectors correspond

to the observations of the data.

The entire solution is

begin myfile.do
use mydata, clear
putmata fid C if !missing(C) // new: we put fid & add if !missing(C)
mata:
D = J(rows(C), 1, 0)
for (i=1; i<=rows(C); i++) {

for (j=1; j<=rows(C); j++) {
if (C[j]>C[i]) D[i] = D[i] + (C[j] - C[i])

}
}
end
getmata D, id(fid) // new: we add option id(fid)
save mydata, replace

end myfile.do

The above code will run on data with or without missing values. New variable D will be missing in
observations where C is missing, but D will otherwise contain nonmissing values.

Using views
When you type or code putmata C, vector C is created as a copy of the Stata data. The variable and

the vector are separate things. An alternative is to make the Mata vector a view onto the Stata variable.

By that, we mean that both the variable and the vector share the same recording of the values. Views

save memory but are slightly less efficient in terms of execution time. Views have other advantages and

disadvantages, too.

For instance, if you type putmata mpg and then, in Mata, type mpg[1]=20, you will change not only
the Mata vector but also the Stata data! Or if, after typing putmata mpg, you typed replace mpg = 20
in 1, that would modify both the data and the Mata vector! This is an advantage if you are fixing real

errors and a disadvantage if you intend to do something else.

If in the middle of your Mata session where you are working with views you take a break and return to

Stata, it is important that you do not modify the Stata data in certain ways. Rather than recording copies

of the data, views record notes about the mapping. Aviewmight record that this Mata vector corresponds

to variable 3, observations 2 through 20 and 39. If you change the sort order of the data, the view will

still be working with observations 2 through 20 and 39 even though those physical observations now

contain different data. If you drop the first or second variable, the view will still be working with the

third variable even though that will now be a different variable!

The memory savings offered by views are considerable, at least when working with large datasets.

Say that you have a dataset containing 200 variables and 1,000,000 observations. Your data might be

1 GB in size. Even so, typing putmata *, view, and thus creating 200 vectors each with 1,000,000 rows,
would consume only a few dozen kilobytes of memory.

putmata — Put Stata variables into Mata and vice versa 774

All the examples shown above work equally well with copies or views. We have been working with

copies, but in the previous example, where we coded

putmata fid C if !missing(C)

we could switch to working with views by coding

putmata fid C if !missing(C), view

With that one change, our code would still work and it would use less memory.

With that one change, we would still not be working with views everywhere we could, however.

Vector D—the vector we create in Mata and then post back to Stata—would still be a regular vector. We

can save additional memory by making D a view, too. Before we do that, let us warn you that we do not
recommend doing this unless the memory savings is vitally important. The result, when complete, will

be elegant and memory efficient, but the extra memory savings is seldom worth the debugging effort.

No extra changes are required to your code when the vectors you make into views contain values that

are not modified in the code. Vector C is such a vector. We use the values stored in C, but we do not
change them. Vector D, on the other hand, is a vector in which we change values. It is usually easier if
you do not convert such vectors into views.

With that proviso, we are going to make D into a view, too, and in the process, we will drop the use
of fid altogether:

begin myfile.do
use mydata, clear
generate D = . // new
putmata C D if !missing(C), view // changed
mata:
D[.] = J(rows(C), 1, 0) // changed
for (i=1; i<=rows(C); i++) {

for (j=1; j<=rows(C); j++) {
if (C[j]>C[i]) D[i] = D[i] + (C[j] - C[i])

}
}
end

// we drop the getmata
save mydata, replace

end myfile.do

In this solution, we create new Stata variable D at the outset, and then we modify the putmata com-
mand to create view vectors for both C and D. Our code, which stores results in vector D, now simulta-

neously posts to variable D when we store results in vector D, so we can omit the getmata D at the end
because results are already posted! Moreover, we no longer have to concern ourselves with matching ob-

servations to rows via fid. Rows of D now automatically align themselves with the selected observations

in variable D by the mere fact of D being a view.

The beginning of our Mata code has an important change, however. We change

D = J(rows(C), 1, 0)

to

D[.] = J(rows(C), 1, 0)

putmata — Put Stata variables into Mata and vice versa 775

That change is very important. What we coded previously created vector D. What we now code

changes the values stored in existing vector D. If we left what we coded previously,Matawould discard the

view currently stored in D and create a new D—a regular Mata vector unconnected to Stata—containing

0s.

Constructing do-files
putmata and getmata can be used interactively, but if you have much Mata code between the put

and the get, you will be better off using a do-file because do-files can be easily edited when they have a

mistake in them. We recommend the following outline for such do-files:

begin outline.do
version 19.5 (1)

mata clear (2)

// Stata code for setup goes here (3)

putmata ... (4)

mata:
// Mata code goes here (5)
end
getmata (6)

mata clear (7)
end outline.do

Notes on do-file steps:

(1) A do-file should always start with a version statement; it ensures that the do-file continues to
work in the years to come as new versions of Stata are released. See [P] version.

(2) The do-file should not depend on Mata having certain vectors, matrices, or programs already

loaded and set up because if you attempt to run the do-file again later, what you assumed may

not be true. A do-file should be self-contained. To ensure that is true the first time we write and

run the do-file and to ensure on subsequent runs that nothing lying around in Mata gets in our

way, we clear Mata.

(3) Youmay need to sort your data, create extra variables that your do-file will use, or drop variables

that you are assuming do not already exist. In the last iteration of myfile.do, we needed to
generate D = ., and it would not have been a bad idea to capture drop D before we did that.
Our example did not depend on the sort order of the data, but if it had, we would have included

the sort even if we were certain that the data would already be in the right order.

(4) Put the putmata command here. If putmata includes the omitmissing option, then put every-
thing you need to put in a single putmata command. Otherwise, you can use multiple putmata
commands if you find that more convenient. If you use multiple putmata commands, be sure
to include the same if expression and in range qualifiers on each one.

(5) The Mata code goes here. Note that we type mata: (mata with a colon) to enter Mata. mata:
ensures that errors stop Mata and thus our do-file.

(6) The getmata command goes here if you need it. Be sure to include getmata’s id(name) or
id(vecname=varname) option if, on the putmata command in step 4, you included the if
expression qualifier or the in range qualifier or the omitmissing option. If you include id(),
be sure you included the ID variable in the putmata command in step 4.

(7) We conclude by clearingMata again to avoid leaving memory allocated needlessly and to avoid

causing problems for poorly written do-files that we might subsequently run.

putmata — Put Stata variables into Mata and vice versa 776

putmata and getmata are designed to work interactively and in do-files. The commands are not

designed to work with ado-files. An ado-file is something like a do-file, but it defines a program that

implements a new command of Stata, and well-written ado-files do not use globals such as the global

vectors and matrices that putmata creates. Ado-files use local variables. Ado-file programmers should
use the Mata functions st data() and st view() (see [M-5] st data() and [M-5] st view()) to create

vectors and matrices, and if necessary, use st store() (see [M-5] st store()) to post the contents of

those vectors and matrices back to Stata.

Stored results
putmata stores the following in r():

Scalars

r(N) number of rows in created vectors and matrices

r(K views) number of vectors and matrices created as views

r(K copies) number of vectors and matrices created as copies

The total number of vectors and matrices created is r(K views) + r(K copies).

r(N)=. if r(K views) + r(K copies) = 0. r(N)=0 means that zero-observation vectors and matrices were created,
which is to say, vectors and matrices dimensioned 0 × 1 and 0 × k.

getmata stores the following in r():

Scalars

r(K new) number of new variables created

r(K existing) number of existing variables modified

The total number of variables modified is r(K new) + r(K existing).

Reference
Gould, W. W. 2010. Mata Matters: Stata in Mata. Stata Journal 10: 125–142.

Also see
[M-4] Stata — Stata interface functions

[M-5] st data() — Load copy of current Stata dataset

[M-5] st store() — Modify values stored in current Stata dataset

[M-5] st view() — Make matrix that is a view onto current Stata dataset

https://www.stata-journal.com/article.html?article=pr0050

range — Generate numerical range

Description Quick start Menu Syntax
Remarks and examples Also see

Description
range generates a numerical range, which is useful for evaluating and graphing functions.

Quick start
Generate newv1 that ranges from 0 to 𝜋

range newv1 0 _pi

Same as above, but only for the first 50 observations in the dataset

range newv1 0 _pi 50

Generate newv2 that ranges from the minimum to the maximum of v2 after summarize
range newv2 r(min) r(max)

Menu
Data > Create or change data > Other variable-creation commands > Generate numerical range

Syntax
range varname #first #last [#obs]

Remarks and examples
range constructs the variable varname, taking on values #first to #last, inclusive, over #obs. If #obs is

not specified, the number of observations in the current dataset is used.

range can be used to produce increasing sequences, such as

. range x 0 12.56 100

or it can be used to produce decreasing sequences:

. range z 100 1

777

range — Generate numerical range 778

Example 1
To graph 𝑦 = 𝑒−𝑥/6sin(𝑥) over the interval [0, 12.56], we can type

. range x 0 12.56 100
Number of observations (_N) was 0, now 100.
. generate y = exp(-x/6)*sin(x)
. scatter y x, yline(0) ytitle(y = exp(-x/6) sin(x))

-.5

0

.5

1

y
=

 e
xp

(-
x/

6)
 s

in
(x

)

0 5 10 15
x

range — Generate numerical range 779

Example 2
Stata is not limited solely to graphing functions—it can draw parameterized curves as well. For

instance, consider the curve given by the polar coordinate relation 𝑟 = 2 sin(2𝜃). The conversion of
polar coordinates to parameterized form is (𝑦, 𝑥) = (𝑟 sin 𝜃, 𝑟 cos 𝜃), so we can type

. clear

. range theta 0 2*_pi 400
Number of observations (_N) was 0, now 400.
. generate r = 2*sin(2*theta)
. generate y = r*sin(theta)
. generate x = r*cos(theta)
. line y x, c(l) m(i) yline(0) xline(0) aspectratio(1)

-2

-1

0

1

2

y

-2 -1 0 1 2
x

Also see
[D] egen — Extensions to generate

[D] obs — Increase the number of observations in a dataset

recast — Change storage type of variable

Description Quick start Syntax Option
Remarks and examples Also see

Description
recast changes the storage type of variables.

Quick start
Recast numeric variable v1 to type double from any other numeric type

recast double v1

Recast string variable v2 to str30 from any length less than 30

recast str30 v2

Same as above, but for length longer than 30

recast str30 v2, force

Syntax
recast type varlist [, force]

Variables in varlist are changed to type, where type is byte, int, long, float, double, str1, str2, . . . , str2045, or strL.
Alias variables in varlist are changed to type copies of the linked variables.

Option
force makes recast unsafe by causing the variables to be given the new storage type even if that will

cause a loss of precision, introduction of missing values, or, for string variables, the truncation of

strings.

force should be used with caution. force is for those instances where you have a variable saved as
a double but would now be satisfied to have the variable stored as a float, even though that would
lead to a slight rounding of its values.

Remarks and examples
See [U] 12Data for a description of storage types. Also see [D] compress, [D] destring, and [D] fruna-

lias for alternatives to recast.

Note that recast is not a command to change, or to map, string variables to numeric variables or

numeric variables to string variables. For that, one of encode, decode, destring, or tostring is

likely to be appropriate.

780

recast — Change storage type of variable 781

Example 1
recast refuses to change a variable’s type if that change is inappropriate for the values actually stored,

so it is always safe to try:

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. describe headroom
Variable Storage Display Value

name type format label Variable label

headroom float %6.1f Headroom (in.)
. recast int headroom
headroom: 37 values would be changed; not changed

Our attempt to change headroom from a float to an int was ignored—if the change had been made,

37 values would have changed. Here is an example where the type can be changed:

. describe mpg
Variable Storage Display Value

name type format label Variable label

mpg int %8.0g Mileage (mpg)
. recast byte mpg
. describe mpg
Variable Storage Display Value

name type format label Variable label

mpg byte %8.0g Mileage (mpg)

recast works with string variables as well as numeric variables, and it provides all the same protec-
tions:

. describe make
Variable Storage Display Value

name type format label Variable label

make str18 %-18s Make and model
. recast str16 make
make: 2 values would be changed; not changed

recast can be used both to promote and to demote variables:

. recast str20 make

. describe make
Variable Storage Display Value

name type format label Variable label

make str20 %-20s Make and model

recast — Change storage type of variable 782

Also see
[D] compress — Compress data in memory

[D] destring — Convert string variables to numeric variables and vice versa

[D] frunalias — Change storage type of alias variables

[U] 12.2.2 Numeric storage types

[U] 12.4 Strings

recode — Recode categorical variables

Description Quick start Menu Syntax
Options Remarks and examples Acknowledgment Also see

Description
recode changes the values of numeric variables according to the rules specified. Values that do not

meet any of the conditions of the rules are left unchanged, unless an otherwise rule is specified.

A range #1/#2 refers to all (real and integer) values between #1 and #2, including the boundaries #1
and #2. This interpretation of #1/#2 differs from that in numlists.

min and max provide a convenient way to refer to the minimum and maximum for each variable in

varlist and may be used in both the from-value and the to-value parts of the specification. Combined

with if and in, the minimum and maximum are determined over the restricted dataset.

The keyword rules specify transformations for values not changed by the previous rules:

nonmissing all nonmissing values not changed by the rules

missing all missing values (., .a, .b, . . . , .z) not changed by the rules
else all nonmissing and missing values not changed by the rules

* synonym for else

recode provides a convenient way to define value labels for the generated variables during the defini-
tion of the transformation, reducing the risk of inconsistencies between the definition and value labeling

of variables. Value labels may be defined for integer values and for the extended missing values (.a, .b,
. . . , .z), but not for noninteger values or for sysmiss (.).

Although this is not shown in the syntax diagram, the parentheses around the rules and keyword

clauses are optional if you transform only one variable and if you do not define value labels.

Quick start
Recode 3 to 0, 4 to −1, and 5 to −2 in v1, and store result in newv1

recode v1 (3=0) (4=-1) (5=-2), generate(newv1)

Same as above, and recode missing values to 9

recode v1 (3=0) (4=-1) (5=-2) (missing=9), gen(newv1)

Also recode v2 using the same rule and store result in newv2
recode v1 v2 (3=0) (4=-1) (5=-2) (missing=9), gen(newv1 newv2)

Same as above when adding a prefix to the old variable name

recode v1 v2 (3=0) (4=-1) (5=-2) (missing=9), prefix(new)

Recode 3 through 5 to 0 and 1 through 2 to 1, and create value label mylabel
recode v1 (3/5=0 ”Value 0”) (1/2=1 ”Value 1”), gen(newv1) ///

label(mylabel)

Same as above, but set all other values to 9 and label them “Invalid”

recode v1 (3/5=0 ”Value 0”) (1/2=1 ”Value 1”) ///
(else=9 ”Invalid”), gen(newv1) label(mylabel)

783

recode — Recode categorical variables 784

Menu
Data > Create or change data > Other variable-transformation commands > Recode categorical variable

Syntax
Basic syntax

recode varlist (rule) [(rule) ...] [, generate(newvar)]

Full syntax

recode varlist (erule) [(erule) ...] [if] [in] [, options]

where the most common forms for rule are

rule Example Meaning

= # 3 = 1 3 recoded to 1

= # 2 . = 9 2 and . recoded to 9

#/# = # 1/5 = 4 1 through 5 recoded to 4

nonmissing = # nonmiss = 8 all other nonmissing to 8

missing = # miss = 9 all other missings to 9

where erule has the form

element [element ...] = el [”label”]
nonmissing = el [”label”]
missing = el [”label”]
else | * = el [”label”]

element has the form

el | el/el
and el is

| min | max
The keyword rules missing, nonmissing, and else must be the last rules specified. else may not be

combined with missing or nonmissing.

options Description

Options

generate(newvar) generate newvar containing transformed variables; default is to replace
existing variables

prefix(str) generate new variables with str prefix

label(name) specify a name for the value label defined by the transformation rules

copyrest copy out-of-sample values from original variables

test test that rules are invoked and do not overlap

recode does not allow alias variables; see [D] frunalias for advice on how to get around this restriction.

recode — Recode categorical variables 785

Options

� � �
Options �

generate(newvar) specifies the names of the variables that will contain the transformed variables.

into() is a synonym for generate(). Values outside the range implied by if or in are set to

missing (.), unless the copyrest option is specified.

If generate() is not specified, the input variables are overwritten; values outside the if or in range
are not modified. Overwriting variables is dangerous (you cannot undo changes, value labels may be

wrong, etc.), so we strongly recommend specifying generate().

prefix(str) specifies that the recoded variables be returned in new variables formed by prefixing the

names of the original variables with str.

label(name) specifies a name for the value label defined from the transformation rules. label() may
be defined only with generate() (or its synonym, into()) and prefix(). If a variable is recoded,
the label name defaults to newvar unless a label with that name already exists.

copyrest specifies that out-of-sample values be copied from the original variables. In line with other

data management commands, recode defaults to setting newvar to missing (.) outside the observa-
tions selected by if exp and in range.

test specifies that Stata test whether rules are ever invoked or that rules overlap; for example, (1/5=1)
(3=2).

Remarks and examples
Remarks are presented under the following headings:

Simple examples
Setting up value labels with recode
Referring to the minimum and maximum in rules
Recoding missing values
Recoding subsets of the data
Otherwise rules
Test for overlapping rules
Video example

Simple examples
Many users experienced with other statistical software use the recode command often, but easier

and faster solutions in Stata are available. On the other hand, recode often provides simple ways to

manipulate variables that are not easily accomplished otherwise. Therefore, we show other ways to

perform a series of tasks with and without recode.

We want to change 1 to 2, leave all other values unchanged, and store the results in the new variable nx.

. recode x (1 = 2), gen(nx)

or

. generate nx = x

. replace nx = 2 if nx==1

or

. generate nx = cond(x==1,2,x)

recode — Recode categorical variables 786

We want to swap 1 and 2, saving them in nx.

. recode x (1 = 2) (2 = 1), gen(nx)

or

. generate nx = cond(x==1,2,cond(x==2,1,x))

We want to recode item by collapsing 1 and 2 into 1, 3 into 2, and 4 to 7 (boundaries included) into 3.

. recode item (1 2 = 1) (3 = 2) (4/7 = 3), gen(Ritem)

or

. generate Ritem = item

. replace Ritem = 1 if inlist(item,1,2)

. replace Ritem = 2 if item==3

. replace Ritem = 3 if inrange(item,4,7)

We want to change the “direction” of the 1, . . . , 5 valued variables x1, x2, x3, storing the transformed
variables in nx1, nx2, and nx3 (that is, we form new variable names by prefixing old variable names

with an “n”).

. recode x1 x2 x3 (1=5) (2=4) (3=3) (4=2) (5=1), pre(n) test

or

. generate nx1 = 6-x1

. generate nx2 = 6-x2

. generate nx3 = 6-x3

. forvalues i = 1/3 {
generate nx‘i’ = 6-x‘i’

}

In the categorical variable religion, we want to change 1, 3, and the real and integer numbers 3 through
5 into 6; we want to set 2, 8, and 10 to 3 and leave all other values unchanged.

. recode religion 1 3/5 = 6 2 8 10 = 3

or

. replace religion = 6 if religion==1 | inrange(religion,3,5)

. replace religion = 3 if inlist(religion,2,8,10)

This example illustrates two features of recode that were included for backward compatibility with
previous versions of recode but that we do not recommend. First, we omitted the parentheses around the
rules. This is allowed if you recode one variable and you do not plan to define value labels with recode
(see below for an explanation of this feature). Personally, we find the syntax without parentheses hard to

read, although we admit that we could have used blanks more sensibly. Because difficulties in reading

may cause us to overlook errors, we recommend always including parentheses. Second, because we

did not specify a generate() option, we overwrite the religion variable. This is often dangerous,

especially for “original” variables in a dataset. We recommend that you always specify generate()
unless you want to overwrite your data.

recode — Recode categorical variables 787

Setting up value labels with recode
The recode command is most often used to transform categorical variables, which are many times

value labeled. When a value-labeled variable is overwritten by recode, it may well be that the value label
is no longer appropriate. Consequently, output that is labeled using these value labels may be misleading

or wrong.

When recode creates one or more new variables with a new classification, you may want to put value

labels on these new variables. It is possible to do this in three steps:

1. Create the new variables (recode . . ., gen()).

2. Define the value label (label define . . .).

3. Link the value label to the variables (label value . . .).

Inconsistencies may emerge from mistakes between steps 1 and 2. Especially when you make a

change to the recode 1, it is easy to forget to make a similar adjustment to the value label 2. Therefore,

recode can perform steps 2 and 3 itself.

Consider recoding a series of items with values

1 = strongly agree

2 = agree

3 = neutral

4 = disagree

5 = strongly disagree

into three items:

1 = positive (= “strongly agree” or “agree”)

2 = neutral

3 = negative (= “strongly disagree” or “disagree”)

This is accomplished by typing

. recode item* (1 2 = 1 positive) (3 = 2 neutral) (4 5 = 3 negative), pre(R)
> label(Item3)

which is much simpler and safer than

. recode item1-item7 (1 2 = 1) (3 = 2) (4 5 = 3), pre(R)

. label define Item3 1 positive 2 neutral 3 negative

. forvalues i = 1/7 {
label value Ritem‘i’ Item3

}

Example 1
As another example, let’s recode vote (voting intentions) for 12 political parties in the Dutch parlia-

ment into left, center, and right parties. We then tabulate the original and new variables so that we can

check that everything came out correctly.

recode — Recode categorical variables 788

. use https://www.stata-press.com/data/r19/recodexmpl

. label list pparty
pparty:

1 pvda
2 cda
3 d66
4 vvd
5 groenlinks
6 sgp
7 rpf
8 gpv
9 aov

10 unie55
11 sp
12 cd

. recode polpref (1 5 11 = 1 left) (2 3 = 2 center) (4 6/10 12 = 3 right),
> gen(polpref3)
(2,020 differences between polpref and polpref3)
. tabulate polpref polpref3
pol party RECODE of polpref (pol party
choice if choice if elections)
elections left center right Total

pvda 622 0 0 622
cda 0 525 0 525
d66 0 634 0 634
vvd 0 0 930 930

groenlinks 199 0 0 199
sgp 0 0 54 54
rpf 0 0 63 63
gpv 0 0 30 30
aov 0 0 17 17

unie55 0 0 23 23
sp 45 0 0 45
cd 0 0 25 25

Total 866 1,159 1,142 3,167

Referring to the minimum and maximum in rules
recode allows you to refer to the minimum and maximum of a variable in the transformation rules.

The keywords min and max may be included as a from-value, as well as a to-value.

For example, we might divide age into age categories, storing in iage.
. recode age (0/9=1) (10/19=2) (20/29=3) (30/39=4) (40/49=5) (50/max=6),
> gen(iage)

or

. generate iage = 1 + irecode(age,9,19,29,39,49)

or

. generate iage = min(6, 1+int(age/10))

As another example, we could set all incomes less than 10,000 to 10,000 and those more than 200,000

to 200,000, storing the data in ninc.

recode — Recode categorical variables 789

. recode inc (min/10000 = 10000) (200000/max = 200000), gen(ninc)

or

. generate ninc = inc

. replace ninc = 10000 if ninc<10000

. replace ninc = 200000 if ninc>200000 & !missing(ninc)

or

. generate ninc = max(min(inc,200000),10000)

or

. generate ninc = clip(inc,10000,200000)

Recoding missing values
You can also set up rules in terms of missing values, either as from-values or as to-values. Here

recode mimics the functionality of mvdecode and mvencode (see [D] mvencode), although these spe-

cialized commands execute much faster.

Say that we want to change missing (.) to 9, storing the data in X:
. recode x (.=9), gen(X)

or

. generate X = cond(x==., 9, x)

or

. mvencode x, mv(.=9) gen(X)

We want to change 9 to .a and 8 to ., storing the data in z.

. recode x (9=.a) (8=.), gen(z)

or

. generate z = cond(x==9, .a, cond(x==8, ., x))

or

. mvdecode x, mv(9=.a, 8=.) gen(z)

Recoding subsets of the data
We want to swap in x the values 1 and 2 only for those observations for which age>40, leaving all

other values unchanged. We issue the command

. recode x (1=2) (2=1) if age>40, gen(y)

or

. generate y = cond(x==1,2,cond(x==2,1,x)) if age>40

We are in for a surprise. y is missing for observations that do not satisfy the if condition. This

outcome is in accordance with how Stata’s data manipulation commands usually work. However, it

may not be what you intend. The copyrest option specifies that x be copied into y for all nonselected
observations:

recode — Recode categorical variables 790

. recode x (1=2) (2=1) if age>40, gen(y) copy

or

. generate y = x

. recode y (1=2) (2=1) if age>40

or

. generate y = cond(age>40,cond(x==1,2,cond(x==2,1,x),x))

Otherwise rules
In all our examples so far, recode had an implicit rule that specified that values that did not meet

the conditions of any of the rules were to be left unchanged. recode also allows you to use an “other-
wise rule” to specify how untransformed values are to be transformed. recode supports three kinds of
otherwise conditions:

nonmissing all nonmissing not yet transformed

missing all missing values not yet transformed

else all values, missing or nonmissing, not yet transformed

The otherwise rules are to be specified after the standard transformation rules. nonmissing and

missing may be combined with each other, but not with else.

Consider a recode that swaps the values 1 and 2, transforms all other nonmissing values to 3, and

transforms all missing values (that is, sysmiss and the extended missing values) to . (sysmiss). We

could type

. recode x (1=2) (2=1) (nonmissing=3) (missing=.), gen(z)

or

. generate z = cond(x==1,2,cond(x==2,1,cond(!missing(x),3),.))

As a variation, if we had decided to recode all extended missing values to .a but to keep sysmiss .
distinct at ., we could have typed

. recode x (1=2) (2=1) (.=.) (nonmissing=3) (missing=.a), gen(z)

Test for overlapping rules
recode evaluates the rules from left to right. Once a value has been transformed, it will not be

transformed again. Thus if rules “overlap”, the first matching rule is applied, and further matches are

ignored. A common form of overlapping is illustrated in the following example:

... (1/5 = 1) (5/10 = 2)

Here 5 occurs in the condition parts of both rules. Because rules are matched left to right, 5 matches the

first rule, and the second rule will not be tested for 5, unless recode is instructed to test for rule overlap
with the test option.

recode — Recode categorical variables 791

Other instances of overlapping rules usually arise because you mistyped the rules. For instance, you

are recoding voting intentions for parties in elections into three groups of parties (left, center, right), and

you type

... (1/5 = 1) ... (3 = 2)

Party 3 matches the conditions 1/5 and 3. Because recode applies the first matching rule, party 3 will
be mapped into party category 1. The second matching rule is ignored. It is not clear what was wrong in

this example. You may have included party 3 in the range 1/5 or mistyped 3 in the second rule. Either

way, recode did not notice the problem and your data analysis is in jeopardy. The test option specifies
that recode display a warning message if values are matched by more than one rule. With the test
option specified, recode also tests whether all rules were applied at least once and displays a warning
message otherwise. Rules that never matched any data may indicate that you mistyped a rule, although

some conditions may not have applied to (a selection of) your data.

Video example
How to create a categorical variable from a continuous variable

Acknowledgment
This version of recode was written by Jeroen Weesie of the Department of Sociology at Utrecht

University, The Netherlands.

Also see
[D] frunalias — Change storage type of alias variables

[D] generate — Create or change contents of variable

[D] mvencode — Change missing values to numeric values and vice versa

https://www.youtube.com/watch?v=XWVaXN2KwmA

rename — Rename variable

Description Quick start Menu Syntax Remarks and examples Also see

Description
rename changes the name of an existing variable old varname to new varname; the contents of the

variable are unchanged. Also see [D] rename group for renaming groups of variables.

Quick start
Change the name of v1 to var1

rename v1 var1

Also change the name of v2 to var2
rename v2 var2

Menu
Data > Data utilities > Rename groups of variables

Syntax
rename old varname new varname

collect is allowed; see [U] 11.1.10 Prefix commands.

Remarks and examples

Example 1
rename allows you to change variable names. Say that we have labor market data for siblings.

. use https://www.stata-press.com/data/r19/renamexmpl

. describe
Contains data from https://www.stata-press.com/data/r19/renamexmpl.dta
Observations: 277

Variables: 6 9 Jan 2024 11:57

Variable Storage Display Value
name type format label Variable label

famid float %9.0g
edu float %9.0g
exp float %9.0g
promo float %9.0g
sex float %9.0g sex
inc float %9.0g

Sorted by: famid

792

rename — Rename variable 793

We decide to rename the exp and inc variables.

. rename exp experience

. rename inc income

. describe
Contains data from https://www.stata-press.com/data/r19/renamexmpl.dta
Observations: 277

Variables: 6 9 Jan 2024 11:57

Variable Storage Display Value
name type format label Variable label

famid float %9.0g
edu float %9.0g
experience float %9.0g
promo float %9.0g
sex float %9.0g sex
income float %9.0g

Sorted by: famid
Note: Dataset has changed since last saved.

The exp variable is now called experience, and the inc variable is now called income.

Also see
[D] rename group — Rename groups of variables

[D] generate — Create or change contents of variable

[D] varmanage — Manage variable labels, formats, and other properties

rename group — Rename groups of variables

Description Quick start
Menu Syntax
Options for renaming variables Options for changing the case of groups of variable names
Remarks and examples Stored results
Also see

Description
rename changes the names of existing variables to the new names specified. See [D] rename for the

base rename syntax. Documented here is the advanced syntax for renaming groups of variables.

Quick start
Change the name of v1 to var1 and v2 to var2

rename (v1 v2) (var1 var2)

Change the name of V1 to v1 and V2 to v2
rename V1 V2, lower

Add suffix old to variables v1, v2, . . . for one or more digits
rename v# =old

Remove suffix old from all variables ending in old
rename *old *

Remove prefix old from all variables beginning with old
rename old* *

Note: A complete list of rules for renaming groups of variables appears below the syntax diagram.

Menu
Data > Data utilities > Rename groups of variables

794

rename group — Rename groups of variables 795

Syntax
Rename a single variable

rename old new [, options1]

Rename groups of variables

rename (old1 old2 . . .) (new1 new2 . . .) [, options1]

Change the case of groups of variable names

rename old1 old2 . . ., { upper | lower | proper } [options2]

where old and new specify the existing and the new variable names. The rules for specifying them are

1. rename stat status: Renames stat to status.

Rule 1: This is the same rename command documented in [D] rename, with which you

are familiar.

2. rename (stat inc) (status income): Renames stat to status and inc to income.

Rule 2: Use parentheses to specify multiple variables for old and new.

3. rename (v1 v2) (v2 v1): Swaps v1 and v2.

Rule 3: Variable names may be interchanged.

4. rename (a b c) (b c a): Swaps names. Renames a to b, b to c, and c to a.

Rule 4: There is no limit to how many names may be interchanged.

5. rename (a b c) (c b a): Renames a to c and c to a, but leaves b as is.

Rule 5: Renaming variables to themselves is allowed.

6. rename jan* *1: Renames all variables starting with jan to instead end with 1, for example,
janstat to stat1, janinc to inc1, etc.

Rule 6.1: * in old selects the variables to be renamed. * means that zero or more characters
go here.

Rule 6.2: * in new corresponds with * in old and stands for the text that * in old matched.

* in new or old is called a wildcard character, or just a wildcard.

rename jan* *: Removes prefix jan.

rename *jan *: Removes suffix jan.

7. rename jan? ?1: Renames all variables starting with jan and ending in one character by re-
moving jan and adding 1 to the end; for example, jans is renamed to s1, but janstat remains
unchanged. ? means that exactly one character goes here, just as * means that zero or more
characters go here.

Rule 7: ? means exactly one character, ?? means exactly two characters, etc.

rename group — Rename groups of variables 796

8. rename *jan* **: Removes prefix, midfix, and suffix jan, for example, janstat to stat,
injanstat to instat, and subjan to sub.

Rule 8: You may specify more than one wildcard in old and in new. They correspond in

the order given.

rename jan*s* *s*1: Renames all variables that start with jan and contain s to instead end
in 1, dropping the jan, for example, janstat to stat1 and janest to est1, but not janinc
to inc1.

9. rename *jan* *: Removes jan and whatever follows from variable names, thereby renaming

statjan to stat, incjan71 to inc,

Rule 9: You may specify more wildcards in old than in new.

10. rename *jan* .*: Removes jan and whatever precedes it from variable names, thereby re-

naming midjaninc to inc,

Rule 10: Wildcard . (dot) in new skips over the corresponding wildcard in old.

11. rename *pop jan=: Adds prefix jan to all variables ending in pop, for example, age1pop to
janage1pop,

rename (status bp time) admit=: Renames status to admitstatus, bp to admitbp, and
time to admittime.

rename whatever pre=: Adds prefix pre to all variables selected by whatever, however what-
ever is specified.

Rule 11: Wildcard = in new specifies the original variable name.

rename whatever =jan: Adds suffix jan to all variables selected by whatever.

rename whatever pre=fix: Adds prefix pre and suffix fix to all variables selected by what-
ever.

12. rename v# stat#: Renames v1 to stat1, v2 to stat2, . . . , v10 to stat10,

Rule 12.1: # is like * but for digits. # in old selects one or more digits.

Rule 12.2: # in new copies the digits just as they appear in the corresponding old.

13. rename v(#) stat(#): Renames v1 to stat1, v2 to stat2, . . . , but does not rename v10,

Rule 13.1: (#) in old selects exactly one digit. Similarly, (##) selects exactly two digits,

and so on, up to ten # symbols.

Rule 13.2: (#) in new means reformat to one or more digits. Similarly, (##) reformats to
two or more digits, and so on, up to ten # symbols.

rename v(##) stat(##): Renames v01 to stat01, v02 to stat02, . . . , v10 to stat10, . . . ,
but does not rename v0, v1, v2, . . . , v9, v100,

rename group — Rename groups of variables 797

14. rename v# v(##): Renames v1 to v01, v2 to v02, . . . , v10 to v10, v11 to v11, . . . , v100 to
v100, v101 to v101,

Rule 14: You may combine #, (#), (##), . . . in old with any of #, (#), (##), . . . in new.

rename v(##) v(#): Renames v01 to v1, v02 to v2, . . . , v10 to v10, . . . , but does not rename
v001, etc.

rename stat(##) stat 20(##): Renames stat10 to stat 2010, stat11 to stat 2011,
. . . , but does not rename stat1, stat2,

rename stat(#) to stat 200(#): Renames stat1 to stat 2001, stat2 to stat 2002,
. . . , but does not rename stat10 or stat 2010.

15. rename v# (a b c): Renames v1 to a, v10 to b, and v2 to c if variables v1, v10, v2 appear
in that order in the data. Because three variables were specified in new, v# in old must select

three variables or rename will issue an error.

Rule 15.1: You may mix syntaxes. Note that the explicit and implied numbers of variables

must agree.

rename v# (a b c), sort: Renames (for instance) v1 to a, v2 to b, and v10 to c.

Rule 15.2: The sort option places the variables selected by old in order and does so smartly.
In the case where #, (#), (##), . . . appear in old, sort places the variables in

numeric order.

rename v* (a b c), sort: Renames (for instance) valpha to a, vbeta to b, and vgamma to
c regardless of the order of the variables in the data.

Rule 15.3: In the case where * or ? appears in old, sort places the variables in alphabetical
order.

16. rename v# v#, renumber: Renames (for instance) v9 to v1, v10 to v2, v8 to v3, . . . , assuming
that variables v9, v10, v8, . . . appear in that order in the data.

Rule 16.1: The renumber option resequences the numbers.

rename v# v#, renumber sort: Renames (for instance) v8 to v1, v9 to v2, v10 to v3,
Concerning option sort, see rule 15.2 above.

rename v# v#, renumber(10) sort: Renames (for instance) v8 to v10, v9 to v11, v10 to

v12,

Rule 16.2: The renumber(#) option allows you to specify the starting value.

17. rename v* v#, renumber: Renames (for instance) valpha to v1, vgamma to v2, vbeta to v3,
. . . , assuming variables valpha, vgamma, vbeta, . . . appear in that order in the data.

Rule 17: # in new may correspond to *, ?, #, (#), (##), . . . in old.

rename v* v#, renumber sort: Renames (for instance) valpha to v1, vbeta to v2, vgamma
to v3, Also see rule 15.3 above concerning the sort option.

rename *stat stat#, renumber: Renames, for instance, janstat to stat1, febstat to

stat2, Note that # in new corresponds to * in old, just as in the previous example.

rename *stat stat(##), renumber: Renames, for instance, janstat to stat01, febstat
to stat02,

rename group — Rename groups of variables 798

rename *stat stat#, renumber(0): Renames, for instance, janstat to stat0, febstat to
stat1,

rename *stat stat#, renumber sort: Renames, for instance, aprstat to stat1, augstat
to stat2,

18. rename (a b c) v#, addnumber: Renames a to v1, b to v2, and c to v3.

Rule 18: The addnumber option allows you to add numbering. More formally, if you spec-

ify addnumber, you may specify one more wildcard in new than is specified in

old, and that extra wildcard must be #, (#), (##),

19. rename a(#)(#) a(#)[2](#)[1]: Renames a12 to a21, a13 to a31, a14 to a41, . . . , a21 to
a12,

Rule 19.1: You may specify explicit subscripts with wildcards in new to make explicit its

matching wildcard in old. Subscripts are specified in square brackets after a wild-

card in new. The number refers to the number of the wildcard in old.

rename *stat* *[2]stat*[1]: Swaps prefixes and suffixes; it renames bpstata to

astatbp, rstater to erstatr, etc.

rename *stat* *[2]stat*: Does the same as above; it swaps prefixes and suffixes.

Rule 19.2: After specifying a subscripted wildcard, subsequent unsubscripted wildcards cor-

respond to the same wildcards in old as they would if you had removed the sub-

scripted wildcards altogether.

rename v#a# v# #[1] a#[2]: Renames v1a1 to v1 1 a1, v1a2 to v1 1 a2, . . . , v2a1 to
v2 2 a1,

Rule 19.3: Using subscripts, you may refer to the same wildcard in old more than once.

Subscripts are commonly used to interchange suffixes at the ends of variable names. For in-

stance, you have districts and schools within them, and many of the variable names in your data

match * # #. The first number records district and the second records school within district.
To reverse the ordering, you type rename * # # * #[3] #[2]. When specifying subscripts,

you refer to them by the position number in the original name. For example, our original name

was * # # so [1] refers to *, [2] refers to the first #, and [3] refers to the last #.

Specifier Meaning in old

* 0 or more characters

? 1 character exactly

1 or more digits

(#) 1 digit exactly

(##) 2 digits exactly

(###) 3 digits exactly

. . .

(##########) 10 digits exactly

rename group — Rename groups of variables 799

May correspond

Specifier in old with Meaning in new

* *, ?, #, (#), . . . copies matched text

? ? copies a character

#, (#), . . . copies a number as is

(#) #, (#), . . . reformats to 1 or more digits

(##) #, (#), . . . reformats to 2 or more digits

. . .

(##########) #, (#), . . . reformats to 10 digits

. *, ?, #, (#), . . . skip

= nothing copies entire variable name

Specifier # in any of its guises may also correspond with * or ? if the renumber option is specified.

options1 Description

addnumber add sequential numbering to end

addnumber(#) addnumber, starting at #
renumber renumber sequentially

renumber(#) renumber, starting at #
sort sort before numbering

dryrun do not rename, but instead produce a report

r store variable names in r() for programming use

These options correspond to the first and second syntaxes.

options2 Description

upper uppercase ASCII letters in variable names (UPPERCASE)

lower lowercase ASCII letters in variable names (lowercase)

proper propercase ASCII letters in variable names (Propercase)

dryrun do not rename, but instead produce a report

r store variable names in r() for programming use

These options correspond to the third syntax. One of upper, lower, or proper must be specified.

Options for renaming variables
addnumber and addnumber(#) specify to add a sequence number to the variable names. See item 18 of

Syntax. If # is not specified, the sequence number begins with 1.

renumber and renumber(#) specify to replace existing numbers or text in a set of variable names with
a sequence number. See items 16 and 17 of Syntax. If # is not specified, the sequence number begins

with 1.

sort specifies that the existing names be placed in order before the renaming is performed. See item 15

of Syntax for details. This ordering matters only when addnumber or renumber is also specified or
when specifying a list of variable names for old or new.

dryrun specifies that the requested renaming not be performed but instead that a table be displayed

showing the old and new variable names. It is often a good idea to specify this option before actually

renaming the variables.

rename group — Rename groups of variables 800

r is a programmer’s option that requests that old and new variable names be stored in r(). This option
may be specified with or without dryrun.

Options for changing the case of groups of variable names
upper, lower, and proper specify how the variables are to be renamed. upper specifies that ASCII

letters in variable names be changed to uppercase; lower, to lowercase; and proper, to having the
first ASCII letter capitalized and the remaining ASCII letters in lowercase. One of these three options

must be specified. Note that these options do not handle Unicode characters beyond the plain ASCII

range. To change Unicode characters in the variable names to uppercase, lowercase, or titlecase, use

functions ustrupper(), ustrlower(), and ustrtitle(). See the technical note in Remarks and
examples.

dryrun and r are the same options as documented directly above.

Remarks and examples
Remarks are presented under the following headings:

Advice
Explanation
* matches 0 or more characters; use ?* to match 1 or more
* is greedy
is greedier

Advice
1. Read [D] rename before reading this entry.

2. Read items 1–19 (the Rules) under Syntax above before reading the rest of these remarks.

3. Specify the dryrun option when using complicated patterns. dryrun presents a table of the
old and new variable names rather than actually renaming the variables, so you can check that

the patterns you have specified produce the desired result.

Explanation
The rename command has three syntaxes; see Syntax. See [D] rename for details on the first syntax,

renaming a single variable. The remaining two syntaxes are for renaming groups of variables and for

changing the case of groups of variables. These two syntaxes are the ones we will focus on for the

remainder of this manual entry. Here they are again:

rename (old1 old2 . . .) (new1 new2 . . .)

rename old1 old2 . . ., { upper | lower | proper }

The second syntax shown above merely changes the case of variables, such as MPG or mpg or Mpg. For
instance, to rename all variables to be lowercase, type

rename *, lower

rename group — Rename groups of variables 801

The first syntax shown above is more daunting and more powerful. The first syntax has two styles,

with and without parentheses:

rename (bp 0 bp 1) (bp 1 bp 0)

rename pop*80 pop * 1980

You can combine the two styles whenever it is convenient.

rename v* (mpg weight displacement)

rename (mpg weight displacement) v#, addnumber

rename (bp 0 bp 1 pop*80) (bp 1 bp 0 pop * 1980)

We summarize all of this by simply writing the syntax as

rename old new, ...

and referring to old and new.

Wildcards play different but related roles in old and new. When you type

rename pop*80 pop * 1980

the wildcard (* in this case) in old specifies which variables are to be renamed, and in new the wildcard

stands for the text that appears in the variables to be renamed. In this case, there is just one wildcard, but

sometimes there are more.

In old, * means zero or more characters go here. Specifying pop*80 means find all variables that

begin with pop and end in 80. Say that doing so results in three variables being found: poplt2080,
pop204080, and pop41plus80. To understand how * is interpreted in new, it is useful to write the three
found variables like this:

pop*80 = pop + * + 80
poplt2080 = pop + lt20 + 80
pop204080 = pop + 2040 + 80

pop41plus80 = pop + 41plus + 80

* in new refers to what was found by * in old. So the new pattern pop * 1980 will assemble the
following new variable names for each of the old names:

old variable * is → pop * 1980 is
poplt2080 lt20 → pop lt20 1980
pop204080 2040 → pop 2040 1980

pop41plus80 41plus → pop 41plus 1980

Thus typing rename pop*80 pop * 1980 is equivalent to typing

rename poplt2080 pop_lt20_1980

rename pop204080 pop_2040_1980

rename pop41plus80 pop_41plus_1980

rename group — Rename groups of variables 802

There are three basic wildcard characters for specification in old, and they filter the variables to be

renamed:

* 0 or more characters go here

? exactly 1 character goes here

number goes here (this one comes in 11 flavors!)

The generic # listed above collects all the digits. The other 10 flavors are (#), which means exactly
1 digit goes here; (##), which means exactly 2 digits go here; and so on, up to exactly 10 digits go here.

All the above, the 3+ 10 = 13 wildcard characters, can appear in new, where each has a different but

related meaning:

* copy corresponding text from old as is

? copy corresponding character from old

copy corresponding number from old as is

(#) reformat corresponding number from old to 1 or more digits

(##) reformat corresponding number from old to 2 or more digits

. . .

In addition, new allows two special wildcard characters of its own:

= copy the entire original variable name

. skip the corresponding text in old

With the above information and the definitions of the options, you can derive on your own the first

eighteen rules given in Syntax. The nineteenth rule concerns subscripting. In new, you can specify

explicitly to which wildcard in old you are referring. You can type

rename pop*80 pop_*_1980

or you can type

rename pop*80 pop_*[1]_1980

thus making it explicit that the * in new is referring to the text matched by the first wildcard in old. That

* corresponds to * is hardly surprising, especially when there is only one * in old, so let’s complicate the
example:

rename v*_* outcome_*_*

You can type that command, or you can type

rename v*_* outcome_*[1]_*[2]

More importantly, you can specify the subscripts in whatever order you wish, so you could type

rename v*_* outcome_*[2]_*[1]

That command would interchange the text in old matched by the two wildcards.

rename group — Rename groups of variables 803

* matches 0 or more characters; use ?* to match 1 or more
l*a in old matches louisiana and it matches la because * means zero or more characters. What if

you want to match louisiana and lymphoma but not la?

For instance, say you have from–to variables named from*to* and from variables named from*.
The problem is that variable fromtoledo would match from*to*. To avoid that, rather than describing
the from–to pattern from*to*, you use from?*to?*. Thus you could type

rename from?*to?* from_?*_to_?*

?* is not a secret wildcard we have yet to tell you about—it is merely the two wildcards ? and * in
sequence. ? means exactly one character goes here, and * means zero or more characters go here, so ?*
means one or more characters go here. In the same way, ??* means two or more characters go here, and
so on.

* is greedy
Consider the existing variable assessment and pattern *s* in old. Clearly, *s* matches

assessment, but how? That is, among these possibilities,

assessment = * s *

a + s + sessment
as + s + essment
asse + s + sment
asses + s + ment

which one is true? We need to know the answer to know what each of the corresponding wildcards in

new will mean. The answer is that * is greedy, and the pattern is matched from left to right. As we move

through the variable name from left to right, at each step * takes the most characters possible, subject to
the pattern working out.

* s *

assessment = asses + s + ment

Thus the first * in new would stand for asses and the second would stand for ment.

The “subject to the pattern working out” part is important. Variable sunglasses would be broken
out by *s* as

* s *

sunglasses = sunglasse + s + nothing

But by *s?*, the breakout would be

* s ? *

sunglasses = sunglas + s + e + s

is greedier
Wildcard # in old is greedier than *, which means that when * and # are up against each other, #wins.

rename group — Rename groups of variables 804

Consider the pattern *# and the variable name v1234. Given that * is greedy and that the # specifies
one or more digits, the possible solutions are

v1234 = * #

v123 + 4
v12 + 34
v1 + 234
v + 1234

The solution chosen by rename is the last one, v + 1234. Thus you can type

rename *# period_#[2]

without concern that some digits might be lost.

Technical note
You cannot directly use functions ustrupper(), ustrlower(), and ustrtitle() in your rename

command. You must first create a local macro with the new variable name and then use that macro in

your rename command. For example,

. local new = ustrlower(Ubicación)

. rename Ubicación ‘new’

You can use multiple local macros in a varlist. For example,

. local new1 = ustrlower(Ubicación1)

. local new2 = ustrlower(Ubicación2)

. rename (Ubicación1 Ubicación2) (‘new1’ ‘new2’)

For more information about local macros, see [U] 18.3.1 Local macros.

Stored results
rename stores nothing in r() by default. If the r option is specified, then rename stores the following

in r():

Scalars

r(n) number of variables to be renamed

Macros

r(oldnames) original variable names

r(newnames) new variable names

Variables that are renamed to themselves are omitted from the recorded lists.

Also see
[D] rename — Rename variable

[D] generate — Create or change contents of variable

[D] varmanage — Manage variable labels, formats, and other properties

reshape — Convert data from wide to long form and vice versa

Description Quick start Menu Syntax
Options Remarks and examples Stored results Acknowledgment
References Also see

Description
reshape converts data from wide to long form and vice versa.

set reshape favor specifies whether, when performing the data conversion, reshape should favor
conserving memory (memory) or running quickly (speed). Historically, reshape favored conserving

memory. Switching to speedwill make reshape run faster at the cost of consuming more memory. You
can easily revert to the default method for reshaping the data (default).

Quick start
Create v from 2 time periods stored in v1 and v2 for observations identified by idvar and add tvar

identifying time period

reshape long v, i(idvar) j(tvar)

Create v from 2 subobservations stored in v1 and v2 for observations identified by idvar and add subobs
identifying each subobservation

reshape long v, i(idvar) j(subobs)

Same as above, but allow subobs to contain strings
reshape long v, i(idvar) j(subobs) string

Undo results from above

reshape wide

Create v1 and v2 from v with observations identified by idvar and time period identified by tvar
reshape wide v, i(idvar) j(tvar)

Undo results from above

reshape long

Create var and time identifier tvar from v1ar and v2ar with observation identifier idvar
reshape long v@ar, i(idvar) j(tvar)

Menu
Data > Create or change data > Other variable-transformation commands > Convert data between wide and long

805

reshape — Convert data from wide to long form and vice versa 806

Syntax
Overview

long wide

i j stub i stub1 stub2

1 1 4.1 reshape 1 4.1 4.5
1 2 4.5 ←−−−−−−−−→ 2 3.3 3.0
2 1 3.3
2 2 3.0

To go from long to wide:

j existing variable

/
reshape wide stub, i(i) j(j)

To go from wide to long:

reshape long stub, i(i) j(j)
\
j new variable

To go back to long after using reshape wide:

reshape long

To go back to wide after using reshape long:

reshape wide

Basic syntax

Convert data from wide form to long form

reshape long stubnames , i(varlist) [options]

Convert data from long form to wide form

reshape wide stubnames , i(varlist) [options]

Convert data back to long form after using reshape wide

reshape long

Convert data back to wide form after using reshape long

reshape wide

List problem observations when reshape fails

reshape error

Specify default method for reshaping the data

set reshape favor { default | memory | speed } [, permanently]

reshape — Convert data from wide to long form and vice versa 807

options Description

∗ i(varlist) use varlist as the ID variables

j(varname [values]) long→wide: varname, existing variable
wide→long: varname, new variable
optionally specify values to subset varname

string varname is a string variable (default is numeric)

favor(favor) specify reshape method; favor may be memory or speed
∗ i(varlist) is required.
reshape does not allow alias variables; see [D] frunalias for advice on how to get around this restriction.

values is #[-#] [#[-#] [. . .]] if varname is numeric (default)

”string” [”string” [. . .]] if varname is string

stubnames are variable names (long→wide), or stubs of variable names (wide→long), and either way,

may contain @, denoting where 𝑗 appears or is to appear in the name.
In the example above, when we wrote “reshape wide stub”, we could have written “reshape wide

stub@” because 𝑗 by default ends up as a suffix. Had we written stu@b, then the wide variables would
have been named stu1b and stu2b.

Advanced syntax

reshape i varlist

reshape j varname [values] [, string]

reshape xij fvarnames [, atwl(chars)]

reshape xi [varlist]

reshape favor { memory | speed }

reshape [query]

reshape clear

Options
i(varlist) specifies the variables whose unique values denote a logical observation. i() is required.

j(varname [values]) specifies the variable whose unique values denote a subobservation. values lists
the unique values to be used from varname, which typically are not explicitly stated because reshape
will determine them automatically from the data.

string specifies that j() may contain string values.

atwl(chars), available only with the advanced syntax and not shown in the dialog box, specifies that
plainASCII chars be substituted for the @ character when converting the data from wide to long form.

favor(favor) specifies the method for reshaping the data. Historically, reshapewas coded to minimize
its use of memory; this is favor(memory). With favor(speed), the focus is to accomplish the

reshape faster at the cost of using more memory.

reshape — Convert data from wide to long form and vice versa 808

permanently specifies that, in addition to making the change right now, the setting be remembered and
become the default setting when you invoke Stata.

Remarks and examples
Remarks are presented under the following headings:

Description of basic syntax
Wide and long data forms
Avoiding and correcting mistakes
reshape long and reshape wide without arguments
Missing variables
Advanced issues with basic syntax: i()
Advanced issues with basic syntax: j()
Advanced issues with basic syntax: xij
Advanced issues with basic syntax: String identifiers for j()
Advanced issues with basic syntax: Second-level nesting
Description of advanced syntax
Why favor memory over speed?
Video examples

See Mitchell (2020, chap. 9) for information and examples using reshape.

Description of basic syntax
Before using reshape, you need to determine whether the data are in long or wide form. You also

must determine the logical observation (i) and the subobservation (j) by which to organize the data.
Suppose that you had the following data, which could be organized in wide or long form as follows:

i 𝑋𝑖𝑗 i j 𝑋𝑖𝑗
id sex inc80 inc81 inc82 id year sex inc

1 0 5000 5500 6000 1 80 0 5000
2 1 2000 2200 3300 1 81 0 5500
3 0 3000 2000 1000 1 82 0 6000

2 80 1 2000
2 81 1 2200
2 82 1 3300
3 80 0 3000
3 81 0 2000
3 82 0 1000

Given these data, you could use reshape to convert from one form to the other:

. reshape long inc, i(id) j(year) /* goes from left form to right */

. reshape wide inc, i(id) j(year) /* goes from right form to left */

Because we did not specify sex in the command, Stata assumes that it is constant within the logical

observation, here id.

Wide and long data forms
Think of the data as a collection of observations 𝑋𝑖𝑗, where 𝑖 is the logical observation, or group

identifier, and 𝑗 is the subobservation, or within-group identifier.
Wide-form data are organized by logical observation, storing all the data on a particular observation

in one row. Long-form data are organized by subobservation, storing the data in multiple rows.

reshape — Convert data from wide to long form and vice versa 809

Example 1
For example, we might have data on a person’s ID, gender, and annual income over the years

1980–1982. We have two 𝑋𝑖𝑗 variables with the data in wide form:

. use https://www.stata-press.com/data/r19/reshape1

. list

id sex inc80 inc81 inc82 ue80 ue81 ue82

1. 1 0 5000 5500 6000 0 1 0
2. 2 1 2000 2200 3300 1 0 0
3. 3 0 3000 2000 1000 0 0 1

To convert these data to the long form, we type

. reshape long inc ue, i(id) j(year)
(j = 80 81 82)
Data Wide -> Long

Number of observations 3 -> 9
Number of variables 8 -> 5
j variable (3 values) -> year
xij variables:

inc80 inc81 inc82 -> inc
ue80 ue81 ue82 -> ue

There is no variable named year in our original, wide-form dataset. year will be a new variable in our

long dataset. After this conversion, we have

. list, sep(3)

id year inc ue sex

1. 1 80 5000 0 0
2. 1 81 5500 1 0
3. 1 82 6000 0 0

4. 2 80 2000 1 1
5. 2 81 2200 0 1
6. 2 82 3300 0 1

7. 3 80 3000 0 0
8. 3 81 2000 0 0
9. 3 82 1000 1 0

reshape — Convert data from wide to long form and vice versa 810

We can return to our original, wide-form dataset by using reshape wide.

. reshape wide inc ue, i(id) j(year)
(j = 80 81 82)
Data Long -> Wide

Number of observations 9 -> 3
Number of variables 5 -> 8
j variable (3 values) year -> (dropped)
xij variables:

inc -> inc80 inc81 inc82
ue -> ue80 ue81 ue82

. list

id inc80 ue80 inc81 ue81 inc82 ue82 sex

1. 1 5000 0 5500 1 6000 0 0
2. 2 2000 1 2200 0 3300 0 1
3. 3 3000 0 2000 0 1000 1 0

Converting from wide to long creates the j (year) variable. Converting back from long to wide drops

the j (year) variable.

Technical note
If your data are in wide form and you do not have a group identifier variable (the i(varlist) required

option), you can create one easily by using generate; see [D] generate. For instance, in the last example,
if we did not have the id variable in our dataset, we could have created it by typing

. generate id = _n

Avoiding and correcting mistakes
reshape often detects when the data are not suitable for reshaping; an error is issued, and the data

remain unchanged.

Example 2
The following wide data contain a mistake:

. use https://www.stata-press.com/data/r19/reshape2, clear

. list

id sex inc80 inc81 inc82

1. 1 0 5000 5500 6000
2. 2 1 2000 2200 3300
3. 3 0 3000 2000 1000
4. 2 0 2400 2500 2400

reshape — Convert data from wide to long form and vice versa 811

. reshape long inc, i(id) j(year)
variable id does not uniquely identify the observations

Your data are currently wide. You are performing a reshape long. You
specified i(id) and j(year). In the current wide form, variable id should
uniquely identify the observations. Remember this picture:

long wide

i j a b i a1 a2 b1 b2
<--- reshape --->

1 1 1 2 1 1 3 2 4
1 2 3 4 2 5 7 6 8
2 1 5 6
2 2 7 8

Type reshape error for a list of the problem observations.
r(9);

The i variable must be unique when the data are in the wide form; we typed i(id), yet we have 2
observations for which id is 2. (Is person 2 a male or female?)

Example 3
It is not a mistake when the i variable is repeated when the data are in long form, but the following

data have a similar mistake:

. use https://www.stata-press.com/data/r19/reshapexp1

. list

id year sex inc

1. 1 80 0 5000
2. 1 81 0 5500
3. 1 81 0 5400
4. 1 82 0 6000

. reshape wide inc, i(id) j(year)
values of variable year not unique within id

Your data are currently long. You are performing a reshape wide. You
specified i(id) and j(year). There are observations within i(id) with the
same value of j(year). In the long data, variables i() and j() together
must uniquely identify the observations.

long wide

i j a b i a1 a2 b1 b2
<--- reshape --->

1 1 1 2 1 1 3 2 4
1 2 3 4 2 5 7 6 8
2 1 5 6
2 2 7 8

Type reshape error for a list of the problem variables.
r(9);

In the long form, i(id) does not have to be unique, but j(year) must be unique within i; otherwise,
what is the value of inc in 1981 for which id==1?

reshape — Convert data from wide to long form and vice versa 812

reshape told us to type reshape error to view the problem observations.

. reshape error
(j = 80 81 82)
i (id) indicates the top-level grouping such as subject id.
j (year) indicates the subgrouping such as time.
The data are in the long form; j should be unique within i.
There are multiple observations on the same year within id.
The following 2 of 4 observations have repeated year values:

id year

2. 1 81
3. 1 81

(data now sorted by id year)

Example 4
Consider some long-form data that have no mistakes. We list the first 4 observations.

. use https://www.stata-press.com/data/r19/reshape6

. list in 1/4

id year sex inc ue

1. 1 80 0 5000 0
2. 1 81 0 5500 1
3. 1 82 0 6000 0
4. 2 80 1 2000 1

Say that when converting the data to wide form, however, we forget to mention the ue variable (which
varies within person).

. reshape wide inc, i(id) j(year)
(j = 80 81 82)
variable ue not constant within id

Your data are currently long. You are performing a reshape wide. You
typed something like

. reshape wide a b, i(id) j(year)

There are variables other than a, b, id, year in your data. They must be
constant within id because that is the only way they can fit into wide
data without loss of information.
The variable or variables listed above are not constant within id.
Perhaps the values are in error. Type reshape error for a list of the
problem observations.
Either that, or the values vary because they should vary, in which case
you must either add the variables to the list of xij variables to be
reshaped, or drop them.

r(9);

reshape — Convert data from wide to long form and vice versa 813

Here reshape observed that ue was not constant within id and so could not restructure the data so that
there were single observations on id. We should have typed

. reshape wide inc ue, i(id) j(year)

In summary, there are three cases in which reshape will refuse to convert the data:

1. The data are in wide form and i is not unique.

2. The data are in long form and j is not unique within i.

3. The data are in long form and an unmentioned variable is not constant within i.

Example 5
With somemistakes, reshapewill probably convert the data and produce a surprising result. Suppose

that we forget to mention that the ue variable varies within id in the following wide data:

. use https://www.stata-press.com/data/r19/reshape1

. list

id sex inc80 inc81 inc82 ue80 ue81 ue82

1. 1 0 5000 5500 6000 0 1 0
2. 2 1 2000 2200 3300 1 0 0
3. 3 0 3000 2000 1000 0 0 1

. reshape long inc, i(id) j(year)
(j = 80 81 82)
Data Wide -> Long

Number of observations 3 -> 9
Number of variables 8 -> 7
j variable (3 values) -> year
xij variables:

inc80 inc81 inc82 -> inc

. list, sep(3)

id year inc sex ue80 ue81 ue82

1. 1 80 5000 0 0 1 0
2. 1 81 5500 0 0 1 0
3. 1 82 6000 0 0 1 0

4. 2 80 2000 1 1 0 0
5. 2 81 2200 1 1 0 0
6. 2 82 3300 1 1 0 0

7. 3 80 3000 0 0 0 1
8. 3 81 2000 0 0 0 1
9. 3 82 1000 0 0 0 1

We did not state that ue varied within i, so the variables ue80, ue81, and ue82 were left as is.

reshape did not complain. There is no real problem here because no information has been lost. In fact,

this may actually be the result we wanted. Probably, however, we simply forgot to include ue among the
𝑋𝑖𝑗 variables.

reshape — Convert data from wide to long form and vice versa 814

If you obtain an unexpected result, here is how to undo it:

1. If you typed reshape long ... to produce the result, type reshape wide (without arguments)
to undo it.

2. If you typed reshape wide ... to produce the result, type reshape long (without arguments)
to undo it.

So, we can type

. reshape wide

to get back to our original, wide-form data and then type the reshape long command that we intended:

. reshape long inc ue, i(id) j(year)

reshape long and reshape wide without arguments
Whenever you type a reshape long or reshape wide command with arguments, reshape remem-

bers it. Thus you might type

. reshape long inc ue, i(id) j(year)

and work with the data like that. You could then type

. reshape wide

to convert the data back to the wide form. Then later you could type

. reshape long

to convert them back to the long form. If you save the data, you can even continue using reshape wide
and reshape long without arguments during a future Stata session.

Be careful. If you create new 𝑋𝑖𝑗 variables, you must tell reshape about them by typing the full

reshape command, although no real damage will be done if you forget. If you are converting from long

to wide form, reshape will catch your error and refuse to make the conversion. If you are converting
from wide to long, reshape will convert the data, but the result will be surprising: remember what

happened when we forgot to mention the ue variable and ended up with ue80, ue81, and ue82 in our
long data; see example 5. You can reshape long to undo the unwanted change and then try again.

Missing variables
When converting data from wide form to long form, reshape does not demand that all the variables

exist. Missing variables are treated as variables with missing observations.

reshape — Convert data from wide to long form and vice versa 815

Example 6
Let’s drop ue81 from the wide form of the data:

. use https://www.stata-press.com/data/r19/reshape1, clear

. drop ue81

. list

id sex inc80 inc81 inc82 ue80 ue82

1. 1 0 5000 5500 6000 0 0
2. 2 1 2000 2200 3300 1 0
3. 3 0 3000 2000 1000 0 1

. reshape long inc ue, i(id) j(year)
(j = 80 81 82)
(variable ue81 not found)
Data Wide -> Long

Number of observations 3 -> 9
Number of variables 7 -> 5
j variable (3 values) -> year
xij variables:

inc80 inc81 inc82 -> inc
ue80 ue81 ue82 -> ue

. list, sep(3)

id year inc ue sex

1. 1 80 5000 0 0
2. 1 81 5500 . 0
3. 1 82 6000 0 0

4. 2 80 2000 1 1
5. 2 81 2200 . 1
6. 2 82 3300 0 1

7. 3 80 3000 0 0
8. 3 81 2000 . 0
9. 3 82 1000 1 0

reshape placed missing values where ue81 values were unavailable. If we reshaped these data back to
wide form by typing

. reshape wide inc ue, i(id) j(year)

the ue81 variable would be created and would contain all missing values.

Advanced issues with basic syntax: i()
The i() option can indicate one i variable (as our past examples have illustrated) or multiple vari-

ables. An example of multiple i variables would be hospital ID and patient ID within each hospital.

. reshape ... , i(hid pid)

Unique pairs of values for hid and pid in the data define the grouping variable for reshape.

reshape — Convert data from wide to long form and vice versa 816

Advanced issues with basic syntax: j()
The j() option takes a variable name (as our past examples have illustrated) or a variable name and

a list of values. When the values are not provided, reshape deduces them from the data. Specifying the

values with the j() option is rarely needed.

reshape never makes a mistake when the data are in long form and you type reshape wide. The
values are easily obtained by tabulating the j variable.

reshape can make a mistake when the data are in wide form and you type reshape long if your
variables are poorly named. Say that you have the inc80, inc81, and inc82 variables, recording income
in each of the indicated years, and you have a variable named inc2, which is not income but indicates
when the area was reincorporated. You type

. reshape long inc, i(id) j(year)

reshape sees the inc2, inc80, inc81, and inc82 variables and decides that there are four groups in
which j = 2, 80, 81, and 82.

The easiest way to solve the problem is to rename the inc2 variable to something other than “inc”
followed by a number; see [D] rename.

You can also keep the name and specify the j values. To perform the reshape, you can type

. reshape long inc, i(id) j(year 80-82)

or

. reshape long inc, i(id) j(year 80 81 82)

You can mix the dash notation for value ranges with individual numbers. reshape would understand
80 82-87 89 91-95 as a valid values specification.

At the other extreme, you can omit the j() option altogether with reshape long. If you do, the j
variable will be named j.

Advanced issues with basic syntax: xij
When specifying variable names, you may include @ characters to indicate where the numbers go.

Example 7
Let’s reshape the following data from wide to long form:

. use https://www.stata-press.com/data/r19/reshape3, clear

. list

id sex inc80r inc81r inc82r ue80 ue81 ue82

1. 1 0 5000 5500 6000 0 1 0
2. 2 1 2000 2200 3300 1 0 0
3. 3 0 3000 2000 1000 0 0 1

reshape — Convert data from wide to long form and vice versa 817

. reshape long inc@r ue, i(id) j(year)
(j = 80 81 82)
Data Wide -> Long

Number of observations 3 -> 9
Number of variables 8 -> 5
j variable (3 values) -> year
xij variables:

inc80r inc81r inc82r -> incr
ue80 ue81 ue82 -> ue

. list, sep(3)

id year incr ue sex

1. 1 80 5000 0 0
2. 1 81 5500 1 0
3. 1 82 6000 0 0

4. 2 80 2000 1 1
5. 2 81 2200 0 1
6. 2 82 3300 0 1

7. 3 80 3000 0 0
8. 3 81 2000 0 0
9. 3 82 1000 1 0

At most one @ character may appear in each name. If no @ character appears, results are as if the @
character appeared at the end of the name. So, the equivalent reshape command to the one above is

. reshape long inc@r ue@, i(id) j(year)

inc@r specifies variables named inc#r in the wide form and incr in the long form. The @ notation
may similarly be used for converting data from long to wide format:

. reshape wide inc@r ue, i(id) j(year)

Advanced issues with basic syntax: String identifiers for j()
The string option allows j to take on string values.

Example 8
Consider the following wide data on husbands and wives. In these data, incm is the income of the

man and incf is the income of the woman.
. use https://www.stata-press.com/data/r19/reshape4, clear
. list

id kids incm incf

1. 1 0 5000 5500
2. 2 1 2000 2200
3. 3 2 3000 2000

reshape — Convert data from wide to long form and vice versa 818

These data can be reshaped into separate observations for males and females by typing

. reshape long inc, i(id) j(sex) string
(j = f m)
Data Wide -> Long

Number of observations 3 -> 6
Number of variables 4 -> 4
j variable (2 values) -> sex
xij variables:

incf incm -> inc

The string option specifies that j take on nonnumeric values. The result is

. list, sep(2)

id sex inc kids

1. 1 f 5500 0
2. 1 m 5000 0

3. 2 f 2200 1
4. 2 m 2000 1

5. 3 f 2000 2
6. 3 m 3000 2

sex will be a string variable. Similarly, these data can be converted from long to wide form by typing

. reshape wide inc, i(id) j(sex) string

Strings are not limited to being single characters or even having the same length. You can specify the

location of the string identifier in the variable name by using the @ notation.

Example 9
Suppose that our variables are named id, kids, incmale, and incfem.

. use https://www.stata-press.com/data/r19/reshapexp2, clear

. list

id kids incmale incfem

1. 1 0 5000 5500
2. 2 1 2000 2200
3. 3 2 3000 2000

. reshape long inc, i(id) j(sex) string
(j = fem male)
Data Wide -> Long

Number of observations 3 -> 6
Number of variables 4 -> 4
j variable (2 values) -> sex
xij variables:

incfem incmale -> inc

reshape — Convert data from wide to long form and vice versa 819

. list, sep(2)

id sex inc kids

1. 1 fem 5500 0
2. 1 male 5000 0

3. 2 fem 2200 1
4. 2 male 2000 1

5. 3 fem 2000 2
6. 3 male 3000 2

If the wide data had variables named minc and finc, the appropriate reshape command would have
been

. reshape long @inc, i(id) j(sex) string

The resulting variable in the long form would be named inc.

We can also place strings in the middle of the variable names. If the variables were named incMome
and incFome, the reshape command would be

. reshape long inc@ome, i(id) j(sex) string

Be careful with string identifiers because it is easy to be surprised by the result. Say that we have

wide data having variables named incm, incf, uem, uef, agem, and agef. To make the data long, we
might type

. reshape long inc ue age, i(id) j(sex) string

Along with these variables, we also have the variable agenda. reshape will decide that the sexes
are m, f, and nda. This would not happen without the string option if the variables were named inc0,
inc1, ue0, ue1, age0, and age1, even with the agenda variable present in the data.

Advanced issues with basic syntax: Second-level nesting
Sometimes the data may have more than one possible j variable for reshaping. Suppose that your data

have both a year variable and a sex variable. One logical observation in the data might be represented in

any of the following four forms:

. list in 1/4 // The long-long form

hid sex year inc

1. 1 f 90 3200
2. 1 f 91 4700
3. 1 m 90 4500
4. 1 m 91 4600

reshape — Convert data from wide to long form and vice versa 820

. list in 1/2 // The long-year wide-sex form

hid year minc finc

1. 1 90 4500 3200
2. 1 91 4600 4700

. list in 1/2 // The wide-year long-sex form

hid sex inc90 inc91

1. 1 f 3200 4700
2. 1 m 4500 4600

. list in 1 // The wide-wide form

hid minc90 minc91 finc90 finc91

1. 1 4500 4600 3200 4700

reshape can convert any of these forms to any other. Converting data from the long–long form to

the wide–wide form (or any of the other forms) takes two reshape commands. Here is how we would

do it:

From To
year sex year sex Command

long long long wide reshape wide @inc, i(hid year) j(sex) string
long wide long long reshape long @inc, i(hid year) j(sex) string
long long wide long reshape wide inc, i(hid sex) j(year)
wide long long long reshape long inc, i(hid sex) j(year)
long wide wide wide reshape wide minc finc, i(hid) j(year)
wide wide long wide reshape long minc finc, i(hid) j(year)
wide long wide wide reshape wide @inc90 @inc91, i(hid) j(sex) string
wide wide wide long reshape long @inc90 @inc91, i(hid) j(sex) string

Description of advanced syntax
The advanced syntax is simply a different way of specifying the reshape command, and it has one

seldom-used feature that provides extra control. Rather than typing one reshape command to describe
the data and perform the conversion, such as

. reshape long inc, i(id) j(year)

you type a sequence of reshape commands. The initial commands describe the data, and the last com-
mand performs the conversion:

. reshape i id

. reshape j year

. reshape xij inc

. reshape long

reshape i corresponds to i() in the basic syntax.

reshape j corresponds to j() in the basic syntax.

reshape — Convert data from wide to long form and vice versa 821

reshape xij corresponds to the variables specified in the basic syntax. reshape xij also accepts
the atwl() option for use when @ characters are specified in the fvarnames. atwl stands for at-when-
long. When you specify names such as inc@r or ue@, in the long form the names become incr and ue,
and the @ character is ignored. atwl() allows you to change @ into whatever you specify. For example,
if you specify atwl(X), the long-form names become incXr and ueX.

There is also one more specification, which has no counterpart in the basic syntax:

. reshape xi varlist

In the basic syntax, Stata assumes that all unspecified variables are constant within i. The advanced
syntax works the same way, unless you specify the reshape xi command, which names the constant-
within-i variables. If you specify reshape xi, any variables that you do not explicitly specify are

dropped from the data during the conversion.

As a practical matter, you should explicitly drop the unwanted variables before conversion. For in-

stance, suppose that the data have variables inc80, inc81, inc82, sex, age, and age2 and that you no
longer want the age2 variable. You could specify

. reshape xi sex age

or

. drop age2

and leave reshape xi unspecified.

reshape xi does have one minor advantage. It saves reshape the work of determining which vari-
ables are unspecified. This saves a relatively small amount of computer time.

Another advanced-syntax feature is reshape query, which is equivalent to typing reshape by it-

self. reshape query reports which reshape parameters have been defined. reshape i, reshape j,
reshape xij, and reshape xi specifications may be given in any order and may be repeated to change
or correct what has been specified.

Finally, reshape clear clears the definitions. reshape definitions are stored with the dataset when
you save it. reshape clear allows you to erase these definitions.

The basic syntax of reshape is implemented in terms of the advanced syntax, so you can mix basic
and advanced syntaxes.

Why favor memory over speed?
The original code for reshape was written in a time when computer memory was not as abundantly

available as it is today and Stata could not handle multiple datasets in memory at the same time. This

code uses the commands preserve, save, use, append, and merge to reshape the data between forms.
Incrementally reshaping the data this way accommodated the memory limitations of the time at the cost

of being slow for bigger datasets. This is the method used with favor(memory).

With favor(speed), reshape preallocates a data frame with the target form and fills it with the data

from the current frame. This method of data conversion is typically much faster but requires double the

memory used for the original data.

reshape — Convert data from wide to long form and vice versa 822

reshape’s default behavior is set by

. set reshape_favor default

and is determined by the current “user version”. If the user version is 19 or greater, the default is to favor
speed. If the user version is less than 19, then the default is to favor memory.

If reshape is favoring speed, you may experience Mata runtime failures with reshape for datasets
that are larger than half the available memory on your computer. If your data are larger than half the

available memory, use the favor(memory) option to avoid this memory constraint.

Video examples
How to reshape data from long format to wide format

How to reshape data from wide format to long format

Stored results
reshape stores the following characteristics with the data (see [P] char):

dta[ReS i] i variable names
dta[ReS j] j variable name
dta[ReS jv] j values, if specified
dta[ReS Xij] 𝑋𝑖𝑗 variable names
dta[ReS Xij n] number of 𝑋𝑖𝑗 variables
dta[ReS Xij long#] name of #th 𝑋𝑖𝑗 variable in long form
dta[ReS Xij wide#] name of #th 𝑋𝑖𝑗 variable in wide form
dta[ReS Xi] 𝑋𝑖 variable names, if specified
dta[ReS atwl] atwl() value, if specified
dta[ReS str] 1 if option string specified, 0 otherwise
dta[ReS favor] favor() value, if specified

Acknowledgment
This version of reshape was based in part on the work of Jeroen Weesie (1997) of the Department

of Sociology at Utrecht University, The Netherlands.

References
Baum, C. F., and N. J. Cox. 2007. Stata tip 45: Getting those data into shape. Stata Journal 7: 268–271.

Huber, C. 2014. How to simulate multilevel/longitudinal data. The Stata Blog: Not Elsewhere Classified. https://blog.

stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/.

Jeanty, P. W. 2010. Using the World Development Indicators database for statistical analysis in Stata. Stata Journal 10:

30–45.

Mitchell, M. N. 2020. Data Management Using Stata: A Practical Handbook. 2nd ed. College Station, TX: Stata Press.

Simons, K. L. 2016. A sparser, speedier reshape. Stata Journal 16: 632–649.

Weesie, J. 1997. dm48:An enhancement of reshape. Stata Technical Bulletin 38: 2–4. Reprinted in Stata Technical Bulletin

Reprints, vol. 7, pp. 40–43. College Station, TX: Stata Press.

https://www.youtube.com/watch?v=gkcYpw8CtCw
https://www.youtube.com/watch?v=Bx9kVdkr9oY
https://www.stata-journal.com/article.html?article=dm0031
https://blog.stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/
https://blog.stata.com/2014/07/18/how-to-simulate-multilevellongitudinal-data/
https://www.stata-journal.com/article.html?article=dm0045
https://www.stata-press.com/books/data-management-using-stata/
https://www.stata-journal.com/article.html?article=dm0090
https://www.stata.com/products/stb/journals/stb38.pdf

reshape — Convert data from wide to long form and vice versa 823

Also see
[D] frunalias — Change storage type of alias variables

[D] save — Save Stata dataset

[D] stack — Stack data

[D] xpose — Interchange observations and variables

[P] char — Characteristics

rmdir — Remove directory

Description Quick start Syntax Remarks and examples Also see

Description
rmdir removes an empty directory (folder).

Quick start
Remove empty myfolder from the current working directory

rmdir myfolder

Remove myfolder from C:\mydir using Stata for Windows

rmdir c:\mydir\myfolder

Remove myfolder from ~/mydir using Stata for Mac or Unix

rmdir ~/mydir/myfolder

Remove my folder from C:\my dir using Stata for Windows

rmdir ”c:\my dir\my folder”

Syntax
rmdir directory name

Double quotes may be used to enclose the directory name, and the quotes must be used if the directory

name contains embedded blanks.

Remarks and examples
Examples:

Windows

. rmdir myproj

. rmdir c:\projects\myproj

. rmdir ”c:\My Projects\Project 1”

Mac and Unix

. rmdir myproj

. rmdir ~/projects/myproj

824

rmdir — Remove directory 825

Also see
[D] cd — Change directory

[D] copy — Copy file from disk or URL

[D] dir — Display filenames

[D] erase — Erase a disk file

[D] mkdir — Create directory

[D] shell — Temporarily invoke operating system

[D] type — Display contents of a file

[U] 11.6 Filenaming conventions

sample — Draw random sample

Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description
sample draws random samples of the data in memory. “Sampling” here is defined as drawing obser-

vations without replacement; see [R] bsample for sampling with replacement.

The size of the sample to be drawn can be specified as a percentage or as a count:

• sample without the count option draws a #% pseudorandom sample of the data in memory,

thus discarding (100 − #)% of the observations.

• samplewith the count option draws a #-observation pseudorandom sample of the data inmem-

ory, thus discarding N−# observations. # can be larger than N, in which case all observations
are kept.

