cmset — Declare data to be choice model data

Description

`cmset` manages the choice model settings of a dataset. You use `cmset` to declare the data in memory to be choice model data. With cross-sectional data, you designate which variables identify cases and alternatives. With panel data, you designate which variables identify panels, time periods, and alternatives. You must `cmset` your data before you can use the other `cm` commands.

`cmset` without arguments displays how the data are currently set. `cmset` also sorts the data based on the variables that identify cases, alternatives, and panels.

Quick start

Declare dataset to be choice model data with case identifier `caseid` and alternatives (choice-set)

 identifier choiceset

 cmset caseid choiceset

Declare dataset to be choice model data with unspecified alternatives

 cmset caseid, noalternatives

Declare dataset to be panel choice model data with panel identifier `pvar`, time identifier `tvar`, and alternatives identifier `choiceset`

 cmset pvar tvar choiceset

Declare dataset to be panel choice model data with unspecified alternatives

 cmset pvar tvar, noalternatives

Indicate that observations in the panel choice model data are made monthly; `tvar2` is not formatted

 cmset pvar tvar2 choiceset, monthly

As above, and apply `%tm` format to `tvar2`

 cmset pvar tvar2 choiceset, format(%tm)

View `cm` settings

 cmset

Menu

Statistics > Choice models > Setup and utilities > Declare data to be choice model data
Syntax

Declare data to be cross-sectional choice model data

\[\text{cmset caseidvar altvar [, force]} \]
\[\text{cmset caseidvar, noalternatives} \]

Declare data to be panel choice model data

\[\text{cmset panelvar timevar altvar [, tsoptions force]} \]
\[\text{cmset panelvar timevar, noalternatives} \]

Display how data are currently cmset

\[\text{cmset} \]

Clear cm settings

\[\text{cmset, clear} \]

caseidvar identifies the cases in the cross-sectional data syntax.

altvar identifies the alternatives (choice sets).

panelvar identifies the panels, and timevar identifies the times within panels.

tsoptions

<table>
<thead>
<tr>
<th>unitoptions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>specify units of timevar</td>
</tr>
<tr>
<td></td>
<td>specify period between observations in timevar units</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>unitoptions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(default)</td>
<td>timevar’s units to be obtained from timevar’s display format</td>
</tr>
<tr>
<td>clocktime</td>
<td>timevar is %tc: 0 = 1jan1960 00:00:00.000, 1 = 1jan1960 00:00:00.001, ...</td>
</tr>
<tr>
<td>daily</td>
<td>timevar is %td: 0 = 1jan1960, 1 = 2jan1960, ...</td>
</tr>
<tr>
<td>weekly</td>
<td>timevar is %tw: 0 = 1960w1, 1 = 1960w2, ...</td>
</tr>
<tr>
<td>monthly</td>
<td>timevar is %tm: 0 = 1960m1, 1 = 1960m2, ...</td>
</tr>
<tr>
<td>quarterly</td>
<td>timevar is %tq: 0 = 1960q1, 1 = 1960q2, ...</td>
</tr>
<tr>
<td>halfyearly</td>
<td>timevar is %th: 0 = 1960h1, 1 = 1960h2, ...</td>
</tr>
<tr>
<td>yearly</td>
<td>timevar is %ty: 1960 = 1960, 1961 = 1961, ...</td>
</tr>
<tr>
<td>generic</td>
<td>timevar is %tg: 0 = ?, 1 = ?, ...</td>
</tr>
<tr>
<td>format(%fmt)</td>
<td>specify timevar’s format and then apply default rule</td>
</tr>
</tbody>
</table>

In all cases, negative timevar values are allowed.

deltaoption

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>delta(#)</td>
</tr>
<tr>
<td>delta((exp))</td>
</tr>
<tr>
<td>delta(#) units</td>
</tr>
<tr>
<td>delta((exp) units)</td>
</tr>
</tbody>
</table>
Allowed units for \texttt{\%tc} and \texttt{\%tC} timevars are

\begin{verbatim}
seconds second secs sec
minutes minute mins min
hours hour
days day
weeks week
\end{verbatim}

and for all other \texttt{\%t} timevars are

\begin{verbatim}
days day
weeks week
\end{verbatim}

Options

\texttt{noalternatives} specifies that alternatives are not explicitly identified. That is, there is no alternatives variable. The default is that you must specify an alternatives variable.

