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Description
cmmprobit fits a multinomial probit (MNP) choice model that relaxes the independence of irrelevant

alternatives (IIA) property that is characteristic of the cmclogit choice model and that is assumed by the

MNPmodel fit by mprobit.

The command requires multiple observations for each case (representing one individual or decision

maker), where each observation represents an alternative that may be chosen. cmmprobit allows two

types of independent variables: alternative-specific variables, which vary across both cases and alterna-

tives, and case-specific variables, which vary across only cases.

Quick start
Multinomial probit choice model of y on x1 using cmset data

cmmprobit y x1

Same as above, and include case-specific covariate x2
cmmprobit y x1, casevars(x2)

Same as above, but with factor covariance structure of dimension 1

cmmprobit y x1, casevars(x2) factor(1)

Common correlation parameter in utility errors for all pairs of alternatives

cmmprobit y x1, correlation(exchangeable)

With the structural covariance parameterization

cmmprobit y x1, structural

All standard deviations of the utility errors constrained to 1

cmmprobit y x1, stddev(homoskedastic)

Menu
Statistics > Choice models > Multinomial probit model

1

https://www.stata.com/manuals/cmcmclogit.pdf#cmcmclogit
https://www.stata.com/manuals/rmprobit.pdf#rmprobit
https://www.stata.com/manuals/cmcmset.pdf#cmcmset
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Syntax
cmmprobit depvar [ indepvars ] [ if ] [ in ] [weight ] [ , options ]

depvar equal to 1 identifies the chosen alternatives, whereas a 0 indicates the alternatives that were not

chosen.

options Description

Model

casevars(varlist) case-specific variables

basealternative(# | lbl | str) alternative used for normalizing location

scalealternative(# | lbl | str) alternative used for normalizing scale

noconstant suppress the alternative-specific constant terms

altwise use alternativewise deletion instead of casewise deletion

constraints(constraints) apply specified linear constraints

Model 2

correlation(correlation) correlation structure of the utility errors

stddev(stddev) variance structure of the utility errors

factor(#) use the factor covariance structure with dimension #

structural use the structural covariance parameterization; default is the
differenced covariance parameterization

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg,
bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)
notransform do not transform variance–covariance estimates to the standard

deviation and correlation metric

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intmethod(seqtype) type of quasi–uniform or pseudo–uniform sequence

intpoints(#) number of points in each sequence

intburn(#) starting index in the Hammersley or Halton sequence

intseed(code | #) pseudo–uniform random-number seed

antithetics use antithetic draws

nopivot do not use integration interval pivoting

initbhhh(#) use the BHHH optimization algorithm for the first # iterations

favor(speed | space) favor speed or space when generating integration points

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/cmcmmprobit.pdf#cmcmmprobitSyntaxweight
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptionsOptionsconstraintsdescrip
https://www.stata.com/manuals/cmcmmprobit.pdf#cmcmmprobitSyntaxcorrelation
https://www.stata.com/manuals/cmcmmprobit.pdf#cmcmmprobitSyntaxstddev
https://www.stata.com/manuals/r.pdf#rvce_option
https://www.stata.com/manuals/cmcmmprobit.pdf#cmcmmprobitOptionsdisplay_options
https://www.stata.com/manuals/cmcmmprobit.pdf#cmcmmprobitSyntaxseqtype
https://www.stata.com/manuals/cmcmmprobit.pdf#cmcmmprobitOptionscode
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Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

correlation Description

unstructured one correlation parameter for each pair of alternatives; correlations

with the basealternative() are zero; the default

exchangeable one correlation parameter common to all pairs of alternatives;

correlations with the basealternative() are zero

independent constrain all correlation parameters to zero

pattern matname user-specified matrix identifying the correlation pattern

fixed matname user-specified matrix identifying the fixed and free correlation

parameters

stddev Description

heteroskedastic estimate standard deviation for each alternative; standard deviations

for basealternative() and scalealternative() set to one

homoskedastic all standard deviations are one

pattern matname user-specified matrix identifying the standard deviation pattern

fixed matname user-specified matrix identifying the fixed and free standard

deviations

seqtype Description

hammersley Hammersley point set

halton Halton point set

random uniform pseudo–random point set

You must cmset your data before using cmmprobit; see [CM] cmset.

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.

bootstrap, by, collect, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

collinear and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

casevars(varlist) specifies the case-specific variables that are constant for each case(). If there are a
maximum of 𝐽 alternatives, there will be 𝐽 − 1 sets of coefficients associated with casevars().

https://www.stata.com/manuals/cmcmmprobit.pdf#cmcmmprobitOptionsmaxopts
https://www.stata.com/manuals/cmcmset.pdf#cmcmset
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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basealternative(# | lbl | str) specifies the alternative used to normalize the level of utility. The base

alternative may be specified as a number when the alternatives variable is numeric, as a label when it is

numeric and has a value label, or as a string when it is a string variable. The standard deviation for the

utility error associated with the base alternative is fixed to one, and its correlations with all other utility

errors are set to zero. The default is the first alternative when sorted. If a fixed or pattern matrix is

given in the stddev() and correlation() options, the basealternative()will be implied by the
fixed standard deviations and correlations in the matrix specifications. basealternative() cannot

be equal to scalealternative().

scalealternative(# | lbl | str) specifies the alternative used to normalize the scale of the utility. The

scale alternative may be specified as a number, label, or string. The default is to use the sec-

ond alternative when sorted. If a fixed or pattern matrix is given in the stddev() option, the

scalealternative() will be implied by the fixed standard deviations in the matrix specification.

scalealternative() cannot be equal to basealternative().

If a fixed or pattern matrix is given for the stddev() option, the base alternative and scale alter-

native are implied by the standard deviations and correlations in the matrix specifications, and they

need not be specified in the basealternative() and scalealternative() options.

noconstant suppresses the 𝐽 − 1 alternative-specific constant terms.

altwise specifies that alternativewise deletion be used when omitting observations because of missing

values in your variables. The default is to use casewise deletion; that is, the entire group of observa-

tions making up a case is omitted if any missing values are encountered. This option does not apply

to observations that are excluded by the if or in qualifier or the by prefix; these observations are

always handled alternativewise regardless of whether altwise is specified.

constraints(constraints); see [R] Estimation options.