In either case, observations not meeting the optional if and in criteria are kept (sampled at 100%).

If you are interested in reproducing results, you must first set the random-number seed; see [R] set

seed.

Quick start
Draw 10% pseudorandom sample without replacement from data in memory

sample 10

Same as above, but perform sampling within strata identified by svar
sample 10, by(svar)

Sample 100 observations from data in memory

sample 100, count

Same as above, but only sample observations where catvar equals 5
sample 100 if catvar==5, count

Menu
Statistics > Resampling > Draw random sample

826

sample — Draw random sample 827

Syntax
sample # [if] [in] [, count by(groupvars)]

by is allowed; see [D] by.

Options
count specifies that # in sample # be interpreted as an observation count rather than as a percentage.

Typing sample 5 without the count option means that a 5% sample be drawn; typing sample 5,
count, however, would draw a sample of 5 observations.

Specifying # as greater than the number of observations in the dataset is not considered an error.

by(groupvars) specifies that a #% sample be drawn within each set of values of groupvars, thus main-

taining the proportion of each group.

count may be combined with by(). For example, typing sample 50, count by(sex) would draw
a sample of size 50 for men and 50 for women.

Specifying by varlist: sample # is equivalent to specifying sample #, by(varlist); use whichever
syntax you prefer.

Remarks and examples

Example 1
We have NLSY data on young women aged 14–24 years in 1968 and wish to draw a 10% sample of

the data in memory.

. use https://www.stata-press.com/data/r19/nlswork
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)
. describe, short
Contains data from https://www.stata-press.com/data/r19/nlswork.dta
Observations: 28,534 National Longitudinal Survey of

Young Women, 14-24 years old in
1968

Variables: 21 27 Nov 2024 08:14
Sorted by: idcode year
. sample 10
(25,681 observations deleted)
. describe, short
Contains data from https://www.stata-press.com/data/r19/nlswork.dta
Observations: 2,853 National Longitudinal Survey of

Young Women, 14-24 years old in
1968

Variables: 21 27 Nov 2024 08:14
Sorted by:

Note: Dataset has changed since last saved.

Our original dataset had 28,534 observations. The sample-10 dataset has 2,853 observations, which is

the nearest number to 0.10 × 28534.

sample — Draw random sample 828

Example 2
Among the variables in our data is race. By typing label list, we see that race = 1 denotes

whites, race = 2 denotes blacks, and race = 3 denotes other races. We want to keep 100% of the

nonwhite women but only 10% of the white women.

. use https://www.stata-press.com/data/r19/nlswork, clear
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)
. tab race

Race Freq. Percent Cum.

White 20,180 70.72 70.72
Black 8,051 28.22 98.94
Other 303 1.06 100.00

Total 28,534 100.00
. sample 10 if race == 1
(18,162 observations deleted)
. describe, short
Contains data from https://www.stata-press.com/data/r19/nlswork.dta
Observations: 10,372 National Longitudinal Survey of

Young Women, 14-24 years old in
1968

Variables: 21 27 Nov 2024 08:14
Sorted by:

Note: Dataset has changed since last saved.
. display .10*20180 + 8051 + 303
10372

Example 3
Now let’s suppose that we want to keep 10% of each of the three categories of race.

. use https://www.stata-press.com/data/r19/nlswork, clear
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)
. sample 10, by(race)
(25,681 observations deleted)
. tab race

Race Freq. Percent Cum.

White 2,018 70.73 70.73
Black 805 28.22 98.95
Other 30 1.05 100.00

Total 2,853 100.00

This differs from simply typing sample 10 in that with by(), sample holds constant the percentages of
white, black, and other women.

sample — Draw random sample 829

Technical note
We have a large dataset on disk containing 125,235 observations. We wish to draw a 10% sample

of this dataset without loading the entire dataset (perhaps because the dataset will not fit in memory).

sample will not solve this problem—the dataset must be loaded first—but it is rather easy to solve it

ourselves. Say that bigdata.dct contains the dictionary for this dataset; see [D] import. One solution

is to type

. infile using bigdata if runiform()<=.1
dictionary {

etc.
}
(12,580 observations read)

The if qualifier on the end of infile drew uniformly distributed random numbers over the interval 0

and 1 and kept each observation if the random number was less than or equal to 0.1. This, however, did

not draw an exact 10% sample—the sample was expected to contain only 10% of the observations, and

here we obtained just more than 10%. This is probably a reasonable solution.

If the sample must contain precisely 12,524 observations, however, after getting too many observa-

tions, we could type

. generate u=runiform()

. sort u

. keep in 1/12524
(56 observations deleted)

That is, we put the resulting sample in random order and keep the first 12,524 observations. Now our

only problem is making sure that, at the first step, we have more than 12,524 observations. Here we were

lucky, but half the time we will not be so lucky—after typing infile . . . if runiform()<=.1, we will
have less than a 10% sample. The solution, of course, is to draw more than a 10% sample initially and

then cut it back to 10%.

Howmuchmore than 10% do we need? That depends on the number of records in the original dataset,

which in our example is 125,235.

A little experimentation with bitesti (see [R] bitest) provides the answer:

. bitesti 125235 12524 .102
Binomial probability test

N Observed k Expected k Assumed p Observed p

125,235 12,524 12,773.97 0.10200 0.10000
Pr(k >= 12,524) = 0.990466 (one-sided test)
Pr(k <= 12,524) = 0.009777 (one-sided test)
Pr(k <= 12,524 or k >= 13,025) = 0.019584 (two-sided test)

Initially drawing a 10.2% sample will yield a sample larger than 10% 99 times of 100. If we draw a

10.4% sample, we are virtually assured of having enough observations (type bitesti 125235 12524
.104 for yourself).

sample — Draw random sample 830

References
Gould, W. W. 2012a. Using Stata’s random-number generators, part 2: Drawing without replacement. The Stata Blog:

Not Elsewhere Classified. https://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-

without-replacement/.

———. 2012b. Using Stata’s random-number generators, part 3: Drawing with replacement. The Stata Blog:

Not Elsewhere Classified. https://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawing-

with-replacement/.

Also see
[D] splitsample — Split data into random samples

[R] bsample — Sampling with replacement

https://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-without-replacement/
https://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-without-replacement/
https://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawing-with-replacement/
https://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawing-with-replacement/

save — Save Stata dataset

Description Quick start Menu Syntax
Options for save Options for saveold Remarks and examples Also see

Description
save stores the dataset currently in memory on disk under the name filename. If filename is not

specified, the name under which the data were last known to Stata (c(filename)) is used. If filename
is specified without an extension, .dta is used. If your filename contains embedded spaces, remember
to enclose it in double quotes.

Stata 14 through 17 have the same dataset format so long as the dataset has 32,767 variables or less.

Stata 18 and 19 have the same format too, unless the data have alias variables in them; see below. Since

Stata/MP 15, Stata/MP has supported more than 32,767 variables and thus has a slightly different dataset

format when there are that many variables. If you are using Stata 18 or later, do not have alias variables,

and you want to save a dataset so that it may be read by someone using Stata 15, Stata 16, or Stata 17,

simply use the save command; those older versions will be able to read it. If the dataset has more than
32,767 variables, it can be read by Stata/MP 15, Stata/MP 16, Stata/MP 17, and Stata/MP 18. If you want

to save a dataset so that it may be read by someone using Stata 14, again simply use the save command;
Stata 14 will be able to read it so long as it does not have more than 32,767 variables. Stata 14 supports

at most 32,767 variables.

saveold saves the dataset currently in memory on disk under the name filename in previous .dta
formats, namely, those for Stata 13, 12, or 11. If you are using Stata 19 and want to save a file so that it

may be read by someone using an older version of Stata, use the saveold command.

Alias variables, introduced in Stata 18, are variables that reference other variables in a linked frame;

see [D] fralias. If your dataset does not contain alias variables, then you can use commands save and
saveold as mentioned above. For datasets with alias variables, Stata 18 and later use a new format to

accommodate this new variable type. In addition, Stata/MP has a new format to accommodate datasets

with alias variables and more than 32,767 variables. If you are using data with alias variables and want to

save a dataset so that it may be read by someone using an older version of Stata, then you must either drop

the alias variables or use command frunalias to change the alias variables into copies of the variables
they reference. Then you use commands save or saveold as mentioned above. The same is true for
datasets with alias variables and more than 32,767 variables and older versions of Stata/MP.

Quick start
Save data in memory to mydata.dta in the current directory

save mydata

Same as above, but overwrite mydata.dta if it exists
save mydata, replace

Also save value labels that have not been applied to variables

save mydata, replace orphans

Save data in Stata 13 format

saveold mydata

831

save — Save Stata dataset 832

Menu
File > Save as...

Syntax
Save data in memory to file

save [filename] [, save options]

Save data in memory to file in Stata 13, 12, or 11 format

saveold filename [, saveold options]

save options Description

nolabel omit value labels from the saved dataset

replace overwrite existing dataset

all save e(sample) with the dataset; programmer’s option
orphans save all value labels

emptyok save dataset even if zero observations and zero variables

saveold options Description

version(#) specify version 11 ≤ # ≤ 18; default is version(13), meaning Stata 13 format
nolabel omit value labels from the saved dataset

replace overwrite existing dataset

all save e(sample) with the dataset; programmer’s option

Options for save
nolabel omits value labels from the saved dataset. The associations between variables and value-label

names, however, are saved along with the dataset label and the variable labels.

replace permits save to overwrite an existing dataset.

all is for use by programmers. If specified, e(sample) will be saved with the dataset. You could run a
regression; save mydata, all; drop all; use mydata; and predict yhat if e(sample).

orphans saves all value labels, including those not attached to any variable.

emptyok is a programmer’s option. It specifies that the dataset be saved, even if it contains zero obser-
vations and zero variables. If emptyok is not specified and the dataset is empty, save responds with
the message “no variables defined”.

Options for saveold
version(#) specifies which previous .dta file format is to be used. # may be 18, 17, 16, 15, 14, 13,

12, or 11. The default is version(13), meaning Stata 13 format. To save datasets in the modern,
Stata 18 and later format, use the save command, not saveold. Stata 14 through Stata 19 share the
same format, provided that there are no alias variables, so you do not have to use saveold to save a
Stata 14, 15, 16, 17, or 18 dataset; simply use save.

save — Save Stata dataset 833

nolabel omits value labels from the saved dataset. The associations between variables and value-label

names, however, are saved along with the dataset label and the variable labels.

replace permits saveold to overwrite an existing dataset.

all is for use by programmers. If specified, e(sample) will be saved with the dataset. You could run a
regression; save mydata, all; drop all; use mydata; and predict yhat if e(sample).

Remarks and examples
Stata keeps the data on which you are currently working in your computer’s memory. You put the data

there in the first place; see [U] 22 Entering and importing data. Thereafter, you can save the dataset
on disk so that you can use it easily in the future. Stata stores your data on disk in a compressed format
that only Stata understands. This does not mean, however, that you are locked into using only Stata. Any

time you wish, you can export the data to a format other software packages understand; see [D] export.

Stata goes to a lot of trouble to keep you from accidentally losing your data. When you attempt to

leave Stata by typing exit, Stata checks that your data have been safely stored on disk. If not, Stata
refuses to let you leave. (You can tell Stata that you want to leave anyway by typing exit, clear.)
Similarly, when you save your data in a disk file, Stata ensures that the disk file does not already exist.
If it does exist, Stata refuses to save it. You can use the replace option to tell Stata that it is okay to
overwrite an existing file.

Example 1
We have entered data into Stata for the first time. We have the following data:

. describe
Contains data
Observations: 39

Variables: 5

Variable Storage Display Value
name type format label Variable label

acc_rate float %9.0g Accident rate
spdlimit float %9.0g Speed limit
acc_pts float %9.0g Access points per mile
rate float %9.0g rcat Accident rate per million vehicle

miles
spdcat float %9.0g scat Speed limit category

Sorted by:
Note: Dataset has changed since last saved.

We have a dataset containing 39 observations on five variables, and, evidently, we have gone to a lot

of trouble to prepare this dataset. We have used the label data command to label the data Minnesota
Highway Data, the label variable command to label all the variables, and the label define and

label values commands to attach value labels to the last two variables. (See [U] 12.6.3 Value labels
for information about doing this.)

At the end of the describe, Stata notes that the “dataset has changed since last saved”. This is Stata’s
way of gently reminding us that these data need to be saved. Let’s save our data:

. save hiway
file hiway.dta saved

save — Save Stata dataset 834

We type save hiway, and Stata stores the data in a file named hiway.dta. (Stata automatically added
the .dta suffix.) Now when we describe our data, we no longer get the warning that our dataset has
not been saved; instead, we are told the name of the file in which the data are saved:

. describe
Contains data from hiway.dta
Observations: 39 Minnesota Highway Data, 1973

Variables: 5 21 Jul 2000 11:42

Variable Storage Display Value
name type format label Variable label

acc_rate float %9.0g Accident rate
spdlimit float %9.0g Speed limit
acc_pts float %9.0g Access points per mile
rate float %9.0g rcat Accident rate per million vehicle

miles
spdcat float %9.0g scat Speed limit category

Sorted by:

Just to prove to you that the data have really been saved, let’s eliminate the copy of the data in memory

by typing drop all:

. drop _all

. describe
Contains data
Observations: 0

Variables: 0
Sorted by:

We now have no data in memory. Because we saved our dataset, we can retrieve it by typing use hiway:

. use hiway
(Minnesota Highway Data, 1973)
. describe
Contains data from hiway.dta
Observations: 39 Minnesota Highway Data, 1973

Variables: 5 21 Jul 2000 11:42

Variable Storage Display Value
name type format label Variable label

acc_rate float %9.0g Accident rate
spdlimit float %9.0g Speed limit
acc_pts float %9.0g Access points per mile
rate float %9.0g rcat Accident rate per million vehicle

miles
spdcat float %9.0g scat Speed limit category

Sorted by:

save — Save Stata dataset 835

Example 2
Continuing with our previous example, we have saved our data in the file hiway.dta. We continue

to work with our data and discover an error; we made a mistake when we typed one of the values for the

spdlimit variable:

. list in 1/3

acc_rate spdlimit acc_pts rate spdcat

1. 1.61 50 2.2 Below 4 Above 60
2. 1.81 60 6.8 Below 4 55 to 60
3. 1.84 55 14 Below 4 55 to 60

In the first observation, the spdlimit variable is 50, whereas the spdcat variable indicates that the

speed limit is more than 60 miles per hour. We check our original copy of the data and discover that the

spdlimit variable ought to be 70. We can fix it with the replace command:

. replace spdlimit=70 in 1
(1 real change made)

If we were to describe our data now, Stata would warn us that our data have changed since they
were last saved:

. describe
Contains data from hiway.dta
Observations: 39 Minnesota Highway Data, 1973

Variables: 5 21 Jul 2000 11:42

Variable Storage Display Value
name type format label Variable label

acc_rate float %9.0g Accident rate
spdlimit float %9.0g Speed limit
acc_pts float %9.0g Access points per mile
rate float %9.0g rcat Accident rate per million vehicle

miles
spdcat float %9.0g scat Speed limit category

Sorted by:
Note: Dataset has changed since last saved.

We take our cue and attempt to save the data again:

. save hiway
file hiway.dta already exists
r(602);

Stata refuses to honor our request, telling us instead that “file hiway.dta already exists”. Stata will not let

us accidentally overwrite an existing dataset. To replace the data, we must do so explicitly by typing
save hiway, replace. If we want to save the file under the same name as it was last known to Stata,
we can omit the filename:

. save, replace
file hiway.dta saved

Now our data are saved.

save — Save Stata dataset 836

Also see
[D] compress — Compress data in memory

[D] export — Overview of exporting data from Stata

[D] fralias —Alias variables from linked frames

[D] frunalias — Change storage type of alias variables

[D] import — Overview of importing data into Stata

[D] use — Load Stata dataset

[P] File formats .dta — Description of .dta file format

[U] 11.6 Filenaming conventions

separate — Create separate variables

Description Quick start Menu Syntax
Options Remarks and examples Stored results Acknowledgment
Reference Also see

Description
separate creates new variables containing values from varname.

Quick start
Create one variable for each level of catvar containing value of v1 or missing

separate v1, by(catvar)

Same as above, but treat missing values of catvar as a valid category
separate v1, by(catvar) missing

Create v10 as the value of v1 when v2 ≥ 20 or missing and missing otherwise and v11 as the value of
v1 when v2 < 20 and missing otherwise

separate v1, by(v2 < 20)

Same as above, but name new variables newv1 and newv2
separate v1, by(v2 < 20) generate(newv) sequential

Menu
Data > Create or change data > Other variable-transformation commands > Create separate variables

837

separate — Create separate variables 838

Syntax
separate varname [if] [in] , by(groupvar | exp) [options]

options Description

Main
∗ by(groupvar) categorize observations into groups defined by groupvar
∗ by(exp) categorize observations into two groups defined by exp

Options

generate(stubname) name new variables by suffixing values to stubname; default is to
use varname as prefix

sequential use as name suffix categories numbered sequentially from 1

missing create variables for the missing values

shortlabel create shorter variable labels

∗ Either by(groupvar) or by(exp) must be specified.
collect is allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

by(groupvar | exp) specifies one variable defining the categories or a logical expression that categorizes
the observations into two groups.

If by(groupvar) is specified, groupvar may be a numeric or string variable taking on any values.

If by(exp) is specified, the expression must evaluate to true (1), false (0), or missing.

by() is required.

� � �
Options �

generate(stubname) specifies how the new variables are to be named. If generate() is not specified,
separate uses the name of the original variable, shortening it if necessary. If generate() is speci-
fied, separate uses stubname. If any of the resulting names is too long when the values are suffixed,
it is not shortened and an error message is issued.

sequential specifies that categories be numbered sequentially from 1. By default, separate uses

the actual values recorded in the original variable, if possible, and sequential numbers otherwise.

separate can use the original values if they are all nonnegative integers smaller than 10,000.

missing also creates a variable for the category missing if missing occurs (groupvar takes on the value
missing or exp evaluates to missing). The resulting variable is named in the usual manner but with an

appended underscore, for example, bp . By default, separate creates no such variable. The contents
of the other variables are unaffected by whether missing is specified.

shortlabel creates a variable label that is shorter than the default. By default, when separate gen-
erates the new variable labels, it includes the name of the variable being separated. shortlabel
specifies that the variable name be omitted from the new variable labels.

separate — Create separate variables 839

Remarks and examples

Example 1
We have data on the miles per gallon (mpg) and country of manufacture of 74 automobiles. We want

to compare the distributions of mpg for domestic and foreign automobiles by plotting the quantiles of the
two distributions (see [R] Diagnostic plots).

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. separate mpg, by(foreign)
Variable Storage Display Value

name type format label Variable label

mpg0 byte %8.0g mpg, foreign == Domestic
mpg1 byte %8.0g mpg, foreign == Foreign
. list mpg* foreign

mpg mpg0 mpg1 foreign

1. 22 22 . Domestic
2. 17 17 . Domestic
3. 22 22 . Domestic

(output omitted)
22. 16 16 . Domestic
23. 17 17 . Domestic
24. 28 28 . Domestic

(output omitted)
73. 25 . 25 Foreign
74. 17 . 17 Foreign

. qqplot mpg0 mpg1

10

20

30

40

m
pg

, f
or

ei
gn

 =
=

 D
om

es
tic

15 20 25 30 35 40
mpg, foreign == Foreign

Quantile–quantile plot

In our auto dataset, the foreign cars have better gas mileage.

separate — Create separate variables 840

Stored results
separate stores the following in r():

Macros

r(varlist) names of the newly created variables

Acknowledgment
separate was originally written by Nicholas J. Cox of the Department of Geography at Durham

University, UK, who is coeditor of the Stata Journal and author of Speaking Stata Graphics.

Reference
Baum, C. F. 2016. An Introduction to Stata Programming. 2nd ed. College Station, TX: Stata Press.

Also see
[R] tabulate oneway — One-way table of frequencies

[R] tabulate twoway — Two-way table of frequencies

[R] tabulate, summarize() — One- and two-way tables of summary statistics

https://www.stata-journal.com/
https://www.stata-press.com/books/speaking-stata-graphics/
https://www.stata-press.com/books/introduction-stata-programming/

shell — Temporarily invoke operating system

Description Syntax Remarks and examples Reference Also see

Description
shell (synonym: “!”) allows you to send commands to your operating system or to enter your oper-

ating system for interactive use. Stata will wait for the shell to close or the operating system command

to complete before continuing.

winexec allows you to start other programs (such as browsers) from Stata’s command line. Stata will

continue without waiting for the program to complete.

xshell (Stata for Mac and Unix(GUI) only) brings up an xterm window in which the command is to

be executed.

Syntax
{ shell | ! } [operating system command]

winexec program name [program args]

{ xshell | !! } [operating system command]

Command availability:
Stata for . . .

Command Windows Mac Unix(GUI) Unix(console)

shell X X X X
winexec X X X –
xshell – X X –

Remarks and examples
Remarks are presented under the following headings:

Stata for Windows
Stata for Mac
Stata for Unix(GUI)
Stata for Unix(console)

841

shell — Temporarily invoke operating system 842

Stata for Windows
shell, without arguments, preserves your session and invokes the operating system. Stata’s Com-

mand window will disappear, and a Windows command prompt will appear, indicating that you may

not continue in Stata until you exit the Windows command prompt. To reenter Stata, type exit at your
operating system’s prompt. Your Stata session is reestablished just as if you had never left.

Say that you are using Stata for Windows and you suddenly realize you need to do two things. You

need to enter your operating system for a few minutes. Rather than exiting Stata, doing what you have to

do, and then restarting Stata, you type shell in the Command window. AWindows command prompt

appears:

C:\data>

You can now do whatever you need to do in Windows, and Stata will wait until you exit the Windows

command prompt before continuing.

Experienced Stata users seldom type out the word shell. They type “!”. Also you do not have to
enter your operating system, issue a command, and then exit back to Stata. If you want to execute one

command, you can type the command right after the word shell or the exclamation point:

. !rename try15.dta final.dta

If you do this, the Windows command prompt will open and close as the command is executed.

Stata for Windows users can also use the winexec command, which allows you to launch any Win-

dows application from within Stata. You can think of it as a shortcut for clicking on the Windows Start

button, choosing Run..., and typing a command.

Assume that you are working in Stata and decide that you want to run a text editor:

. winexec notepad
(The Windows application Notepad will start and run at the same time as Stata)

You could even pass a filename to your text editor:

. winexec notepad c:\docs\myfile.txt

You may need to specify a complete path to the executable that you wish to launch:

. winexec c:\windows\notepad c:\docs\myfile.txt

The important difference between winexec and shell is that Stata does not wait for whatever pro-
gram winexec launches to complete before continuing. Stata will wait for the program shell launches
to complete before performing any further commands.

Stata for Mac
shell, with arguments, invokes your operating system, executes one command, and redirects the

output to the Results window. The command must complete before you can enter another command in

the Command window.

Say that you are using Stata for Mac and suddenly realize that there are two things you have to do. You

need to switch to the Finder or enter commands from a terminal for a few minutes. Rather than exiting

Stata, doing what you have to do, and then switching back to Stata, you type shell and the command in
the Command window to execute one command. You then repeat this step for each command that you

want to execute from the shell.

shell — Temporarily invoke operating system 843

Experienced Stata users seldom type out the word shell. They type “!”.

. !mv try15.dta final.dta

Be careful not to execute commands, such as vi, that require interaction from you. Because all output is

redirected to Stata’s Results window, you will not be able to interact with the command from Stata. This

will effectively lock up Stata because the command will never complete.

When you type xshell vi myfile.do, Stata invokes an xterm window (which in turn invokes a

shell) and executes the command there. Typing !!vi myfile.do is equivalent to typing xshell vi
myfile.do.

Technical note
OnmacOS, xterm is available when X11 is installed. To install X11, you must first download XQuartz

from https://www.xquartz.org/.

Stata for Mac users can also use the winexec command, which allows you to launch any native

application from within Stata. You may, however, have to specify the absolute path to the application. If

the application you wish to launch is a macOS application bundle, you must specify an absolute path to

the executable in the bundle.

Assume that you are working in Stata and decide that you want to run a text editor:

. winexec /Applications/TextEdit.app/Contents/MacOS/TextEdit
(The macOS application TextEdit will start and run at the same time as Stata)

You could even pass a filename to your text editor:

. winexec /Applications/TextEdit.app/Contents/MacOS/TextEdit
> /Users/cnguyen/myfile.do

If you specify a file path as an argument to the program to be launched, you must specify an absolute

path. Also using ~ in the path will not resolve to a home directory. If an application cannot be launched

from a terminal window, it cannot be launched by winexec.

The important difference between winexec and shell is that Stata does not wait for whatever pro-
gram winexec launches to complete before continuing. Stata will wait for the program shell launches to
complete before performing any further commands. shell is appropriate for executing shell commands;
winexec is appropriate for launching applications.

Stata for Unix(GUI)
shell, without arguments, preserves your session and invokes the operating system. The Command

window will disappear, and an xterm window will appear, indicating that you may not do anything in

Stata until you exit the xtermwindow. To reenter Stata, type exit at the Unix prompt. Your Stata session
is reestablished just as if you had never left.

Say that you are using Stata for Unix(GUI) and suddenly realize that you need to do two things. You

need to enter your operating system for a few minutes. Rather than exiting Stata, doing what you have to

do, and then restarting Stata, you type shell in the Command window. An xterm window will appear:

mycomputer$

You can now dowhatever you need to do, and Stata will wait until you exit the window before continuing.

https://www.xquartz.org/

shell — Temporarily invoke operating system 844

Experienced Stata users seldom type out the word shell. They type “!”. Also you do not have to
enter your operating system, issue a command, and then exit back to Stata. If you want to execute one

command, you can type the command right after the word shell or the exclamation point:

. !mv try15.dta final.dta

Be careful because sometimes you will want to type

. !!vi myfile.do

and in other cases,

. winexec xedit myfile.do

!! is a synonym for xshell—a command different from, but related to, shell—and winexec is a

different and related command, too.

Before we get into this, understand that if all you want is a shell from which you can issue Unix

commands, type shell or !:

. !
mycomputer$

When you are through, type exit to the Unix prompt, and you will return to Stata:

mycomputer$ exit
.

If, on the other hand, you want to specify in Stata the Unix command that you want to execute, you need

to decide whether you want to use shell, xshell, or winexec. The answer depends on whether the
command you want to execute requires a terminal window or is an X application:

. . . does not need a terminal window: use shell . . . (synonym: !. . .)

. . . needs a terminal window: use xshell . . . (synonym: !!. . .)

. . . is an X application: use winexec . . . (no synonym)

When you type shell mv try15.dta final.dta, Stata invokes your shell (/bin/sh, /bin/csh,
etc.) and executes the specified command (mv here), routing the standard output and standard error back
to Stata. Typing !mv try15.dta final.dta is the same as typing shell mv try15.dta final.dta.

When you type xshell vi myfile.do, Stata invokes an xterm window (which in turn invokes a

shell) and executes the command there. Typing !!vi myfile.do is equivalent to typing xshell vi
myfile.do.

When you type winexec xedit myfile.do, Stata directly invokes the command specified (xedit
here). No xterm window is brought up nor is a shell invoked because, here, xterm does not need

it. xterm is an X application that will create its own window in which to run. You could have typed

!!xedit myfile.do. That would have brought up an unnecessary xterm window from which xedit
would have been executed, and that would not matter. You could even have typed !xedit myfile.do.
That would have invoked an unnecessary shell from which xedit would have been executed, and that
would not matter, either. The important difference, however, is that shell and xshell wait until the
process completes before allowing Stata to continue, and winexec does not.

shell — Temporarily invoke operating system 845

Technical note
You can set Stata global macros to control the behavior of shell and xshell. The macros are

$S SHELL defines the shell to be used by shell when
you type a command following shell.
The default is something like “/bin/sh -c”, although this can vary,
depending on how your Unix environment variables are set.

$S XSHELL defines shell to be used by shell and xshell
when they are typed without arguments.

The default is “xterm”.
$S XSHELL2 defines shell to be used by xshell when it is

typed with arguments.

The default is “xterm -e”.

For instance, if you type in Stata

. global S_XSHELL2 ”/usr/X11R6/bin/xterm -e”

and then later type

. !!vi myfile.do

then Stata would issue the command /usr/X11R6/bin/xterm -e vi myfile.do to Unix.

If you do make changes, we recommend that you record the changes in your profile.do file.

Stata for Unix(console)
shell, without arguments, preserves your session and then invokes your operating system. Your Stata

session will be suspended until you exit the shell, at which point your Stata session is reestablished just
as if you had never left.

Say that you are using Stata and you suddenly realize that you need to do two things. You need to

enter your operating system for a few minutes. Rather than exiting Stata, doing what you have to do, and

then restarting Stata, you type shell. A Unix prompt appears:

. shell
(Type exit to return to Stata)
$

You can now do whatever you need to do and type exit when you finish. You will return to Stata just
as if you had never left.

Experienced Stata users seldom type out the word shell. They type ‘!’. Also you do not have to
enter your operating system, issue a command, and then exit back to Stata. If you want to execute one

command, you can type the command right after the word shell or the exclamation point. If you want
to edit the file myfile.do, and if vi is the name of your favorite editor, you could type

. !vi myfile.do
Stata opens your editor.
When you exit your editor:

.

shell — Temporarily invoke operating system 846

Reference
Huber, C. 2014. How to create animated graphics using Stata. The Stata Blog: Not Elsewhere Classified. https://blog.

stata.com/2014/03/24/how-to-create-animated-graphics-using-stata/.

Also see
[D] cd — Change directory

[D] copy — Copy file from disk or URL

[D] dir — Display filenames

[D] erase — Erase a disk file

[D] mkdir — Create directory

[D] rmdir — Remove directory

[D] type — Display contents of a file

https://blog.stata.com/2014/03/24/how-to-create-animated-graphics-using-stata/
https://blog.stata.com/2014/03/24/how-to-create-animated-graphics-using-stata/

snapshot — Save and restore data snapshots

Description Quick start Menu Syntax
Option Remarks and examples Stored results Also see

Description
snapshot saves to disk and restores from disk copies of the data in memory. snapshot’s main

purpose is to allow the Data Editor to save and restore data snapshots during an interactive editing session.

Amore popular alternative for programmers is preserve; see [P] preserve.

Snapshots are referred to by a snapshot#. If no snapshots currently exist, the next snapshot saved will

receive a snapshot# of 1. If snapshots do exist, the next snapshot saved will receive a snapshot# one

greater than the highest existing snapshot#.

snapshot save creates a temporary file containing a copy of the data currently in memory and at-
taches an optional label (up to 80 characters) to the saved snapshot. Up to 1,000 snapshots may be saved.

snapshot label changes the label on the specified snapshot.

snapshot restore replaces the data in memory with the data from the specified snapshot.

snapshot list lists specified snapshots.

snapshot erase erases specified snapshots.

Quick start
Save a temporary copy of the data to disk, and label the snapshot mylabel1

snapshot save, label(mylabel1)

List snapshot numbers and labels

snapshot list _all

Restore snapshot mylabel1 with number 1
snapshot restore 1

Change label of snapshot 1 to mylabel2
snapshot label 1 ”mylabel2”

Delete all current snapshots, and begin renumbering new snapshots from 1

snapshot erase _all

Menu
Data > Data Editor > Data Editor (Edit)

847

snapshot — Save and restore data snapshots 848

Syntax
Save snapshot

snapshot save [, label(”label”)]

Change snapshot label

snapshot label snapshot# ”label”

Restore snapshot

snapshot restore snapshot#

List snapshots

snapshot list [all | numlist]

Erase snapshots

snapshot erase all | numlist

collect is allowed with snapshot save; see [U] 11.1.10 Prefix commands.

Option
label(”label”) is for use with snapshot save and allows you to label a snapshot when saving it.

Remarks and examples
snapshot was created to allow a user using the Data Editor to save and restore snapshots of their

data while editing them interactively. It is similar to a checkpoint save in a video game, where after you

have made a certain amount of progress, you wish to make sure you will be able to return to that point

no matter what may happen in the future.

snapshot does not overwrite any copies of your data that you may have saved to disk. It saves a copy
of the data currently in memory to a temporary file and allows you to later restore that copy to memory.

snapshot saves the date and time at which you create a snapshot. It is a good idea to also give a

snapshot a label so that you will be better able to distinguish between multiple snapshots should you

need to restore one.

Technical note
Although we mention above the use of the Data Editor and we demonstrate below the use of

snapshot, we recommend that data cleaning not be done interactively. Instead, we recommend that
data editing and cleaning be done in a reproducible manner through the use of do-files; see [U] 16 Do-

files.

snapshot — Save and restore data snapshots 849

Example 1
You decide to make some changes to auto.dta. You make a snapshot of the data before you begin

making changes, and you make another snapshot after the changes:

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. snapshot save, label(”before changes”)
snapshot 1 (before changes) created at 19 Apr 2024 21:32
. generate gpm = 1/mpg
. label variable gpm ”Gallons per mile”
. snapshot save, label(”after changes”)
snapshot 2 (after changes) created at 19 Apr 2024 21:34

You go on to do some analyses, but then, for some reason, you accidentally drop the variable you

previously created:

. drop gpm

Luckily, you made some snapshots of your work:

. snapshot list
snapshot 1 (before changes) created at 19 Apr 2024 21:32
snapshot 2 (after changes) created at 19 Apr 2024 21:34
. snapshot restore 2
. describe gpm
Variable Storage Display Value

name type format label Variable label

gpm float %9.0g Gallons per mile

Stored results
snapshot save stores the following in r():

Scalars

r(snapshot) sequence number of snapshot saved

Also see
[D] edit — Browse or edit data with Data Editor

[P] preserve — Preserve and restore data

sort — Sort data

Description Quick start Menu Syntax
Option Remarks and examples References Also see

Description
sort arranges the observations of the current data into ascending order based on the values of the

variables in varlist. There is no limit to the number of variables in varlist. Missing numeric values are

interpreted as being larger than any other number, so they are placed last with . < .a < .b < · · · < .z.
When you sort on a string variable, however, null strings are placed first and uppercase letters come

before lowercase letters.

The dataset is marked as being sorted by varlist unless in range is specified. If in range is specified,
only those observations are rearranged. The unspecified observations remain in the same place.

Quick start
Sort dataset in memory by ascending values of v1

sort v1

Same as above, and order within v1 by ascending values of v2 and within v2 by v3
sort v1 v2 v3

Same as above, and keep observations with the same values of v1, v2, and v3 in the same presort order
sort v1 v2 v3, stable

Menu
Data > Sort

850

sort — Sort data 851

Syntax
sort varlist [in] [, stable]

Option
stable specifies that observations with the same values of the variables in varlist keep the same relative

order in the sorted data that they had previously. For instance, consider the following data:

x b

3 1

1 2

1 1

1 3

2 4

Typing sort x without the stable option produces one of the following six orderings:

x b x b x b x b x b x b

1 2 1 2 1 1 1 1 1 3 1 3

1 1 1 3 1 3 1 2 1 1 1 2

1 3 1 1 1 2 1 3 1 2 1 1

2 4 2 4 2 4 2 4 2 4 2 4

3 1 3 1 3 1 3 1 3 1 3 1

Without the stable option, the ordering of observations with equal values of varlist is randomized.
With sort x, stable, you will always get the first ordering and never the other five.

If your intent is to have the observations sorted first on x and then on b within tied values of x (the
fourth ordering above), you should type sort x b rather than sort x, stable.

stable is seldom used and, when specified, causes sort to execute more slowly.

Remarks and examples
Sorting data is one of the more common tasks involved in processing data. Often, before Stata can

perform some task, the data must be in a specific order. For the merge command to create a new dataset

that matches records from two datasets on a common key, both of those datasets must be sorted by that

key. Either you will sort the data or merge will sort it for you. If you want to use the by varlist: prefix,

the data must be sorted in order of varlist. You even sort data to put it into a more convenient order when

using list.

Remarks are presented under the following headings:

Finding the smallest values (and the largest)
Tracking sort order
Sorting on multiple variables
Descending sorts
Sorting on string variables
Sorting with ties

sort — Sort data 852

Finding the smallest values (and the largest)
Sorting data can be informative. Suppose that we have data on automobiles, and each car’s make and

mileage rating (called make and mpg) are included among the variables in the data. We want to list the

five cars with the lowest mileage rating in our data:

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. keep make mpg weight
. sort mpg, stable
. list make mpg in 1/5

make mpg

1. Linc. Continental 12
2. Linc. Mark V 12
3. Cad. Deville 14
4. Cad. Eldorado 14
5. Linc. Versailles 14

We can also list the five cars with the highest mileage.

. list in -5/l

make mpg weight

70. Toyota Corolla 31 2,200
71. Plym. Champ 34 1,800
72. Datsun 210 35 2,020
73. Subaru 35 2,050
74. VW Diesel 41 2,040

Tracking sort order
Stata keeps track of the order of your data. For instance, we just sorted the above data on mpg. When

we ask Stata to describe the data in memory, it tells us how the dataset is sorted:

sort — Sort data 853

. describe
Contains data from https://www.stata-press.com/data/r19/auto.dta
Observations: 74 1978 automobile data

Variables: 3 13 Apr 2024 17:45
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

make str18 %-18s Make and model
mpg int %8.0g Mileage (mpg)
weight int %8.0gc Weight (lbs.)

Sorted by: mpg
Note: Dataset has changed since last saved.

Stata keeps track of changes in sort order. If we were to make a change to the mpg variable, Stata

would know that the data are no longer sorted. Remember that the first observation in our data has mpg
equal to 12, as does the second. Let’s change the value of the first observation:

. replace mpg=13 in 1
(1 real change made)
. describe
Contains data from https://www.stata-press.com/data/r19/auto.dta
Observations: 74 1978 automobile data

Variables: 3 13 Apr 2024 17:45
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

make str18 %-18s Make and model
mpg int %8.0g Mileage (mpg)
weight int %8.0gc Weight (lbs.)

Sorted by:
Note: Dataset has changed since last saved.

After making the change, Stata indicates that our dataset is “Sorted by:” nothing. Let’s put the dataset

back as it was:

. replace mpg=12 in 1
(1 real change made)
. sort mpg

Technical note
Stata is limited in how it tracks changes in the sort order and will sometimes decide that a dataset is

not sorted when, in fact, it is. For instance, if we were to change the first observation of our automobile

dataset from 12 miles per gallon to 10, Stata would decide that the dataset is “Sorted by:” nothing, just as

it did above when we changed mpg from 12 to 13. Our change in example 2 did change the order of the

data, so Stata was correct. Changing mpg from 12 to 10, however, does not really affect the sort order.

As far as Stata is concerned, any change to the variables on which the data are sorted means that the

data are no longer sorted, even if the change actually leaves the order unchanged. Stata may be dumb,

but it is also fast. It sorts already-sorted datasets instantly, so Stata’s ignorance costs us little.

sort — Sort data 854

Sorting on multiple variables
Data can be sorted by more than one variable, and in such cases, the sort order is lexicographic. If we

sort the data by two variables, for instance, the data are placed in ascending order of the first variable,
and then observations that share the same value of the first variable are placed in ascending order of the

second variable. Let’s order our automobile data by mpg and within mpg by weight:
. sort mpg weight
. list in 1/8, sep(4)

make mpg weight

1. Linc. Mark V 12 4,720
2. Linc. Continental 12 4,840
3. Peugeot 604 14 3,420
4. Linc. Versailles 14 3,830

5. Cad. Eldorado 14 3,900
6. Merc. Cougar 14 4,060
7. Merc. XR-7 14 4,130
8. Cad. Deville 14 4,330

The data are in ascending order of mpg, and within each mpg category, the data are in ascending order of
weight. The lightest car that achieves 14 miles per gallon in our data is the Peugeot 604.

Technical note
The sorting technique used by Stata is fast, but the order of variables not included in varlist is not

maintained. If you wish to maintain the order of additional variables, include them at the end of varlist.

There is no limit to the number of variables by which you may sort.

Descending sorts
Sometimes, you may want to order a dataset by descending sequence of something. Perhaps we wish

to obtain a list of the five cars achieving the best mileage rating. The sort command orders the data
only into ascending sequences. Another command, gsort, orders the data in ascending or descending
sequences; see [D] gsort. You can also create the negative of a variable and achieve the desired result:

. generate negmpg = -mpg

. sort negmpg

. list in 1/5

make mpg weight negmpg

1. VW Diesel 41 2,040 -41
2. Datsun 210 35 2,020 -35
3. Subaru 35 2,050 -35
4. Plym. Champ 34 1,800 -34
5. Toyota Corolla 31 2,200 -31

We find that the VW Diesel tops our list.

sort — Sort data 855

Sorting on string variables
sort may also be used on string variables. The data are sorted alphabetically:

. sort make

. list in 1/5

make mpg weight negmpg

1. AMC Concord 22 2,930 -22
2. AMC Pacer 17 3,350 -17
3. AMC Spirit 22 2,640 -22
4. Audi 5000 17 2,830 -17
5. Audi Fox 23 2,070 -23

Technical note
Bear in mind that Stata takes “alphabetically” to mean “in order by byte value”. This means that all

uppercase letters come before lowercase letters; for example, Z < a. As far as Stata is concerned, the

following list is sorted alphabetically:

. list, sep(0)

myvar

1. ALPHA
2. Alpha
3. BETA
4. Beta
5. alpha
6. beta

For most purposes, this method of sorting is sufficient. It is possible to override Stata’s sort logic.

See [U] 12.4.2.5 Sorting strings containing Unicode characters for information about ordering strings

in a language-sensitive way. We do not recommend that you do this.

Sorting with ties
Sorting when your list of sort variables does not uniquely identify an observation, that is to say when

you have ties, is usually dangerous and should be avoided. Consider using sort to find the average mpg
for the five cars with the smallest gear ratio.

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. sort gear_ratio
. summarize mpg in 1/5

Variable Obs Mean Std. dev. Min Max

mpg 5 17 3.674235 14 21

So the answer is 17.

We go on and do some other work.

sort — Sort data 856

We forgot to write down the answer from earlier, and silly us, we were not logging our results. So we

run our commands again:

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. sort gear_ratio
. summarize mpg in 1/5

Variable Obs Mean Std. dev. Min Max

mpg 5 15.8 2.949576 14 21

So the answer is 15.8.

What happened? The title of this section is a clue. Let’s list some of the data:

. list gear_ratio mpg in 1/10

gear_r~o mpg

1. 2.19 14
2. 2.24 21
3. 2.26 15
4. 2.28 14
5. 2.41 15

6. 2.41 16
7. 2.41 21
8. 2.43 18
9. 2.47 16

10. 2.47 14

The first four observations look fine; each value of gear ratio is unique. But the fifth, sixth, and
seventh observations all have a gear ratio of 2.41, whereas the values of mpg differ. Do we want

mpg = 15, mpg = 16, or mpg = 21 in our mean?

There are not many things we can do after a sort that will produce unique results if the sort itself has

observations with ties in varlist. The ordering is not unique. You must be sure that the ordering really

does not matter. If that is the case, then why did you sort in the first place?

So what are we to do? We could rephrase our question as “What is the lowest possible average mpg
for five cars with the smallest gear ratio?” Then we would type

. sort gear_ratio mpg

. summarize mpg in 1/5
Variable Obs Mean Std. dev. Min Max

mpg 5 15.8 2.949576 14 21

Now we will always get the same answer—15.8.

How do you know your sort variables form a unique ordering? Ask

. isid gear_ratio mpg
variables gear_ratio and mpg do not uniquely identify the observations
r(459);

That is still not a unique ordering. Our analysis does not require a fully unique ordering. Because we

are summarizing mpg, tied values of mpg will give the same answer. Even so, there would be no harm in

adding another variable to make the ordering truly unique:

sort — Sort data 857

. isid gear_ratio mpg weight

. sort gear_ratio mpg weight

. summarize mpg in 1/5
Variable Obs Mean Std. dev. Min Max

mpg 5 15.8 2.949576 14 21

What if we did not want the lowest mpg? What if we preferred a randomized answer where the

computer chooses one of the observations with tied gear ratio? The best approach is to use a good

random-number generator to create a new variable with random values that you will also sort on:

. set seed 12345

. generate rnd = runiform()

. sort gear_ratio rnd

. summarize mpg in 1/5
Variable Obs Mean Std. dev. Min Max

mpg 5 17 3.674235 14 21

Why did we set the seed? So that our randomized result is reproducible. That is not a contradiction.

A benefit of this approach is that regardless of any further transformations or manipulations we make

on this dataset we can always recover the ordering by typing

. sort gear_ratio rnd

Well, we cannot change the values of gear ratio or rnd, and we cannot add or insert observations,
but any other manipulations are allowed.

Our example is rather artificial, but there are many cases where you do want a randomized order

within tied values of a sorted variable. One such case is creating simulated datasets for panel data or

multilevel data.

It turns out that our first results were also randomly ordered. That is true because sort performs a
quick randomized jumbling before sorting. We were already getting a randomized order within the ties.

Do not use this in practice. The randomization performed by sort is designed solely to make sort faster
by preventing any possibility of an initial ordering that defeats the sort algorithm and makes the sorting

much slower. If you want a random ordering within ties, then use a random-number generator with good

properties like the one implemented in runiform(). For more about the random-number generator, see
[R] set seed and the references therein.

If you do not want a random ordering within ties and you also do not want to use other variables from

the dataset to define a unique ordering, you can add a sequence variable to the dataset and include it in

your sort,

. generate id = _n

. sort gear_ratio id

That sort will still depend on the order of your data when id is created, but you will always be able to
recreate the ordering by typing

. sort gear_ratio id

The ordering produced after this sort will be identical to the ordering had we instead typed

. sort gear_ratio, stable

sort — Sort data 858

The advantage to creating the id variable is that we can recover this ordering at any time in the future
by retyping

. sort gear_ratio id

That cannot be said of

. sort gear_ratio, stable

The ordering after this sort will depend on the order before the sort command. So if we sort on another
variable between our two stable sorts, the ordering after those two stable sorts will be different.

One final note. If you ran the commands in this entry, you may have obtained different results from

those printed here for the first several summarize commands and a different ordering from the first list
command. That is yet another reminder not to perform order-dependent analyses when your current

sort order is not unique. You got different results because the jumbler that sort preapplies started from
a different point than it did when we ran the commands for this manual entry. Unless you start Stata

immediately before running a sort with tied values or you set the state of the jumbler, you will rarely

get the same ordering for tied keys. If you want to get the ordering we got in this entry, you should use

Stata/SE and type

. set sortrngstate 12345

That’s what we do so that this entry does not change every time we re-create the manuals. See [P] set

sortrngstate. This is such an esoteric command that we warn you against using it. Regardless, unless

your goal is to write a manual entry that describes how to deal with tied values in sorts, do not use set
sortrngstate to create reproducible sorts. Think about your problem and sort on variables that create

the unique ordering you need. Or decide you want a stable sort of the ties based on the current ordering.

Or use the method described above that creates a good random number to randomly order the tied values.

References
Royston, P. 2001. Sort a list of items. Stata Journal 1: 105–106.

Schumm, L. P. 2006. Stata tip 28: Precise control of dataset sort order. Stata Journal 6: 144–146.

Also see
[D] describe — Describe data in memory or in a file

[D] gsort —Ascending and descending sort

[U] 11 Language syntax

https://www.stata-journal.com/article.html?article=dm0001
https://www.stata-journal.com/article.html?article=dm0019

split — Split string variables into parts

Description Quick start Menu Syntax Options
Remarks and examples Stored results Acknowledgments Also see

Description
split splits the contents of a string variable, strvar, into one or more parts, using one or more

parse strings (by default, blank spaces), so that new string variables are generated. Thus split is

useful for separating “words” or other parts of a string variable. strvar itself is not modified.

Quick start
Create variables v# for each word of v separated by spaces

split v

Same as above, but split into words or phrases on commas and generate variables newv#
split v, parse(,) generate(newv)

Same as above, but do not trim leading or trailing spaces

split v, parse(,) generate(newv) notrim

Create only newv1, newv2, and newv3 regardless of the number of possible new variables

split v, generate(newv) limit(3)

Same as above, and convert to numeric type when possible

split v, generate(newv) limit(3) destring

Menu
Data > Create or change data > Other variable-transformation commands > Split string variables into parts

859

split — Split string variables into parts 860

Syntax
split strvar [if] [in] [, options]

options Description

Main

generate(stub) begin new variable names with stub; default is strvar

parse(parse strings) parse on specified strings; default is to parse on spaces

limit(#) create a maximum of # new variables

notrim do not trim leading or trailing spaces of original variable

Destring

destring apply destring to new string variables, replacing initial string
variables with numeric variables where possible

ignore(”chars”) remove specified nonnumeric characters

force convert nonnumeric strings to missing values

float generate numeric variables as type float
percent convert percent variables to fractional form

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

generate(stub) specifies the beginning characters of the new variable names so that new variables

stub1, stub2, etc., are produced. stub defaults to strvar.

parse(parse strings) specifies that, instead of using spaces, parsing use one or more parse strings.

Most commonly, one string that is one punctuation character will be specified. For example, if

parse(,) is specified, then ”1,2,3” is split into ”1”, ”2”, and ”3”.

You can also specify 1) two or more strings that are alternative separators of “words” and 2) strings

that consist of two or more characters. Alternative strings should be separated by spaces. Strings that

include spaces should be bound by ” ”. Thus if parse(, ” ”) is specified, ”1,2 3” is also split into
”1”, ”2”, and ”3”. Note particularly the difference between, say, parse(a b) and parse(ab): with
the first, a and b are both acceptable as separators, whereas with the second, only the string ab is

acceptable.

limit(#) specifies an upper limit to the number of new variables to be created. Thus limit(2) specifies
that, at most, two new variables be created.

notrim specifies that the original string variable not be trimmed of leading and trailing spaces before
being parsed. notrim is not compatible with parsing on spaces, because the latter implies that spaces
in a string are to be discarded. You can either specify a parsing character or, by default, allow a trim.

� � �
Destring �

destring applies destring to the new string variables, replacing the variables initially created as strings

by numeric variables where possible. See [D] destring.

ignore(), force, float, percent; see [D] destring.

split — Split string variables into parts 861

Remarks and examples
split is used to split a string variable into two or more component parts, for example, “words”. You

might need to correct a mistake, or the string variable might be a genuine composite that you wish to

subdivide before doing more analysis.

The basic steps applied by split are, given one or more separators, to find those separators within
the string and then to generate one or more new string variables, each containing a part of the original.

The separators could be, for example, spaces or other punctuation symbols, but they can in turn be strings

containing several characters. The default separator is a space.

The key string functions for subdividing string variables and, indeed, strings in general, are strpos(),
which finds the position of separators, and substr(), which extracts parts of the string. (See [FN] String
functions.) split is based on the use of those functions.

If your problem is not defined by splitting on separators, you will probably want to use substr()
directly. Suppose that you have a string variable, date, containing dates in the form ”21011952” so that
the last four characters define a year. This string contains no separators. To extract the year, you would

use substr(date,-4,4). Again suppose that each woman’s obstetric history over the last 12 months
was recorded by a str12 variable containing values such as ”nppppppppbnn”, where p, b, and n denote
months of pregnancy, birth, and nonpregnancy. Once more, there are no separators, so you would use

substr() to subdivide the string.

split discards the separators, because it presumes that they are irrelevant to further analysis or that
you could restore them at will. If this is not what you want, you might use substr() (and possibly

strpos()).

Finally, before we turn to examples, compare split with the egen function ends(), which produces
the head, the tail, or the last part of a string. This function, like all egen functions, produces just one
new variable as a result. In contrast, split typically produces several new variables as the result of one

command. For more details and discussion, including comments on the special problem of recognizing

personal names, see [D] egen.

split can be useful when input to Stata is somehow misread as one string variable. If you copy

and paste into the Data Editor, say, under Windows by using the clipboard, but data are space-separated,

what you regard as separate variables will be combined because the Data Editor expects comma- or tab-

separated data. If some parts of your composite variable are numeric characters that should be put into

numeric variables, you could use destring at the same time; see [D] destring.

. split var1, destring

Here no generate() option was specified, so the new variables will have names var11, var12, and so
forth. You may now wish to use rename to produce more informative variable names. See [D] rename.

You can also use split to subdivide genuine composites. For example, email addresses such as

tech-support@stata.com may be split at ”@”:

. split address, p(@)

This sequence yields two new variables: address1, containing the part of the email address before the
”@”, such as ”tech-support”, and address2, containing the part after the ”@”, such as ”stata.com”.
The separator itself, ”@”, is discarded. Because generate() was not specified, the name address was
used as a stub in naming the new variables. split displays the names of new variables created, so you

will see quickly whether the number created matches your expectations.

split — Split string variables into parts 862

If the details of individuals were of no interest and you wanted only machine names, either

. egen machinename = ends(address), tail p(@)

or

. generate machinename = substr(address, strpos(address,”@”) + 1,.)

would be more direct.

Next suppose that a string variable holds names of legal cases that should be split into variables

for plaintiff and defendant. The separators could be ” V ”, ” V. ”, ” VS ”, and ” VS. ”. (We assume

that any inconsistency in the use of uppercase and lowercase has been dealt with by the string function

strupper(); see [FN] String functions.) Note particularly the leading and trailing spaces in our de-

tailing of separators: the first separator is ” V ”, for example, not ”V”, which would incorrectly split
”GOLIATH V DAVID” into ”GOLIATH ”, ” DA”, and ”ID”. The alternative separators are given as the

argument to parse():

. split case, p(” V ” ” V. ” ” VS ” ” VS. ”)

Again with default naming of variables and recalling that separators are discarded, we expect new

variables case1 and case2, with no creation of case3 or further new variables. Whenever none of the

separators specified were found, case2 would have empty values, so we can check:

. list case if case2 == ””

Suppose that a string variable contains fields separated by tabs. For example, import delimited
leaves tabs unchanged. Knowing that a tab is char(9), we can type

. split data, p(‘=char(9)’) destring

p(char(9)) would not work. The argument to parse() is taken literally, but evaluation of functions
on the fly can be forced as part of macro substitution.

Finally, suppose that a string variable contains substrings bound in parentheses, such as (1 2 3) (4 5
6). Here we can split on the right parentheses and, if desired, replace those afterward. For example,

. split data, p(”)”)

. foreach v in ‘r(varlist)’ {
replace ‘v’ = ‘v’ + ”)”

. }

Stored results
split stores the following in r():
Scalars

r(k new) number of new variables created

Macros

r(varlist) names of the newly created variables

Acknowledgments
split was written by Nicholas J. Cox of the Department of Geography at Durham University, UK,

who is coeditor of the Stata Journal and author of Speaking Stata Graphics. He in turn thanks Michael

Blasnik of Nest Labs for ideas contributed to an earlier jointly written program.

https://www.stata-journal.com/
https://www.stata-press.com/books/speaking-stata-graphics/

split — Split string variables into parts 863

Also see
[D] destring — Convert string variables to numeric variables and vice versa

[D] egen — Extensions to generate

[D] rename — Rename variable

[D] separate — Create separate variables

[FN] String functions

splitsample — Split data into random samples

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas Also see

Description
splitsample splits data into random samples based on a specified number of samples and specified

proportions for each sample. Splitting can also be done based on clusters. Sample splitting can also be

balanced across specified variables. Balanced splitting can be used for matched treatment assignment.

Quick start
Split data into two random samples of equal sizes and generate sample ID variable svar with values 1

and 2

splitsample, generate(svar)

Same as above, but with sample ID variable svar having values 0 and 1
splitsample, generate(svar) values(0 1)

Split data into three random samples of equal sizes and generate sample ID variable svar with values 1,
2, and 3

splitsample, generate(svar) nsplit(3)

Same as above, but with sample ID variable svar equal to missing (.) whenever any of y or x1-x100
have missing values

splitsample y x1-x100, generate(svar) nsplit(3)

Split data into three random samples with the first sample having 25% of the observations, the second

having 25%, and the third having 50%

splitsample, generate(svar) split(0.25 0.25 0.5)

Same sample split as above, but specify the split using ratios rather than proportions

splitsample, generate(svar) split(1 1 2)

Same as above, but maintain the specified sample-size ratios in each group defined by the variables

agegrp and gender
splitsample, generate(svar) split(1 1 2) balance(agegrp gender)

Same as above, but randomly round sample sizes when samples within an agegrp by gender group

cannot be chosen to satisfy the specified sample-size ratios exactly

splitsample, generate(svar) split(1 1 2) balance(agegrp gender) rround

Split data into three samples based on clusters defined by clustvar
splitsample, generate(svar) nsplit(3) cluster(clustvar)

864

splitsample — Split data into random samples 865

Same as above, but maintain the specified sample proportions based on clusters in each group defined by

the variables agegrp and gender, randomly round cluster sample sizes, and display a table showing
the cluster sample sizes

splitsample, generate(svar) nsplit(3) cluster(clustvar) ///
balance(agegrp gender) rround show

Menu
Data > Create or change data > Other variable-creation commands > Split data into random samples

Syntax
splitsample [varlist] [if] [in], generate(newvar [, replace]) [options]

varlist is checked for missing values, and the sample ID variable newvar is set to missing for observations

where any variable in varlist is missing. all or * may be specified for varlist.

options Description

Main
∗ generate(newvar [, replace]) create new sample ID variable; optionally replace existing

variable

nsplit(#) split into # random samples of equal size

split(numlist) specify numlist of proportions or ratios for the split

rround randomly round sample sizes when an exact split cannot
be made

values(numlist) specify numlist of values for sample ID variable

cluster(clustvar) split by clusters defined by clustvar, not observations

balance(balvars) split each group defined by the distinct values of balvars
independently based on the specified sample proportions

Advanced

strok evaluate string variables in varlist for missing values;
by default, string variables are ignored

rseed(#) specify random-number seed

show display a table showing the sample sizes of the split

percent display percentages in the table showing the split
∗generate() is required.
collect is allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

generate(newvar [, replace]) creates a new variable containing ID values for the random samples.

The variable newvar is valued 1, 2, . . .by default. The option values(numlist) can be used to specify
different ID values. generate() is required.

replace allows any existing variable named newvar to be replaced.

nsplit(#) splits the data into # random samples of equal size, or as close to equal as possible. If neither

nsplit() nor split() is specified, the data are split into two samples.

splitsample — Split data into random samples 866

split(numlist) is an alternative to nsplit() for specifying the split. This option splits the data into
samples whose sizes are proportional to the values of numlist. The values of numlist can be any

positive number. You can specify proportions that sum to 1, or you can specify integers that define

ratios for the sample sizes. Regardless of whether you specify decimals less than 1 or integers, the

proportions of the split are given by the values in numlist divided by their sum.

rround specifies that sample sizes be randomly rounded when an exact split cannot be made. When an

exact split can be made, this option does nothing. When split(numlist) is specified with rround,
numlist must consist of integers, and the integers should contain no common factors. For instance,

use split(1 1 2), not split(25 25 50). See Methods and formulas for an explanation.

By default, the sample sizes of the splits are calculated using a deterministic rounding formula. That is,

if you repeat the splitting with a different random-number seed, you will get exactly the same sample

sizes. Specifying rround creates randomly rounded sample sizes such that the expected values of the
sample sizes match the specified split proportions exactly.

The option rround is designed for use with the balance() option when the number of observations
in each of the balance groups is small. When group sizes are small (especially when smaller than the

number of splits), rround ensures that the overall actual sample split proportions closely match the
specified split proportions.

values(numlist) specifies that numlist be used for the values of the sample ID variable rather than the

default of 1, 2, The number of values in numlist must correspond to the number of samples into

which the data are split and must be ascending nonnegative integers.

cluster(clustvar) specifies that the data be split by the clusters defined by clustvar. That is, all obser-
vations in a cluster are kept together in the same split sample. The proportions of the split are based

on numbers of clusters, not numbers of observations. clustvar can be a numeric or string variable.

balance(balvars) specifies that each group defined by the distinct values of balvars be split indepen-
dently based on the specified sample proportions. This ensures a balanced, or roughly balanced,

distribution of the balvars values across the split samples. When the number of observations (or clus-

ters) in each group is about the same as (or smaller than) the number of split samples, the option

rround is recommended. balvars can be numeric or string variables.

� � �
Advanced �

strok (applies only when a varlist is specified) specifies to check any string variables in varlist for

missing values. For observations with missing values, the generated sample ID variable is set to

missing. By default, string variables in varlist are ignored.

rseed(#) sets the random-number seed. This option can be used to reproduce results. rseed(#) is

equivalent to typing set seed # prior to running splitsample. See [R] set seed.

show displays a table showing the sample sizes of the split. When cluster() is specified, it shows

the numbers of clusters in the samples. When balance(balvars) is specified, it displays a table in
which each row corresponds to a distinct set of values of balvars and shown across the columns are

the numbers of observations (or clusters) belonging to each split sample for that balance group.

percent specifies to display percentages rather than the number of observations (or clusters) in the table.
percent can only be specified with the option show.

splitsample — Split data into random samples 867

Remarks and examples
splitsample is useful for dividing data into training, validation, and testing samples for machine

learning and automated model-building procedures such as those performed by the lasso, stepwise,
and nestreg commands.

splitsample with the options balance() and rround can also be used to do random treatment

assignment with matching. See example 3.

Example 1: Splitting by observations
Let’s create a dataset with 101 observations and run splitsample without any options except the

required option giving the name of the sample ID variable to generate. Then we tabulate the newly

created variable.

. set obs 101
Number of observations (_N) was 0, now 101.
. splitsample, generate(svar)
. tabulate svar

svar Freq. Percent Cum.

1 51 50.50 50.50
2 50 49.50 100.00

Total 101 100.00

By default, splitsample splits the data into two samples, with the samples as equal in size as possible.

The option nsplit(#) can be used to split the data into as many samples as you want—in this case,

three samples.

. splitsample, generate(svar, replace) nsplit(3)

. tabulate svar
svar Freq. Percent Cum.

1 34 33.66 33.66
2 33 32.67 66.34
3 34 33.66 100.00

Total 101 100.00

The option split(numlist) can be specified in place of nsplit() to split the data into any propor-
tions you want. Here we specify that we want 25% of the observations in sample 1, 25% in sample 2,

and 50% in sample 3.

. splitsample, generate(svar, replace) split(0.25 0.25 0.50) show
svar Freq. Percent Cum.

1 25 24.75 24.75
2 26 25.74 50.50
3 50 49.50 100.00

Total 101 100.00

splitsample — Split data into random samples 868

It split the data as close as it could to 25% ∶ 25% ∶ 50%. The option show displayed the tabulation for
us.

Example 2: Splitting by clusters
splitsample can also split the data by clusters. Let’s create a cluster variable clustvar and split

the data into three samples with proportions 25% ∶ 25% ∶ 50% for the numbers of clusters. We also

specify the option show, which gives a convenient tabulation by numbers of clusters rather than numbers
of observations.

. set seed 12345

. generate clustvar = runiformint(1, 20)

. splitsample, generate(svar, replace) split(0.25 0.25 0.50) cluster(clustvar)
> show

svar Freq. Percent Cum.

1 5 25.00 25.00
2 5 25.00 50.00
3 10 50.00 100.00

Total 20 100.00
Total is number of clusters.

Because we had 20 clusters, the split into 25% ∶ 25% ∶ 50% yielded cluster sample sizes that met the

specified proportions exactly.

The resulting split by number of observations is, of course, different.

. tabulate svar
svar Freq. Percent Cum.

1 34 33.66 33.66
2 21 20.79 54.46
3 46 45.54 100.00

Total 101 100.00

When splitting by clusters, the size of each cluster is ignored.

Example 3: Balanced splitting and treatment assignment
splitsample can split the data independently within groups using the option balance(). Let’s

create two fake categorical variables, one agegrp representing eight age–group categories, and a 0/1

variable gender.

. set seed 12345

. generate agegrp = runiformint(1, 8)

. generate gender = runiformint(0, 1)

We want to split the data into four samples, where the first three samples are the same size, and the

fourth sample is twice the size of each of the others. We specify split(1 1 1 2) using integer ratios.
We specify the option balance(agegrp gender) to ensure that the distribution of agegrp × gender
is roughly balanced across the four samples. The option show is useful for seeing the actual splits of the
numbers of observations within each agegrp × gender group.

splitsample — Split data into random samples 869

. splitsample, generate(svar, replace) split(1 1 1 2)
> balance(agegrp gender) show
note: some groups defined by balance() do not contain every sample value.

agegrp gender svar 1 svar 2 svar 3 svar 4 Total

1 0 2 1 2 3 8
1 1 1 2 1 3 7

2 0 2 2 1 4 9
2 1 1 1 1 2 5

3 0 1 1 1 2 5
3 1 1 1 0 2 4

4 0 2 2 2 4 10
4 1 2 2 1 4 9

5 0 1 0 1 1 3
5 1 1 0 1 1 3

6 0 1 0 1 1 3
6 1 2 2 1 4 9

7 0 0 1 0 1 2
7 1 1 1 1 2 5

8 0 2 1 2 3 8
8 1 2 2 3 4 11

We get a message “some groups defined by balance() do not contain every sample value”. Indeed,
all the groups of size three have no observations in sample 2. Because we are splitting the data into four

samples, obviously we need at least four observations in a group for every sample to contain at least one

observation.

Second, we notice that all groups of the same size are split into the four samples with exactly the

same number of observations in each sample. For example, the two groups of size eight (agegrp = 1,

gender = 0 and agegrp = 8, gender = 0) both have two observations in each of samples 1 and 3, one

observation in sample 2, and three observations in sample 4.

Groups of the same size have exactly the same sample-size splits because, by default, the sample sizes

for the splits are calculated using a deterministic formula. If the sizes of the groups vary, this typically

would not be an issue. Overall, one would expect the actual split proportions to be close to the specified

split proportions. But imagine if all, or almost all, the group sizes were the same. What if the size of each

group were eight observations in this example? Every group would be split 2 ∶ 1 ∶ 2 ∶ 3 by observations,
yielding actual split proportions of 25% ∶ 12.5% ∶ 25% ∶ 37.5%, which are rather different from the

specified split proportions of 20% ∶ 20% ∶ 20% ∶ 40%.

splitsample — Split data into random samples 870

The option rround provides a solution for this problem. It randomly rounds the split sample sizes
when the split cannot be made exactly.

. splitsample, generate(svar, replace) split(1 1 1 2)
> balance(agegrp gender) rround rseed(54321) show
note: some groups defined by balance() do not contain every sample value.

agegrp gender svar 1 svar 2 svar 3 svar 4 Total

1 0 2 1 2 3 8
1 1 2 1 1 3 7

2 0 2 2 1 4 9
2 1 1 1 1 2 5

3 0 1 1 1 2 5
3 1 1 1 1 1 4

4 0 2 2 2 4 10
4 1 2 2 2 3 9

5 0 1 1 0 1 3
5 1 1 1 1 0 3

6 0 0 1 1 1 3
6 1 1 2 2 4 9

7 0 0 0 0 2 2
7 1 1 1 1 2 5

8 0 1 2 2 3 8
8 1 2 2 2 5 11

We see that the groups of sizes three, eight, and nine now have different splits by numbers of observations.

The groups of size five have exactly the same splits by size because they could be divided exactly based

on the specified split ratios of 1 ∶ 1 ∶ 1 ∶ 2.
The option rroundwith balance() thus does a “more random” assignment of observations (or clus-

ters), which is important when the sizes of the balance groups are small. When the sizes of the balance

groups are large, and the sizes of the groups vary, splits made with or without rround will be similar.

Note that rroundwith balance() is suitable for random treatment assignment with matching defined

by values of the balance variables.

The computational procedure for option rround first randomly assigns as many observations to the
split samples as it can to match the specified split proportions exactly. Leftover observations are as-

signed to samples by dividing them randomly based on the specified split ratios. Splitting ratios must be

specified as integers to facilitate this method of splitting the leftovers. See Methods and formulas.

Example 4: Missing values
varlist can be specified with splitsample to handle missing values. Let’s say we want to divide our

data into training and validation samples for a lasso or other procedure. Imagine that the variables in
the lasso have more than a few missing values. Specifying these variables as varlist for splitsample
means that the sample ID variable created will have missing values whenever any of the variables in

varlist are missing.

splitsample — Split data into random samples 871

Here’s an illustration. We create a couple of variables with missing values.

. set seed 1234

. generate y = runiform()

. replace y = . if runiform() < 0.1
(11 real changes made, 11 to missing)
. generate x = runiform()
. replace x = . if runiform() < 0.1
(15 real changes made, 15 to missing)

Then split the data specifying these variables to be checked for missing:

. splitsample y x, generate(svar, replace)

. tabulate svar, miss
svar Freq. Percent Cum.

1 38 37.62 37.62
2 38 37.62 75.25
. 25 24.75 100.00

Total 101 100.00

The split was done exactly for the observations without missing values.

Stored results
splitsample stores the following in r():

Scalars

r(N) total number of observations

r(N clust) total number of clusters

r(n samples) number of split samples

Macros

r(clustvar) name of cluster variable

r(balancevars) names of balance variables

r(rngstate) random-number state used

Methods and formulas
Let 𝑟1, 𝑟2, . . . , 𝑟𝐾 be the arguments to split(numlist). If the split is specified using nsplit(#),

then we set each 𝑟𝑘 = 1, and the number of split samples is 𝐾 = #. The split sample proportions are

𝑝𝑘 = 𝑟𝑘
𝑅

where 𝑅 =
𝐾

∑
𝑖=1

𝑟𝑖

The cumulative proportions are

𝑠𝑘 =
𝑘

∑
𝑖=1

𝑝𝑖

For the default deterministic rounding, we calculate cumulative sample sizes:

𝑀𝑘 = round(𝑁𝑠𝑘)

splitsample — Split data into random samples 872

where 𝑁 is the total number of observations or the number of clusters, and round(⋅) is Stata’s round()
function. When the option balance() is specified, 𝑁 is the number of observations or clusters in a

single balance group. The sample sizes 𝑁1, 𝑁2, . . . , 𝑁𝐾 are given by

𝑁1 = 𝑀1

𝑁𝑘 = 𝑀𝑘 − 𝑀𝑘−1 for 𝑘 = 2, . . . , 𝐾

When the option rround is specified for random rounding, we first divide 𝑁, the number of observa-

tions or clusters, as follows:

𝑁 = 𝑐𝑅 + 𝑑

where 𝑅 is the sum of 𝑟1, 𝑟2, . . . , 𝑟𝐾; 𝑐 is a nonnegative integer; and 0 ≤ 𝑑 < 𝑅. In other words, 𝑐𝑅
observations can be split into 𝐾 samples matching the specified split proportions exactly. We randomly

pick 𝑐𝑅 observations and assign them to the samples. The leftover 𝑑 observations are randomly placed

in 𝑅 bins without replacement, where the first 𝑟1 bins represent sample 1, the next 𝑟2 bins represent

sample 2, and so on.

The computational procedure for random rounding thus requires 𝑟1, 𝑟2, . . . , 𝑟𝐾 to be integers and also

requires 𝑅 ≤ 𝑁. To reduce the variance of the random rounding, the integers 𝑟1, 𝑟2, . . . , 𝑟𝐾 should have

no common factors.

Also see
[D] sample — Draw random sample

stack — Stack data

Description Quick start Menu Syntax
Options Remarks and examples Reference Also see

Description
stack stacks the variables in varlist vertically, resulting in a dataset with variables newvars and

N ⋅ (𝑁𝑣/𝑁𝑛) observations, where 𝑁𝑣 is the number of variables in varlist and 𝑁𝑛 is the number in

newvars. stack creates the new variable stack identifying the groups.

Quick start
Replace data in memory with v, v2 appended to v1 and identify original variable by order in stack

stack v1 v2, into(v)

Same as above, but with v1 appended to v2 and do not display warning that data in memory will be

replaced

stack v2 v1, into(v) clear

Same as above, but save result in v2
stack v2 v1, group(2) clear

Append v2 to v1 and v4 to v3 and save result in newv1 and newv2
stack v1 v3 v2 v4, into(newv1 newv2) clear

Same as above, but save results in v1 and v3
stack v1 v3 v2 v4, group(2) clear

Menu
Data > Create or change data > Other variable-transformation commands > Stack data

873

stack — Stack data 874

Syntax
stack varlist [if] [in], { into(newvars) | group(#) } [options]

options Description

Main
∗ into(newvars) identify names of new variables to be created
∗ group(#) stack # groups of variables in varlist

clear clear dataset from memory

wide keep variables in varlist that are not specified in newvars

∗ Either into(newvars) or group(#) is required.
stack does not allow alias variables; see [D] frunalias for advice on how to get around this restriction.

Options

� � �
Main �

into(newvars) identifies the names of the new variables to be created. into() may be specified using
variable ranges (for example, into(v1-v3)). Either into() or group(), but not both, must be
specified.

group(#) specifies the number of groups of variables in varlist to be stacked. The created variables will
be named according to the first group in varlist. Either group() or into(), but not both, must be
specified.

clear indicates that it is okay to clear the dataset in memory. If you do not specify this option, you will
be asked to confirm your intentions.

wide includes any of the original variables in varlist that are not specified in newvars in the resulting

data.

Remarks and examples

Example 1: Illustrating the concept
This command is best understood by examples. We begin with artificial but informative examples

and end with useful examples.

. use https://www.stata-press.com/data/r19/stackxmpl

. list

a b c d

1. 1 2 3 4
2. 5 6 7 8

stack — Stack data 875

. stack a b c d, into(e f) clear

. list

_stack e f

1. 1 1 2
2. 1 5 6
3. 2 3 4
4. 2 7 8

We formed the new variable e by stacking a and c, and we formed the new variable f by stacking b and
d. stack is automatically created and set equal to 1 for the first (a, b) group and equal to 2 for the
second (c, d) group. (When stack==1, the new data e and f contain the values from a and b. When

stack==2, e and f contain values from c and d.)

There are two groups because we specified four variables in the varlist and two variables in the into
list, and 4/2 = 2. If there were six variables in the varlist, there would be 6/2 = 3 groups. If there

were also three variables in the into list, there would be 6/3 = 2 groups. Specifying six variables in

the varlist and four variables in the into list would result in an error because 6/4 is not an integer.

Example 2: Stacking a variable multiple times
Variables may be repeated in the varlist, and the varlist need not contain all the variables:

. use https://www.stata-press.com/data/r19/stackxmpl, clear

. list

a b c d

1. 1 2 3 4
2. 5 6 7 8

. stack a b a c, into(a bc) clear

. list

_stack a bc

1. 1 1 2
2. 1 5 6
3. 2 1 3
4. 2 5 7

a was stacked on a and called a, whereas b was stacked on c and called bc.

If we had wanted the resulting variables to be called simply a and b, we could have used

. stack a b a c, group(2) clear

which is equivalent to

. stack a b a c, into(a b) clear

stack — Stack data 876

Example 3: Keeping the original variables
In this artificial but informative example, the wide option includes the variables in the original dataset

that were specified in varlist in the output dataset:

. use https://www.stata-press.com/data/r19/stackxmpl, clear

. list

a b c d

1. 1 2 3 4
2. 5 6 7 8

. stack a b c d, into(e f) clear wide

. list

_stack e f a b c d

1. 1 1 2 1 2 . .
2. 1 5 6 5 6 . .
3. 2 3 4 . . 3 4
4. 2 7 8 . . 7 8

In addition to the stacked e and f variables, the original a, b, c, and d variables are included. They are
set to missing where their values are not appropriate.

Example 4: Using wide with repeated variables
This is the last artificial example. When you specify the wide option and repeat the same variable

name in both the varlist and the into list, the variable will contain the stacked values:

. use https://www.stata-press.com/data/r19/stackxmpl, clear

. list

a b c d

1. 1 2 3 4
2. 5 6 7 8

. stack a b a c, into(a bc) clear wide

. list

_stack a bc b c

1. 1 1 2 2 .
2. 1 5 6 6 .
3. 2 1 3 . 3
4. 2 5 7 . 7

stack — Stack data 877

Example 5: Using stack to make graphs
We want one graph of y against x1 and y against x2. We might be tempted to type scatter y x1 x2,

but that would graph y against x2 and x1 against x2. One solution is to type

. save mydata

. stack y x1 y x2, into(yy x12) clear

. generate y1 = yy if _stack==1

. generate y2 = yy if _stack==2

. scatter y1 y2 x12

. use mydata, clear

The names yy and x12 are supposed to suggest the contents of the variables. yy contains (y,y), and x12
contains (x1,x2). We then make y1 defined at the x1 points but missing at the x2 points—graphing y1
against x12 is the same as graphing y against x1 in the original dataset. Similarly, y2 is defined at the x2
points but missing at x1—graphing y2 against x12 is the same as graphing y against x2 in the original
dataset. Therefore, scatter y1 y2 x12 produces the desired graph.

Example 6: Plotting cumulative distributions
We wish to graph y1 against x1 and y2 against x2 on the same graph. The logic is the same as above,

but let’s go through it. Perhaps we have constructed two cumulative distributions by using cumul (see
[R] cumul):

. use https://www.stata-press.com/data/r19/citytemp
(City temperature data)
. cumul tempjan, gen(cjan)
. cumul tempjuly, gen(cjuly)

We want to graph both cumulatives in the same graph; that is, we want to graph cjan against tempjan
and cjuly against tempjuly. Remember that we could graph the tempjan cumulative by typing

. scatter cjan tempjan, c(l) m(o) sort
(output omitted)

We can graph the tempjuly cumulative similarly. To obtain both on the same graph, we must stack the
data:

. stack cjuly tempjuly cjan tempjan, into(c temp) clear

. generate cjan = c if _stack==1
(958 missing values generated)
. generate cjuly = c if _stack==2
(958 missing values generated)
. scatter cjan cjuly temp, c(l l) m(o o) sort
(output omitted)

stack — Stack data 878

Alternatively, if we specify the wide option, we do not have to regenerate cjan and cjuly because
they will be created automatically:

. use https://www.stata-press.com/data/r19/citytemp, clear
(City temperature data)
. cumul tempjan, gen(cjan)
. cumul tempjuly, gen(cjuly)
. stack cjuly tempjuly cjan tempjan, into(c temp) clear wide
. scatter cjan cjuly temp, c(l l) m(o o) sort
(output omitted)

Technical note
There is a third way, not using the wide option, that is exceedingly tricky but is sometimes useful:

. use https://www.stata-press.com/data/r19/citytemp, clear
(City temperature data)
. cumul tempjan, gen(cjan)
. cumul tempjuly, gen(cjuly)
. stack cjuly tempjuly cjan tempjan, into(c temp) clear
. sort _stack temp
. scatter c temp, c(L) m(o)
(output omitted)

Note the use of connect’s capital L rather than lowercase l option. c(L) connects points only from left

to right; because the data are sorted by stack temp, temp increases within the first group (cjuly vs.
tempjuly) and then starts again for the second (cjan vs. tempjan); see [G-4] connectstyle.