\texttt{force} suppresses error messages caused by the alternatives variable \texttt{altvar}. This option is rarely used. The alternatives variable must be free of errors before \texttt{cm} commands can run, so this option changes only the point at which error messages will be issued. One use of the \texttt{force} option is to specify it with \texttt{cmset} and then run \texttt{cm_sample} to identify the observations with bad values for the alternatives variable. \texttt{force} does not suppress all error messages. Error messages in the case ID variable and error messages in the time variable for panel data are not suppressed.

\texttt{unitoptions} \texttt{clocktime}, \texttt{daily}, \texttt{weekly}, \texttt{monthly}, \texttt{quarterly}, \texttt{halfyearly}, \texttt{yearly}, \texttt{generic}, and \texttt{format(\%fmt)} specify the units in which \texttt{timevar} is recorded when \texttt{timevar} is specified.

\texttt{timevar} will often simply be a variable of counts such as 1, 2, \ldots, or years such as 2001, 2002, \ldots. In other cases, \texttt{timevar} will be a formatted \texttt{\%t} variable; see \cite{D} \texttt{Datetime}. In any of these cases, you do not need to specify a \texttt{unitoption}.

Only when \texttt{timevar} is an unformatted time variable would you use these options. When you \texttt{cmset} panel choice model data, it becomes \texttt{xtset} as well. These options are simply passed to \texttt{xtset}. See \cite{XT} \texttt{xtset} for option details.

\texttt{delta()} specifies the period of \texttt{timevar} and is commonly used when \texttt{timevar} is \texttt{\%tc} or \texttt{\%tC}. \texttt{delta()} is rarely used with other \texttt{\%t} formats or with unformatted time variables. If \texttt{delta()} is not specified, \texttt{delta(1)} is assumed. See \cite{XT} \texttt{xtset} for option details.

\texttt{clear}—used in \texttt{cmset}, \texttt{clear}—makes Stata forget that the data were ever \texttt{cmset}. This option is rarely used. Note that if you \texttt{cmset} your data as panel choice model data with an alternatives variable, they also become \texttt{xtset}. Typing \texttt{cmset, clear} does not clear the \texttt{xt} settings. To do this, you must type \texttt{xtset, clear} as well.

Remarks and examples

\texttt{cmset} declares the dataset in memory to be choice model data. You need to do this before you can use the other \texttt{cm} commands.

\texttt{cmset} sets cross-sectional choice data and panel choice data. The usual syntax for cross-sectional data is to give \texttt{cmset} two variables:

\begin{verbatim}
cmset caseidvar altvar
\end{verbatim}

The case ID variable \texttt{caseidvar} must be numeric, and its values must be integers. The variable \texttt{altvar} containing the alternatives can be either numeric or string.
The usual syntax for panel data is to give `cmset` three variables:

```
cmset panelvar timevar altvar
```

The variable `panelvar` identifies panels, which are typically IDs for individuals or decision makers. The variable `timevar` identifies times within panels, points at which choices were made. Both `panelvar` and `timevar` must be numeric, and both must contain integers only.

For some choice models, alternatives are not explicitly identified. Alternatives are known only by their characteristics as given by alternative-specific variables. In this case, the syntax for cross-sectional data is

```
cmset caseidvar, noalternatives
```

and the syntax for panel data is

```
cmset panelvar timevar, noalternatives
```

For a brief introduction to other choice models, see [CM] Intro 4.