� � �
Model 2 �

correlation(correlation) specifies the correlation structure of the utility (latent-variable) errors.

correlation(unstructured) is the most general and has 𝐽(𝐽 − 3)/2 + 1 unique correlation pa-

rameters. This is the default unless stddev() or structural is specified.

correlation(exchangeable) provides for one correlation coefficient common to all utilities, ex-

cept the utility associated with the basealternative() option.

correlation(independent) assumes that all correlations are zero.

correlation(pattern matname) and correlation(fixed matname) give you more flexibility

in defining the correlation structure. See Covariance structures later in this entry for more infor-

mation.

stddev(stddev) specifies the variance structure of the utility (latent-variable) errors.

stddev(heteroskedastic) is the most general and has 𝐽 − 2 estimable parameters. The stan-

dard deviations of the utility errors for the alternatives specified in basealternative() and

scalealternative() are fixed to one.

stddev(homoskedastic) constrains all the standard deviations to equal one.

stddev(pattern matname) and stddev(fixed matname) give you added flexibility in defining

the standard deviation parameters. See Covariance structures later in this entry for more informa-

tion.

https://www.stata.com/manuals/dlabel.pdf#dlabel
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/cmcmmprobit.pdf#cmcmmprobitRemarksandexamplesvariance
https://www.stata.com/manuals/cmcmmprobit.pdf#cmcmmprobitRemarksandexamplesvariance
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factor(#) requests that the factor covariance structure of dimension # be used. The factor() option

can be used with the structural option but cannot be used with stddev() or correlation().
A # × 𝐽 (or # × 𝐽 − 1) matrix, C, is used to factor the covariance matrix as 𝐼 + C′C, where 𝐼 is

the identity matrix of dimension 𝐽 (or 𝐽 − 1). The column dimension of C depends on whether the

covariance is structural or differenced. The row dimension of C, #, must be less than or equal to

floor[{𝐽(𝐽 − 1)/2 − 1}/(𝐽 − 2)] because there are only 𝐽(𝐽 − 1)/2 − 1 identifiable covariance

parameters. This covariance parameterization may be useful for reducing the number of covariance

parameters that need to be estimated.

If the covariance is structural, the column of C corresponding to the base alternative contains zeros.

The column corresponding to the scale alternative has a one in the first row and zeros elsewhere. If

the covariance is differenced, the column corresponding to the scale alternative (differenced with the

base) has a one in the first row and zeros elsewhere.

structural requests the 𝐽 ×𝐽 structural covariance parameterization instead of the default 𝐽 −1×𝐽 −1

differenced covariance parameterization (the covariance of the utility errors differenced with that

of the base alternative). The differenced covariance parameterization will achieve the same MSL

regardless of the choice of basealternative() and scalealternative(). On the other hand,

the structural covariance parameterization imposes more normalizations that may bound the model

away from its maximum likelihood and thus prevent convergence with some datasets or choices of

basealternative() and scalealternative().

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from

asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

If specifying vce(bootstrap) or vce(jackknife), you must also specify basealternative()
and scalealternative().

� � �
Reporting �

level(#); see [R] Estimation options.

notransform prevents retransforming the Cholesky-factored covariance estimates to the correlation and
standard deviation metric. notransform may not be specified on replay.

This option has no effect if structural is not specified because the default differenced covariance

estimates have no interesting interpretation as correlations and standard deviations. notransform
also has no effect if the correlation() and stddev() options are specified with anything other than
their default values. Here it is generally not possible to factor the covariance matrix, so optimization

is already performed using the standard deviation and correlation representations.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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� � �
Integration �

intmethod(hammersley | halton | random) specifies the method of generating the point sets used in

the quasi–Monte Carlo integration of the multivariate normal density. intmethod(hammersley),
the default, uses the Hammersley sequence; intmethod(halton) uses the Halton sequence; and

intmethod(random) uses a sequence of uniform random numbers.

intpoints(#) specifies the number of points to use in the Monte Carlo integration. If

option intmethod(hammersley) or intmethod(halton) is used, the default is 500 +
floor[2.5√𝑁𝑐{ ln(𝑘 + 5) + 𝑣 } ], where 𝑁𝑐 is the number of cases, 𝑘 is the number of coefficients

in the model, and 𝑣 is the number of covariance parameters. If intmethod(random) is used, the

number of points is the above times 2. Larger values of intpoints() provide better approximations

of the log likelihood at the cost of additional computation time.

intburn(#) specifies where in the Hammersley or Halton sequence to start, which helps reduce the

correlation between the sequences of each dimension. The default is intburn(0). This option may
not be specified with intmethod(random).

intseed(code | #) specifies the seed to use for generating the uniform pseudo–random sequence. This

option may be specified only with intmethod(random). code refers to a string that records the state
of the random-number generator runiform(); see [R] set seed. An integer value #may be used also.
The default is to use the current seed value from Stata’s uniform random-number generator, which

can be obtained from c(rngstate).

antithetics specifies that antithetic draws be used. The antithetic draw for the 𝐽 − 1 vector uniform-

random variables, x, is 1 − x.

nopivot turns off integration interval pivoting. By default, cmmprobit will pivot the wider intervals of

integration to the interior of the multivariate integration. This improves the accuracy of the quadrature

estimate. However, discontinuities may result in the computation of numerical second-order deriva-

tives using finite differencing (for the Newton–Raphson optimize technique, tech(nr)) when few

simulation points are used, resulting in a non–positive-definite Hessian. cmmprobit uses the Broy-

den–Fletcher–Goldfarb–Shanno optimization algorithm, by default, which does not require comput-

ing the Hessian numerically using finite differencing.

initbhhh(#) specifies that the Berndt–Hall–Hall–Hausman (BHHH) algorithm be used for the initial

# optimization steps. This option is the only way to use the BHHH algorithm along with other opti-

mization techniques. The algorithm switching feature of ml’s technique() option cannot include

bhhh.

favor(speed | space) instructs cmmprobit to favor either speed or space when generating the integra-

tion points. favor(speed) is the default. When favoring speed, the integration points are generated

once and stored in memory, thus increasing the speed of evaluating the likelihood. This speed in-

crease can be seen when there are many cases or when the user specifies many integration points,

intpoints(#). When favoring space, the integration points are generated repeatedly with each like-

lihood evaluation.