Reference
Baum, C. F. 2016. An Introduction to Stata Programming. 2nd ed. College Station, TX: Stata Press.

Also see
[D] contract — Make dataset of frequencies and percentages

[D] frunalias — Change storage type of alias variables

[D] reshape — Convert data from wide to long form and vice versa

[D] xpose — Interchange observations and variables

https://www.stata-press.com/books/introduction-stata-programming/

statsby — Collect statistics for a command across a by list

Description Quick start Menu Syntax Options
Remarks and examples Acknowledgment References Also see

Description
statsby collects statistics from command across a by list. Typing

. statsby exp list, by(varname): command

executes command for each group identified by varname, building a dataset of the associated values

from the expressions in exp list. The resulting dataset replaces the current dataset, unless the saving()
option is supplied. varname can refer to a numeric or a string variable.

command defines the statistical command to be executed. Most Stata commands and user-written

programs can be used with statsby, as long as they follow standard Stata syntax and allow the if
qualifier; see [U] 11 Language syntax. The by prefix cannot be part of command.

exp list specifies the statistics to be collected from the execution of command. If no expressions are

given, exp list assumes a default depending upon whether command changes results in e() and r(). If
command changes results in e(), the default is b. If command changes results in r() (but not e()), the
default is all the scalars posted to r(). It is an error not to specify an expression in exp list otherwise.

Quick start
Replace data in memory with estimates of the coefficient of x and constant for each value of catvar

statsby, by(catvar): regress y x

Same as above, but name new variables b and cons
statsby b=_b[x] cons=_b[_cons], by(catvar): regress y x

Add standard errors of the estimates and use default variable names

statsby _b _se, by(catvar): regress y x

Same as above, but retain data in memory and save estimates to myest.dta
statsby _b _se, by(catvar) saving(myest): regress y x

Same as above, and include estimate for entire dataset

statsby _b _se, by(catvar) saving(myest) total: regress y x

Note: Any command that accepts the statsby prefix may be substituted for regress above.

Menu
Statistics > Other > Collect statistics for a command across a by list

879

statsby — Collect statistics for a command across a by list 880

Syntax
statsby [exp list] [, options]: command

options Description

Main
∗ by(varlist [, missing]) equivalent to interactive use of by varlist:

Options

clear replace data in memory with results

saving(filename, . . .) save results to filename; save statistics in double precision; save
results to filename every # replications

total include results for the entire dataset

subsets include all combinations of subsets of groups

Reporting

nodots suppress replication dots

dots(#) display dots every # replications

noisily display any output from command

trace trace command

nolegend suppress table legend

verbose display the full table legend

Advanced

basepop(exp) restrict initializing sample to exp; seldom used

force do not check for svy commands; seldom used

forcedrop retain only observations in by-groups when calling command;
seldom used

∗ by() is required in the dialog box because statsby is useful to the interactive user only when using by().
All weight types supported by command are allowed except pweights; see [U] 11.1.6 weight.

exp list contains (name: elist)
elist

eexp

elist contains newvarname = (exp)
(exp)

eexp is specname

[eqno]specname
specname is b

b[]
se
se[]

eqno is # #
name

exp is a standard Stata expression; see [U] 13 Functions and expressions.

Distinguish between [], which are to be typed, and [], which indicate optional arguments.

statsby — Collect statistics for a command across a by list 881

Options

� � �
Main �

by(varlist [, missing]) specifies a list of existing variables that would normally appear in the by
varlist: section of the command if you were to issue the command interactively. By default, statsby
ignores groups in which one or more of the by() variables is missing. Alternatively, missing causes
missing values to be treated like any other values in the by-groups, and results from the entire dataset

are included with use of the subsets option. If by() is not specified, command will be run on the

entire dataset. varlist can contain both numeric and string variables.

� � �
Options �

clear specifies that it is okay to replace the data in memory, even though the current data have not been
saved to disk.

saving(filename[, suboptions]) creates a Stata data file (.dta file) consisting of (for each statistic in
exp list) a variable containing the replicates.

double specifies that the results for each replication be stored as doubles, meaning 8-byte reals. By
default, they are stored as floats, meaning 4-byte reals.

every(#) specifies that results be written to disk every #th replication. every() should be specified
in conjunction with saving() only when command takes a long time for each replication. This

will allow recovery of partial results should your computer crash. See [P] postfile.

total specifies that command be run on the entire dataset, in addition to the groups specified in the by()
option.

subsets specifies that command be run for each group defined by any combination of the variables in
the by() option.

� � �
Reporting �

nodots and dots(#) specify whether to display replication dots. By default, one dot character is dis-
played for each by-group. An “x” is displayed if command returns an error or if any value in exp list

is missing. You can also control whether dots are printed using set dots; see [R] set.

nodots suppresses display of the replication dots.

dots(#) displays dots every # replications. dots(0) is a synonym for nodots.

noisily causes the output of command to be displayed for each by-group. This option implies the

nodots option.

trace causes a trace of the execution of command to be displayed. This option implies the noisily
option.

nolegend suppresses the display of the table legend, which identifies the rows of the table with the

expressions they represent.

verbose requests that the full table legend be displayed. By default, coefficients and standard errors are
not displayed.

� � �
Advanced �

basepop(exp) specifies a base population that statsby uses to evaluate the command and to set up for
collecting statistics. The default base population is the entire dataset, or the dataset specified by any

if or in conditions specified on the command.

statsby — Collect statistics for a command across a by list 882

One situation where basepop() is useful is collecting statistics over the panels of a panel dataset by
using an estimator that works for time series, but not panel data, for example,

. statsby, by(mypanels) basepop(mypanels==2): arima . . .

force suppresses the restriction that command not be a svy command. statsby does not perform

subpopulation estimation for survey data, so it should not be used with svy. statsby reports an error
when it encounters svy in command if the force option is not specified. This option is seldom used,

so use it only if you know what you are doing.

forcedrop forces statsby to drop all observations except those in each by-group before calling com-
mand for the group. This allows statsby to work with user-written programs that completely ignore
if and in but do not return an error when either is specified. forcedrop is seldom used.

Remarks and examples
Remarks are presented under the following headings:

Collecting coefficients and standard errors
Collecting stored results
All subsets

Collecting coefficients and standard errors

Example 1
We begin with an example using auto2.dta. In this example, we want to collect the coefficients

from a regression in which we model the price of a car on its weight, length, and mpg. We want to run

this model for both domestic and foreign cars. We can do this easily by using statsbywith the extended
expression b.

. use https://www.stata-press.com/data/r19/auto2
(1978 automobile data)
. statsby _b, by(foreign) verbose nodots: regress price weight length mpg

Command: regress price weight length mpg
_b_weight: _b[weight]
_b_length: _b[length]

_b_mpg: _b[mpg]
_b_cons: _b[_cons]

By: foreign

. list

foreign _b_wei~t _b_length _b_mpg _b_cons

1. Domestic 6.767233 -109.9518 142.7663 2359.475
2. Foreign 4.784841 13.39052 -18.4072 -6497.49

If we were interested only in the coefficient of a particular variable, such as mpg, we would specify
that particular coefficient; see [U] 13.5 Accessing coefficients and standard errors.

statsby — Collect statistics for a command across a by list 883

. use https://www.stata-press.com/data/r19/auto2, clear
(1978 automobile data)
. statsby mpg=_b[mpg], by(foreign) nodots: regress price weight length mpg

Command: regress price weight length mpg
mpg: _b[mpg]
By: foreign

. list

foreign mpg

1. Domestic 142.7663
2. Foreign -18.4072

The extended expression se indicates that we want standard errors.

. use https://www.stata-press.com/data/r19/auto2, clear
(1978 automobile data)
. statsby _se, by(foreign) verbose nodots: regress price weight length mpg

Command: regress price weight length mpg
_se_weight: _se[weight]
_se_length: _se[length]

_se_mpg: _se[mpg]
_se_cons: _se[_cons]

By: foreign

. list

foreign _se_we~t _se_le~h _se_mpg _se_cons

1. Domestic 1.226326 39.48193 134.7221 7770.131
2. Foreign 1.670006 50.70229 59.37442 6337.952

Example 2
Formultiple-equation estimations, we can use [eqno] b ([eqno] se) to get the coefficients (standard

errors) of a specific equation or use b (se) to get the coefficients (standard errors) of all the equations.
To demonstrate, we use heckman and a slightly different dataset.

. use https://www.stata-press.com/data/r19/statsby, clear

. statsby _b, by(group) verbose nodots: heckman price mpg, sel(trunk)
Command: heckman price mpg, sel(trunk)

price_b_mpg: [price]_b[mpg]
price_b_cons: [price]_b[_cons]
select_b_tr~k: [select]_b[trunk]
select_b_cons: [select]_b[_cons]
_eq3_b_athrho: [/]_b[athrho]
_eq3_b_lnsi~a: [/]_b[lnsigma]

By: group

statsby — Collect statistics for a command across a by list 884

. list, compress noobs

group price_b~g price_~s select_~k select~s _eq3_b_~o _eq3_b~a

1 -253.9293 11836.33 -.0122223 1.248342 -.31078 7.895351
2 -242.5759 11906.46 -.0488969 1.943078 -1.399222 8.000272
3 -172.6499 9813.357 -.0190373 1.452783 -.3282423 7.876059
4 -250.7318 10677.31 .0525965 .3502012 .6133645 7.96349

To collect the coefficients of the first equation only, we would specify [price] b instead of b.

. use https://www.stata-press.com/data/r19/statsby, clear

. statsby [price]_b, by(group) verbose nodots: heckman price mpg, sel(trunk)
Command: heckman price mpg, sel(trunk)

price_b_mpg: [price]_b[mpg]
price_b_cons: [price]_b[_cons]

By: group

. list

group price_b~g price_~s

1. 1 -253.9293 11836.33
2. 2 -242.5759 11906.46
3. 3 -172.6499 9813.357
4. 4 -250.7318 10677.31

Technical note
If command fails on one or more groups, statsby will capture the error messages and ignore those

groups.

Collecting stored results
Many Stata commands store results of calculations; see [U] 13.6 Accessing results from Stata com-

mands. statsby can collect the stored results and expressions involving these stored results, too. Ex-
pressions must be bound in parentheses.

statsby — Collect statistics for a command across a by list 885

Example 3
Suppose that we want to collect the mean and the median of price, as well as their ratios, and we

want to collect them for both domestic and foreign cars. We might type

. use https://www.stata-press.com/data/r19/auto2, clear
(1978 automobile data)
. statsby mean=r(mean) median=r(p50) ratio=(r(mean)/r(p50)), by(foreign) nodots:
> summarize price, detail

Command: summarize price, detail
mean: r(mean)

median: r(p50)
ratio: r(mean)/r(p50)

By: foreign

. list

foreign mean median ratio

1. Domestic 6072.423 4782.5 1.269717
2. Foreign 6384.682 5759 1.108644

Technical note
In exp list, newvarname is not required. If no new variable name is specified, statsby names the

new variables stat 1, stat 2, and so forth.

All subsets

Example 4
When there are two or more variables in by(varlist), we can execute command for any combination,

or subset, of the variables in the by() option by specifying the subsets option.

. use https://www.stata-press.com/data/r19/auto2, clear
(1978 automobile data)
. statsby mean=r(mean) median=r(p50) n=r(N), by(foreign rep78) subsets nodots:
> summarize price, detail

Command: summarize price, detail
mean: r(mean)

median: r(p50)
n: r(N)
By: foreign rep78

statsby — Collect statistics for a command across a by list 886

. list

foreign rep78 mean median n

1. Domestic Poor 4564.5 4564.5 2
2. Domestic Fair 5967.625 4638 8
3. Domestic Average 6607.074 4749 27
4. Domestic Good 5881.556 5705 9
5. Domestic Excellent 4204.5 4204.5 2

6. Domestic . 6179.25 4853 48
7. Foreign Average 4828.667 4296 3
8. Foreign Good 6261.444 6229 9
9. Foreign Excellent 6292.667 5719 9

10. Foreign . 6070.143 5719 21

11. . Poor 4564.5 4564.5 2
12. . Fair 5967.625 4638 8
13. . Average 6429.233 4741 30
14. . Good 6071.5 5751.5 18
15. . Excellent 5913 5397 11

16. . . 6165.257 5006.5 74

In the above dataset, observation 6 is for domestic cars, regardless of the repair record; observation

10 is for foreign cars, regardless of the repair record; observation 11 is for both foreign cars and domestic

cars given that the repair record is 1; and the last observation is for the entire dataset.

Technical note
To see the output from command for each group identified in the by() option, we can use the noisily

option.

. use https://www.stata-press.com/data/r19/auto2, clear
(1978 automobile data)
. statsby mean=r(mean) se=(r(sd)/sqrt(r(N))), by(foreign) noisily nodots:
> summarize price
statsby: First call to summarize with data as is:
. summarize price

Variable Obs Mean Std. dev. Min Max

price 74 6165.257 2949.496 3291 15906
statsby legend:

Command: summarize price
mean: r(mean)
se: r(sd)/sqrt(r(N))
By: foreign

Statsby groups:
running (summarize price) on group 1

statsby — Collect statistics for a command across a by list 887

. summarize price
Variable Obs Mean Std. dev. Min Max

price 52 6072.423 3097.104 3291 15906
running (summarize price) on group 2
. summarize price

Variable Obs Mean Std. dev. Min Max

price 22 6384.682 2621.915 3748 12990
. list

foreign mean se

1. Domestic 6072.423 429.4911
2. Foreign 6384.682 558.9942

Acknowledgment
Speed improvements in statsby were based on code written by Michael Blasnik of Nest Labs.

References
Cox, N. J. 2010. Speaking Stata: The statsby strategy. Stata Journal 10: 143–151.

Newson, R. B. 2003. Confidence intervals and p-values for delivery to the end user. Stata Journal 3: 245–269.

Also see
[D] by — Repeat Stata command on subsets of the data

[D] collapse — Make dataset of summary statistics

[P] postfile — Post results in Stata dataset

[R] bootstrap — Bootstrap sampling and estimation

[R] jackknife — Jackknife estimation

[R] permute — Permutation tests

https://www.stata-journal.com/article.html?article=gr0045
https://www.stata-journal.com/article.html?article=st0043

sysuse — Use shipped dataset

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
sysuse filename loads the specified Stata-format dataset that was shipped with Stata or that is stored

along the ado-path. If filename is specified without a suffix, .dta is assumed.

sysuse dir lists the names of the datasets shipped with Stata plus any other datasets stored along the
ado-path. You can also see help dta examples for a list of datasets shipped with Stata.

Quick start
List example datasets installed with Stata

sysuse dir

Use auto.dta example dataset installed with Stata
sysuse auto

Same as above, but clear current dataset from memory first

sysuse auto, clear

Menu
File > Example datasets...

888

sysuse — Use shipped dataset 889

Syntax
Use example dataset installed with Stata

sysuse [”]filename[”] [, clear]

List example Stata datasets installed with Stata

sysuse dir [, all]

Options
clear specifies that it is okay to replace the data in memory, even though the current data have not been

saved to disk.

all specifies that all datasets be listed, even those that include an underscore () in their name. By

default, such datasets are not listed.

Remarks and examples
Remarks are presented under the following headings:

Typical use
A note concerning shipped datasets
Using user-installed datasets
How sysuse works

Typical use
A few datasets are included with Stata and are stored in the system directories. These datasets are

often used in the help files to demonstrate a certain feature.

Typing

. sysuse dir

lists the names of those datasets. One such dataset is lifeexp.dta. If you simply type use lifeexp,
you will see

. use lifeexp
file lifeexp.dta not found
r(601);

Type sysuse, however, and the dataset is loaded:

. sysuse lifeexp
(Life expectancy, 1998)

The datasets shipped with Stata are stored in different folders (directories) so that they do not become

confused with your datasets.

sysuse — Use shipped dataset 890

A note concerning shipped datasets
Not all the datasets used in the manuals are shipped with Stata. To obtain the other datasets, see

[D] webuse.

The datasets used to demonstrate Stata are often fictional. If you want to know whether a dataset is

real or fictional, and its history, load the dataset and type

. notes

A few datasets have no notes. This means that the datasets are believed to be real, but that they were

created so long ago that information about their original source has been lost. Treat such datasets as if

they were fictional.

Using user-installed datasets
Any datasets you have installed using net or ssc (see [R] net and [R] ssc) can be listed by typing

sysuse dir and can be loaded using sysuse filename.

Any datasets you store in your personal ado folder (see [P] sysdir) are also listed by sysuse dir and
can be loaded using sysuse filename.

How sysuse works
sysuse simply looks across the ado-path for .dta files; see [P] sysdir.

By default, sysuse dir does not list a dataset that contains an underscore () in its name. By con-

vention, such datasets are used by ado-files to achieve their ends and probably are not of interest to you.

If you type sysuse dir, all, then all datasets are listed.

Stored results
sysuse dir stores in the macro r(files) the list of dataset names.

sysuse filename stores in the macro r(fn) the filename, including the full path specification.

Also see
[D] frames use — Load a set of frames from disk

[D] use — Load Stata dataset

[D] webuse — Use dataset from Stata website

[P] findfile — Find file in path

[P] sysdir — Query and set system directories

[R] net — Install and manage community-contributed additions from the internet

[R] ssc — Install and uninstall packages from SSC

type — Display contents of a file

Description Quick start Syntax Options Remarks and examples Also see

Description
type lists the contents of a file stored on disk. This command is similar to the Windows type com-

mand and the Unix more(1) or pg(1) commands.

In Stata for Mac and Stata for Unix, cat is a synonym for type.

On all platforms, Stata understands a leading “~” as an abbreviation for the home directory.

Quick start
Display contents of myfile.txt in the Results window

type myfile.txt

Same as above, but display myfile.txt saved in ~\mydir\mysubdir using Stata for Windows

type ~\mydir\mysubdir\myfile.txt

Same as above, but using Stata for Mac or Unix

type ~/mydir/mysubdir/myfile.txt

Display contents of my file.txt
type ”my file.txt”

Display the first 20 lines of myfile.txt
type myfile.txt, lines(20)

Syntax
type [”] filename[”] [, options]

Note: Double quotes must be used to enclose filename if the name contains blanks.

options Description

asis show file as is; default is to display files with suffix .smcl or .sthlp as SMCL

smcl display file as SMCL; default for files with suffix .smcl or .sthlp
showtabs display tabs as <T> rather than being expanded
starbang list lines in the file that begin with “*!”
lines(#) list first # lines

891

type — Display contents of a file 892

Options
asis specifies that the file be shown exactly as it is. The default is to display files with the suffix .smcl

or .sthlp as SMCL, meaning that the SMCL directives are interpreted and properly rendered. Thus

type can be used to look at files created by the log using command.

smcl specifies that the file be displayed as SMCL, meaning that the SMCL directives are interpreted and

properly rendered. This is the default for files with the suffix .smcl or .sthlp.

showtabs requests that any tabs be displayed as <T> rather than being expanded.

starbang lists only the lines in the specified file that begin with the characters “*!”. Such comment
lines are typically used to indicate the version number of ado-files, class files, etc. starbang may
not be used with SMCL files.

lines(#) lists the first # lines of a file. lines() is ignored if the file is displayed as SMCL or if # is less

than or equal to 0.

Remarks and examples

Example 1
We have raw data containing the level of Lake Victoria Nyanza and the number of sunspots during

the years 1902–1921 stored in a file called sunspots.raw. We want to read this dataset into Stata by

using infile, but we cannot remember the order in which we entered the variables. We can find out by

using the type command:

. type sunspots.raw
1902 -10 5 1903 13 24 1904 18 42
1905 15 63 1906 29 54 1907 21 62
1908 10 49 1909 8 44 1910 1 19
1911 -7 6 1912 -11 4 1913 -3 1
1914 -2 10 1915 4 47 1916 15 57
1917 35 104 1918 27 81 1919 8 64
1920 3 38 1921 -5 25

Looking at this output, we now remember that the variables are entered year, level, and number of

sunspots. We can read this dataset by typing infile year level spots using sunspots.

If we wanted to see the tabs in sunspots.raw, we could type

. type sunspots.raw, showtabs
1902 -10 5<T>1903 13 24<T>1904 18 42
1905 15 63<T>1906 29 54<T>1907 21 62
1908 10 49<T>1909 8 44<T>1910 1 19
1911 -7 6<T>1912 -11 4<T>1913 -3 1
1914 -2 10<T>1915 4 47<T>1916 15 57
1917 35 104<T>1918 27 81<T>1919 8 64
1920 3 38<T>1921 -5 25

type — Display contents of a file 893

Example 2
In a previous Stata session, we typed log using myres and created myres.smcl, containing our

results. We can use type to list the log:

. type myres.smcl

name: <unnamed>
log: /work/joe/dof/myres.smcl

log type: smcl
opened on: 20 Jan 2025, 15:37:48
. use lbw
(Hosmer & Lemeshow data)
. logistic low age lwt i.race smoke ptl ht ui
Logistic regression Number of obs = 189

LR chi2(8) = 33.22
Prob > chi2 = 0.0001

Log likelihood = -100.724 Pseudo R2 = 0.1416
(output omitted)

. estat gof
Logistic model for low, goodness-of-fit test

(output omitted)

. log close
name: <unnamed>
log: /work/joe/dof/myres.smcl

log type: smcl
closed on: 20 Jan 2025, 15:38:30

We could also use view to look at the log; see [R] view.

Also see
[D] cd — Change directory

[D] copy — Copy file from disk or URL

[D] dir — Display filenames

[D] erase — Erase a disk file

[D] mkdir — Create directory

[D] rmdir — Remove directory

[D] shell — Temporarily invoke operating system

[P] viewsource — View source code

[R] translate — Print and translate logs

[R] view — View files and logs

[U] 11.6 Filenaming conventions

unicode — Unicode utilities

[Suggestion: Read [U] 12.4.2 Handling Unicode strings first.]

Description
The unicode command provides utilities to help you work with Unicode strings in your data. If you

have only plain ASCII characters in your data (a–z, A–Z, 0–9, and typical punctuation characters), you

can stop reading now. Otherwise, continue with Remarks and examples below.

Remarks and examples
We recommend that you start with some overview documentation. First, you should read

[U] 12.4.2 Handling Unicode strings, which will explain the difference betweenASCII and Unicode and

provide detailed advice on working with Unicode strings in Stata. In that section, you will learn about

locales, encodings, sorting, and Unicode-specific string functions. For a general overview of Unicode-

specific advice, see help unicode advice.

Second, if you have datasets, do-files, ado-files, or other files that you used with Stata 13 or earlier

and those files contain characters other than plain ASCII such as accented characters, Chinese, Japanese,

or Korean (CJK) characters, Cyrillic characters, and the like, you should read [D] unicode translate.

unicode provides the following utilities:

[D] unicode translate Translate files to Unicode

[D] unicode encoding Unicode encoding utilities

[D] unicode locale Unicode locale utilities

[D] unicode collator Language-specific Unicode collators

[D] unicode convertfile Low-level file conversion between encodings

You may also find help encodings useful if you need to choose an encoding when converting a

string from extended ASCII to Unicode.

Also see
[D] unicode collator — Language-specific Unicode collators

[D] unicode convertfile — Low-level file conversion between encodings

[D] unicode encoding — Unicode encoding utilities

[D] unicode locale — Unicode locale utilities

[D] unicode translate — Translate files to Unicode

[U] 12.4.2 Handling Unicode strings

894

unicode collator — Language-specific Unicode collators

Description Syntax Remarks and examples Also see

Description
unicode collator list lists the subset of locales that have language-specific collators for the

Unicode string comparison functions: ustrcompare(), ustrcompareex(), ustrsortkey(), and
ustrsortkeyex().

Syntax
unicode collator list [pattern]

pattern is one of all, *, *name*, *name, or name*. If you specify nothing, all, or *, then all results
will be listed. *name* lists all results containing name; *name lists all results ending with name; and
name* lists all results starting with name.

Remarks and examples
Remarks are presented under the following headings:

Overview of collation
The role of locales in collation
Further controlling collation

Overview of collation
Collation is the process of comparing and sorting Unicode character strings as a humanmight logically

order them. We call this ordering strings in a language-sensitive manner. To do this, Stata uses a Unicode

tool known as the Unicode collation algorithm, or UCA.

To perform language-sensitive string sorts, youmust combine ustrsortkey() or ustrsortkeyex()
with sort. It is a complicated process and there are several issues about which you need to be aware. For
details, see [U] 12.4.2.5 Sorting strings containing Unicode characters. To perform language-sensitive

string comparisons, you can use ustrcompare() or ustrcompareex().

For details about the UCA, see http://www.unicode.org/reports/tr10/.

The role of locales in collation
During collation, Stata can use the default collator or it can perform language-sensitive string com-

parisons or sorts that require knowledge of a locale.

A locale identifies a community with a certain set of preferences for how their language should be

written; see [U] 12.4.2.4 Locales in Unicode. For example, in English, the uppercase letter of the Latin

small letter “i” is the Latin capital letter “I”. However, in Turkish, the uppercase letter is “I” with a dot

above it (Unicode \u0130); hence, the case mapping is locale-sensitive.

895

http://www.unicode.org/reports/tr10/

unicode collator — Language-specific Unicode collators 896

Collation in Stata involves the locale-sensitive functions ustrcompare(), ustrcompareex(),
ustrsortkey(), and ustrsortkeyex(). If you specify a locale with one of these functions or if you
have set the locale globally (see [P] set locale functions), then collation may be performed using a

language-specific collator.

Because a locale is simply an identifier to locate the resources for specific services, there is no val-

idation of the locale. For example, specifying “klingon” is as valid as specifying “en” when calling

ustrcompare() or the other functions discussed here. If the collation data for the “klingon” locale is
found, then the locale is populated; otherwise, fallback rules are followed. For more information, see

Default locale and locale fallback in [D] unicode locale.

Stata supports hundreds of locales, but only about 100 have a language-specific collator. unicode
collator list lets you determine whether your locale (or language) has its own collator. For example,
Stata supports two locales for the Zulu language: zu is a general locale and zu ZA is Zulu specific to
South Africa. Only zu has a language-specific collator.

Further controlling collation
ustrcompare() and ustrsort() use the default collation algorithm for the locale. How-

ever, you can exercise finer control over the collation algorithm if you use ustrcompareex() or

ustrsortkeyex().

An International Components for Unicode (ICU) locale may contain up to five subtags in the following

order: language, script, country, variant, and keywords. Stata usually uses only the language and coun-

try tags. However, collation keywords may be used in the ustrcompareex() and ustrsortkeyex()
functions.

The collation keyword specifies the string sort order of the locale. For example, “pinyin” and “stroke”

for Chinese language produce different string sort orders. In most cases, it is not necessary to specify a

collation keyword; the default collator (either for Stata or for the language) provides sufficient control.

However, some programmers may wish to specify a specific value. If you do not know the value of the

collation keyword, you can obtain a list of valid collation values and their meanings in XML format at

http://unicode.org/repos/cldr/trunk/common/bcp47/collation.xml.

If you are comparing or sorting Unicode strings that have come from different data sources, then

you may need to normalize the strings before ordering them. See ustrnormalize() for details on

normalization, and note the norm parameter in ustrcompareex() and ustrsortkeyex().

Also see
[D] unicode — Unicode utilities

[D] unicode locale — Unicode locale utilities

[U] 12.4.2 Handling Unicode strings

[U] 12.4.2.5 Sorting strings containing Unicode characters

http://unicode.org/repos/cldr/trunk/common/bcp47/collation.xml

unicode convertfile — Low-level file conversion between encodings

Description Syntax Options Remarks and examples Also see

Description
unicode convertfile converts text files from one encoding to another encoding. It is a low-level

utility that will feel familiar to those of you who have used the Unix command iconv or the similar In-
ternational Components for Unicode (ICU)-based command uconv. If you need to convert Stata datasets
(.dta) or text files commonly usedwith Stata such as do-files, ado-files, help files, and CSV (*.csv) files,
you should use the unicode translate command; see [D] unicode translate. If you wish to convert
individual strings or string variables in your dataset, use the ustrfrom() and ustrto() functions.

Syntax
unicode convertfile srcfilename destfilename [, options]

srcfilename is a text file that is to be converted from a given encoding and destfilename is the destination

text file that will use a different encoding.

options Description

srcencoding([string]) encoding of the source file; UTF-8 if not specified

dstencoding([string]) encoding of the destination file; UTF-8 if not specified

srccallback(method) what to do if source file contains invalid byte sequence(s)

dstcallback(method) what to do if destination encoding does not support characters in the
source file

replace replace the destination file if it exists

method Description

stop specify that unicode convertfile stop with an error if an invalid
character is encountered; the default

skip specify that unicode convertfile skip invalid characters
substitute specify that unicode convertfile substitute invalid characters

with the destination encoding’s substitute character during
conversion; the substitute character for Unicode encodings is \ufffd

escape specify that unicode convertfile replace any Unicode characters
not supported in the destination encoding with an escaped string

of the hex value of the Unicode code point. The string is in

4-hex-digit form \uhhhh for a code point less than or equal to
\uffff. The string is in 8-hex-digit form \Uhhhhhhhh for code
points greater than \uffff. escape may only be specified when
converting from a Unicode encoding such as UTF-8.

897

unicode convertfile — Low-level file conversion between encodings 898

Options
srcencoding([string]) specifies the source file encoding. See help encodings for a list of common

encodings and advice on choosing an encoding.

dstencoding([string]) specifies the destination file encoding. See help encodings for a list of com-
mon encodings and advice on choosing an encoding.

srccallback(method) specifies the method for handling characters in the source file that cannot be

converted.

dstcallback(method) specifies the method for handling characters that are not supported in the desti-
nation encoding.

replace permits unicode convertfile to overwrite an existing destination file.

Remarks and examples
Remarks are presented under the following headings:

Conversion between encodings
Invalid and unsupported characters
Examples

Conversion between encodings
unicode convertfile is a utility to convert strings from one encoding to another. Encoding is the

method by which text is stored in a computer. It maps a character to a nonnegative integer, called a

code point, and then maps that integer to a single byte or a sequence of bytes. Common encodings are

ASCII, UTF-8, and UTF-16. Stata uses UTF-8 encoding for storing text. Unless otherwise noted, the terms

“Unicode string” and “Unicode character” in Stata refer to a UTF-8 encoded Unicode string or character.

For more information about encodings, see [U] 12.4.2.3 Encodings. See help encodings for a list of
common encodings, and see [D] unicode encoding for a utility to find all available encodings.

If you are using unicode convertfile to convert a file to UTF-8 format, the string encoding using

by Stata, you only need to specify the encoding of the source file. By default, UTF-8 is selected as the

encoding for the destination file. You can also use unicode convertfile to convert files from UTF-8

encoding to another encoding. Although conversion to or from UTF-8 is the most common usage, you

can use unicode convertfile to convert files between any pair of encodings.

Be aware that some characters may not be shared across encodings. The next section explains options

for dealing with unsupported characters.

Invalid and unsupported characters
Unsupported characters generally occur in two ways: the bytes used to encode a character in the

source encoding are not valid in the destination encoding such as UTF-8 (called an invalid sequence); or

the character from the source encoding does not exist in the destination encoding.

It is common to encounter inconvertible characters when converting from a Unicode encoding such

as UTF-8 to some other encoding. UTF-8 supports more than 100,000 characters. Depending on the

characters in your file and the destination encoding you select, it is possible that not all characters will be

supported. For example, ASCII only supports 128 characters, so all Unicode characters with code points

greater than 127 are unsupported in ASCII encoding.

unicode convertfile — Low-level file conversion between encodings 899

Examples
Convert file from Latin1 encoding to UTF-8 encoding

. unicode convertfile data.csv data_utf8.csv, srcencoding(ISO-8859-1)

Convert file from UTF-32 encoding to UTF-16 encoding, skipping any invalid sequences in the source

file

. unicode convertfile utf32file.txt utf16file.txt, srcencoding(UTF-32)
> dstencoding(UTF-16) srccallback(skip)

Also see
[D] unicode — Unicode utilities

[D] unicode translate — Translate files to Unicode

[U] 12.4.2 Handling Unicode strings

[U] 12.4.2.6 Advice for users of Stata 13 and earlier

unicode encoding — Unicode encoding utilities

Description Syntax Remarks and examples Also see

Description
unicode encoding list and unicode encoding alias list encodings that are available in Stata.

See help encodings for advice on choosing an encoding and a list of the most common encodings.

unicode encoding list provides a list of all encodings and their aliases or those that meet specified
criteria. unicode encoding alias provides a list of alternative names that may be used to refer to a
specific encoding.

unicode encoding set sets an encoding to be used with the unicode translate command; see

[D] unicode translate for documentation for unicode encoding set.

Syntax
List encodings

unicode encoding list [pattern]

List all aliases of an encoding

unicode encoding alias name

Set an encoding for use with unicode translate

unicode encoding set name

pattern is one of the following: *, all, *name*, *name, or name*. Specifying nothing, all, or * lists
all results. Specifying *name* lists all results containing name. Specifying *name lists all results
ending with name. Specifying name* lists all results starting with name.

Remarks and examples
Encoding is the method by which text is stored in a computer. It maps a character to a nonnegative

integer, called a code point, then maps that integer to a single byte or a sequence of bytes. Common

encodings are ASCII (for which there are many variants), UTF-8, and UTF-16. Stata uses UTF-8 encoding

for storing text and UTF-16 to encode the GUI on Microsoft Windows and macOS. For more information

about encodings, see [U] 12.4.2.3 Encodings.

The most common reason you will need to specify an encoding is when converting a dataset, do-file,

ado-file, or some other file used with Stata 13 or earlier (which was not Unicode aware) for use with

modern Stata. See [D] unicode translate for help with this, and see help encodings for advice on

choosing an encoding and a list of common encodings.

900

unicode encoding — Unicode encoding utilities 901

Some commands and functions require that you specify one or more encodings. Often you will need

to use only common encodings. However, you may not know how to specify these to Stata. For example,

suppose that we are using unicode translate to convert a do-file from Stata 13 that contains extended

ASCII characters for use in modern Stata. If we are working on a Windows machine, the most likely

encoding isWindows-1252. If we want to check that this is how it should be specified as we use unicode
translate, we can type

. unicode encoding list Windows-1252

Stata returns all encodings for which the encoding name or an alias exactly matches Windows-1252.
Capitalization does not matter.

If we wanted to search for all encodings and aliases that have windows anywhere in their name, we
could type

. unicode encoding list *windows*

and see a long list of matches.

If we are told that a text file is encoded with ibm-913 P100-2000 and we want to see by what other
names that encoding is known (perhaps because we just do not want to type out such a long string when

using Stata’s functions that need an encoding), we can use

. unicode encoding alias ibm-913_P100-2000

and we find that there are many synonyms, including some that are much easier to type.

You may not know the exact encoding that you need and wish to browse the full list of available

encodings. To do this, you can just type unicode encoding list without specifying a pattern.

Also see
help encodings

[D] unicode — Unicode utilities

[D] unicode translate — Translate files to Unicode

[U] 12.4.2 Handling Unicode strings

[U] 12.4.2.3 Encodings

unicode locale — Unicode locale utilities

Description Syntax Remarks and examples Also see

Description
unicode locale list lists all available locales or those locales that meet the specified criteria. Any

of these locale codes may be specified in Stata or Mata functions that accept a locale as an argument,

such as ustrcompare() and ustrupper(), or in the set locale functions setting.

unicode uipackage list lists all localization packages that are available for the graphics user in-
terface (GUI). Any of the listed locales may be specified in the set locale ui setting to change the

language of the text that is displayed in GUI elements such as the menus and dialog boxes.

Syntax
List locales

unicode locale list [pattern]

List user interface (UI) localization packages

unicode uipackage list

pattern is one of all, *, *name*, *name, or name*. If you specify nothing, all, or *, then all results
will be listed. *name* lists all results containing name; *name lists all results ending with name; and
name* lists all results starting with name.

Remarks and examples
Remarks are presented under the following headings:

Overview
Default locale and locale fallback

Overview
A locale identifies a user community with a certain preference for how their language should be

written; see [U] 12.4.2.4 Locales in Unicode. A locale can be as general as a certain language (for

example, “en” for English) or can be more specific to a country or region (for example, “en US” for US

English or “en HK” for Hong Kong English. Stata uses International Components for Unicode’s (ICU’s)

locale format. See http://userguide.icu-project.org/locale for full information about ICU. Note that ICU

differs from the POSIX locale identifiers used by Linux systems.

Locales use tags to define how specific they are to language variants. An ICU locale may contain up

to five subtags in the following order: language, script, country, variant, and keywords. Typically, the

language is required and the other tags are optional. In most cases, Stata uses only the language and

country tags. For example, “en US” specifies the language as English and the country as the USA.

902

http://userguide.icu-project.org/locale

unicode locale — Unicode locale utilities 903

Many language-specific operations require the locale to perform their task. This kind of operation

is called locale-sensitive. For example, in English, the uppercase letter of the Latin small letter “i” is

the Latin capital letter “I”. However, in Turkish, the uppercase letter is “İ” with a dot above it (Unicode
\u0130); hence, the case mapping is locale-sensitive.

The following functions are locale-sensitive: ustrupper(), ustrlower(), ustrtitle(),
ustrword(), ustrwordcount(), ustrcompare(), ustrcompareex(), ustrsortkey(), and

ustrsortkeyex().

Although Stata usually uses only the language and country tags, collation keywords may also be used

in functions ustrcompare() and ustrsortkey() to affect ordering of Unicode strings. The collation
keyword affects the string sort order of the locale. For example, “pinyin” and “stroke” for Chinese

language produce different string sort orders. In most cases, it is not necessary to specify a collation

keyword; the default collator (either for Stata or for the language) provides sufficient control. However,

some programmers may wish to specify a specific value. If you do not know the value of the collation

keyword, you can obtain a list of valid collation values and their meanings in XML format at http://

unicode.org/repos/cldr/trunk/common/bcp47/collation.xml.

Default locale and locale fallback
Because a locale is simply an identifier to locate the resources for specific services, there is no val-

idation of the locale. For example, specifying “klingon” is as valid as specifying “en” when calling

ustrcompare() or the other functions discussed here. If the collation data for the “klingon” locale is
found, then the locale is populated; otherwise, a fallback search process starts.

The fallback process proceeds as follows:

1 . The variant is removed if there is one.

2 . The country is removed if there is one.

3 . The script is removed if there is one.

4 . Steps 1–3 are repeated on the default locale.

5 . If a locale cannot be found after following the previous steps, the ICU “Root”, or built-in fallback,

locale is used.

The process stops at any point if the desired information is found. The ICU default locale is usually

the system locale on the machine, which you can change. Note that on macOS, the ICU default locale is

usually “en US posix”, which does not change even if you change the system locale from the operating

system’s “Language” setting. To see the ICU default locale, you can type

. display c(locale_icudflt)

You can also find it under the Unicode settings in the output of creturn list along with two

other locale-related settings: locale ui and locale functions. See [P] set locale ui and [P] set

locale functions for details.

set locale functions affects the functions ustrupper(), ustrlower(), ustrtitle(),
ustrword(), ustrwordcount(), ustrcompare(), ustrcompareex(), ustrsortkey(), and

ustrsortkeyex() when no locale is specified. If locale functions is not set, the default ICU lo-

cale c(locale icudflt) is used.

http://unicode.org/repos/cldr/trunk/common/bcp47/collation.xml
http://unicode.org/repos/cldr/trunk/common/bcp47/collation.xml

unicode locale — Unicode locale utilities 904

For example, if your operating system is Microsoft Windows English version, the system locale is

most likely “en”. It is “en US” if you chose the country to be USA during installation of the operat-

ing system. If locale functions is not set or is set to default, then ustrupper(”istanbul”) is
equivalent to ustrupper(”istanbul”, ”en US”), which returns ISTANBUL.

However, if locale functions is set to tr for Turkish, then ustrupper(”istanbul”) is equiva-
lent to ustrupper(”istanbul”, ”tr”), which returns İSTANBULwith a dot over the capital I.Although
ICU does not validate locales, Stata validates that the language subtag of the locale functions setting
is a valid ISO-639-2 language code. (See the ISO-639-2 list at http://www.loc.gov/standards/iso639-2/.)

Hence, set locale functions klingon will produce an error.

With the fallback rules, the effective locale can be very different from the locale you specified,

depending on the operation being performed. Currently, ustrword() and ustrwordcount(), which
use ICU’s word break iterator service, and ustrcompare(), ustrcompareex(), ustrsortkey(), and
ustrsortkeyex(), which use ICU’s collation service, are affected by this. You may use the functions

wordbreaklocale() and collatorlocale() to find the effective locale from the requested locale.

Also see
[D] unicode — Unicode utilities

[P] set locale functions — Specify default locale for functions

[P] set locale ui — Specify a localization package for the user interface

[U] 12.4.2 Handling Unicode strings

[U] 12.4.2.4 Locales in Unicode

http://www.loc.gov/standards/iso639-2/

unicode translate — Translate files to Unicode

Description Syntax Options Remarks and examples Also see

Description
unicode translate translates files containing extended ASCII to Unicode (UTF-8).

Extended ASCII is how people got accented Latin characters such as “á” and “à” and got characters

from other languages such as “ ”, “Θ”, and “ ” before the advent of Unicode or, in this context,

before Stata became Unicode aware.� �
If you have do-files, ado-files, .dta files, etc., from Stata 13 or earlier—and those files contain

extended ASCII—you need to use the unicode translate command to translate the files from

extended ASCII to Unicode.� �
The unicode translate command is also useful if you have text files containing extended ASCII

that you wish to read into Stata.

Syntax
Analyze files to be translated

unicode analyze filespec [, redo nodata]

Set encoding to be used during translation

unicode encoding set [”]encoding[”]

Translate or retranslate files

unicode translate filespec [, invalid[(escape | mark | ignore)]

transutf8 nodata]

unicode retranslate filespec [, invalid[(escape | mark | ignore)]

transutf8 replace nodata]

Restore backups of translated files

unicode restore filespec [, replace]

Delete backups of translated files

unicode erasebackups, badidea

905

unicode translate — Translate files to Unicode 906

filespec is a single filename or a file specification containing * and ? specifying one or more files, such

as

*.dta

*.do

.

*

myfile.*

year??data.dta

unicode analyzes and translates .dta files and text files. It assumes that filenames with suffix .dta
contain Stata datasets and that all other suffixes contain text. Those other suffixes are .ado, .do, .mata,
.txt, .csv, .sthlp, .class, .dlg, .idlg, .ihlp, .smcl, and .stbcal.

Files with suffixes other than those listed are ignored. Thus “*.*” would ignore any .docx files or
files with other suffixes. If such files contain text, they can be analyzed and translated by specifying the

suffix explicitly, such as info.README and *.README.

Options
redo is allowed with unicode analyze. unicode analyze remembers results from one run to the next

so that it does not repeat results for files that have been previously analyzed and determined not to

need translation. Thus unicode analyze’s output focuses on the files that remain to be translated.
redo specifies that unicode analyze show the analysis for all files specified.

nodata is used with unicode analyze, translate, and retranslate. It specifies that the contents
of the str# and strL variables in .dta files are not to be translated. The contents of the variables
are to be left as is. The default behavior is to translate if necessary.

If option nodata is specified, only the metadata—variable names, dataset label, variable labels, value

labels, and characteristics—are analyzed and perhaps translated.

This option is provided for two reasons.

nodata is included for those who do not trust automated software to modify the most vital part of
their datasets, the data themselves. We emphasize to those users that unicode backs up files, and so
translated files are easily restored to their original status.

The other reason nodata is included is for those datasets that include string variables in which

some variables (observations) use one encoding and other variables (observations) use another. Such

datasets are rare and called mixed-encoding datasets. One could arise if dataset result.dta was the
result of merging input1.dta and input2.dta, and input1.dta encoded its string variables using
ISO-8859-1, whereas input2.dta used JIS-X-0208. Such datasets are rare because if this had oc-

curred, you would have noticed when you produced result.dta. The two extendedASCII encodings
are simply not compatible, and one group or another of characters would have displayed incorrectly.

invalid and invalid() are allowed with unicode translate and retranslate. They specify how
invalid characters are to be handled. Invalid characters are not supposed to arise, and when they do, it

is a sign that you have set the wrong extended ASCII encoding. So let’s assume that you have indeed

set the right encoding and that still one or a few invalid characters do arise. The stories on how this

unicode translate — Translate files to Unicode 907

might happen are long and technical, and all of them involve you playing sophisticated font games,

or they involve you using a proprietary extended ASCII encoding that is no longer available, and so

you are using an encoding that is close to the actual encoding used.

By default, unicodewill not translate files containing invalid characters. unicode instead warns you
so that you can specify the correct extended ASCII encoding.

invalid specifies the invalid characters are to be shown with an escape sequence. If a string con-
tained “A@B”, where @ indicates an invalid character, after translation, the string might contain

“A%XCDB”, which is say, %XCD was substituted for @. In general, invalid characters are replaced

with %X##, where ## is the invalid character’s hex value. The substitution is admittedly ugly, but it
ensures that distinct strings remain distinct, which is important if the string is used as an identifier

when you use the data.

invalid(escape) is a synonym for invalid.

invalid(mark) specifies that the official Unicode replacement character be substituted for invalid
characters. That official character is \ufffd in Unicode speak and how it looks varies across operating

systems. On Windows, the Unicode replacement character looks like a square; on Mac and Unix, it

looks like a question mark in a hexagon.

invalid(ignore) indicates that the invalid character simply be removed. “A@B” becomes “AB”.

transutf8 is allowed with unicode translate and retranslate. transutf8 specifies that charac-
ters that look as if they are UTF-8 already should nonetheless be translated according to the extended

ASCII encoding. Do not specify this option unless unicode suggests it when you translate the file

without the option, and even then, specify the option only after you have examined the translated file

and determined that you agree.

For most of us, this issue arises when two extended ASCII characters appear next to each other, such

as a German word containing “üß”, or a French word containing “àö”. Even when extended ASCII

characters are adjacent, that is not necessarily sufficient to mimic valid UTF-8 characters, but some

combinations do mimic UTF-8.

Adjacent UTF-8 characters that mimic UTF-8 characters are actually likely when you are using a CJK

extended ASCII encoding. CJK stands for Chinese, Japanese, and Korean.

In any case, if unicode analyze reports when valid UTF-8 strings appear and if the file needs trans-

lating because it is not all ASCII plus UTF-8, you may need to specify transutf8 when you translate
the file. If you are unsure, proceed by translating the file without specifying transutf8, inspect the
result, and retranslate if necessary.

replace has nothing to do with translation and is allowed with unicode retranslate and restore. It
has to dowith the restoration of original, untranslated files from the backups that unicode translate
and retranslate make. Option replace should not be specified unless unicode suggests it.

unicode keeps backups of your originals. When you restore the originals or retranslate files (which

involves restoring the originals), unicode checks that the previously translated file is unchanged

from when unicode last translated it. It does this because if you modified the translated file since
translation, those changes might be important to you and because if unicode restored the original

from the backup, you would lose those changes. replace specifies that it is okay to change the

previously translated file even though it has changed.

unicode translate — Translate files to Unicode 908

badidea is used with unicode erasebackups and is not optional. Erasing the backups of original files
is usually a bad idea. We recommend you keep them for six months or so. Eventually, however, you

will want to delete the backups. You are required to specify option badidea to show that you realize

that erasing the backups is a bad idea if done too soon.

Remarks and examples
Remarks are presented under the following headings:

What is this about?
Do I need to translate my files?
Overview of the process
How to determine the extended ASCII encoding
Use of unicode analyze
Use of unicode translate: Overview
Use of unicode translate: A word on backups
Use of unicode translate: Output
Translating binary strLs

What is this about?
Stata 14 and later use UTF-8, a form of Unicode, to encode strings. Stata 13 and earlier used ASCII.

Datasets, do-files, ado-files, help files, and the like may need translation to display properly in Stata 14

and later.

Files containing strings using only plain ASCII do not need translation. Plain ASCII provides the fol-

lowing characters:

Latin letters: A–Z, a–z

Digits: 0–9

Symbols: ! ” # $ % & ’ () * + , − . /

: ; < = > ? @ [\] ^ ‘

{ | } ~

If the variable names, variable labels, value labels, and string variables in your .dta files and the lines
in your do-files, ado-files, and other Stata text files contain only the characters above, there is nothing

you need to do.

On the other hand, if your .dta files, do-files, ado-files, etc., contain accented characters such as

á è ô ü ý . . .

or symbols such as

. . .

or characters from other alphabets,

then the files do need translating so that the characters display correctly.

unicode analyze will tell you whether you have such files, and unicode translate will translate
them.

unicode translate — Translate files to Unicode 909

You first use unicode analyze. It may turn out that no files need translating, and in that case, you
are done.

If you do have files that need translating, you will use unicode translate. unicode translate
makes a backup of your file before translating it.

If you do have files that need translating, unicode translate will translate them. Before you can
use unicode translate, you must set the extended ASCII encoding that your files used. You do this

with unicode encoding set. Encodings go by names such as ISO-8859-1, Windows-1252, Big5, ISO-

2022-KR, and about a thousand other names. However, there are only 231 encodings. Most of the names

are aliases (synonyms). ISO-8859-1, for instance, is also known as ISO-Latin1, Latin1, and other names.

See help encodings for more information on encodings. Some of you will find the appropriate

encoding name immediately. Others will be able only to narrow down the alternatives. Even so, all is

not lost. unicode translate makes it easy to translate and retranslate a file over and over again until
you find the encoding that works best. Once you find that encoding, it is likely that all of your files are

using the same encoding.

Do I need to translate my files?
Can I ignore the issue?

If you are asking whether you can close your eyes and ignore the issue, the answer is maybe and

maybe not.

If you have files using extended ASCII, they will not display correctly in modern Stata. We view that

as a significant problem, but let’s assume that does not concern you. If you used extended ASCII for

variable names, you may find it difficult or impossible to type the untranslated name. That would be

a problem. Other than that, you are probably okay, or more accurately, we cannot think of a problem

even though we have tried. We have tried because if we could think of a problem, we would have

fixed it. Stata’s data management routines have been modified and certified to work with UTF-8. If

they receive extendedASCII, they canmightily mess up what is displayed, but beyond that, they should

produce results equivalent to what previous Statas produced.

Our advice is, for safety’s sake, do not ignore the problem.

However, you do not need to analyze and translate all of your files today. One day, you will use
a dataset and results will look odd when you describe or list the data. You will see unprintable
characters and probably mutter a few unprintable words yourself, but having discovered the problem,

you can then turn to solving it using unicode analyze and unicode translate.

However, we recommend that you learn to use unicode translate today. Take some files you are
working with, determine whether you have a problem, and fix them if you do.

Do my files need translation?

If you are asking whether you have files that contain extended ASCII in hopes that you do not, here is

our answer:

If you live and work in an English-speaking country, you probably do not have files containing ex-

tended ASCII.

If you live and work outside an English-speaking country but you have limited yourself to the un-

adorned Latin alphabet, you probably do not have files containing extended ASCII.

Otherwise, you probably do have files containing extended ASCII.

unicode translate — Translate files to Unicode 910

How will I know what to do?

unicode analyzewill tell you whether you have files containing extendedASCII. unicode analyze
can look at single files, or it can look at all the files in a directory. And if you do have files containing

extended ASCII, unicode translate will fix the files.

Overview of the process
You will analyze your files and, if necessary, translate them. You can do this one file at a time by

typing

. unicode analyze myfile.dta

. unicode encoding set encoding

. unicode translate myfile.dta

or you can do this with all of your files at once by typing

. unicode analyze *

. unicode encoding set encoding

. unicode translate *

Shockingly, we are going to advise you that analyzing and even translating all of your files at once is

perfectly safe! That is because

1. unicode analyze by default ignores files that are not Stata related.

2. unicode analyze reads your files and reports on them; it does not change them.

3. unicode analyze might report that no files need translating. In that case, you are done.

4. if you do have files that need translating, before you can use unicode translate, you must set
the extended ASCII encoding. How you determine the encoding is the topic of the next section.

5. unicode translate, just like unicode analyze, ignores by default files that are not Stata
related. Typing unicode translate * is safe.

6. unicode translate does not modify files that do not need translation. This does not hinge on
your having run unicode analyze. Typing unicode translate * is safe.

7. unicode translate does not modify files in which the translation goes poorly; it discards the
translation. Typing unicode translate * is safe.

8. unicode translate makes backups of the original of any file it does translate successfully.
At any time, you can type

. unicode restore *

and the files in your directory are back to being just as they were when you started. Typing

unicode translate * is safe.

In the rest of this manual entry, we could discuss what might happen when you run unicode analyze
and unicode translate and offer advice on what you might do about it.

unicode analyze and unicode translate, however, produce a ream of output, especially if you

run them on a group of files. That output is tailored to your files and your situation. That output states

what did happen and offers advice. Read it.

unicode translate — Translate files to Unicode 911

How to determine the extended ASCII encoding
We are getting ahead of ourselves because we have not yet determined that any of your files do need

translating. Whether translation is necessary can be determined without knowing the extended ASCII

encoding.

Determining the encoding can be more difficult than you would wish. Back in the day when the

experts were still trying to make the extended ASCII solution work, the cleverest among them went to a

lot of effort to hide the encoding from you, and they did a good job.

When the time comes to type

. unicode encoding set encoding

see help encodings. We have advice. In the meantime, allow us to predict how this process will

transpire:

Some of you will not be able to determine the encoding your files are using, but you will be able to

make guesses and narrow the choices down to a few of them. Then you will experiment to see which

works best. We say “see” because that is literally how you are going to do it. You will guess, you will

translate, and you will look at the result. And then you will repeat the process with a different encoding.

The unicode command will make the translation and retranslation part easy.

Many of you will discover the single encoding that works for all of your files. Some of you will

discover that one encoding works for most of your files but that there are one or two other encodings that

you have to use with other files.

And then there is the issue of mixed UTF-8 and extended ASCII. This will affect only a few of you.

1. unicode translate will warn you when a file is a mix of UTF-8 and extended ASCII. It warns
you because 1) the file could be exactly what it appears to be, a mix of encodings, or 2) the file

is all extended ASCII and a few extended ASCII strings are merely masquerading as UTF-8.

2. By default, unicode translate assumes that the file really is a mix. It does not translate the
UTF-8 strings; it translates just the strings that are extended ASCII.

Technical note: Here is how this works. A variable label appearing to be UTF-8 already is not

translated, whereas another variable label containing extendedASCII is translated even if a part

of it appears to be UTF-8. unicode translate assumes that each variable label follows a

single encoding. This same logic applies to str# and strL variables in the data. The variable
is assumed to use the same encoding in all observations.

3. The default assumption may be incorrect; the file could be entirely extendedASCII. The default

assumption is more likely to be incorrect in the CJK case. You can determine whether the default

assumption is correct by looking at the file after translation. If some parts of it look like memory

junk, then use unicode retranslate, transutf8 to retranslate the file, and if you do not like
that result, use unicode retranslate without transutf8 to return to the previous result. Or
you could use unicode restore to return to the original file and start all over again, perhaps
with a different encoding.

Technical note: There is no difference between using unicode restore followed by unicode
translate and using unicode retranslate. So if you want to try a different encoding, you
can restore, set the new encoding, and translate, or you can set the new encoding and retranslate.

unicode translate — Translate files to Unicode 912

Use of unicode analyze
If the files you want to examine are not in the current directory, change to the appropriate directory:

. cd wherever

unicode analyze and all the rest of the unicode commands described in this entry look at files in
the current directory and only files in the current directory. unicode does not even look in subdirectories
of the current directory.

Analyze the file.

. unicode analyze myfile.dta

unicode analyze will report whether the file needs translation and provide other information, too.
The output looks something like this:

. unicode analyze myfile.dta
File summary (before starting):

1 file(s) specified
1 file(s) to be examined ...

File myfile.dta (Stata dataset)

File does not need translation
File summary:

all files okay

Or it might look like this:

. unicode analyze myfile.dta
File summary (before starting):

1 file(s) specified
1 file(s) to be examined ...

File myfile.dta (Stata dataset)
3 variable names need translation
2 variable labels need translation
1 str# variable needs translation

File needs translation.
Use unicode translate on this file

File summary:
1 file needs translation

If you were to now rerun the analysis in the case where the file does not need translation, you would

see something like this:

. unicode analyze myfile.dta
File summary (before starting):

1 file(s) specified
1 file(s) already known to be ASCII in previous runs
0 file(s) to be examined ...

(nothing to do)

If you want to see the detailed output, type unicode analyze myfile.dta, redo.

The primary purpose of unicode analyze is to get the files that do not need translating out of the
way. unicode analyze does not change your files; it just dismisses the ones that need no further work.

unicode translate — Translate files to Unicode 913

You can run unicode analyze on multiple files, and we recommend that you do that.

. unicode analyze *
30 file(s) specified
6 file(s) not Stata
1 file(s) already known to be ASCII in previous runs
1 file(s) already known to be UTF-8 in previous runs

22 files(s) to be examined

There is more to the output, but before we look at that, note that unicode analyze reported that

6 files were not Stata. unicode analyze and unicode translate ignore non-Stata files unless you
explicitly specify them, say, by typing unicode analyze README or unicode analyze *.README.

Let’s now return to the remaining output from unicode analyze *:

File filename (filetype)
notes about elements that need translating

recommendations

File filename (filetype)
notes about elements that need translating

recommendations

.

.
File filename (filetype)

notes about elements that need translating

recommendations

Files matching * that need translation:
list of files

File summary:
2 file(s) skipped (known okay from previous runs)
8 file(s) need translation

unicode analyze produced a lot of output. If you are like us, you will want a log of the output and
perhaps want to look at it in the Viewer. It is not too late, just remember to specify the redo option:

. log using output

. unicode analyze *, redo
(output omitted)

. log close

. view output.smcl

If you are really like us, you will instead want a file you can edit in Stata’s Do-file Editor:

. log using output.log

. unicode analyze *, redo
(output omitted)

. log close

. doedit output.log

Now, you can edit the output to make a to-do list for yourself. We go through the output and delete

the parts with which we agree, such as the following:

File myfile.do (text file)
40 line(s) in file

File does not need translation.

unicode translate — Translate files to Unicode 914

Buried in the output, however, may be something like this:

File german.dta (Stata dataset)

File does not need translation, except ...
The file appears to be UTF-8 already. Sometimes, files that need
translating can look like UTF-8. Look at these examples:

variable name ”länge”
variable label ”Kofferraumvolumen (Kubikfuß)”
value-label contents ”Ausländisch”
contents of str# variable marke

Do they look okay to you?
If not, the file needs translating or retranslating with the
transutf8 option. Type

. unicode translate "bill_utf8.dta", transutf8

. unicode retranslate "bill_utf8.dta", transutf8

This file, too, is marked as not needing translation, and we agree based on the evidence presented, but

we might not have agreed. Assume that the file was named japan.dta and that the examples did not
look like Japanese but looked like memory junk. We would want to add this file to our list to translate

and remind ourselves to specify option transutf8 when translating.

It is unlikely that any file that unicode analyze reports as purely UTF-8 needs translating unless the

file is short, and then you must look at it to determine whether the file really is UTF-8.

Here is a different example. The file, according to unicode analyze, needs translation, but it also
includes UTF-8:

File filter.do (text file)
40 line(s) in file
33 line(s) ASCII
1 line(s) UTF-8
6 line(s) need translation

File needs translation. Use unicode translate on this file.
There are three possibilities.
1) The file is exactly what it appears to be, a mix of extended
ASCII and UTF-8. Use unicode translate.
2) The UTF-8 lines are extended ASCII masquerading as UTF-8.
Use unicode translate, transutf8.
3) The file is UTF-8 with some invalid characters. Set the
encoding to utf8 and then use unicode translate, invalid().

unicode analyze thinks this file needs translation and speculates about how it should be translated.

Read the output. Possibility 3) did not even occur to us. Even so, and even without looking at the file,

we would favor possibility 2) because there is only one UTF-8 line and there are 6 lines known to need

translation.

You will learn that running unicode analyze is optional. The advantage of running unicode
analyze is that it offers advice.

You can analyze files repeatedly. If you type unicode analyze without the redo option, the output
reappears, but files are skipped that unicode analyze previously determined as not needing translation.
Specify redo and you will see all the files.

unicode analyze remembers results from previous runs. Five years from now, unicode analyze
will remember the files it has examined and determined do not need translation, and it will even know

whether the file has changed in the intervening five years and so needs reexamination.

unicode translate — Translate files to Unicode 915

unicode analyze remembers from one run to the next by creating a directory named bak.stunicode,

where it can put its notes. Ignore the directory and its subdirectories. When we tell you about unicode
translate, you will learn that bak.stunicode is also where backups of unmodified original files are

stored. Now that you know that, you might be tempted to restore originals from the backups by copying

the files. Do not do that because you will confuse unicode. Use unicode restore to restore originals.
We will get to that.

The purpose of unicode analyze is to dismiss all the files that do not have problems so you can focus
on those that do. When you later use unicode translate, it will also skip over files that do not need
translating. Using unicode analyze is optional, and even if you do not use it, unicode translate
will never translate a file that does not need it; unicode translate runs unicode analyze in secret if
it needs to.

Use of unicode translate: Overview
Let’s assume that we have used unicode analyze and learned that the following files need translat-

ing:

myfile.dta
anotherfile.do

Before we can translate the files, we must set the extended ASCII encoding. See help encodings
when you are translating your files.

Let’s just assume right now that we know the encoding for the files is ISO-8859-1, and then we will

assume that we were wrong and show you how we get out of that situation.

Step 1. Inform unicode of the encoding by typing

. unicode encoding set ISO-8859-1

Step 2. Translate the files, one at a time by typing

. unicode translate myfile.dta

. unicode translate anotherfile.do

or both in one command by typing

. unicode translate *

Specifying * or *.* or *.dta or m*.* or any other file specification is perfectly safe. unicode
translate ignores irrelevant files just as unicode analyze does. unicode translate also ig-

nores files that do not need translating, and it ignores files that have already been translated. unicode
translate does not depend on your having run unicode analyze previously.

unicode translate has another great feature: it makes backups of the files it modifies. If, after

translation, you decide you do not like the translation, you can restore the original by typing

. unicode restore myfile.dta

You can even type

. unicode restore *

if you want all of your files restored.

unicode translate — Translate files to Unicode 916

You do not have to restore the original just to retranslate it. Use unicode retranslate instead:

. unicode retranslate myfile.dta

. unicode retranslate *

The only reason to run unicode retranslate, however, is if you want to specify different options
or try a different encoding:

. unicode encoding set some_other_encoding

. unicode retranslate *

And if you do not like that result, you can still unicode restore.

Use of unicode translate: A word on backups
unicode translate and retranslate automatically make backups when they modify a file and a

backup does not already exist. unicode calculates and keeps track of checksums calculated on the orig-
inal and translated files, so it knows whether the files are subsequently changed. unicode is thoroughly
tested. What could possibly go wrong?

If you are like us, you trust nobody with regard to your files. We do not even trust ourselves. Trust us

on this. Make your own back up in whatever way you know before using unicode translate. Backup
the entire directory. We would make a zip file of it, but if nothing else, just copy all the files to a new,

out-of-the-way directory. We predict you will not need the copies, but one never knows for sure.

Even if unicode is perfect, the subsequent validity of the backups depends on the bak.stunicode

subdirectory not being corrupted by another process or even by you. More than once, we have ourselves

damaged files in haste.

After you have translated your files, keep the backups for a while. Eventually, however, there will

come a day when the backups are no longer needed. The command to delete the backups of your originals

is

. unicode erasebackups, badidea

You must specify option badidea. Think of badidea as an abbreviation for

badideaifdonetoosoon: what you are doing in specifying the option is stating that it is not too

soon.

Use of unicode translate: Output
unicode translate’s output looks just like unicode analyze’s output except that the content

varies:

. unicode translate *
30 file(s) specified
6 file(s) not Stata
6 file(s) already known to be ASCII in previous runs
4 file(s) already known to be UTF-8 in previous runs

14 files(s) to be examined
File filename (filetype)

notes about the translation

result message

unicode translate — Translate files to Unicode 917

File badfile.ado (textfile)
40 lines in file
16 lines ASCII
2 lines translated
22 lines w/ invalid chars not translated

File not translated because it contains untranslatable
characters;

you need to specify a different encoding or, if you
are sure that you have the correct encoding, use
unicode translate with the invalid() option

.

.
File filename (filetype)

notes about the translation
notes about elements that need translating

result message

Files matching * that still need translation:
badfile.ado

File summary:
10 file(s) skipped (known okay from previous runs)
13 file(s) successfully translated
1 files(s) not translated because they contain

untranslatable characters
you need to specify a different encoding or, if you
are sure that you have the correct encoding, use
unicode translate with the invalid() option

One file still needs translation according to the output. How can files still need translation? The

output explains. We had untranslatable characters. The output even says what to do about it. We should

specify a different encoding—the fact that we had untranslatable characters is evidence that we are using

the wrong encoding—or we should accept that there are invalid characters in our file and tell unicode
translate how to handle them. It will help us make the decision if we scan up from the file-summary

message to find the detailed output for badfile.ado:

File badfile.ado (textfile)
40 lines in file
16 lines ASCII
2 lines translated
22 lines w/ invalid chars not translated

File not translated because it contains untranslatable
characters;

you need to specify a different encoding or, if you
are sure that you have the correct encoding, use
unicode translate with the invalid() option

You can read about the invalid() option under Options, but this looks like a case where the file

needs a different encoding; 2 lines translated with the current encoding, and 22 did not. If we had instead

seen that 22 lines translated and that 2 lines had invalid characters, we would be less sure about needing

a different encoding. Assume the output had been

File badfile.ado (textfile)
40 lines in file
38 lines ASCII
2 lines w/ invalid chars not translated

unicode translate — Translate files to Unicode 918

File not translated because it contains untranslatable
characters;

you need to specify a different encoding or, if you
are sure that you have the correct encoding, use
unicode translate with the invalid() option

That an ado-file is mostlyASCII does not surprise us. The fact that no lines could be translated (given

the encoding) speaks volumes. We need a different encoding.

Most of our files were translated. For successful translations, the detailed output for .dta files will
be something like the following:

File trees.dta (Stata dataset)
9 variable names okay, ASCII
3 variable names translated

all data labels okay, ASCII
8 variable labels okay, ASCII
4 variable labels translated

all value-label names okay, ASCII
all value-label contents translated
all characteristic names okay, ASCII
all characteristic contents okay, ASCII
all str# variables okay, ASCII

File successfully translated

The detailed output for text files might look like the following:

File runjob.do (textfile)
120 lines in file
101 lines ASCII
19 lines translated

File successfully translated

Here is an example of a file that translated successfully but produced a lot of output:

File northwest.dta (Stata dataset)
all variable names okay, ASCII
all data labels okay, ASCII
all variable labels okay, ASCII
all value-label names okay, ASCII
all value-label contents okay, ASCII
all characteristic names okay, ASCII
all characteristic contents okay, ASCII
1 strL variable okay, ASCII
1 strL variable(s) have binary values

This concerns strL variable diagnotes.
StrL variables that contain binary values in even one
observation are not translated by unicode. Translating
binary values is inappropriate. Rarely, however,
”binary” values are just text or the variable contains
binary values in some observations and nonbinary values
in others. You translate such variables using generate
or replace; see translating binary strLs.

1 strL variable translated
2 str# variables okay, ASCII
1 str# variable translated

File successfully translated

unicode translate — Translate files to Unicode 919

The extra output concerns a strL variable that was not translated. The output states that the variable

is binary and that translating binary strLs is inappropriate, but maybe not. This is the topic of the next

section.

Translating binary strLs
unicode translate does not translate binary strLs. That is probably the right decision. StrLs are

sometimes used in Stata to record documents, images, and other binary files, and modifying binary files

is never a good idea.

Stata marks strL variables as binary on an observation-by-observation basis. As far as unicode
translate is concerned, however, if there is just one observation in which the strL is marked as bi-

nary, it treats all observations as binary and does not translate them. The thinking is that variables hold

different realizations of the same underlying type of thing, and if the strL is binary in one observation, it

is probably truly binary in all observations.

Perhaps you know differently in your specific application and wish to translate the variable’s nonbi-

nary observations or all of its observations. Here is how you do that.

You use string function ustrfrom() to obtain a translated string. Assuming the existing strL variable
is named myvar, you type

. generate strL newvar = ustrfrom(myvar, ”encoding”, #)

Specify encoding just as you would with unicode encoding set encoding. encoding might be ISO-

8859-1, Windows-1252, Big5, ISO-2022-KR, or any other extended ASCII encoding. Whatever string

you specify for encoding, make sure it is valid and spelled correctly. Testing the string with unicode
encoding set is one way to do that.

is specified as 1, 2, 3, or 4 and determines how invalid characters are to be handled. Three of the

four values correspond to unicode’s invalid() option:

1 is equivalent to invalid(mark)
2 is equivalent to invalid(ignore)
4 is equivalent to invalid(escape)

The remaining code, 3, specifies that the function return “ ” if invalid characters are encountered.

So one way of translating all the values of myvar would be

. generate strL try = ustrfrom(myvar, ”ISO-8859-1”, 1)

. browse newvar // review result

. replace newvar = try

. drop try

If you want to translate only the nonbinary values of myvar, you could type

. gen strL try = ustrfrom(myvar, ”ISO-8859-1”, 1) if !_strisbinary(myvar)

. replace try = myvar if _strisbinary(myvar)

That would use Stata’s definition of binary, which is difficult to explain. Another good definition of

binary is that the string not contain binary 0:

. gen strL try = ustrfrom(myvar, ”ISO-8859-1”, 1) if !strpos(myvar, char(0))

. replace try = myvar if strpos(myvar, char(0))

unicode translate — Translate files to Unicode 920

Also see
[D] unicode — Unicode utilities

[U] 12.4.2 Handling Unicode strings

[U] 12.4.2.6 Advice for users of Stata 13 and earlier

use — Load Stata dataset

Description Quick start Menu Syntax Options Remarks and examples
Also see

Description
use loads into memory a Stata-format dataset previously saved by save. If filename is specified

without an extension, .dta is assumed. If your filename contains embedded spaces, remember to enclose
it in double quotes.

In the second syntax for use, a subset of the data may be read.

Quick start
Load Stata-format dataset mydata.dta into memory from current directory

use mydata

Same as above, but load data from the mysubdir subdirectory in current directory and clear current data
from memory first

use mysubdir/mydata, clear

Load only variables v1, v2, and v3 from mydata.dta
use v1 v2 v3 using mydata

Same as above, and further restrict to the first 100 observations

use v1 v2 v3 in 1/100 using mydata

Load observations from mydata.dta where catvar = 2

use if catvar==2 using mydata

Menu
File > Open...

921

use — Load Stata dataset 922

Syntax
Load Stata-format dataset

use filename [, clear nolabel]

Load subset of Stata-format dataset

use [varlist] [if] [in] using filename [, clear nolabel]

Options
clear specifies that it is okay to replace the data in memory, even though the current data have not been

saved to disk.

nolabel prevents value labels in the saved data from being loaded. It is unlikely that you will ever want

to specify this option.

Remarks and examples

Example 1
We have no data in memory. In a previous session, we issued the command save hiway to save the

Minnesota Highway Data that we had been analyzing. We retrieve it now:

. use hiway
(Minnesota Highway Data, 1973)

Stata loads the data into memory and shows us that the dataset is labeled “Minnesota Highway Data,

1973”.

Example 2
We continue to work with our hiway data and find an error in our data that needs correcting:

. replace spdlimit=70 in 1
(1 real change made)

We remember that we need to forward some information from another dataset to a colleague. We use
that other dataset:

. use accident
no; dataset in memory has changed since last saved
r(4);

Stata refuses to load the data because we have not saved the hiway data since we changed it.

. save hiway, replace
file hiway.dta saved
. use accident
(Minnesota accident data)

use — Load Stata dataset 923

After we save our hiway data, Stata lets us load our accident dataset. If we had not cared whether our
changed hiway dataset were saved, we could have typed use accident, clear to tell Stata to load the
accident data without saving the changed dataset in memory.

Technical note
In example 2, you saved a revised hiway.dta dataset, which you forward to your colleague. Your

colleague issues the command

. use hiway

and gets the message

file hiway.dta not Stata format
r(610);

Your colleague is using a version of Stata older than Stata 14. If your colleague is using Stata 11, 12, or

13, you can save the dataset in Stata 11, 12, or 13 format by using the saveold command; see [D] save.

Newer versions of Stata can always read datasets created by older versions of Stata. Stata/MP and

Stata/SE can read datasets created by Stata/BE. Stata/BE can read datasets created by Stata/MP and

Stata/SE if those datasets conform to Stata/BE’s limits; see [R] Limits.

Example 3
If you are using a dataset that is too large for the amount of memory on your computer, you could

load only some of the variables:

. use ln_wage grade age tenure race using
> https://www.stata-press.com/data/r19/nlswork
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)
. describe
Contains data from https://www.stata-press.com/data/r19/nlswork.dta
Observations: 28,534 National Longitudinal Survey of

Young Women, 14-24 years old in
1968

Variables: 5 27 Nov 2024 08:14
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

age byte %8.0g Age in current year
race byte %8.0g racelbl Race
grade byte %8.0g Current grade completed
tenure float %9.0g Job tenure, in years
ln_wage float %9.0g ln(wage/GNP deflator)

Sorted by:

Stata successfully loaded the five variables.

use — Load Stata dataset 924

Example 4
You are new to Stata and want to try working with a Stata dataset that was used in example 1 of

[XT] xtlogit. You load the dataset:

. use https://www.stata-press.com/data/r19/union
(NLS Women 14-24 in 1968)

The dataset is successfully loaded, but it would have been shorter to type

. webuse union
(NLS Women 14-24 in 1968)

webuse is a synonym for use https://www.stata-press.com/data/r19/; see [D] webuse.

Also see
[D] compress — Compress data in memory

[D] datasignature — Determine whether data have changed

[D] frames use — Load a set of frames from disk

[D] import — Overview of importing data into Stata

[D] save — Save Stata dataset

[D] sysuse — Use shipped dataset

[D] webuse — Use dataset from Stata website

[U] 11.6 Filenaming conventions

[U] 22 Entering and importing data

varmanage — Manage variable labels, formats, and other properties

Description
varmanage opens the Variables Manager. The Variables Manager allows for the sorting and filtering

of variables for the purpose of setting properties on one or more variables at a time. Variable properties

include the name, label, storage type, format, value label, and notes. The Variables Manager also can be

used to create varlists for the Command window.

Menu
Data > Variables Manager

Syntax
varmanage

Remarks and examples
Atutorial discussion of varmanage can be found in [GS] 7 Using the Variables Manager (GSM, GSU,

or GSW).

Also see
[D] drop — Drop variables or observations

[D] edit — Browse or edit data with Data Editor

[D] format — Set variables’ output format

[D] label — Manipulate labels

[D] notes — Place notes in data

[D] rename — Rename variable

925

vl — Manage variable lists

Description Remarks and examples Also see

Description
vl stands for variable list. It is a suite of commands for creating and managing named variable lists.

Lists are intended especially to be used as arguments to estimation commands.

In particular, the suite is designed to help divide variables into two groups: one group that will be

treated as factor variables and another group that will be treated as continuous or interval variables.

vl creates two types of named variable lists: system-defined variable lists, created automatically by
vl set, and user-defined variable lists, created by vl create. You will usually use vl set to create

system-defined variable lists first, and then create your own variable lists from them with vl create.

After creating a variable list called vlusername, the expression $vlusername can be used in Stata

anywhere a varlist is allowed. Variable lists are actually global macros, and the vl commands are a

convenient way to create and manipulate them.

Variable lists are saved with the dataset.

Remarks and examples
Remarks are presented under the following headings:

Introduction
vl set and system-defined variable lists
Classification criteria for system-defined variable lists
Moving variables into another classification
vl create and user-defined variable lists
vl list
vl substitute and factor-variable operators
Exploring data with vl set
Changing the cutoffs for classification
Moving variables from one classification to another
Dropping variables and rebuilding variable lists
Changing variables and updating variable lists
Saving and using datasets with variable lists
User-defined variable lists and factor-variable operators
Updating variable lists created by vl substitute

926

vl — Manage variable lists 927

Introduction
The vl commands are the following:

System only

vl set initializes the system-defined variable lists based on the number
of levels and other characteristics of a variable

vl move moves variables from one system-defined variable list to another

User only

vl create creates user-defined variable lists

vl modify adds or removes variables from user-defined variable lists

vl label adds a label to a user-defined variable list

vl substitute creates a user-defined variable list using factor-variable operators

System or user

vl list lists the contents of variable lists, either system or user

vl dir displays the defined variable lists, either system or user

vl drop deletes variable lists or removes variables from multiple variable lists

vl clear deletes all variable lists

vl rebuild restores variable lists

The first thing to note is that some vl commands only work with system-defined variable lists, some
only work with user-defined variable lists, and others work with both.

vl set is typically used first. It initializes the system-defined variable lists. By default, it classifies all
the numeric variables in your dataset. Or you can specify varlist and have it classify only those variables.

When we are discussing the vl commands and say “variable list”, we mean a named variable list

created by vl set or vl create. A traditional Stata list of variables, that is, varlist, we will call varlist.

Variable lists contain varlists.

vl create allows you to create your own variable lists, either starting with system-defined variable
lists or with varlists you specify. There is no need to run vl set and create system-defined variable lists.
You can create your own from scratch. If you are familiar with the variables in your dataset and know

which ones you want treated as factor variables and which as continuous variables, you may want to

create only user-defined variable lists.

vl rebuild restores all the vl-generated variable lists after loading a dataset that previously had
variable lists. Stata saves variable lists when you save your data, but when you use the saved data file,
they are not automatically restored.

We will explain how to use vl with a series of examples.

vl set and system-defined variable lists
We will first show examples using Stata’s automobile dataset because it only has a small number of

variables and the output will not be too lengthy. We will do that even though you are unlikely to want to

use vl with this small dataset. vl is intended for use with dozens or even thousands of variables.

vl — Manage variable lists 928

. sysuse auto
(1978 automobile data)

Typing vl set without varlist classifies all the numeric variables in the data.

. vl set

Macro’s contents

Macro # Vars Description

System
$vlcategorical 2 categorical variables
$vlcontinuous 2 continuous variables
$vluncertain 7 perhaps continuous, perhaps categorical variables
$vlother 0 all missing or constant variables

Notes
1. Review contents of vlcategorical and vlcontinuous to ensure they are

correct. Type vl list vlcategorical and type vl list vlcontinuous.
2. If there are any variables in vluncertain, you can reallocate them

to vlcategorical, vlcontinuous, or vlother. Type
vl list vluncertain.

3. Use vl move to move variables among classifications. For example,
type vl move (x50 x80) vlcontinuous to move variables x50 and x80 to
the continuous classification.

4. vlnames are global macros. Type the vlname without the leading
dollar sign ($) when using vl commands. Example: vlcategorical not
$vlcategorical. Type the dollar sign with other Stata commands to
get a varlist.

