Description Remarks and examples Reference

Description

Seven commands for fitting choice models (CM) are documented in this manual. These commands are used almost exclusively with choice data. Many other commands can also be useful for modeling choice data but are often used with other types of data as well. In this entry, we give you an overview of estimation commands available in Stata for modeling choice data.

Remarks and examples

Remarks are presented under the following headings:

Specialized choice model commands Other commands for choice models Models for cross-sectional data Models for panel data Multilevel models for clustered data

Specialized choice model commands

The following commands are documented in this manual and are designed specifically for fitting choice models:

Estimators for discrete choices

cmclogit	Conditional logit (McFadden's) choice model
cmmixlogit	Mixed logit choice model
cmmprobit	Multinomial probit choice model
nlogit	Nested logit regression

See [CM] Intro 5 for details on these estimators.

Estimators for rank-ordered choices

cmrologit	Rank-ordered logit choice model
cmroprobit	Rank-ordered probit choice model

See [CM] Intro 6 for details on these estimators.

Estimator for discrete choices with panel data

cmxtmixlogit Panel-data mixed logit choice model

See [CM] Intro 7 for details on this estimator.

What is special about the seven estimators listed here is that they all require your data to be in long form. That is, each case consists of multiple Stata observations, one for each of its available alternatives. All of these estimators allow you to include alternative-specific variables as covariates in your model. In addition, each of these estimators handles unbalanced choice sets. In [CM] Intro 5, [CM] Intro 6, and [CM] Intro 7, we provide more in-depth introductions to these estimators for discrete choices, rank-ordered alternatives, and discrete choices in panel data, respectively.

Other commands for choice models

Many other commands in Stata can be used for choice modeling. When you use these general commands with choice data, it is important to consider the restrictions or limitations of the model to make sure that it is the best command for modeling your choice data. For instance, the mlogit command fits multinomial logit models. When you use multinomial logit to fit a choice model, you are required to have only case-specific variables as predictors. Multinomial logit also requires balanced choice sets (that is, every decision maker must have the same available alternatives). Another example is the clogit command. You can use it to fit the same McFadden's choice model fit by cmclogit. In fact, cmclogit calls clogit to produce its estimates. However, because cmclogit is specifically designed for choice models, it gives you appropriate handling of missing values for choice data, and the postestimation command margins gives you options for unbalanced data after cmclogit. Nonetheless, when your choice data meet the requirements for one of Stata's commands for binary or categorical outcomes, they are useful for choice modeling.

Models for cross-sectional data

Stata has many commands for fitting binary and categorical outcome models that can be applied to some types of choice data. When a decision maker chooses from only two possible alternatives, the commands for binary outcomes may be useful. When a decision maker chooses from more than two outcomes, the commands for categorical outcomes may be appropriate. In addition to commands for common models such as logistic and probit, you can select from commands that address problems including heteroskedasticity, endogenous covariates, and sample selection. You can use the fmm: prefix to fit mixtures of choice models. If you want to simultaneously model more than one outcome variable or if you want to include latent variables, you can use gsem to fit a generalized structural equation model that allows binary and categorical outcomes. You can also use Bayesian estimation. The bayes: prefix allows you to fit Bayesian regression models. bayesmh is a flexible command that allows you to specify your own Bayesian model.

The following commands can fit choice models for cross-sectional data:

Estimators for binary choices

cloglog	Complementary log-log regression
logistic	Logistic regression, reporting odds ratios
logit	Logistic regression, reporting coefficients
probit	Probit regression
Exact statistics	
exlogistic	Exact logistic regression
With endogenous san	nple selection
heckprobit	Probit model with sample selection
With heteroskedastic	ity
hetprobit	Heteroskedastic probit model
With endogenous cov	variates
ivprobit	Probit model with continuous endogenous covariates
With endogenous cov	variates and sample selection
eprobit	Extended probit regression

Finite mixture models

fmm:	cloglog	Finite mixtures of complementary log-log regression models
fmm:	logit	Finite mixtures of logistic regression models
fmm:	probit	Finite mixtures of probit regression models

Multiple outcome variables and latent variables

gsem	Generalized structural equation model estimation command
Bayesian estimation	
haves clealer	Bayasian complementary log log regression

bayes: cloglog	Bayesian complementary log-log regression
bayes: logistic	Bayesian logistic regression, reporting odds ratios
bayes:logit	Bayesian logistic regression, reporting coefficients
bayes: probit	Bayesian probit regression
bayes: hetprobit	Bayesian heteroskedastic probit regression
bayes: heckprobit	Bayesian probit model with sample selection
bayesmh	Bayesian models using Metropolis-Hastings algorithm