For unbalanced data, where the number of alternatives varies with each case, the estimates computed

using intmethod(random) will vary slightly between favor(speed) and favor(space). This

is because the uniform sequences will not be identical, even when initiating the sequences using the

same uniform seed, intseed(code | #). For favor(speed), ncase blocks of intpoints(#)×𝐽 −2

uniform points are generated, where 𝐽 is the maximum number of alternatives. For favor(space),
the column dimension of the matrices of points varies with the number of alternatives that each case

has.

https://www.stata.com/manuals/rsetseed.pdf#rsetseed
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� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R]Maximize.

The following options may be particularly useful in obtaining convergence with cmmprobit:
difficult, technique(algorithm spec), nrtolerance(#), nonrtolerance, and
from(init specs).

If technique() contains more than one algorithm specification, bhhh cannot be one of them. To

use the BHHH algorithm with another algorithm, use the initbhhh() option, and specify the other

algorithm in technique().

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The default optimization technique is technique(bfgs).

The following options are available with cmmprobit but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Introduction
The multinomial probit model
Covariance structures

Applying constraints to correlation parameters
Convergence problems

Introduction
cmmprobit fits a multinomial probit (MNP) choice model. The dependent variable is a 0/1 variable

indicating which alternative was chosen by an individual or decision maker. The data for each decision

maker compose one case, consisting of multiple Stata observations, one for each available alternative.

The choice model can include alternative-specific variables, which vary across both cases and alterna-

tives, and case-specific variables, which vary across only cases. TheMNPmodel allows the random-error

term to have a multivariate normal distribution, which can be both heteroskedastic and correlated across

the alternatives.

cmmprobitwith its correlation() and stddev() options gives youmany choices for modeling the
covariance of the error term. Also important for specifying the covariance is setting one alternative to be

the basealternative() and another to be the scalealternative(). The default choices (the default
base alternative is the lowest value of the alternatives variable, and the default scale alternative is the

second lowest) may be fine for your model, but you should understand their importance for specifying

the covariance parameterization of the model. Note that when we talk about covariance parameters

for cmmprobit models, we are referring to the correlation parameters set by correlation() and the

standard deviation parameters set by stddev(). See Covariance structures below.

If there are no alternative-specific variables in your model, covariance parameters are not iden-

tifiable. For such a model to converge, you would need to use correlation(independent) and

stddev(homoskedastic). A better alternative is to use mprobit, which is geared specifically toward
models with only case-specific variables. See [R] mprobit.

https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/cmcmmprobit.pdf#cmcmmprobitRemarksandexamplesvariance
https://www.stata.com/manuals/rmprobit.pdf#rmprobit
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An alternative to MNP that allows a nested correlation structure for the covariance is the nested logit

model. See [CM] nlogit.

The multinomial probit model
In theMNPmodel, there are a set of 𝐽 unordered alternatives, one of which is chosen by each decision

maker. These outcomes are modeled by a regression on alternative-specific and case-specific covariates.

Underlying the model are 𝐽 utilities (latent variables),

𝜂𝑖𝑗 = x𝑖𝑗β + z𝑖α𝑗 + 𝜉𝑖𝑗

where 𝑖 denotes cases and 𝑗 denotes alternatives. x𝑖𝑗 is a 1 × 𝑝 vector of alternative-specific variables,

β is a 𝑝 × 1 vector of parameters, z𝑖 is a 1 × 𝑞 vector of case-specific variables, α𝑗 is a 𝑞 × 1 vector

of parameters for the 𝑗th alternative, and ξ𝑖 = (𝜉𝑖1, . . . , 𝜉𝑖𝐽) is distributed as multivariate normal with

mean zero and covariance matrix 𝛀.

The 𝑖th decision maker selects the alternative whose utility 𝜂𝑖𝑗 is highest.

Because theMNPmodel allows the covariance of ξ𝑖 to have a general structure, it does not impose the

IIA property inherent in multinomial logistic and conditional logistic models. The MNP model permits

the probability of choosing one alternative over another to depend on the remaining alternatives.

For example, consider the choice of travel mode between two cities, air, train, bus, or car, as a function

of the travel mode cost, travel time (alternative-specific variables), and an individual’s income (a case-

specific variable). The probability of choosing air travel over a bus may not be independent of the train

alternative because both bus and train travel are public ground transportation. That is, the probability

of choosing air travel is Pr(𝜂air > 𝜂bus, 𝜂air > 𝜂train, 𝜂air > 𝜂car), and the two events 𝜂air > 𝜂bus and

𝜂air > 𝜂train may be correlated.

The added flexibility of theMNPmodel does impose a significant computational burden because of the

need to evaluate probabilities from themultivariate normal distribution. These probabilities are evaluated

using a simulation technique because a closed-form solution does not exist. See Methods and formulas

for more information.

Not all the 𝐽 sets of regression coefficientsα𝑗 are identifiable, nor are all 𝐽(𝐽 +1)/2 elements of the
variance–covariance matrix 𝛀. As described by Train (2009, sec. 2.5), the model requires normalization

because both the location (level) and scale of the utilities are irrelevant. Increasing each utility by a

constant does not change which 𝜂𝑖𝑗 is the maximum for decision maker 𝑖, nor does multiplying them by

a constant.

To normalize location, we choose an alternative, say, 𝑘, and take the difference between the utility 𝑘
and the 𝐽 − 1 others,

𝑣𝑖𝑗𝑘 = 𝜂𝑖𝑗 − 𝜂𝑖𝑘

= (x𝑖𝑗 − x𝑖𝑘)β + z𝑖(α𝑗 − α𝑘) + 𝜉𝑖𝑗 − 𝜉𝑖𝑘

= δ𝑖𝑗′β + z𝑖𝛄𝑗′ + 𝜖𝑖𝑗′

= 𝜆𝑖𝑗′ + 𝜖𝑖𝑗′

(1)

where 𝑗′ = 𝑗 if 𝑗 < 𝑘 and 𝑗′ = 𝑗 − 1 if 𝑗 > 𝑘, so that 𝑗′ = 1, . . . , 𝐽 − 1.

https://www.stata.com/manuals/cmnlogit.pdf#cmnlogit
https://www.stata.com/manuals/cmcmmprobit.pdf#cmcmmprobitMethodsandformulas
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We can now work with the (𝐽 − 1) × (𝐽 − 1) covariance matrix 𝚺(𝑘) for ε
′
𝑖 = (𝜖𝑖1, . . . , 𝜖𝑖,𝐽−1). The