By default, all numeric variables are put into one of four system-defined variable lists: vlcategorical,
vlcontinuous, vluncertain, or vlother.

vlcategorical is intended for variables that are to be used as factor variables. vlcontinuous is
intended for variables that are to be treated as continuous. vluncertain is intended for variables that
may be categorical or may be continuous. vlother is a garbage classification intended for variables you
want to ignore. vl set only puts constants and variables that are always missing into vlother, but you
can move other variables there—more on that later.

Classification criteria for system-defined variable lists
Division into vlcategorical, vlcontinuous, or vluncertain is determined by several criteria.

First, if the variable contains any noninteger values, it goes in vlcontinuous.

Second, if the variable has negative values, it goes in vlcontinuous because factor variables in Stata
must be nonnegative. If you have a variable that has values −1 and 1, you must recode it as 0 and 1 (or

1 and 2 or any other two distinct nonnegative integers) before you can use it as a factor variable.

Third, values of factor variables must be smaller than 231 = 2,147,483,648, so a variable with any

values ≥ 231 goes in vlcontinuous.

Fourth, constants, even when nonnegative integers, go in vlother.

For the remaining variables containing nonnegative integers, where they are placed is determined by

two cutoffs, which can be specified by the options categorical(#) and uncertain(#).

vl — Manage variable lists 929

When the number of levels (distinct values), 𝐿, is

2 ≤ 𝐿 ≤ categorical(#)

the variable goes in vlcategorical. When

categorical(#) < 𝐿 ≤ uncertain(#)

the variable goes in vluncertain. When

𝐿 > uncertain(#)

the variable goes in vlcontinuous.

The defaults are categorical(10) and uncertain(100), which are admittedly arbitrary. They

were chosen because they are easy-to-remember round numbers. In many cases, you will want to use

different cutoffs. See the next section, where we reset categorical(#) and uncertain(#).

Moving variables into another classification
vl list will show how each variable was classified and why.

. vl list, minimum maximum observations

Variable Macro Values Levels Min Max Obs

rep78 $vlcategorical integers >=0 5 1 5 69
foreign $vlcategorical 0 and 1 2 0 1 74
headroom $vlcontinuous noninteger 1.5 5 74

gear_ratio $vlcontinuous noninteger 2.19 3.89 74
price $vluncertain integers >=0 74 3291 15906 74

mpg $vluncertain integers >=0 21 12 41 74
trunk $vluncertain integers >=0 18 5 23 74
weight $vluncertain integers >=0 64 1760 4840 74
length $vluncertain integers >=0 47 142 233 74
turn $vluncertain integers >=0 18 31 51 74

displacement $vluncertain integers >=0 31 79 425 74

We specified options minimum, maximum, and observations to display the minimum and maximum

values of each variable and the number of nonmissing observations.

vl set does not use the minimum and maximum to determine whether the variable goes in

vlcategorical, vlcontinuous, or vluncertain. If the variable is a nonnegative integer, only the
number of levels matters to vl set. A variable with levels 1,000,000 and 2,000,000 is classified the

same as a variable with levels 0 and 1. The minimum and maximum can be displayed because you might

want to use them to reclassify the variables.

In our example, we look at the number of levels and the minimum and maximum of the variables in

vluncertain, and we decide we want to treat them all as continuous. We use vl move to move them
into vlcontinuous.

vl — Manage variable lists 930

. vl move vluncertain vlcontinuous
note: 7 variables specified and 7 variables moved.

Macro # Added/Removed

$vlcategorical 0
$vlcontinuous 7
$vluncertain -7
$vlother 0

When variables aremoved into a different system-defined variable list, they aremoved out of their current

list.

Moving on, variable rep78, which gives the vehicle repair record, is worth some thought.

. tabulate rep78
Repair

record 1978 Freq. Percent Cum.

1 2 2.90 2.90
2 8 11.59 14.49
3 30 43.48 57.97
4 18 26.09 84.06
5 11 15.94 100.00

Total 69 100.00

rep78 could be considered categorical and used as a factor variable or could be considered as an interval
variable and treated as a continuous variable.

Let’s say we want to move it into vlcontinuous. To specify variable names directly, you specify
them in parentheses. We move rep78.

. vl move (rep78) vlcontinuous
note: 1 variable specified and 1 variable moved.

Macro # Added/Removed

$vlcategorical -1
$vlcontinuous 1
$vluncertain 0
$vlother 0

vl create and user-defined variable lists
vl set and vl move are a first-pass classification of your variables. Next you will likely want to

create specialized variable lists for use as independent variables for an estimation command.

You can create variable lists based on a specific set of variables. Use vl create and specify a varlist
enclosed in parentheses, ().

. vl create power = (gear_ratio displacement weight)
note: $power initialized with 3 variables.
. vl create nonpower = (turn length rep78)
note: $nonpower initialized with 3 variables.

vl — Manage variable lists 931

We want to model mpg. We created the variable list power, containing variables we think are related
to power, and another variable list nonpower, containing variables that are not related to power but might
be predictive of mpg.

After creating these variable lists, we decide the variable length belongs in power instead of

nonpower. So we add it to power by using the vl modify command.

. vl modify power = power + (length)
note: 1 variable added to $power.

vl create and vl modify are like generate and replace in Stata. vl create creates new variable

lists. vl modify modifies existing variable lists.

vl list
We can use vl list to see the variable lists to which the variable length belongs.

. vl list (length), user

Variable Macro Values Levels

length $nonpower integers >=0 47
length $power integers >=0 47

We used vl list with varlist enclosed in parentheses. We specified option user to list only the user-
defined variable lists.

If we do not want length in nonpower, we must explicitly move it out.

. vl modify nonpower = nonpower - (length)
note: 1 variable removed from $nonpower.

In this way, vl modify differs from vl move. vl movemoves a variable out of its current system-defined
variable list when the variable is moved into a new one. vl modify only modifies the specified variable
list.

We can create new user-defined variable lists from existing variable lists, whether user or system

defined.

. vl create xvars = power + nonpower
note: $xvars initialized with 6 variables.

vl — Manage variable lists 932

Using (*) to specify the varlist for vl list gives a listing ordered by variable name first and then
variable-list name.

. vl list (*)

Variable Macro Values Levels

price $vlcontinuous integers >=0 74
price not in vluser 74

mpg $vlcontinuous integers >=0 21
mpg not in vluser 21

rep78 $vlcontinuous integers >=0 5
rep78 $nonpower integers >=0 5
rep78 $xvars integers >=0 5

headroom $vlcontinuous noninteger
headroom not in vluser

trunk $vlcontinuous integers >=0 18
trunk not in vluser 18
weight $vlcontinuous integers >=0 64
weight $power integers >=0 64
weight $xvars integers >=0 64
length $vlcontinuous integers >=0 47
length $power integers >=0 47
length $xvars integers >=0 47
turn $vlcontinuous integers >=0 18
turn $nonpower integers >=0 18
turn $xvars integers >=0 18

displacement $vlcontinuous integers >=0 31
displacement $power integers >=0 31
displacement $xvars integers >=0 31
gear_ratio $vlcontinuous noninteger
gear_ratio $power noninteger
gear_ratio $xvars noninteger

foreign $vlcategorical 0 and 1 2
foreign not in vluser 2

See [D] vl list for all the different ways it can list variable lists and variables.

vl substitute and factor-variable operators
Factor-variable operators can be used with variable lists using vl substitute. Here is an example:

. vl substitute indepvars = i.vlcategorical##c.xvars

See [U] 11.4.3 Factor variables.

To see what is in indepvars, we use the global macro syntax with a $ in front of its name and use
display to view its contents.

. display ”$indepvars”
i.foreign gear_ratio displacement weight length turn rep78 i.foreign#c.gear_ratio i
> .foreign#c.displacement i.foreign#c.weight i.foreign#c.length i.foreign#c.turn i.
> foreign#c.rep78

vl — Manage variable lists 933

To use variable lists with other Stata commands, we do the same thing. We treat the list name like the

global macro it is and put a $ in front of it.

. regress mpg $indepvars
Source SS df MS Number of obs = 69

F(13, 55) = 20.86
Model 1945.54632 13 149.657409 Prob > F = 0.0000

Residual 394.656577 55 7.17557413 R-squared = 0.8314
Adj R-squared = 0.7915

Total 2340.2029 68 34.4147485 Root MSE = 2.6787

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

foreign
Foreign -32.65519 24.36955 -1.34 0.186 -81.49286 16.18248

gear_ratio -.0847818 1.959716 -0.04 0.966 -4.012141 3.842577
(output omitted)

foreign#c.rep78
Foreign 4.480624 1.10794 4.04 0.000 2.260263 6.700985

_cons 50.52293 8.553643 5.91 0.000 33.38104 67.66481

Just like all the other user-defined variable lists, variable lists created by vl substitute are saved
with the data. See [D] vl rebuild.

Exploring data with vl set
Consider a bigger dataset. It is fictitious data, designed to mimic real questionnaire data.

. use https://www.stata-press.com/data/r19/questionnaire, clear
(Fictitious Questionnaire Data)

vl can be used to explore your data. It is a bit like codebook except that codebook provides more
information. vl set, however, is much faster. vl set is even speedy with datasets containing millions
of observations and thousands of variables.

vl — Manage variable lists 934

We run vl set with the list() option, which is equivalent to using the vl list command. We also

specify the option nonotes to suppress the notes at the end of the table.

. vl set, list(min max obs) nonotes

Variable Macro Values Levels Min Max Obs

gender $vlcategorical 0 and 1 2 0 1 1,058
age $vluncertain integers >=0 47 2 64 1,058
q1 $vluncertain integers >=0 40 1 47 1,048
q2 $vlcategorical integers >=0 3 1 3 1,046
q3 $vlcategorical 0 and 1 2 0 1 1,049
q4 $vlcategorical 0 and 1 2 0 1 1,042
q5 $vlcategorical 0 and 1 2 0 1 1,048
q6 $vlcategorical integers >=0 3 1 3 1,046
q7 $vlcategorical 0 and 1 2 0 1 1,047
q8 $vlcategorical 0 and 1 2 0 1 1,046
q9 $vlcategorical 0 and 1 2 0 1 1,051

q10 $vlcategorical 0 and 1 2 0 1 1,047
q11 $vlcategorical 0 and 1 2 0 1 1,042
q12 $vlcategorical integers >=0 5 1 5 1,052
q13 $vlcategorical 0 and 1 2 0 1 1,045
q14 $vlcategorical 0 and 1 2 0 1 1,047
q15 $vluncertain integers >=0 36 0 37 1,040
q16 $vlcategorical integers >=0 3 1 3 1,046
q17 $vlcategorical 0 and 1 2 0 1 1,054
q18 $vlcategorical integers >=0 7 1 7 1,048
q19 $vlcategorical 0 and 1 2 0 1 1,043
q20 $vluncertain integers >=0 30 1 30 1,048

check1 $vlother constant 1 1 1 1,058
q21 $vluncertain integers >=0 39 2 40 1,048
q22 $vluncertain integers >=0 32 3 36 1,050
q23 $vlcategorical integers >=0 10 1 10 1,050
q24 $vlcontinuous negative -1 1 1,050

(output omitted)

q45 $vlcontinuous noninteger 8.7 69.9 1,045
(output omitted)

q60 $vlother all missing . . 0
(output omitted)

q76 $vlcontinuous integers >=0 >100 84 287 1,051
(output omitted)

q161 $vlcategorical 0 and 1 2 0 1 1,047
check8 $vlother constant 1 1 1 1,058

Summary

Macro’s contents

Macro # Vars Description

System
$vlcategorical 138 categorical variables
$vlcontinuous 3 continuous variables
$vluncertain 21 perhaps continuous, perhaps categorical variables
$vlother 9 all missing or constant variables

vl — Manage variable lists 935

From the summary table, we see that most of the variables were put in vlcategorical. The default
cutoff for the number of levels for vlcategorical is 10, so these 138 variables all have 10 levels or
less.

Three variables were put in vlcontinuous. One, q24, has negative values. Its values are actually
only −1 and 1. So it is integer with only two levels, yet it is classified as continuous. Factor variables

must be nonnegative, so any variable with negative values is put into vlcontinuous. We need to recode

q24 as 0/1 (or 1/2, etc.) to use it as a factor variable.

The variable q45 was put in vlcontinuous because it contains noninteger values.

The variable q76 was put in vlcontinuous because, although it is a nonnegative integer, it has over
100 levels. The default cutoff is 100 for determining whether variables are put in vlcontinuous or

vluncertain. Note that the output does not say exactly how many levels, just that the number is greater

than 100.

The variable list vluncertain contains 21 variables. These are nonnegative integers with the number
of levels > 10 and ≤ 100.

The variable list vlother contains nine variables. These variables are either constants or all

missing—variables not suitable for any statistical analyses.

Changing the cutoffs for classification
The default classification produced by vl set was not very useful in this case. vl set put too

many variables in vlcategorical, and it put too many in vluncertain. Most of the variables in

vluncertain are integer-valued scales, and we want those in vlcontinuous.

We will fix this. We run vl set again to re-create the classifications, and this time, we specify

categorical(4) and uncertain(19), meaning that variables in vlcategorical can have up to 4

levels and variables with 5 to 19 levels are placed in vluncertain. We also specify the option dummy
to tell vl set to smarten up and put all the 0/1 variables in their own classification. Finally, we specify
option clear to clear the old classifications. See [D] vl set.

. vl set, categorical(4) uncertain(19) dummy clear nonotes

Macro’s contents

Macro # Vars Description

System
$vldummy 99 0/1 variables
$vlcategorical 16 categorical variables
$vlcontinuous 21 continuous variables
$vluncertain 26 perhaps continuous, perhaps categorical variables
$vlother 9 all missing or constant variables

Wedid not really need to create the vldummy variable list. Hadwewanted to treat the dummy variables
as factor variables, we could have let vl set put them in vlcategorical, as it would by default. Note
that vldummy contains only 0/1 variables. A 1/2 variable is still put in vlcategorical.

vl — Manage variable lists 936

Moving variables from one classification to another
At this point, we are happy with the variables that are in vlcategorical and vlcontinuous. We

are unhappy with having variables in vluncertain, and we have 26 of them! Those variables have

between 5 and 19 levels. Let’s list the variables and categorize them by hand.

. vl list vluncertain

Variable Macro Values Levels

q12 $vluncertain integers >=0 5
q18 $vluncertain integers >=0 7
q23 $vluncertain integers >=0 10
q27 $vluncertain integers >=0 8
q28 $vluncertain integers >=0 15
q35 $vluncertain integers >=0 7
q39 $vluncertain integers >=0 5
q54 $vluncertain integers >=0 10
q63 $vluncertain integers >=0 7
q66 $vluncertain integers >=0 5
q80 $vluncertain integers >=0 5
q81 $vluncertain integers >=0 5
q92 $vluncertain integers >=0 5
q93 $vluncertain integers >=0 7
q99 $vluncertain integers >=0 5
q103 $vluncertain integers >=0 7
q111 $vluncertain integers >=0 7
q112 $vluncertain integers >=0 7
q119 $vluncertain integers >=0 8
q120 $vluncertain integers >=0 7
q124 $vluncertain integers >=0 14
q127 $vluncertain integers >=0 5
q132 $vluncertain integers >=0 7
q135 $vluncertain integers >=0 10
q141 $vluncertain integers >=0 12
q157 $vluncertain integers >=0 7

Many of the variables have seven levels. Let’s tabulate one of them.

. tabulate q18
Question 18 Freq. Percent Cum.

very strongly disagree 136 12.98 12.98
strongly disagree 148 14.12 27.10

disagree 144 13.74 40.84
neither agree nor disagree 146 13.93 54.77

agree 173 16.51 71.28
strongly agree 146 13.93 85.21

very strongly agree 155 14.79 100.00

Total 1,048 100.00

vl — Manage variable lists 937

This variable contains a Likert scale and, because of that, we want to treat the variable as continuous. In

fact, all the variables with seven levels are Likert scales. We move them all into vlcontinuous.

. vl move (q18 q35 q63 q93 q103 q111 q112 q120 q132 q157) vlcontinuous
note: 10 variables specified and 10 variables moved.

Macro # Added/Removed

$vldummy 0
$vlcategorical 0
$vlcontinuous 10
$vluncertain -10
$vlother 0

Now we can list the remaining vluncertain variables.

. vl list vluncertain

Variable Macro Values Levels

q12 $vluncertain integers >=0 5
q23 $vluncertain integers >=0 10
q27 $vluncertain integers >=0 8
q28 $vluncertain integers >=0 15
q39 $vluncertain integers >=0 5
q54 $vluncertain integers >=0 10
q66 $vluncertain integers >=0 5
q80 $vluncertain integers >=0 5
q81 $vluncertain integers >=0 5
q92 $vluncertain integers >=0 5
q99 $vluncertain integers >=0 5
q119 $vluncertain integers >=0 8
q124 $vluncertain integers >=0 14
q127 $vluncertain integers >=0 5
q135 $vluncertain integers >=0 10
q141 $vluncertain integers >=0 12

You can decide for yourself where they go and use vl move to place them.

Dropping variables and rebuilding variable lists
We have variables in vlother.

. vl list vlother

Variable Macro Values Levels

check1 $vlother constant 1
check2 $vlother constant 1

q60 $vlother all missing
check3 $vlother constant 1
check4 $vlother constant 1
check5 $vlother constant 1
check6 $vlother constant 1
check7 $vlother constant 1
check8 $vlother constant 1

vl — Manage variable lists 938

We could use vl drop to remove them from the vl system classification. But we do not want them in

our dataset, so we drop them.

. drop $vlother

Now if we run

. vl list
variable check1 not found

Run vl rebuild to rebuild vl macros.
r(111);

we get an error! vl keeps track of all the variables put into variable lists, and whenever a vl command
is run, it first checks that everything is okay. It discovered missing variables and needs confirmation that

this is intentional. If it is, we vl rebuild the system.

. vl rebuild
Rebuilding vl macros ...

Macro’s contents

Macro # Vars Description

System
$vldummy 99 0/1 variables
$vlcategorical 16 categorical variables
$vlcontinuous 31 continuous variables
$vluncertain 16 perhaps continuous, perhaps categorical variables
$vlother 0 all missing or constant variables

Changing variables and updating variable lists
If you change the values of a variable, you need to vl set the variable again to update its statistics.

You can update its statistics leaving its classification unchanged or tell vl set to redo the classification
as well.

We noticed that age had a suspiciously low minimum.

. vl list (age), min max obs

Variable Macro Values Levels Min Max Obs

age $vlcontinuous integers >=0 >19 2 64 1,058

We do not believe a two-year-old took our questionnaire. Let’s find the ID of this subject.

. list id age if age == 2

id age

543. 05034558 2

We check our original data source and discover that the subject was 20 years old. We correct the value

of age.

. replace age = 20 if id == ”05034558” & age == 2
(1 real change made)

vl — Manage variable lists 939

Now the minimum of age stored by vl is wrong. We could ignore it, or we could fix it by using the

update option of vl set. The option update does not change the classification of a variable; it only
updates the stored statistics.

. vl set age, update list(min max obs) nonotes

Variable Macro Values Levels Min Max Obs

age $vlcontinuous integers >=0 47 18 64 1,058

Summary

Macro’s contents

Macro # Vars Description

System
$vldummy 99 0/1 variables
$vlcategorical 16 categorical variables
$vlcontinuous 31 continuous variables
$vluncertain 16 perhaps continuous, perhaps categorical variables
$vlother 0 all missing or constant variables

If we wanted to redo the classification of age and update its statistics, we would type

. vl set age, redo
(output omitted)

Saving and using datasets with variable lists
When we save our data, the vl system is saved.

. save quest_with_vl
file quest_with_vl.dta saved

However, when we use our data, the vl system is not automatically restored.

. use quest_with_vl
(Fictitious Questionnaire Data)

Type vl rebuild to bring the system back to life.

. vl rebuild
Rebuilding vl macros ...

Macro’s contents

Macro # Vars Description

System
$vldummy 99 0/1 variables
$vlcategorical 16 categorical variables
$vlcontinuous 31 continuous variables
$vluncertain 16 perhaps continuous, perhaps categorical variables
$vlother 0 all missing or constant variables

See [D] vl rebuild for other instances when you need to run vl rebuild.

vl — Manage variable lists 940

User-defined variable lists and factor-variable operators
We continue with our previous example using fictitious questionnaire data.

The system-defined variable lists are good for organizing variables. We would not use them, however,

to specify varlists for estimation commands if for no other reason than we do not want to use all the

variables in the dataset. For this purpose, we need to create user-defined variable lists.

Here is a variable list containing demographic variables we want to use for model fitting.

. vl create demographics = (gender q3 q4 q5)
note: $demographics initialized with 4 variables.

We are going to create two more variable lists: factors, containing variables we want to treat as
factor variables, and control scales, containing variables we want to treat as continuous.

. vl create factors = vldummy + vlcategorical
note: $factors initialized with 115 variables.
. vl create control_scales = (q15 q20 q21 q22)
note: $control_scales initialized with 4 variables.

This is the real power of vl. We created factors from vldummy plus vlcategorical. But factors
contains variables in demographics, and we want to handle the demographics variables differently.
So we remove them from factors. We also remove some other variables we do not want in our model.

. vl modify factors = factors - demographics
note: 4 variables removed from $factors.
. vl modify factors = factors - (q155 q156 q158)
note: 3 variables removed from $factors.

We are going to fit a poregress model, and our variables of interest (ones for which we want to do
inference) are the categorical variables q7, q13, and q16, and the continuous variable q35.

We create a variable list with the categorical ones, and remove them from factors.

. vl create fvofinterest = (q7 q13 q16)
note: $fvofinterest initialized with 3 variables.
. vl modify factors = factors - fvofinterest
note: 3 variables removed from $factors.

Now we use vl substitute to create a variable list that contains factor variables.

. vl substitute interest = i.fvofinterest q35

Notice that we tucked the continuous variable q35 in at the end. vl substitute lets you specify variable
lists and variables by using factor-variable operators—or not—in a natural way.

If you want to see the contents of a variable list created using vl substitute, you can display it:

. display ”$interest”
i.q7 i.q13 i.q16 q35

The one thing to remember about vl substitute is that it is a one-shot deal. Once the variable list
is created, you cannot modify it. If you want to change it, you must delete it using vl drop and then
re-create it using vl substitute.

We are going to go nuts and create a variable list consisting of bushels of interactions.

. vl substitute controlvars = i.demographics i.factors##c.control_scales

vl — Manage variable lists 941

The interest variable list contains our variables of interest for poregress. The controlvars
variable list contains control variables for the model.

. poregress q1 $interest, controls($controlvars)
Estimating lasso for q1 using plugin
Estimating lasso for 1bn.q7 using plugin
Estimating lasso for 1bn.q13 using plugin
Estimating lasso for 2bn.q16 using plugin
Estimating lasso for 3bn.q16 using plugin
Estimating lasso for q35 using plugin
Partialing-out linear model Number of obs = 339

Number of controls = 1,137
Number of selected controls = 12
Wald chi2(5) = 12.89
Prob > chi2 = 0.0244

Robust
q1 Coefficient std. err. z P>|z| [95% conf. interval]

q7
yes -1.333003 .7441531 -1.79 0.073 -2.791516 .1255107

q13
yes .4321797 .684376 0.63 0.528 -.9091725 1.773532

q16
2 .6905278 .8355682 0.83 0.409 -.9471559 2.328211
3 2.497944 .8572828 2.91 0.004 .8177008 4.178188

q35 -.1238627 .1833827 -0.68 0.499 -.4832861 .2355608

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

Using vl, we can specify huge varlists in a succinct notation. If we were to list the expanded estimation
command, it would take half a page!

Updating variable lists created by vl substitute
What is especially convenient about variable lists is how easy they are to modify. Suppose we decide

we do not want q13 in our model. We cannot explicitly change interest because it was created by vl
substitute, but we can change fvofinterest.

. vl modify fvofinterest = fvofinterest - (q13)
note: 1 variable removed from $fvofinterest.

vl — Manage variable lists 942

We now update interest using vl rebuild.

. vl rebuild
Rebuilding vl macros ...

Macro’s contents

Macro # Vars Description

System
$vldummy 99 0/1 variables
$vlcategorical 16 categorical variables
$vlcontinuous 31 continuous variables
$vluncertain 16 perhaps continuous, perhaps categorical variables
$vlother 0 all missing or constant variables

User
$demographics 4 variables
$factors 105 variables
$control_scales 4 variables
$fvofinterest 2 variables
$interest factor-variable list
$controlvars factor-variable list

And we see that q13 is gone from our variable list.

. display ”$interest”
i.q7 i.q16 q35

Also see
[D] vl create — Create and modify user-defined variable lists

[D] vl drop — Drop variable lists or variables from variable lists

[D] vl list — List contents of variable lists

[D] vl rebuild — Rebuild variable lists

[D] vl set — Set system-defined variable lists

vl create — Create and modify user-defined variable lists

Description Quick start Syntax Remarks and examples Also see

Description
vl create creates user-defined variable lists.

vl modify modifies existing user-defined variable lists.

vl substitute creates a variable list using factor-variable operators operating on variable lists.

After creating a variable list called vlusername, the expression $vlusername can be used in Stata

anywhere a varlist is allowed. Variable lists are actually global macros, and the vl commands are a

convenient way to create and manipulate them. They are saved with the dataset. See [D] vl rebuild.

For an introduction to the vl commands, see [D] vl.

Quick start
Create a variable list

vl create demographics = (age_cat gender)

Add variables to a variable list

vl modify demographics = demographics + (educ_cat income_cat)

Add the variables in the variable list named othervars to the existing variable list called myxvars
vl modify myxvars = myxvars + othervars

Remove the variable x8 from the variable list

vl modify myxvars = myxvars - (x8)

Apply factor-variable operator i. to all the variables in a variable list

vl substitute idemographics = i.demographics

Create interactions between the levels of the variables in the variable list demographics and the contin-
uous variables in the variable list vlcontinuous

vl substitute myinteractions = i.demographics#c.vlcontinuous

Run a regression specifying the independent variables using variable lists

regress y $idemographics $myxvars $myinteractions

943

vl create — Create and modify user-defined variable lists 944

Syntax
Create user-defined variable lists

vl create vlusername = (varlist)

vl create vlusername = vlname + | - (varlist)
vl create vlusername = vlname1 [+ | - vlname2]

Modify user-defined variable lists

vl modify vlusername = (varlist)

vl modify vlusername = vlname + | - (varlist)
vl modify vlusername = vlname1 [+ | - vlname2]

Apply factor-variable operators to variable-list names

vl substitute vlusername = i.vlname

vl substitute vlusername = i.vlname1#i.vlname2

vl substitute vlusername = i.vlname1##c.vlname2

Label a user-defined variable-list name

vl label vlusername [”label”]

vlname is an existing user-defined variable-list name or a system-defined variable-list name. When spec-

ifying varlist, it is always enclosed in parentheses: (varlist). See [D] vl.

Remarks and examples
Remarks are presented under the following headings:

vl create
vl modify
Using variable lists with other Stata commands
vl substitute

vl create
vl create creates a new variable list. It can be created from a list of variables:

. vl create myxvars = (x1-x100)

In the above, note that the varlist is enclosed in parentheses. varlists must always be enclosed in paren-

theses.

When we are discussing the vl commands and say “variable list,” we mean a named variable list

created by vl create or vl set. In this case, we created the variable list myxvars. A traditional Stata

list of variables, that is, a varlist, we will call a varlist.

A new variable list also can be created from an existing variable list:

. vl create indepvars = myxvars

vl create — Create and modify user-defined variable lists 945

vl modify

vl modify is the same as vl create, except that vl modify cannot create new variables lists, and

vl create cannot modify existing lists.

The operator + can be used to take the union of two variable lists with duplicates removed.
. vl modify indepvars = myxvars + othervars

The operator - can be used to obtain the difference of two variable lists.

. vl modify indepvars = myxvars - othervars

Now indepvars contains the variables that are in myxvars excluding any that are in othervars. If
there are variables in othervars that are not in myxvars, it is not an error. These variables are simply
ignored.

The + and - operators can be used with varlists as well.

. vl modify indepvars = myxvars + (w1 w2 w3)

(varlist) must be specified after + or -, never before.

To list the variables in a variable list, use vl list. To see a directory of variable lists that have been
created, type vl dir. See [D] vl list for details on these two commands.

vl label attaches a label to the variable list that is displayed by vl dir.

. vl label indepvars ”My brilliant choice of variables”

To delete indepvars, type

. vl drop indepvars

vl drop has other uses too; see [D] vl drop.

Using variable lists with other Stata commands
To use variable lists with other Stata commands, type $ in front of the variable-list name. Remember:

With the vl commands, do not use $. With other Stata commands, use $.
. display ”$indepvars”
. summarize $indepvars
. regress y $indepvars

If you know Stata, you will have already figured out that variable lists are global macros. But the vl
system is more than another way to create global macros. For instance, variable lists are saved with the

dataset. Global macros are not. Both variable lists and other vl system information are saved. To make

the vl system come back to life in the state we last had it, after we use a dataset, we type

. vl rebuild

See [D] vl rebuild.

vl substitute
Factor-variable operators can be used with variable lists. There are two ways to do this.

The first is to use factor-variable operators on the global macro form of the variable list like so:

. regress y i.($myfactors)##c.($mycontinuous)

vl create — Create and modify user-defined variable lists 946

Here myfactors is a user-defined variable list containing variables you want treated as factors.

mycontinuous are variables you want treated as continuous. Specifying i.(. . .)##c.(. . .) means you
want main effects of the factors plus interactions of all their levels with the continuous variables. Note

that the parentheses, (), are required.

Asecondway to use factor-variable operators with variable lists is with the command vl substitute.
For example,

. vl substitute myinteractions = i.myfactors##c.mycontinuous

. regress y $myinteractions

would produce the same result as the previous command. However, using vl substitute has the ad-
vantage that the variable lists it creates will be saved with your dataset, just like any other variable list.

See [U] 11.4.3 Factor variables.

You can mix variable names with names of variable lists:

. vl substitute myinteractions = i.gender##c.(mycontinuous x100)

Here gender and x100 are variable names and mycontinuous is a variable list.

Be careful when mixing variable names and names of variable lists. vl substitute first assumes
names are names of variable lists. Then it looks for variable names. For example, if you have both a

variable named x and a variable list named x, and you specify

. vl substitute myinteractions = i.gender##c.(mycontinuous x)

then vl substitute will assume x is the variable list.

Using vl substitute to create a user-defined variable list is a one-shot deal. These variable lists
cannot be modified after they are created. If you want to change them, first drop them,

. vl drop myinteractions

and then define them again:

. vl substitute myinteractions = i.myfactors##c.mycontinuous

For examples using vl create, vl modify, and vl substitute, see [D] vl.

Also see
[D] vl — Manage variable lists

[D] vl drop — Drop variable lists or variables from variable lists

[D] vl list — List contents of variable lists

[D] vl rebuild — Rebuild variable lists

[D] vl set — Set system-defined variable lists

vl drop — Drop variable lists or variables from variable lists

Description Quick start Syntax Options Remarks and examples Also see

Description
vl drop vlusername deletes user-defined variable lists.

vl drop vlsysname zeros system-defined variable lists. They still exist but are empty.

vl drop (varlist) removes variables from all variable lists.

vl clear deletes all variable lists and removes all traces of the vl system.

For an introduction to the vl commands, see [D] vl.

Quick start
Delete the user-defined variable list myfav

vl drop myfav

Zero the system-defined variable list vluncertain
vl drop vluncertain

Drop the variables x1 and x2 from all variable lists

vl drop (x1 x2)

Same as above, but only drop them from user-defined variable lists

vl drop (x1 x2), user

Delete all variable lists and all traces of the vl system
vl clear

Delete all user-defined variable lists

vl clear, user

Delete all system-defined variable lists and the stored variable statistics

vl clear, system

947

vl drop — Drop variable lists or variables from variable lists 948

Syntax
Drop variable lists

vl drop vlnamelist [, system user]

Drop variables from variable lists

vl drop (varlist) [, system user]

Clear all variable lists

vl clear [, system user]

vlnamelist is a list of variable-list names.

(all) or (*) can be used to specify all numeric variables in the dataset.

Options
system when specified with vl drop (varlist), drops the variables in varlist only from system-defined

variable lists. By default, variables are dropped from all variable lists, both system-defined and user-

defined.

When specified with vl clear, only the system-defined variable lists are deleted. By default, both
the system-defined and user-defined variable lists are deleted, and all traces of the vl system are gone.

user when specified with vl drop (varlist), drops the variables in varlist only from user-defined vari-

able lists.

When specified with vl clear, only the user-defined variable lists are deleted.

Remarks and examples
When given one or more names of user-defined variable lists, vl drop deletes them. That is, typing

. vl drop myname

deletes the user-defined variable list myname. It is as if myname was never created. A new variable list

called myname can now be created using vl create.

When given one or more names of system-defined variable lists, vl drop zeros them. That is, typing

. vl drop vluncertain

zeros the system-defined variable list vluncertain. It still exists but is empty. A single system-defined

variable list cannot be deleted.

All system-defined variable lists can be deleted using

. vl clear, system

All system-defined variable lists are now gone. Also deleted are the stored variable statistics, namely,

the number of levels, minimum and maximum values, and the number of nonmissing observations. It is

as if vl set was never run.

vl drop — Drop variable lists or variables from variable lists 949

Typing

. vl clear

deletes all variable lists and all traces of the vl system.

Typing

. vl drop (varlist)

removes the variables in varlist from all variable lists.

Say we only want to remove variable x8 from the user-defined variable list mylist. To do this, we
type

. vl modify mylist = mylist - (x8)

Note the parentheses around x8; see [D] vl create.

Say you want to remove variable x8 from the system-defined variable list vlcategorical. System-
defined variable lists are disjoint, so a variable is only in one of them. Thus, we can remove it by typing

. vl drop (x8), system

Rather than drop it, we could have moved it to the system-defined variable list vlother.

. vl move (x8) vlother

See [D] vl set.

Also see
[D] vl — Manage variable lists

[D] vl create — Create and modify user-defined variable lists

[D] vl list — List contents of variable lists

[D] vl rebuild — Rebuild variable lists

[D] vl set — Set system-defined variable lists

vl list — List contents of variable lists

Description Quick start Syntax Options Remarks and examples
Stored results Also see

Description
vl list shows the contents of variable lists when given names of variable lists. When given names

of variables, it shows the variable lists to which each variable belongs.

vl dir shows the names of all variable lists.

For an introduction to the vl commands, see [D] vl.

Quick start
Show the contents of all variable lists

vl list

Show the contents of the system-defined variable list vlcategorical
vl list vlcategorical

Show the contents of the user-defined variable list myfav
vl list myfav

Show the variable lists to which x1-x100 belong
vl list (x1-x100)

Show the variable lists to which every numeric variable belongs

vl list (*)

Show the contents of all system-defined variable lists

vl list, system

Show the contents of all user-defined variable lists

vl list, user

Show the contents of all variable lists, and show the minimum value, maximum value, and number of

nonmissing values for each variable

vl list, minimum maximum observations

Show the contents of all variable lists, ordered by variable list and then alphabetically by variable name

vl list, sort

Show the variable lists to which every numeric variable belongs, ordered alphabetically by variable name

and then by variable list

vl list (*), sort

950

vl list — List contents of variable lists 951

Syntax
Show the contents of variable lists

vl list [vlnamelist] [, options]

Show the variable lists to which variables belong

vl list (varlist) [, options]

Show names of all variable lists

vl dir [, system user]

vlnamelist is a list of variable-list names.

(all) or (*) can be used to specify all numeric variables in the dataset.

options Description

system show only system-defined variable lists

user show only user-defined variable lists

minimum show minimum value of each variable

maximum show maximum value of each variable

observations show number of nonmissing observations of each variable

sort order by variable list and then alphabetically by variable name when
vlnamelist is specified; order alphabetically by variable name and then
by variable list when (varlist) is specified

strok allow string variables when (varlist) is specified
nolstretch do not stretch the width of the table to accommodate long names

collect is allowed with vl list and vl dir; see [U] 11.1.10 Prefix commands.

Options
system specifies that only system-defined variable lists be shown. By default, both system-defined and

user-defined variable lists are shown.

user specifies that only user-defined variable lists be shown.

minimum specifies that the minimum value of each variable be displayed.

maximum specifies that the minimum value of each variable be displayed.

observations specifies that number of nonmissing observations of each variable be displayed.

sort specifies that the listing be sorted. When vlnamelist is specified, the listing is ordered by variable

list and then alphabetically by variable name. By default in this case, variables are listed in the order

in which they were added to the variable list.

When (varlist) is specified, the listing is ordered alphabetically by variable name and then by variable
list. By default in this case, variables are listed in the order in which they appear in varlist.

strok specifies that string variables be included in the listing when (varlist) is specified. By default,
specifying string variables in varlist gives an error message. Specifying strok prevents this error

message and lists any string variables.

vl list — List contents of variable lists 952

nolstretch specifies that the width of the table not be automatically widened to accommodate long

variable and variable-list names. When nolstretch is specified, names are abbreviated to make the
table width no more than 79 characters. The default, lstretch, is to automatically widen the table
up to the width of the Results window. To change the default, use set lstretch off.

Remarks and examples
vl list produces two types of listings. The first lists by variable-list name and then by variable name.

The second is the reverse; it lists by variable name and then by variable-list name.

Typing

. vl list

produces the first type of listing. This listing is useful when you want to see the contents of each variable

list.

Typing

. vl list (*)

or

. vl list (x1-x100)

produces the second type of listing. This listing is useful when you want to see all variable lists to which

a variable belongs.

System-defined variable lists are disjoint, so a variable can only belong to one of them. There is

no such restriction on user-defined variable lists. Variables can belong to more than one user-defined

variable list.

Typing

. vl dir

shows all the variable lists, both system-defined and user-defined. The options system and user work
with both vl list and vl dir to restrict the output accordingly.

Example 1: Showing the contents of variable lists
We show examples using Stata’s automobile dataset because it has only a small number of variables

and the output will not be too lengthy.

. sysuse auto
(1978 automobile data)

vl list — List contents of variable lists 953

We run vl set with the option nonotes to suppress the notes at the end of the output.

. vl set, nonotes

Macro’s contents

Macro # Vars Description

System
$vlcategorical 2 categorical variables
$vlcontinuous 2 continuous variables
$vluncertain 7 perhaps continuous, perhaps categorical variables
$vlother 0 all missing or constant variables

Let’s list the contents of the variable lists.

. vl list

Variable Macro Values Levels

rep78 $vlcategorical integers >=0 5
foreign $vlcategorical 0 and 1 2
headroom $vlcontinuous noninteger

gear_ratio $vlcontinuous noninteger
price $vluncertain integers >=0 74

mpg $vluncertain integers >=0 21
trunk $vluncertain integers >=0 18
weight $vluncertain integers >=0 64
length $vluncertain integers >=0 47
turn $vluncertain integers >=0 18

displacement $vluncertain integers >=0 31

We decide to treat all the variables in vluncertain as continuous, so we move them to

vlcontinuous. Then we run vl dir to confirm that vluncertain is empty.

. vl move vluncertain vlcontinuous
note: 7 variables specified and 7 variables moved.

Macro # Added/Removed

$vlcategorical 0
$vlcontinuous 7
$vluncertain -7
$vlother 0

. vl dir

Macro’s contents

Macro # Vars Description

System
$vlcategorical 2 categorical variables
$vlcontinuous 9 continuous variables
$vluncertain 0 perhaps continuous, perhaps categorical variables
$vlother 0 all missing or constant variables

vl list — List contents of variable lists 954

Let’s create two user-defined variable lists.

. vl create power = (gear_ratio weight displacement)
note: $power initialized with 3 variables.
. vl create other = (price turn length)
note: $other initialized with 3 variables.

Let’s do a listing ordered by variable list. We specify options to see the minimum and maximum

values and the number of nonmissing observations for each variable.

. vl list, minimum maximum observations

Variable Macro Values Levels Min Max Obs

rep78 $vlcategorical integers >=0 5 1 5 69
foreign $vlcategorical 0 and 1 2 0 1 74
headroom $vlcontinuous noninteger 1.5 5 74

gear_ratio $vlcontinuous noninteger 2.19 3.89 74
price $vlcontinuous integers >=0 74 3291 15906 74

mpg $vlcontinuous integers >=0 21 12 41 74
trunk $vlcontinuous integers >=0 18 5 23 74
weight $vlcontinuous integers >=0 64 1760 4840 74
length $vlcontinuous integers >=0 47 142 233 74
turn $vlcontinuous integers >=0 18 31 51 74

displacement $vlcontinuous integers >=0 31 79 425 74
gear_ratio $power noninteger 2.19 3.89 74

weight $power integers >=0 64 1760 4840 74
displacement $power integers >=0 31 79 425 74

price $other integers >=0 74 3291 15906 74
turn $other integers >=0 18 31 51 74

length $other integers >=0 47 142 233 74

Specifying (*) means that we want a listing ordered by variable name.

. vl list (*)

Variable Macro Values Levels

price $vlcontinuous integers >=0 74
price $other integers >=0 74

mpg $vlcontinuous integers >=0 21
mpg not in vluser 21

rep78 $vlcategorical integers >=0 5
rep78 not in vluser 5

headroom $vlcontinuous noninteger
headroom not in vluser

trunk $vlcontinuous integers >=0 18
trunk not in vluser 18
weight $vlcontinuous integers >=0 64
weight $power integers >=0 64
length $vlcontinuous integers >=0 47
length $other integers >=0 47
turn $vlcontinuous integers >=0 18
turn $other integers >=0 18

displacement $vlcontinuous integers >=0 31
displacement $power integers >=0 31
gear_ratio $vlcontinuous noninteger
gear_ratio $power noninteger

foreign $vlcategorical 0 and 1 2
foreign not in vluser 2

vl list — List contents of variable lists 955

Variables are listed multiple times showing all the variable lists to which each belongs. We can restrict

the listing to user-defined variable lists.

. vl list (*), user

Variable Macro Values Levels

price $other integers >=0 74
mpg not in vluser 21

rep78 not in vluser 5
headroom not in vluser

trunk not in vluser 18
weight $power integers >=0 64
length $other integers >=0 47
turn $other integers >=0 18

displacement $power integers >=0 31
gear_ratio $power noninteger

foreign not in vluser 2

See the lines “not in vluser”? They are omitted if you run vl list, user.

Let’s use vl substitute with factor-variable operators to create interactions between the variables
in the system-defined variable list, vlcategorical, and the variables in our user-defined variable list,
mycontinuous.

. vl substitute indepvars = i.vlcategorical##c.(power other)

The factor-variable list indepvars shows up when we run vl dir.

. vl dir

Macro’s contents

Macro # Vars Description

System
$vlcategorical 2 categorical variables
$vlcontinuous 9 continuous variables
$vluncertain 0 perhaps continuous, perhaps categorical variables
$vlother 0 all missing or constant variables

User
$power 3 variables
$other 3 variables
$indepvars factor-variable list

Factor-variable lists do not work with vl list. But you can display their contents because variable lists
are global macros. You can list the contents of a variable list by typing

. display ”$indepvars”
i.rep78 i.foreign gear_ratio weight displacement price turn length i.rep78#c.gear_r
> atio i.rep78#c.weight i.rep78#c.displacement i.rep78#c.price i.rep78#c.turn i.rep
> 78#c.length i.foreign#c.gear_ratio i.foreign#c.weight i.foreign#c.displacement i.
> foreign#c.price i.foreign#c.turn i.foreign#c.length

vl list — List contents of variable lists 956

Stored results
vl list stores the following in r():

Scalars

r(k) number of variables listed

r(k system) number of variables listed in system-defined variable lists

r(k not system) number of variables listed not in system-defined variable lists

r(k vlcategorical) number of variables listed in vlcategorical
r(k vlcontinuous) number of variables listed in vlcontinuous
r(k vluncertain) number of variables listed in vluncertain
r(k vlother) number of variables listed in vlother
r(k vldummy) number of variables listed in vldummy when defined
r(k user) number of variables listed in user-defined variable lists

r(k not user) number of variables listed not in user-defined variable lists

r(k vlusername) number of variables listed in vlusername

r(k string) number of string variables listed when strok specified

Macros

r(vlsysnames) names of all system-defined variable lists

r(vlusernames) names of all user-defined variable lists

vl dir stores the following in r():

Scalars

r(k system) number of variables in system-defined variable lists

r(k vlcategorical) number of variables in vlcategorical
r(k vlcontinuous) number of variables in vlcontinuous
r(k vluncertain) number of variables in vluncertain
r(k vlother) number of variables in vlother
r(k vldummy) number of variables in vldummy when defined
r(k user) number of variables in user-defined variable lists

r(k vlusername) number of variables in vlusername

Macros

r(vlsysnames) names of system-defined variable lists

r(vlusernames) names of user-defined variable lists

Also see
[D] vl — Manage variable lists

[D] vl create — Create and modify user-defined variable lists

[D] vl drop — Drop variable lists or variables from variable lists

[D] vl rebuild — Rebuild variable lists

[D] vl set — Set system-defined variable lists

vl rebuild — Rebuild variable lists

Description Quick start Syntax Remarks and examples Stored results Also see

Description
vl rebuild restores system-defined and user-defined variable lists. After loading a dataset with use,

run vl rebuild.

After using merge or append, run vl rebuild to merge variable lists. You only need to run vl
rebuild when the using dataset has variable lists.

After dropping variables with drop, run vl rebuild to remove the dropped variables from all variable

lists.

After modifying variable lists with vl modify or vl move, run vl rebuild to update variable lists
created by vl substitute.

And if you are confused, know that it never hurts to run vl rebuild.

For an introduction to the vl commands, see [D] vl.

Quick start
Restore variable lists after loading a dataset with use

vl rebuild

After running merge when the using dataset has variable lists, merge its variable lists into those in the
master dataset

vl rebuild

After dropping variables with drop, remove the dropped variables from all variable lists

vl rebuild

Update a variable list created by vl substitute after modifying any of its component variable lists
vl rebuild

Syntax
vl rebuild

collect is allowed; see [U] 11.1.10 Prefix commands.

957

vl rebuild — Rebuild variable lists 958

Remarks and examples
Remarks are presented under the following headings:

Reloading datasets
Merging datasets
Dropping variables
vl substitute and vl rebuild
Characteristics

Reloading datasets
System-defined and user-defined variable lists are saved with the dataset. However, they are not

automatically restored when you reload the data. Just type vl rebuild to restore them.

. use $...$

. vl rebuild

Merging datasets
Another time when vl rebuild is needed is when a merge is done and the using dataset has variable

lists.

. merge $...$ using filename

. vl rebuild

Only when filename has variable lists is it necessary to run vl rebuild. When both the master dataset

in memory and filename have variable lists, vl rebuild merges them. When the master dataset has

variable lists but filename does not, there is no need to run vl rebuild. However, running vl rebuild
is always harmless.

Dropping variables
When you drop variables from the data in memory using drop, the dropped variables are not auto-

matically removed from variable lists. They can be explicitly removed by using vl drop.
. drop varlist

. vl drop (varlist)

Instead of running vl drop with the list of variables that were dropped, you can simply type

. vl rebuild

It will do the same thing, and you do not have to remember the names of the variables that were dropped.

If you drop or add observations or change any of the values of variables in variable lists, vl rebuild
does not update the stored variable statistics, namely, the number of levels, the minimum and maxi-

mum values, and the number of nonmissing observations. If you want to update these statistics without

changing the system-defined classifications, type

. vl set, update

If you want to update the statistics and redo the system-defined classifications for all variables, type

. vl set, clear

See [D] vl set.

vl rebuild — Rebuild variable lists 959

vl substitute and vl rebuild
vl rebuild has another important use. It will update variable lists created by vl substitute.

For example, we created two user-defined variable lists:

. vl create myfactors = (x1 x2 x3)

. vl create mycontinuous = (c1 c2 c3 c4 c5)

Then we created a variable list using factor-variable operators:

. vl substitute myinteraction = i.myfactors##c.mycontinuous

If we modify mycontinuous,

. vl modify mycontinuous = mycontinuous - (c3)

then the global macro $myinteraction for the variable list myinteraction remains unchanged.

Running

. vl rebuild

updates the global macro $myinteraction.

Again, if you make any changes to your data or to your variable lists, and you want to make sure

everything is set properly and up to date, just type

. vl rebuild

Characteristics
Advanced Stata users will likely guess how variable lists and variable statistics are stored with the

dataset. They are stored as characteristics. If you want to see them, type

. char list

See [P] char.

Stored results
vl rebuild stores the following in r():

Scalars

r(k system) number of variables in system-defined variable lists

r(k vlcategorical) number of variables in vlcategorical
r(k vlcontinuous) number of variables in vlcontinuous
r(k vluncertain) number of variables in vluncertain
r(k vlother) number of variables in vlother
r(k vldummy) number of variables in vldummy when defined
r(k user) number of variables in user-defined variable lists

r(k vlusername) number of variables in vlusername

Macros

r(vlsysnames) names of system-defined variable lists

r(vlusernames) names of user-defined variable lists

vl rebuild — Rebuild variable lists 960

Also see
[D] vl — Manage variable lists

[D] vl create — Create and modify user-defined variable lists

[D] vl drop — Drop variable lists or variables from variable lists

[D] vl list — List contents of variable lists

[D] vl set — Set system-defined variable lists

vl set — Set system-defined variable lists

Description Quick start Syntax Options Remarks and examples
Stored results Also see

Description
vl set is designed to identify variables that are to be treated as factor variables in Stata’s estimation

commands.

vl set creates the system-defined variable lists vlcategorical, vlcontinuous, vluncertain,
and vlother. Variables are placed in them based on their values (integer or noninteger, all nonnegative,

etc.) and default or user-specified cutoffs for the number of levels in a variable.

vl move moves variables from one classification to another.

Variable lists are actually global macros, and they are saved with the dataset. See [D] vl rebuild.

For an introduction to the vl commands, see [D] vl.

Quick start
Classify all numeric variables in the dataset

vl set

Same as above, and include a vldummy classification for 0/1 variables
vl set, dummy

Classify all numeric variables in the dataset, and list each variable as it is classified

vl set, list

Put nonnegative integer variables with 6 or fewer categories into vlcategorical; put nonnegative in-
teger variables with 7–20 categories into vluncertain; put nonnegative integer variables with more
than 20 categories into vlcontinuous

vl set, categorical(6) uncertain(20)

Classify only the variables x1-x100
vl set x1-x100

Discard the existing classifications, and classify all numeric variables again

vl set, clear

Redo the classification of the variable age
vl set age, redo

Update the stored statistics for the variable age, but do not change its classification
vl set age, update

Move the variables x8 and x20 out of their current classification and into vlcategorical
vl move (x8 x20) vlcategorical

Move all the variables in vluncertain into vlcontinuous
vl move vluncertain vlcontinuous

961

vl set — Set system-defined variable lists 962

Syntax
Create system-defined variable lists

vl set [varlist] [, options]

Move variables from their current system-defined variable list to another

vl move (varlist) vlsysname

Move all variables in one system-defined variable list to another

vl move vlsysname1 vlsysname2

varlist contains only numeric variables. If not specified, then all numeric variables in the dataset are

classified.

options Description

categorical(#) upper limit for the number of categories in vlcategorical
uncertain(#) upper limit for the number of categories in vluncertain
dummy create variable list vldummy containing 0/1 variables
list[(list options)] list variables as they are classified

clear discard all existing classifications and make new classifications

redo redo classifications for variables in varlist

update update stored statistics for variables in varlist, but do not change
their classification

nonotes suppress the notes below the summary table

collect is allowed with vl set; see [U] 11.1.10 Prefix commands.

Options
categorical(#) specifies that variables containing nonnegative integers be put into the

vlcategorical variable list when the number of levels is between 2 and # inclusive. Vari-

ables with only one level (that is, constants) are put into the vlother variable list. The default is

categorical(10).

categorical(.) can be specified to set the upper limit effectively to infinity. That is, all vari-

ables containing nonnegative integers (whose values are less than 231 = 2,147,483,648) are put into

vlcategorical. Setting # to . or a large value can slow computation time considerably when the

number of observations is extremely large.

uncertain(#) specifies that variables containing nonnegative integers be put into the vluncertain
variable list when the number of levels are between categorical(#) + 1 and # inclusive. The

default is uncertain(100).

must be ≥ categorical(#). To omit the vluncertain classification, set
= categorical(#) or specify uncertain(0).

uncertain(.) can be specified to set the upper limit effectively to infinity. That is, all variables

containing nonnegative integers (whose values are less than 231 = 2,147,483,648) with more than

categorical(#) levels are put into vluncertain. Setting # to . or a large value can slow compu-

tation time considerably when the number of observations is extremely large.

vl set — Set system-defined variable lists 963

dummy specifies that a vldummy variable list be created containing 0/1 variables. By default, 0/1 variables
are put into vlcategorical.

list[(list options)] lists variables as they are classified. The classification is shown as well as the

number of levels for variables in vlcategorical and vluncertain. list options are as follows:

minimum shows the minimum value of each variable;

maximum shows the maximum value of each variable; and

observations shows the number of nonmissing values of each variable.

The same listing can be obtained using vl list after running vl set.

clear specifies that all the system-defined variable lists (if any) be dropped and the classifications re-
done. It is equivalent to running vl clear, system and then running vl set.

redo specifies that the classifications be redone for the variables in varlist. It is equivalent to running

vl drop (varlist), system and then running vl set varlist.

update specifies that all statistics (number of levels, minimum value, maximum value, and number of

nonmissing observations) that are saved for the variables in varlist be updated but the classifications

of the variables not be changed. update is intended for use when observations are added to or dropped
from the data and you want the classifications to remain unchanged.

nonotes specifies that the notes at the bottom of the summary table not be displayed. By default, the

notes are shown.

Remarks and examples
vl set creates the system-defined variable lists vlcategorical, vlcontinuous, vluncertain,

and vlother.

The vlcategorical variable list is intended for variables that will be used as factor variables in

estimation commands.

The vlcontinuous variable list is intended for variables that will be used as continuous variables in
estimation commands.

The vluncertain variable list is intended for variables that we may want to treat as factors or as

continuous, and we will decide which on a case-by-case basis. As we decide, we use vl move to move
them out of vluncertain and into vlcategorical or vlcontinuous. For example, we decide we
want variable q31, currently in vluncertain, to be a factor variable. We type

. vl move (q31) vlcategorical

In the above, note that q31 is enclosed in parentheses. varlists must always be enclosed in parentheses
in vl move.

When q31 is moved into vlcategorical, it is automatically moved out of vluncertain. The

system-defined variable lists are always kept as disjoint sets. That is, a variable can only appear in

one system-defined variable list. User-defined variable lists can be made to be overlapping. See [D] vl

create and [D] vl.

vl set — Set system-defined variable lists 964

Suppose we look at the remaining variables in vluncertain, and we decide that they all should be
treated as continuous. We type

. vl move vluncertain vlcategorical

Suppose we look at the remaining variables in vluncertain, and we decide we do not want any of
them in any of the estimation commands we wish to run. We could move them to vlother.

. vl move vluncertain vlother

vlother is intended to be a garbage classification for variables you do not want to use in estimation
commands. vl set puts variables that are constant and variables that are missing for all observations
into vlother.

Suppose, however, we simply want some variables gone from the system-defined variable lists. We

do not want them shown when we do a vl list. To make them gone, gone, gone, use vl drop.

. vl drop (varlist), system

This removes the variables in varlist from the system-defined variable lists.

We can also

. vl drop vluncertain

This removes all the variables in vluncertain. vluncertain still exists, but it is empty. We can still

move other variables into it if we want. System-defined variable lists always exist although they may be

empty. They cannot be renamed. If you do not like this behavior, you can create your own variable lists

using vl create. For example,

. vl create mycat = vlcategorical

. vl create mycont = vlcontinuous

If you are done using the system-defined variable lists and do not want them around, you can remove

them by typing

. vl clear, system

The system-defined variable lists will be gone, but user-defined variable lists will remain. When you

clear the system-defined variable lists, you also erase the statistics that are stored with each variable in

the system.

When vl set runs, it calculates the minimum, maximum, and number of nonmissing observations
for each variable. It also computes the number of levels for the variables in vlcategorical and

vluncertain. It does not compute the number of levels for other variables. That is why vl set is

so fast even when there are millions of observations.

Computing the exact number of levels when there are thousands of levels can be time consum-

ing. You can have vl set compute the number of levels for more variables by specifying the option

uncertain(#) and setting # to a large number or missing (.). But expect it to be much slower when
there are lots of observations.

To use variable lists with other Stata commands, type $ in front of the variable-list name. Remember:
With the vl commands, do not use $. With other Stata commands, use $.

. display ”$vlcategorical”

. summarize $vlcontinuous

. regress y i.($vlcategorical) $vlcontinuous

vl set — Set system-defined variable lists 965

If you know Stata, you will have already sensed that variable lists are global macros.

In this example, we used i.($vlcategorical) to turn the variables in vlcategorical into factor
variables. More likely, however, you will want to create your own variable lists based on the system-

defined variable lists, and then apply factor-variable operators. The vl create, vl modify, and vl
substitute commands were designed for this purpose. See [D] vl create.

Variable lists are saved with the dataset. Not only are variable lists saved but also all the vl system
information and variable statistics are saved. To make the vl system come back to life in the state we

last had it, after we use a dataset, we type

. vl rebuild

See [D] vl rebuild.

For examples of using vl set and its options, see [D] vl.

Stored results
vl set stores the following in r():

Scalars

r(k system) number of variables in system-defined variable lists

r(k vlcategorical) number of variables in vlcategorical
r(k vlcontinuous) number of variables in vlcontinuous
r(k vluncertain) number of variables in vluncertain
r(k vlother) number of variables in vlother
r(k vldummy) number of variables in vldummy when defined

Macros

r(vlsysnames) names of system-defined variable lists

Also see
[D] vl — Manage variable lists

[D] vl create — Create and modify user-defined variable lists

[D] vl drop — Drop variable lists or variables from variable lists

[D] vl list — List contents of variable lists

[D] vl rebuild — Rebuild variable lists

webuse — Use dataset from Stata website

Description Quick start Menu Syntax
Option Remarks and examples Also see

Description
webuse filename loads the specified dataset, obtaining it over the web. By default, datasets are ob-

tained from https://www.stata-press.com/data/r19/. If filename is specified without a suffix, .dta is

assumed.

webuse query reports the URL from which datasets will be obtained.

webuse set allows you to specify the URL to be used as the source for datasets. webuse set without
arguments resets the source to https://www.stata-press.com/data/r19/.

You can see lists of available dataset names for each manual in your browser at https://www.stata-

press.com/data/r19/ or from within Stata at help dta manuals.

Quick start
Load example nlswork.dta dataset from default Stata Press website

webuse nlswork

Same as above, but clear current dataset from memory first

webuse nlswork, clear

Change URL for data downloads to http://www.myuniversity.edu/mycourse

webuse set www.myuniversity.edu/mycourse

Reset source for datasets to Stata Press

webuse set

Report current URL from which datasets will be obtained

webuse query

Menu
File > Example datasets...

966

webuse — Use dataset from Stata website 967

Syntax
Load dataset over the web

webuse [”]filename[”] [, clear]

Report URL from which datasets will be obtained

webuse query

Specify URL from which dataset will be obtained

webuse set [https://]url[/]

webuse set [http://]url[/]

Reset URL to default

webuse set

Option
clear specifies that it is okay to replace the data in memory, even though the current data have not been

saved to disk.

Remarks and examples
Remarks are presented under the following headings:

Typical use
A note concerning example datasets
Redirecting the source

Typical use
In the examples in the Stata manuals, we see things such as

. use https://www.stata-press.com/data/r19/lifeexp

The above is used to load—in this instance—the dataset lifeexp.dta. You can type that, and it will
work:

. use https://www.stata-press.com/data/r19/lifeexp
(Life expectancy, 1998)

Or you may simply type

. webuse lifeexp
(Life expectancy, 1998)

webuse is a synonym for use https://www.stata-press.com/data/r19/.

webuse — Use dataset from Stata website 968

A note concerning example datasets
The datasets used to demonstrate Stata are often fictional. If you want to know whether a dataset is

real or fictional, and its history, load the dataset and type

. notes

A few datasets have no notes. This means that the datasets are believed to be real but that they were

created so long ago that information about their original source has been lost. Treat such datasets as if

they were fictional.

Redirecting the source
By default, webuse obtains datasets from https://www.stata-press.com/data/r19/, but you can change

that. Say that the site http://www.zzz.edu/users/~sue/ has several datasets that you wish to explore. You

can type

. webuse set http://www.zzz.edu/users/~sue

webusewill become a synonym for use http://www.zzz.edu/users/~sue/ for the rest of the session
or until you give another webuse command.

When you set the URL, you may omit the trailing slash (as we did above), or you may include it:

. webuse set http://www.zzz.edu/users/~sue/

You may also omit https:// or http://:

. webuse set www.zzz.edu/users/~sue

If you type webuse set without arguments, the URL will be reset to the default,
https://www.stata-press.com/data/r19/:

. webuse set

Also see
[D] frames use — Load a set of frames from disk

[D] sysuse — Use shipped dataset

[D] use — Load Stata dataset

[U] 1.2.2 Example datasets

xpose — Interchange observations and variables

Description Quick start Menu Syntax
Options Remarks and examples Reference Also see

Description
xpose transposes the data, changing variables into observations and observations into variables. All

new variables—that is, those created by the transposition—are made the default storage type. Thus

any original variables that were strings will result in observations containing missing values. (If you

transpose the data twice, you will lose the contents of string variables.)

Quick start
Replace dataset in memory with transposed variables and observations

xpose, clear

Add varname containing the original variable names
xpose, clear varname

Use the most compact data type that preserves accuracy in the transposed data

xpose, clear promote

Menu
Data > Create or change data > Other variable-transformation commands > Interchange observations and vari-
ables

969

xpose — Interchange observations and variables 970

Syntax
xpose , clear [options]

options Description

∗ clear reminder that untransposed data will be lost if not previously saved

format use largest numeric display format from untransposed data

format(% fmt) apply specified format to all variables in transposed data

varname add variable varname containing original variable names
promote use the most compact data type that preserves numeric accuracy

∗ clear is required.
xpose does not allow alias variables; see [D] frunalias for advice on how to get around this restriction.

Options
clear is required and is supposed to remind you that the untransposed data will be lost (unless you have

saved the data previously).

format specifies that the largest numeric display format from your untransposed data be applied to the

transposed data.

format(% fmt) specifies that the specified numeric display format be applied to all variables in the trans-
posed data.

varname adds the new variable varname to the transposed data containing the original variable names.
Also, with or without the varname option, if the variable varname exists in the dataset before trans-
position, those names will be used to name the variables after transposition. Thus transposing the data

twice will (almost) yield the original dataset.

promote specifies that the transposed data use the most compact numeric data type that preserves the
original data accuracy.

If your data contain any variables of type double, all variables in the transposed data will be of type
double.

If variables of type float are present, but there are no variables of type double or long, the trans-
posed variables will be of type float. If variables of type long are present, but there are no variables
of type double or float, the transposed variables will be of type long.

xpose — Interchange observations and variables 971

Remarks and examples

Example 1
We have a dataset on something by county and year that contains

. use https://www.stata-press.com/data/r19/xposexmpl

. list

county year1 year2 year3

1. 1 57.2 11.3 19.5
2. 2 12.5 8.2 28.9
3. 3 18 14.2 33.2

Each observation reflects a county. To change this dataset so that each observation reflects a year, type

. xpose, clear varname

. list

v1 v2 v3 _varname

1. 1 2 3 county
2. 57.2 12.5 18 year1
3. 11.3 8.2 14.2 year2
4. 19.5 28.9 33.2 year3

We would now have to drop the first observation (corresponding to the previous county variable) to

make each observation correspond to one year. Had we not specified the varname option, the vari-

able varname would not have been created. The varname variable is useful, however, if we want to
transpose the dataset back to its original form.

. xpose, clear

. list

county year1 year2 year3

1. 1 57.2 11.3 19.5
2. 2 12.5 8.2 28.9
3. 3 18 14.2 33.2

Reference
Baum, C. F. 2016. An Introduction to Stata Programming. 2nd ed. College Station, TX: Stata Press.

Also see
[D] frunalias — Change storage type of alias variables

[D] reshape — Convert data from wide to long form and vice versa

[D] stack — Stack data

https://www.stata-press.com/books/introduction-stata-programming/

zipfile — Compress and uncompress files and directories in zip archive format

Description Quick start Syntax Options for zipfile
Options for unzipfile Remarks and examples Stored results

Description
zipfile compresses files and directories into a zip file that is compatible with Zip64, WinZip, PKZIP

2.04g, and other applications that use the zip archive format.

unzipfile extracts files and directories from a file in zip archive format into the current directory.

unzipfile can open zip files created by Zip64, WinZip, PKZIP 2.04g, and other applications that use the

zip archive format.

Quick start
Compress mydata.dta and save as myproject.zip

zipfile mydata.dta, saving(myproject)

Same as above, but also compress mydofile.do and mylog.smcl
zipfile mydata.dta mydofile.do mylog.smcl, saving(myproject)

Replace myproject.zip if it already exists
zipfile mydata.dta mydofile.do mylog.smcl, ///

saving(myproject, replace)

Compress all files in the myproject subdirectory of the current directory
zipfile myproject/*, saving(myproject)

Extract files and directories from myzip.zip to the current directory
unzipfile myzip

Same as above, but replace any file or directory in the current directory that has the same name as a file

or directory in the zip file

unzipfile myzip, replace

972

zipfile — Compress and uncompress files and directories in zip archive format 973

Syntax
Add files or directories to a zip file

zipfile file | directory [file | directory] ..., saving(zipfilename[, replace])
[complevel(#)]

Extract files or directories from a zip file

unzipfile zipfilename [, replace
ifilter(includefilter) efilter(excludefilter)]

Note: Double quotes must be used to enclose file and directory if the name or path contains blanks. file

and directory may also contain the ? and * wildcard characters.

Options for zipfile
saving(zipfilename[, replace]) specifies the filename to be created or replaced. If zipfilename is

specified without an extension, .zip will be assumed. saving() is required.

complevel(#) sets the compression level for the zipfile. # is an integer from 0, meaning no compression,

to 9, meaning full compression. The default is complevel(6).

Options for unzipfile
replace overwrites any file or directory in the current directory with the files or directories in the zip

file that have the same name.

ifilter(includefilter) limits the extracted files by including only those files that match the specified
pattern. Pattern matching is based on java.util.regex.Pattern.

efilter(excludefilter) limits the extracted files by excluding all files that match the specified pattern.
Pattern matching is based on java.util.regex.Pattern.

Remarks and examples

Example 1: Creating a zip file
Suppose that we would like to zip all the .dta files in the current directory into the file myfiles.zip.

We would type

. zipfile *.dta, saving(myfiles)

But we notice that we did not want the files in the current directory; instead, we wanted the files

in the dta, abc, and eps subdirectories. We can easily zip all the .dta files from all three-character

subdirectories of the current directory and overwrite the file myfiles.zip if it exists by typing

. zipfile ???/*.dta, saving(myfiles, replace)

zipfile — Compress and uncompress files and directories in zip archive format 974

Example 2: Unzipping a zip file
Say, for example, we send myfiles.zip to a colleague, who nowwants to unzip the file in the current

directory, overwriting any files or directories that have the same name as the files or directories in the

zip file. The colleague should type

. unzipfile myfiles, replace

Stored results
zipfile stores the following in r():

Scalars

r(archived) number of files compressed

r(skipped) number of files skipped

r(total) number of files processed

r(compressed size) size of compressed file

r(processed size) combined size of all processed files

r(compression ratio) ratio of compressed size to uncompressed size

unzipfile stores the following in r():

Scalars

r(extracted) number of files extracted

r(skipped) number of files skipped

r(total) number of files contained in zip file

Glossary

ASCII.ASCII stands forAmerican Standard Code for Information Interchange. It is a way of representing

text and the characters that form text in computers. It can be divided into two sections: plain, or

lower,ASCII, which includes numbers, punctuation, plain letters without diacritical marks, whitespace

characters such as space and tab, and some control characters such as carriage return; and extended

ASCII, which includes letters with diacritical marks as well as other special characters.

Before Stata 14, datasets, do-files, ado-files, and other Stata files were encoded using ASCII.

binary 0. Binary 0, also known as the null character, is traditionally used to indicate the end of a string,

such as an ASCII or UTF-8 string.

Binary 0 is obtained by using char(0) and is sometimes displayed as \0. See [U] 12.4.10 strL

variables and binary strings for more information.

binary string. A binary string is, technically speaking, any string that does not contain text. In Stata,

however, a string is only marked as binary if it contains binary 0, or if it contains the contents of a file

read in using the fileread() function, or if it is the result of a string expression containing a string
that has already been marked as binary.

In Stata, strL variables, string scalars, and Mata strings can store binary strings.

See [U] 12.4.10 strL variables and binary strings for more information.

byte. Formally, a byte is eight binary digits (bits), the units used to record computer data. Each byte can

also be considered as representing a value from 0 through 255. Do not confuse this with Stata’s byte
variable storage type, which allows values from −127 to 100 to be stored. With regard to strings, all

strings are composed of individual characters that are encoded using either one byte or several bytes

to represent each character.

For example, in UTF-8, the encoding system used by Stata, byte value 97 encodes “a”. Byte values

195 and 161 in sequence encode “á”.

characteristics. Characteristics are one form of metadata about a Stata dataset and each of the variables

within the dataset. They are typically used in programming situations. For example, the xt commands

need to know the name of the panel variable and possibly the time variable. These variable names are

stored in characteristics within the dataset. See [U] 12.8 Characteristics for an overview and [P] char

for a technical description.

code pages. A code page maps extended ASCII values to a set of characters, typically for a specific

language or set of languages. For example, the most commonly used code page is Windows-1252,

which maps extended ASCII values to characters used in Western European languages. Code pages

are essentially encodings for extended ASCII characters.

code point. A code point is the numerical value or position that represents a single character in a

text system such as ASCII or Unicode. The original ASCII encoding system contains only 128 code

points and thus can represent only 128 characters. Historically, the 128 additional bytes of extended

ASCII have been encoded in many different and inconsistent ways to provide additional sets of 128

code points. The formal Unicode specification has 1,114,112 possible code points, of which roughly

250,000 have been assigned to actual characters. Stata uses UTF-8 encoding for Unicode. Note that

the UTF-8–encoded version of a code point does not have the same numeric value as the code point

itself.

975

Glossary 976

display column. A display column is the space required to display one typical character in the fixed-

width display used by Stata’s Results window and Viewer. Some characters are too wide for one

display column. Each character is displayed in one or two display columns.

All plain ASCII characters (for example, “M” and “9”) and many UTF-8 characters that are not plain

ASCII (for example, “é”) require the same space when using a fixed-width font. That is to say, they all

require a single display column.

Characters from non-Latin alphabets, such as Chinese, Cyrillic, Japanese, and Korean, may require

two display columns.

See [U] 12.4.2.2 Displaying Unicode characters for more information.

display format. The display format for a variable specifies how the variable will be displayed by Stata.

For numeric variables, the display format would indicate to Stata how many digits to display, how

many decimal places to display, whether to include commas, and whether to display in exponential

format. Numeric variables can also be formatted as dates. For strings, the display format indicates

whether the variable should be left-aligned or right-aligned in displays and how many characters to

display. Display formats may be specified by the format command. Display formats may also be
used with individual numeric or string values to control how they are displayed. Distinguish display

formats from storage types.

encodings. An encoding is a way of representing a character as a byte or series of bytes. Examples of

encoding systems are ASCII and UTF-8. Stata uses UTF-8 encoding.

For more information, see [U] 12.4.2.3 Encodings.

extendedASCII. ExtendedASCII, also known as higherASCII, is the byte values 128 to 255, which were

not defined as part of the original ASCII specification. Various code pages have been defined over the

years to map the extended ASCII byte values to many characters not supported in the original ASCII

specification, such as Latin letters with diacritical marks, such as “á” and “Á”; non-Latin alphabets,

such as Chinese, Cyrillic, Japanese, and Korean; punctuation marks used in non-English languages,

such as “<”, complex mathematical symbols such as “±”, and more.

Although extendedASCII characters are stored in a single byte inASCII encoding, UTF-8 stores the same

characters in two to four bytes. Because each code page maps the extended ASCII values differently,

another distinguishing feature of extended ASCII characters is that their meaning can change across

fonts and operating systems.

frames. Frames, also known as data frames, are in-memory areas where datasets are analyzed. Stata can

hold multiple datasets in memory, and each dataset is held in a memory area called a frame. A variety

of commands exist to manage frames and manipulate the data in them. See [D] frames.

hexadecimal. The hexadecimal number system, or simply hex, is a base-16 number system represented

by digits 0 through 9 and letters A through F.

higherASCII. See extended ASCII.

locale. A locale is a code that identifies a community with a certain set of rules for how their language

should be written. A locale can refer to something as general as an entire language (for example, “en”

for English) or something as specific as a language in a particular country (for example, “en HK” for

English in Hong Kong).

A locale specifies a set of rules that govern how the language should be written. Stata uses locales

to determine how certain language-specific operations are carried out. For more information, see

[U] 12.4.2.4 Locales in Unicode.

Glossary 977

long format and wide format. Think of a dataset as having an ID variable, 𝑖, and a variable, 𝑗, whose
values denote a subobservation. For instance, a person might be the 𝑖 variable, and a year might be
the 𝑗 variable, so you have information about a set of people across several years. If this information
is organized such that the 𝑗 variable is explicitly specified, then the data are in long format; otherwise,
they are in wide format. For instance,

id year income
1 1980 10000
1 1981 12000
1 1982 11000
2 1980 15000
2 1981 14000
2 1982 17000

are in long format because the 𝑗 variable, year, is explicitly specified. In the following, the data are
in wide format:

id income1980 income1981 income1982
1 10000 12000 11000
2 15000 14000 17000

See [D] reshape for how to go between long and wide format.

lowerASCII. See plain ASCII.

null-terminator. See binary 0.

numlist. A numlist is a list of numbers. That list can be one or more arbitrary numbers or can use

certain shorthands to indicate ranges, such as 5/9 to indicate integers 5, 6, 7, 8, and 9. Ranges can be
ascending or descending and can include an optional increment or decrement amount, such as 10.5(-
2)4.5 to indicate 10.5, 8.5, 6.5, and 4.5. See [U] 11.1.8 numlist for a list of shorthands to indicate

ranges.

plain ASCII. We use plain ASCII as a nontechnical term to refer to what computer programmers call

lower ASCII. These are the plain Latin letters “a” to “z” and “A” to “Z”; numbers “0” through “9”;

many punctuation marks, such as “!”; simple mathematical symbols, such as “+”; and whitespace and

control characters such as space (“ ”), tab, and carriage return.

Each plain ASCII character is stored as a single byte with a value between 0 and 127. Another dis-

tinguishing feature is that the byte values used to encode plain ASCII characters are the same across

different operating systems and are common between ASCII and UTF-8.

Also see ASCII and encodings.

prefix command. A prefix command is a command in Stata that prefixes other Stata commands. For ex-

ample, by varlist:. The command by region: summarize marriage rate divorce rate would
summarize marriage rate and divorce rate for each region separately. See [U] 11.1.10 Prefix
commands.

storage types. A storage type is how Stata stores a variable. The numeric storage types in Stata are

byte, int, long, float, and double. There is also a string storage type. The storage type is

specified before the variable name when a variable is created. See [U] 12.2.2 Numeric storage types,

[U] 12.4 Strings, and [D] Data types. Distinguish storage types from display formats.

str1, str2, . . . , str2045. See strL.

strL. strL is a storage type for string variables. The full list of string storage types is str1, str2, . . .,
str2045, and strL.

Glossary 978

str1, str2, . . ., str2045 are fixed-length storage types. If variable mystr is str8, then 8 bytes are
allocated in each observation to store mystr’s value. If you have 2,000 observations, then 16,000
bytes in total are allocated.

Distinguish between storage length and string length. If myvar is str8, that does not mean the strings
are 8 characters long in every observation. The maximum length of strings is 8 characters. Individual

observations may have strings of length 0, 1, . . . , 8. Even so, every string requires 8 bytes of storage.

You need not concern yourself with the storage length because string variables are automatically

promoted. If myvar is str8, and you changed the contents of myvar in the third observation to

“Longer than 8”, then myvar would automatically become str13.

If you changed the contents of myvar in the third observation to a string longer than 2,045 characters,
myvar would become strL.

strL variables are not necessarily longer than 2,045 characters; they can be longer or shorter than
2,045 characters. The real difference is that strL variables are stored as varying length. Pretend that
myothervar is a strL and its third observation contains “this”. The total memory consumed by the
observation would be 64 + 4 + 1 = 69 bytes. There would be 64 bytes of tracking information,

4 bytes for the contents (there are 4 characters), and 1 more byte to terminate the string. If the fifth

observation contained a 2,000,000-character string, then 64+2,000,000+1 = 2,000,069 bytes would

be used to store it.

Another difference between str1, str2, . . ., str2045, and strLs is that the str# storage types can
store only ASCII strings. strL can store ASCII or binary strings. Thus a strL variable could contain,
for instance, the contents of a Word document or a JPEG image or anything else.

strL is pronounce sturl.

titlecase, title-cased string, and Unicode title-cased string. In grammar, titlecase refers to the capital-

ization of the key words in a phrase. In Stata, titlecase refers to (a) the capitalization of the first letter

of each word in a string and (b) the capitalization of each letter after a nonletter character. There is

no judgment of the word’s importance in the string or whether the letter after a nonletter character is

part of the same word. For example, “it’s” in titlecase is “It’S”.

A title-cased string is any string to which the above rules have been applied. For example, if we

used the strproper() function with the book title Zen and theArt of Motorcycle Maintenance, Stata

would return the title-cased string Zen And The Art Of Motorcycle Maintenance.

A Unicode title-cased string is a string that has had Unicode title-casing rules applied to Unicode

words. This is almost, but not exactly, like capitalizing the first letter of each Unicode word. Like

capitalization, title-casing letters is locale-dependent, which means that the same letter might have

different titlecase forms in different locales. For example, in some locales, capital letters at the be-

ginning of words are not supposed to have accents on them, even if that capital letter by itself would

have an accent.

If you do not have characters beyond plain ASCII and your locale is English, there is no distinction in

results. For example, ustrtitle() with an English locale locale also would return the title-cased
string Zen And The Art Of Motorcycle Maintenance.

Use the ustrtitle() function to apply the appropriate capitalization rules for your language (locale).

Unicode. Unicode is a standard for encoding and dealing with text written in almost any conceivable

living or dead language. Unicode specifies a set of encoding systems that are designed to hold (and,

unlike extendedASCII, to keep separate) characters used in different languages. The Unicode standard

Glossary 979

defines not only the characters and encodings for them, but also rules on how to perform various

operations on words in a given language (locale), such as capitalization and ordering. The most

common Unicode encodings are mUTF-8, UTF-16, and UTF-32. Stata uses UTF-8.