> **Example 1: Cross-sectional choice data**

Here is an example of cross-sectional choice data:

```
. use https://www.stata-press.com/data/r16/carchoice
   (Car choice data)
. list consumerid car purchase if consumerid <= 4, sepby(consumerid) abbr(10)
```

<table>
<thead>
<tr>
<th>consumerid</th>
<th>car</th>
<th>purchase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1</td>
<td>American</td>
</tr>
<tr>
<td>2.</td>
<td>1</td>
<td>Japanese</td>
</tr>
<tr>
<td>3.</td>
<td>1</td>
<td>European</td>
</tr>
<tr>
<td>4.</td>
<td>1</td>
<td>Korean</td>
</tr>
<tr>
<td>5.</td>
<td>2</td>
<td>American</td>
</tr>
<tr>
<td>6.</td>
<td>2</td>
<td>Japanese</td>
</tr>
<tr>
<td>7.</td>
<td>2</td>
<td>European</td>
</tr>
<tr>
<td>8.</td>
<td>2</td>
<td>Korean</td>
</tr>
<tr>
<td>9.</td>
<td>3</td>
<td>American</td>
</tr>
<tr>
<td>10.</td>
<td>3</td>
<td>Japanese</td>
</tr>
<tr>
<td>11.</td>
<td>3</td>
<td>European</td>
</tr>
<tr>
<td>12.</td>
<td>4</td>
<td>American</td>
</tr>
<tr>
<td>13.</td>
<td>4</td>
<td>Japanese</td>
</tr>
<tr>
<td>14.</td>
<td>4</td>
<td>European</td>
</tr>
</tbody>
</table>

The variable `consumerid` is the case ID variable, and the variable `car` defines the alternatives. These fictitious data represent persons who purchased a car with their choices categorized by the nationality of the manufacturer, American, Japanese, European, or Korean.

To declare the data to be cm data, we type

```
cmset consumerid car
   note: alternatives are unbalanced across choice sets; choice sets of
different sizes found
caseid variable: consumerid
alternatives variable: car
```
We have to \texttt{cmset} our data only once if we save our data after we \texttt{cmset} it. Let’s illustrate this. Typing \texttt{cmset} without arguments shows the current settings.

\begin{verbatim}
. save carchoice_cmset
cfile carchoice_cmset.dta saved
. use carchoice_cmset
 (Car choice data)
. cmset
 note: alternatives are unbalanced across choice sets; choice sets of
different sizes found
 caseid variable: consumerid
 alternatives variable: car
\end{verbatim}

For these data, the choice sets are unbalanced, and \texttt{cmset} gave us a message telling us this. If we want to see the distinct choice-set possibilities, we can type \texttt{cmchoiceset}:

\begin{verbatim}
. cmchoiceset
 Tabulation of choice-set possibilities

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3</td>
<td>380</td>
<td>42.94</td>
<td>42.94</td>
</tr>
<tr>
<td>1 2 3 4</td>
<td>505</td>
<td>57.06</td>
<td>100.00</td>
</tr>
<tr>
<td>Total</td>
<td>885</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>
\end{verbatim}

Total is number of cases.

\section*{Example 2: Data errors with cmset}

If there were errors in the alternatives variable, \texttt{cmset} would give an error message. Here is an example with a dataset where we added errors:

\begin{verbatim}
. use https://www.stata-press.com/data/r16/carchoice_errors, clear
 (Car choice data with errors)
. cmset consumerid car
 at least one choice set has more than one instance of the same alternative
 r(459);
\end{verbatim}

When \texttt{cmset} detects errors in the alternatives variable, you may want to type \texttt{cmset} again with the option \texttt{force}, and then use \texttt{cmsample}:

\begin{verbatim}
. cmset consumerid car, force
 note: at least one choice set has more than one instance of the same
 alternative
 caseid variable: consumerid
 alternatives variable: car
. cmsample, generate(flag)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>observations included</td>
<td>3,153</td>
<td>99.78</td>
<td>99.78</td>
</tr>
<tr>
<td>repeated alternatives within case*</td>
<td>7</td>
<td>0.22</td>
<td>100.00</td>
</tr>
<tr>
<td>Total</td>
<td>3,160</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>
\end{verbatim}

* indicates an error
. list consumerid car flag if flag != 0, sepby(consumerid) abbr(10)