𝑘th alternative here is the basealternative() in cmmprobit. From (1), the probability that decision

maker 𝑖 chooses alternative 𝑘, for example, is

Pr(𝑖 chooses 𝑘) = Pr(𝑣𝑖1𝑘 ≤ 0, . . . , 𝑣𝑖,𝐽−1,𝑘 ≤ 0)
= Pr(𝜖𝑖1 ≤ −𝜆𝑖1, . . . , 𝜖𝑖,𝐽−1 ≤ −𝜆𝑖,𝐽−1)

To normalize for scale, one of the diagonal elements of 𝚺(𝑘) must be fixed to a constant. In

cmmprobit, this is the error variance for the alternative specified by scalealternative(). Thus,

there are a total of, at most, 𝐽(𝐽 − 1)/2 − 1 identifiable variance–covariance parameters. See Covari-

ance structures below for more on this issue.

In fact, the model is slightly more general in that not all decision makers need to have faced all 𝐽
alternatives. The model allows for situations in which the choice sets are unbalanced. That is, some

decision makers chose among all possible alternatives, whereas other decision makers were given a

choice among a subset of them, and perhaps other decision makers were given a choice among a different

subset. The number of observations for each case is equal to the number of alternatives the decisionmaker

faced.

Example 1: Default covariance parameterization
Application of MNPmodels is common in the analysis of transportation data. Greene (2018, ex. 18.3,

839) uses travel-mode choice data between Sydney andMelbourne to demonstrate estimating parameters

of various discrete choice models. The data contain information on 210 individuals’ choices of travel

mode. The four alternatives are air, train, bus, and car, with indices 1, 2, 3, and 4, respectively.

One alternative-specific variable is travelcost, a measure of generalized cost of travel that is equal
to the sum of in-vehicle cost and a wagelike measure times the amount of time spent traveling. A sec-

ond alternative-specific variable is the terminal time, termtime, which is zero for car transportation.

Household income, income, is a case-specific variable.
. use https://www.stata-press.com/data/r19/travel
(Modes of travel)
. list id mode choice travelcost termtime income in 1/12, sepby(id)

id mode choice travel~t termtime income

1. 1 Air 0 70 69 35
2. 1 Train 0 71 34 35
3. 1 Bus 0 70 35 35
4. 1 Car 1 30 0 35

5. 2 Air 0 68 64 30
6. 2 Train 0 84 44 30
7. 2 Bus 0 85 53 30
8. 2 Car 1 50 0 30

9. 3 Air 0 129 69 40
10. 3 Train 0 195 34 40
11. 3 Bus 0 149 35 40
12. 3 Car 1 101 0 40

https://www.stata.com/manuals/cmcmmprobit.pdf#cmcmmprobitRemarksandexampleseq1
https://www.stata.com/manuals/cmcmmprobit.pdf#cmcmmprobitRemarksandexamplesvariance
https://www.stata.com/manuals/cmcmmprobit.pdf#cmcmmprobitRemarksandexamplesvariance
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Before we can fit our MNP model, we must cmset our data. The first argument to cmset is the case

ID variable. For these data, it is the variable id, which identifies individuals. The second argument is the
alternatives variable, which identifies the alternatives that could have been chosen. In this instance, it is

the variable mode, which gives the choices of travel mode.

We cmset the data and also run cmtab to see a tabulation of the chosen alternatives.

. cmset id mode
Case ID variable: id

Alternatives variable: mode
. cmtab, choice(choice)
Tabulation of chosen alternatives (choice = 1)
Travel mode
alternative

s Freq. Percent Cum.

Air 58 27.62 27.62
Train 63 30.00 57.62

Bus 30 14.29 71.90
Car 59 28.10 100.00

Total 210 100.00

The model of travel choice is

𝜂𝑖𝑗 = 𝛽1travelcost𝑖𝑗 + 𝛽2termtime𝑖𝑗 + 𝛼1𝑗income𝑖 + 𝛼0𝑗 + 𝜉𝑖𝑗

The alternatives can be grouped as air and ground travel. With this in mind, we want the air alterna-

tive to be the basealternative() and choose train as the scaling alternative. Because these are the

first and second alternatives in the mode variable, they are the defaults for basealternative() and

scalealternative(), respectively.

. cmmprobit choice travelcost termtime, casevars(income)
Iteration 0: Log simulated-likelihood = -201.33776
Iteration 1: Log simulated-likelihood = -201.00395 (backed up)
Iteration 2: Log simulated-likelihood = -200.80016 (backed up)
Iteration 3: Log simulated-likelihood = -200.79329 (backed up)
Iteration 4: Log simulated-likelihood = -200.54677 (backed up)
Iteration 5: Log simulated-likelihood = -200.52959 (backed up)
Iteration 6: Log simulated-likelihood = -197.81655
Iteration 7: Log simulated-likelihood = -196.60511
Iteration 8: Log simulated-likelihood = -195.23981
Iteration 9: Log simulated-likelihood = -194.97557
Iteration 10: Log simulated-likelihood = -193.8367
Iteration 11: Log simulated-likelihood = -192.71514
Iteration 12: Log simulated-likelihood = -192.62109
Iteration 13: Log simulated-likelihood = -192.29533
Iteration 14: Log simulated-likelihood = -191.79816
Iteration 15: Log simulated-likelihood = -190.6148
Iteration 16: Log simulated-likelihood = -190.47993
Iteration 17: Log simulated-likelihood = -190.22168
Iteration 18: Log simulated-likelihood = -190.17784
Iteration 19: Log simulated-likelihood = -190.11022
Iteration 20: Log simulated-likelihood = -190.10726
Iteration 21: Log simulated-likelihood = -190.0955
Iteration 22: Log simulated-likelihood = -190.09542
Iteration 23: Log simulated-likelihood = -190.09343
Iteration 24: Log simulated-likelihood = -190.0933

https://www.stata.com/manuals/cmcmset.pdf#cmcmset
https://www.stata.com/manuals/cmcmtab.pdf#cmcmtab
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Iteration 25: Log simulated-likelihood = -190.09323
Iteration 26: Log simulated-likelihood = -190.09322
Multinomial probit choice model Number of obs = 840
Case ID variable: id Number of cases = 210
Alternatives variable: mode Alts per case: min = 4

avg = 4.0
max = 4

Integration sequence: Hammersley
Integration points: 600 Wald chi2(5) = 32.16
Log simulated-likelihood = -190.09322 Prob > chi2 = 0.0000

choice Coefficient Std. err. z P>|z| [95% conf. interval]

mode
travelcost -.0097691 .0027817 -3.51 0.000 -.0152211 -.0043171

termtime -.0377086 .0093869 -4.02 0.000 -.0561066 -.0193107

Air (base alternative)