Estimators for categorical outcomes

clogit	Conditional (fixed-effects) logistic regression
mlogit	Multinomial (polytomous) logistic regression
mprobit	Multinomial probit regression

Finite mixture models

fmm: mlogit	Finite mixtures o	f multinomial	(polytomous)) logistic reg	gression 1	models
				, , , ,	2	

Systems of equations and latent variables

gsem	
0	

Generalized structural equation model estimation command

Bayesian estimation

bayes: clogit	Bayesian conditional logistic regression
bayes: mlogit	Bayesian multinomial logistic regression
bayes: mprobit	Bayesian multinomial probit regression
bayesmh	Bayesian models using Metropolis-Hastings algorithm

Models for panel data

If you are working with panel data, you may be interested in standard panel-data commands for binary outcomes. For categorical outcomes, the gsem command can fit a multinomial logit model with random effects in addition to accommodating multiple outcome variables and latent variables for both binary and categorical outcomes. Bayesian estimation is also available. The bayes: prefix provides support for some of the xt commands, and it can be used with me commands to fit random-effects models. The following commands can be useful for choice models with panel data:

Estimators for binary choices

xtcloglog	Random-effects and population-averaged cloglog models
xtlogit	Fixed-effects, random-effects, and population-averaged logit models
xtprobit	Random-effects and population-averaged probit models
With endogenous cova xteprobit	ariates and sample selection Extended random-effects probit regression
Multiple outcome var	ables and latent variables
gsem	Generalized structural equation models

Bayesian estimation

Bayesian multilevel complementary log-log regression
Bayesian random-effects logit model
Bayesian random-effects probit model
Bayesian models using Metropolis–Hastings algorithm

Estimators for categorical choices

Multinomial logistic regression

xtmlogit Fixed-effects and random-effects multinomial logit models

Multiple outcome variables and latent variables

Generalized structural equation model estimation command

Bayesian estimation

gsem

bayes: xtmlogitBayesian random-effects multinomial logit modelbayesmhBayesian models using Metropolis-Hastings algorithm

In addition to the commands listed here, commands listed in the previous section that fit models for cross-sectional data can be used with panel data provided that they allow the vce(cluster) option. The point estimates from these commands have a population-averaged interpretation and are consistent but less efficient than the estimates from an appropriate panel-data estimator. The default standard errors reported by commands for cross-sectional data are inappropriate for panel or otherwise clustered data because they assume that observations are independent. However, by including the vce(cluster) option, you will get standard errors that relax this assumption and provide valid inference for this type of data.

Multilevel models for clustered data

You can also use multilevel modeling commands for choice models when your data are clustered or grouped and observations within the clusters are not independent. Perhaps your observations are students, and those students come from multiple classrooms. You might even have students within classrooms and classrooms within schools. The me commands fit multilevel models that account for the correlation within clusters. For categorical outcomes, the gsem command can fit a multilevel multinomial logit model in addition to accommodating multiple outcome variables and latent variables for both binary and categorical outcomes. Bayesian estimation is also available.

The following commands can be useful for multilevel choice models for clustered data:

Estimators for binary choices

mecloglog	Multilevel mixed-effects complementary log-log regression
melogit	Multilevel mixed-effects logistic regression
meprobit	Multilevel mixed-effects probit regression

Multiple outcome variables and latent variables

```
gsem Generalized structural equation model estimation command
```

Bayesian estimation

bayes: mecloglog	Bayesian multilevel complementary log-log regression
bayes: melogit	Bayesian multilevel logistic regression
bayes: meprobit	Bayesian multilevel probit regression
bayesmh	Bayesian models using Metropolis-Hastings algorithm

Estimators for categorical choices

Multilevel multinomial logistic regression

gsem Generalized structural equation model estimation command

Multiple outcome variables and latent variables

gsem Generalized structural equation model estimation command

Bayesian estimation

bayesmh Bayesian models using Metropolis-Hastings algorithm

Reference

Islam, F., J. F. Thrasher, F. Xiao, R. R. Moran, and J. W. Hardin. 2023. Data management and techniques for best-worst discrete choice experiments. Stata Journal 23: 1020–1044.

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.