Unicode character. Technically, a Unicode character is any character with a Unicode encoding. Collo-

quially, we use the term to refer to any character other than the plain ASCII characters.

Unicode normalization. Unicode normalization allows us to use a common representation and therefore

compare Unicode strings that appear the same when displayed but could have more than one way of

being encoded. This rarely arises in practice, but because it is possible in theory, Stata provides the

ustrnormalize() function for converting between different normalized forms of the same string.

For example, suppose we wish to search for “ñ” (the lowercase n with a tilde over it from the Spanish

alphabet). This letter may have been encoded with the single code point U+00F1. However, the

sequence U+006E (the Latin lowercase “n”) followed by U+0303 (the tilde) is defined by Unicode

to be equivalent to U+00F1. This type of visual identicalness is called canonical equivalence. The

one-code-point form is known as the canonical composited form, and the multiple-code-point form

is known as the canonical decomposed form. Normalization modifies one or the other string to the

opposite canonical equivalent form so that the underlying byte sequences match. If we had strings

in a mixture of forms, we would want to use this normalization when sorting or when searching for

strings or substrings.

Another form of Unicode normalization allows characters that appear somewhat different to be given

the same meaning or interpretation. For example, when sorting or indexing, we may want the code

point U+FB00 (the typographic ligature “ff”) to match the sequence of two Latin “f” letters encoded

as U+0066 U+0066. This is called compatible equivalence.

Unicode title-cased string. See titlecase, title-cased string, and Unicode title-cased string.

UTF-8. UTF-8 stands for Universal character set + Transformation Format—8-bit. It is a type of Unicode

encoding system that was designed for backward compatibility with ASCII and is used by Stata 14.

value label. A value label defines a mapping between numeric data and the words used to describe what

those numeric values represent. So, the variable disease might have a value label status associated

with it that maps 1 to positive and 0 to negative. See [U] 12.6.3 Value labels.

varlist. A varlist is a list of variables that observe certain conventions: variable names may be abbrevi-

ated; the asterisk notation can be used as a shortcut to refer to groups of variables, such as income*
or *1995 to refer to all variable names beginning with income or all variable names ending in 1995,
respectively; and a dash may be used to indicate all variables stored between the two listed variables,

for example, mpg-weight. See [U] 11.4 varname and varlists.

wide format. See long and wide format.

Subject and author index

See the combined subject index and the combined author index in the Stata Index.

980

	Contents
	[IG] Installation Guide
	Simple installation
	Installing Stata or StataNow for Windows
	Installation

	Installing Stata or StataNow for Mac
	Installation

	Installing Stata or StataNow for Unix
	Platforms and editions
	Documentation

	[GS] Getting Started
	[GSM] Mac
	Contents
	1 Introducing Stata---sample session
	Introducing Stata
	Sample session
	Simple data management
	Descriptive statistics
	A simple hypothesis test
	Descriptive statistics---correlation matrices
	Graphing data
	Model fitting: Linear regression
	Commands versus menus
	Keeping track of your work
	Video example
	Conclusion

	2 The Stata user interface
	The windows
	The toolbar
	The Command window
	The Results window
	The Sidebar
	The Variables window
	The Properties window
	The History window
	Tabs
	Menus and dialogs
	The working directory

	3 Using the Viewer
	The Viewer's purpose
	Viewer buttons
	Viewer's function
	Viewing local text files, including SMCL files
	Viewing remote files over the internet
	Navigating within the Viewer
	Printing
	Right-clicking on the Viewer window
	Searching for help in the Viewer
	Commands in the Viewer
	Using the Viewer from the Command window

	4 Getting help
	System help
	Searching help
	Help and search commands
	The Stata reference manuals and User's Guide
	Stata videos
	The Stata Journal

	5 Opening and saving Stata datasets
	How to load your dataset from disk and save it to disk
	How to load a set of frames from disk and save them to disk

	6 Using the Data Editor
	The Data Editor
	Buttons on the Data Editor
	Data entry
	Notes on data entry
	Renaming and formatting variables
	Copying and pasting data
	Notes on copying and pasting
	Changing data
	Working with snapshots
	Dates and the Data Editor
	Data Editor advice
	Filtering and hiding
	Browse mode
	Variable labels in column headers and column width control
	Pinning rows and columns

	7 Using the Variables Manager
	The Variables Manager
	The Variable pane
	Right-clicking on the Variable pane
	The Variable properties pane
	Managing notes

	8 Importing data
	Copying and pasting
	Commands for importing data
	The import delimited command
	Importing files from other software

	9 Labeling data
	Making data readable
	The dataset structure: The describe command
	Labeling datasets and variables
	Labeling values of variables

	10 Listing data and basic command syntax
	Command syntax
	list with a variable list
	list with if
	list with if, common mistakes
	list with in
	Controlling the list output
	Break

	11 Creating new variables
	generate and replace
	generate
	replace
	generate with string variables

	12 Deleting variables and observations
	clear, drop, and keep
	clear and drop _all
	drop
	keep

	13 Using the Do-file Editor---automating Stata
	The Do-file Editor
	The Do-file Editor toolbar
	Using the Do-file Editor
	The File menu
	The Edit menu
	The View > Do-file Editor menu
	Saving interactive commands from Stata as a do-file
	Navigating your do-file
	Code folding
	Projects
	Auto backup
	Adding user-defined keywords for syntax highlighting

	14 Graphing data
	Working with graphs
	A simple graph example
	Graph window
	Saving and printing graphs
	Right-clicking on the Graph window
	The Graph button

	15 Editing graphs
	The Graph Editor

	16 Saving and printing results by using logs
	Using logs in Stata
	Logging output
	Working with logs
	Printing logs
	Rerunning commands as do-files

	17 Setting font and window preferences
	Changing and saving fonts and sizes and positions of your windows
	Graph window
	All other windows
	Changing color schemes
	Managing multiple sets of preferences
	Closing and opening windows

	18 Learning more about Stata
	Where to go from here
	Suggested reading from the User's Guide and reference manuals
	Internet resources

	19 Updating and extending Stata---internet functionality
	Internet functionality in Stata
	Using files from the internet
	Official Stata updates
	Automatic update checking
	Finding community-contributed commands by keyword
	Downloading community-contributed commands

	A Troubleshooting Stata
	A.1 If Stata does not start
	A.2 Troubleshooting tips

	B Advanced Stata usage
	B.1 Executing commands every time Stata is started
	B.2 Other ways to launch Stata
	B.3 Stata batch mode
	B.4 Changing Stata's locale
	B.5 More
	B.6 Memory size considerations

	C More on Stata for Mac
	C.1 Using Stata datasets and graphs created on other platforms
	C.2 Exporting a Stata graph to another document
	C.3 Stata and the Notification Manager
	C.4 Stata(console) for Mac
	C.5 Calling Stata from Python
	C.6 Changing a Stata for Mac license

	Subject index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

	[GSU] Unix
	Contents
	1 Introducing Stata---sample session
	Introducing Stata
	Sample session
	Simple data management
	Descriptive statistics
	A simple hypothesis test
	Descriptive statistics---correlation matrices
	Graphing data
	Model fitting: Linear regression
	Commands versus menus
	Keeping track of your work
	Video example
	Conclusion

	2 The Stata user interface
	The windows
	The toolbar
	The Command window
	The Results window
	The Variables window
	The Properties window
	The History window
	Menus and dialogs
	The working directory

	3 Using the Viewer
	The Viewer in Stata(GUI)
	The Viewer's purpose
	Viewer buttons
	Viewer's function
	Viewing local text files, including SMCL files
	Viewing remote files over the internet
	Navigating within the Viewer
	Printing
	Tabs in the Viewer
	Right-clicking on the Viewer window
	Searching for help in the Viewer
	Commands in the Viewer
	Using the Viewer from the Command window

	4 Getting help
	System help
	Searching help
	Help and search commands
	The Stata reference manuals and User's Guide
	Stata videos
	The Stata Journal

	5 Opening and saving Stata datasets
	How to load your dataset from disk and save it to disk
	How to load a set of frames from disk and save them to disk

	6 Using the Data Editor
	The Data Editor in Stata(GUI)
	Buttons on the Data Editor
	Data entry
	Notes on data entry
	Renaming and formatting variables
	Copying and pasting data
	Notes on copying and pasting
	Changing data
	Working with snapshots
	Dates and the Data Editor
	Data Editor advice
	Filtering and hiding
	Browse mode
	Variable labels in column headers and column width control
	Pinning rows and columns

	7 Using the Variables Manager
	The Variables Manager in Stata(GUI)
	The Variable pane
	Right-clicking on the Variable pane
	The Variable properties pane
	Managing notes

	8 Importing data
	Copying and pasting in Stata(GUI)
	Commands for importing data
	The import delimited command
	Importing files from other software

	9 Labeling data
	Making data readable
	The dataset structure: The describe command
	Labeling datasets and variables
	Labeling values of variables

	10 Listing data and basic command syntax
	Command syntax
	list with a variable list
	list with if
	list with if, common mistakes
	list with in
	Controlling the list output
	Break

	11 Creating new variables
	generate and replace
	generate
	replace
	generate with string variables

	12 Deleting variables and observations
	clear, drop, and keep
	clear and drop _all
	drop
	keep

	13 Using the Do-file Editor---automating Stata
	The Do-file Editor in Stata(GUI)
	The Do-file Editor toolbar
	Using the Do-file Editor
	The File menu
	The Edit menu
	The View menu
	The Tools menu
	Saving interactive commands from Stata as a do-file
	Navigating your do-file
	Code folding
	Projects
	Auto backup
	Adding user-defined keywords for syntax highlighting

	14 Graphing data
	Working with graphs
	A simple graph example
	Graph window
	Saving and printing graphs
	Right-clicking on the Graph window
	The Graph button

	15 Editing graphs
	The Graph Editor

	16 Saving and printing results by using logs
	Using logs in Stata
	Logging output
	Working with logs
	Printing logs
	Rerunning commands as do-files

	17 Setting font and window preferences
	Changing and saving fonts and sizes and positions of your windows
	Graph window
	All other windows
	Changing color schemes
	Managing multiple sets of preferences
	Closing and opening windows

	18 Learning more about Stata
	Where to go from here
	Suggested reading from the User's Guide and reference manuals
	Internet resources

	19 Updating and extending Stata---internet functionality
	Internet functionality in Stata
	Using files from the internet
	Official Stata updates
	Finding community-contributed commands by keyword
	Downloading community-contributed commands

	A Troubleshooting Stata
	A.1 If Stata(GUI) and Stata(console) do not start
	A.2 If Stata(console) starts but Stata(GUI) does not

	B Advanced Stata usage
	B.1 Executing commands every time Stata is started
	B.2 Advanced starting of Stata for Unix
	B.3 Stata batch mode
	B.4 Using X Windows remotely
	B.5 Summary of environment variables
	B.6 Changing Stata's locale
	B.7 More
	B.8 Memory size considerations

	C Stata manual pages for Unix
	conren
	Syntax
	Description
	Finding a color scheme
	Can your terminal underline?
	If you had success
	If you did not have success
	Also see

	stata
	Syntax
	Description
	Remarks and examples

	pystata
	Subject index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

	[GSW] Windows
	Contents
	1 Introducing Stata---sample session
	Introducing Stata
	Sample session
	Simple data management
	Descriptive statistics
	A simple hypothesis test
	Descriptive statistics---correlation matrices
	Graphing data
	Model fitting: Linear regression
	Commands versus menus
	Keeping track of your work
	Video example
	Conclusion

	2 The Stata user interface
	The windows
	The toolbar
	The Command window
	The Results window
	The Variables window
	The Properties window
	The History window
	Menus and dialogs
	The working directory
	Fine control of Stata's windows
	Window types
	Docking windows
	Auto Hide and pinning
	Nondocking windows

	3 Using the Viewer
	The Viewer's purpose
	Viewer buttons
	Viewer's function
	Viewing local text files, including SMCL files
	Viewing remote files over the internet
	Navigating within the Viewer
	Printing
	Tabs in the Viewer
	Right-clicking on the Viewer window
	Searching for help in the Viewer
	Commands in the Viewer
	Using the Viewer from the Command window

	4 Getting help
	System help
	Searching help
	Help and search commands
	The Stata reference manuals and User's Guide
	Stata videos
	The Stata Journal

	5 Opening and saving Stata datasets
	How to load your dataset from disk and save it to disk
	How to load a set of frames from disk and save them to disk

	6 Using the Data Editor
	The Data Editor
	Buttons on the Data Editor
	Data entry
	Notes on data entry
	Renaming and formatting variables
	Copying and pasting data
	Notes on copying and pasting
	Changing data
	Working with snapshots
	Dates and the Data Editor
	Data Editor advice
	Filtering and hiding
	Browse mode
	Variable labels in column headers and column width control
	Pinning rows and columns

	7 Using the Variables Manager
	The Variables Manager
	The Variable pane
	Right-clicking on the Variable pane
	The Variable properties pane
	Managing notes

	8 Importing data
	Copying and pasting
	Commands for importing data
	The import delimited command
	Importing files from other software

	9 Labeling data
	Making data readable
	The dataset structure: The describe command
	Labeling datasets and variables
	Labeling values of variables

	10 Listing data and basic command syntax
	Command syntax
	list with a variable list
	list with if
	list with if, common mistakes
	list with in
	Controlling the list output
	Break

	11 Creating new variables
	generate and replace
	generate
	replace
	generate with string variables

	12 Deleting variables and observations
	clear, drop, and keep
	clear and drop _all
	drop
	keep

	13 Using the Do-file Editor---automating Stata
	The Do-file Editor
	The Do-file Editor toolbar
	Using the Do-file Editor
	The File menu
	The Edit menu
	The View menu
	The Tools menu
	Saving interactive commands from Stata as a do-file
	Navigating your do-file
	Code folding
	Projects
	Auto backup
	Adding user-defined keywords for syntax highlighting

	14 Graphing data
	Working with graphs
	A simple graph example
	Graph window
	Saving and printing graphs
	Right-clicking on the Graph window
	The Graph button

	15 Editing graphs
	The Graph Editor

	16 Saving and printing results by using logs
	Using logs in Stata
	Logging output
	Working with logs
	Printing logs
	Rerunning commands as do-files

	17 Setting font and window preferences
	Changing and saving fonts and sizes and positions of your windows
	Graph window
	All other windows
	Changing color schemes
	Managing multiple sets of preferences
	Closing and opening windows

	18 Learning more about Stata
	Where to go from here
	Suggested reading from the User's Guide and reference manuals
	Internet resources

	19 Updating and extending Stata---internet functionality
	Internet functionality in Stata
	Using files from the internet
	Official Stata updates
	Automatic update checking
	Finding community-contributed commands by keyword
	Downloading community-contributed commands

	A Troubleshooting Stata
	A.1 If Stata does not start
	A.2 Troubleshooting tips

	B Advanced Stata usage
	B.1 The Windows Properties Sheet
	B.2 Making shortcuts
	B.3 Executing commands every time Stata is started
	B.4 Other ways to launch Stata
	B.5 Stata batch mode
	B.6 Running simultaneous Stata sessions
	B.7 Changing Stata's locale
	B.8 More
	B.9 Memory size considerations

	C More on Stata for Windows
	C.1 Using Stata datasets and graphs created on other platforms
	C.2 Exporting a Stata graph to another document
	C.3 Installing Stata for Windows on a network drive
	C.4 Calling Stata from Python
	C.5 Changing a Stata for Windows license

	Subject index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

	[U] User's Guide
	Contents
	Stata basics
	1 Read this---it will help
	1.1 Getting started with Stata
	1.2 The Stata Documentation
	1.3 What's new
	1.4 References

	2 A brief description of Stata
	3 Resources for learning and using Stata
	3.1 Overview
	3.2 Stata on the internet (www.stata.com and other resources)
	3.3 Stata Press
	3.4 The Stata Journal
	3.5 Updating and adding features from the web
	3.6 Conferences and training
	3.7 Books and other support materials
	3.8 Technical support

	4 Stata's help and search facilities
	4.1 Introduction
	4.2 Getting started
	4.3 help: Stata's help system
	4.4 Accessing PDF manuals from help entries
	4.5 Searching
	4.6 More on search
	4.7 More on help
	4.8 search: All the details
	4.9 net search: Searching net resources

	5 Editions of Stata
	5.1 StataNow
	5.2 Platforms
	5.3 Stata/MP, Stata/SE, or Stata/BE
	5.4 Size limits of Stata/MP, SE, and BE
	5.5 Speed comparison of Stata/MP, SE, and BE
	5.6 Feature comparison of Stata/MP, SE, and BE

	6 Managing memory
	6.1 Memory-size considerations
	6.2 Compressing data
	6.3 Setting maxvar
	6.4 The memory command
	6.5 Setting aside memory for temporary storage of preserved datasets

	7 --more-- conditions
	7.1 Description
	7.2 The set more command
	7.3 The more programming command

	8 Error messages and return codes
	8.1 Making mistakes
	8.2 The return message for obtaining command timings

	9 The Break key
	9.1 Making Stata stop what it is doing
	9.2 Side effects of clicking on Break
	9.3 Programming considerations

	10 Keyboard use
	10.1 Description
	10.2 F-keys
	10.3 Editing keys in Stata
	10.4 Editing keys in Stata for Unix(console)
	10.5 Editing previous lines in Stata
	10.6 Tab expansion of variable names

	Elements of Stata
	11 Language syntax
	11.1 Overview
	11.2 Abbreviation rules
	11.3 Naming conventions
	11.4 varname and varlists
	11.5 by varlist: construct
	11.6 Filenaming conventions
	11.7 References

	12 Data
	12.1 Data and datasets
	12.2 Numbers
	12.3 Dates and times
	12.4 Strings
	12.5 Formats: Controlling how data are displayed
	12.6 Dataset, variable, and value labels
	12.7 Notes attached to data
	12.8 Characteristics
	12.9 Data Editor and Variables Manager
	12.10 Data frames
	12.11 References

	13 Functions and expressions
	13.1 Overview
	13.2 Operators
	13.3 Functions
	13.4 System variables (_variables)
	13.5 Accessing coefficients and standard errors
	13.6 Accessing results from Stata commands
	13.7 Explicit subscripting
	13.8 Using the Expression Builder
	13.9 Indicator values for levels of factor variables
	13.10 Time-series operators
	13.11 Label values
	13.12 Precision and problems therein
	13.13 References

	14 Matrix expressions
	14.1 Overview
	14.2 Row and column names
	14.3 Vectors and scalars
	14.4 Inputting matrices by hand
	14.5 Accessing matrices created by Stata commands
	14.6 Creating matrices by accumulating data
	14.7 Matrix operators
	14.8 Matrix functions
	14.9 Subscripting
	14.10 Using matrices in scalar expressions
	14.11 Reference

	15 Saving and printing output---log files
	15.1 Overview
	15.2 Placing comments in logs
	15.3 Logging only what you type
	15.4 The log-button alternative
	15.5 Printing logs
	15.6 Creating multiple log files for simultaneous use

	16 Do-files
	16.1 Description
	16.2 Calling other do-files
	16.3 Creating and running do-files
	16.4 Programming with do-files
	16.5 References

	17 Ado-files
	17.1 Description
	17.2 What is an ado-file?
	17.3 How can I tell if a command is built in or an ado-file?
	17.4 How can I look at an ado-file?
	17.5 Where does Stata look for ado-files?
	17.6 How do I install an addition?
	17.7 How do I add my own ado-files?
	17.8 How do I install official updates?
	17.9 How do I install updates to community-contributed additions?
	17.10 References

	18 Programming Stata
	18.1 Description
	18.2 Relationship between a program and a do-file
	18.3 Macros
	18.4 Program arguments
	18.5 Scalars and matrices
	18.6 Temporarily destroying the data in memory
	18.7 Temporary objects
	18.8 Accessing results calculated by other programs
	18.9 Accessing results calculated by estimation commands
	18.10 Storing results
	18.11 Ado-files
	18.12 Tools for interacting with programs outside Stata and with other languages
	18.13 A compendium of useful commands for programmers
	18.14 References

	19 Immediate commands
	19.1 Overview
	19.2 The display command
	19.3 The power, precision, and sample-size commands

	20 Estimation and postestimation commands
	20.1 All estimation commands work the same way
	20.2 Standard syntax
	20.3 Replaying prior results
	20.4 Cataloging estimation results
	20.5 Saving estimation results
	20.6 Specification search tools
	20.7 Specifying the estimation subsample
	20.8 Specifying the width of confidence intervals
	20.9 Formatting the coefficient table
	20.10 Obtaining the variance--covariance matrix
	20.11 Obtaining predicted values
	20.12 Accessing estimated coefficients
	20.13 Performing hypothesis tests on the coefficients
	20.14 Obtaining linear combinations of parameters
	20.15 Obtaining nonlinear combinations of parameters
	20.16 Obtaining marginal means, adjusted predictions, and predictive margins
	20.17 Obtaining conditional and average marginal effects
	20.18 Obtaining pairwise comparisons
	20.19 Obtaining contrasts, tests of interactions, and main effects
	20.20 Graphing margins, marginal effects, and contrasts
	20.21 Dynamic forecasts and simulations
	20.22 Obtaining robust variance estimates
	20.23 Obtaining scores
	20.24 Weighted estimation
	20.25 A list of postestimation commands
	20.26 References

	21 Creating reports
	21.1 Overview
	21.2 The dynamic document commands
	21.3 The putdocx, putpdf, and putexcel commands

	Advice
	22 Entering and importing data
	22.1 Overview
	22.2 Determining which method to use
	22.3 If you run out of memory
	22.4 ODBC sources
	22.5 JDBC sources

	23 Combining datasets
	23.1 References

	24 Working with strings
	24.1 Description
	24.2 Categorical string variables
	24.3 Mistaken string variables
	24.4 Complex strings
	24.5 References

	25 Working with dates and times
	25.1 Overview
	25.2 Inputting dates and times
	25.3 Displaying dates and times
	25.4 Typing dates and times (datetime literals)
	25.5 Extracting components of dates and times
	25.6 Converting between date and time values
	25.7 Business dates and calendars
	25.8 References

	26 Working with categorical data and factor variables
	26.1 Continuous, categorical, and indicator variables
	26.2 Estimation with factor variables
	26.3 References

	27 Overview of Stata estimation commands
	27.1 Introduction
	27.2 Means, proportions, and related statistics
	27.3 Continuous outcomes
	27.4 Binary outcomes
	27.5 Fractional outcomes
	27.6 Ordinal outcomes
	27.7 Categorical outcomes
	27.8 Count outcomes
	27.9 Generalized linear models
	27.10 Choice models
	27.11 Exact estimators
	27.12 Models with endogenous covariates
	27.13 Models with endogenous sample selection
	27.14 Time-series models
	27.15 Panel-data models
	27.16 Multilevel mixed-effects models
	27.17 Survival analysis models
	27.18 Meta-analysis
	27.19 Spatial autoregressive models
	27.20 Causal inference
	27.21 Pharmacokinetic data
	27.22 Multivariate analysis
	27.23 Maximum likelihood estimation
	27.24 Generalized method of moments (GMM)
	27.25 Structural equation modeling (SEM)
	27.26 Latent class models
	27.27 Finite mixture models (FMMs)
	27.28 Item response theory (IRT)
	27.29 Dynamic stochastic general equilibrium (DSGE) models
	27.30 Lasso
	27.31 Survey data
	27.32 Multiple imputation
	27.33 Power, precision, and sample-size analysis
	27.34 Bayesian analysis
	27.35 Bayesian model averaging
	27.36 H2O machine learning
	27.37 Reference

	28 Commands everyone should know
	29 Using the internet to keep up to date
	29.1 Overview
	29.2 Sharing datasets (and other files)
	29.3 Official updates
	29.4 Downloading and managing additions by users
	29.5 Making your own download site

	Glossary

	[ADAPT] Adaptive Designs
	Contents
	Intro
	Description
	Remarks and examples
	References
	Also see

	GSD intro
	Description
	Remarks and examples
	Introduction
	FSDs
	GSDs

	Components of GSD
	Origins of GSD
	Brief overview of GSD
	Graphing group sequential boundaries

	References
	Also see

	gs
	Description
	Menu
	Syntax
	Remarks and examples
	Introduction
	Efficacy stopping
	Futility stopping
	Graphing stopping boundaries
	Boundary and sample-size calculations using gsdesign
	One-sample tests
	Two-sample tests
	Survival analysis
	Add your own methods

	Stored results
	Acknowledgments
	References
	Also see

	gsbounds
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples
	Efficacy stopping
	Efficacy and futility stopping
	Nonbinding futility bounds
	One-sided tests
	Error-spending bounds
	Unevenly spaced looks
	Futility-only stopping

	Stored results
	Methods and formulas
	Group sequential bounds
	Classical (Wang--Tsiatis) bounds
	Error-spending bounds
	Significance level approach

	References
	Also see

	gsdesign
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples
	Design for GSD with tests of two means
	Background on the BHAT study
	Design for GSD with survival analysis

	Stored results
	Methods and formulas
	Sample sizes at interim analyses
	Expected sample size

	References
	Also see

	gsdesign onemean
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using gsdesign onemean
	Background for examples
	Computing sample size and stopping boundaries
	Unknown standard deviation and hypothesis tests on mean
	Stopping for both efficacy and futility

	Stored results
	Methods and formulas
	References
	Also see

	gsdesign twomeans
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using gsdesign twomeans
	Background for examples 1 and 2
	Computing sample size and stopping boundaries with known standard deviation
	Unknown standard deviation and hypothesis tests on means
	Background for example 3
	Efficacy and futility stopping

	Stored results
	Methods and formulas
	References
	Also see

	gsdesign oneproportion
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using gsdesign oneproportion
	Background for examples
	Computing sample size and stopping boundaries

	Stored results
	Methods and formulas
	References
	Also see

	gsdesign twoproportions
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using gsdesign twoproportions
	Background for examples
	Computing sample size and stopping boundaries

	Stored results
	Methods and formulas
	References
	Also see

	gsdesign logrank
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using gsdesign logrank
	Background for examples
	Computing sample size and boundaries in the absence of censoring
	Computing sample size and boundaries in the presence of censoring
	Computing sample size and boundaries with uniform accrual

	Stored results
	Methods and formulas
	References
	Also see

	gsdesign usermethod
	Description
	Syntax
	Options
	Remarks and examples
	Steps for adding a new method to the gsdesign command
	A quick example
	Convention for naming options and storing results
	Example: A log-rank test for substantial superiority
	Graphing boundaries

	Initializer and parser
	Using an initializer and parser
	Initializer's s() return settings

	Stored results
	References
	Also see

	Glossary
	Reference

	[BAYES] Bayesian Analysis
	Contents
	Intro
	Description
	Remarks and examples
	What is Bayesian analysis?
	Bayesian versus frequentist analysis, or why Bayesian analysis?
	How to do Bayesian analysis
	Advantages and disadvantages of Bayesian analysis
	Brief background and literature review
	Bayesian statistics
	Posterior distribution
	Selecting priors
	Point and interval estimation
	Comparing Bayesian models
	Posterior prediction

	Bayesian computation
	Markov chain Monte Carlo methods
	Metropolis--Hastings algorithm
	Adaptive random-walk Metropolis--Hastings
	Blocking of parameters
	Metropolis--Hastings with Gibbs updates
	Convergence diagnostics of MCMC

	Summary
	Video examples

	References
	Also see

	Bayesian commands
	Description
	Remarks and examples
	Overview example

	Acknowledgments
	References
	Also see

	Bayesian estimation
	Description
	Video examples
	Also see

	bayes
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using the bayes prefix
	Likelihood model
	Default priors
	Initial values
	Command-specific options

	Introductory example
	Linear regression: A case of informative default priors
	Logistic regression with perfect predictors
	Multinomial logistic regression
	Generalized linear model
	Truncated Poisson regression
	Zero-inflated negative binomial model
	Parametric survival model
	Heckman selection model
	Multilevel models
	Two-level models
	Crossed-effects model
	Blocked-diagonal covariance structures

	Panel-data models
	Time-series and DSGE models
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	bayesmh
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using bayesmh
	Setting up a posterior model
	Likelihood model
	Prior distributions
	Declaring model parameters
	Referring to model parameters
	Specifying arguments of likelihood models and prior distributions
	Substitutable expressions
	Constraints on coefficients in linear combinations
	Random effects
	Checking model specification

	Specifying MCMC sampling procedure
	Reproducing results
	Burn-in period and MCMC sample size
	Improving efficiency of the MH algorithm---blocking of parameters
	Gibbs and hybrid MH sampling
	Adaptation of the MH algorithm
	Specifying initial values

	Summarizing and reporting results
	Posterior summaries and credible intervals
	Saving MCMC results

	Convergence of MCMC
	Video examples
	Getting started examples
	Mean of a normal distribution with a known variance
	Mean of a normal distribution with an unknown variance
	Simple linear regression
	Multiple linear regression
	Improving efficiency of the MH sampling

	Convergence diagnostics using multiple chains
	Multiple chains using default initial values
	Multiple chains using overdispersed initial values

	Bayesian predictions
	Simulating replicated outcomes
	Posterior predictive checks

	Logistic regression model: A case of nonidentifiable parameters
	Ordered probit regression
	Beta-binomial model
	Multivariate regression
	Panel-data and multilevel models
	Two-level random-intercept model or panel-data model
	Linear growth curve model---a random-coefficient model
	Multilevel logistic regression
	Three-level nonlinear model

	Survival models
	Bayesian analysis of change-point problem
	Bioequivalence in a crossover trial
	Random-effects meta-analysis of clinical trials
	Item response theory
	Latent growth model

	Stored results
	Methods and formulas
	Adaptive MH algorithm
	Adaptive MH algorithm for random effects
	Gibbs sampling for some likelihood-prior and prior-hyperprior configurations
	Likelihood-prior configurations
	Prior-hyperprior configurations

	Marginal likelihood

	References
	Also see

	bayesmh evaluators
	Description
	Syntax
	Options
	Remarks and examples
	User-defined evaluators
	Simple linear regression model
	Simple linear regression model with scalar evaluators
	Logistic regression model
	Multivariate normal regression model
	Cox proportional hazards regression
	Random-intercept linear regression model
	Evaluators with predictions
	Global macros

	Stored results
	Reference
	Also see

	bayesselect
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introductory examples
	Diabetes progression study

	Stored results
	Methods and formulas
	Global--local shrinkage priors
	Spike-and-slab priors

	References
	Also see

	Bayesian postestimation
	Postestimation commands
	Remarks and examples
	Different ways of specifying model parameters
	Specifying functions of model parameters
	Storing estimation results after Bayesian estimation
	Different ways of specifying predictions and their functions

	Also see

	bayesgraph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using bayesgraph
	Examples
	Trace plots
	Autocorrelation plots
	Histogram plots
	Kernel density plots
	Cumulative sum plots
	Bivariate scatterplots
	Diagnostic plots
	Functions of model parameters

	Methods and formulas
	References
	Also see

	bayesstats
	Description
	Also see

	bayesstats ess
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Effective sample size and MCMC sampling efficiency
	Using bayesstats ess

	Stored results
	Methods and formulas
	Also see

	bayesstats grubin
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Gelman--Rubin convergence diagnostic
	Using bayesstats grubin

	Stored results
	Methods and formulas
	References
	Also see

	bayesstats ic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Bayesian information criteria
	Bayes factors
	Using bayesstats ic

	Stored results
	Methods and formulas
	References
	Also see

	bayesstats ppvalues
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Posterior predictive checks
	PPPs
	Nonlinear effect of labor and capital on companies' output

	Stored results
	Methods and formulas
	References
	Also see

	bayesstats summary
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Bayesian summaries for an auto data example

	Stored results
	Methods and formulas
	Point estimates
	Credible intervals

	References
	Also see

	bayestest
	Description
	Remarks and examples
	Also see

	bayestest interval
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Interval tests for continuous parameters
	Interval tests for discrete parameters

	Stored results
	Methods and formulas
	Reference
	Also see

	bayestest model
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Testing nested hypotheses
	Comparing models with different priors

	Stored results
	Methods and formulas
	Also see

	bayespredict
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for predictions
	Options for posterior summaries
	Options for bayesreps

	Remarks and examples
	Overview of Bayesian predictions
	Prior and posterior predictive distributions
	Simulated outcomes
	Posterior predictive checking and replicated outcomes

	Using bayespredict and bayesreps
	Generating and saving simulated outcomes
	Defining test statistics using Mata functions
	User-defined Stata programs
	Posterior summaries of simulated outcomes
	Prediction dataset
	Evaluators with predictions

	Bayesian predictions
	Posterior predictive inference
	Out-of-sample prediction
	One-step-ahead Bayesian forecast after Bayesian VAR

	Stored results
	Methods and formulas
	Posterior predictive distribution
	MCMC sampling from posterior predictive distribution
	Residuals and expected values

	References
	Also see

	set clevel
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	bayes: betareg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: binreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: biprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: clogit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: cloglog
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: dsge
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: dsgenl
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: dsge postestimation
	Postestimation commands
	Remarks and examples
	Also see

	bayes: fracreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: glm
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: gnbreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: heckman
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: heckoprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: heckprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: hetoprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: hetprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: hetregress
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: intreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: logistic
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	bayes: logit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	bayes: mecloglog
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: meglm
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Additional model parameters

	Stored results
	Methods and formulas
	Also see

	bayes: meintreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: melogit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: menbreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: meologit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: meoprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: mepoisson
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: meprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: mestreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Ancillary model parameters

	Stored results
	Methods and formulas
	Also see

	bayes: metobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: mixed
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: mlogit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	bayes: mprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: mvreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: nbreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: ologit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: oprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: poisson
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: probit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: qreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	bayes: regress
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Video examples

	Stored results
	Methods and formulas
	Also see

	bayes: streg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Ancillary model parameters

	Stored results
	Methods and formulas
	Also see

	bayes: tnbreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: tobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: tpoisson
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: truncreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: var
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Advantages of Bayesian VAR models
	Introductory examples
	US macroeconomic examples

	Stored results
	Methods and formulas
	VAR model specification
	Original Minnesota prior with known (fixed) error covariance
	Conjugate Minnesota prior for VAR model with unknown error covariance
	MVN-inverse Wishart prior
	MVN-diffuse (normal-Jeffreys) prior

	References
	Also see

	bayes: var postestimation
	Postestimation commands
	Also see

	bayesvarstable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	bayesfcast
	Description
	Quick start
	Syntax
	Also see

	bayesfcast compute
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Bayesian dynamic forecasts
	Dynamic forecasts after bayes: var

	Reference
	Also see

	bayesfcast graph
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	bayesirf
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	bayesirf create
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	IRFs after Bayesian vector autoregression (VAR) models
	Technical aspects of IRF files

	Methods and formulas
	Also see

	bayesirf graph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	bayesirf cgraph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	bayesirf ograph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	bayesirf table
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	bayesirf ctable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	bayes: xtlogit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: xtmlogit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: xtnbreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	bayes: xtologit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: xtoprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: xtpoisson
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: xtprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: xtreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: zinb
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: ziologit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: zioprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: zip
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	Glossary
	Reference

	[BMA] Bayesian Model Averaging
	Contents
	Intro
	Description
	Remarks and examples
	Brief motivation
	What is model averaging and why do we need it?
	Bayesian model averaging (BMA)
	Concepts of BMA
	Usage of BMA
	BMA versus frequentist model averaging
	Computational methods for BMA
	Motivating examples
	Brief background and literature review

	References
	Also see

	BMA commands
	Description
	Remarks and examples
	Acknowledgments
	Reference
	Also see

	bmaregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction to BMA for linear regression
	Convergence of BMA
	Interpretation of BMA regression coefficients
	Using the bmaregress command
	Groups of predictors
	Handling factor variables and interactions
	Getting started examples
	BMA predictive performance for the USA crime rate data
	BMA analysis of cross-country economic growth data

	Stored results
	Methods and formulas
	Model assumptions and generic formulas
	Priors on the model space
	Priors for parameter g
	Fixed g priors
	Random g priors

	Centering
	Conditional posterior distribution of model parameters
	Conditional posterior predictive distribution
	MCMC algorithms
	Fixed g parameter
	Random g parameter

	Inference
	Posterior model probability
	Posterior inclusion probability
	Posterior distributions of regression coefficients
	Posterior means and variances of model parameters

	References
	Also see

	bmacoefsample
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Enumerated model space
	Simulated model space

	Also see

	BMA postestimation
	Description
	Remarks and examples
	Also see

	bmagraph
	Description
	Remarks and examples
	Also see

	bmagraph coefdensity
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	bmagraph msize
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	bmagraph pmp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	bmagraph varmap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	bmapredict
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for analytical posterior predictive summaries
	Options for MCMC-sample posterior predictive summaries
	Options for predictions of simulated outcome
	Options for bmareps
	Option for log predictive-scores

	Remarks and examples
	Methods and formulas
	BMA predictions for the linear model
	Analytic predictive mean and standard deviation for fixed g
	Simulating outcome from its posterior predictive distribution

	Reference
	Also see

	bmastats
	Description
	Remarks and examples
	Also see

	bmastats jointness
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Jointness as a measure of variable-inclusion dependence
	Example: Jointness of growth determinants

	Stored results
	Methods and formulas
	References
	Also see

	bmastats lps
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	bmastats models
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	bmastats msize
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	bmastats pip
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	Glossary
	References

	[CAUSAL] Causal
	Contents
	Intro
	Description
	Remarks and examples
	Motivation: Causation versus association
	Causal inference workflow
	Potential-outcomes framework
	Treatment-effect estimands
	Assumptions required in potential-outcomes framework
	Relaxing causal assumptions

	Causal diagrams
	Importance of identification before estimation

	References

	Causal inference commands
	Description
	Remarks and examples
	teffects
	stteffects
	telasso
	cate
	Difference in differences
	Endogenous treatment
	Causal mediation
	Extended regression models
	margins

	Also see

	cate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	What is a CATE?
	Different versions of the {CATE}
	Overview of the cate suite

	Workflows
	Workflow 1: Exploiting the IATE function heterogeneity
	Workflow 2: Prespecified group hypothesis testing
	Workflow 3: Data-driven group hypothesis testing
	Workflow 4: Evaluation of counterfactual policies
	Workflow 5: Evaluating policies designed using the IATE estimates

	Examples
	Example 1: Explore treatment-effect heterogeneity
	Example 2: Add high-dimensional controls
	Example 3: Estimate the ATEs over prespecified groups
	Example 4: Estimate the ATEs over values of a continuous variable
	Example 5: Use the AIPW estimator
	Example 6: Data-driven group hypothesis testing
	Example 7: Flexible models
	Example 8: Treatment-assignment policy evaluation

	Stored results
	Methods and formulas
	PO for the partial linear model
	PO IATE estimator
	PO GATE estimator with prespecified groups
	PO GATES estimator with data-driven groups

	AIPW for the fully interactive model
	AIPW IATE estimator
	AIPW GATE estimator with prespecified groups
	AIPW GATES estimator with data-driven groups

	Generalized random forest
	Honest tree
	Honest random forest
	Confidence intervals
	Missing values

	References
	Also see

	cate postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat gatetest
	Options for estat ate
	Options for estat projection
	Options for estat series
	Options for estat policyeval
	Options for estat classification

	categraph
	Description for categraph
	Menu for categraph
	Syntax for categraph
	Options for categraph
	Options for categraph histogram
	Options for categraph gateplot
	Options for categraph iateplot

	Remarks and examples
	Stored results
	Methods and formulas
	IATE predictions
	Test of treatment-effects heterogeneity
	Test of group-level treatment-effects heterogeneity
	ATE for a subsample
	Linear or nonparametric series projection of the IATE on variables
	Treatment-assignment policy evaluation
	Classification analysis

	References
	Also see

	DID intro
	Description
	Remarks and examples
	Introduction
	Intuition for estimating effects
	DID with heterogeneous treatment effects
	Standard error considerations
	Different types of data and specification
	Specifying groups and time as binary indicators
	Excluding group and time effects
	Exploring treatment-effect heterogeneity

	Conclusion

	References
	Also see

	didregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	DID estimation
	Graphical diagnostics and tests
	Specifying a 2-by-2 DID
	Standard error considerations
	Default cluster{--}robust standard errors

	Stored results
	Methods and formulas
	DID for repeated cross-sectional data
	DDD model

	DID and DDD models with longitudinal data
	Aggregation estimators
	Wild bootstrap confidence intervals and p-values
	Bias-corrected clustered standard error

	Acknowledgment
	References
	Also see

	didregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat trendplots
	Options for estat grangerplot
	Options for estat bdecomp

	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	eteffects
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	eteffects postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Also see

	etpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Basic example
	Average treatment effect (ATE)
	Average treatment effect on the treated (ATET)

	Stored results
	Methods and formulas
	References
	Also see

	etpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	etregress
	Description
	Quick start
	Menu
	Syntax
	Options for maximum likelihood estimates
	Options for two-step consistent estimates
	Options for control-function estimates
	Remarks and examples
	Overview
	Basic examples
	Average treatment effect (ATE)
	Average treatment effect on the treated (ATET)

	Stored results
	Methods and formulas
	Constrained model
	General potential-outcome model
	Average treatment effect
	Average treatment effect on the treated

	References
	Also see

	etregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	hdidregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	The RA, IPW, and AIPW estimators
	The TWFE estimator

	Acknowledgments
	References
	Also see

	hdidregress postestimation
	Postestimation commands
	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat atetplot
	Options for estat aggregation
	Options for estat sci

	Remarks and examples
	Stored results
	Methods and formulas
	Test for all pretreatment period ATETs being zero
	Aggregations for the RA, IPW, and AIPW estimators
	Aggregations for the TWFE estimator
	SCIs

	Reference
	Also see

	mediate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Approaches to mediation analysis
	Workflow for causal mediation
	Forming research questions
	Potential outcomes and effect decompositions
	Evaluating assumptions for causal inference
	Estimation of effects

	Technical overview of causal mediation
	Mediation analysis in the potential-outcomes framework
	Total, direct, and indirect effects
	Comparison of potential outcomes and classical mediation analysis
	Accounting for treatment--mediator interaction
	Assumptions for causal identification

	Examples
	Example 1: A simple causal mediation model
	Example 2: Including covariates and relaxing the no-interaction assumption
	Example 3: Referring to treatment effects using an alternative naming scheme
	Example 4: Causal mediation model with a binary mediator
	Example 5: Causal mediation model with a binary outcome
	Example 6: Causal mediation model with a binary mediator and binary outcome
	Example 7: Causal mediation model with a count mediator
	Example 8: Causal mediation model with an exponential-mean outcome
	Example 9: Causal mediation model with multivalued treatment
	Example 10: Causal mediation model with continuous treatment
	Example 11: Estimating controlled direct effects
	Example 12: Estimating treatment effects on different scales

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	mediate postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat proportion
	Options for estat cde
	Options for estat or, estat rr, and estat irr
	Options for estat effectsplot

	Remarks and examples
	Stored results
	Also see

	stteffects
	Description
	Syntax
	Also see

	stteffects intro
	Description
	Remarks and examples
	Introduction
	A quick tour of the estimators
	Regression adjustment
	Inverse-probability weighting
	Combinations of RA and IPW
	Weighted regression adjustment

	Average treatment effect on the treated
	Comparison of treatment-effects estimators
	Assumptions and tradeoffs
	The conditional independence assumption
	The sufficient overlap assumption
	The correct adjustment for censoring assumption
	Assumptions for the ATET

	Specification diagnostics and tests
	Multivalued treatments

	Acknowledgments
	References
	Also see

	stteffects ipw
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	stteffects ipwra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	Regression-adjusted estimators
	Weighted-adjusted-censoring assumptions
	Weighted regression-adjusted estimators
	Inverse-probability-weighted estimators
	Uncensored data

	Inverse-probability-weighted regression-adjustment estimators
	Weighted-adjusted-censoring IPWRA
	Likelihood-adjusted-censoring IPWRA

	Functional-form details

	References
	Also see

	stteffects postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntaxes for predict
	Syntax for predict after stteffects ipw
	Syntax for predict after stteffects ipwra
	Syntax for predict after stteffects ra
	Syntax for predict after stteffects wra

	Options for predict
	Options for predict after stteffects ipw
	Options for predict after stteffects ipwra
	Options for predict after stteffects ra
	Options for predict after stteffects wra

	Remarks and examples
	References
	Also see

	stteffects ra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	stteffects wra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tebalance
	Description
	Syntax
	Remarks and examples
	Methods and formulas
	Introduction
	Matched samples
	IPW samples
	Testing the propensity-score model specification

	References
	Also see

	tebalance box
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	tebalance density
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	tebalance overid
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	tebalance summarize
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	teffects
	Description
	Syntax
	Also see

	teffects intro
	Description
	Remarks and examples
	Introduction
	Defining treatment effects
	Estimating treatment effects
	Regression adjustment
	Inverse-probability weighting
	Doubly robust combinations of RA and IPW
	Matching

	Caveats and assumptions
	A quick tour of the estimators
	RA
	IPW
	IPWRA
	AIPW
	Nearest-neighbor matching
	Propensity-score matching

	Video examples

	References
	Also see

	teffects intro advanced
	Description
	Remarks and examples
	Introduction
	Defining treatment effects
	The potential-outcome model
	Assumptions needed for estimation
	The CI assumption
	The overlap assumption
	The i.i.d. assumption

	Comparing the ATE and ATET
	Overview of treatment-effect estimators
	RA estimators
	IPW estimators
	AIPW estimators
	IPWRA estimators
	Nearest-neighbor matching estimators
	Propensity-score matching estimators
	Choosing among estimators
	Model choice

	Acknowledgments
	References
	Also see

	teffects aipw
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	Parameters and notation
	Overview of EE estimators
	VCE for EE estimators
	TM and OM estimating functions
	TM estimating functions
	OM estimating functions

	Effect estimating functions
	RA estimators
	IPW estimators
	AIPW estimators
	IPWRA estimators

	References
	Also see

	teffects ipw
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	teffects ipwra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	teffects multivalued
	Description
	Remarks and examples
	Introduction
	Parameters and notation
	Illustrating multivalued treatments
	Examples

	References
	Also see

	teffects nnmatch
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	Nearest-neighbor matching estimator
	Bias-corrected matching estimator

	Propensity-score matching estimator
	PSM, ATE, and ATET variance adjustment

	References
	Also see

	teffects postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntaxes for predict
	Syntax for predict after aipw and ipwra
	Syntax for predict after ipw
	Syntax for predict after nnmatch and psmatch
	Syntax for predict after ra

	Options for predict
	Options for predict after aipw and ipwra
	Options for predict after ipw
	Options for predict after nnmatch and psmatch
	Options for predict after ra

	Remarks and examples
	Also see

	teffects psmatch
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	teffects ra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	telasso
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Estimating the ATE with lassos for covariate selection
	Choosing the tuning parameter
	Estimating the ATET
	High-dimensional semiparametric models

	Stored results
	Methods and formulas
	The model
	Neyman orthogonal moments
	Double machine learning
	Resampling the partitions

	References
	Also see

	telasso postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Also see

	teoverlap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	xthdidregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	The model
	The RA, IPW, and AIPW estimators
	Panel data

	The TWFE estimator

	Acknowledgments
	References
	Also see

	xthdidregress postestimation
	Description

	Glossary

	[CM] Choice Models
	Contents
	Intro
	Description
	Remarks and examples
	Introductions
	Declaring and summarizing data
	Fitting choice models
	Postestimation
	Glossary

	Intro 1
	Description
	Remarks and examples
	Interpretation of coefficients
	Inferences from margins
	Expected choice probabilities
	Effects of a continuous covariate
	Effects of a categorical covariate
	Effects of an alternative-specific covariate

	More inferences using margins

	Also see

	Intro 2
	Description
	Remarks and examples
	Data layout for choice models
	cmset: Cross-sectional data
	cmset: Panel data

	Also see

	Intro 3
	Description
	Remarks and examples
	cmchoiceset: Tabulating choice sets
	cmsample: Looking at problem observations
	cmtab: Tabulating chosen alternatives versus other variables
	cmsummarize: Descriptive statistics for CM variables

	Also see

	Intro 4
	Description
	Remarks and examples
	Specialized choice model commands
	Other commands for choice models
	Models for cross-sectional data
	Models for panel data
	Multilevel models for clustered data

	Reference

	Intro 5
	Description
	Remarks and examples
	Overview of CM commands for discrete choices
	cmclogit: McFadden's choice model
	Looking at cases with missing values using cmsample
	margins after CM estimation
	cmmixlogit: Mixed logit choice models
	cmmprobit: Multinomial probit choice models
	nlogit: Nested logit choice models
	Relationships with other estimation commands
	Duplicating cmclogit using clogit
	Multinomial logistic regression and McFadden's choice model

	Estimation considerations
	Setting the number of integration points
	Convergence
	More than one chosen alternative

	References
	Also see

	Intro 6
	Description
	Remarks and examples
	Overview of CM commands for rank-ordered alternatives
	cmroprobit: Probit regression for rank-ordered alternatives
	Expected choice probabilities (the margins command) after cmroprobit
	cmrologit: Logistic regression for rank-ordered alternatives

	References
	Also see

	Intro 7
	Description
	Remarks and examples
	Data layout for panel choice data
	A cmxtmixlogit model
	Time-series operators
	Using other cm estimation commands with panel data

	Also see

	Intro 8
	Description
	Remarks and examples
	Random utility models
	Alternative-specific variables and case-specific variables
	Independence of irrelevant alternatives
	Estimators that do not assume IIA
	Maximum simulated likelihood

	References
	Also see

	cmchoiceset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	cmclogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cmclogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Testing coefficient estimates
	Predicted probabilities
	Casewise versus alternativewise sample selection

	Obtaining estimation statistics for the alternatives

	Also see

	cmmixlogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cmmixlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Methods and formulas
	Also see

	cmmprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	The multinomial probit model
	Covariance structures
	Applying constraints to correlation parameters

	Convergence problems

	Stored results
	Methods and formulas
	Overview
	Simulated likelihood

	References
	Also see

	cmmprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat covariance, estat correlation, and estat facweights

	Remarks and examples
	Predicted probabilities
	Obtaining estimation statistics

	Also see

	cmrologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Examples
	Comparing respondents
	Incomplete rankings and ties
	Clustered choice data
	Comparison of cmrologit and clogit
	On reversals of rankings

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	cmrologit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	cmroprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	cmroprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat covariance, estat correlation, and estat facweights

	Remarks and examples
	Also see

	cmsample
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	cmset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	cmsummarize
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	cmtab
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	cmxtmixlogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cmxtmixlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Methods and formulas
	Also see

	margins
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Estimating margins for case-specific variables
	Estimating margins for alternative-specific variables
	The altsubpop suboption for unbalanced choice sets
	More on unbalanced choice sets
	The outcomecontrast() and alternativecontrast() suboptions

	Graphing margins results

	Stored results
	Also see

	nlogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Specification and options for lev#_equation
	Options for nlogit
	Specification and options for nlogitgen
	Specification and options for nlogittree

	Remarks and examples
	Introduction
	Data setup and the tree structure
	Estimation
	Testing for the IIA
	Nonnormalized model

	Stored results
	Methods and formulas
	Two-level nested logit model
	Three-level nested logit model

	References
	Also see

	nlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Also see

	Glossary

	[D] Data Management
	Contents
	Intro
	Description
	Also see

	Data management
	Description
	References
	Also see

	append
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Reference
	Also see

	assert
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	assertnested
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	bcal
	Description
	Quick start
	Menu
	Syntax
	Option for bcal check
	Options for bcal create
	Remarks and examples
	Stored results
	Reference
	Also see

	by
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	References
	Also see

	cd
	Description
	Quick start
	Syntax
	Remarks and examples
	Stata for Windows
	Stata for Mac
	Stata for Unix

	Also see

	cf
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgment
	Also see

	changeeol
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	checksum
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	clear
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	clonevar
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Acknowledgments
	Also see

	codebook
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	collapse
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introductory examples
	Variablewise or casewise deletion
	Weights
	A final example

	Acknowledgment
	Also see

	compare
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	compress
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Video example

	Also see

	contract
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgments
	Reference
	Also see

	copy
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	corr2data
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	count
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	References
	Also see

	cross
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	References
	Also see

	Data types
	Description
	Remarks and examples
	Precision of numeric storage types

	Also see

	datasignature
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using datasignature interactively
	Using datasignature in do-files
	Interpreting data signatures
	The logic of data signatures

	Stored results
	Methods and formulas
	Reference
	Also see

	Datetime
	Description
	Quick start
	Syntax
	Types of dates and how they are displayed
	How Stata dates are stored
	Converting dates stored as strings to Stata dates
	Formatting Stata dates for display
	Creating dates from components
	Converting among units
	Extracting time-of-day components from datetimes
	Extracting date components from daily dates
	Typing dates into expressions

	Remarks and examples
	Introduction
	Example 1: Converting string datetimes to Stata datetimes
	Example 2: Extracting date components
	Example 3: Building dates from components
	Example 4: Converting among date types
	Example 5: Using dates in expressions

	References
	Also see

	Datetime business calendars
	Description
	Syntax
	Remarks and examples
	Step 1: Read the data, date as string
	Step 2: Convert date variable to %td date
	Step 3: Convert %td date to %tb date
	Key feature: Each business calendar has its own encoding
	Key feature: Omitted dates really are omitted
	Key feature: Extracting components from %tb dates
	Key feature: Merging on dates

	Also see

	Datetime business calendars creation
	Description
	Syntax
	Remarks and examples
	Introduction
	Concepts
	The preliminary commands
	The omit commands: from/to and if
	The omit commands: and
	The omit commands: omit date
	The omit commands: omit dayofweek
	The omit commands: omit dowinmonth
	Creating stbcal-files with bcal create
	Where to place stbcal-files
	How to debug stbcal-files
	Ideas for calendars that may not occur to you

	Also see

	Datetime conversion
	Description
	Quick start
	Syntax
	Remarks and examples
	Introduction
	Specifying the mask
	How the conversion functions interpret the mask
	Working with two-digit years
	Working with incomplete dates and times
	Converting run-together dates, such as 20060125
	Valid times
	The clock() and Clock() functions
	Why there are two datetime encodings
	Advice on using datetime/c and datetime/C
	Determining when leap seconds occurred
	The date() function
	The other conversion functions

	Reference
	Also see

	Datetime display formats
	Description
	Quick start
	Syntax
	Remarks and examples
	Specifying display formats
	Times are truncated, not rounded, when displayed

	Also see

	Datetime durations
	Description
	Quick start
	Syntax
	Functions for calculating durations
	Functions for converting units of a duration

	Remarks and examples
	Calculating ages and differences of dates
	Calculating differences of datetimes

	Reference
	Also see

	Datetime relative dates
	Description
	Quick start
	Syntax
	Remarks and examples
	Current date and time
	Birthdays and anniversaries
	Months: Number of days, first day, and last day
	Determining leap years
	Determining leap seconds
	Dates of days of week

	Also see

	Datetime values from other software
	Description
	Remarks and examples
	Introduction
	Converting SAS dates
	Converting SPSS dates
	Converting R dates
	Converting Excel dates
	Example 1: Converting Excel dates to Stata dates

	Converting OpenOffice dates
	Converting Unix time

	Reference
	Also see

	describe
	Description
	Quick start
	Menu
	Syntax
	Options to describe data in memory
	Options to describe data in a file
	Remarks and examples
	describe
	describe, replace

	Stored results
	References
	Also see

	destring
	Description
	Quick start
	Menu
	Syntax
	Options for destring
	Options for tostring
	Remarks and examples
	destring
	tostring
	Saved characteristics
	Video example

	Acknowledgment
	References
	Also see

	dir
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	drawnorm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	drop
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	ds
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	Also see

	duplicates
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for duplicates examples and duplicates list
	Option for duplicates tag
	Option for duplicates drop

	Remarks and examples
	Video example

	Stored results
	Acknowledgments
	References
	Also see

	dyngen
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	edit
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Modes
	The current observation and current variable
	Assigning value labels to variables
	Changing values of existing cells
	Adding new variables
	Adding new observations
	Copying and pasting
	Logging changes
	Advice

	Also see

	egen
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Summary statistics
	Definitions of egen summary functions

	Missing values
	Generating patterns
	Marking differences among variables
	Ranks
	Standardized variables
	Row functions
	Categorical and integer variables
	String variables

	Acknowledgments
	References
	Also see

	encode
	Description
	Quick start
	Menu
	Syntax
	Options for encode
	Options for decode
	Remarks and examples
	encode
	decode
	Video example

	References
	Also see

	erase
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	expand
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	References
	Also see

	expandcl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	export
	Description
	Remarks and examples
	Summary of the different methods
	export excel
	export delimited
	jdbc
	odbc
	outfile
	export sasxport5 and export sasxport8
	export spss
	export dbase

	Also see

	filefilter
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	fillin
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	References
	Also see

	format
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Setting formats
	Setting European formats
	Details of formats
	Other effects of formats
	Displaying current formats
	Video example

	References
	Also see

	fralias
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Overview
	Everything you need to know about fralias add
	Where are alias variables not allowed
	Breaking alias variables
	Rename or drop the linked variable
	Rename or drop the linkage variable
	Rename or drop a matching variable
	Rename or drop the linked frame
	Change sort order in the linked frame

	Stored results
	Also see

	frames intro
	Description
	Remarks and examples
	What frames can do for you
	Use frames to multitask
	Use frames to perform tasks integral to your work
	Use frames to work with separate datasets simultaneously
	Use frames to record statistics gathered from simulations
	Frames make Stata (preserve/restore) faster
	Other uses will occur to you that we should have listed

	Learning frames
	The current frame
	Creating new frames
	Type frame or frames, it does not matter
	Switching frames
	Copying frames
	Dropping frames
	Resetting frames
	Frame prefix command
	Linking frames
	Ignore the _frval() function
	Posting new observations to frames
	Saving, modifying, loading, and describing a set of frames

	Programming with frames
	Ado-programming with frames
	Mata programming with frames

	References
	Also see

	frames
	Description
	Menu
	Syntax
	Also see

	frame change
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	frame copy
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	frame create
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	frame drop
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	frame prefix
	Description
	Quick start
	Syntax
	Remarks and examples
	Example of interactive use
	Example of use in programs

	Also see

	frame put
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	frame pwf
	Description
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	frame rename
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	frames describe
	Description
	Quick start
	Menu
	Syntax
	Options
	Options to describe frames in memory
	Options to describe frames in a file

	Remarks and examples
	Stored results
	Also see

	frames dir
	Description
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	frames modify
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	frames reset
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	frames save
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	frames use
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	frget
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Overview
	Everything you need to know about frget

	Stored results
	Also see

	frlink
	Description
	Quick start
	Syntax
	Options
	Options for frlink 1:1 and frlink m:1
	Options for frlink rebuild

	Remarks and examples
	Overview of the frlink command
	Everything you need to know about linkages
	Example 1: A typical m:1 linkage
	How link variables work
	Advanced examples
	Example 2: A complex m:1 linkage
	Example 3: A 1:1 linkage, a simple solution to a hard problem

	Stored results
	Also see

	frunalias
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	generate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	generate and replace
	set type
	Video examples

	References
	Also see

	gsort
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	hexdump
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	icd
	Description
	Remarks and examples
	Introduction to ICD coding
	Terminology
	Diagnosis codes
	Procedure codes
	Working with multiple codes

	References
	Also see

	icd9
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for icd9 check
	Options for icd9 clean
	Options for icd9 generate
	Option for icd9 search

	Remarks and examples
	Using icd9 and icd9p
	Verifying and cleaning variables
	Interactive utilities
	Creating new variables

	Stored results
	References
	Also see

	icd9p
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for icd9p check
	Options for icd9p clean
	Options for icd9p generate
	Option for icd9p search

	Remarks and examples
	Verifying and cleaning variables
	Interactive utilities
	Creating new variables

	Stored results
	References
	Also see

	icd10
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for icd10 check
	Options for icd10 clean
	Options for icd10 generate
	Option for icd10 lookup
	Options for icd10 search

	Remarks and examples
	Introduction
	Managing datasets with ICD-10 codes
	Creating new variables

	Stored results
	Acknowledgments
	References
	Also see

	icd10cm
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for icd10cm check
	Options for icd10cm clean
	Options for icd10cm generate
	Option for icd10cm lookup
	Options for icd10cm search

	Remarks and examples
	Introduction
	Managing datasets with ICD-10-CM codes
	Interactive utilities

	Stored results
	Acknowledgments
	Reference
	Also see

	icd10pcs
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for icd10pcs check
	Options for icd10pcs clean
	Options for icd10pcs generate
	Option for icd10pcs lookup
	Options for icd10pcs search

	Remarks and examples
	Introduction
	Managing datasets with ICD-10-PCS codes
	Interactive utilities

	Stored results
	Acknowledgments
	Also see

	import
	Description
	Remarks and examples
	Summary of the different methods
	import excel
	import delimited
	jdbc
	odbc
	infile (free format)---infile without a dictionary
	infix (fixed format)
	infile (fixed format)---infile with a dictionary
	import sas
	import sasxport5 and import sasxport8
	import spss
	import fred
	import haver (Windows only)
	import haverdirect (Windows only)
	import dbase
	spshape2dta

	Examples
	Video example

	References
	Also see

	import dbase
	Description
	Quick start
	Menu
	Syntax
	Options for import dbase
	Options for export dbase
	Remarks
	Stored results
	Also see

	import delimited
	Description
	Quick start
	Menu
	Syntax
	Options for import delimited
	Options for export delimited
	Remarks and examples
	Introduction
	Importing a text file
	Using other delimiters
	Specifying variable types

	Exporting to a text file
	Video example

	Stored results
	Also see

	import excel
	Description
	Quick start
	Menu
	Syntax
	Options for import excel
	Options for export excel
	Remarks and examples
	Video example

	Stored results
	References
	Also see

	import fred
	Description
	Quick start
	Menu
	Syntax
	Options
	Option for set fredkey
	Options for import fred
	Options for freddescribe
	Options for fredsearch

	Remarks and examples
	Introduction and setup
	The FRED interface
	Advanced imports using the import fred command
	Importing historical vintage data
	Searching, saving, and retrieving series information
	Describing series

	Stored results
	References
	Also see

	import haver
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for import haver
	Options for import haver, describe
	Option for set haverdir

	Remarks and examples
	Installation
	Setting the path to Haver databases
	Download example Haver databases
	Determining the contents of a Haver database
	Loading a Haver database
	Loading a Haver database from a describe file
	Temporal aggregation
	Daily and weekly data

	Stored results
	Also see

	import haverdirect
	Description
	Quick start
	Syntax
	Options
	Options for import haverdirect
	Options for import haverdirect, describe

	Remarks and examples
	Installation
	Authentication
	Determining the contents of a Haver database
	Loading a Haver database
	Loading a Haver database from a describe file
	Temporal aggregation
	Daily and weekly data

	Stored results
	Also see

	import sas
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	import sasxport5
	Description
	Quick start
	Menu
	Syntax
	Options for import sasxport5
	Options for export sasxport5
	Remarks and examples
	Saving XPORT files for transferring to SAS
	Determining the contents of XPORT files received from SAS
	Using XPORT files received from SAS

	Stored results
	Technical appendix
	A1. Overview of SAS XPORT Transport format
	A2. Implications for writing XPORT datasets from Stata
	A3. Implications for reading XPORT datasets into Stata

	Also see

	import sasxport8
	Description
	Quick start
	Menu
	Syntax
	Options for import sasxport8
	Options for export sasxport8
	Remarks and examples
	Stored results
	Also see

	import spss
	Description
	Quick start
	Menu
	Syntax
	Options for import spss
	Option for export spss
	Remarks and examples
	Stored results
	Also see

	infile (fixed format)
	Description
	Quick start
	Menu
	Syntax
	Options
	Dictionary directives

	Remarks and examples
	Introduction
	Reading free-format files
	Reading fixed-format files
	Numeric formats
	String formats
	Specifying column and line numbers
	Examples of reading fixed-format files
	Reading fixed-block files
	Reading EBCDIC files

	Also see

	infile (free format)
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reading free-format data
	Reading comma-separated data
	Specifying variable types
	Reading string variables
	Skipping variables
	Skipping observations
	Reading time-series data

	Also see

	infix (fixed format)
	Description
	Quick start
	Menu
	Syntax
	Options
	Specifications

	Remarks and examples
	Two ways to use infix
	Reading string variables
	Reading data with multiple lines per observation
	Reading subsets of observations

	Also see

	input
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	insobs
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgment
	Also see

	inspect
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	ipolate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	isid
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	jdbc
	Description
	Quick start
	Syntax
	Options
	Options for jdbc connect and jdbc add
	Options for jdbc load
	Options for jdbc insert

	Remarks and examples
	JDBC drivers
	Connecting to a database
	Data source names
	Exploring a database
	Loading data from a database
	Inserting data into a database
	Executing SQL on a database

	Stored results
	References
	Also see

	joinby
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgment
	References
	Also see

	label
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video examples

	Stored results
	References
	Also see

	label language
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Creating labels in the first language
	Creating labels in the second and subsequent languages
	Creating labels from a clean slate
	Creating labels from a previously existing language
	Switching languages
	Changing the name of a language
	Deleting a language
	Appendix: Selected ISO 639-1 two-letter codes

	Stored results
	Methods and formulas
	References
	Also see

	labelbook
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for labelbook
	Options for numlabel
	Options for uselabel

	Remarks and examples
	labelbook
	Diagnosing problems
	numlabel
	uselabel

	Stored results
	Acknowledgments
	References
	Also see

	list
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	lookfor
	Description
	Quick start
	Syntax
	Remarks and examples
	Stored results
	Reference
	Also see

	memory
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Examples
	Serious bug in Linux OS
	Notes for system administrators

	Stored results
	Also see

	merge
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Basic description
	1:1 merges
	m:1 merges
	1:m merges
	m:m merges
	Sequential merges
	Treatment of overlapping variables
	Sort order
	Troubleshooting m:m merges
	Working with alias variables
	Examples
	Video example

	References
	Also see

	Missing values
	Description
	Remarks and examples
	References
	Also see

	mkdir
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	mvencode
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Acknowledgment
	Also see

	notes
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	How notes are numbered
	Attaching and listing notes
	Selectively listing notes
	Searching and replacing notes
	Deleting notes
	Warnings
	Video example

	Reference
	Also see

	obs
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	odbc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Unicode and ODBC
	Setting up the data sources
	Listing ODBC data source names
	Listing available table names from a specified data source's system catalog
	Describing a specified table
	Loading data from ODBC sources

	Reference
	Also see

	order
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	outfile
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	pctile
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	pctile
	xtile
	_pctile

	Stored results
	Methods and formulas
	Acknowledgment
	Also see

	putmata
	Description
	Quick start
	Syntax
	Options for putmata
	Options for getmata
	Remarks and examples
	Use of putmata
	Use of putmata and getmata
	Using putmata and getmata on subsets of observations
	Using views
	Constructing do-files

	Stored results
	Reference
	Also see

	range
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	recast
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	recode
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Simple examples
	Setting up value labels with recode
	Referring to the minimum and maximum in rules
	Recoding missing values
	Recoding subsets of the data
	Otherwise rules
	Test for overlapping rules
	Video example

	Acknowledgment
	Also see

	rename
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	rename group
	Description
	Quick start
	Menu
	Syntax
	Options for renaming variables
	Options for changing the case of groups of variable names
	Remarks and examples
	Advice
	Explanation
	* matches 0 or more characters; use ?* to match 1 or more
	* is greedy
	# is greedier

	Stored results
	Also see

	reshape
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Description of basic syntax
	Wide and long data forms
	Avoiding and correcting mistakes
	reshape long and reshape wide without arguments
	Missing variables
	Advanced issues with basic syntax: i()
	Advanced issues with basic syntax: j()
	Advanced issues with basic syntax: xij
	Advanced issues with basic syntax: String identifiers for j()
	Advanced issues with basic syntax: Second-level nesting
	Description of advanced syntax
	Why favor memory over speed?
	Video examples

	Stored results
	Acknowledgment
	References
	Also see

	rmdir
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	sample
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	save
	Description
	Quick start
	Menu
	Syntax
	Options for save
	Options for saveold
	Remarks and examples
	Also see

	separate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgment
	Reference
	Also see

	shell
	Description
	Syntax
	Remarks and examples
	Stata for Windows
	Stata for Mac
	Stata for Unix(GUI)
	Stata for Unix(console)

	Reference
	Also see

	snapshot
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	sort
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Finding the smallest values (and the largest)
	Tracking sort order
	Sorting on multiple variables
	Descending sorts
	Sorting on string variables
	Sorting with ties

	References
	Also see

	split
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	Also see

	splitsample
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	stack
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	statsby
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Collecting coefficients and standard errors
	Collecting stored results
	All subsets

	Acknowledgment
	References
	Also see

	sysuse
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	A note concerning shipped datasets
	Using user-installed datasets
	How sysuse works

	Stored results
	Also see

	type
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	unicode
	Description
	Remarks and examples
	Also see

	unicode collator
	Description
	Syntax
	Remarks and examples
	Overview of collation
	The role of locales in collation
	Further controlling collation

	Also see

	unicode convertfile
	Description
	Syntax
	Options
	Remarks and examples
	Conversion between encodings
	Invalid and unsupported characters
	Examples

	Also see

	unicode encoding
	Description
	Syntax
	Remarks and examples
	Also see

	unicode locale
	Description
	Syntax
	Remarks and examples
	Overview
	Default locale and locale fallback

	Also see

	unicode translate
	Description
	Syntax
	Options
	Remarks and examples
	What is this about?
	Do I need to translate my files?
	Overview of the process
	How to determine the extended ASCII encoding
	Use of unicode analyze
	Use of unicode translate: Overview
	Use of unicode translate: A word on backups
	Use of unicode translate: Output
	Translating binary strLs

	Also see

	use
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	varmanage
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	vl
	Description
	Remarks and examples
	Introduction
	vl set and system-defined variable lists
	Classification criteria for system-defined variable lists
	Moving variables into another classification
	vl create and user-defined variable lists
	vl list
	vl substitute and factor-variable operators
	Exploring data with vl set
	Changing the cutoffs for classification
	Moving variables from one classification to another
	Dropping variables and rebuilding variable lists
	Changing variables and updating variable lists
	Saving and using datasets with variable lists
	User-defined variable lists and factor-variable operators
	Updating variable lists created by vl substitute

	Also see

	vl create
	Description
	Quick start
	Syntax
	Remarks and examples
	vl create
	vl modify

	Using variable lists with other Stata commands
	vl substitute

	Also see

	vl drop
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	vl list
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	vl rebuild
	Description
	Quick start
	Syntax
	Remarks and examples
	Reloading datasets
	Merging datasets
	Dropping variables
	vl substitute and vl rebuild
	Characteristics

	Stored results
	Also see

	vl set
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	webuse
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Typical use
	A note concerning example datasets
	Redirecting the source

	Also see

	xpose
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	zipfile
	Description
	Quick start
	Syntax
	Options for zipfile
	Options for unzipfile
	Remarks and examples
	Stored results

	Glossary

	[DSGE] DSGE
	Contents
	Intro
	Description
	Remarks and examples
	Also see

	Intro 1
	Description
	Remarks and examples
	Introduction to DSGE models
	An example: A nonlinear DSGE model
	Writing down nonlinear DSGEs
	Data preparation
	Specifying the model to dsgenl
	Parameter estimation and interpretation of nonlinear DSGEs

	An example: A linear DSGE model
	Writing down linearized DSGEs
	Specifying the model to dsge
	Parameter estimation and interpretation of linear DSGEs

	Postestimation
	Policy and transition matrices
	Impulse responses
	Forecasts

	Structural and reduced forms of DSGE models

	References
	Also see

	Intro 2
	Description
	Remarks and examples
	Introduction
	Syntax for linear DSGE models
	Preview of dsge syntax
	Specifying the system of linear equations
	Control variables
	State variables and shocks
	Expectations of future values of control variables
	Specifying parameters using dsge's substitutable expressions

	Syntax for nonlinear DSGE models
	Preview of dsgenl syntax
	Specifying the system of nonlinear equations
	State and control variables
	Expectations in nonlinear models

	Also see

	Intro 3
	Description
	Remarks and examples
	Also see

	Intro 3a
	Description
	Remarks and examples
	The model
	Parameter estimation
	Policy and transition matrices
	One-step-ahead predictions
	Estimating an unobserved state

	Reference
	Also see

	Intro 3b
	Description
	Remarks and examples
	The model
	Solving the model
	Policy and transition matrices
	Impulse responses
	Sensitivity analysis

	Reference
	Also see

	Intro 3c
	Description
	Remarks and examples
	The model
	Parameter estimation
	Policy and transition matrices
	Impulse responses

	Also see

	Intro 3d
	Description
	Remarks and examples
	The model
	Parameter estimation
	Policy and transition matrices
	Impulse responses
	A change in constraints

	Reference
	Also see

	Intro 3e
	Description
	Remarks and examples
	The model
	Parameter estimation
	Steady state
	Model-implied covariances
	Policy and transition matrices
	Impulse responses
	Sensitivity analysis

	Reference
	Also see

	Intro 3f
	Description
	Remarks and examples
	The model
	Approximating the solution to a nonlinear DSGE model
	Specifying the model to Stata
	After solving
	The steady state
	Approximations to the policy and transition matrices
	Linear and log-linear approximations

	References
	Also see

	Intro 4
	Description
	Remarks and examples
	Introduction
	Shocks to a control equation
	Including a lag of a control variable
	Including a lag of a state variable
	Including an expectation of a control dated by more than one period ahead
	Including a second-order lag of a control variable
	Including an observed exogenous variable

	Also see

	Intro 4a
	Description
	Remarks and examples
	The model
	Parameter estimation

	Also see

	Intro 4b
	Description
	Remarks and examples
	A model with a lagged endogenous variable
	Parameter estimation

	Also see

	Intro 4c
	Description
	Remarks and examples
	A model with a lagged state variable
	Parameter estimation

	Also see

	Intro 4d
	Description
	Remarks and examples
	The model
	Parameter estimation

	Also see

	Intro 4e
	Description
	Remarks and examples
	The model
	Parameter estimation

	Also see

	Intro 4f
	Description
	Remarks and examples
	The model
	Parameter estimation

	Also see

	Intro 4g
	Description
	Remarks and examples
	The model
	Parameter estimation

	Also see

	Intro 5
	Description
	Remarks and examples
	Why we care about stability
	What if the initial values are not saddle-path stable?