Train
income -.0292031 .0089218 -3.27 0.001 -.0466894 -.0117168
_cons .561912 .3945781 1.42 0.154 -.2114469 1.335271

Bus
income -.0127548 .00793 -1.61 0.108 -.0282973 .0027876
_cons -.0572901 .4789444 -0.12 0.905 -.9960038 .8814236

Car
income -.0049142 .0077449 -0.63 0.526 -.0200939 .0102656
_cons -1.832941 .8171904 -2.24 0.025 -3.434605 -.2312773

/lnl2_2 -.5490422 .3889427 -1.41 0.158 -1.311356 .2132714
/lnl3_3 -.6018061 .3355375 -1.79 0.073 -1.259447 .0558352

/l2_1 1.132598 .2125209 5.33 0.000 .7160651 1.549132
/l3_1 .971829 .2350542 4.13 0.000 .5111312 1.432527
/l3_2 .5201047 .2851798 1.82 0.068 -.0388374 1.079047

(mode=Air is the alternative normalizing location)
(mode=Train is the alternative normalizing scale)

By default, the differenced covariance parameterization is used, so the covariance matrix for this

model is 3 × 3. There are two free variances to estimate and three correlations. To help ensure that the

covariance matrix remains positive definite, cmmprobit uses the square root transformation, where it

optimizes on the Cholesky-factored variance–covariance. To ensure that the diagonal elements of the

Cholesky estimates remain positive, we use a log transformation.

The estimates labeled /lnl2 2 and /lnl3 3 in the coefficient table are the log-transformed diagonal

elements of the Cholesky matrix. The estimates labeled /l2 1, /l3 1, and /l3 2 are the off-diagonal

entries for elements (2, 1), (3, 1), and (3, 2) of the Cholesky matrix.
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The transformed parameters of the differenced covariance parameterization are difficult to interpret.

You can view the untransformed covariance and correlation using the estat command. Typing

. estat covariance

Train Bus Car

Train 2
Bus 1.601736 1.616288
Car 1.374374 1.401054 1.515069

Note: Covariances are for alternatives differenced with Air.

gives the covariance estimates, and typing

. estat correlation

Train Bus Car

Train 1.0000
Bus 0.8909 1.0000
Car 0.7895 0.8953 1.0000

Note: Correlations are for alternatives differenced with Air.

gives the correlation estimates.

The pairwise correlations among the choices of train, bus, or car relative to the choice of air are all

large. This is telling us that after controlling for travel cost and terminal time, the utilities for train, bus,

and car relative to the utility of air are similar. To look more closely at the relative differences in utilities

of train, bus, and car, we might want to make each one of them in turn the base alternative and examine

those models.

After you have fit what you consider your final model, you should run the same model again, but

this time setting intpoints(#), the number of integration points in the simulated likelihood to a larger
number. In this example, we see from the header that the default number of points was 600. We would

run our model again using, say, 2000 points and see by how much the coefficient or covariance param-

eter estimates change. If changes are small compared with standard errors, we can have confidence in

the numerical soundness of the simulation used to compute the likelihood. See Setting the number of

integration points in [CM] Intro 5 for more information.

https://www.stata.com/manuals/cmintro5.pdf#cmIntro5Remarksandexamplesintpoints
https://www.stata.com/manuals/cmintro5.pdf#cmIntro5Remarksandexamplesintpoints
https://www.stata.com/manuals/cmintro5.pdf#cmIntro5
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Example 2: Reducing the number of covariance parameters
We can reduce the number of covariance parameters in the model by using the factor model by

Cameron and Trivedi (2005). For large models with many alternatives, the parameter reduction can

be dramatic, but for our example, we will use factor(1), a one-dimension factor model, to reduce by
3 the number of parameters associated with the covariance matrix.

. cmmprobit choice travelcost termtime, casevars(income) factor(1)
Iteration 0: Log simulated-likelihood = -201.33776
Iteration 1: Log simulated-likelihood = -201.00464 (backed up)
Iteration 2: Log simulated-likelihood = -200.80379 (backed up)
Iteration 3: Log simulated-likelihood = -200.80009 (backed up)
Iteration 4: Log simulated-likelihood = -200.56341 (backed up)
Iteration 5: Log simulated-likelihood = -200.55104 (backed up)
Iteration 6: Log simulated-likelihood = -198.68574
Iteration 7: Log simulated-likelihood = -198.26038
Iteration 8: Log simulated-likelihood = -197.71947
Iteration 9: Log simulated-likelihood = -197.7005
Iteration 10: Log simulated-likelihood = -197.32998
Iteration 11: Log simulated-likelihood = -196.87087
Iteration 12: Log simulated-likelihood = -196.85618
Iteration 13: Log simulated-likelihood = -196.85478
Iteration 14: Log simulated-likelihood = -196.85472
Iteration 15: Log simulated-likelihood = -196.85472
Multinomial probit choice model Number of obs = 840
Case ID variable: id Number of cases = 210
Alternatives variable: mode Alts per case: min = 4

avg = 4.0
max = 4

Integration sequence: Hammersley
Integration points: 600 Wald chi2(5) = 107.88
Log simulated-likelihood = -196.85472 Prob > chi2 = 0.0000

choice Coefficient Std. err. z P>|z| [95% conf. interval]

mode
travelcost -.0093706 .0036333 -2.58 0.010 -.0164918 -.0022494

termtime -.0593265 .0064585 -9.19 0.000 -.0719849 -.0466682

Air (base alternative)

Train
income -.0373607 .0098226 -3.80 0.000 -.0566127 -.0181087
_cons .1094541 .3949657 0.28 0.782 -.6646645 .8835727

Bus
income -.015879 .0112245 -1.41 0.157 -.0378785 .0061206
_cons -1.082191 .4678666 -2.31 0.021 -1.999193 -.1651896

Car
income .0042621 .0092623 0.46 0.645 -.0138917 .0224159
_cons -3.76572 .5541552 -6.80 0.000 -4.851844 -2.679596

/c1_2 1.182696 .3061336 3.86 0.000 .5826855 1.782707
/c1_3 1.228152 .3404839 3.61 0.000 .5608163 1.895489

(mode=Air is the alternative normalizing location)
(mode=Train is the alternative normalizing scale)
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The estimates labeled /c1 2 and /c1 3 in the coefficient table are the factor loadings. These factor

loadings produce the following differenced covariance estimates:

. estat covariance

Train Bus Car

Train 2
Bus 1.182696 2.398771
Car 1.228152 1.452531 2.508358

Note: Covariances are for alternatives differenced with Air.