<table>
<thead>
<tr>
<th>consumerid</th>
<th>car</th>
<th>flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>397.</td>
<td>111</td>
<td>American</td>
</tr>
<tr>
<td>398.</td>
<td>111</td>
<td>Japanese</td>
</tr>
<tr>
<td>399.</td>
<td>111</td>
<td>Japanese</td>
</tr>
<tr>
<td>1035.</td>
<td>290</td>
<td>American</td>
</tr>
<tr>
<td>1036.</td>
<td>290</td>
<td>Japanese</td>
</tr>
<tr>
<td>1037.</td>
<td>290</td>
<td>Japanese</td>
</tr>
<tr>
<td>1038.</td>
<td>290</td>
<td>Korean</td>
</tr>
</tbody>
</table>

Some cm estimators such as cmrologit do not require an alternatives variable. In this case, you use the noalternatives option and just specify the case ID variable:

. cmset consumerid, noalternatives

Example 3: Panel choice data

When you have panel choice data, you will have a panel ID variable and a time variable. Typically, you will also have a variable specifying the alternatives.

Here is an example in which id is the panel ID variable, t is the time variable, and variable alt contains the alternatives. The first panel of these data looks like

. use https://www.stata-press.com/data/r16/transport, clear

<table>
<thead>
<tr>
<th>id</th>
<th>t</th>
<th>alt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1</td>
<td>Car</td>
</tr>
<tr>
<td>2.</td>
<td>1</td>
<td>Public</td>
</tr>
<tr>
<td>3.</td>
<td>1</td>
<td>Bicycle</td>
</tr>
<tr>
<td>4.</td>
<td>1</td>
<td>Walk</td>
</tr>
<tr>
<td>5.</td>
<td>1</td>
<td>Car</td>
</tr>
<tr>
<td>6.</td>
<td>1</td>
<td>Public</td>
</tr>
<tr>
<td>7.</td>
<td>1</td>
<td>Bicycle</td>
</tr>
<tr>
<td>8.</td>
<td>1</td>
<td>Walk</td>
</tr>
<tr>
<td>9.</td>
<td>1</td>
<td>Car</td>
</tr>
<tr>
<td>10.</td>
<td>1</td>
<td>Public</td>
</tr>
<tr>
<td>11.</td>
<td>1</td>
<td>Bicycle</td>
</tr>
<tr>
<td>12.</td>
<td>1</td>
<td>Walk</td>
</tr>
</tbody>
</table>
To `cmset` the data, we type

```stata
.cmset id t alt
panel data: panels id and time t
note: case identifier _caseid generated from id t
note: panel by alternatives identifier _panelaltid generated from id alt
caseid variable: _caseid
alternatives variable: alt
panel by alternatives variable: _panelaltid (strongly balanced)
time variable: t, 1 to 3
delta: 1 unit
```

Look at the notes displayed by `cmset`. It has created two new variables: `_caseid` and `_panelaltid`. Let's list their values for the first two panels.

```stata
.sort id t alt
.list id t alt _caseid _panelaltid if inlist(id, 1, 2), sepby(t) abbr(11)
```

<table>
<thead>
<tr>
<th>id</th>
<th>t</th>
<th>alt</th>
<th>_caseid</th>
<th>_panelaltid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Car</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Public</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Bicycle</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Walk</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>Car</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>Public</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>Bicycle</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>Walk</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>Car</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>Public</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>Bicycle</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>Walk</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>Car</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>Public</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>Bicycle</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>Walk</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>17</td>
<td>5</td>
<td>Car</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>18</td>
<td>5</td>
<td>Public</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>19</td>
<td>5</td>
<td>Bicycle</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>Walk</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>Car</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>Public</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>Bicycle</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>Walk</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

`_caseid` is a variable that identifies cases. For choice model data, remember that a case is a single statistical observation but consists of multiple Stata observations. Each distinct value of panel ID × time represents a single statistical observation, that is, a case. The values of `_caseid` correspond to the distinct values of panel ID × time, in this example, the values of id × t.