	References
	Also see

	Intro 6
	Description
	Remarks and examples
	Reference
	Also see

	Intro 7
	Description
	Remarks and examples
	Also see

	Intro 8
	Description
	Remarks and examples
	Wald tests vary with nonlinear transforms
	LR tests do not vary with nonlinear transforms

	References
	Also see

	Intro 9
	Description
	Remarks and examples
	Introduction
	Principles of Bayesian DSGE estimation
	An uninformative prior
	An informative prior
	Convergence diagnostics

	Also see

	Intro 9a
	Description
	Remarks and examples
	The model
	Parameter estimation
	Posterior diagnostics and plots
	Improving sampling efficiency
	Impulse responses

	Also see

	Intro 9b
	Description
	Remarks and examples
	The model
	Parameter estimation
	Posterior diagnostics and plots
	Impulse responses

	Reference
	Also see

	dsge
	Description
	Menu
	Syntax
	Options
	Remarks
	Stored results
	Methods and formulas
	References
	Also see

	dsge postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	Also see

	dsgenl
	Description
	Menu
	Syntax
	Options
	Remarks
	Stored results
	Methods and formulas
	Reference
	Also see

	dsgenl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	Also see

	estat covariance
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	estat policy
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	estat stable
	Description
	Menu for estat
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	estat steady
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	estat transition
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	Glossary
	Reference

	[ERM] Extended Regression
	Contents
	Intro
	Description
	Remarks and examples
	Introductions
	Examples
	ERM commands
	Postestimation
	Technical details
	Glossary

	Intro 1
	Description
	Remarks and examples
	The problems ERMs solve
	The simple syntax of ERMs
	Normality assumption underlying ERMs
	Learning more about ERMs

	Reference
	Also see

	Intro 2
	Description
	Remarks and examples
	Linear regression models
	Interval regression models
	Probit regression models
	Ordered probit regression models

	Also see

	Intro 3
	Description
	Remarks and examples
	What are endogenous and exogenous covariates?
	Solving the problem of endogenous covariates
	Solving the problem of reverse causation
	You can interact endogenous covariates
	You can have continuous, binary, and ordered endogenous covariates
	You can have instruments that are themselves endogenous
	Video example

	Also see

	Intro 4
	Description
	Remarks and examples
	Is sample selection a concern in your research problem?
	The problem and solution of endogenous sample selection
	Endogenous sample selection handles missing not at random
	Endogenous sample selection can be used with other features of ERMs
	Mechanical notes
	Video example

	Also see

	Intro 5
	Description
	Remarks and examples
	What are treatment-effect models?
	Treatment-effect models and potential outcomes
	Endogenous and exogenous treatment effects
	Binary and ordinal treatment effects
	Sample versus population standard errors
	Using treatment effects with other ERMs
	Using treatment effects with other features of ERMs
	Using treat() and select() to handle lost to follow-up
	Treatment statistics reported by estat teffects
	Video example

	Also see

	Intro 6
	Description
	Remarks and examples
	Random-effects models that ERMs handle
	Random effects can be used with other features of ERMs

	Also see

	Intro 7
	Description
	Remarks and examples
	Use margins
	Endogenous covariates
	How to interpret coefficients
	How to use and interpret margins
	How to use margins in models without endogenous covariates
	How to use margins with endogenous covariates
	margins with predict(asf)
	margins with predict(fixedasf)
	When to use which
	Using margins with nonlinear and random-effects models
	Advanced options: Using margins predict(base()) and predict(fix())

	References
	Also see

	Intro 8
	Description
	Remarks and examples
	Also see

	Intro 9
	Description
	Remarks and examples
	Introduction
	Complications
	Endogenous covariates
	Nonrandom treatment assignment
	Endogenous sample selection

	Interpreting effects
	Video examples

	References
	Also see

	eintreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	Endogenous covariates
	Continuous endogenous covariates
	Binary and ordinal endogenous covariates

	Treatment
	Endogenous sample selection
	Probit endogenous sample selection
	Tobit endogenous sample selection

	Random effects
	Combinations of features
	Confidence intervals

	References
	Also see

	eintreg postestimation
	Postestimation commands
	predict
	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	eintreg predict
	Description
	Syntax
	Options for statistics
	Options for asfmethod
	Option for counterfactuals
	Remarks and examples
	Methods and formulas
	Also see

	eoprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	intro
	Endogenous covariates
	contendog
	catendog

	Treatment
	Endogenous sample selection
	probitsel
	tobitsel

	Random effects
	Combinations of features
	ci

	References
	Also see

	eoprobit postestimation
	Postestimation commands
	predict
	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	eoprobit predict
	Description
	Syntax
	Options for statistics
	Options for asfmethod
	Option for counterfactuals
	Remarks and examples
	Using predict after eoprobit and xteoprobit
	How to think about nonlinear models

	Methods and formulas
	Also see

	eprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	intro
	Endogenous covariates
	contendog
	catendog

	Treatment
	Endogenous sample selection
	probitsel
	tobitsel

	Random effects
	Combined model
	ci
	likelihood

	References
	Also see

	eprobit postestimation
	Postestimation commands
	predict
	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	asf
	predtotal

	References
	Also see

	eprobit predict
	Description
	Syntax
	Options for statistics
	Options for asfmethod
	Option for counterfactuals
	Remarks and examples
	Using predict after eprobit
	How to think about nonlinear models

	Methods and formulas
	Also see

	eregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	intro
	Endogenous covariates
	contendog
	catendog

	Treatment
	Endogenous sample selection
	probitsel
	tobitsel

	Random effects
	Combinations of features
	ci

	References
	Also see

	eregress postestimation
	Postestimation commands
	predict
	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	eregress predict
	Description
	Syntax
	Options for statistics
	Options for asfmethod
	Option for counterfactuals
	Remarks and examples
	How to think about the model you fit
	The default asf mean calculation for predictions
	The fixedasf calculation for predictions

	Methods and formulas
	References
	Also see

	ERM options
	Description
	Syntax
	Options
	Also see

	estat teffects
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	Example 1a
	Description
	Remarks and examples
	Video example

	Also see

	Example 1b
	Description
	Remarks and examples
	Also see

	Example 1c
	Description
	Remarks and examples
	Also see

	Example 2a
	Description
	Remarks and examples
	Also see

	Example 2b
	Description
	Remarks and examples
	Also see

	Example 2c
	Description
	Remarks and examples
	Video example

	Also see

	Example 3a
	Description
	Remarks and examples
	Also see

	Example 3b
	Description
	Remarks and examples
	Also see

	Example 4a
	Description
	Remarks and examples
	Also see

	Example 4b
	Description
	Remarks and examples
	Also see

	Example 5
	Description
	Remarks and examples
	Also see

	Example 6a
	Description
	Remarks and examples
	Also see

	Example 6b
	Description
	Remarks and examples
	Also see

	Example 7
	Description
	Remarks and examples
	Reference
	Also see

	Example 8a
	Description
	Remarks and examples
	Also see

	Example 8b
	Description
	Remarks and examples
	Also see

	Example 9
	Description
	Remarks and examples
	Also see

	predict advanced
	Description
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Also see

	predict treatment
	Description
	Syntax
	Options
	Remarks and examples
	Predicting treatment effects after eregress, eintreg, xteregress, and xteintreg
	Predicting treatment effects after eprobit and xteprobit
	Predicting treatment effects after eoprobit and xteoprobit

	Methods and formulas
	Also see

	Triangularize
	Description
	Remarks and examples
	What is a triangular system?
	Triangularizing nontriangular systems
	You can only triangularize linear equations
	Options entreat(), select(), and tobitselect() also add endogenous variables
	Workarounds involving the main equation
	Why the above is a workaround and not a fix

	Also see

	Glossary
	References

	[FMM] Finite Mixture Models
	Contents
	fmm intro
	Description
	Remarks and examples
	Introduction
	Finite mixture models
	ex1
	Beyond mixtures of distributions

	Acknowledgment
	References
	Also see

	fmm estimation
	Description
	Also see

	fmm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	The likelihood
	The EM algorithm
	Survey data
	Predictions

	Also see

	fmm: betareg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	fmm: cloglog
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: glm
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: intreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: ivregress
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: logit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: mlogit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: nbreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: ologit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: oprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: pointmass
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: poisson
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: probit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: regress
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: streg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: tobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: tpoisson
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: truncreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	estat eform
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Also see

	estat lcmean
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat lcprob
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	lcstats
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	Example 1a
	Description
	Remarks and examples
	References
	Also see

	Example 1b
	Description
	Remarks and examples
	Also see

	Example 1c
	Description
	Remarks and examples
	Also see

	Example 1d
	Description
	Remarks and examples
	Also see

	Example 2
	Description
	Remarks and examples
	References
	Also see

	Example 3
	Description
	Remarks and examples
	References
	Also see

	Example 4
	Description
	Remarks and examples
	References
	Also see

	Glossary

	[FN] Functions
	Contents
	Intro
	Description
	Reference
	Also see

	Functions by category
	Contents
	Date and time functions
	Mathematical functions
	Matrix functions
	Programming functions
	Random-number functions
	Selecting time-span functions
	Statistical functions
	String functions
	Trigonometric functions
	Also see

	Functions by name
	
	Also see

	Date and time functions
	Contents
	Functions
	age()
	age_frac()
	birthday()
	bofd()
	Cdhms()
	Chms()
	Clock()
	clock()
	Clockdiff()
	clockdiff()
	Clockdiff_frac()
	clockdiff_frac()
	Clockpart()
	clockpart()
	Cmdyhms()
	Cofc()
	cofC()
	Cofd()
	cofd()
	daily()
	date()
	datediff()
	datediff_frac()
	datepart()
	day()
	daysinmonth()
	dayssincedow()
	dayssinceweekday()
	daysuntildow()
	daysuntilweekday()
	dhms()
	dmy()
	dofb()
	dofC()
	dofc()
	dofh()
	dofm()
	dofq()
	dofw()
	dofy()
	dow()
	doy()
	firstdayofmonth()
	firstdowofmonth()
	firstweekdayofmonth()
	halfyear()
	halfyearly()
	hh()
	hhC()
	hms()
	hofd()
	hours()
	isleapsecond()
	isleapyear()
	lastdayofmonth()
	lastdowofmonth()
	lastweekdayofmonth()
	mdy()
	mdyhms()
	minutes()
	mm()
	mmC()
	mofd()
	month()
	monthly()
	msofhours()
	msofminutes()
	msofseconds()
	nextbirthday()
	nextdow()
	nextleapyear()
	nextweekday()
	now()
	previousbirthday()
	previousdow()
	previousleapyear()
	previousweekday()
	qofd()
	quarter()
	quarterly()
	seconds()
	ss()
	ssC()
	tC()
	tc()
	td()
	th()
	tm()
	today()
	tq()
	tw()
	week()
	weekly()
	wofd()
	year()
	yearly()
	yh()
	ym()
	yofd()
	yq()
	yw()

	Remarks and examples
	Video example

	Methods and formulas
	References
	Also see

	Mathematical functions
	Contents
	Functions
	abs()
	ceil()
	cloglog()
	comb()
	digamma()
	exp()
	expm1()
	floor()
	int()
	invcloglog()
	invlogit()
	ln()
	ln1m()
	ln1p()
	lnfactorial()
	lngamma()
	log()
	log10()
	log1m()
	log1p()
	logit()
	max()
	min()
	mod()
	reldif()
	round()
	sign()
	sqrt()
	sum()
	trigamma()
	trunc()

	Video example
	References
	Also see

	Matrix functions
	Contents
	Functions
	Matrix functions returning a matrix
	cholesky()
	corr()
	diag()
	get()
	hadamard()
	I()
	inv()
	invsym()
	invvech()
	invvecp()
	J()
	matuniform()
	nullmat()
	sweep()
	vec()
	vecdiag()
	vech()
	vecp()
	Matrix functions returning a scalar
	coleqnumb()
	colnfreeparms()
	colnumb()
	colsof()
	det()
	diag0cnt()
	el()
	issymmetric()
	matmissing()
	mreldif()
	roweqnumb()
	rownfreeparms()
	rownumb()
	rowsof()
	trace()

	Reference
	Also see

	Programming functions
	Contents
	Functions
	autocode()
	byteorder()
	c()
	_caller()
	chop()
	clip()
	cond()
	e()
	e(sample)
	epsdouble()
	epsfloat()
	fileexists()
	fileread()
	filereaderror()
	filewrite()
	float()
	fmtwidth()
	frval()
	frvalu()
	_frval()
	_frvaliv()
	has_eprop()
	inlist()
	inrange()
	irecode()
	matrix()
	maxbyte()
	maxdouble()
	maxfloat()
	maxint()
	maxlong()
	mi()
	minbyte()
	mindouble()
	minfloat()
	minint()
	minlong()
	missing()
	r()
	recode()
	replay()
	return()
	s()
	scalar()
	smallestdouble()

	References
	Also see

	Random-number functions
	Contents
	Functions
	runiform()
	runiform(ab)
	runiformint()
	rbeta()
	rbinomial()
	rcauchy()
	rchi2()
	rexponential()
	rgamma()
	rhypergeometric()
	rigaussian()
	rlaplace()
	rlogistic()
	rlogistic(s)
	rlogistic(ms)
	rnbinomial()
	rnormal()
	rnormal(m)
	rnormal(ms)
	rpoisson()
	rt()
	rweibull()
	rweibull(ab)
	rweibull(abg)
	rweibullph()
	rweibullph(ab)
	rweibullph(abg)

	Remarks and examples
	Methods and formulas
	kiss32 generator

	Acknowledgments
	References
	Also see

	Selecting time-span functions
	Contents
	Functions
	tin()
	twithin()

	Also see

	Statistical functions
	Contents
	Functions
	Beta and noncentral beta distributions
	betaden()
	ibeta()
	ibetatail()
	invibeta()
	invibetatail()
	nbetaden()
	nibeta()
	invnibeta()
	Binomial distribution
	binomialp()
	binomial()
	binomialtail()
	invbinomial()
	invbinomialtail()
	Cauchy distribution
	cauchyden()
	cauchy()
	cauchytail()
	invcauchy()
	invcauchytail()
	lncauchyden()
	Chi-squared and noncentral chi-squared distributions
	chi2den()
	chi2()
	chi2tail()
	invchi2()
	invchi2tail()
	nchi2den()
	nchi2()
	nchi2tail()
	invnchi2()
	invnchi2tail()
	npnchi2()
	Dunnett's multiple range distribution
	dunnettprob()
	invdunnettprob()
	Exponential distribution
	exponentialden()
	exponential()
	exponentialtail()
	invexponential()
	invexponentialtail()
	F and noncentral F distributions
	Fden()
	F()
	Ftail()
	invF()
	invFtail()
	nFden()
	nF()
	nFtail()
	invnF()
	invnFtail()
	npnF()
	Gamma distribution
	gammaden()
	gammap()
	gammaptail()
	invgammap()
	invgammaptail()
	dgammapda()
	dgammapdada()
	dgammapdadx()
	dgammapdx()
	dgammapdxdx()
	lnigammaden()
	Hypergeometric distribution
	hypergeometricp()
	hypergeometric()
	Inverse Gaussian distribution
	igaussianden()
	igaussian()
	igaussiantail()
	invigaussian()
	invigaussiantail()
	lnigaussianden()
	Laplace distribution
	laplaceden()
	laplace()
	laplacetail()
	invlaplace()
	invlaplacetail()
	lnlaplaceden()
	Logistic distribution
	logisticden(x)
	logisticden(sx)
	logisticden()
	logisticden(msx)
	logistic()
	logistic(x)
	logistic(sx)
	logistic(msx)
	logistictail()
	logistictail(x)
	logistictail(sx)
	logistictail(msx)
	invlogistic()
	invlogistic(p)
	invlogistic(sp)
	invlogistic(msp)
	invlogistictail()
	invlogistictail(p)
	invlogistictail(sp)
	invlogistictail(msp)
	Negative binomial distribution
	nbinomialp()
	nbinomial()
	nbinomialtail()
	invnbinomial()
	invnbinomialtail()
	Normal (Gaussian), binormal, and multivariate normal distributions
	normalden()
	normalden(xs)
	normalden(xms)
	normal()
	invnormal()
	lnnormalden()
	lnnormalden(xs)
	lnnormalden(xms)
	lnnormal()
	binormal()
	lnmvnormalden()
	Poisson distribution
	poissonp()
	poisson()
	poissontail()
	invpoisson()
	invpoissontail()
	Student's t and noncentral Student's t distributions
	tden()
	t()
	ttail()
	invt()
	invttail()
	invnt()
	invnttail()
	ntden()
	nt()
	nttail()
	npnt()
	Tukey's Studentized range distribution
	tukeyprob()
	invtukeyprob()
	Weibull distribution
	weibullden()
	weibullden(abx)
	weibullden(abgx)
	weibull()
	weibull(abx)
	weibull(abgx)
	weibulltail()
	weibulltail(abx)
	weibulltail(abgx)
	invweibull()
	invweibull(abp)
	invweibull(abgp)
	invweibulltail()
	invweibulltail(abp)
	invweibulltail(abgp)
	Weibull (proportional hazards) distribution
	weibullphden()
	weibullphden(abx)
	weibullphden(abgx)
	weibullph()
	weibullph(abx)
	weibullph(abgx)
	weibullphtail()
	weibullphtail(abx)
	weibullphtail(abgx)
	invweibullph()
	invweibullph(abp)
	invweibullph(abgp)
	invweibullphtail()
	invweibullphtail(abp)
	invweibullphtail(abgp)
	Wishart distribution
	lnwishartden()
	lniwishartden()

	References
	Also see

	String functions
	Contents
	Functions
	abbrev()
	char()
	uchar()
	collatorlocale()
	collatorversion()
	indexnot()
	plural()
	real()
	regexcapture()
	regexcapturenamed()
	regexm()
	regexmatch()
	regexr()
	regexreplace()
	regexreplaceall()
	regexs()
	ustrregexm()
	ustrregexrf()
	ustrregexra()
	ustrregexs()
	soundex()
	soundex_nara()
	strcat()
	strdup()
	string()
	string(ns)
	stritrim()
	strlen()
	ustrlen()
	udstrlen()
	strlower()
	ustrlower()
	strltrim()
	ustrltrim()
	strmatch()
	strofreal()
	strofreal(ns)
	strpos()
	ustrpos()
	strproper()
	ustrtitle()
	strreverse()
	ustrreverse()
	strrpos()
	ustrrpos()
	strrtrim()
	ustrrtrim()
	strtoname()
	ustrtoname()
	strtrim()
	ustrtrim()
	strupper()
	ustrupper()
	subinstr()
	usubinstr()
	subinword()
	substr()
	usubstr()
	udsubstr()
	tobytes()
	uisdigit()
	uisletter()
	ustrcompare()
	ustrcompareex()
	ustrfix()
	ustrfrom()
	ustrinvalidcnt()
	ustrleft()
	ustrnormalize()
	ustrright()
	ustrsortkey()
	ustrsortkeyex()
	ustrto()
	ustrtohex()
	ustrunescape()
	word()
	ustrword()
	wordbreaklocale()
	wordcount()
	ustrwordcount()

	References
	Also see

	Trigonometric functions
	Contents
	Functions
	acos()
	acosh()
	asin()
	asinh()
	atan()
	atan2()
	atanh()
	cos()
	cosh()
	sin()
	sinh()
	tan()
	tanh()

	References
	Also see

	[G] Graphics
	Contents
	Introduction
	Intro
	Description
	Also see

	Graph intro
	Remarks and examples
	Suggested reading order
	A quick tour
	Using the menus

	References
	Also see

	Graph Editor
	Remarks and examples
	Quick start
	Introduction
	Starting and stopping the Graph Editor
	The tools
	The Object Browser
	Right-click menus, or Contextual menus
	The Standard Toolbar
	The main Graph Editor menu
	Grid editing
	Graph Recorder
	Tips, tricks, and quick edits
	Video example

	Reference
	Also see

	Commands
	graph
	Description
	Syntax
	Remarks and examples
	Also see

	graph bar
	Description
	Quick start
	Menu
	Syntax
	Options
	group_options
	yvar_options
	lookofbar_options
	legending_options
	axis_options
	title_and_other_options
	Suboptions for use with over() and yvaroptions()

	Remarks and examples
	Introduction
	Examples of syntax
	Treatment of bars
	Treatment of data
	Obtaining frequencies
	Multiple bars (overlapping the bars)
	Controlling the text of the legend
	Group bars from the same y variables
	Multiple over()s (repeating the bars)
	Nested over()s
	Charts with many categories
	Control the number of labels on the categorical axis
	How bars are ordered
	Reordering the bars
	Putting the bars in a prespecified order
	Putting the bars in height order
	Putting the bars in a derived order
	Reordering the bars, example
	Use with by()
	Video example
	History

	References
	Also see

	graph box
	Description
	Quick start
	Menu
	Syntax
	Options
	group_options
	yvar_options
	boxlook_options
	legending_options
	axis_options
	title_and_other_options
	Suboptions for use with over() and yvaroptions()

	Remarks and examples
	Introduction
	Examples of syntax
	Treatment of multiple yvars versus treatment of over() groups
	How boxes are ordered
	Reordering the boxes
	Putting the boxes in a prespecified order
	Putting the boxes in median order
	Use with by()
	Video example
	History

	Methods and formulas
	References
	Also see

	graph close
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	graph combine
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Typical use with memory graphs
	Combining twoway graphs
	Advanced use
	Controlling the aspect ratio of subgraphs

	References
	Also see

	graph copy
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	graph describe
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	graph dir
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	graph display
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Changing the size and aspect ratio
	Changing the margins and aspect ratio
	Changing the scheme

	Also see

	graph dot
	Description
	Quick start
	Menu
	Syntax
	Options
	group_options
	yvar_options
	linelook_options
	legending_options
	axis_options
	title_and_other_options
	Suboptions for use with over() and yvaroptions()

	Remarks and examples
	Relationship between dot plots and horizontal bar charts
	Examples
	Appendix: Examples of syntax

	References
	Also see

	graph drop
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Typical use
	Relationship between graph drop _all and discard
	Erasing graphs on disk

	Also see

	graph export
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Exporting the graph displayed in a Graph window
	Exporting a graph stored on disk
	Exporting a graph stored in memory

	Reference
	Also see

	graph manipulation
	Description
	Syntax
	Remarks and examples
	Overview of graphs in memory and graphs on disk
	Summary of graph manipulation commands

	Also see

	graph matrix
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Marker symbols and the number of observations
	Controlling the axes labeling
	Adding grid lines
	Adding titles
	Use with by()
	History

	References
	Also see

	graph other
	Description
	Syntax
	Remarks and examples
	Reference
	Also see

	graph pie
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Data are summed
	Data may be long rather than wide
	How slices are ordered
	Ordering slices by size
	Reordering the slices
	Use with by()
	Video example
	History

	References
	Also see

	graph play
	Description
	Syntax
	Remarks and examples
	Also see

	graph print
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Printing the graph displayed in a Graph window
	Printing a graph stored on disk
	Printing a graph stored in memory
	Appendix: Setting up Stata for Unix to print graphs

	Also see

	graph query
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	graph rename
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	graph replay
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	graph save
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	graph set
	Description
	Quick start
	Syntax
	Remarks and examples
	Overview
	Setting defaults

	Also see

	graph twoway
	Description
	Menu
	Syntax
	Remarks and examples
	Definition
	Syntax
	Multiple if and in restrictions
	twoway and plot options

	References

	graph twoway area
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway bar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use: Overlaying
	Advanced use: Population pyramid
	Cautions

	References
	Also see

	graph twoway connected
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway contour
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Controlling the number of contours and their values
	Controlling the colors of the contour areas
	Choose the interpolation method
	Video example

	Reference
	Also see

	graph twoway contourline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Controlling the number of contour lines and their values
	Controlling the colors of the contour lines
	Choose the interpolation method

	Also see

	graph twoway dot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	graph twoway dropline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway fpfit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway fpfitci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions
	Use with by()

	Also see

	graph twoway function
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use 1
	Advanced use 2

	Reference
	Also see

	graph twoway heatmap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Controlling the number of bins for y and x

	Also see

	graph twoway histogram
	Description
	Quick start
	Menu
	Syntax
	Options for use in the discrete case
	Options for use in the continuous case
	Options for use in both cases
	Remarks and examples
	Relationship between graph twoway histogram and histogram
	Typical use
	Use with by()
	History

	References
	Also see

	graph twoway kdensity
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	References
	Also see

	graph twoway lfit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway lfitci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions
	Use with by()

	Also see

	graph twoway line
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	One-way equivalency of line and scatter
	Typical use
	Advanced use
	Cautions

	Reference
	Also see

	graph twoway lowess
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	References
	Also see

	graph twoway lpoly
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	References
	Also see

	graph twoway lpolyci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	Also see

	graph twoway mband
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	Also see

	graph twoway mspline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway pcarrow
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic use
	Advanced use

	References
	Also see

	graph twoway pcarrowi
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway pccapsym
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic use 1
	Basic use 2

	Also see

	graph twoway pci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway pcscatter
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway pcspike
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic use
	Advanced use
	Advanced use 2

	Reference
	Also see

	graph twoway qfit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway qfitci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions
	Use with by()

	Also see

	graph twoway rarea
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway rbar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use

	References
	Also see

	graph twoway rcap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Advanced use 2

	Also see

	graph twoway rcapsym
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway rconnected
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway rline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway rpcap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use

	Also see

	graph twoway rpspike
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use

	Also see

	graph twoway rscatter
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway rspike
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Advanced use 2

	Also see

	graph twoway scatter
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Scatter syntax
	The overall look for the graph
	The size and aspect ratio of the graph
	Titles
	Axis titles
	Axis labels and ticking
	Grid lines
	Added lines
	Axis range
	Log scales
	Multiple axes
	Markers
	Weighted markers
	Jittered markers
	Connected lines
	Graphs by groups
	Saving graphs
	Video example
	Appendix: Styles and composite styles

	References
	Also see

	graph twoway scatteri
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway spike
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway tsline
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	graph use
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	palette
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	References
	Also see

	set graphics
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	set printcolor
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	What set printcolor affects
	The problem set printcolor solves
	set printcolor automatic
	set printcolor asis
	set printcolor gs1, gs2, and gs3
	The scheme matters, not the background color you set

	Also see

	set scheme
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	References
	Also see

	Options
	added_line_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Typical use
	Interpretation of repeated options

	References
	Also see

	added_text_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Typical use
	Advanced use
	Use of the textbox option width()

	Reference
	Also see

	addplot_option
	Description
	Syntax
	Option
	Remarks and examples
	Commands that allow the addplot() option
	Advantage of graph twoway commands
	Advantages of graphic commands implemented outside graph twoway
	Use of the addplot() option

	Reference
	Also see

	advanced_options
	Description
	Syntax
	Options
	Remarks and examples
	Use of yvarlabel() and xvarlabel()
	Use of yvarformat() and xvarformat()
	Use of recast()

	Also see

	area_options
	Description
	Syntax
	Options
	Remarks and examples
	Use with twoway
	Use with graph dot

	Also see

	aspect_option
	Description
	Quick start
	Syntax
	Option
	Suboptions
	Remarks and examples
	Reference
	Also see

	axis_choice_options
	Description
	Syntax
	Options
	Remarks and examples
	Usual case: one set of axes
	Special case: multiple axes due to multiple scales
	yaxis(1) and xaxis(1) are the defaults
	Notation style is irrelevant
	yaxis() and xaxis() are plot options
	Specifying the other axes options with multiple axes
	Each plot may have at most one x scale and one y scale
	Special case: Multiple axes with a shared scale

	Reference
	Also see

	axis_label_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Default labeling and ticking
	Controlling the labeling and ticking
	Adding extra ticks
	Adding minor labels and ticks
	Adding grid lines
	Suppressing grid lines
	Substituting text for labels
	z-axis options---zlabel(), ztick(), etc.
	Appendix: Details of syntax

	References
	Also see

	axis_options
	Description
	Options
	Remarks and examples
	Also see

	axis_scale_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Use of the yscale() and xscale()
	Specifying the range of a scale
	Obtaining log scales
	Obtaining reversed scales
	Suppressing the axes
	Contour axes---zscale()

	References
	Also see

	axis_title_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Default axis titles
	Overriding default titles
	Specifying multiline titles
	Suppressing axis titles
	Interpretation of repeated options
	Titles with multiple y axes or multiple x axes
	Contour axes---ztitle()

	Also see

	barlook_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	blabel_option
	Description
	Quick start
	Syntax
	Option
	Suboptions

	Remarks and examples
	Increasing the information content
	Changing how bars are labeled

	Also see

	by_option
	Description
	Quick start
	Syntax
	Option
	byopts
	Remarks and examples
	Typical use
	Placement of graphs
	Treatment of titles
	by() uses subtitle() with graph
	Placement of the subtitle()
	by() uses the overall note()
	Use of legends with by()
	By-styles
	Labeling the edges
	Specifying separate scales for the separate plots
	History

	References
	Also see

	cat_axis_label_options
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	cat_axis_line_options
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	clegend_option
	Description
	Quick start
	Syntax
	Option
	Content and appearance suboptions for use with clegend()
	Suboptions for use with clegend(region())
	Location suboptions for use with clegend()

	Remarks and examples
	When contour legends appear
	Where contour legends appear
	Putting titles on contour legends
	Controlling the axis in contour legends
	Use of legends with by()

	Also see

	cline_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	colorvar_options
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Introduction
	Controlling the number of levels
	Controlling the colors

	References
	Also see

	connect_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	eps_options
	Description
	Syntax
	Options
	Remarks and examples
	Using the eps_options
	Setting defaults
	Note about PostScript fonts

	Also see

	fcline_options
	Description
	Syntax
	Options
	Remarks and examples

	fitarea_options
	Description
	Syntax
	Options
	Remarks and examples

	gif_options
	Description
	Syntax
	Options
	Remarks and examples
	Using gif_options
	Specifying the width or height

	Also see

	jpg_options
	Description
	Syntax
	Options
	Remarks and examples
	Using jpg_options
	Specifying the width or height
	Image quality

	Also see

	legend_options
	Description
	Quick start
	Syntax
	Options
	Content suboptions for use with legend() and plegend()
	Suboptions for use with legend(region())
	Location suboptions for use with legend()

	Remarks and examples
	When legends appear
	The contents of legends
	Where legends appear
	Putting titles on legends
	Use of legends with by()
	Problems arising with or because of legends

	Also see

	line_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	marker_label_options
	Description
	Syntax
	Options
	Remarks and examples
	Typical use
	Eliminating overprinting and overruns
	Advanced use
	Using marker labels in place of markers
	Adding a prefix and suffix to the marker labels

	Also see

	marker_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	name_option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	nodraw_option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	pdf_options
	Description
	Syntax
	Options
	Remarks and examples
	Using the pdf_options
	Setting defaults

	Also see

	play_option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	png_options
	Description
	Syntax
	Options
	Remarks and examples
	Using png_options
	Specifying the width or height

	Also see

	pr_options
	Description
	Syntax
	Options
	Remarks and examples
	Using the pr_options
	Setting defaults
	Note for Unix users

	Also see

	ps_options
	Description
	Syntax
	Options
	Remarks and examples
	Using the ps_options
	Setting defaults
	Note about PostScript fonts
	Note for Unix users

	Also see

	rcap_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	region_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Setting the offset between the axes and the plot region
	Controlling the aspect ratio
	Suppressing the border around the plot region
	Setting background and fill colors
	How graphs are constructed

	Also see

	rspike_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	saving_option
	Description
	Quick start
	Syntax
	Option
	Suboptions

	Remarks and examples
	Also see

	scale_option
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	scheme_option
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	std_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	svg_options
	Description
	Syntax
	Options
	Remarks and examples
	Using the svg_options
	Setting defaults

	Also see

	textbox_options
	Description
	Syntax
	Options
	Remarks and examples
	Definition of a textbox
	Position
	Justification
	Position and justification combined
	Margins
	Width and height
	Appendix: Overriding default or context-specified positioning

	Also see

	tif_options
	Description
	Syntax
	Options
	Remarks and examples
	Using tif_options
	Specifying the width or height

	Also see

	title_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Multiple-line titles
	Interpretation of repeated options
	Positioning of titles
	Alignment of titles
	Spanning
	Using the textbox options box and bexpand

	Reference
	Also see

	twoway_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	Styles/concepts/schemes
	addedlinestyle
	Description
	Syntax
	Remarks and examples
	What is an added line?
	What is an addedlinestyle?
	You do not need to specify an addedlinestyle

	Also see

	alignmentstyle
	Description
	Syntax
	Remarks and examples
	Also see

	anglestyle
	Description
	Syntax
	Remarks and examples
	Also see

	areastyle
	Description
	Syntax
	Remarks and examples
	Overview of areastyles
	Numbered styles
	Using numbered styles
	When to use areastyles

	Also see

	axisstyle
	Description
	Syntax
	Remarks and examples
	Also see

	bystyle
	Description
	Syntax
	Remarks and examples
	What is a by-graph?
	What is a bystyle?

	Also see

	clockposstyle
	Description
	Syntax
	Remarks and examples
	Also see

	colorstyle
	Description
	Syntax
	Remarks and examples
	Adjust opacity
	Adjust intensity
	Specify RGB values
	Specify CMYK values
	Specify HSV values
	Specify hexadecimal values
	Export custom colors
	Video example

	References
	Also see

	compassdirstyle
	Description
	Syntax
	Remarks and examples
	Also see

	Concept: gph files
	Description
	Remarks and examples
	Background
	Gph files are machine/operating system independent
	Gph files come in three forms
	Advantages of live-format files
	Advantages of as-is format files
	Retrieving data from live-format files

	Also see

	Concept: lines
	Description
	Syntax
	Remarks and examples
	linestyle
	linealignmentstyle
	linepatternstyle
	linewidthstyle
	colorstyle

	Also see

	Concept: repeated options
	Description
	Remarks and examples
	Also see

	connectstyle
	Description
	Syntax
	Remarks and examples
	Also see

	gridstyle
	Description
	Syntax
	Remarks and examples
	What is a grid?
	What is a gridstyle?
	You do not need to specify a gridstyle
	Turning off and on the grid

	Also see

	intensitystyle
	Description
	Syntax
	Remarks and examples
	Also see

	justificationstyle
	Description
	Syntax
	Remarks and examples
	Also see

	legendstyle
	Description
	Syntax
	Remarks and examples
	What is a legend?
	What is a legendstyle?
	You do not need to specify a legendstyle

	Also see

	linealignmentstyle
	Description
	Syntax
	Also see

	linepatternstyle
	Description
	Syntax
	Remarks and examples
	Also see

	linestyle
	Description
	Syntax
	Remarks and examples
	What is a line?
	What is a linestyle?
	You do not need to specify a linestyle
	Specifying a linestyle can be convenient
	What are numbered styles?
	Suppressing lines

	Reference
	Also see

	linewidthstyle
	Description
	Syntax
	Remarks and examples
	Also see

	marginstyle
	Description
	Syntax
	Remarks and examples
	Also see

	markerlabelstyle
	Description
	Syntax
	Remarks and examples
	What is a markerlabel?
	What is a markerlabelstyle?
	You do not need to specify a markerlabelstyle
	Specifying a markerlabelstyle can be convenient
	What are numbered styles?

	Also see

	markersizestyle
	Description
	Syntax
	Remarks and examples
	Also see

	markerstyle
	Description
	Syntax
	Remarks and examples
	What is a marker?
	What is a markerstyle?
	You do not have to specify a markerstyle
	Specifying a markerstyle can be convenient
	What are numbered styles?

	Also see

	orientationstyle
	Description
	Syntax
	Remarks and examples
	Also see

	plotregionstyle
	Description
	Syntax
	Remarks and examples
	Also see

	pstyle
	Description
	Syntax
	Remarks and examples
	What is a plot?
	What is a pstyle?
	The pstyle() option
	Specifying a pstyle
	What are numbered styles?

	Also see

	ringposstyle
	Description
	Syntax
	Remarks and examples
	Also see

	Schemes intro
	Description
	Syntax
	Remarks and examples
	The role of schemes
	Finding out about other schemes
	Setting your default scheme
	The scheme is applied at display time
	Background color
	Foreground color
	Obtaining new schemes
	Examples of schemes

	References
	Also see

	Scheme economist
	Description
	Syntax
	Remarks and examples
	Also see

	Scheme s1
	Description
	Syntax
	Remarks and examples
	Also see

	Scheme s2
	Description
	Syntax
	Remarks and examples
	Also see

	Scheme sj
	Description
	Syntax
	Also see

	Scheme st
	Description
	Syntax
	Remarks and examples
	stcolor and stcolor_alt
	stgcolor and stgcolor_alt
	stmono1 and stmono2
	stsj

	Also see

	shadestyle
	Description
	Syntax
	Remarks and examples
	What is a shadestyle?
	What are numbered styles?

	Also see

	size
	Description
	Syntax
	Remarks and examples
	Also see

	stylelists
	Description
	Syntax
	Also see

	symbolstyle
	Description
	Syntax
	Remarks and examples
	Typical use
	Filled and hollow symbols
	Size of symbols

	Also see

	text
	Description
	Remarks and examples
	Overview
	Bold and italics
	Superscripts and subscripts
	Fonts, standard
	Fonts, advanced
	Greek letters and other symbols
	Full list of SMCL tags useful in graph text

	Also see

	textboxstyle
	Description
	Syntax
	Remarks and examples
	What is a textbox?
	What is a textboxstyle?
	You do not need to specify a textboxstyle

	Also see

	textsizestyle
	Description
	Syntax
	Also see

	textstyle
	Description
	Syntax
	Remarks and examples
	What is text?
	What is a textstyle?
	You do not need to specify a textstyle
	Relationship between textstyles and textboxstyles

	Also see

	ticksetstyle
	Description
	Syntax
	Also see

	tickstyle
	Description
	Syntax
	Remarks and examples
	What is a tick? What is a tick label?
	What is a tickstyle?
	You do not need to specify a tickstyle
	Suppressing ticks and/or tick labels

	Also see

	Glossary

	[H2OML] Machine Learning Using H2O
	Contents
	Intro
	Description
	Remarks and examples
	Why machine learning?
	Preliminaries
	Fundamentals of machine learning
	Decision trees
	Classification trees
	Regression trees
	Pros and cons of decision trees

	Ensemble methods
	Bagging
	Random forest
	Boosting
	GBM
	Trees with monotonicity constraints

	Model selection in machine learning
	Three-way and two-way holdout methods
	K-fold cross-validation
	Hyperparameter tuning
	Method comparison

	Interpretation and explanation
	Global surrogate models

	References
	Also see

	h2oml
	Description
	Remarks and examples
	Brief overview
	h2oml in a nutshell
	Tour of machine learning commands
	Prepare your data for H2O machine learning in Stata
	End-to-end binary classification analysis
	Regression analysis
	Effect of categorical predictors
	Detecting nuisance predictors
	Gradient boosting Poisson regression

	References
	Also see

	H2O setup
	Description
	Remarks and examples
	What is H2O?
	How does H2O work from Stata?
	Start a local H2O cluster
	Connect to an existing H2O cluster

	Interact with the H2O cluster
	Close and disconnect the H2O cluster

	Also see

	h2oml gbm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Tuning hyperparameters
	Examples of using GBM

	Stored results
	Methods and formulas
	References
	Also see

	h2oml gbbinclass
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	h2oml gbmulticlass
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	h2oml gbregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	h2oml rf
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Tuning hyperparameters
	Examples of using random forest

	Stored results
	Methods and formulas
	References
	Also see

	h2oml rfbinclass
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	h2oml rfmulticlass
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	h2oml rfregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	h2oml postestimation
	Postestimation commands
	h2omlpredict
	Description for h2omlpredict
	Menu for h2omlpredict
	Syntax for h2omlpredict
	Options for h2omlpredict

	Remarks and examples
	Binary classification prediction
	Multiclass classification prediction
	Testing frame prediction
	Regression prediction

	References
	Also see

	h2omlest
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	h2omlestat aucmulticlass
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	h2omlestat confmatrix
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	h2omlestat cvsummary
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	h2omlestat gridsummary
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	h2omlestat hitratio
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	h2omlestat metrics
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	h2omlestat threshmetric
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	h2omlexplore
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Reference
	Also see

	h2omlgof
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	h2omlgraph ice
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples of ICE curves

	References
	Also see

	h2omlgraph pdp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples of using PDP

	References
	Also see

	h2omlgraph prcurve
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	h2omlgraph roc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	h2omlgraph scorehistory
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	h2omlgraph shapsummary
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	h2omlgraph shapvalues
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	h2omlgraph varimp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	h2omlpostestframe
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	h2omlselect
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	h2omltree
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Example 1: Plotting a classification tree after random forest
	Example 2: Plotting a classification tree after gradient boosting machine (GBM)
	Example 3: Plotting a regression tree
	Example 4: Plotting a tree for multiclass classification

	References
	Also see

	DOT extension
	Description
	Remarks and examples
	Install Graphviz
	How to use Graphviz and DOT language
	Modifying the DOT file

	Also see

	encode_option
	Description
	Syntax
	Option
	Reference
	Also see

	metric_option
	Description
	Syntax
	Options
	Metrics for regression
	Metrics for classification
	Additional classification metrics

	References
	Also see

	H2O option mapping
	Description
	Also see

	H2O reproducibility
	Description
	Also see

	Glossary
	References

	[IRT] Item Response Theory
	Contents
	irt
	Description
	Remarks and examples
	References
	Also see

	Control Panel
	Description
	Remarks and examples
	Reference
	Also see

	irt 1pl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	irt 1pl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt 2pl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	irt 2pl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt 3pl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	irt 3pl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt grm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	irt grm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt nrm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	irt nrm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt pcm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	irt pcm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt rsm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	irt rsm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt hybrid
	Description
	Quick start
	Menu
	Syntax
	mopts
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	The likelihood
	Groups
	Gauss--Hermite quadrature
	Adaptive quadrature

	References
	Also see

	irt hybrid postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Empirical Bayes
	Other predictions

	References
	Also see

	irt, group()
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Baseline group model
	Differential item functioning

	Reference
	Also see

	irt, group() postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt constraints
	Description
	Quick start
	Syntax
	Remarks and examples
	Overview
	Constraints in 1PL, 2PL, and 3PL models
	Constraints in graded response models
	Constraints in nominal response models
	Constraints in partial credit models
	Constraints in rating scale models

	Also see

	estat report
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat greport
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irtgraph icc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	irtgraph tcc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	irtgraph iif
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	irtgraph tif
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	DIF
	Description
	Remarks and examples
	References
	Also see

	diflogistic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	difmh
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	Glossary

	[LASSO] Lasso
	Contents
	Lasso intro
	Description
	Remarks and examples
	Summary of Stata's lasso and elastic-net features
	What is lasso?
	Lasso for prediction
	How lasso for prediction works
	Stata commands for prediction

	Lasso for model selection
	Lasso for inference
	Why do we need special lasso methods for inference?
	Methods of lasso for inference
	Stata commands for inference

	Where to learn more

	Acknowledgments
	References
	Also see

	Lasso inference intro
	Description
	Remarks and examples
	The problem
	Possible solutions
	Solutions that focus on the true model
	The double-selection solution
	The partialing-out solution
	The cross-fit partialing-out (double machine learning) solution

	Where to learn more

	References
	Also see

	bicplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	coefpath
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Coefficient path plots
	An example
	Adding a legend
	lambda scale and reference line
	After fitting with sqrtlasso
	After fitting with elasticnet
	After fitting with inference commands

	Also see

	Collinear covariates
	Description
	Remarks and examples
	Summary
	Explanation
	Applies to inferential commands
	Does not apply to alwaysvars

	Also see

	cvplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	dslogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	dspoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	dsregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	elasticnet
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estimates store
	Description
	Remarks and examples
	Overview
	Postestimation commands that work only with current results
	Postestimation commands that work with current results
	lassoselect creates new estimation results

	Also see

	Inference examples
	Description
	Remarks and examples
	1 Overview
	1.1 How to read the example entries
	1.2 Detailed outline of the topics
	1.3 Review of concepts
	1.4 The primary dataset

	2 Fitting and interpreting inferential models
	2.1 Overview of inferential estimation methods
	2.2 Fitting via cross-fit partialing out (xpo) using plugin
	2.3 Fitting via cross-fit partialing out (xpo) using cross-validation
	2.4 Fitting via double selection (ds) using cross-validation
	2.5 Fitting via the other 22 methods
	2.6 Fitting models with several variables of interest
	2.7 Fitting models with factor variables of interest
	2.8 Fitting models with interactions of interest
	2.9 Fitting models with a nonlinear relationship of interest
	2.10 Controls are controls

	3 Fitting logit inferential models to binary outcomes. What is different?
	3.1 Interpreting standard odds ratios
	3.2 Interpreting models with factor variables, nonlinear relationships, and interactions

	4 Fitting inferential models to count outcomes. What is different?
	4.1 Interpreting standard incidence-rate ratios
	4.2 Interpreting models with factor variables

	5 Exploring inferential model lassos
	6 Fitting an inferential model with endogenous covariates

	References
	Also see

	Inference requirements
	Description
	Remarks and examples
	Also see

	lasso
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Lasso fitting and selection methods
	selection(cv): Cross-validation
	The CV function
	Penalized and postselection coefficients
	predict
	Selecting lambda by hand using lassoselect
	More lasso examples

	Stored results
	Methods and formulas
	Lasso and elastic-net objective functions
	Coordinate descent
	Grid of values for lambda
	How to choose the penalty parameter
	How CV is performed
	Adaptive lasso
	Plugin estimators
	BIC

	References
	Also see

	lasso postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	stcurve
	Description for stcurve
	Menu for stcurve
	Syntax for stcurve
	Options for stcurve

	Remarks and examples
	Methods and formulas
	References
	Also see

	lassocoef
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	lasso examples
	Description
	Remarks and examples
	Overview
	Using vl to manage variables
	Using splitsample
	Lasso linear models
	Adaptive lasso
	Cross-validation folds
	BIC
	More potential variables than observations
	Factor variables in lasso
	Lasso logit and probit models
	Lasso Poisson models
	Lasso Cox models

	References
	Also see

	lasso fitting
	Description
	Remarks and examples
	Introduction
	Model selection
	The process
	Step 1. Set the grid range
	Step 2. Fit the model for next lambda in grid
	Selection method none
	Step 3. Identifying a minimum of the CV function
	Plotting the CV function
	Selecting another model

	What exactly is CV?
	Adaptive lasso
	Plugin selection
	Selection using the BIC function

	Also see

	lassogof
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	lasso inference postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict

	Remarks and examples
	Also see

	lassoinfo
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	lassoknots
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Measures of fit
	In-sample measures versus estimates of out-of-sample measures
	BIC
	Examples

	Stored results
	Methods and formulas
	Overview
	Statistics that measure the size of the coefficient vector
	Statistics that measure fit
	CV measures of fit
	Single-sample measures of fit
	Deviance formulas
	Saturated log likelihood

	Prediction error formulas
	BIC formula

	References
	Also see

	lasso options
	Description
	Syntax
	Options
	Suboptions for lasso() and sqrtlasso()

	Remarks and examples
	Reference
	Also see

	lassoselect
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	poivregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	pologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	popoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	poregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	sqrtlasso
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Notation
	Plugin estimators

	References
	Also see

	xpoivregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	xpologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	xpopoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	xporegress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	Glossary

	[M] Mata
	Contents
	Introduction to the Mata manual
	Intro
	Contents
	Description
	Remarks and examples
	References
	Also see

	Introduction and advice
	Intro
	Contents
	Description
	Remarks and examples
	References
	Also see

	Ado
	Description
	Remarks and examples
	A first example
	Where to store the Mata functions
	Passing arguments to Mata functions
	Returning results to ado-code
	Advice: Use of matastrict
	Advice: Some useful Mata functions

	Also see

	First
	Description
	Remarks and examples
	Invoking Mata
	Using Mata
	Making mistakes: Interpreting error messages
	Working with real numbers, complex numbers, and strings
	Working with scalars, vectors, and matrices
	Working with functions
	Distinguishing real and complex values
	Working with matrix and scalar functions
	Performing element-by-element calculations: Colon operators
	Writing programs
	More functions
	Mata environment commands
	Exiting Mata

	Also see

	help
	Description
	Syntax
	Remarks and examples
	Also see

	How
	Description
	Remarks and examples
	What happens when you define a program
	What happens when you work interactively
	What happens when you type a mata environment command
	Working with object code I: .mo files
	Working with object code II: .mlib libraries
	The Mata environment

	Reference
	Also see

	Interactive
	Description
	Remarks and examples
	1. Start in Stata; load the data
	2. Create any time-series variables
	3. Create a constant variable
	4. Drop unnecessary variables
	5. Drop observations with missing values
	6. Put variables on roughly the same numeric scale
	7. Enter Mata
	8. Use Mata's st_view() function to access your data
	9. Perform your matrix calculations

	Review
	Reference
	Also see

	LAPACK
	Description
	Syntax
	Option
	Remarks and examples
	LAPACK in Mata
	set lapack_mkl
	Intel MKL conditional numerical reproducibility
	set lapack_mkl_cnr
	set lapack_openblas

	Acknowledgments
	References
	Also see

	Limits
	Description
	Summary
	Remarks and examples
	Also see

	Naming
	Description
	Syntax
	Remarks and examples
	Interactive use
	Naming variables
	Naming functions
	What happens when functions have the same names
	How to determine if a function name has been taken

	Also see

	Permutation
	Description
	Syntax
	Remarks and examples
	Permutation matrices
	How permutation matrices arise
	Permutation vectors

	Also see

	Returned args
	Description
	Syntax
	Remarks and examples
	Also see

	Source
	Description
	Syntax
	Remarks and examples
	Also see

	Tolerance
	Description
	Syntax
	Remarks and examples
	The problem
	Absolute versus relative tolerances
	Specifying tolerances

	Also see

	Language definition
	Intro
	Contents
	Description
	Remarks and examples
	Also see

	break
	Description
	Syntax
	Remarks and examples
	Also see

	class
	Description
	Syntax
	Introduction
	Example
	Declaration of member variables
	Declaration and definition of methods (member functions)
	Default exposure in declarations

	Remarks and examples
	Notation and jargon
	Declaring and defining a class
	Saving classes in files
	Workflow recommendation
	When you need to recompile
	Obtaining instances of a class
	Constructors and destructors
	Setting member variable and member function exposure
	Making a member final
	Making a member static
	Virtual functions
	Referring to the current class using this
	Using super to access the parent's concept
	Casting back to a parent
	Accessing external functions from member functions
	Pointers to classes

	Reference
	Also see

	Comments
	Description
	Syntax
	Remarks and examples
	The /* */ enclosed comment
	The // rest-of-line comment

	Also see

	continue
	Description
	Syntax
	Remarks and examples
	Also see

	Declarations
	Description
	Syntax
	Remarks and examples
	The purpose of declarations
	Types, element types, and organizational types
	Implicit declarations
	Element types
	Organizational types
	Function declarations
	Argument declarations
	The by-address calling convention
	Variable declarations
	Linking to external globals

	Also see

	do
	Description
	Syntax
	Remarks and examples
	Also see

	Errors
	Description
	Remarks and examples
	The error codes

	Also see

	exp
	Description
	Syntax
	Remarks and examples
	What's an expression
	Assignment suppresses display, as does (void)
	The pieces of an expression
	Numeric literals
	String literals
	Variable names
	Operators
	Functions

	Reference
	Also see

	for
	Description
	Syntax
	Remarks and examples
	Also see

	ftof
	Description
	Syntax
	Remarks and examples
	Passing functions to functions
	Writing functions that receive functions, the simplified convention
	Passing built-in functions

	Also see

	goto
	Description
	Syntax
	Remarks and examples
	Reference
	Also see

	if
	Description
	Syntax
	Remarks and examples
	Also see

	op_arith
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	op_assignment
	Description
	Syntax
	Remarks and examples
	Assignment suppresses display
	The equal-assignment operator
	lvals, what appears on the left-hand side
	Row, column, and element lvals
	Pointer lvals

	Conformability
	Diagnostics
	Also see

	op_colon
	Description
	Syntax
	Remarks and examples
	C-conformability: element by element
	Usefulness of colon logical operators
	Use parentheses

	Conformability
	Diagnostics
	Also see

	op_conditional
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	op_increment
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	op_join
	Description
	Syntax
	Remarks and examples
	Comma and backslash are operators
	Comma as a separator
	Warning about the misuse of comma and backslash operators

	Conformability
	Diagnostics
	Also see

	op_kronecker
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	op_logical
	Description
	Syntax
	Remarks and examples
	Introduction
	Use of logical operators with pointers

	Conformability
	Diagnostics
	Also see

	op_range
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	op_transpose
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	optargs
	Description
	Syntax
	Remarks and examples
	What are optional arguments?
	How to code optional arguments
	Examples revisited

	Also see

	pointers
	Description
	Syntax
	Remarks and examples
	What is a pointer?
	Pointers to variables
	Pointers to expressions
	Pointers to functions
	Pointers to pointers
	Pointer arrays
	Mixed pointer arrays
	Definition of NULL
	Use of parentheses
	Pointer arithmetic
	Listing pointers
	Declaration of pointers
	Use of pointers to collect objects
	Efficiency

	Diagnostics
	References
	Also see

	pragma
	Description
	Syntax
	Remarks and examples
	pragma unset
	pragma unused

	Also see

	reswords
	Description
	Syntax
	Remarks and examples
	Future developments
	Version control

	Also see

	return
	Description
	Syntax
	Remarks and examples
	Functions that return results
	Functions that return nothing (void functions)

	Also see

	Semicolons
	Description
	Syntax
	Remarks and examples
	Optional use of semicolons
	You cannot break a statement anywhere even if you use semicolons
	Use of semicolons to create multistatement lines
	Significant semicolons
	Do not use #delimit ;

	Also see

	struct
	Description
	Syntax
	Remarks and examples
	Introduction
	Structures and functions must have different names
	Structure variables must be explicitly declared
	Declare structure variables to be scalars whenever possible
	Vectors and matrices of structures
	Structures of structures
	Pointers to structures
	Operators and functions for use with structure members
	Operators and functions for use with entire structures
	Listing structures
	Use of transmorphics as passthrus
	Saving compiled structure definitions
	Saving structure variables

	References
	Also see

	Subscripts
	Description
	Syntax
	Remarks and examples
	List subscripts
	Range subscripts
	When to use list subscripts and when to use range subscripts
	A fine distinction

	Conformability
	Diagnostics
	Reference
	Also see

	Syntax
	Description
	Syntax
	Remarks and examples
	Treatment of semicolons
	Types and declarations
	Void matrices
	Void functions
	Operators
	Subscripts
	Implied input tokens
	Function argument-passing convention
	Passing functions to functions
	Optional arguments

	Reference
	Also see

	version
	Description
	Syntax
	Remarks and examples
	Purpose of version control
	Recommendations for do-files
	Recommendations for ado-files
	Compile-time and runtime versioning

	Also see

	void
	Description
	Syntax
	Remarks and examples
	Void matrices, vectors, row vectors, and column vectors
	How to read conformability charts

	Also see

	while
	Description
	Syntax
	Remarks and examples
	Also see

	Commands for controlling Mata
	Intro
	Contents
	Description
	Remarks and examples
	Also see

	end
	Description
	Syntax
	Remarks and examples
	Also see

	lmbuild
	Description
	Syntax
	Options
	Remarks and examples
	Background
	Version control

	Also see

	mata
	Description
	Syntax
	Remarks and examples
	Introduction
	The fine distinction between syntaxes 3 and 4
	The fine distinction between syntaxes 1 and 2

	Also see

	mata clear
	Description
	Syntax
	Remarks and examples
	Also see

	mata describe
	Description
	Syntax
	Option
	Remarks and examples
	Diagnostics
	Also see

	mata drop
	Description
	Syntax
	Remarks and examples
	Also see

	mata help
	Description
	Syntax
	Remarks and examples
	Also see

	mata matsave
	Description
	Syntax
	Option for mata matsave
	Option for mata matuse
	Remarks and examples
	Diagnostics
	Also see

	mata memory
	Description
	Syntax
	Remarks and examples
	Also see

	mata mlib
	Description
	Syntax
	Options
	Remarks and examples
	Background
	Outline of the procedure for dealing with libraries
	Creating a .mlib library
	Adding members to a .mlib library
	Listing the contents of a library
	Making it so Mata knows to search your libraries
	Advice on organizing your source code

	Also see

	mata mosave
	Description
	Syntax
	Options
	Remarks and examples
	Example of use
	Where to store .mo files
	Use of .mo files versus .mlib files

	Also see

	mata rename
	Description
	Syntax
	Also see

	mata set
	Description
	Syntax
	Option
	Remarks and examples
	Relationship between Mata's mata set and Stata's set commands
	c() values

	Also see

	mata stata
	Description
	Syntax
	Remarks and examples
	Also see

	mata which
	Description
	Syntax
	Remarks and examples
	Also see

	namelists
	Description
	Syntax
	Remarks and examples
	Also see

	Categorical guide to Mata functions
	Intro
	Contents
	Description
	Remarks and examples
	Also see

	Dates
	Contents
	Description
	Also see

	IO
	Contents
	Description
	Remarks and examples
	Reference
	Also see

	Manipulation
	Contents
	Description
	Remarks and examples
	Also see

	Mathematical
	Contents
	Description
	Remarks and examples
	Also see

	Matrix
	Contents
	Description
	Remarks and examples
	Also see

	Programming
	Contents
	Also see

	Scalar
	Contents
	Description
	Remarks and examples
	Also see

	Solvers
	Contents
	Description
	Remarks and examples
	Also see

	Standard
	Contents
	Description
	Remarks and examples
	Also see

	Stata
	Contents
	Description
	Remarks and examples
	Reference
	Also see

	Statistical
	Contents
	Description
	Remarks and examples
	Also see

	String
	Contents
	Description
	Remarks and examples
	Also see

	Utility
	Contents
	Description
	Remarks and examples
	Also see

	Alphabetical index to Mata functions
	Intro
	Contents
	Description
	Remarks and examples
	Also see

	abbrev()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	abs()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	adosubdir()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	all()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	args()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	asarray()
	Description
	Syntax
	Remarks and examples
	Detailed description
	Example 1: Scalar keys and scalar contents
	Example 2: Scalar keys and matrix contents
	Example 3: Vector keys and scalar contents; sparse matrix
	Setting the efficiency parameters

	Conformability
	Diagnostics
	Also see

	AssociativeArray()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ascii()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	uchar()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	assert()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	base64encode()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	blockdiag()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	bufio()
	Description
	Syntax
	Remarks and examples
	Basics
	Argument C
	Arguments B and offset
	Argument fh
	Argument bfmt
	bfmts for numeric data
	bfmts for string data
	Argument X
	Arguments r and c
	Advanced issues

	Conformability
	Diagnostics
	Also see

	byteorder()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	C()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	c()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	callersversion()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	cat()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	chdir()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	cholesky()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	cholinv()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	cholsolve()
	Description
	Syntax
	Remarks and examples
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	comb()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	cond()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	conj()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	corr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	cross()
	Description
	Syntax
	Remarks and examples
	Comment concerning cross() and missing values

	Conformability
	Diagnostics
	Also see

	crossdev()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	cvpermute()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	date()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	deriv()
	Description
	Syntax
	Remarks and examples
	First example
	Notation and formulas
	Notation
	Numerical differentiation method
	Complex step method
	Richardson extrapolation method

	Type d evaluators
	Example of a type d evaluator
	Type v evaluators
	User-defined arguments
	Example of a type v evaluator
	Type t evaluators
	Example of a type t evaluator
	Example of using step-size lower bounds
	Example of complex step method
	First example of Richardson extrapolation method
	Second example of Richardson extrapolation method
	Functions

	Conformability
	Diagnostics
	Methods and formulas
	References
	Also see

	designmatrix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	det()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_diag()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	diag()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	diag0cnt()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	diagonal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	dir()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	direxists()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	direxternal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	display()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	displayas()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	displayflush()
	Description
	Syntax
	Remarks and examples
	Diagnostics
	Also see

	Dmatrix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	_docx*()
	Description
	Syntax
	Create and save .docx file
	Add paragraph and text
	Add image file
	Add table
	Edit table
	Query routines

	Remarks and examples
	Detailed description
	Error codes
	Functions
	Create and save .docx file
	Add paragraph and text
	Add image
	Add table
	Edit table
	Query routines

	Save document to disk file
	Current paragraph and text
	Supported image types
	Linked and embedded images
	Styles
	Performance
	Examples
	Create a .docx document in memory
	Add paragraphs and text
	Display data
	Display regression results
	Add an image
	Display nested table
	Add images to table cells
	Save the .docx document in memory to a disk file

	Diagnostics
	References
	Also see

	dsign()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	e()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	editmissing()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	edittoint()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	edittozero()
	Description
	Syntax
	Remarks and examples
	Background
	Treatment of complex values
	Recommendations

	Conformability
	Diagnostics
	Also see

	editvalue()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	eigensystem()
	Description
	Syntax
	Remarks and examples
	Eigenvalues and eigenvectors
	Left eigenvectors
	Symmetric eigensystems
	Normalization and order
	Eigenvalue condition
	Balancing
	eigensystem() and eigenvalues()
	lefteigensystem()
	symeigensystem() and symeigenvalues()

	Conformability
	Diagnostics
	References
	Also see

	eigensystemselect()
	Description
	Syntax
	Remarks and examples
	Introduction
	Range selection
	Index selection
	Criterion selection
	Other functions

	Conformability
	Diagnostics
	Also see

	eltype()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	epsilon()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_equilrc()
	Description
	Syntax
	Remarks and examples
	Introduction
	Is equilibration necessary?
	The _equil*() family of functions
	The _perhapsequil*() family of functions
	rowscalefactors() and colscalefactors()

	Conformability
	Diagnostics
	Also see

	error()
	Description
	Syntax
	Remarks and examples
	Use of _error()
	Use of error()

	Conformability
	Diagnostics
	Also see

	errprintf()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	exit()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	exp()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	factorial()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	favorspeed()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ferrortext()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	fft()
	Description
	Syntax
	Remarks and examples
	Definitions, notation, and conventions
	Fourier transform
	Convolution and deconvolution
	Correlation
	Utility routines
	Warnings

	Conformability
	Diagnostics
	Also see

	fileexists()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	_fillmissing()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	findexternal()
	Description
	Syntax
	Remarks and examples
	Definition of a global
	Use of globals

	Conformability
	Diagnostics
	Also see

	findfile()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	floatround()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	fmtwidth()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	fopen()
	Description
	Syntax
	Remarks and examples
	Opening and closing files
	Reading from a file
	Writing to a file
	Reading and writing in the same file
	Reading and writing matrices
	Repositioning in a file
	Truncating a file
	Error codes

	Conformability
	Diagnostics
	Also see

	fullsvd()
	Description
	Syntax
	Remarks and examples
	Introduction
	Relationship between the full and thin SVDs
	The contents of s
	Possibility of convergence problems

	Conformability
	Diagnostics
	Also see

	geigensystem()
	Description
	Syntax
	Remarks and examples
	Generalized eigenvalues
	Generalized eigenvectors
	Criterion selection
	Range selection
	Index selection

	Conformability
	Diagnostics
	References
	Also see

	ghessenbergd()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ghk()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ghkfast()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	gschurd()
	Description
	Syntax
	Remarks and examples
	Generalized Schur decomposition
	Grouping the results

	Conformability
	Diagnostics
	Also see

	halton()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	hash1()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	hessenbergd()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Hilbert()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	I()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	inbase()
	Description
	Syntax
	Remarks and examples
	Positive integers
	Negative integers
	Numbers with nonzero fractional parts
	Use of the functions

	Conformability
	Diagnostics
	Reference
	Also see

	indexnot()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	_invmat()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	invorder()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	invsym()
	Description
	Syntax
	Remarks and examples
	Definition of generalized inverse
	Specifying the order in which columns are omitted
	Determining the rank, or counting the number of omitted columns
	Extracting linear dependencies

	Conformability
	Diagnostics
	Also see

	invtokens()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	isascii()
	Description
	Syntax
	Conformability
	Also see

	isdiagonal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	isfleeting()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	isreal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	isrealvalues()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	issamefile()
	Description
	Syntax
	Remarks and examples
	Conformability
	Also see

	issymmetric()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	isview()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	J()
	Description
	Syntax
	Remarks and examples
	First syntax: J(r, c, val), val a scalar
	Second syntax: J(r, c, mat), mat a matrix

	Conformability
	Diagnostics
	Also see

	Kmatrix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	lapack()
	Description
	Syntax
	Remarks and examples
	Mapping calling sequence from Fortran to Mata
	Flopping: Preparing matrices for LAPACK
	Warning on the use of rows() and cols() after _flopin()
	Warning: It is your responsibility to check info
	Example

	Reference
	Also see

	ldl()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	LinearProgram()
	Description
	Syntax
	Step 1: Initialization
	Step 2: Definition of linear programming problem
	Step 3: Perform optimization
	Step 4: Display or obtain results
	Utility function for use in all steps
	Definition of q
	Functions defining the linear programming problem
	Performing optimization
	Functions for obtaining results
	Utility function

	Remarks and examples
	Introduction
	Details about the interior-point method
	Examples

	Conformability
	Diagnostics
	References
	Also see

	liststruct()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Lmatrix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	logit()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	lowertriangle()
	Description
	Syntax
	Remarks and examples
	Optional argument d
	Nonsquare matrices

	Conformability
	Diagnostics
	Also see

	lsesolve()
	Description
	Syntax
	Remarks and examples
	Introduction
	Examples

	Conformability
	Diagnostics
	Also see

	lsglmsolve()
	Description
	Syntax
	Remarks and examples
	Introduction
	Examples

	Conformability
	Diagnostics
	Also see

	lssolve()
	Description
	Syntax
	Remarks and examples
	Introduction
	Computation methods and tolerance
	Examples

	Conformability
	Diagnostics
	Also see

	lud()
	Description
	Syntax
	Remarks and examples
	LU decomposition
	LAPACK routine

	Conformability
	Diagnostics
	Also see

	luinv()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	lusolve()
	Description
	Syntax
	Remarks and examples
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	makesymmetric()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	matexpsym()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	matpowersym()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	mean()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	mindouble()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	minindex()
	Description
	Syntax
	Remarks and examples
	Use of functions when v has all unique values
	Use of functions when v has repeated (tied) values
	Summary

	Conformability
	Diagnostics
	Also see

	minmax()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	missing()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	missingof()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	mod()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	moptimize()
	Description
	Syntax
	Step 1: Initialization
	Step 2: Definition of maximization or minimization problem
	Step 3: Perform optimization or perform a single function evaluation
	Step 4: Post, display, or obtain results
	Utility functions for use in all steps
	Definition of M
	Setting the sample
	Specifying dependent variables
	Specifying independent variables
	Specifying constraints
	Specifying weights or survey data
	Specifying clusters and panels
	Specifying optimization technique
	Specifying initial values
	Performing one evaluation of the objective function
	Performing optimization of the objective function
	Tracing optimization
	Specifying convergence criteria
	Accessing results
	Stata evaluators
	Advanced functions
	Syntax of evaluators
	Syntax of type lf evaluators
	Syntax of type d evaluators
	Syntax of type lf* evaluators
	Syntax of type gf evaluators
	Syntax of type q evaluators
	Passing extra information to evaluators
	Utility functions

	Remarks and examples
	Relationship of moptimize() to Stata's ml and to Mata's optimize()
	Mathematical statement of the moptimize() problem
	Filling in moptimize() from the mathematical statement
	The type lf evaluator
	The type d, lf*, gf, and q evaluators
	Example using type d
	Example using type lf*

	Conformability
	Diagnostics
	References
	Also see

	more()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	mvnormal()
	Description
	Syntax
	Remarks and examples
	Distribution functions
	mvnormal(U,R)
	mvnormal(L,U,R)
	mvnormalcv(L,U,M,V)

	Derivatives of multivariate normal distribution functions
	mvnormalderiv(U,R,dU,dR)
	mvnormalderiv(L,U,R,dL,dU,dR)
	mvnormalcvderiv(L,U,M,V,dL,dU,dM,dV)

	Conformability
	References
	Also see

	_negate()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	norm()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	normal()
	Description
	Syntax
	Remarks and examples
	R-conformability
	A note concerning invbinomial() and invbinomialtail()
	A note concerning ibeta()
	A note concerning gammap()

	Conformability
	Diagnostics
	Also see

	optimize()
	Description
	Syntax
	Remarks and examples
	First example
	Notation
	Type d evaluators
	Example of d0, d1, and d2
	d1debug and d2debug
	Type gf evaluators
	Example of gf0, gf1, and gf2
	Functions

	Conformability
	Diagnostics
	References
	Also see

	panelsetup()
	Description
	Syntax
	Remarks and examples
	Definition of panel data
	Definition of problem
	Preparation
	Use of panelsetup()
	Using panelstats()
	Using panelsubmatrix()
	Using panelsubview()

	Conformability
	Diagnostics
	Also see

	panelsum()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	pathjoin()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Pdf*()
	Description
	Syntax
	PdfDocument
	PdfParagraph
	PdfText
	PdfTable

	Remarks and examples
	PdfDocument class details
	PdfParagraph class details
	PdfText class details
	PdfTable class details
	Error codes
	Examples
	Add paragraph
	Add paragraph with customized text
	Add table (simple example)
	Add table (table with header and footer)
	Add table (table with graph)

	Also see

	pinv()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	polyeval()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	printf()
	Description
	Syntax
	Remarks and examples
	printf()
	sprintf()
	The %us and %uds formats

	Conformability
	Diagnostics
	Also see

	qrd()
	Description
	Syntax
	Remarks and examples
	QR decomposition
	Avoiding calculation of Q
	Pivoting
	Least-squares solutions with omitted columns

	Conformability
	Diagnostics
	Also see

	qrinv()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	qrsolve()
	Description
	Syntax
	Remarks and examples
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	quadcross()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Quadrature()
	Description
	Syntax
	Step 1: Problem initialization
	Step 2: Problem definition
	Step 3: Perform integration
	Step 4: Display or obtain results
	Utility function for use in all steps
	Definition of q
	Functions defining the integration problem
	Performing integration
	Functions for obtaining results
	Utility function

	Remarks and examples
	Introduction
	Examples
	A basic example of Quadrature()
	A basic example of QuadratureVec()
	Integrals with infinite limits
	Passing arguments to the evaluator function
	Singular points and setting tolerances
	Displaying settings and results at each stage
	Solving vectors and matrices of integrals

	Conformability
	Diagnostics
	References
	Also see

	range()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	rank()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Re()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	reldif()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	rows()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	rowshape()
	Description
	Syntax
	Remarks and examples
	Example of rowshape()
	Example of colshape()

	Conformability
	Diagnostics
	Also see

	runiform()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	runningsum()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	schurd()
	Description
	Syntax
	Remarks and examples
	Schur decomposition
	Grouping the results

	Conformability
	Diagnostics
	Reference
	Also see

	select()
	Description
	Syntax
	Remarks and examples
	Examples
	Using st_select()

	Conformability
	Diagnostics
	Also see

	setbreakintr()
	Description
	Syntax
	Remarks and examples
	Default break-key processing
	Suspending the break-key interrupt
	Break-key polling

	Conformability
	Diagnostics
	Also see

	sign()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	sin()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	sizeof()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	solve_tol()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	solvelower()
	Description
	Syntax
	Remarks and examples
	Derivation
	Tolerance

	Conformability
	Diagnostics
	Also see

	_solvemat()
	Description
	Syntax
	Remarks and examples
	Introduction
	Tolerance
	Examples

	Conformability
	Diagnostics
	Also see

	solvenl()
	Description
	Syntax
	Remarks and examples
	Introduction
	A fixed-point example
	A zero-finding example
	Writing a fixed-point problem as a zero-finding problem and vice versa
	Gauss{--}Seidel methods
	Newton-type methods
	Convergence criteria
	Exiting early
	Functions

	Conformability
	Diagnostics
	References
	Also see

	sort()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	soundex()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	spline3()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	sqrt()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_addalias()
	Description
	Syntax
	Remarks and examples
	Creating a new alias variable
	Handling errors

	Conformability
	Diagnostics
	Also see

	st_addobs()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_addvar()
	Description
	Syntax
	Remarks and examples
	Creating a new variable
	Creating new variables
	Creating new string variables
	Creating a new temporary variable
	Creating temporary variables
	Handling errors
	Using nofill

	Conformability
	Diagnostics
	Reference
	Also see

	st_data()
	Description
	Syntax
	Remarks and examples
	Description of _st_data() and _st_sdata()
	Description of st_data() and st_sdata()
	Details of observation subscripting using st_data() and st_sdata()

	Conformability
	Diagnostics
	Also see

	st_dir()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_dropvar()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_frame*()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_global()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	st_isalias()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_isfmt()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_isname()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_local()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	st_macroexpand()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_matrix()
	Description
	Syntax
	Remarks and examples
	Processing Stata's row and column stripes

	Conformability
	Diagnostics
	Also see

	st_numscalar()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_nvar()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_rclear()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_store()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_subview()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_tempname()
	Description
	Syntax
	Remarks and examples
	Creating temporary objects
	When temporary objects will be eliminated

	Conformability
	Diagnostics
	Also see

	st_tsrevar()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_updata()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_varformat()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_varindex()
	Description
	Syntax
	Remarks and examples
	Overview
	Cautions when using variable indices: A variable index can change

	Conformability
	Diagnostics
	Also see

	st_varname()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_varrename()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_vartype()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_view()
	Description
	Syntax
	Remarks and examples
	Overview
	Advantages and disadvantages of views
	When not to use views
	Cautions when using views 1: Conserving memory
	Cautions when using views 2: Assignment
	Cautions when using views 3: View connections are ephemeral
	Efficiency

	Conformability
	Diagnostics
	Reference
	Also see

	st_viewvars()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_vlexists()
	Description
	Syntax
	Remarks and examples
	Value-label mapping
	Value-label creation and editing
	Loading value labels

	Conformability
	Diagnostics
	Also see

	stata()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	stataversion()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strdup()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	strlen()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrlen()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	udstrlen()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strmatch()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strofreal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strpos()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrpos()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strreverse()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrreverse()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strtoname()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrtoname()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strtoreal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strtrim()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrtrim()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strupper()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrupper()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	subinstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	usubinstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	sublowertriangle()
	Description
	Syntax
	Remarks and examples
	Get lower triangle of a matrix
	Nonsquare matrices

	Conformability
	Diagnostics
	Also see

	_substr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_usubstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	substr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	usubstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	udsubstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	sum()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	svd()
	Description
	Syntax
	Remarks and examples
	Introduction
	Possibility of convergence problems

	Conformability
	Diagnostics
	References
	Also see

	svsolve()
	Description
	Syntax
	Remarks and examples
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	swap()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Toeplitz()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	tokenget()
	Description
	Syntax
	Remarks and examples
	Concepts
	Function overview

	Conformability
	Diagnostics
	Also see

	tokens()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	trace()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_transpose()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	transposeonly()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	trunc()
	Description
	Syntax
	Remarks and examples
	Relationship to Stata's functions
	Examples of rounding

	Conformability
	Diagnostics
	Also see

	uniqrows()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	unitcircle()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	unlink()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	urlencode()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	ustrcompare()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrfix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrnormalize()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrsplit()
	Description
	Syntax
	Remarks and examples
	Conformability
	Also see

	ustrto()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrunescape()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrword()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	valofexternal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Vandermonde()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	vec()
	Description
	Syntax
	Remarks and examples
	Example of vec()
	Example of vech() and invvech()

	Conformability
	Diagnostics
	Also see

	xl()
	Description
	Syntax
	Step 1: Initialization
	Step 2: Creating and opening an Excel workbook
	Step 3: Working with Excel worksheets
	Step 4: Excel active worksheet settings
	Step 5: Reading and writing data from and to an Excel worksheet
	Step 6: Formatting cells in an Excel worksheet
	Step 7: Formatting text in an Excel worksheet
	Step 8: Formatting cell ranges in an Excel worksheet
	Utility functions for use in all steps

	Remarks and examples
	Definition of B
	Specifying the Excel workbook
	Working with Excel worksheets
	Excel active worksheet settings
	Reading data from Excel
	Writing data to Excel
	Dealing with missing values
	Dealing with dates
	Formatting functions
	Numeric formatting
	Text alignment
	Cell borders
	Fonts
	Other
	Formatting examples

	Range formatting functions
	Adding format IDs
	Setting formats by ID
	Cell formatting functions
	Adding font IDs
	Setting font IDs for format IDs
	Font formatting functions
	Range formatting examples

	Utility functions
	Handling errors
	Error codes

	Appendix
	Codes for numeric formats
	Codes for border styles
	Codes for fill pattern styles
	Codes for text rotation
	Format colors

	Also see

	Mata glossary of common terms
	Glossary
	Description
	Mata glossary
	Also see

	[ME] Multilevel Mixed Effects
	Contents
	me
	Description
	Quick start
	Syntax
	Remarks and examples
	Introduction
	Using mixed-effects commands
	Mixed-effects models
	Linear mixed-effects models
	Generalized linear mixed-effects models
	Survival mixed-effects models
	Nonlinear mixed-effects models
	Alternative mixed-effects model specification
	Likelihood calculation
	Computation time and the Laplacian approximation
	Diagnosing convergence problems
	Distribution theory for likelihood-ratio test

	Examples
	Two-level models
	Covariance structures
	Three-level models
	Crossed-effects models
	Nonlinear models

	Acknowledgments
	References
	Also see

	estat df
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat group
	Description
	Menu for estat
	Syntax
	Remarks and examples
	Also see

	estat icc
	Description
	Menu for estat
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	Intraclass correlations

	Also see

	estat recovariance
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat sd
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat wcorrelation
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Linear mixed-effects model
	Nonlinear mixed-effects model

	Reference
	Also see

	mecloglog
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	mecloglog postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	meglm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models for continuous responses
	Two-level models for nonlinear responses
	Three-level models for nonlinear responses
	Crossed-effects models
	Obtaining better starting values
	Survey data
	Video example

	Stored results
	Methods and formulas
	Introduction
	Gauss--Hermite quadrature
	Adaptive Gauss--Hermite quadrature
	Laplacian approximation
	Survey data

	References
	Also see

	meglm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	meintreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	meintreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	melogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Other covariance structures
	Three-level models
	Crossed-effects models

	Stored results
	Methods and formulas
	References
	Also see

	melogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	menbreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	menbreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	menl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Random-effects substitutable expressions
	Substitutable expressions
	Linear combinations
	Linear forms versus linear combinations
	Random effects
	Multilevel specifications
	Time-series operators
	Summary

	Specifying initial values
	Two-level models
	Testing variance components
	Random-effects covariance structures
	Heteroskedastic within-group errors
	Restricted maximum likelihood
	Pharmacokinetic modeling
	Single-dose pharmacokinetic modeling
	Multiple-dose pharmacokinetic modeling

	Nonlinear marginal models
	Three-level models
	Obtaining initial values
	Linearization approach to finding initial values
	Graphical approach to finding initial values
	Smart regressions approach to finding initial values
	Examples of specifying initial values

	Stored results
	Methods and formulas
	Introduction
	Variance-components parameters
	Inference based on linearization
	Initial values

	References
	Also see

	menl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Reference
	Also see

	meologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	meologit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	meoprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	meoprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mepoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Higher-level models

	Stored results
	Methods and formulas
	References
	Also see

	mepoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	meprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	meprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mestreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Three-level models

	Stored results
	Methods and formulas
	Survival models
	Survey data

	References
	Also see

	mestreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	metobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	metobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Introduction
	Conditional predictions
	Marginal predictions
	Marginal variance of the linear predictor

	Also see

	mixed
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Covariance structures
	Likelihood versus restricted likelihood
	Three-level models
	Blocked-diagonal covariance structures
	Heteroskedastic random effects
	Heteroskedastic residual errors
	Other residual-error structures
	Crossed-effects models
	Diagnosing convergence problems
	Survey data
	Small-sample inference for fixed effects

	Stored results
	Methods and formulas
	Estimation using ML and REML
	Denominator degrees of freedom
	Residual DDF
	Repeated DDF
	ANOVA DDF
	Satterthwaite DDF
	Kenward{--}Roger DDF

	Fixed-effects constraints

	Acknowledgments
	References
	Also see

	mixed postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	test and testparm
	Description for test and testparm
	Menu for test and testparm
	Syntax for test and testparm
	Options for test and testparm

	lincom
	Description for lincom
	Menu for lincom
	Syntax for lincom
	Options for lincom

	contrast
	Description for contrast
	Menu for contrast
	Syntax for contrast
	Options for contrast

	pwcompare
	Description for pwcompare
	Menu for pwcompare
	Syntax for pwcompare
	Options for pwcompare

	Remarks and examples
	Stored results
	Methods and formulas
	Prediction
	Small-sample inference

	References
	Also see

	Glossary
	References

	[META] Meta-Analysis
	Contents
	Intro
	Description
	Remarks and examples
	Brief overview of meta-analysis
	Meta-analysis models
	Common-effect (``fixed-effect'') model
	Fixed-effects model
	Random-effects model
	Comparison between the models and interpretation of their results
	Meta-analysis estimation methods

	Forest plots
	Heterogeneity
	Assessing heterogeneity
	Addressing heterogeneity
	Subgroup meta-analysis
	Meta-regression

	Publication bias
	Funnel plots
	Tests for funnel-plot asymmetry
	The trim-and-fill method

	Cumulative meta-analysis
	Leave-one-out meta-analysis
	Multivariate meta-regression
	Multilevel meta-regression

	References
	Also see

	meta
	Description
	Remarks and examples
	Introduction to meta-analysis using Stata
	Example datasets
	Effects of teacher expectancy on pupil IQ (pupiliq.dta)
	Effect of streptokinase after a myocardial infarction (strepto.dta)
	Efficacy of BCG vaccine against tuberculosis (bcg.dta)
	Effectiveness of nonsteroidal anti-inflammatory drugs (nsaids.dta)
	Treatment of moderate periodontal disease (periodontal.dta)

	Tour of meta-analysis commands
	Prepare your data for meta-analysis in Stata
	Basic meta-analysis summary
	Subgroup meta-analysis
	Cumulative meta-analysis
	Heterogeneity: Galbraith plot, meta-regression, and bubble plot
	Funnel plots for exploring small-study effects
	Testing for small-study effects
	Trim-and-fill analysis for addressing publication bias
	Multivariate meta-regression
	Multilevel meta-regression

	Acknowledgments
	References
	Also see

	meta data
	Description
	Remarks and examples
	Overview
	Declaring meta-analysis information
	Declaring effect sizes and their precision
	Declaring a meta-analysis model
	Declaring a meta-analysis estimation method
	Default meta-analysis model and method
	Declaring a confidence level for meta-analysis
	Declaring display settings for meta-analysis
	Modifying default meta settings

	Meta-analysis information
	Meta settings with meta set
	Meta settings with meta esize

	System variables
	Examples of data declaration for meta-analysis
	Declaring precomputed effect sizes using meta set
	Computing and declaring effect sizes using meta esize
	Displaying and updating meta settings