They also produce the following correlation estimates:

. estat correlation

Train Bus Car

Train 1.0000
Bus 0.5400 1.0000
Car 0.5483 0.5922 1.0000

Note: Correlations are for alternatives differenced with Air.

Covariance structures
The matrix 𝛀 has 𝐽(𝐽 + 1)/2 distinct elements because it is symmetric. Selecting a base alternative,

normalizing its error variance to one, and constraining the correlations between its error and the other

errors reduce the number of estimable parameters by 𝐽. Moreover, selecting a scale alternative and

normalizing its error variance to one also reduce the number by one. Hence, there are at most 𝑚 =
𝐽(𝐽 − 1)/2 − 1 estimable parameters in 𝛀.

In practice, estimating all 𝑚 parameters can be difficult, so one must often place more restrictions on

the parameters. The cmmprobit command provides the correlation() option to specify restrictions

on the 𝐽(𝐽 − 3)/2 + 1 correlation parameters not already restricted as a result of choosing the base

alternatives, and it provides stddev() to specify restrictions on the 𝐽 −2 standard deviations not already

restricted as a result of choosing the base and scale alternatives.

When the structural option is used, cmmprobit fits the model by assuming that all 𝑚 pa-

rameters can be estimated, which is equivalent to specifying correlation(unstructured) and

stddev(heteroskedastic). The unstructured correlation structure means that all 𝐽(𝐽 − 3)/2 + 1

of the remaining correlation parameters will be estimated, and the heteroskedastic specification means

that all 𝐽 − 2 standard deviations will be estimated. With these default settings, the log likelihood is

maximized with respect to the Cholesky decomposition of 𝛀, and then the parameters are transformed

to the standard deviation and correlation form.

The correlation(exchangeable) option forces the 𝐽(𝐽 − 3)/2 + 1 correlation parameters

to be equal, and correlation(independent) forces all the correlations to be zero. Using the

stddev(homoskedastic) option forces all 𝐽 standard deviations to be one. These options may help in

obtaining convergence for a model if the default options do not produce satisfactory results. In fact, when

you fit a complex model, it may be advantageous to first fit a simple model with only a few covariance

parameters (that is, constraining some elements of the covariance) and then remove the constraints one

at a time.
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Advanced users may wish to specify alternative covariance structures of their own choosing, and the

next few paragraphs explain how to do so.

correlation(pattern matname) allows you to give the name of a 𝐽 × 𝐽 matrix that identifies

a correlation structure. Sequential positive integers starting at 1 are used to identify each correlation

parameter. For example, if there are three correlation parameters, they are identified by 1, 2, and 3.

The integers can be repeated to indicate that correlations with the same number should be constrained

to be equal. A zero or a missing value (.) indicates that the correlation is to be set to zero. cmmprobit
considers only the elements of the matrix below the main diagonal.

Suppose that you have a model with four alternatives, numbered 1, 2, 3, and 4, and alternative 1 is the

base. The unstructured and exchangeable correlation structures identified in the 4 × 4 lower triangular

matrices are
unstructured exchangeable

⎛⎜⎜⎜
⎝

1 2 3 4

1 ⋅
2 0 ⋅
3 0 1 ⋅
4 0 2 3 ⋅

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜
⎝

1 2 3 4

1 ⋅
2 0 ⋅
3 0 1 ⋅
4 0 1 1 ⋅

⎞⎟⎟⎟
⎠

In cmmprobit, these correlation structures correspond to correlation(unstructured) and

correlation(exchangeable), respectively, even though the correlations corresponding to the base al-
ternative are set to zero. More formally: these terms are appropriate when considering the (𝐽−1)×(𝐽−1)
submatrix 𝚺(𝑘) defined in The multinomial probit model above.

You can also use the correlation(fixed matname) option to specify a matrix that specifies fixed

and free parameters. Here the free parameters (those that are to be estimated) are identified by a missing

value, and nonmissing values represent correlations that are to be taken as given. Below is a correlation

structure that would set the correlations of alternative 1 to be 0.5:

⎛⎜⎜⎜
⎝

1 2 3 4

1 ⋅
2 0.5 ⋅
3 0.5 ⋅ ⋅
4 0.5 ⋅ ⋅ ⋅

⎞⎟⎟⎟
⎠

The row and column numbers of the elements of the pattern and fixed matrices correspond to the

order of the alternative levels.

To specify the structure of the standard deviations—the diagonal elements of 𝛀—you can use the

stddev(pattern matname) option, where matname is a 1 × 𝐽 matrix. Sequential positive integers

starting at 1 are used to identify each standard deviation parameter. The integers can be repeated to

indicate that standard deviations with the same number are to be constrained to be equal. A missing

value indicates that the corresponding standard deviation is to be set to one. Suppose that in example 1

with four alternatives, you wish to set the first and second standard deviations to one and constrain the

third and fourth standard deviations to be equal. The following pattern matrix will do this:

(
1 2 3 4

1 ⋅ ⋅ 1 1 )

https://www.stata.com/manuals/cmcmmprobit.pdf#cmcmmprobitRemarksandexamplesThemultinomialprobitmodel
https://www.stata.com/manuals/cmcmmprobit.pdf#cmcmmprobitRemarksandexamplesex_travelmode
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Using the stddev(fixed matname) option allows you to identify the fixed and free standard devia-

tions. Fixed standard deviations are entered as positive real numbers, and free parameters are identified

with missing values. For example, to constrain the first and second standard deviations to equal 0.5 and

to allow the third and fourth to be estimated, you would use this fixed matrix:

(
1 2 3 4

1 0.5 0.5 ⋅ ⋅ )

When supplying either the pattern or the fixedmatrices, you must ensure that the model is properly
scaled. At least two standard deviations must be constant for the model to be scaled. Awarning is issued

if cmmprobit detects that the model is not scaled.