`_panelaltid` is a variable that uniquely identifies the distinct values of panel ID × alternative. Why do you need this variable? It is created so you can use Stata’s time-series operators. Imagine that you want to include lags of alternative-specific variables in your model. The lags must be specific to the alternative, and Stata's time-series lag operator needs to know how to do this.
When you `cmset` panel data with specified alternatives, your data are automatically `xtset`. You can type `xtset` to see the settings:

```
. xtset
  panel variable:  _panelaltid (strongly balanced)
  time variable:  t, 1 to 3
  delta:  1 unit
```

_`_panelaltid_`_ becomes the “panel” identifier viewing the data as `xt` data. See [CM] Intro 7 and [CM] cmxtmixlogit for more on using time-series operators with panel CM data.

`cmxtmixlogit` allows you to fit a model with unspecified alternatives. To do this, you use the option `noalternatives`:

```
. use https://www.stata-press.com/data/r16/transport, clear
 (Transportation choice data)
. cmset id t, noalternatives
 panel data: panels id and time t
  note: case identifier _caseid generated from id t
  caseid variable:  _caseid
  no alternatives variable
  time variable:  t, 1 to 3
  delta:  1 unit
```

_`_caseid_`_ is again created, and its values are the same as in the previous `cmset` results.

There is no _`_panelaltid_`_ variable because there are no specified alternatives. The data are not `xtset` because there is no way to match up the alternatives.

```
. xtset
  panel variable not set; use xtset varname ...
 r(459);
```

Because the data are not `xtset`, you cannot use time-series operators for panel CM models with unspecified alternatives.

Stored results

`cmset` stores the following in `r()`:

** Scalars**
- `r(n_cases)` number of cases
- `r(n_alt_min)` minimum number of alternatives per case
- `r(n_alt_avg)` average number of alternatives per case
- `r(n_alt_max)` maximum number of alternatives per case
- `r(altvar_min)` minimum of alternatives variable (if set when numeric)
- `r(altvar_max)` maximum of alternatives variable (if set when numeric)

** Macros**
- `r(caseid)` name of case ID variable
- `r(altvar)` name of alternatives variable (if set)
For panel data, *cmset* also stores the following in \(r() \):

Scalars

- \(r(\text{imin}) \): minimum panel ID
- \(r(\text{imax}) \): maximum panel ID
- \(r(\text{tmin}) \): minimum time
- \(r(\text{tmax}) \): maximum time
- \(r(\text{tdelta}) \): delta
- \(r(\text{gaps}) \): 1 if there are gaps, 0 otherwise

Macros

- \(r(\text{origpanelvar}) \): name of original panel variable passed to *cmset*
- \(r(\text{panelvar}) \): name of panel variable
- \(r(\text{timevar}) \): name of time variable
- \(r(\text{tdeltas}) \): formatted delta
- \(r(\text{tmins}) \): formatted minimum time
- \(r(\text{tmaxs}) \): formatted maximum time
- \(r(\text{tsfmt}) \): \texttt{\%fmt} of time variable
- \(r(\text{unit}) \): units of time variable:
 - \texttt{Clock}, \texttt{clock}, \texttt{daily}, \texttt{weekly}, \texttt{monthly}, \texttt{quarterly},
 - \texttt{halfyearly}, \texttt{yearly}, or \texttt{generic}
- \(r(\text{unit1}) \): units of time variable: \texttt{C}, \texttt{c}, \texttt{d}, \texttt{w}, \texttt{m}, \texttt{q}, \texttt{h}, \texttt{y}, or \texttt{"}
- \(r(\text{balanced}) \): unbalanced, weakly balanced, or strongly balanced; a set of panels
 - are strongly balanced if they all have the same time values, otherwise
 - weakly balanced if same number of time values, otherwise unbalanced

Also see

- [CM] *cmchoiceset* — Tabulate choice sets
- [CM] *cmsample* — Display reasons for sample exclusion
- [CM] *cmsummarize* — Summarize variables by chosen alternatives
- [CM] *cntab* — Tabulate chosen alternatives
- [XT] *xtset* — Declare data to be panel data