	References
	Also see

	meta esize
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Meta-analysis for two-group comparison of binary outcomes
	Meta-analysis for two-group comparison of continuous outcomes
	Meta-analysis for estimating a single proportion
	Meta-analysis for correlation data

	Stored results
	Methods and formulas
	Effect sizes for two-group comparison of continuous outcomes
	Unstandardized mean difference
	Standardized mean difference

	Effect sizes for two-group comparison of binary outcomes
	Odds ratio
	Risk ratio (rate ratio)
	Risk difference
	Zero-cells adjustments for two-sample case

	Effect sizes for estimating a single proportion
	Untransformed (raw) proportion
	Freeman--Tukey-transformed proportion
	Logit-transformed proportion
	Zero-cells adjustments for one-sample case

	Effect sizes for correlation data
	Untransformed (raw) correlation
	Fisher's z-transformed correlation

	Confidence intervals for effect sizes

	References
	Also see

	meta set
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Using meta set

	Stored results
	References
	Also see

	meta update
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	meta forestplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Using meta forestplot
	Plot columns

	Examples of using meta forestplot

	Methods and formulas
	References
	Also see

	meta summarize
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples of using meta summarize

	Stored results
	Methods and formulas
	Fixed-effects and common-effect methods for combining study estimates
	Inverse-variance method
	Mantel--Haenszel method for two-group comparison of binary outcomes
	Peto's method for odds ratios

	Random-effects methods for combining study estimates
	Iterative methods
	Noniterative methods
	Knapp--Hartung standard-error adjustment
	Prediction intervals

	Confidence intervals and significance test
	Heterogeneity measures
	Inverse Freeman--Tukey transformation
	Homogeneity test
	Subgroup meta-analysis
	Fixed-effects model
	Random-effects model

	Cumulative meta-analysis
	Leave-one-out meta-analysis

	References
	Also see

	meta galbraithplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	meta labbeplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	meta regress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples of using meta regress

	Stored results
	Methods and formulas
	Fixed-effects meta-regression
	Random-effects meta-regression
	Iterative methods for computing tau-hat-squared
	Noniterative methods for computing tau-hat-squared
	Knapp--Hartung standard-error adjustment

	Residual homogeneity test
	Residual heterogeneity measures

	References
	Also see

	meta regress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Random-effects meta-regression
	Fixed-effects meta-regression

	References
	Also see

	estat bubbleplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples of using estat bubbleplot

	Methods and formulas
	References
	Also see

	meta funnelplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Funnel plots
	Contour-enhanced funnel plots

	Using meta funnelplot
	Examples of using meta funnelplot

	Stored results
	Methods and formulas
	References
	Also see

	meta bias
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using meta bias
	Examples of using meta bias

	Stored results
	Methods and formulas
	Regression-based tests
	Egger's linear regression test
	Harbord's test for log odds-ratios or log risk-ratios
	Peters's test for log odds-ratios

	Begg's rank correlation test

	References
	Also see

	meta trimfill
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using meta trimfill
	Examples of using meta trimfill

	Stored results
	Methods and formulas
	Estimating the number of missing studies
	Trim-and-fill algorithm

	References
	Also see

	meta meregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Standard meta-analysis as a two-level model
	Three-level random-intercepts model
	Three-level model with random slopes
	Using meta meregress

	Examples of using meta meregress

	Stored results
	Methods and formulas
	Three-level meta-regression
	Methods for estimating Sigma
	Random-effects covariance structures

	Multilevel meta-analysis
	Residual homogeneity test

	References
	Also see

	meta multilevel
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples of using meta multilevel

	Stored results
	Methods and formulas
	References
	Also see

	meta me postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	meta mvregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples of using meta mvregress

	Stored results
	Methods and formulas
	Fixed-effects multivariate meta-regression
	Random-effects multivariate meta-regression
	Iterative methods for computing Sigma
	Noniterative method for computing Sigma
	Random-effects covariance structures
	Jackson--Riley standard-error adjustment

	Multivariate meta-analysis
	Residual homogeneity test

	References
	Also see

	meta mvregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Random-effects multivariate meta-regression
	Fixed-effects multivariate meta-regression

	References
	Also see

	estat group
	Description
	Menu for estat
	Syntax
	Remarks and examples
	Also see

	estat heterogeneity (me)
	Description
	Menu for estat
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	Multilevel heterogeneity statistics
	Cochran heterogeneity statistic
	Higgins--Thompson heterogeneity statistics

	References
	Also see

	estat heterogeneity (mv)
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Brief overview of heterogeneity statistics
	Cochran heterogeneity statistics
	Jackson--White--Riley heterogeneity statistics
	White heterogeneity statistics

	References
	Also see

	estat recovariance
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat sd
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	Glossary
	References

	[MI] Multiple Imputation
	Contents
	Intro substantive
	Description
	Remarks and examples
	Motivating example
	What is multiple imputation?
	Theory underlying multiple imputation
	How large should M be?
	Assumptions about missing data
	Patterns of missing data
	Proper imputation methods
	Analysis of multiply imputed data
	A brief introduction to MI using Stata
	Summary

	References
	Also see

	Intro
	Description
	Remarks and examples
	A simple example
	Suggested reading order

	Acknowledgments
	Also see

	Estimation
	Description
	Also see

	mi add
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	mi append
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Adding new observations
	Adding new observations and imputations
	Adding new observations and imputations, M unequal
	Treatment of registered variables

	Stored results
	Also see

	mi convert
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Using mi convert as a convenience tool
	Converting from flongsep
	Converting to flongsep

	Also see

	mi copy
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	mi describe
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	mi query
	mi describe

	Stored results
	Also see

	mi erase
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	mi estimate
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Using mi estimate
	Example 1: Completed-data logistic analysis
	Example 2: Completed-data linear regression analysis
	Example 3: Completed-data survival analysis
	Example 4: Panel data and multilevel models
	Example 5: Estimating transformations
	Example 6: Monte Carlo error estimates
	Potential problems that can arise when using mi estimate

	Stored results
	Methods and formulas
	Univariate case
	Multivariate case

	Acknowledgments
	References
	Also see

	mi estimate using
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	mi estimate postestimation
	Postestimation commands
	Remarks and examples
	Using the command-specific postestimation tools

	Also see

	mi expand
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi export
	Description
	Syntax
	Remarks and examples
	References
	Also see

	mi export ice
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	References
	Also see

	mi export nhanes1
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi extract
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi import
	Description
	Syntax
	Remarks and examples
	When to use which mi import command
	Import data into Stata before importing into mi
	Using mi import nhanes1, ice, flong, and flongsep

	References
	Also see

	mi import flong
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi import flongsep
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi import ice
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	mi import nhanes1
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Description of the nhanes1 format
	Importing nhanes1 data

	Also see

	mi import wide
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi impute
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Imputation methods
	Imputation modeling
	Model building
	Outcome variables
	Transformations
	Categorical variables
	The issue of perfect prediction during imputation of categorical data
	Convergence of iterative methods
	Imputation diagnostics

	Using mi impute
	Univariate imputation
	Multivariate imputation
	Imputing on subsamples
	Conditional imputation
	Imputation and estimation samples
	Imputing transformations of incomplete variables

	Stored results
	Methods and formulas
	References
	Also see

	mi impute chained
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Multivariate imputation using chained equations
	Compatibility of conditionals
	Convergence of MICE
	First use
	Using mi impute chained
	Default prediction equations
	Custom prediction equations
	Link between mi impute chained and mi impute monotone
	Examples

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	mi impute intreg
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using interval regression
	Using mi impute intreg
	Example

	Stored results
	Methods and formulas
	Reference
	Also see

	mi impute logit
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using logistic regression
	Using mi impute logit
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	mi impute mlogit
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using multinomial logistic regression
	Using mi impute mlogit

	Stored results
	Methods and formulas
	References
	Also see

	mi impute monotone
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Multivariate imputation when a missing-data pattern is monotone
	First use
	Using mi impute monotone
	Default syntax of mi impute monotone
	The alternative syntax of mi impute monotone---custom prediction equations
	Examples of using default prediction equations
	Examples of using custom prediction equations

	Stored results
	Methods and formulas
	References
	Also see

	mi impute mvn
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Incomplete continuous data with arbitrary pattern of missing values
	Multivariate imputation using data augmentation
	Convergence of the MCMC method
	Using mi impute mvn
	Examples

	Stored results
	Methods and formulas
	Data augmentation
	Prior distribution
	Initial values: EM algorithm
	 Worst linear function

	References
	Also see

	mi impute nbreg
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using negative binomial regression
	Using mi impute nbreg

	Stored results
	Methods and formulas
	Reference
	Also see

	mi impute ologit
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using ordered logistic regression
	Using mi impute ologit

	Stored results
	Methods and formulas
	References
	Also see

	mi impute pmm
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using predictive mean matching
	Using mi impute pmm
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	mi impute poisson
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using Poisson regression
	Using mi impute poisson

	Stored results
	Methods and formulas
	References
	Also see

	mi impute regress
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using linear regression
	Using mi impute regress
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	mi impute truncreg
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using truncated regression
	Using mi impute truncreg

	Stored results
	Methods and formulas
	References
	Also see

	mi impute usermethod
	Description
	Syntax
	Options
	Remarks and examples
	Toy example: Naive regression imputation
	Steps for adding a new method to mi impute
	Writing an imputation parser
	Writing an initializer
	Writing an imputer
	Storing additional results
	Writing a cleanup program

	Examples
	Naive regression imputation
	Univariate regression imputation
	Multivariate monotone imputation

	Global macros

	Stored results
	Acknowledgment
	Also see

	mi merge
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Merging with non-mi data
	Merging with mi data
	Merging with mi data containing overlapping variables

	Stored results
	Also see

	mi misstable
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	mi passive
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	mi passive basics
	mi passive works with the by prefix
	mi passive works fastest with the wide style
	mi passive and super-varying variables
	Renaming passive variables
	Dropping passive variables
	Update passive variables when imputed values change
	Alternatives to mi passive

	Also see

	mi predict
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using mi predict and mi predictnl
	Example 1: Obtain MI linear predictions and other statistics
	Example 2: Obtain MI linear predictions for the estimation sample
	Example 3: Obtain MI estimates of probabilities
	Example 4: Obtain other MI predictions
	Example 5: Obtain MI predictions after multiple-equation commands

	Methods and formulas
	References
	Also see

	mi ptrace
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	mi rename
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Specifying the noupdate option
	What to do if you accidentally use rename
	What to do if you accidentally use rename on wide data
	What to do if you accidentally use rename on mlong data
	What to do if you accidentally use rename on flong data
	What to do if you accidentally use rename on flongsep data

	Also see

	mi replace0
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	mi reset
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Using mi reset
	Technical notes and relation to mi update

	Also see

	mi reshape
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi select
	Description
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	mi set
	Description
	Menu
	Syntax
	Option for mi unset
	Remarks and examples
	mi set style
	mi register and mi unregister
	mi set M and mi set m
	mi unset

	Also see

	mi stsplit
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi test
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Overview
	Example 1: Testing subsets of coefficients equal to zero
	Example 2: Testing linear hypotheses
	Example 3: Testing nonlinear hypotheses

	Stored results
	Methods and formulas
	References
	Also see

	mi update
	Description
	Menu
	Syntax
	Remarks and examples
	Purpose of mi update
	What mi update does
	mi update is run automatically

	Also see

	mi varying
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Detecting problems
	Fixing problems

	Stored results
	Also see

	mi xeq
	Description
	Syntax
	Remarks and examples
	Using mi xeq with reporting commands
	Using mi xeq with data-modification commands
	Using mi xeq with data-modification commands on flongsep data

	Stored results
	Also see

	mi XXXset
	Description
	Syntax
	Remarks and examples
	Also see

	noupdate option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	Styles
	Description
	Syntax
	Remarks and examples
	The four styles
	Style wide
	Style flong
	Style mlong
	Style flongsep
	How we constructed this example

	Using mi system variables
	Advice for using flongsep

	Also see

	Technical
	Description
	Remarks and examples
	Notation
	Definition of styles
	Style all
	Style wide
	Style mlong
	Style flong
	Style flongsep
	Style flongsep_sub

	Adding new commands to mi
	Outline for new commands
	Utility routines
	u_mi_assert_set
	u_mi_certify_data
	u_mi_no_sys_vars and u_mi_no_wide_vars
	u_mi_zap_chars
	u_mi_xeq_on_tmp_flongsep
	u_mi_get_flongsep_tmpname
	mata: u_mi_flongsep_erase()
	u_mi_sortback
	u_mi_save and u_mi_use
	mata: u_mi_wide_swapvars()
	u_mi_fixchars
	mata: u_mi_cpchars_get() and mata: u_mi_cpchars_put()
	mata: u_mi_get_mata_instanced_var()
	mata: u_mi_ptrace_*()

	How to write other set commands to work with mi

	Also see

	Workflow
	Description
	Remarks and examples
	Suggested workflow for original data
	Suggested workflow for data that already have imputations
	Example

	Also see

	Glossary
	Also see

	[MV] Multivariate Statistics
	Contents
	Intro
	Description
	Also see

	Multivariate
	Description
	Remarks and examples
	Cluster analysis
	Discriminant analysis
	Factor analysis and principal component analysis
	Rotation
	Multivariate analysis of variance, multivariate regression, and related techniques
	Structural equation modeling
	Multidimensional scaling and biplots
	Correspondence analysis
	Bayesian analysis
	Item response theory
	Multivariate time-series models
	Multivariate meta-regression

	Also see

	alpha
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	biplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	ca
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	A first example
	How many dimensions?
	Statistics on the points
	Normalization and interpretation of correspondence analysis
	Plotting the points
	Supplementary points
	Matrix input
	Crossed variables

	Stored results
	Methods and formulas
	References
	Also see

	ca postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Postestimation statistics
	Predicting new variables

	Stored results
	Methods and formulas
	References
	Also see

	ca postestimation plots
	Postestimation commands
	cabiplot
	Description for cabiplot
	Menu for cabiplot
	Syntax for cabiplot
	Options for cabiplot

	caprojection
	Description for caprojection
	Menu for caprojection
	Syntax for caprojection
	Options for caprojection

	Remarks and examples
	References
	Also see

	candisc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	canon
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	canon postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat

	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cluster
	Description
	Syntax
	Remarks and examples
	Introduction to cluster analysis
	Stata's cluster-analysis system
	Data transformations and variable selection
	Similarity and dissimilarity measures
	Partition cluster-analysis methods
	Hierarchical cluster-analysis methods
	Hierarchical cluster analysis applied to a dissimilarity matrix
	Postclustering commands
	Cluster-management tools

	References
	Also see

	clustermat
	Description
	Syntax
	Remarks and examples
	References
	Also see

	cluster dendrogram
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	cluster generate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	cluster kmeans and kmedians
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	cluster linkage
	Description
	Quick start
	Menu
	Syntax
	Options for cluster linkage commands
	Options for clustermat linkage commands
	Remarks and examples
	Methods and formulas
	Also see

	cluster notes
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	cluster programming subroutines
	Description
	Remarks and examples
	Adding a cluster subroutine
	Adding a cluster generate function
	Adding a cluster stopping rule
	Applying an alternate cluster dendrogram routine

	Reference
	Also see

	cluster programming utilities
	Description
	Syntax
	Options for cluster set
	Options for cluster delete
	Options for cluster measures
	Remarks and examples
	Stored results
	Also see

	cluster stop
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cluster utility
	Description
	Menu
	Syntax
	Options for cluster list
	Options for cluster renamevar
	Remarks and examples
	Also see

	discrim
	Description
	Syntax
	Remarks and examples
	Introduction
	A simple example
	Prior probabilities, costs, and ties

	Methods and formulas
	References
	Also see

	discrim estat
	Postestimation commands
	Description for estat
	Quick start for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat classtable
	Options for estat errorrate
	Options for estat grsummarize
	Options for estat list
	Options for estat summarize

	Remarks and examples
	Discriminating-variable summaries
	Discrimination listings
	Classification tables and error rates

	Stored results
	Methods and formulas
	References
	Also see

	discrim knn
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	A first example
	Mahalanobis transformation
	Binary data

	Stored results
	Methods and formulas
	References
	Also see

	discrim knn postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	Also see

	discrim lda
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Descriptive LDA
	Predictive LDA
	A classic example

	Stored results
	Methods and formulas
	Predictive LDA
	Descriptive LDA

	References
	Also see

	discrim lda postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat classfunctions
	Options for estat correlations
	Options for estat covariance
	Options for estat grdistances
	Options for estat grmeans
	Options for estat loadings
	Option for estat structure

	Remarks and examples
	Classification tables, error rates, and listings
	ANOVA, MANOVA, and canonical correlations
	Discriminant and classification functions
	Scree, loading, and score plots
	Means and distances
	Covariance and correlation matrices
	Predictions

	Stored results
	Methods and formulas
	References
	Also see

	discrim logistic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	discrim logistic postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Reference
	Also see

	discrim qda
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	discrim qda postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat correlations
	Options for estat covariance
	Options for estat grdistances

	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	factor
	Description
	Quick start
	Menu
	Syntax
	Options for factor and factormat
	Options unique to factormat
	Remarks and examples
	Introduction
	Factor analysis
	Factor analysis from a correlation matrix

	Stored results
	Methods and formulas
	References
	Also see

	factor postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Postestimation statistics
	Plots of eigenvalues, factor loadings, and scores
	Rotating the factor loadings
	Factor scores

	Stored results
	Methods and formulas
	estat
	rotate
	predict

	References
	Also see

	hotelling
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	manova
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	One-way MANOVA
	Reporting coefficients
	Two-way MANOVA
	N-way MANOVA
	MANCOVA
	MANOVA for Latin-square designs
	MANOVA for nested designs
	MANOVA for mixed designs
	MANOVA with repeated measures

	Stored results
	Methods and formulas
	References
	Also see

	manova postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	manovatest
	Description of manovatest
	Menu for manovatest
	Syntax for manovatest
	Options for manovatest

	test
	Description for test
	Menu for test
	Syntax for test
	Options for test

	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	matrix dissimilarity
	Description
	Syntax
	Options
	Remarks and examples
	References
	Also see

	mca
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Compare MCA on two variables and CA
	MCA on four variables
	CA of the indicator matrix
	CA of the Burt matrix
	Joint correspondence analysis

	Stored results
	Methods and formulas
	Notation
	Using ca to compute MCA
	CA of an indicator or Burt matrix
	JCA
	Supplementary variables
	predict

	References
	Also see

	mca postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat coordinates
	Options for estat summarize

	Remarks and examples
	Postestimation statistics
	Predicting new variables

	Stored results
	Methods and formulas
	References
	Also see

	mca postestimation plots
	Postestimation commands
	mcaplot
	Description for mcaplot
	Menu for mcaplot
	Syntax for mcaplot
	Options for mcaplot

	mcaprojection
	Description for mcaprojection
	Menu for mcaprojection
	Syntax for mcaprojection
	Options for mcaprojection

	Remarks and examples
	Methods and formulas
	References
	Also see

	mds
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Euclidean distances
	Non-Euclidean dissimilarity measures
	Introduction to modern MDS
	Protecting from local minimums

	Stored results
	Methods and formulas
	References
	Also see

	mds postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Postestimation statistics
	Predictions

	Stored results
	Methods and formulas
	References
	Also see

	mds postestimation plots
	Postestimation commands
	mdsconfig
	Description for mdsconfig
	Menu for mdsconfig
	Syntax for mdsconfig
	Options for mdsconfig

	mdsshepard
	Description for mdsshepard
	Menu for mdsshepard
	Syntax for mdsshepard
	Options for mdsshepard

	Remarks and examples
	References
	Also see

	mdslong
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Proximity data in long format
	Modern nonmetric MDS

	Stored results
	Methods and formulas
	References
	Also see

	mdsmat
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Proximity data in a Stata matrix
	Modern MDS and local minimums

	Stored results
	Methods and formulas
	Classical multidimensional scaling
	Modern multidimensional scaling
	Conversion of similarities to dissimilarities

	References
	Also see

	measure_option
	Description
	Syntax
	Options
	References
	Also see

	mvreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	mvreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	mvtest
	Description
	Syntax
	References
	Also see

	mvtest correlations
	Description
	Quick start
	Menu
	Syntax
	Options for multiple-sample tests
	Options for one-sample tests
	Remarks and examples
	One-sample tests for correlation matrices
	A multiple-sample test for correlation matrices

	Stored results
	Methods and formulas
	One-sample tests for correlation matrices
	A multiple-sample test for correlation matrices

	References
	Also see

	mvtest covariances
	Description
	Quick start
	Menu
	Syntax
	Options for multiple-sample tests
	Options for one-sample tests
	Remarks and examples
	One-sample tests for covariance matrices
	A multiple-sample test for covariance matrices

	Stored results
	Methods and formulas
	One-sample tests for covariance matrices
	A multiple-sample test for covariance matrices

	References
	Also see

	mvtest means
	Description
	Quick start
	Menu
	Syntax
	Options for multiple-sample tests
	Options with one-sample tests
	Remarks and examples
	One-sample tests for mean vectors
	Multiple-sample tests for mean vectors

	Stored results
	Methods and formulas
	One-sample tests for mean vectors
	Multiple-sample tests for mean vectors

	References
	Also see

	mvtest normality
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Mardia mSkewness and mKurtosis
	Henze--Zirkler
	Doornik--Hansen

	Acknowledgment
	References
	Also see

	pca
	Description
	Quick start
	Menu
	Syntax
	Options
	Options unique to pcamat
	Remarks and examples
	Stored results
	Methods and formulas
	Notation
	Inference on eigenvalues and eigenvectors
	More general tests for multivariate normal distributions

	References
	Also see

	pca postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Postestimation statistics
	Plots of eigenvalues, component loadings, and scores
	Rotating the components
	How rotate interacts with pca
	Predicting the component scores

	Stored results
	Methods and formulas
	References
	Also see

	procrustes
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction to Procrustes methods
	Orthogonal Procrustes analysis
	Is an orthogonal Procrustes analysis symmetric?
	Other transformations

	Stored results
	Methods and formulas
	Introduction
	Orthogonal transformations
	Oblique transformations
	Unrestricted transformations
	Reported statistics

	References
	Also see

	procrustes postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	procoverlay
	Description for procoverlay
	Menu for procoverlay
	Syntax for procoverlay
	Options for procoverlay

	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	rotate
	Description
	Quick start
	Menu
	Syntax
	Options
	Rotation criteria

	Remarks and examples
	Orthogonal rotations
	Oblique rotations
	Other types of rotation

	Stored results
	Methods and formulas
	References
	Also see

	rotatemat
	Description
	Menu
	Syntax
	Options
	Rotation criteria

	Remarks and examples
	Introduction
	Orthogonal rotations
	Oblique rotations
	Promax rotation

	Stored results
	Methods and formulas
	References
	Also see

	scoreplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	screeplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	Glossary
	References

	[P] Programming
	Contents
	Combined subject table of contents for programming
	Intro
	Description
	References
	Also see

	Automation
	Description
	Remarks and examples
	Also see

	break
	Description
	Syntax
	Remarks and examples
	Also see

	byable
	Description
	Syntax
	Option
	Remarks and examples
	byable(recall) programs
	Using sort in byable(recall) programs
	Byable estimation commands
	byable(onecall) programs
	Using sort in byable(onecall) programs
	Combining byable(onecall) with byable(recall)
	The by-group header

	Also see

	capture
	Description
	Syntax
	Remarks and examples
	Reference
	Also see

	char
	Description
	Syntax
	Option
	Remarks and examples
	How to program with characteristics

	Also see

	class
	Description
	Remarks and examples
	1. Introduction
	2. Definitions
	3. Version control
	4. Member variables
	5. Inheritance
	6. Member programs' return values
	7. Assignment
	8. Built-ins
	9. Prefix operators
	10. Using object values
	11. Object destruction
	12. Advanced topics
	Appendix A. Finding, loading, and clearing class definitions
	Appendix B. Jargon
	Appendix C. Syntax diagrams

	Also see

	class exit
	Description
	Syntax
	Remarks and examples
	Examples

	Also see

	classutil
	Description
	Syntax
	Options for classutil describe
	Options for classutil dir
	Option for classutil which
	Remarks and examples
	classutil drop
	classutil describe
	classutil dir
	classutil cdir
	classutil which

	Stored results
	Also see

	comments
	Description
	Remarks and examples
	Also see

	confirm
	Description
	Syntax
	Option
	Remarks and examples
	confirm existence
	confirm file
	confirm format
	confirm frame
	confirm names
	confirm number
	confirm matrix
	confirm scalar
	confirm variable

	Also see

	continue
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	creturn
	Description
	Menu
	Syntax
	Remarks and examples
	System values
	Directories and paths
	System limits
	Numerical and string limits
	Current dataset
	Memory settings
	Output settings
	Interface settings
	Graphics settings
	Network settings
	Update settings
	Trace (program debugging) settings
	Mata settings
	Java settings
	LAPACK settings
	putdocx settings
	putpdf settings
	Python settings
	RNG settings
	sort settings
	Unicode settings
	Other settings
	Other system values

	Also see

	_datasignature
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	#delimit
	Description
	Syntax
	Remarks and examples
	Also see

	Dialog programming
	Description
	Remarks and examples
	1. Introduction
	2. Concepts
	2.1 Organization of the .dlg file
	2.2 Positions, sizes, and the DEFINE command
	2.3 Default values
	2.4 Memory (recollection)
	2.5 I-actions and member functions
	2.6 U-actions and communication options
	2.7 The distinction between i-actions and u-actions
	2.8 Error and consistency checking

	3. Commands
	3.1 VERSION
	3.2 INCLUDE
	3.3 DEFINE
	3.4 POSITION
	3.5 LIST
	3.6 DIALOG
	3.6.1 CHECKBOX on/off input control
	3.6.2 RADIO on/off input control
	3.6.3 SPINNER numeric input control
	3.6.4 EDIT string input control
	3.6.5 VARLIST and VARNAME string input controls
	3.6.6 FILE string input control
	3.6.7 LISTBOX list input control
	3.6.8 COMBOBOX list input control
	3.6.9 BUTTON special input control
	3.6.10 TEXT static control
	3.6.11 TEXTBOX static control
	3.6.12 GROUPBOX static control
	3.6.13 FRAME static control
	3.6.14 COLOR input control
	3.6.15 EXP expression input control
	3.6.16 HLINK hyperlink input control
	3.6.17 TREEVIEW tree input control
	3.7 OK, SUBMIT, CANCEL, and COPY u-action buttons
	3.8 HELP and RESET helper buttons
	3.9 Special dialog directives

	4. SCRIPT
	5. PROGRAM
	5.1 Concepts
	5.1.1 Vnames
	5.1.2 Enames
	5.1.3 rstrings: cmdstring and optstring
	5.1.4 Adding to an rstring
	5.2 Flow-control commands
	5.2.1 if
	5.2.2 while
	5.2.3 call
	5.2.4 exit
	5.2.5 close
	5.3 Error-checking and presentation commands
	5.3.1 require
	5.3.2 stopbox
	5.3.3 repfile
	5.3.4 smartquote
	5.4 Command-construction commands
	5.4.1 by
	5.4.2 bysort
	5.4.3 put
	5.4.4 varlist
	5.4.5 ifexp
	5.4.6 inrange
	5.4.7 weight
	5.4.8 beginoptions and endoptions
	5.4.8.1 option
	5.4.8.2 optionarg
	5.5 Command-execution commands
	5.5.1 stata
	5.5.2 clear
	5.6 Special scripts and programs

	6. Properties
	7. Child dialogs
	7.1 Referencing the parent
	8. Example
	Appendix A. Jargon
	Appendix B. Class definition of dialog boxes
	Appendix C. Interface guidelines for dialog boxes
	Frequently asked questions

	Also see

	discard
	Description
	Syntax
	Remarks and examples
	Also see

	display
	Description
	Syntax
	Remarks and examples
	Introduction
	Styles
	display used with quietly and noisily
	Columns
	display and SMCL
	Displaying variable names
	Obtaining input from the terminal

	Also see

	ereturn
	Description
	Syntax
	Options
	Remarks and examples
	Estimation-class programs
	Setting individual estimation results
	Posting estimation coefficient and variance--covariance matrices

	Stored results
	Also see

	error
	Description
	Syntax
	Remarks and examples
	Introduction
	Summary
	Other messages

	Also see

	estat programming
	Description
	Remarks and examples
	Standard subcommands
	Adding subcommands to estat
	Overriding standard behavior of a subcommand

	Also see

	_estimates
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	Estimation command
	Description
	Remarks and examples
	References
	Also see

	exit
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	file
	Description
	Syntax
	Options
	Text output specifications

	Remarks and examples
	Use of file
	Use of file with tempfiles
	Writing text files
	Reading text files
	Use of seek when writing or reading text files
	Writing and reading binary files
	Writing binary files
	Reading binary files
	Use of seek when writing or reading binary files
	Appendix A.1. Useful commands and functions for use with file
	Appendix A.2. Actions of binary output formats with out-of-range values

	Stored results
	Reference
	Also see

	File formats .dta
	Description
	Also see

	File formats .dtas
	Description
	Also see

	findfile
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	foreach
	Description
	Syntax
	Remarks and examples
	Introduction
	foreach ... of local and foreach ... of global
	foreach ... of varlist
	foreach ... of newlist
	foreach ... of numlist
	Use of foreach with continue
	The unprocessed list elements

	References
	Also see

	forvalues
	Description
	Syntax
	Remarks and examples
	References
	Also see

	frame post
	Description
	Syntax
	Remarks and examples
	Also see

	fvexpand
	Description
	Syntax
	Remarks and examples
	Stored results
	Also see

	gettoken
	Description
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	H2O intro
	Description

	if
	Description
	Syntax
	Remarks and examples
	Introduction
	Avoid single-line if and else with ++ and -/- macro expansion

	Reference
	Also see

	include
	Description
	Syntax
	Option
	Remarks and examples
	Use with do-files
	Use with Mata
	Warning

	Also see

	Java intro
	Description
	Also see

	Java integration
	Description
	Syntax
	Calling Java from Stata
	Instance commands

	Option
	Remarks and examples
	How the environment works
	Invoking Java interactively
	Executing Java in a do-file
	Executing Java in an ado-file
	Executing Java files
	Stata Function Interface examples
	Using JAR dependencies

	Also see

	Java plugin
	Description
	Remarks and examples
	References
	Also see

	Java utilities
	Description
	Syntax
	Remarks and examples
	Also see

	javacall
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	levelsof
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	References
	Also see

	macro
	Description
	Syntax
	Remarks and examples
	Formal definition of a macro
	Global and local macro names
	Macro assignment
	Macro functions
	Macro function for extracting program properties
	Macro function for extracting program results class
	Macro functions for extracting data attributes
	Macro functions for extracting attributes of alias variables
	Macro function for naming variables
	Macro functions for filenames and file paths
	Macro function for accessing operating-system parameters
	Macro functions for names of stored results
	Macro function for formatting results
	Macro function for manipulating lists
	Macro functions related to matrices
	Macro function related to time-series operators
	Macro function for copying a macro
	Macro functions for parsing
	Macro expansion operators and function
	The tempvar, tempname, and tempfile commands
	Manipulation of macros
	Macros as arguments

	References
	Also see

	macro lists
	Description
	Syntax
	Remarks and examples
	Treatment of adornment
	Treatment of duplicate elements in lists

	Also see

	makecns
	Description
	Syntax
	Options
	Remarks and examples
	Introduction
	Overview
	Mathematics
	Linkage of the mathematics to Stata

	Stored results
	Also see

	mark
	Description
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	matlist
	Description
	Syntax
	Style options
	General options
	Required options for the second syntax
	Remarks and examples
	All columns with the same format
	Different formats for each column
	Other output options

	Also see

	matrix
	Description
	Remarks and examples
	Overview of matrix commands
	Creating and replacing matrices
	Namespace
	Naming conventions in programs

	Reference
	Also see

	matrix accum
	Description
	Syntax
	Options
	Remarks and examples
	matrix accum
	matrix glsaccum
	matrix opaccum
	matrix vecaccum
	Treatment of user-specified weights

	Stored results
	Reference
	Also see

	matrix define
	Description
	Menu
	Syntax
	Remarks and examples
	Introduction
	Inputting matrices by hand
	Matrix operators
	Matrix functions returning matrices
	Matrix functions returning scalars
	Subscripting and element-by-element definition
	Name conflicts in expressions (namespaces)
	Macro functions

	Reference
	Also see

	matrix dissimilarity
	Description
	Syntax
	Options
	Remarks and examples
	References
	Also see

	matrix eigenvalues
	Description
	Menu
	Syntax
	Remarks and examples
	Methods and formulas
	References
	Also see

	matrix get
	Description
	Syntax
	Remarks and examples
	Also see

	matrix mkmat
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	mkmat
	svmat

	Acknowledgment
	References
	Also see

	matrix rowjoinbyname
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	matrix rownames
	Description
	Syntax
	Remarks and examples
	Also see

	matrix score
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	matrix svd
	Description
	Menu
	Syntax
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	matrix symeigen
	Description
	Menu
	Syntax
	Remarks and examples
	Methods and formulas
	References
	Also see

	matrix utility
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	more
	Description
	Syntax
	Remarks and examples
	Also see

	nopreserve option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	numlist
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	pause
	Description
	Syntax
	Remarks and examples
	Also see

	plugin
	Description
	Syntax
	Options
	Remarks and examples
	References
	Also see

	postfile
	Description
	Syntax
	Options
	Remarks and examples
	References
	Also see

	_predict
	Description
	Syntax
	Options
	Methods and formulas
	Reference
	Also see

	preserve
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	program
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	program properties
	Description
	Option
	Remarks and examples
	Introduction
	Writing programs for use with nestreg and stepwise
	Writing programs for use with svy
	Writing programs for use with mi
	Properties for survival-analysis commands
	Properties for prefix commands
	Properties for disabling collection of results
	Properties for exponentiating coefficients
	Putting it all together
	Checking for program properties

	Also see

	Project Manager
	Description
	Remarks and examples
	Getting started with the Project Manager
	Editing projects
	Properties
	Relative versus absolute paths
	Filtering and searching

	Also see

	PyStata intro
	Description
	Also see

	PyStata integration
	Description
	Syntax
	Options
	Remarks and examples
	Invoking Python interactively
	The distinction between python and python:
	Embedding Python code in a do-file
	Running a Python script file
	Embedding Python code in an ado-file
	Stata Function Interface (sfi) module
	Configuring Python
	Locating modules
	Error codes

	Stored results
	Acknowledgment
	References
	Also see

	PyStata module
	Description
	Also see

	quietly
	Description
	Syntax
	Remarks and examples
	quietly used interactively
	quietly used in programs
	Note for programmers

	Also see

	_return
	Description
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	return
	Description
	Syntax
	Options
	Remarks and examples
	Introduction
	Storing results in r()
	Storing results in e()
	Storing results in s()
	Recommended names for stored results
	Using hidden and historical stored results
	Programming hidden and historical stored results

	Reference
	Also see

	_rmcoll
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	rmsg
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	_robust
	Description
	Syntax
	Options
	Remarks and examples
	Introduction
	Formulas and simple examples
	Clustered data
	Survey data
	Controlling the header display
	Maximum likelihood estimators
	Multiple-equation estimators

	Stored results
	Methods and formulas
	References
	Also see

	scalar
	Description
	Syntax
	Remarks and examples
	Naming scalars

	Reference
	Also see

	serset
	Description
	Syntax
	Options
	Options for serset create
	Options for serset create_xmedians
	Option for serset create_cspline
	Option for serset summarize
	Option for serset use

	Remarks and examples
	Introduction
	serset create
	serset create_xmedians
	serset create_cspline
	serset set
	serset sort
	serset summarize
	serset
	serset use
	serset reset_id
	serset drop
	serset clear
	serset dir
	file sersetwrite and file sersetread

	Stored results
	Also see

	set locale_functions
	Description
	Syntax
	Option
	Also see

	set locale_ui
	Description
	Syntax
	Also see

	set sortmethod
	Description
	Syntax
	Remarks and examples
	Overview and version control
	Controlling the sorter within a program
	Reproducibility

	Also see

	set sortrngstate
	Description
	Syntax
	Remarks and examples
	Holding and restoring the jumbler state
	Reproducibility

	Also see

	signestimationsample
	Description
	Syntax
	Remarks and examples
	Using signestimationsample and checkestimationsample
	Signing
	Checking
	Handling of weights
	Do not sign unnecessarily

	Stored results
	Also see

	sleep
	Description
	Syntax
	Remarks and examples

	smcl
	Description
	Remarks and examples
	Introduction
	SMCL modes
	Command summary---general syntax
	Help file preprocessor directive for substituting repeated material
	Formatting directives for use in line and paragraph modes
	Link directives for use in line and paragraph modes
	Formatting directives for use in line mode
	Formatting directives for use in paragraph mode
	Directive for entering the as-is mode
	Inserting values from constant and current-value class
	Displaying characters using ASCII and extended ASCII codes
	Advice on using display
	Advice on formatting help files

	Also see

	sortpreserve
	Description
	Syntax
	Option
	Remarks and examples
	Introduction
	sortpreserve
	The cost of sortpreserve
	How sortpreserve works
	Use of sortpreserve with preserve
	Use of sortpreserve with subroutines that use sortpreserve

	Also see

	syntax
	Description
	Syntax
	Syntax, continued
	Remarks and examples
	Introduction
	The args command
	The syntax command

	Also see

	sysdir
	Description
	Syntax
	Option
	Remarks and examples
	Introduction
	sysdir
	adopath
	set adosize

	Also see

	tabdisp
	Description
	Syntax
	Options
	Remarks and examples
	Limits
	Introduction
	Treatment of string variables
	Treatment of missing values

	Also see

	timer
	Description
	Syntax
	Remarks and examples
	Stored results
	Also see

	tokenize
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	trace
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	unab
	Description
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	unabcmd
	Description
	Syntax
	Remarks and examples
	Also see

	varabbrev
	Description
	Syntax
	Remarks and examples
	Also see

	version
	Description
	Syntax
	Option
	Remarks and examples
	Version
	Version a single command
	User version
	Version and random numbers

	Reference
	Also see

	viewsource
	Description
	Syntax
	Remarks and examples
	Also see

	while
	Description
	Syntax
	Remarks and examples
	Also see

	window programming
	Description
	Syntax
	Also see

	window fopen
	Description
	Syntax
	Remarks and examples
	Also see

	window manage
	Description
	Syntax
	Remarks and examples
	Minimizing or restoring the main window
	Windowing preferences
	Restoring file associations (Windows only)
	Resetting the main window title
	Setting Dock icon's label (Mac only)
	Bringing windows forward
	Commands to manage Graph windows
	Commands to manage Viewer windows

	Also see

	window menu
	Description
	Syntax
	Remarks and examples
	Overview
	Clear previously defined menu additions
	Define submenus
	Define menu items
	Define separator bars
	Activate menu changes
	Add files to the Open recent menu
	Keyboard shortcuts (Windows only)
	Examples
	Advanced features: Dialogs and built-in actions
	Advanced features: Creating checked menu items
	Putting it all together

	Also see

	window push
	Description
	Syntax
	Remarks and examples
	Also see

	window stopbox
	Description
	Syntax
	Remarks and examples
	Also see

	Glossary

	[PSS] Power, Precision, and Sample Size
	Contents
	Introduction to power, precision, and sample-size analysis
	Intro
	Description
	Also see

	Power and sample-size analysis
	Intro (power)
	Description
	Remarks and examples
	Power and sample-size analysis
	Hypothesis testing
	Components of PSS analysis
	Study design
	Statistical method
	Significance level
	Power
	Clinically meaningful difference and effect size
	Sample size
	One-sided test versus two-sided test
	Another consideration: Dropout

	Survival data
	Sensitivity analysis
	An example of PSS analysis in Stata
	Video example

	References
	Also see

	GUI (power)
	Description
	Menu
	Remarks and examples
	PSS Control Panel
	Example using PSS Control Panel

	Also see

	power
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Using the power command
	Specifying multiple values of study parameters

	One-sample tests
	Two-sample tests
	Paired-sample tests
	Analysis of variance models
	Linear regression
	Contingency tables
	Survival analysis
	Cluster randomized designs
	Tables of results
	Power curves
	Add your own methods to power

	Stored results
	Methods and formulas
	References
	Also see

	power usermethod
	Description
	Syntax
	Remarks and examples
	A quick example
	Steps for adding a new method to the power command
	Convention for naming options and storing results
	Allowing multiple values in method-specific options
	Customizing default tables
	Setting supported columns
	Modifying the default table columns
	Modifying the look of the default table
	Example continued

	Customizing default graphs
	Other settings
	Handling parsing more efficiently
	More examples: Adding two-sample methods
	Initializer's s() return settings

	References
	Also see

	power, graph
	Description
	Quick start
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Using power, graph
	Graph symbols
	Default graphs
	Changing default graph dimensions
	Changing the look of graphs
	Parallel plots

	Also see

	power, table
	Description
	Quick start
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Using power, table
	Default tables
	Modifying default tables
	Custom tables

	Stored results
	Also see

	power onemean
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power onemean
	Computing sample size
	Computing power
	Computing effect size and target mean
	Performing hypothesis tests on mean
	Video examples

	Stored results
	Methods and formulas
	Known standard deviation
	Unknown standard deviation
	Finite population size

	References
	Also see

	power onemean, cluster
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using power , table, cluster
	Computing number of clusters
	Computing cluster size
	Computing power
	Computing effect size and target mean
	Performing hypothesis tests on mean in a CRD

	Stored results
	Methods and formulas
	Equal cluster sizes
	Unequal cluster sizes

	References
	Also see

	power twomeans
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twomeans
	Computing sample size
	Computing power
	Computing effect size and experimental-group mean
	Testing a hypothesis about two independent means

	Stored results
	Methods and formulas
	Known standard deviations
	Unknown standard deviations
	Unequal standard deviations
	Equal standard deviations

	References
	Also see

	power twomeans, cluster
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using power , table, cluster
	Computing numbers of clusters
	Computing number of clusters in one group
	Computing cluster sizes
	Computing power
	Computing effect size and experimental-group mean
	Testing hypotheses about two means in a CRD

	Stored results
	Methods and formulas
	Introduction
	Equal cluster sizes
	Unequal cluster sizes

	References
	Also see

	power pairedmeans
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power pairedmeans
	Computing sample size
	Computing power
	Computing effect size and target mean difference
	Testing a hypothesis about two correlated means
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	power oneproportion
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power oneproportion
	Computing sample size
	Computing power
	Computing effect size and target proportion
	Performing hypothesis tests on proportion
	Video examples

	Stored results
	Methods and formulas
	Large-sample normal approximation
	Binomial test

	References
	Also see

	power oneproportion, cluster
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using power , table, cluster
	Computing number of clusters
	Computing cluster size
	Computing power
	Computing effect size and target proportion
	Performing hypothesis tests on proportion in a CRD

	Stored results
	Methods and formulas
	Equal cluster sizes
	Unequal cluster sizes

	References
	Also see

	power twoproportions
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twoproportions
	Alternative ways of specifying effect

	Computing sample size
	Computing power
	Computing effect size and experimental-group proportion
	Testing a hypothesis about two independent proportions
	Video examples

	Stored results
	Methods and formulas
	Effect size
	Pearsons chi2 test
	Likelihood-ratio test
	Fisher's exact conditional test

	References
	Also see

	power twoproportions, cluster
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using power , table, cluster
	Computing numbers of clusters
	Computing number of clusters in one group
	Computing cluster sizes
	Computing power
	Computing effect size and experimental-group proportion
	Testing hypotheses about two proportions in a CRD

	Stored results
	Methods and formulas
	References
	Also see

	power pairedproportions
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power pairedproportions
	Alternative ways of specifying effect

	Computing sample size
	Computing power
	Computing effect size and target discordant proportions
	Testing a hypothesis about two correlated proportions

	Stored results
	Methods and formulas
	References
	Also see

	power onevariance
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power onevariance
	Computing sample size
	Computing power
	Computing effect size and target variance
	Performing a hypothesis test on variance

	Stored results
	Methods and formulas
	Reference
	Also see

	power twovariances
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twovariances
	Computing sample size
	Computing power
	Computing effect size and experimental-group variance
	Testing a hypothesis about two independent variances

	Stored results
	Methods and formulas
	References
	Also see

	power onecorrelation
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power onecorrelation
	Computing sample size
	Computing power
	Computing effect size and target correlation
	Performing hypothesis tests on correlation

	Stored results
	Methods and formulas
	References
	Also see

	power twocorrelations
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twocorrelations
	Computing sample size
	Computing power
	Computing effect size and experimental-group correlation
	Testing a hypothesis about two independent correlations

	Stored results
	Methods and formulas
	References
	Also see

	power oneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power oneway
	Alternative ways of specifying effect

	Computing sample size
	Computing power
	Computing effect size and between-group variance
	Testing hypotheses about multiple group means
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	power twoway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twoway
	Alternative ways of specifying effect

	Computing sample size
	Computing power
	Computing effect size and target variance explained by the tested effect
	Testing hypotheses about means from multiple populations

	Stored results
	Methods and formulas
	Main effects
	Interaction effects
	Hypothesis testing

	References
	Also see

	power repeated
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power repeated
	Computing sample size
	Computing power
	Computing effect size and target variance explained by the tested effect
	Testing hypotheses about means from multiple dependent populations

	Stored results
	Methods and formulas
	Hypothesis testing
	Computing power

	References
	Also see

	power oneslope
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power oneslope
	Computing sample size
	Computing power
	Computing effect size and target slope
	Performing hypothesis tests on the slope coefficient

	Stored results
	Methods and formulas
	References
	Also see

	power rsquared
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power rsquared
	Computing sample size
	Computing power
	Computing effect size and target R2
	Performing hypothesis tests on the coefficients

	Stored results
	Methods and formulas
	Introduction
	Testing all coefficients
	Testing a subset of coefficients: R2 of full versus reduced models
	Testing a subset of coefficients: Partial multiple correlation

	Reference
	Also see

	power pcorr
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power pcorr
	Computing sample size
	Computing power
	Computing effect size and target squared partial correlation
	Performing hypothesis tests on the partial correlation

	Stored results
	Methods and formulas
	Reference
	Also see

	power cmh
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power cmh
	Alternative ways of specifying probabilities

	Motivating example
	Computing sample size
	Computing power
	Computing effect size
	Testing hypotheses about association in 2 x 2 x K tables

	Stored results
	Methods and formulas
	References
	Also see

	power mcc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power mcc
	Computing sample size
	Computing power
	Computing target odds ratio
	Testing hypotheses in matched case{--}control studies

	Stored results
	Methods and formulas
	References
	Also see

	power trend
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power trend
	Alternative ways of specifying probabilities

	Computing sample size
	Computing power
	Testing hypotheses about a trend in J x 2 tables

	Stored results
	Methods and formulas
	Computing power
	Computing sample size

	References
	Also see

	power cox
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power cox
	Computing sample size
	Computing sample size in the absence of censoring
	Computing sample size in the presence of censoring
	Link to the sample-size and power computation for the log-rank test

	Computing power
	Computing effect size
	Performing analyses using a Cox PH model

	Stored results
	Methods and formulas
	References
	Also see

	power exponential
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power exponential
	Alternative ways of specifying effect

	Computing sample size
	Computing sample size in the absence of censoring
	Computing sample size in the presence of censoring
	Nonuniform accrual
	Exponential losses to follow-up

	The conditional versus unconditional approaches
	Link to the sample-size and power computation for the log-rank test
	Computing power
	Testing hypotheses about two exponential survivor functions

	Stored results
	Methods and formulas
	References
	Also see

	power logrank
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power logrank
	Computing sample size
	Computing sample size in the absence of censoring
	Computing sample size in the presence of censoring

	Withdrawal of subjects from the study
	Including information about subject accrual
	Computing power
	Computing effect size
	Testing a hypothesis about two survivor functions using the log-rank test

	Stored results
	Methods and formulas
	References
	Also see

	power logrank, cluster
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using power , table, cluster
	Computing numbers of clusters
	Computing cluster sizes
	Computing power
	Computing effect size
	Compare two survivor functions with clustered data

	Stored results
	Methods and formulas
	References
	Also see

	Precision and sample-size analysis
	Intro (ciwidth)
	Description
	Remarks and examples
	Precision and sample-size analysis
	Confidence intervals
	Components of PrSS analysis
	Confidence level
	CI width
	Probability of CI width
	Sample size
	One-sided versus two-sided CIs

	Sensitivity analysis
	An example of PrSS analysis in Stata

	References
	Also see

	GUI (ciwidth)
	Description
	Menu
	Remarks and examples
	PSS Control Panel
	Example using PSS Control Panel

	Also see

	ciwidth
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Using the ciwidth command
	Specifying multiple values of study parameters

	PrSS analysis for CIs for one population parameter
	PrSS analysis for CIs comparing two independent samples
	PrSS analysis for CIs comparing paired samples
	Tables of results
	Sample-size and other curves
	Add your own methods to ciwidth

	Stored results
	Methods and formulas
	Also see

	ciwidth usermethod
	Description
	Syntax
	Remarks and examples
	A quick example
	Steps for adding a new method to the ciwidth command
	Convention for naming options and storing results
	Allowing multiple values in method-specific options
	Customizing default tables
	Setting supported columns
	Modifying the default table columns
	Modifying the look of the default table
	Example continued

	Customizing default graphs
	Other settings
	Handling parsing more efficiently
	More examples: Compute probability of CI width for a one-proportion CI
	Step 1: Program to simulate the data and compute the CI width
	Step 2: Estimating probability of CI width using simulation
	Step 3: Adding probability of CI width computation to ciwidth
	Step 4: Computing exact probability of CI width

	Initializer's s() return settings

	References
	Also see

	ciwidth, graph
	Description
	Quick start
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Using ciwidth, graph
	Graph symbols
	Default graphs
	Changing default graph dimensions
	Changing the look of graphs
	Parallel plots

	Also see

	ciwidth, table
	Description
	Quick start
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Using ciwidth, table
	Default tables
	Modifying default tables
	Custom tables

	Stored results
	Also see

	ciwidth onemean
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using ciwidth onemean
	Computing sample size
	Computing CI width
	Computing probability of CI width

	Stored results
	Methods and formulas
	Known standard deviation
	Unknown standard deviation
	Finite population size

	References
	Also see

	ciwidth twomeans
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using ciwidth twomeans
	Computing sample size
	Computing CI width
	Computing probability of CI width

	Stored results
	Methods and formulas
	Known equal and unequal standard deviations
	Unknown and equal standard deviations

	References
	Also see

	ciwidth pairedmeans
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using ciwidth pairedmeans
	Computing sample size
	Computing CI width
	Computing probability of CI width

	Stored results
	Methods and formulas
	References
	Also see

	ciwidth onevariance
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using ciwidth onevariance
	Computing sample size
	Computing CI width
	Computing probability of CI width

	Stored results
	Methods and formulas
	References
	Also see

	Design specification
	Unbalanced designs
	Description
	Syntax
	Options
	Remarks and examples
	Two samples
	Specifying total sample size and allocation ratio
	Specifying group sample sizes
	Specifying one of the group sample sizes and allocation ratio
	Specifying total sample size and one of the group sample sizes

	Fractional sample sizes

	Also see

	Glossary of common terms
	Glossary

	[R] Base Reference
	Contents
	Introduction
	Intro
	Description
	Remarks and examples
	Arrangement of the reference manuals
	Arrangement of each entry
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	Also see

	A
	about
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	ado update
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Using ado update
	Notes for developers

	Stored results
	Also see

	ameans
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	anova
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	One-way ANOVA
	Two-way ANOVA
	N-way ANOVA
	Weighted data
	ANCOVA
	Nested designs
	Mixed designs
	Latin-square designs
	Repeated-measures ANOVA
	Video examples

	Stored results
	References
	Also see

	anova postestimation
	Postestimation commands
	predict
	margins
	test
	Description for test
	Menu for test
	Syntax for test
	Options for test

	Remarks and examples
	Testing effects
	Obtaining symbolic forms
	Testing coefficients and contrasts of margins
	Video example

	References
	Also see

	areg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	areg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	References
	Also see

	B
	bayesboot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	betareg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	betareg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	binreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	binreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	References
	Also see

	biprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	biprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	bitest
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	bitest
	bitesti

	Stored results
	Methods and formulas
	Reference
	Also see

	bootstrap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using bootstrap
	Regression coefficients
	Expressions
	Combining bootstrap datasets
	A note about macros
	Achieved significance level
	Bootstrapping a ratio
	Warning messages and e(sample)
	Bootstrapping statistics from data with a complex structure
	Bootstrapping statistics using frequency or importance weights

	Stored results
	Methods and formulas
	References
	Also see

	bootstrap postestimation
	Postestimation commands
	predict
	margins
	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Also see

	boxcox
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Theta model
	Lambda model
	Left-hand-side-only model
	Right-hand-side-only model

	Stored results
	Methods and formulas
	References
	Also see

	boxcox postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	References
	Also see

	brier
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	bsample
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	bstat
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Bootstrap datasets
	Creating a bootstrap dataset

	Stored results
	References
	Also see

	C
	centile
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Default case
	Normal case
	meansd case

	Acknowledgment
	References
	Also see

	cfprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	cfprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Obtaining predicted values
	estat endogenous

	Stored results
	Methods and formulas
	Obtaining predicted values
	estat endogenous

	Also see

	cfregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	cfregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	churdle
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	churdle postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	ci
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for ci and cii means
	Options for ci and cii proportions
	Options for ci and cii variances

	Remarks and examples
	Confidence intervals for means
	Normal-based confidence intervals
	Poisson confidence intervals

	Confidence intervals for proportions
	Confidence intervals for variances
	Immediate form

	Stored results
	Methods and formulas
	Normal mean
	Poisson mean
	Binomial proportion
	Variance and standard deviation

	Acknowledgment
	References
	Also see

	clogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Matched case--control data
	Use of weights
	Fixed-effects logit

	Stored results
	Methods and formulas
	References
	Also see

	clogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Reference
	Also see

	cloglog
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction to complementary log--log regression
	Robust standard errors

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	cloglog postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	cls
	Description
	Syntax

	cnsreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cnsreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	constraint
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Reference
	Also see

	contrast
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	One-way models
	Estimated cell means
	Testing equality of cell means
	Reference category contrasts
	Reverse adjacent contrasts
	Orthogonal polynomial contrasts

	Two-way models
	Estimated interaction cell means
	Simple effects
	Interaction effects
	Main effects
	Partial interaction effects

	Three-way and higher-order models
	Contrast operators
	Differences from a reference level (r.)
	Differences from the next level (a.)
	Differences from the previous level (ar.)
	Differences from the grand mean (g.)
	Differences from the mean of subsequent levels (h.)
	Differences from the mean of previous levels (j.)
	Orthogonal polynomials (p. and q.)

	User-defined contrasts
	Empty cells
	Empty cells, ANOVA style
	Nested effects
	Multiple comparisons
	Unbalanced data
	Using observed cell frequencies
	Weighted contrast operators

	Testing factor effects on slopes
	Chow tests
	Beyond linear models
	Multiple equations
	Video example

	Stored results
	Methods and formulas
	Marginal linear predictions
	Contrast operators
	Reference level contrasts
	Adjacent contrasts
	Grand mean contrasts
	Helmert contrasts
	Reverse Helmert contrasts
	Orthogonal polynomial contrasts

	Contrasts within interactions
	Multiple comparisons

	References
	Also see

	contrast postestimation
	Postestimation commands
	Remarks and examples
	Also see

	copyright
	Description
	Syntax
	Remarks and examples
	Also see

	Copyright Apache
	Description
	Also see

	Copyright autolink
	Description
	Also see

	Copyright Boost
	Description
	Also see

	Copyright cereal
	Description
	Also see

	Copyright flexmark
	Description
	Also see

	Copyright Hamcrest
	Description
	Also see

	Copyright H2O
	Description
	Also see

	Copyright ICD-10
	Description
	Also see

	Copyright ICU
	Description
	Also see

	Copyright JAXB
	Description
	Source code
	Also see

	Copyright JGoodies Common
	Description
	Also see

	Copyright JGoodies Forms
	Description
	Also see

	Copyright JSON
	Description
	Also see

	Copyright jsoup
	Description
	Also see

	Copyright LAPACK
	Description
	Also see

	Copyright libHaru
	Description
	Also see

	Copyright libpng
	Description
	Also see

	Copyright Mersenne Twister
	Description
	Also see

	Copyright MiG Layout
	Description
	Also see

	Copyright OpenBLAS
	Description
	Also see

	Copyright Parsington
	Description
	Also see

	Copyright PolyHook
	Description
	Also see

	Copyright ReadStat
	Description
	Also see

	Copyright Scintilla
	Description
	Also see

	Copyright slf4j
	Description
	Also see

	Copyright ttf2pt1
	Description
	Also see

	Copyright Win32 Dark Mode
	Description
	Also see

	Copyright zlib
	Description
	Also see

	correlate
	Description
	Quick start
	Menu
	Syntax
	Options for correlate
	Options for pwcorr
	Remarks and examples
	correlate
	pwcorr
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	cpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	cumul
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgment
	References
	Also see

	cusum
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgment
	Reference
	Also see

	D
	db
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	demandsys
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Some notation
	Cobb{--}Douglas
	Linear expenditure system (LES)
	Translog
	Basic translog
	Generalized translog

	AIDS
	QUAIDS
	Controlling for demographic factors
	Demographic translation
	Demographic scaling
	Epilogue

	Stored results
	Methods and formulas
	Introduction
	LES
	Generalized translog
	QUAIDS with demographic translation
	QUAIDS with demographic scaling
	Estimation

	Acknowledgment
	References
	Also see

	demandsys postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat elasticities

	Remarks and examples
	Introduction
	Elasticities
	Evaluating elasticities
	Compensating and equivalent variation

	References
	Also see

	Diagnostic plots
	Description
	Quick start
	Menu
	Syntax
	Options for symplot, quantile, and qqplot
	Options for qnorm and pnorm
	Options for qchi and pchi
	Remarks and examples
	symplot
	quantile
	qqplot
	qnorm
	pnorm
	qchi
	pchi

	Methods and formulas
	Acknowledgments
	References
	Also see

	display
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	do
	Description
	Quick start
	Menu
	Syntax
	Option
	Reference
	Also see

	doedit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	dotplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	Reference

	dstdize
	Description
	Quick start
	Menu
	Syntax
	Options for dstdize
	Options for istdize
	Remarks and examples
	Direct standardization
	Indirect standardization

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	dtable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	A first example
	Describe variables across groups
	Survey data
	Save your style choices for next time
	Composite results
	The default style

	Methods and formulas
	Appendix
	Colors
	Underline patterns
	Shading patterns

	Acknowledgments
	References
	Also see

	dydx
	Description
	Quick start
	Menu
	Syntax
	Options for dydx
	Options for integ
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	Reference
	Also see

	E
	eform_option
	Description
	Remarks and examples
	Reference
	Also see

	eivreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	eivreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	Epitab
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Incidence-rate data
	Stratified incidence-rate data
	Standardized estimates with stratified incidence-rate data
	Cumulative incidence data
	Stratified cumulative incidence data
	Standardized estimates with stratified cumulative incidence data
	Case--control data
	Stratified case--control data
	Case--control data with multiple levels of exposure
	Case--control data with confounders and possibly multiple levels of exposure
	Standardized estimates with stratified case--control data
	Matched case--control data
	Video examples
	Glossary

	Stored results
	Methods and formulas
	Unstratified incidence-rate data (ir and iri)
	Unstratified cumulative incidence data (cs and csi)
	Unstratified case--control data (cc and cci)
	Unstratified matched case--control data (mcc and mcci)
	Stratified incidence-rate data (ir with the by() option)
	Stratified cumulative incidence data (cs with the by() option)
	Stratified case--control data (cc with by() option, mhodds, tabodds)

	Acknowledgments
	References
	Also see

	Error messages
	Description
	Also see

	esize
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Estimating effect sizes
	Immediate form
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	estat
	Description
	Syntax

	estat classification
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estat gof
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Introduction
	Samples other than the estimation sample

	Stored results
	Methods and formulas
	References
	Also see

	estat ic
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estat summarize
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat vce
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estimates
	Description
	Syntax
	Remarks and examples
	Saving and using estimation results
	Storing and restoring estimation results
	Comparing estimation results
	Jargon

	Also see

	estimates describe
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	estimates for
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	estimates notes
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	estimates replay
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	estimates save
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Setting e(sample)
	Resetting e(sample)
	Determining who set e(sample)

	Stored results
	Also see

	estimates selected
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estimates stats
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	estimates store
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	References
	Also see

	estimates table
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estimates title
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	Estimation options
	Description
	Syntax
	Options
	Also see

	etable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	A first example
	Table comparing regression results
	Multiple-equation models

	Appendix
	Colors
	Underline patterns
	Shading patterns

	Acknowledgments
	References
	Also see

	exit
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	exlogistic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Sufficient statistics
	Conditional distribution and CMLE
	MUEs and exact confidence intervals
	Conditional hypothesis tests
	Sufficient-statistic p-value

	References
	Also see

	exlogistic postestimation
	Postestimation commands
	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat predict
	Option for estat se

	Remarks and examples
	Stored results
	Reference
	Also see

	expoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Conditional distribution

	References
	Also see

	expoisson postestimation
	Postestimation commands
	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat

	Remarks and examples
	Also see

	F
	fp
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for fp
	Options for fp generate

	Remarks and examples
	Fractional polynomial regression
	Scaling
	Centering
	Examples

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	fp postestimation
	Postestimation commands
	predict
	margins
	fp plot and fp predict
	Description for fp plot and fp predict
	Menu for fp plot and fp predict
	Syntax for fp plot and fp predict
	Options for fp plot
	Options for fp predict

	Remarks and examples
	Examples

	Methods and formulas
	Acknowledgment
	Reference
	Also see

	fracreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	fracreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Obtaining predicted values
	Performing hypothesis tests

	Also see

	frontier
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	frontier postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Reference
	Also see

	fvrevar
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	fvset
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results

	G
	glm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	General use
	Variance estimators
	User-defined functions

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	glm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Predictions
	Other postestimation commands

	Methods and formulas
	References
	Also see

	gmm
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Substitutable expressions
	The weight matrix and two-step estimation
	Obtaining standard errors
	Factor-variable coefficients in multiple residual functions
	Parameter interpretation using margins
	Exponential (Poisson) regression models
	Specifying derivatives
	Exponential regression models with panel data
	Rational-expectations models
	System estimators
	Dynamic panel-data models
	Details of moment-evaluator programs

	Stored results
	Methods and formulas
	Initial weight matrix
	Weight matrix
	Variance--covariance matrix
	Hansen's J statistic
	Panel-style instruments
	Marginal predictions with unconditional standard errors

	References
	Also see

	gmm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Option for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Stored results
	References
	Also see

	grmeanby
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References

	H
	hausman
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	heckman
	Description
	Quick start
	Menu
	Syntax
	Options for Heckman selection model (ML)
	Options for Heckman selection model (two-step)
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	heckman postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Reference
	Also see

	heckoprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	heckoprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	heckpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	heckpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	heckprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	heckprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	help
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Video examples

	Reference
	Also see

	hetoprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	hetoprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	hetprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Robust standard errors

	Stored results
	Methods and formulas
	References
	Also see

	hetprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	hetregress
	Description
	Quick start
	Menu
	Syntax
	Options for maximum likelihood estimation
	Options for two-step GLS estimation
	Remarks and examples
	Introduction
	Maximum likelihood estimation
	Two-step GLS estimation

	Stored results
	Methods and formulas
	Maximum likelihood estimation
	Two-step GLS estimation

	References
	Also see

	hetregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	histogram
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for use in the continuous case
	Options for use in the discrete case
	Options for use in the continuous and discrete cases

	Remarks and examples
	Histograms of continuous variables
	Overlaying normal and kernel density estimates
	Histograms of discrete variables
	Use with by()
	Video example

	References
	Also see

	I
	IC note
	Description
	Remarks and examples
	Background
	The problem of determining N
	The problem of conformable likelihoods
	The first problem does not arise with AIC; the second problem does
	Calculating BIC, AICc, and CAIC correctly

	Methods and formulas
	References
	Also see

	icc
	Description
	Quick start
	Menu
	Syntax
	Options for one-way RE model
	Options for two-way RE and ME models
	Remarks and examples
	Introduction
	One-way random effects
	Two-way random effects
	Two-way mixed effects
	Adoption study
	Relationship between ICCs
	Tests against nonzero values

	Stored results
	Methods and formulas
	Mean squares
	One-way random effects
	Two-way random effects
	Two-way mixed effects

	References
	Also see

	Inequality
	Description
	Remarks and examples
	References

	intreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	intreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	ivfprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Model setup
	Model identification

	Stored results
	Methods and formulas
	References
	Also see

	ivfprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Marginal effects
	Obtaining predicted values

	Stored results
	Methods and formulas
	Also see

	ivpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	GMM estimator for additive model
	GMM estimator for multiplicative model
	CF estimator for multiplicative model

	Stored results
	Methods and formulas
	References
	Also see

	ivpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	ivprobit
	Description
	Quick start
	Menu
	Syntax
	Options for ML estimator
	Options for two-step estimator
	Remarks and examples
	Model setup
	Model identification

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	ivprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Marginal effects
	Obtaining predicted values

	Stored results
	Methods and formulas
	References
	Also see

	ivqregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	When quantile regression matters
	Examples

	Stored results
	Methods and formulas
	The model
	The IQR estimator
	The IQR algorithm
	The IQR default grid algorithm

	The SEE estimator
	The bandwidth selection algorithm

	The robust standard errors

	Acknowledgments
	References
	Also see

	ivqregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat coefplot
	Options for estat endogeffects
	Options for estat dualci
	Options for estat waldplot

	Remarks and examples
	Stored results
	Methods and formulas
	Tests of effects of endogenous variables
	Dual CI

	References
	Also see

	ivregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	2SLS and LIML estimators
	GMM estimator
	Video example

	Stored results
	Methods and formulas
	Notation
	2SLS and LIML estimators
	2SLS estimator with absorb() option
	GMM estimator

	References
	Also see

	ivregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat endogenous
	Options for estat firststage
	Options for estat overid
	Options for estat weakrobust

	Remarks and examples
	estat endogenous
	estat firststage
	estat overid
	estat weakrobust

	Stored results
	Methods and formulas
	Notation
	estat endogenous
	estat firststage
	estat overid
	estat weakrobust
	Homoskedastic errors
	Nonhomoskedastic errors
	Confidence intervals

	Acknowledgments
	References
	Also see

	ivtobit
	Description
	Quick start
	Menu
	Syntax
	Options for ML estimator
	Options for two-step estimator
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	ivtobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Marginal effects
	Obtaining predicted values

	Stored results
	Methods and formulas
	References
	Also see

	J
	jackknife
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using jackknife
	Jackknifed standard deviation
	Collecting multiple statistics
	Collecting coefficients

	Stored results
	Methods and formulas
	References
	Also see

	jackknife postestimation
	Postestimation commands
	predict
	margins
	Also see

	K
	kappa
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Two raters
	More than two raters

	Stored results
	Methods and formulas
	kap: m=2
	kappa: m>2, k=2
	kappa: m>2, k>2

	References

	kdensity
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	ksmirnov
	Description
	Quick start
	Menu
	Syntax
	Options for two-sample test
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	kwallis
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	L
	ladder
	Description
	Quick start
	Menu
	Syntax
	Options for ladder
	Options for gladder
	Options for qladder
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	level
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	Limits
	Description
	Remarks and examples
	Maximum size limits
	Determining which edition of Stata you are running

	Also see

	lincom
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using lincom
	Odds ratios and incidence-rate ratios
	Multiple-equation models

	Stored results
	References
	Also see

	linktest
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	lnskew0
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	Reference
	Also see

	log
	Description
	Quick start
	Menu
	Syntax
	Options for use with both log and cmdlog
	Options for use with log
	Option for use with set logtype
	Remarks and examples
	Stored results
	Reference
	Also see

	logistic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	logistic and logit
	Robust estimate of variance
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	logistic postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	predict without options
	predict with the xb and stdp options
	predict with the residuals option
	predict with the number option
	predict with the deviance option
	predict with the rstandard option
	predict with the hat option
	predict with the dx2 option
	predict with the ddeviance option
	predict with the dbeta option

	Methods and formulas
	References
	Also see

	logit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic usage
	Model identification

	Stored results
	Methods and formulas
	References
	Also see

	logit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	loneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	The one-way ANOVA model
	R-squared
	The random-effects ANOVA model
	Intraclass correlation
	Estimated reliability of the group-averaged score

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	lowess
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Acknowledgment
	References
	Also see

	lpoly
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Local polynomial smoothing
	Choice of a bandwidth
	Confidence bands

	Stored results
	Methods and formulas
	References
	Also see

	lroc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Samples other than the estimation sample
	Models other than the last fitted model

	Stored results
	Methods and formulas
	References
	Also see

	lrtest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Nested models
	Composite models

	Stored results
	Methods and formulas
	References
	Also see

	lsens
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Models other than the last fitted model

	Stored results
	Methods and formulas
	Reference
	Also see

	lv
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	M
	makespline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	margins
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Obtaining margins of responses
	Example 1: A simple case after regress
	Example 2: A simple case after logistic
	Example 3: Average response versus response at average
	Example 4: Multiple margins from one command
	Example 5: Margins with interaction terms
	Example 6: Margins with continuous variables
	Example 7: Margins of continuous variables
	Example 8: Margins of interactions
	Example 9: Decomposing margins
	Example 10: Testing margins---contrasts of margins
	Example 11: Margins of a specified prediction
	Example 12: Margins of a specified expression
	Example 13: Margins with multiple outcomes (responses)
	Example 14: Margins with multiple equations
	Example 15: Margins evaluated out of sample

	Obtaining margins of derivatives of responses (a.k.a. marginal effects)
	Use at() freely, especially with continuous variables
	Expressing derivatives as elasticities
	Derivatives versus discrete differences
	Example 16: Average marginal effect (partial effects)
	Example 17: Average marginal effect of all covariates
	Example 18: Evaluating marginal effects over the response surface

	Obtaining margins with survey data and representative samples
	Example 19: Inferences for populations, margins of response
	Example 20: Inferences for populations, marginal effects
	Example 21: Inferences for populations with svyset data

	Standardizing margins
	Obtaining margins as though the data were balanced
	Balancing using asbalanced
	Balancing by standardization
	Balancing nonlinear responses
	Treating a subset of covariates as balanced
	Balancing in the presence of continuous covariates
	Using fvset design
	Balancing in the presence of empty cells

	Obtaining margins with nested designs
	Introduction to nested designs
	Margins with nested designs as though the data were balanced
	Coding of nested designs

	Special topics
	Requirements for model specification
	Estimability of margins
	Manipulability of tests
	Using margins after the estimates use command
	Syntax of at()
	Estimation commands that may be used with margins

	Video examples
	Glossary

	Stored results
	Methods and formulas
	Notation
	Marginal effects
	Fixing covariates and balancing factors
	Estimable functions
	Standard errors conditional on the covariates
	Unconditional standard errors

	References
	Also see

	margins postestimation
	Postestimation commands
	Remarks and examples
	Also see

	margins, contrast
	Description
	Quick start
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Contrasts of margins
	Contrasts and the over() option
	The overjoint suboption
	The marginswithin suboption

	Contrasts and the at() option
	Estimating treatment effects with margins
	Conclusion

	Stored results
	Methods and formulas
	Reference
	Also see

	margins, pwcompare
	Description
	Quick start
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	marginsplot
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Dataset
	Profile plots
	Interaction plots
	Contrasts of margins---effects (discrete marginal effects)
	Three-way interactions
	Continuous covariates
	Plots at every value of a continuous covariate
	Contrasts of at() groups---discrete effects
	Controlling the graph's dimensions
	Pairwise comparisons
	Horizontal is sometimes better
	Marginal effects
	Plotting a subset of the results from margins
	Advanced usage
	Plots with multiple terms
	Plots with multiple at() options
	Adding scatterplots of the data

	Video examples

	Addendum: Advanced uses of dimlist
	Acknowledgments
	References
	Also see

	Maximize
	Description
	Syntax
	Maximization options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	mean
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	The mean estimator
	Survey data
	The survey mean estimator
	The standardized mean estimator
	The poststratified mean estimator
	The standardized poststratified mean estimator
	Subpopulation estimation

	References
	Also see

	mean postestimation
	Postestimation commands
	estat sd
	Description for estat sd
	Menu for estat sd
	Syntax for estat sd
	Option for estat sd
	Stored results for estat sd

	Also see

	mfp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Iteration report
	Estimation algorithm
	Methods of FP model selection
	Zeros and zero categories

	Stored results
	Acknowledgments
	References
	Also see

	mfp postestimation
	Postestimation commands
	fracplot and fracpred
	Description for fracplot and fracpred
	Menu for fracplot and fracpred
	Syntax for fracplot and fracpred
	Options for fracplot
	Options for fracpred

	Remarks and examples
	Methods and formulas
	Also see

	misstable
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for misstable summarize
	Options for misstable patterns
	Options for misstable tree
	Option for misstable nested
	Common options

	Remarks and examples
	misstable summarize
	misstable patterns
	misstable tree
	misstable nested
	Execution time of misstable nested

	Stored results
	Also see

	ml
	Description
	Syntax
	Syntax of subroutines for use by evaluator programs
	Syntax of user-written evaluator

	Options
	Options for use with ml model in interactive or noninteractive mode
	Options for use with ml model in noninteractive mode
	Options for use when specifying equations
	Options for use with ml search
	Option for use with ml plot
	Options for use with ml init
	Options for use with ml maximize
	Option for use with ml graph
	Options for use with ml display
	Options for use with mleval
	Option for use with mlsum
	Option for use with mlvecsum
	Option for use with mlmatsum
	Options for use with mlmatbysum
	Options for use with ml score

	Remarks and examples
	Survey options and ml

	Stored results
	Methods and formulas
	References
	Also see

	mlexp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Substitutable expressions
	Parameter interpretation using margins
	Parameter constraints
	Specifying derivatives

	Stored results
	Methods and formulas
	References
	Also see

	mlexp postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	mlogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Description of the model
	Fitting unconstrained models
	Fitting constrained models

	Stored results
	Methods and formulas
	References
	Also see

	mlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Obtaining predicted values
	Calculating marginal effects
	Testing hypotheses about coefficients

	Reference
	Also see

	more
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	mprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	mprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	References
	Also see

	N
	nbreg
	Description
	Quick start
	Menu
	Syntax
	Options for nbreg
	Options for gnbreg
	Remarks and examples
	Introduction to negative binomial regression
	nbreg
	gnbreg

	Stored results
	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	References
	Also see

	nbreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	Reference
	Also see

	nestreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Estimation commands
	Wald tests
	Likelihood-ratio tests
	Programming for nestreg

	Stored results
	Acknowledgment
	References
	Also see

	net
	Description
	Syntax
	Options
	Remarks and examples
	Definition of a package
	The purpose of the net and ado commands
	Content pages
	Package-description pages
	Where packages are installed
	A summary of the net command
	A summary of the ado command
	Relationship of net and ado to the point-and-click interface
	Creating your own site
	Format of content and package-description files
	Example 1
	Example 2
	Additional package directives
	SMCL in content and package-description files
	Error-free file delivery

	Also see

	net search
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Topic searches
	Author searches
	Command searches
	Where does net search look?
	How does net search work?

	Also see

	netio
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	nl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Substitutable expressions
	Substitutable expression programs
	Built-in functions
	Lognormal errors
	Other uses
	Weights
	Potential errors
	General comments on fitting nonlinear models
	Function evaluator programs

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	nl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	nlcom
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Basics
	Using the post option
	Reparameterizing ML estimates for univariate data
	nlcom versus eform

	Stored results
	Methods and formulas
	References
	Also see

	nlsur
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Substitutable expression programs
	Function evaluator programs

	Stored results
	Methods and formulas
	References
	Also see

	nlsur postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	npregress intro
	Description
	Remarks and examples
	Overview
	Nonparametric series regression
	Runge's phenomenon
	Piecewise polynomial splines and B-splines

	Nonparametric kernel regression
	Limitations of nonparametric methods

	References
	Also see

	npregress kernel
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Estimation and effects
	Visualizing covariate effects

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	npregress kernel postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins
	Options for margins

	npgraph
	Description for npgraph
	Syntax for npgraph
	Options for npgraph

	Remarks and examples
	Methods and formulas
	References
	Also see

	npregress series
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Estimation and effects

	Stored results
	Methods and formulas
	Overview
	Polynomials
	Piecewise polynomial splines
	B-splines
	Model selection
	Cross-validation
	Generalized cross-validation
	Mallows's C$_p$
	AIC and BIC

	References
	Also see

	npregress series postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins
	Options for margins

	Remarks and examples
	Methods and formulas
	Reference
	Also see

	nptrend
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Cochran--Armitage test
	Jonckheere--Terpstra test
	Linear-by-linear trend test
	Cuzick's test

	Stored results
	Methods and formulas
	Overview
	Cochran--Armitage test for trend
	Jonckheere--Terpstra test for trend
	Linear-by-linear test for trend
	Cuzick's test with rank scores
	Exact p-values

	Acknowledgments
	References
	Also see

	O
	ologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	ologit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Reference
	Also see

	oneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Obtaining observed means
	Multiple-comparison tests
	Weighted data
	Video example

	Stored results
	Methods and formulas
	One-way analysis of variance
	Bartlett's test
	Multiple-comparison tests

	References
	Also see

	oprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	oprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	orthog
	Description
	Quick start
	Menu
	Syntax
	Options for orthog
	Options for orthpoly
	Remarks and examples
	Methods and formulas
	References
	Also see

	P
	pcorr
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	permute
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Monte Carlo permutation tests
	Two-sided p-values from permutation tests
	One-sided permutation test
	Enumeration
	Efficiency considerations for Monte Carlo permutations
	Efficiency considerations for enumeration

	Stored results
	Methods and formulas
	References
	Also see

	pk
	Description
	Remarks and examples
	References
	Also see

	pkcollapse
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Also see

	pkcross
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	pkequiv
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples

	Stored results
	Methods and formulas
	Data and model
	Equivalence limits
	Confidence intervals
	Classic interval
	Intervals using log-transformed data
	Intervals symmetric around zero
	Intervals using Fieller's theorem

	Interval hypothesis tests
	Schuirmann's two one-sided tests
	Schuirmann's two one-sided tests with a classic CI
	Schuirmann's two one-sided tests with a log-scale CI
	Anderson and Hauck's test

	References
	Also see

	pkexamine
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	pkshape
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	pksumm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Also see

	poisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	poisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	postest
	Description
	Menu
	Syntax
	Remarks and examples
	Overview
	Video example

	Also see

	predict
	Description
	Quick start
	Menu for predict
	Syntax
	Options
	Remarks and examples
	Estimation-sample predictions
	Out-of-sample predictions
	Residuals
	Single-equation (SE) models
	SE model scores
	Multiple-equation (ME) models
	ME model scores

	Methods and formulas
	References
	Also see

	predictnl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Nonlinear transformations and standard errors
	Using xb() and predict()
	Multiple-equation (ME) estimators
	Test statistics and p-values
	Manipulability
	Confidence intervals

	Methods and formulas
	References
	Also see

	probit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Robust standard errors
	Model identification
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	probit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Obtaining predicted values
	Performing hypothesis tests

	Methods and formulas
	Also see

	proportion
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Confidence intervals
	Survey data and sampling weights

	References
	Also see

	proportion postestimation
	Postestimation commands
	Remarks and examples
	Also see

	prtest
	Description
	Quick start
	Menu
	Syntax
	Options for prtest
	Options for prtesti
	Remarks and examples
	Tests of proportions
	Adjust for clustering
	Immediate form

	Stored results
	Methods and formulas
	One-sample test
	Two-sample test

	References
	Also see

	pwcompare
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Pairwise comparisons of means
	Marginal means
	All pairwise comparisons

	Overview of multiple-comparison methods
	Fisher's protected least-significant difference (LSD)
	Bonferroni's adjustment
	Sidak's adjustment
	Scheffe's adjustment
	Tukey's HSD adjustment
	Student--Newman--Keuls's adjustment
	Duncan's adjustment
	Dunnett's adjustment

	Example adjustments using one-way models
	Fisher's protected LSD
	Tukey's HSD
	Dunnett's method for comparisons to a control

	Two-way models
	Pairwise comparisons of slopes
	Nonlinear models
	Multiple-equation models
	Unbalanced data
	Empty cells

	Stored results
	Methods and formulas
	Notation
	Unadjusted comparisons
	Bonferroni's method
	Sidak's method
	Scheffe's method
	Tukey's method
	Student--Newman--Keuls's method
	Duncan's method
	Dunnett's method

	References
	Also see

	pwcompare postestimation
	Postestimation commands
	Remarks and examples
	Also see

	pwmean
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Group means
	Pairwise differences of means
	Group output
	Adjusting for multiple comparisons
	Tukey's method
	Dunnett's method

	Multiple over() variables
	Equal variance assumption

	Stored results
	Methods and formulas
	Reference
	Also see

	pwmean postestimation
	Postestimation commands
	Remarks and examples
	Also see

	Q
	QC
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	qreg
	Description
	Quick start
	Menu
	Syntax
	Options for qreg
	Options for iqreg
	Options for sqreg
	Options for bsqreg
	Remarks and examples
	Median regression
	Quantile regression
	Estimated standard errors
	Interquantile and simultaneous-quantile regression
	What are the parameters?