Example 3: Optional structural covariance parameterization
In example 1, we used the differenced covariance parameterization, the default. We now use the

structural option to view the 𝐽 −2 standard deviation estimates and the (𝐽 −1)(𝐽 −2)/2 correlation
estimates. By default, air is the base alternative, so its standard deviation will be constrained to 1, and its
correlations with the other alternatives will be constrained to 0. By default, train is the scale alternative,
and its standard deviation will be constrained to 1.

. cmmprobit choice travelcost termtime, casevars(income) structural
Iteration 0: Log simulated-likelihood = -201.33776
Iteration 1: Log simulated-likelihood = -201.00424 (backed up)
Iteration 2: Log simulated-likelihood = -200.80141 (backed up)
Iteration 3: Log simulated-likelihood = -200.79567 (backed up)
Iteration 4: Log simulated-likelihood = -200.55267 (backed up)
Iteration 5: Log simulated-likelihood = -200.53715 (backed up)
Iteration 6: Log simulated-likelihood = -199.76054
Iteration 7: Log simulated-likelihood = -198.60402
Iteration 8: Log simulated-likelihood = -197.81905
Iteration 9: Log simulated-likelihood = -195.04024
Iteration 10: Log simulated-likelihood = -193.77392 (backed up)
Iteration 11: Log simulated-likelihood = -192.64657
Iteration 12: Log simulated-likelihood = -192.42437
Iteration 13: Log simulated-likelihood = -190.84776
Iteration 14: Log simulated-likelihood = -190.34744
Iteration 15: Log simulated-likelihood = -190.25259
Iteration 16: Log simulated-likelihood = -190.14042
Iteration 17: Log simulated-likelihood = -190.1239
Iteration 18: Log simulated-likelihood = -190.11142
Iteration 19: Log simulated-likelihood = -190.10248
Iteration 20: Log simulated-likelihood = -190.09721
Iteration 21: Log simulated-likelihood = -190.09429
Iteration 22: Log simulated-likelihood = -190.09354
Iteration 23: Log simulated-likelihood = -190.09329
Iteration 24: Log simulated-likelihood = -190.09322
Iteration 25: Log simulated-likelihood = -190.09321
Reparameterizing to correlation metric and refining estimates
Iteration 0: Log simulated-likelihood = -190.09321
Iteration 1: Log simulated-likelihood = -190.09321

https://www.stata.com/manuals/cmcmmprobit.pdf#cmcmmprobitRemarksandexamplesex_travelmode
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Multinomial probit choice model Number of obs = 840
Case ID variable: id Number of cases = 210
Alternatives variable: mode Alts per case: min = 4

avg = 4.0
max = 4

Integration sequence: Hammersley
Integration points: 600 Wald chi2(5) = 32.15
Log simulated-likelihood = -190.09321 Prob > chi2 = 0.0000

choice Coefficient Std. err. z P>|z| [95% conf. interval]

mode
travelcost -.009769 .0027817 -3.51 0.000 -.0152211 -.0043169

termtime -.0377166 .0093909 -4.02 0.000 -.0561223 -.0193108

Air (base alternative)

Train
income -.0292123 .0089235 -3.27 0.001 -.046702 -.0117226
_cons .5619727 .394604 1.42 0.154 -.211437 1.335382

Bus
income -.0127564 .0079299 -1.61 0.108 -.0282987 .0027858
_cons -.057269 .4789789 -0.12 0.905 -.9960504 .8815123

Car
income -.0049143 .0077456 -0.63 0.526 -.0200954 .0102668
_cons -1.833353 .8173825 -2.24 0.025 -3.435394 -.2313131

/lnsigma3 -.2422848 .492656 -0.49 0.623 -1.207873 .7233032
/lnsigma4 -.3315386 .6489737 -0.51 0.609 -1.603504 .9404266

/atanhr3_2 1.011829 .3874629 2.61 0.009 .2524152 1.771242
/atanhr4_2 .578313 .3936403 1.47 0.142 -.1932078 1.349834
/atanhr4_3 .8904187 .5589308 1.59 0.111 -.2050654 1.985903

sigma1 1 (base alternative)
sigma2 1 (scale alternative)
sigma3 .7848326 .3866525 .2988322 2.061231
sigma4 .7178185 .4658453 .2011904 2.561074

rho3_2 .7665173 .1598096 .2471877 .9437454
rho4_2 .5214382 .2866104 -.1908391 .874014
rho4_3 .7116005 .2759021 -.2022385 .963018

(mode=Air is the alternative normalizing location)
(mode=Train is the alternative normalizing scale)
. estimates store full

When comparing this output with that of example 1, we see that we have achieved the same log

likelihood. That is, the structural parameterization using air as the base alternative and train as the

scale alternative applied no restrictions on the model. This will not always be the case. We leave it up

to you to try different base and scale alternatives, and you will see that not all the different combinations

will achieve the same log likelihood. This is not true for the differenced covariance parameterization:

it will always achieve the same log likelihood (and the maximum possible likelihood) regardless of the

base and scale alternatives. This is why it is the default parameterization.

https://www.stata.com/manuals/cmcmmprobit.pdf#cmcmmprobitRemarksandexamplesex_travelmode
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For an exercise, we can compute the differenced covariance displayed in example 1 by using the

following ado-code.

. estat covariance

Air Train Bus Car

Air 1
Train 0 1

Bus 0 .6015877 .6159622
Car 0 .3742979 .4008925 .5152634

. return list
matrices:

r(cov) : 4 x 4
. matrix cov = r(cov)
. matrix M = (1,-1,0,0 \ 1,0,-1,0 \ 1,0,0,-1)
. matrix cov1 = M*cov*M’
. matrix list cov1
symmetric cov1[3,3]

r1 r2 r3
r1 2
r2 1.6015877 1.6159622
r3 1.3742979 1.4008925 1.5152634

The slight difference in the regression coefficients between the results here and example 1 reflects the

accuracy of the [M-5] ghk( ) algorithm using 600 points from the Hammersley sequence.

https://www.stata.com/manuals/cmcmmprobit.pdf#cmcmmprobitRemarksandexamplesex_travelmode
https://www.stata.com/manuals/cmcmmprobit.pdf#cmcmmprobitRemarksandexamplesex_travelmode
https://www.stata.com/manuals/m-5ghk.pdf#m-5ghk()
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Example 4: Exchangeable correlation matrix
We now fit a model with an exchangeable correlation matrix and compare this model with the one in

example 3 using a likelihood-ratio test.