	Stored results
	Methods and formulas
	Introduction
	Linear programming formulation of quantile regression
	Standard errors when residuals are i.i.d.
	Pseudo-R-squared

	References
	Also see

	qreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Also see

	query
	Description
	Syntax
	Remarks and examples
	Also see

	R
	ranksum
	Description
	Quick start
	Menu
	Syntax
	Options for ranksum
	Options for median
	Remarks and examples
	Stored results
	Methods and formulas
	ranksum
	median

	References
	Also see

	ratio
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	The ratio estimator
	Survey data
	The survey ratio estimator
	The standardized ratio estimator
	The poststratified ratio estimator
	The standardized poststratified ratio estimator
	Subpopulation estimation

	References
	Also see

	ratio postestimation
	Postestimation commands
	Remarks and examples
	Also see

	reg3
	Description
	Nomenclature

	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	reg3 postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Reference
	Also see

	regress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Ordinary least squares
	Treatment of the constant
	Robust standard errors
	Weighted regression
	Video examples

	Stored results
	Methods and formulas
	Coefficient estimation and ANOVA table
	Weighted regression
	A general notation for the robust variance calculation
	Robust calculation for regress
	Multiway clustering

	Acknowledgments
	References
	Also see

	regress postestimation
	Postestimation commands
	Predictions
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict
	Remarks and examples for predict
	Terminology
	Fitted values and residuals
	Prediction standard errors
	Prediction with weighted data
	Leverage statistics
	Standardized and Studentized residuals
	DFITS, Cook's Distance, and Welsch Distance
	COVRATIO

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	DFBETA influence statistics
	Description for dfbeta
	Menu for dfbeta
	Syntax for dfbeta
	Option for dfbeta
	Remarks and examples for dfbeta

	Tests for violation of assumptions
	Description for estat hettest
	Menu for estat
	Syntax for estat hettest
	Options for estat hettest
	Description for estat imtest
	Menu for estat
	Syntax for estat imtest
	Options for estat imtest
	Description for estat ovtest
	Menu for estat
	Syntax for estat ovtest
	Option for estat ovtest
	Description for estat szroeter
	Menu for estat
	Syntax for estat szroeter
	Options for estat szroeter
	Remarks and examples for estat hettest, estat imtest, estat ovtest, and estat szroeter
	Stored results for estat hettest, estat imtest, and estat ovtest

	Variance inflation factors
	Description for estat vif
	Menu for estat
	Syntax for estat vif
	Option for estat vif
	Remarks and examples for estat vif

	Measures of effect size
	Description for estat esize
	Menu for estat
	Syntax for estat esize
	Options for estat esize
	Remarks and examples for estat esize
	Stored results for estat esize

	Methods and formulas
	predict
	Special-interest postestimation commands

	Acknowledgments
	References
	Also see

	regress postestimation diagnostic plots
	Description
	rvfplot
	Description for rvfplot
	Menu for rvfplot
	Syntax for rvfplot
	Options for rvfplot
	Remarks and examples for rvfplot

	avplot
	Description for avplot
	Menu for avplot
	Syntax for avplot
	Options for avplot
	Remarks and examples for avplot

	avplots
	Description for avplots
	Menu for avplots
	Syntax for avplots
	Options for avplots
	Remarks and examples for avplots

	cprplot
	Description for cprplot
	Menu for cprplot
	Syntax for cprplot
	Options for cprplot
	Remarks and examples for cprplot

	acprplot
	Description for acprplot
	Menu for acprplot
	Syntax for acprplot
	Options for acprplot
	Remarks and examples for acprplot

	rvpplot
	Description for rvpplot
	Menu for rvpplot
	Syntax for rvpplot
	Options for rvpplot
	Remarks and examples for rvpplot

	lvr2plot
	Description for lvr2plot
	Menu for lvr2plot
	Syntax for lvr2plot
	Options for lvr2plot
	Remarks and examples for lvr2plot

	Methods and formulas
	References
	Also see

	regress postestimation time series
	Postestimation commands
	estat archlm
	Description for estat archlm
	Menu for estat
	Syntax for estat archlm
	Options for estat archlm

	estat bgodfrey
	Description for estat bgodfrey
	Menu for estat
	Syntax for estat bgodfrey
	Options for estat bgodfrey

	estat durbinalt
	Description for estat durbinalt
	Menu for estat
	Syntax for estat durbinalt
	Options for estat durbinalt

	estat dwatson
	Description for estat dwatson
	Menu for estat
	Syntax for estat dwatson

	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	reri
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Additive versus multiplicative interactions
	Incidence-rate ratios, hazard ratios, and odds ratios

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	#review
	Description
	Syntax
	Remarks and examples

	roc
	Description
	References

	roccomp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Comparing areas under the ROC curve
	Correlated data
	Independent data
	Comparing areas with a gold standard

	Stored results
	Methods and formulas
	References
	Also see

	rocfit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	rocfit postestimation
	Postestimation commands
	rocplot
	Description for rocplot
	Menu for rocplot
	Syntax for rocplot
	Options for rocplot

	Remarks and examples
	Using lincom and test
	Using rocplot

	Also see

	rocreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for nonparametric ROC estimation, using bootstrap
	Options for parametric ROC estimation, using bootstrap
	Options for parametric ROC estimation, using maximum likelihood

	Remarks and examples
	Introduction
	ROC statistics
	Covariate-adjusted ROC curves
	Parametric ROC curves: Estimating equations
	Parametric ROC curves: Maximum likelihood

	Stored results
	Methods and formulas
	ROC statistics
	Covariate-adjusted ROC curves
	Parametric ROC curves: Estimating equations
	Parametric ROC curves: Maximum likelihood

	Acknowledgments
	References
	Also see

	rocreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat nproc
	Options for estat nproc

	Remarks and examples
	Using predict after rocreg
	Using estat nproc

	Stored results
	Methods and formulas
	Parametric model: Summary parameter definition
	Maximum likelihood estimation
	Estimating equations estimation

	References
	Also see

	rocregplot
	Description
	Quick start
	Menu
	Syntax
	probit_options
	common_options
	boot_options
	Remarks and examples
	Plotting covariate-specific ROC curves
	Plotting marginal ROC curves

	Methods and formulas
	Parametric model: Summary parameter definition
	Maximum likelihood estimation
	Estimating equations estimation

	References
	Also see

	roctab
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Nonparametric ROC curves
	Lorenz-like curves

	Stored results
	Methods and formulas
	References
	Also see

	rreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	rreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	runtest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References

	rwgen
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for rwgen bsample
	Options for rwgen bayes

	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	S
	scobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Skewed logistic model
	Robust standard errors

	Stored results
	Methods and formulas
	References
	Also see

	scobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	sdtest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic form
	Immediate form
	Robust test

	Stored results
	Methods and formulas
	References
	Also see

	search
	Description
	Quick start
	Menu
	Syntax
	Options for search
	Option for set searchdefault
	Remarks and examples
	Introduction
	Internet searches
	Author searches
	Entry ID searches
	Return codes

	Acknowledgment
	Also see

	serrbar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgment
	Also see

	set
	Description
	Syntax
	Remarks and examples
	Also see

	set cformat
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set_defaults
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set emptycells
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set iter
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set rng
	Description
	Syntax
	Remarks and examples
	Introduction
	Random-number generators in Stata

	Reference
	Also see

	set rngstream
	Description
	Syntax
	Remarks and examples
	References
	Also see

	set seed
	Description
	Syntax
	Remarks and examples
	Examples
	Setting the seed
	How to choose a seed
	Do not set the seed too often
	Preserving and restoring the random-number generator state

	Reference
	Also see

	set showbaselevels
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	signrank
	Description
	Quick start
	Menu
	Syntax
	Option for signrank
	Remarks and examples
	Stored results
	Methods and formulas
	signrank
	signtest

	References
	Also see

	simulate
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	References
	Also see

	sj
	Description
	Remarks and examples
	Installing the Stata Journal software

	Also see

	sktest
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	slogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	One-dimensional model
	Higher-dimension models

	Stored results
	Methods and formulas
	References
	Also see

	slogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	smooth
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Methods and formulas
	Running median smoothers of odd span
	Running median smoothers of even span
	Repeat operator
	Endpoint rule
	Splitting operator
	Hanning smoother
	Twicing

	Acknowledgments
	References
	Also see

	spearman
	Description
	Quick start
	Menu
	Syntax
	Options for spearman
	Options for ktau
	Remarks and examples
	Stored results
	Methods and formulas
	Spearman's rank correlation
	Exact p-values
	Kendall's tau

	Acknowledgment
	References
	Also see

	spikeplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgments
	References
	Also see

	ssc
	Description
	Command overview

	Quick start
	Syntax
	Options
	Options for use with ssc new
	Options for use with ssc hot
	Option for use with ssc describe
	Options for use with ssc install
	Option for use with ssc type
	Options for use with ssc copy

	Remarks and examples
	Acknowledgments
	References
	Also see

	stem
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	stepwise
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Search logic for a step
	Full search logic
	Examples
	Estimation sample considerations
	Messages
	Programming for stepwise

	Stored results
	Methods and formulas
	References
	Also see

	Stored results
	Description
	Syntax
	Option
	Remarks and examples
	References
	Also see

	suest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using suest
	Remarks on regress
	Testing the assumption of the independence of irrelevant alternatives
	Testing proportionality
	Testing cross-model hypotheses

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	summarize
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	sunflower
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgments
	References

	sureg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	sureg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	swilk
	Description
	Quick start
	Menu
	Syntax
	Options for swilk
	Options for sfrancia
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	symmetry
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Asymptotic tests
	Exact symmetry test

	References
	Also see

	T
	table intro
	Description
	Remarks and examples
	Overview
	Tabulations
	Tables of summary statistics
	Tables of results from other commands
	Flexible tables combining results
	Formatting, customizing, and exporting tables

	Reference
	Also see

	table
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Specifying the table layout
	Advanced table customization

	Stored results
	Methods and formulas
	Appendix
	Colors
	Shading patterns

	Reference
	Also see

	table oneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Tabulation of one variable
	Tabulation, including percentages
	Customizing results
	Advanced customization

	Stored results
	References
	Also see

	table twoway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Tabulation of two variables
	Tabulation, including percentages
	Customizing results

	Stored results
	References
	Also see

	table multiway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Tables with columns defined by multiple variables
	Appending tables
	Multiple tables with specified totals

	Stored results
	Reference
	Also see

	table summary
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic summary statistic tables
	Classic Table 1

	Stored results
	References
	Also see

	table hypothesis tests
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Creating tables from scalars
	Creating tables from matrices

	Stored results
	Reference
	Also see

	table regression
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Tables with results from a single command
	Tables with results from multiple estimation commands
	Regression results with factor variables

	Stored results
	References
	Also see

	tabstat
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Acknowledgments
	Reference
	Also see

	tabulate oneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Limits

	Remarks and examples
	tabulate
	tab1
	Publish your tables
	Video example

	Stored results
	References
	Also see

	tabulate twoway
	Description
	Quick start
	Menu
	Syntax
	Options
	Limits

	Remarks and examples
	tabulate
	Measures of association
	N-way tables
	Weighted data
	Tables with immediate data
	tab2
	Publish your tables
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	tabulate, summarize()
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	One-way tables
	Two-way tables
	Publish your tables

	Also see

	test
	Description
	Quick start
	Menu
	Syntax
	Options for testparm
	Options for test
	Remarks and examples
	Introductory examples
	Special syntaxes after multiple-equation estimation
	Constrained coefficients
	Multiple testing

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	testnl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using testnl to perform linear tests
	Specifying constraints
	Dropped constraints
	Multiple constraints
	Manipulability

	Stored results
	Methods and formulas
	References
	Also see

	tetrachoric
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Association in 2-by-2 tables
	Factor analysis of dichotomous variables
	Tetrachoric correlations with simulated data

	Stored results
	Methods and formulas
	References
	Also see

	tnbreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	Acknowledgment
	References
	Also see

	tnbreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	Also see

	tobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Reference
	Also see

	total
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	The total estimator
	Survey data
	The survey total estimator
	The poststratified total estimator
	Subpopulation estimation

	References
	Also see

	total postestimation
	Postestimation commands
	Remarks and examples
	Also see

	tpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	tpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	translate
	Description
	Quick start
	Syntax
	Options for print
	Options for translate
	Remarks and examples
	Overview
	Printing files
	Printing files, Mac and Windows
	Printing files, Unix
	Translating files from one format to another

	Stored results
	Also see

	truncreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	truncreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	ttest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	One-sample t test
	Two-sample t test
	Paired t test
	Two-sample t test compared with one-way ANOVA
	Immediate form
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	U
	update
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	V
	vce_option
	Description
	Syntax
	Options
	Remarks and examples
	Prefix commands
	Passing options in vce()

	Methods and formulas
	Also see

	view
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	vwls
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	vwls postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	W
	which
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	wildbootstrap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	CIs for linear combinations of coefficients
	Constructing a CI inverting the hypothesis test

	Acknowledgments
	References
	Also see

	X
	xi
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Background
	Indicator variables for simple effects
	Controlling the omitted dummy
	Categorical variable interactions
	Interactions with continuous variables
	Using xi: Interpreting output
	How xi names variables
	xi as a command rather than a command prefix
	Warnings

	Stored results
	Also see

	Z
	zinb
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	zinb postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Methods and formulas
	References
	Also see

	ziologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	ziologit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Reference
	Also see

	zioprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	zioprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	zip
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	zip postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	ztest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	One-sample z test
	Two-sample z test
	Paired z test
	Adjust for clustering
	Immediate form

	Stored results
	Methods and formulas
	One-sample z test
	Two-sample unpaired z test
	Paired z test

	References
	Also see

	[RPT] Reporting
	Contents
	Intro
	Description
	Remarks and examples
	Introduction
	Exporting to a Word (.docx) file
	Exporting to a PDF file
	Exporting to an Excel file
	Creating dynamic documents
	Converting file types

	docx2pdf
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	Dynamic documents intro
	Description
	Remarks and examples
	Also see

	Dynamic tags
	Description
	Remarks
	Descriptions of dynamic tags
	Version control
	Execute and include output from a block of Stata code
	Include strings and values of scalar expressions in text
	Include values of scalar expressions and formatted text in a .docx file
	Export and include a Stata graph
	Include a text file
	Disable dynamic text processing
	Process contents based on condition
	Skip contents based on condition
	Remove contents

	Also see

	dyndoc
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	References
	Also see

	dyntext
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	References
	Also see

	html2docx
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	markdown
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	References
	Also see

	putdocx intro
	Description
	Remarks and examples
	Introduction
	A first example
	Create a document
	Add a paragraph with text
	Add an image to a paragraph
	Add a table of estimation results

	Automating a report
	Workflow options for report building
	Create a complete document in Stata
	Create a document from Stata and Word
	Append files in Stata
	Append files in Word

	References
	Also see

	putdocx begin
	Description
	Quick start
	Syntax
	Options
	Options for putdocx begin
	Options for putdocx save
	Options for putdocx append

	Remarks and examples
	Creating and formatting a .docx file
	Including headers and footers
	Describing the document
	Saving or clearing the .docx file
	Appending .docx files

	Reference
	Also see

	putdocx collect
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Introduction
	Export a collection
	Specify the style for a collection

	Stored results
	References
	Also see

	putdocx pagebreak
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	putdocx paragraph
	Description
	Quick start
	Syntax
	Options
	Options for putdocx paragraph
	Options for putdocx text
	Options for putdocx textblock begin
	Options for putdocx textblock append
	Options for putdocx pagenumber
	Options for putdocx textfile
	Options for putdocx image

	Remarks and examples
	Adding a paragraph
	Formatting text
	Working with blocks of text
	Adding an image to the document
	Adding a bookmark to the document
	Inserting text files in the document

	Also see

	putdocx table
	Description
	Quick start
	Syntax
	Output types for tables

	Options
	table_options
	cell_options
	row_col_options
	cell_fmt_options
	exp_options
	image_options
	Option for set docx_maxtable

	Remarks and examples
	Introduction
	Creating basic tables
	Exporting summary statistics
	Exporting estimation results

	Creating advanced tables
	Customizing headers and footers with tables

	Stored results
	Reference
	Also see

	Appendix for putdocx
	Description
	Border patterns
	Chapter styles
	Colors
	Page number formats
	Paragraph styles
	Shading patterns
	Underline patterns
	Unsupported estimation commands

	Also see

	putexcel
	Description
	Quick start
	Menu
	Syntax
	Output types

	Options
	Remarks and examples
	Introduction
	Writing expressions and formatting cells
	Exporting summary statistics to Excel
	Exporting estimation results
	Exporting a table from a collection
	Exporting graphs and other images

	Appendix
	Codes for numeric formats
	Colors
	Border styles
	Background patterns

	Stored results
	References
	Also see

	putexcel advanced
	Description
	Quick start
	Menu
	Syntax
	Output types

	Options
	Remarks and examples
	Writing expressions and formatting cells
	Using formulas
	Exporting estimation results

	References
	Also see

	putpdf intro
	Description
	Remarks and examples
	Introduction
	Create a PDF file
	Add a paragraph with text
	Add an image to a paragraph
	Add table of estimation results

	Also see

	putpdf begin
	Description
	Quick start
	Syntax
	Options
	Options for putpdf begin
	Options for putpdf save

	Remarks and examples
	Creating and formatting a PDF file
	Describing the document
	Saving or clearing the PDF file

	References
	Also see

	putpdf collect
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Introduction
	Export a table with items from a collection

	Stored results
	References
	Also see

	putpdf pagebreak
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	putpdf paragraph
	Description
	Quick start
	Syntax
	Options
	Options for putpdf paragraph
	Options for putpdf text
	Options for putpdf image

	Remarks and examples
	Adding a paragraph
	Adding an image to the document

	Also see

	putpdf table
	Description
	Quick start
	Syntax
	Output types for tables

	Options
	table_options
	cell_options
	row_col_options
	cell_fmt_options
	Option for set pdf_maxtable

	Remarks and examples
	Creating basic tables
	Exporting summary statistics
	Exporting estimation results

	Creating advanced tables

	Stored results
	Reference
	Also see

	Appendix for putpdf
	Description
	Colors
	Unsupported estimation commands

	Also see

	set docx
	Description
	Syntax
	Remarks and examples
	Reference
	Also see

	Glossary

	[SEM] Structural Equation Modeling
	Contents
	Acknowledgments
	Reference

	Intro 1
	Description
	Remarks and examples
	Also see

	Intro 2
	Description
	Remarks and examples
	Using path diagrams to specify standard linear SEMs
	Specifying correlation
	Using the command language to specify standard linear SEMs
	Specifying generalized SEMs: Family and link
	Specifying generalized SEMs: Family and link, multinomial logistic regression
	Specifying generalized SEMs: Family and link, paths from response variables
	Specifying generalized SEMs: Multilevel mixed effects (2 levels)
	Specifying generalized SEMs: Multilevel mixed effects (3 levels)
	Specifying generalized SEMs: Multilevel mixed effects (4+ levels)
	Specifying generalized SEMs: Multilevel mixed effects with random intercepts
	Specifying generalized SEMs: Multilevel mixed effects with random slopes
	Specifying generalized SEMs: Latent class analysis (LCA)
	Specifying generalized SEMs: Latent class analysis, class predictors
	Specifying generalized SEMs: Latent class analysis, two latent variables

	Reference
	Also see

	Intro 3
	Description
	Remarks and examples
	Specifying indicator variables
	Specifying interactions with indicator variables
	Specifying categorical variables
	Specifying interactions with categorical variables
	Specifying endogenous variables

	Also see

	Intro 4
	Description
	Remarks and examples
	Differences in assumptions between sem and gsem
	sem: Choice of estimation method
	gsem: Choice of estimation method

	Treatment of missing values
	Variable types: Observed, latent, endogenous, exogenous, and error
	Constraining parameters
	Constraining path coefficients to specific values
	Constraining intercepts to specific values (suppressing the intercept)
	Constraining path coefficients or intercepts to be equal
	Constraining covariances to be equal (or to specific values)
	Constraining variances to specific values (or to be equal)

	Identification 1: Substantive issues
	Not all models are identified
	How to count parameters
	What happens when models are unidentified
	How to diagnose and fix the problem

	Identification 2: Normalization constraints (anchoring)
	Why the problem arises
	How the problem would manifest itself
	How sem (gsem) solves the problem for you
	Overriding sem's (gsem's) solution

	References
	Also see

	Intro 5
	Description
	Remarks and examples
	Single-factor measurement models
	Item response theory (IRT) models
	Multiple-factor measurement models
	Confirmatory factor analysis (CFA) models
	Structural models 1: Linear regression
	Structural models 2: Gamma regression
	Structural models 3: Binary-outcome models
	Structural models 4: Count models
	Structural models 5: Ordinal models
	Structural models 6: Multinomial logistic regression
	Structural models 7: Survival models
	Structural models 8: Dependencies between response variables
	Structural models 9: Unobserved inputs, outputs, or both
	Structural models 10: MIMIC models
	Structural models 11: Seemingly unrelated regression (SUR)
	Structural models 12: Multivariate regression
	Structural models 13: Mediation models
	Correlations
	Higher-order CFA models
	Correlated uniqueness model
	Latent growth models
	Models with reliability
	Multilevel mixed-effects models
	Latent class models
	Finite mixture models

	References
	Also see

	Intro 6
	Description
	Remarks and examples
	Comparing groups with sem
	The generic SEM model
	sem: Fitting the model for different groups of the data
	sem: Which parameters vary by default, and which do not
	sem: Specifying which parameters are allowed to vary in broad, sweeping terms
	sem: Adding constraints for path coefficients across groups
	sem: Adding constraints for means, variances, or covariances across groups
	sem: Adding constraints for some groups but not others
	sem: Adding paths for some groups but not others
	sem: Relaxing constraints

	Comparing groups with gsem
	gsem: Fitting the model for different groups of the data
	gsem: Which parameters vary by default, and which do not
	gsem: Specifying which parameters are allowed to vary in broad, sweeping terms
	gsem: Adding constraints for path coefficients across groups
	gsem: Adding constraints for means, variances, or covariances across groups
	gsem: Adding constraints for some groups but not others
	gsem: Adding paths for some groups but not others
	gsem: Relaxing constraints

	Reference
	Also see

	Intro 7
	Description
	Remarks and examples
	Replaying the model (sem and gsem)
	Displaying odds ratios, incidence-rate ratios, etc. (gsem only)
	Obtaining goodness-of-fit statistics (sem and gsem)
	Performing tests for including omitted paths and relaxing constraints (sem only)
	Performing tests of model simplification (sem and gsem)
	Displaying other results, statistics, and tests (sem and gsem)
	Obtaining predicted values (sem)
	Obtaining predicted values (gsem)
	Using contrast, pwcompare, and margins (sem and gsem)
	Accessing stored results

	Reference
	Also see

	Intro 8
	Description
	Options
	Remarks and examples
	Also see

	Intro 9
	Description
	Options
	Remarks and examples
	Reference
	Also see

	Intro 10
	Description
	Remarks and examples
	Also see

	Intro 11
	Description
	Remarks and examples
	Background
	How to use sem with SSD
	What you cannot do with SSD
	Entering SSD
	Entering SSD for multiple groups
	What happens when you do not set all the summary statistics
	Labeling SSD
	Making summary statistics from data for use by others

	Reference
	Also see

	Intro 12
	Description
	Remarks and examples
	Is your model identified?
	Convergence solutions generically described
	Temporarily eliminate option reliability()
	Use default normalization constraints
	Temporarily eliminate feedback loops
	Temporarily simplify the model
	Try other numerical integration methods (gsem only)
	Get better starting values (sem and gsem)
	Get better starting values (gsem)

	Also see

	Builder
	Description
	Remarks and examples
	Video example

	Reference

	Builder, generalized
	Description
	Remarks and examples
	Video example

	Reference

	estat eform
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	estat eqgof
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	estat eqtest
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat framework
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	estat ggof
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	estat ginvariant
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estat gof
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estat lcgof
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	References
	Also see

	estat lcmean
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat lcprob
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat mindices
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estat residuals
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estat scoretests
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	References
	Also see

	estat sd
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat stable
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	estat stdize
	Description
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	estat summarize
	Description
	Menu
	Syntax
	Options
	Stored results
	Also see

	estat teffects
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	Example 1
	Description
	Remarks and examples
	Single-factor measurement model
	Satorra--Bentler scaled chi-squared test
	Fitting the same model with gsem
	Fitting the same model with the Builder
	The measurement-error model interpretation

	References
	Also see

	Example 2
	Description
	Remarks and examples
	Background
	Creating the SSD
	At this point, we could save the dataset and stop
	Labeling the SSD
	Listing the SSD

	Reference
	Also see

	Example 3
	Description
	Remarks and examples
	Fitting multiple-factor measurement models
	Displaying standardized results
	Fitting the model with the Builder
	Obtaining equation-level goodness of fit by using estat eqgof

	References
	Also see

	Example 4
	Description
	Remarks and examples
	Reference
	Also see

	Example 5
	Description
	Remarks and examples
	Reference
	Also see

	Example 6
	Description
	Remarks and examples
	Fitting linear regression models
	Displaying standardized results
	Fitting the model with the Builder

	Also see

	Example 7
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder
	Checking stability with estat stable
	Reporting total, direct, and indirect effects with estat teffects

	References
	Also see

	Example 8
	Description
	Remarks and examples
	Using test to evaluate adding constraints
	Refitting the model with added constraints
	Using estat scoretests to test whether constraints can be relaxed

	Also see

	Example 9
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder
	Evaluating omitted paths with estat mindices
	Refitting the model

	References
	Also see

	Example 10
	Description
	Remarks and examples
	Fitting the MIMIC model
	Fitting the MIMIC model with the Builder
	Evaluating the residuals with estat residuals
	Performing likelihood-ratio tests with lrtest

	Reference
	Also see

	Example 11
	Description
	Remarks and examples
	Also see

	Example 12
	Description
	Remarks and examples
	Fitting the seemingly unrelated regression model
	Fitting the model with the Builder

	Also see

	Example 13
	Description
	Remarks and examples
	Also see

	Example 14
	Description
	Remarks and examples
	Also see

	Example 15
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder

	Reference
	Also see

	Example 16
	Description
	Remarks and examples
	Using sem to obtain correlation matrices
	Fitting the model with the Builder
	Testing correlations with estat stdize and test

	Also see

	Example 17
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder

	Reference
	Also see

	Example 18
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder

	Reference
	Also see

	Example 19
	Description
	Remarks and examples
	Reference
	Also see

	Example 20
	Description
	Remarks and examples
	Background
	Fitting the model with all the data
	Fitting the model with the group() option
	Fitting the model with the Builder

	Reference
	Also see

	Example 21
	Description
	Remarks and examples
	Also see

	Example 22
	Description
	Remarks and examples
	Also see

	Example 23
	Description
	Remarks and examples
	Background
	Fitting the constrained model

	Also see

	Example 24
	Description
	Remarks and examples
	Baseline model (reliability ignored)
	Model with reliability
	Model with two measurement variables and reliability

	Also see

	Example 25
	Description
	Remarks and examples
	Preparing data for conversion
	Converting to summary statistics form
	Publishing SSD
	Creating SSD with multiple groups

	Also see

	Example 26
	Description
	Remarks and examples
	Fitting the model with method(ml)
	Fitting the model with method(mlmv)
	Fitting the model with the Builder

	Also see

	Example 27g
	Description
	Remarks and examples
	Single-factor pass/fail measurement model
	Single-factor pass/fail + continuous measurement model
	Fitting the model with the Builder

	Also see

	Example 28g
	Description
	Remarks and examples
	1-PL IRT model with unconstrained variance
	1-PL IRT model with variance constrained to 1
	Obtaining item characteristic curves
	Fitting the model with the Builder

	References
	Also see

	Example 29g
	Description
	Remarks and examples
	Fitting the 2-PL IRT model
	Obtaining predicted difficulty and discrimination
	Using coeflegend to obtain the symbolic names of the parameters
	Graphing item characteristic curves
	Fitting the model with the Builder

	References
	Also see

	Example 30g
	Description
	Remarks and examples
	Fitting the two-level model
	Fitting the variance-components model
	Fitting the model with the Builder

	References
	Also see

	Example 31g
	Description
	Remarks and examples
	Fitting the two-factor model
	Fitting the model with the Builder

	Also see

	Example 32g
	Description
	Remarks and examples
	Structural model with measurement component
	Fitting the model with the Builder

	Also see

	Example 33g
	Description
	Remarks and examples
	Fitting the logit model
	Obtaining odds ratios
	Fitting the model with the Builder

	Reference
	Also see

	Example 34g
	Description
	Remarks and examples
	Fitting the combined model
	Obtaining odds ratios and incidence-rate ratios
	Fitting the model with the Builder

	Reference
	Also see

	Example 35g
	Description
	Remarks and examples
	Ordered probit
	Ordered logit
	Fitting the model with the Builder

	Reference
	Also see

	Example 36g
	Description
	Remarks and examples
	Fitting the MIMIC model
	Fitting the model with the Builder

	Reference
	Also see

	Example 37g
	Description
	Remarks and examples
	Simple multinomial logistic regression model
	Multinomial logistic regression model with constraints
	Fitting the simple multinomial logistic model with the Builder
	Fitting the multinomial logistic model with constraints with the Builder

	Reference
	Also see

	Example 38g
	Description
	Remarks and examples
	Random-intercept model, single-equation formulation
	Random-intercept model, within-and-between formulation
	Random-slope model, single-equation formulation
	Random-slope model, within-and-between formulation
	Fitting the random-intercept model with the Builder
	Fitting the random-slope model with the Builder

	Reference
	Also see

	Example 39g
	Description
	Remarks and examples
	Three-level negative binomial model
	Three-level Poisson model
	Testing for overdispersion
	Fitting the models with the Builder

	References
	Also see

	Example 40g
	Description
	Remarks and examples
	The crossed model
	Fitting the model with the Builder

	Reference
	Also see

	Example 41g
	Description
	Remarks and examples
	Two-level multinomial logistic model with shared random effects
	Two-level multinomial logistic model with separate but correlated random effects
	Fitting the model with the Builder

	References
	Also see

	Example 42g
	Description
	Remarks and examples
	One-level model with sem
	One-level model with gsem
	Two-level model with gsem
	Fitting the models with the Builder

	References
	Also see

	Example 43g
	Description
	Remarks and examples
	Fitting tobit regression models
	Fitting the model with the Builder

	Also see

	Example 44g
	Description
	Remarks and examples
	Fitting interval regression models
	Fitting the model with the Builder

	Also see

	Example 45g
	Description
	Remarks and examples
	The Heckman selection model as an SEM
	Fitting the Heckman selection model as an SEM
	Transforming results and obtaining rho
	Fitting the model with the Builder

	References
	Also see

	Example 46g
	Description
	Remarks and examples
	Fitting the treatment-effects model
	Fitting the model with the Builder

	References
	Also see

	Example 47g
	Description
	Remarks and examples
	Fitting the exponential model
	Obtaining hazard ratios
	Fitting the model with the Builder

	Also see

	Example 48g
	Description
	Remarks and examples
	Censoring and truncation
	Using stset to declare survival characteristics
	Fitting the loglogistic model
	Fitting the model with the Builder

	Reference
	Also see

	Example 49g
	Description
	Remarks and examples
	Fitting the multiple-group model
	Fitting the model with the Builder

	Also see

	Example 50g
	Description
	Remarks and examples
	References
	Also see

	Example 51g
	Description
	Remarks and examples
	Likelihood-ratio test
	Comparing models

	Reference
	Also see

	Example 52g
	Description
	Remarks and examples
	Fitting the two-class model
	Comparing models
	Fitting the three-class model with covariances

	References
	Also see

	Example 53g
	Description
	Remarks and examples
	References
	Also see

	Example 54g
	Description
	Remarks and examples
	References
	Also see

	gsem
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Default normalization constraints
	Default covariance assumptions
	How to solve convergence problems

	Stored results
	References
	Also see

	gsem estimation options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	gsem family-and-link options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	gsem group options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	gsem lclass options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	gsem model description options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	gsem path notation extensions
	Description
	Syntax
	Options
	Remarks and examples
	Specifying family and link
	Specifying multilevel nested latent variables
	Specifying multilevel crossed latent variables
	Specifying paths for a specific group
	Specifying paths for a specific latent class
	Specifying paths for a specific group and latent class

	Also see

	gsem postestimation
	Postestimation commands
	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	gsem reporting options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	lcstats
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	lincom
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	lrtest
	Description
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	Methods and formulas for gsem
	Description
	Remarks and examples
	Introduction
	Families of distributions
	The Bernoulli family
	The beta family
	The binomial family
	The ordinal family
	The multinomial family
	The Poisson family
	The negative binomial family
	The Gaussian family
	Reliability
	Point mass

	Link functions
	The logit link
	The probit link
	The complementary log--log link
	The log link
	The identity link

	Survival distributions
	The exponential distribution
	The Weibull distribution
	The gamma distribution
	The loglogistic distribution
	The lognormal distribution

	Models with continuous latent variables
	Continuous latent variables likelihood
	Gauss--Hermite quadrature
	Adaptive quadrature
	Laplacian approximation
	Continuous latent variables survey data
	Continuous latent variables predictions

	Models with categorical latent variables
	Categorical latent variables likelihood
	The EM algorithm
	Categorical latent variables survey data
	Categorical latent variables predictions

	References
	Also see

	Methods and formulas for sem
	Description
	Remarks and examples
	Variable notation
	Model and parameterization
	Summary data
	Maximum likelihood
	Weighted least squares
	Groups
	Fitted parameters
	Satorra{--}Bentler variance estimation
	Standardized parameters
	Reliability
	Postestimation

	References
	Also see

	nlcom
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	predict after gsem
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	predict after sem
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	sem
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Default normalization constraints
	Default covariance assumptions
	How to solve convergence problems

	Stored results
	References
	Also see

	sem and gsem option constraints()
	Description
	Syntax
	Remarks and examples
	Use with sem
	Use with gsem

	Also see

	sem and gsem option covstructure()
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	sem and gsem option from()
	Description
	Syntax
	Option
	Remarks and examples
	Syntax 1, especially useful when dealing with convergence problems
	Syntax 2, seldom used

	Also see

	sem and gsem option reliability()
	Description
	Syntax
	Option
	Remarks and examples
	Background
	Dealing with measurement error of exogenous variables
	Dealing with measurement error of endogenous variables
	What can go wrong

	Also see

	sem and gsem path notation
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem and gsem syntax options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem estimation options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem group options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem model description options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem option method()
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem option noxconditional
	Description
	Syntax
	Option
	Remarks and examples
	What is x conditional?
	When to specify noxconditional
	Option forcexconditional (a technical note)

	Also see

	sem option select()
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	sem path notation extensions
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem postestimation
	Postestimation commands
	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Reference
	Also see

	sem reporting options
	Description
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	sem ssd options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	ssd
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	test
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	testnl
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	Glossary
	Reference

	[SP] Spatial Autoregressive Models
	Contents
	Intro
	Description
	Remarks and examples
	References for learning SAR models
	Technical references on the development and fitting of SAR models

	Acknowledgments
	References

	Intro 1
	Description
	Remarks and examples
	Also see

	Intro 2
	Description
	Remarks and examples
	Understanding the W matrix
	Missing values, dropped observations, and the W matrix

	Reference
	Also see

	Intro 3
	Description
	Remarks and examples
	Three types of Sp data
	Type 1: Data with shapefiles
	Type 2: Data without shapefiles but including location information
	Type 3: Data without shapefiles or location information

	Sp can be used with cross-sectional data or panel data
	ID variables for cross-sectional data
	ID variables for panel data

	Also see

	Intro 4
	Description
	Remarks and examples
	Overview
	How to find and download shapefiles on the web
	Standard-format shapefiles
	Stata-format shapefiles
	Creating Stata-format shapefiles
	Step 1: Find and download a shapefile
	Step 2: Translate the shapefile to Stata format
	Step 3: Look at the translated data
	Step 4: Create a common ID variable for use with other data
	Step 5: Optionally, tell Sp to use the common ID variable
	Step 6: Set the units of the coordinates, if necessary

	Preparing your data
	Step 7a: Merge your cross-sectional data with the Stata-format shapefiles
	Step 7b: Merge your panel data with the Stata-format shapefiles

	Rules for working with Sp data, whether cross-sectional or panel

	Also see

	Intro 5
	Description
	Remarks and examples
	Preparation of cross-sectional data
	Preparation of panel data
	There are no rules as there are with shapefiles

	Also see

	Intro 6
	Description
	Remarks and examples
	Nongeographic spatial data
	Preparation of cross-sectional data
	Preparation of panel data
	There are no rules as there are with shapefiles

	Also see

	Intro 7
	Description
	Remarks and examples
	Research plan
	Finding and preparing data
	Finding a shapefile for Texas counties
	Creating the Stata-format shapefile
	Merging our data with the Stata-format shapefile

	Analyzing texas_ue.dta
	Testing whether ordinary regression is adequate
	spregress can reproduce regress results
	Fitting models with a spatial lag of the dependent variable
	Interpreting models with a spatial lag of the dependent variable
	Fitting models with a spatial lag of independent variables
	Interpreting models with a spatial lag of the independent variables
	Fitting models with spatially autoregressive errors
	Models can have all three kinds of spatial lag terms

	Also see

	Intro 8
	Description
	Remarks and examples
	spregress, gs2sls
	spregress, ml
	spivregress
	spxtregress
	spxtregress, re
	spxtregress, fe

	References
	Also see

	estat moran
	Description
	Quick start
	Menu for estat
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	grmap
	Description
	Quick start
	Menu
	Remarks and examples
	References
	Also see

	spbalance
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Balancing by dropping spatial units

	Stored results
	Also see

	spcompress
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Introduction
	Using the force option

	Stored results
	Also see

	spdistance
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Are coordinates really planar and not latitude and longitude?
	Reverse engineering planar distances
	More than you want to know about coordinates
	Planar coordinates
	Latitude and longitude coordinates

	Stored results
	Methods and formulas
	Reference
	Also see

	spgenerate
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Use with Sp data
	Use with other datasets

	Also see

	spivregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	spivregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins
	Remarks for margins

	estat impact
	Description for estat impact
	Syntax for estat impact
	Options for estat impact
	Remarks for estat impact
	Stored results for estat impact

	Methods and formulas
	Predictions
	Reduced-form mean
	Direct and indirect means
	Limited-information mean
	Full-information mean
	Naive-form predictor
	Linear predictor
	Residuals
	Uncorrelated residuals

	Impacts

	References
	Also see

	spmatrix
	Description
	Reference
	Also see

	spmatrix copy
	Description
	Quick start
	Menu
	Syntax
	Also see

	spmatrix create
	Description
	Quick start
	Menu
	Syntax
	Options for spmatrix create contiguity
	Option for spmatrix create idistance
	Options for both contiguity and idistance
	Remarks and examples
	Creating contiguity matrices
	Creating inverse-distance matrices
	Creating inverse-distance contiguity matrices
	The normalize() option
	Panel data

	Also see

	spmatrix drop
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	spmatrix dir
	Save and drop matrices you are not using

	Stored results
	Also see

	spmatrix export
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Using spmatrix export
	The spmatrix export text-file format

	Also see

	spmatrix fromdata
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	spmatrix import
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	spmatrix matafromsp
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Getting W and id
	Using W without involving the data in memory
	Using W involving the data in memory

	Also see

	spmatrix normalize
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Using spmatrix normalize after spmatrix import
	Using spmatrix normalize after other commands
	Using spmatrix normalize to change normalization

	Also see

	spmatrix note
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	spmatrix save
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	spmatrix spfrommata
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	W and v
	Simple use
	Advanced use

	References
	Also see

	spmatrix summarize
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	spmatrix use
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	spmatrix userdefined
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Sfcnname() versus Afcnname()
	Programming style
	Advanced programs
	Mixed approaches

	Also see

	spregress
	Description
	Quick start
	Menu
	Syntax
	Options for spregress, gs2sls
	Options for spregress, ml
	Remarks and examples
	Introduction
	Choosing weighting matrices and their normalization
	Weighting matrices
	Normalization of weighting matrices
	Direct and indirect effects and normalization

	Examples

	Stored results
	Methods and formulas
	Model
	GS2SLS estimator
	2SLS estimator of delta
	GMM estimator of rho based on 2SLS residuals
	GS2SLS estimator of delta
	Efficient GMM estimator of rhob based on GS2SLS residuals

	ML estimator
	Log-likelihood function

	Pseudo-R-squared

	References
	Also see

	spregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins
	Remarks for margins

	estat impact
	Description for estat impact
	Syntax for estat impact
	Options for estat impact
	Remarks for estat impact
	Stored results for estat impact

	Methods and formulas
	Predictions
	Reduced-form mean
	Direct and indirect means
	Limited-information mean
	Full-information mean
	Naive-form predictor
	Linear predictor
	Residuals
	Uncorrelated residuals

	Impacts

	References
	Also see

	spset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Determining whether and how data are spset
	Setting data for the first time
	Setting data with a standard-format shapefile
	Setting data with a Stata-format shapefile
	Setting data without a shapefile but with coordinates
	Setting data without a shapefile

	Modifying settings
	Modifying coordinates
	Modifying how coordinates are interpreted
	Modifying the ID variable
	Modifying whether the data are linked to a shapefile

	Converting cross-sectional data to panel data and vice versa

	Stored results
	Also see

	spshape2dta
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	spxtregress
	Description
	Quick start
	Menu
	Syntax
	Options for spxtregress, fe
	Options for spxtregress, re
	Remarks and examples
	Sp panel models
	The fixed-effects model
	The random-effects model
	The random-effects model with autoregressive panel effects
	Differences among models
	Examples

	Stored results
	Methods and formulas
	Fixed-effects estimators
	Random-effects estimators

	References
	Also see

	spxtregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins
	Remarks for margins

	estat impact
	Description for estat impact
	Syntax for estat impact
	Option for estat impact
	Remarks for estat impact
	Stored results for estat impact

	Methods and formulas
	Predictions
	Reduced-form mean
	Direct and indirect means
	Linear predictor

	Impacts in random-effects models
	Impacts in fixed-effects models

	Reference
	Also see

	Glossary

	[ST] Survival Analysis
	Contents
	Intro
	Description
	Also see

	Survival analysis
	Description
	Remarks and examples
	Introduction
	Declaring and converting count data
	Converting snapshot data
	Declaring and summarizing survival-time data
	Manipulating survival-time data
	Obtaining summary statistics, confidence intervals, tables, etc.
	Fitting regression models
	Prediction and model selection
	Sample size and power determination for survival analysis
	Converting survival-time data
	Programmer's utilities

	References
	Also see

	ct
	Description
	Also see

	ctset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Examples
	Data errors flagged by ctset

	Also see

	cttost
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	Discrete
	Description
	Acknowledgment
	References
	Also see

	estat gofplot
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	ltable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Methods and formulas
	Acknowledgments
	References
	Also see

	PH plots (interval-censored)
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for stintphplot
	Options for stintcoxnp

	Remarks and examples
	Methods and formulas
	References
	Also see

	PH plots (right-censored)
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for stphplot
	Options for stcoxkm
	Options for estat phtest

	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	snapspan
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Snapshot and time-span datasets
	Specifying varlist

	Also see

	st
	Description
	Also see

	st_is
	Description
	Syntax
	Remarks and examples
	Definitions of characteristics and st variables
	Outline of an st command
	Using the st_ct utility
	Comparison of st_ct with sttoct
	Verifying data
	Converting data

	Also see

	stbase
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	stbase without the at() option
	stbase with the at() option
	Single-failure st data where all subjects enter at time 0
	Single-failure st data where some subjects enter after time 0
	Single-failure st data with gaps and perhaps delayed entry
	Multiple-failure st data

	Also see

	stci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Single-failure data
	Multiple-failure data

	Stored results
	Methods and formulas
	References
	Also see

	stcox
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Cox regression with uncensored data
	Cox regression with censored data
	Treatment of tied failure times
	Cox regression with time-varying covariates in multiple-record data
	Cox regression with time-varying covariates using option tvc()
	Robust estimate of variance
	Cox regression with multiple-failure data
	Stratified estimation
	Cox regression as Poisson regression
	Cox regression with shared frailty

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	stcox postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Baseline functions
	Making baseline reasonable
	Residuals and diagnostic measures
	Multiple records per subject
	Predictions after stcox with the tvc() option
	Predictions after stcox with the shared() option
	estat concordance

	Stored results
	Methods and formulas
	estat concordance

	References
	Also see

	stcrreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	The case for competing-risks regression
	Using stcrreg
	Multiple competing-event types
	stcrreg as an alternative to stcox
	Multiple records per subject
	Option tvc() and testing the proportional-subhazards assumption

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	stcrreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Baseline functions
	Null models
	Measures of influence

	Methods and formulas
	References
	Also see

	stcurve
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	stcurve after stcox
	stcurve after streg
	stcurve after stcrreg
	stcurve after stintreg and stintcox
	stcurve after stmgintcox
	Using at() with stcurve

	References
	Also see

	stdescribe
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Reference
	Also see

	stfill
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	stgen
	Description
	Quick start
	Menu
	Syntax
	Functions
	Remarks and examples
	Also see

	stintcox
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Single- versus multiple-record interval-censored data formats
	Case II interval-censored data
	Time-varying covariates
	Standard error estimation with interval-censored data
	Current status or case I interval-censored data
	Testing the proportional-hazards assumption using the tvc() option

	Stored results
	Methods and formulas
	Data and model
	EM algorithm for computing parameter estimates
	Variance estimation using the profile log-likelihood function
	Stratified estimation
	Option tvc()

	Acknowledgments
	References
	Also see

	stintcox postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Baseline functions
	Residuals and diagnostic measures
	Postestimation after stintcox with the tvc() option
	Survivor curves for multiple-record-per-subject data with time-varying covariates

	Methods and formulas
	Predictions for single-record interval-censored data
	Predictions for multiple-record interval-censored data
	Survivor curves for interval-censored data

	References
	Also see

	stintreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Types of interval-censoring
	Case II interval-censored data
	Case I interval-censored data

	Parameterization of ancillary parameters
	Stratified estimation

	Stored results
	Methods and formulas
	Introduction
	Distributions and parameterizations
	Parameter estimation using interval-censored data

	References
	Also see

	stintreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Predicted values
	Residuals and diagnostic measures

	Methods and formulas
	References
	Also see

	stir
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	Reference
	Also see

	stmc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	Reference
	Also see

	stmgintcox
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Single- versus multiple-record-per-event interval-censored data formats
	Flexible ways to specify the model
	Single-record-per-event interval-censored data
	Incorporating time-varying covariates using the tvc() option
	Multiple-record-per-event interval-censored data

	Stored results
	Methods and formulas
	Data and model
	EM algorithm for computing parameter estimates
	Variance estimation using the profile log-pseudolikelihood function
	Clustered data estimation

	Acknowledgments
	References
	Also see

	stmgintcox postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat common
	Menu for estat
	Syntax for estat common
	Options for estat common

	Remarks and examples
	Estimating the average effect using estat common
	Baseline functions
	Residuals and diagnostic measures

	Stored results
	Methods and formulas
	References
	Also see

	stmh
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	References
	Also see

	stptime
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	References
	Also see

	strate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgments
	Reference
	Also see

	streg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Distributions
	Examples
	Parameterization of ancillary parameters
	Stratified estimation
	(Unshared-) frailty models
	Shared-frailty models

	Stored results
	Methods and formulas
	Parameter estimation

	References
	Also see

	streg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	sts
	Description
	Syntax
	Remarks and examples
	Listing, graphing, and generating variables
	Comparing survivor or cumulative hazard functions
	Testing equality of survivor functions
	Covariate-adjusted estimates
	Counting the number lost to censoring
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	sts generate
	Description
	Quick start
	Menu
	Syntax
	Functions
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	sts graph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Including the number lost on the graph
	Graphing the Nelson{--}Aalen cumulative hazard function
	Graphing the hazard function
	Adding an at-risk table
	On boundary bias for smoothed hazards
	Video example

	Methods and formulas
	Smoothed hazard estimate

	References
	Also see

	sts list
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Methods and formulas
	References
	Also see

	sts test
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	The log-rank test
	The Wilcoxon (Breslow--Gehan) test
	The Tarone--Ware test
	The Peto--Peto--Prentice test
	The generalized Fleming--Harrington tests
	The ``Cox'' test
	The trend test
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	stset
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for use with stset and streset
	Options unique to streset
	Options for st

	Remarks and examples
	What are survival-time data?
	Key concepts
	Survival-time datasets
	Using stset
	Two concepts of time
	The substantive meaning of analysis time
	Setting the failure event
	Setting multiple failures
	First entry times
	Final exit times
	Intermediate exit and reentry times (gaps)
	if() versus if exp
	Past and future records
	Using streset
	Performance and multiple-record-per-subject datasets
	Sequencing of events within t
	Weights
	Data warnings and errors flagged by stset
	Using survival-time data in Stata
	Video example

	References
	Also see

	stsplit
	Description
	Quick start
	Menu
	Syntax
	Options for stsplit
	Option for stjoin
	Remarks and examples
	What stsplit does and why
	Using stsplit to split at designated times
	Time versus analysis time
	Splitting data on recorded ages
	Using stsplit to split at failure times

	Acknowledgments
	References
	Also see

	stsum
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Single-failure data
	Multiple-failure data
	Video example

	Stored results
	Methods and formulas
	Also see

	sttocc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgments
	References
	Also see

	sttoct
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Case 1: entvar not specified
	Case 2: entvar specified

	Also see

	stvary
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Video example

	Stored results
	Reference
	Also see

	adjustfor_option
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Using adjustfor() with sts, stphplot, and stintphplot
	Syntax of at()

	Also see

	Glossary

	[SVY] Survey Data
	Contents
	Intro
	Description
	Also see

	Survey
	Description
	Remarks and examples
	Introduction
	Survey design tools
	Survey data analysis tools
	Survey data concepts
	Tools for programmers of new survey commands
	Video examples

	Acknowledgments
	References
	Also see

	bootstrap_options
	Description
	Syntax
	Options
	Also see

	brr_options
	Description
	Syntax
	Options
	Also see

	Calibration
	Description
	Remarks and examples
	Methods and formulas
	References
	Also see

	Direct standardization
	Description
	Remarks and examples
	Methods and formulas
	References
	Also see

	estat
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for estat effects
	Options for estat lceffects
	Options for estat size
	Options for estat sd
	Options for estat cv
	Options for estat gof
	Options for estat vce

	Remarks and examples
	Stored results
	Methods and formulas
	Design effects
	Linear combinations
	Misspecification effects
	Population and subpopulation standard deviations
	Coefficient of variation
	Goodness of fit for binary response models

	References
	Also see

	jackknife_options
	Description
	Syntax
	Options
	Also see

	ml for svy
	Remarks and examples
	Reference
	Also see

	Poststratification
	Description
	Remarks and examples
	Methods and formulas
	References
	Also see

	sdr_options
	Description
	Syntax
	Options
	Also see

	Subpopulation estimation
	Description
	Remarks and examples
	Methods and formulas
	Subpopulation totals
	Subpopulation estimates other than the total
	Subpopulation with replication methods

	References
	Also see

	svy
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	svy bootstrap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	svy brr
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	svy estimation
	Description
	Menu
	Remarks and examples
	Overview of survey analysis in Stata
	Descriptive statistics
	Regression models
	Health surveys

	References
	Also see

	svy jackknife
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	svy postestimation
	Postestimation commands
	predict
	margins
	Remarks and examples
	References
	Also see

	svy sdr
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	svy: tabulate oneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Publish your tables

	Stored results
	Methods and formulas
	Reference
	Also see

	svy: tabulate twoway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	The Rao and Scott correction
	Wald statistics
	Properties of the statistics
	Publish your tables

	Stored results
	Methods and formulas
	The table items
	Confidence intervals
	The test statistics

	References
	Also see

	svydescribe
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	svymarkout
	Description
	Syntax
	Remarks and examples
	Stored results
	Also see

	svyset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction to survey design characteristics
	Finite population correction (FPC)
	Multiple-stage designs and with-replacement sampling
	Replication-weight variables
	Combining datasets from multiple surveys
	Video example

	Stored results
	References
	Also see

	Variance estimation
	Description
	Remarks and examples
	Variance of the total
	Variance for census data
	Certainty sampling units
	Strata with one sampling unit
	Ratios and other functions of survey data
	Linearized/robust variance estimation
	The bootstrap
	BRR
	The jackknife
	Successive difference replication
	Confidence intervals

	References
	Also see

	Glossary

	[TABLES] Customizable Tables
	Contents
	Intro
	Description
	Remarks and examples
	What is in this manual?
	What are collections?
	Do you need collections?
	The dtable and etable commands
	The table command

	Acknowledgments
	Reference

	Intro 1
	Description
	Remarks and examples
	Also see

	Intro 2
	Description
	Remarks and examples
	Tags, dimensions, and levels
	Introducing collect:
	Introducing collect layout
	Introducing collect recode

	Using collect layout
	Selecting specific levels of a dimension

	What is in my collection?
	Introducing collect levelsof
	Introducing collect label list
	Where do result labels come from?
	Introducing collect label levels
	Introducing collect label save
	Introducing collect label use

	Interactions in collect layout
	Introducing collect style cell
	Introducing collect preview
	Reordering columns
	More layout
	Introducing collect style autolevels

	What is in my collection, regression edition
	The result levels _r_b, _r_se, ...
	The colname dimension
	Labels on levels of dimension colname
	collect layout with regression results
	Introducing collect style showbase
	Tables of model statistics

	What is in my collection, multiple-equation models (dimension coleq)
	What is in my collection, collecting results from multiple commands (dimension cmdset)
	Seeing what is my collection
	Introducing collect dims
	Factor variables in regressions and other commands

	Special dimensions created by table
	Dimension variables
	Variables from statistic() option---dimension var
	Dimension colname and matching to regressions
	Index of command() options---dimension command
	Index of command() and statistic() options---dimension statcmd
	Other dimensions

	Let's talk styles
	Overview
	Basic targeting
	Advanced targeting
	Saving and using

	Exporting
	Saving collections
	Managing collections

	Also see

	Intro 3
	Description
	Remarks and examples
	Outline of basic steps and key commands

	References
	Also see

	Intro 4
	Description
	Remarks and examples
	Introduction
	Prepare to collect results
	Collect results
	Combine collections
	Explore the collection
	Modify the collection
	Lay out rows and columns of the table
	Preview the table
	Modify labels in row and column headers
	Control display of zero coefficients in regression results
	Change styles{---}formats, bolding, colors, and more
	Add a title and notes
	Query collection style properties
	Export the table
	Save styles and labels
	Save the collection
	Manage collections

	Also see

	Intro 5
	Description
	Remarks and examples
	Also see

	Tables Builder
	Description
	Menu
	Remarks and examples
	Overview
	Laying out a table
	Laying out a multiway table
	Modifying the layout
	Laying out stacked dimensions
	Placing multiple results in a cell
	Multiple tables
	Changing row and column headers
	Changing cell/results appearance
	Adding significance stars
	Adding a custom table title
	Changing table title appearance
	Adding table notes
	Changing table note appearance
	Exporting a table
	Advanced tools

	collect get
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Support for other prefix commands
	Fully supported
	Partially supported
	Not supported

	Collecting results from margins, contrast, and pwcompare
	Results not collected by default

	Also see

	collect unget
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	collect addtags
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	collect clear
	Description
	Syntax
	Remarks and examples
	Also see

	collect combine
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	collect composite
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Example 1: Table of means and standard deviations
	Example 2: Table of means, medians, standard deviations, and confidence intervals
	Example 3: Table of regression results

	Reference
	Also see

	collect copy
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	collect create
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	collect dims
	Description
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	collect dir
	Description
	Syntax
	Remarks and examples
	Also see

	collect drop
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	collect label
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for collect label dim
	Options for collect label levels
	Options for collect label save
	Options for collect label use
	Option for collect label drop
	Options for collect label list

	Remarks and examples
	Stored results
	References
	Also see

	collect levelsof
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	collect notes
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Adding notes to a table
	Removing notes
	Targeting notes to a specific table

	Stored results
	Reference
	Also see

	collect query
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	collect recode
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	collect remap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	collect rename
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	collect save
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	collect set
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	collect stars
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	collect title
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	collect use
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	collect layout
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	collect preview
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	collect export
	Description
	Quick start
	Menu
	Syntax
	Options
	export_options
	docx_options
	html_options
	pdf_options
	excel_options
	tex_options
	smcl_option
	txt_option
	md_option

	Remarks and examples
	Introduction
	Styles for different documents
	Creating more extensive documents

	Stored results
	Also see

	collect style autolevels
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	collect style cell
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	collect style clear
	Description
	Syntax
	Remarks and examples
	Stored results
	Also see

	collect style column
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	collect style _cons
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	collect style header
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	collect style html
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	collect style notes
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	collect style putdocx
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	collect style putpdf
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	collect style row
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	collect style save
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	collect style showbase
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	References
	Also see

	collect style showempty
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	collect style showomit
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	collect style table
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	collect style tex
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	collect style title
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	collect style use
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	Appendix
	Description
	Border patterns
	Diagonal border patterns
	Colors
	Shading patterns
	Underline patterns

	Also see

	Collection principles
	Description
	Remarks and examples
	Basic concepts
	Basics in practice
	How collect layout processes tag specifications
	The process in practice

	Also see

	Predefined styles
	Description
	Remarks and examples
	Creating a new style
	Default styles
	default
	dtable
	etable
	lcstats
	table
	tabulate

	Other styles
	anova
	coef-table
	table-1
	table-reg1
	table-reg1-fv1
	table-reg2
	table-reg2-fv1
	table-reg3
	table-reg3-fv1
	table-right
	table-tab2

	Targeted styles
	anova_borders
	anova_halign
	anova_headers
	anova_layout
	anova_nformats
	coef-table_halign
	coef-table_headers
	default_borders
	default_cidelimiter
	default_halign
	default_headers
	default_margins
	default_nformats
	default_smcl
	default_tex
	dtable_borders
	dtable_composites
	dtable_font
	dtable_halign
	dtable_headers
	dtable_nformats
	etable_borders
	etable_etable
	etable_font
	etable_halign
	etable_headers
	etable_nformats
	etable_showitem
	etable_stars
	lcstats_font
	lcstats_halign
	lcstats_headers
	lcstats_nformats
	lcstats_smcl
	lcstats_txt
	table_cidelimiter
	table_headers
	table_nformats
	tabulate_borders
	tabulate_headers
	tabulate_nformats

	Modifying the default style

	Also see

	set collect_double
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set collect_label
	Description
	Syntax
	Option
	Remarks and examples
	Overview
	Labels for e-class results
	Labels for r-class results
	Labels for other results

	Also see

	set collect_style
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set collect_warn
	Description
	Syntax
	Option
	Remarks and examples

	set dtable_style
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set etable_style
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set table_style
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set tabulate_style
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	Example 1
	Description
	Remarks and examples
	Table of correlations
	Table of correlations, means, and standard deviations

	Reference
	Also see

	Example 2
	Description
	Remarks and examples
	Computing and collecting statistics
	Customizing the table

	Reference
	Also see

	Example 3
	Description
	Remarks and examples
	Computing statistics with the table command
	Customizing the table

	Reference
	Also see

	Example 4
	Description
	Remarks and examples
	Collecting statistics
	Customizing the table

	Reference
	Also see

	Example 5
	Description
	Remarks and examples
	Collecting regression results and creating a table
	Customizing the table

	Reference
	Also see

	Example 6
	Description
	Remarks and examples
	Collecting regression results and creating a table
	Customizing the table

	Reference
	Also see

	Example 7
	Description
	Remarks and examples
	Introduction
	Table of regression results with complex survey data

	Reference
	Also see

	Example 8
	Description
	Remarks and examples
	Reference
	Also see

	Glossary

	[TS] Time Series
	Contents
	Intro
	Description
	Also see

	Time series
	Description
	Remarks and examples
	Data management tools and time-series operators
	Univariate time series: Estimators
	Univariate time series: Time-series smoothers and filters
	Univariate time series: Diagnostic tools
	Multivariate time series: Estimators
	Multivariate time series: Diagnostic tools
	Forecasting models
	Additional resources

	References
	Also see

	arch
	Description
	Quick start
	Menu
	Syntax
	Details of syntax
	Common models
	Reading arch output

	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Priming values
	Likelihood from prediction error decomposition
	Missing data

	References
	Also see

	arch postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	arfima
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	The likelihood function
	The autocovariance function
	The profile likelihood
	The MPL

	References
	Also see

	arfima postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Forecasting after ARFIMA
	IRF results for ARFIMA

	Methods and formulas
	References
	Also see

	arfimasoc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	arima
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	ARIMA models
	Multiplicative seasonal ARIMA models
	ARMAX models
	Dynamic forecasting
	Video example

	Stored results
	Methods and formulas
	ARIMA model
	Kalman filter equations
	Kalman filter or state-space representation of the ARIMA model
	Kalman filter recursions
	Kalman filter initial conditions
	Likelihood from prediction error decomposition
	Missing data

	References
	Also see

	arima postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Forecasting after ARIMA
	IRF results for ARIMA

	Reference
	Also see

	arimasoc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	corrgram
	Description
	Quick start
	Menu
	Syntax
	Options for corrgram
	Options for ac and pac
	Remarks and examples
	Basic examples
	Video example

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	cumsp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	dfactor
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	An introduction to dynamic-factor models
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	dfactor postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	Also see

	dfgls
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	dfuller
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estat acplot
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	estat aroots
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	estat sbcusum
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Introduction
	Cusum of recursive residuals
	Cusum of OLS residuals

	Stored results
	Methods and formulas
	References
	Also see

	estat sbknown
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estat sbsingle
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	fcast compute
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Predictions after var and svar
	Dynamic forecasts after vec

	References
	Also see

	fcast graph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	forecast
	Description
	Quick start
	Syntax
	Remarks and examples
	Video example

	References
	Also see

	forecast adjust
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Reference
	Also see

	forecast clear
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	forecast coefvector
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Simulations with coefficient vectors

	Methods and formulas
	Also see

	forecast create
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	forecast describe
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	forecast drop
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	forecast estimates
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	The advise option
	Using saved estimation results
	The predict option
	Forecasting with ARIMA models

	References
	Also see

	forecast exogenous
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	forecast identity
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	forecast list
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	forecast query
	Description
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	forecast solve
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Performing conditional forecasts
	Using simulations to measure forecast accuracy

	Stored results
	Methods and formulas
	References
	Also see

	irf
	Description
	Quick start
	Syntax
	Remarks and examples
	References
	Also see

	irf add
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	irf cgraph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf create
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introductory examples
	Technical aspects of IRF files
	IRFs and FEVDs
	IRF results for VAR models
	IRF results for VEC models
	IRF results for ARIMA and ARFIMA
	IRF results for panel VAR models

	Methods and formulas
	Impulse--response function formulas for VAR models
	Dynamic-multiplier function formulas for VAR models
	Forecast-error variance decomposition formulas for VAR models
	Impulse{--}response function formulas for VEC models
	Algorithms for bootstrapping the VAR IRF and FEVD standard errors
	Impulse--response function formulas for ARIMA and ARFIMA

	References
	Also see

	irf ctable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf describe
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf drop
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	irf graph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf ograph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf rename
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	irf set
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf table
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	ivlpirf
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	ivlpirf postestimation
	Postestimation commands
	Remarks and examples
	Also see

	lpirf
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	lpirf postestimation
	Postestimation commands
	Remarks and examples
	Methods and formulas
	References
	Also see

	mgarch
	Description
	Syntax
	Remarks and examples
	An introduction to MGARCH models
	Diagonal vech MGARCH models
	Conditional correlation MGARCH models
	Constant conditional correlation MGARCH model
	Dynamic conditional correlation MGARCH model
	Varying conditional correlation MGARCH model

	Error distributions and quasimaximum likelihood
	Treatment of missing data

	References
	Also see

	mgarch ccc
	Description
	Quick start
	Menu
	Syntax
	Options
	Eqoptions

	Remarks and examples
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	mgarch ccc postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mgarch dcc
	Description
	Quick start
	Menu
	Syntax
	Options
	Eqoptions

	Remarks and examples
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	mgarch dcc postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mgarch dvech
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	mgarch dvech postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mgarch vcc
	Description
	Quick start
	Menu
	Syntax
	Options
	Eqoptions

	Remarks and examples
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	mgarch vcc postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mswitch
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Markov-switching dynamic regression
	Markov-switching AR
	Video example

	Stored results
	Methods and formulas
	Markov-switching regression models
	Markov chains
	Specification of Markov-switching models
	Markov-switching dynamic regression
	Markov-switching AR

	Likelihood function with latent states
	Smoothed probabilities
	Unconditional probabilities

	References
	Also see

	mswitch postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat

	Remarks and examples
	One-step predictions
	Dynamic predictions
	Model fit and state predictions

	Stored results
	Methods and formulas
	References
	Also see

	newey
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	newey postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	pergram
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	pperron
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	prais
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	prais postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	psdensity
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	The frequency-domain approach to time series
	Some ARMA examples

	Methods and formulas
	Introduction
	Spectral density after arima or arfima
	Spectral density after ucm

	References
	Also see

	rolling
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgment
	References
	Also see

	sspace
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	An introduction to state-space models
	Some stationary state-space models
	Some nonstationary state-space models

	Stored results
	Methods and formulas
	References
	Also see

	sspace postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	References
	Also see

	threshold
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	Model with more than two regions

	References
	Also see

	threshold postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Also see

	tsappend
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using tsappend with time-series data
	Using tsappend with panel data

	Stored results
	Also see

	tsfill
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Introduction
	Using tsfill with time-series data
	Using tsfill with panel data
	Video example

	Also see

	tsfilter
	Description
	Syntax
	Remarks and examples
	An example dataset
	A baseline method: Symmetric moving-average (SMA) filters
	An overview of filtering in the frequency domain
	SMA revisited: The Baxter--King filter
	Filtering a random walk: The Christiano--Fitzgerald filter
	A one-parameter high-pass filter: The Hodrick--Prescott filter
	A two-parameter high-pass filter: The Butterworth filter

	Methods and formulas
	Acknowledgments
	References
	Also see

	tsfilter bk
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tsfilter bw
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tsfilter cf
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tsfilter hp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tsline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic examples
	Advanced example
	Video example

	References
	Also see

	tsreport
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic examples
	Video example

	Stored results
	Also see

	tsrevar
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	tsset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Panel data
	Video example

	Stored results
	References
	Also see

	tssmooth
	Description
	Syntax
	Remarks and examples
	References
	Also see

	tssmooth dexponential
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tssmooth exponential
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples
	Treatment of missing values

	Stored results
	Methods and formulas
	References
	Also see

	tssmooth hwinters
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	tssmooth ma
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	Reference
	Also see

	tssmooth nl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	tssmooth shwinters
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Holt{--}Winters seasonal multiplicative method
	Holt{--}Winters seasonal additive method

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	ucm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	An introduction to UCMs
	A random-walk model example
	Frequency-domain concepts used in the stochastic-cycle model
	Another random-walk model example
	Comparing UCM and ARIMA
	A local-level model example
	Comparing UCM and ARIMA, revisited
	Models for the trend and idiosyncratic components
	Seasonal component

	Stored results
	Methods and formulas
	Introduction
	State-space formulation
	Cyclical component extensions

	References
	Also see

	ucm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat period

	Remarks and examples
	Methods and formulas
	Also see

	var intro
	Description
	Remarks and examples
	Introduction to VAR models
	Introduction to SVAR models
	Short-run SVAR models
	Long-run restrictions
	Instrumental-variables SVAR models
	IRFs and FEVDs

	References
	Also see

	var
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Fitting models with some lags excluded
	Fitting models with exogenous variables
	Fitting models with constraints on the coefficients

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	var postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Model selection and inference
	Forecasting

	Methods and formulas
	Also see

	var ivsvar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Structural VAR models with external instruments
	Multiple target shocks

	Stored results
	Methods and formulas
	GMM
	Minimum distance

	References
	Also see

	var ivsvar postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Model selection and inference
	Forecasting
	Predictions

	Also see

	var svar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Short-run SVAR models
	Long-run SVAR models

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	var svar postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Model selection and inference
	Forecasting

	Also see

	varbasic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varbasic postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	vargranger
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varlmar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varnorm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varsoc
	Description
	Quick start
	Menu
	Syntax
	Preestimation options
	Postestimation option
	Remarks and examples
	Stored results
	Methods and formulas
	Likelihood-ratio statistic
	Model-order statistics
	Lutstats

	References
	Also see

	varstable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varwle
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	vec intro
	Description
	Remarks and examples
	Introduction to cointegrating VEC models
	VEC model estimation in Stata

	References
	Also see

	vec
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Specification of constants and trends
	Collinearity

	Stored results
	Methods and formulas
	General specification of the VEC model
	The log-likelihood function
	Estimation with Johansen identification
	Estimation with constraints: beta identified
	Estimation with constraints: beta not identified
	Formulas for the information criteria
	Formulas for predict

	References
	Also see

	vec postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Model selection and inference
	Forecasting

	Also see

	veclmar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	vecnorm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	vecrank
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	The trace statistic
	The maximum-eigenvalue statistic
	Minimizing an information criterion

	Stored results
	Methods and formulas
	References
	Also see

	vecstable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	wntestb
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	wntestq
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xcorr
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	Glossary
	References

	[XT] Longitudinal Data/Panel Data
	Contents
	Intro
	Description
	Also see

	xt
	Description
	Remarks and examples
	References
	Also see

	quadchk
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	What makes a good random-effects model fit?
	How do I know whether I have a good quadrature approximation?
	What can I do to improve my results?

	vce_options
	Description
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	xtabond
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtabond postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat abond

	Remarks and examples
	estat abond
	estat sargan

	Methods and formulas
	Reference
	Also see

	xtcloglog
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	xtcloglog, re and the robust VCE estimator

	References
	Also see

	xtcloglog postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtcointtest
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for xtcointtest kao
	Options for xtcointtest pedroni
	Options for xtcointtest westerlund

	Remarks and examples
	Overview
	Test details
	Kao tests
	Pedroni tests
	Westerlund tests

	Stored results
	Methods and formulas
	Overview
	Kao tests
	Pedroni tests
	Westerlund tests
	Long-run variance

	References
	Also see

	xtdata
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Also see

	xtdescribe
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	xtdidregress
	Description
	Quick start
	Menu
	Syntax
	Reference

	xtdpd
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	xtdpd postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat abond

	Remarks and examples
	estat abond
	estat sargan

	Methods and formulas
	Reference
	Also see

	xtdpdsys
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	xtdpdsys postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat abond

	Remarks and examples
	estat abond
	estat sargan

	Methods and formulas
	Reference
	Also see

	xteintreg
	Description
	Quick start
	Menu
	Syntax

	xteoprobit
	Description
	Quick start
	Menu
	Syntax

	xteprobit
	Description
	Quick start
	Menu
	Syntax

	xteregress
	Description
	Quick start
	Menu
	Syntax

	xtfrontier
	Description
	Quick start
	Menu
	Syntax
	Options for time-invariant model
	Options for time-varying decay model
	Remarks and examples
	Introduction
	Time-invariant model
	Time-varying decay model

	Stored results
	Methods and formulas
	References
	Also see

	xtfrontier postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	xtgee
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	Calculating GEE for GLM
	Correlation structures
	Independent
	Exchangeable
	Autoregressive and stationary
	Nonstationary and unstructured

	References
	Also see

	xtgee postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Also see

	xtgls
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Heteroskedasticity across panels
	Correlation across panels (cross-sectional correlation)
	Autocorrelation within panels

	Stored results
	Methods and formulas
	References
	Also see

	xtgls postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xthdidregress
	Description
	Quick start
	Menu
	Syntax

	xtheckman
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtheckman postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xthtaylor
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xthtaylor postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	References
	Also see

	xtintreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtintreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	xtivreg
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for BE model
	Options for FE model
	Options for FD model
	Remarks and examples
	Stored results
	Methods and formulas
	xtivreg, fd
	xtivreg, fe
	xtivreg, be
	xtivreg, re

	Acknowledgment
	References
	Also see

	xtivreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtline
	Description
	Quick start
	Menu
	Syntax
	Options for graph by panel
	Options for overlaid panels
	Remarks and examples
	References
	Also see

	xtlogit
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for FE model
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	xtlogit, re and the robust VCE estimator

	References
	Also see

	xtlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtmlogit
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for FE model
	Remarks and examples
	Introduction
	The random-effects estimator
	The conditional fixed-effects estimator
	Curse of dimensionality

	Examples

	Stored results
	Methods and formulas
	References
	Also see

	xtmlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtnbreg
	Description
	Quick start
	Menu
	Syntax
	Options for RE/FE models
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtnbreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Methods and formulas
	Also see

	xtologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	xtologit and the robust VCE estimator

	References
	Also see

	xtologit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtoprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	xtoprobit and the robust VCE estimator

	References
	Also see

	xtoprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtpcse
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	xtpcse postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtpoisson
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for FE model
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	xtpoisson, re and the robust VCE estimator

	References
	Also see

	xtpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	xtprobit
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	xtprobit, re and the robust VCE estimator

	References
	Also see

	xtprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtrc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtrc postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for RE model
	Options for CRE model
	Options for BE model
	Options for FE model
	Options for MLE model
	Options for PA model

	Remarks and examples
	Assessing goodness of fit
	xtreg and associated commands

	Stored results
	Methods and formulas
	xtreg, fe
	Absorbed variables with xtreg, fe

	xtreg, be
	xtreg, re
	xtreg, cre
	xtreg, mle
	xtreg, pa

	Acknowledgments
	References
	Also see

	xtreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	xttest0
	Description for xttest0
	Menu for xttest0
	Syntax for xttest0

	estat mundlak
	Description for estat mundlak
	Menu for estat
	Syntax for estat mundlak
	Options for estat mundlak

	Remarks and examples
	Stored results
	Methods and formulas
	Predictions for fixed-effects model with absorbed variables
	xttest0
	estat mundlak

	References
	Also see

	xtregar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	The fixed-effects model
	The random-effects model

	Stored results
	Methods and formulas
	Estimating rho
	Transforming the data to remove the AR(1) component
	The within estimator of the fixed-effects model
	The Baltagi--Wu GLS estimator
	The test statistics

	Acknowledgment
	References
	Also see

	xtregar postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	xtstreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Survival models
	xtstreg and the robust VCE estimator

	References
	Also see

	xtstreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	xtsum
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	xttab
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	xttobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xttobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	xtunitroot
	Description
	Quick start
	Menu
	Syntax
	Options
	LLC_options
	HT_options
	Breitung_options
	IPS_options
	Fisher_options
	Hadri_options

	Remarks and examples
	Overview
	Levin--Lin--Chu test
	Harris--Tsavalis test
	Breitung test
	Im--Pesaran--Shin test
	Fisher-type tests
	Hadri LM test

	Stored results
	Methods and formulas
	Levin--Lin--Chu test
	Harris--Tsavalis test
	Breitung test
	Im--Pesaran--Shin test
	Fisher-type tests
	Hadri LM test

	Acknowledgments
	References
	Also see

	xtvar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Panel-data VAR model formulation
	Fitting a panel-data VAR model with xtvar
	Modifying lags
	Reducing moment conditions by collapsing the instrument matrix
	Lag-order selection
	Including endogenous covariates
	Lag exclusion tests
	Granger causality test
	Verifying the stability condition of the VAR
	IRFs

	Stored results
	Methods and formulas
	Introduction
	Eliminating the fixed effect
	Constructing the instrument matrix
	Dealing with gaps and missing data
	Restricting instrument lags
	Collapsing the instrument matrix
	Adding other covariates
	Exogenous regressors
	Endogenous regressors
	Predetermined regressors
	The number of instruments revisited

	A concise representation of the GMM estimator
	Estimators
	One-step estimator
	Two-step estimator

	Hansen's J statistic

	Acknowledgment
	References
	Also see

	xtvar postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	xtvarsoc
	Description for xtvarsoc
	Menu for xtvarsoc
	Syntax for xtvarsoc
	Options for xtvarsoc

	Remarks and examples
	Model stability and hypothesis testing
	IRFs
	MMSC

	Stored results
	Methods and formulas
	predict
	irf create
	xtvarsoc

	References
	Also see

	Glossary

	[I] Index
	Contents
	Combined subject table of contents
	Acronym glossary
	Vignette index
	Author index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Subject index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