. cmmprobit choice travelcost termtime, casevars(income) correlation(exchangeable)
(output omitted )

Multinomial probit choice model Number of obs = 840
Case ID variable: id Number of cases = 210
Alternatives variable: mode Alts per case: min = 4

avg = 4.0
max = 4

Integration sequence: Hammersley
Integration points: 600 Wald chi2(5) = 53.58
Log simulated-likelihood = -190.46413 Prob > chi2 = 0.0000

choice Coefficient Std. err. z P>|z| [95% conf. interval]

mode
travelcost -.008464 .0020451 -4.14 0.000 -.0124723 -.0044557

termtime -.034535 .0072813 -4.74 0.000 -.0488061 -.020264

Air (base alternative)

Train
income -.0290381 .008323 -3.49 0.000 -.0453508 -.0127254
_cons .552031 .3719408 1.48 0.138 -.1769595 1.281021

Bus
income -.0132539 .0074135 -1.79 0.074 -.027784 .0012762
_cons -.0051467 .4338001 -0.01 0.991 -.8553792 .8450858

Car
income -.0060867 .0066376 -0.92 0.359 -.0190962 .0069228
_cons -1.565633 .6632708 -2.36 0.018 -2.86562 -.2656464

/lnsigmaP1 -.3555 .1971535 -1.80 0.071 -.7419137 .0309138
/lnsigmaP2 -1.308023 .8859477 -1.48 0.140 -3.044449 .428402

/atanhrP1 1.116886 .3764578 2.97 0.003 .3790423 1.85473

sigma1 1 (base alternative)
sigma2 1 (scale alternative)
sigma3 .700823 .1381697 .4762017 1.031397
sigma4 .2703539 .2395194 .0476225 1.534803

rho3_2 .8064831 .131604 .3618755 .9521894
rho4_2 .8064831 .131604 .3618755 .9521894
rho4_3 .8064831 .131604 .3618755 .9521894

(mode=Air is the alternative normalizing location)
(mode=Train is the alternative normalizing scale)

https://www.stata.com/manuals/cmcmmprobit.pdf#cmcmmprobitRemarksandexamplesex_lnsigma
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. estat covariance

Air Train Bus Car

Air 1
Train 0 1

Bus 0 .5652019 .4911528
Car 0 .2180358 .1528045 .0730912

. estat correlation

Air Train Bus Car

Air 1.0000
Train 0.0000 1.0000

Bus 0.0000 0.8065 1.0000
Car 0.0000 0.8065 0.8065 1.0000

. lrtest full .
Likelihood-ratio test
Assumption: . nested within full
LR chi2(2) = 0.74

Prob > chi2 = 0.6901

The likelihood-ratio test suggests that a common correlation is a plausible hypothesis, but this could be

an artifact of the small sample size.

The labeling of the standard deviation and correlation estimates has changed from /lnsigma and

/atanhr, in the previous example, to /lnsigmaP and /atanhrP. The “P” identifies the parameter’s

index in the pattern matrices used by cmmprobit. The pattern matrices are stored in e(stdpattern)
and e(corpattern).

Applying constraints to correlation parameters

Another way to fit the model with the exchangeable correlation structure in example 4 is to use the

constraint command to define the constraints on the /atanhr correlation parameters explicitly and

then apply those to cmmprobit with the structural option.

. constraint 1 [atanhr3_2]_cons = [atanhr4_2]_cons

. constraint 2 [atanhr3_2]_cons = [atanhr4_3]_cons

. cmmprobit choice travelcost termtime, casevars(income) constraints(1 2)
> structural

With this method, however, we must keep track of what correlation parameterizations are used in esti-

mation, and that depends on the options specified.

https://www.stata.com/manuals/cmcmmprobit.pdf#cmcmmprobitRemarksandexamplesex_lnsigma
https://www.stata.com/manuals/cmcmmprobit.pdf#cmcmmprobitRemarksandexamplescorr_exc
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Example 5: Specifying a pattern matrix for the correlation
In the last example, we used the correlation(exchangeable) option, reducing the number of cor-

relation parameters from three to one. We can explore a two-parameter correlation model by specifying

a pattern matrix in the correlation() option. Recall the description given in Covariance structures:

pattern matrices are specified using missing values or zeros to indicate correlations set to zero, and a

pattern of sequential integers 1, 2, . . . to indicate correlations constrained to be equal. All correlations in
positions with a 1 are made equal, all those marked with a 2 are equal, etc.

. matrix corpat = J(4, 4, .)

. matrix corpat[3,2] = 1

. matrix corpat[4,3] = 1

. matrix corpat[4,2] = 2

. matrix list corpat
corpat[4,4]

c1 c2 c3 c4
r1 . . . .
r2 . . . .
r3 . 1 . .
r4 . 2 1 .

https://www.stata.com/manuals/cmcmmprobit.pdf#cmcmmprobitRemarksandexamplescorr_exc
https://www.stata.com/manuals/cmcmmprobit.pdf#cmcmmprobitRemarksandexamplespattern
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. cmmprobit choice travelcost termtime, casevars(income)
> correlation(pattern corpat)
(output omitted )

Multinomial probit choice model Number of obs = 840
Case ID variable: id Number of cases = 210
Alternatives variable: mode Alts per case: min = 4

avg = 4.0
max = 4

Integration sequence: Hammersley
Integration points: 600 Wald chi2(5) = 40.14
Log simulated-likelihood = -190.11427 Prob > chi2 = 0.0000

choice Coefficient Std. err. z P>|z| [95% conf. interval]

mode
travelcost -.0099047 .0027288 -3.63 0.000 -.0152531 -.0045563

termtime -.0385161 .0085542 -4.50 0.000 -.055282 -.0217501

Air (base alternative)

Train
income -.0294176 .0089726 -3.28 0.001 -.0470036 -.0118317
_cons .5623591 .3985858 1.41 0.158 -.2188547 1.343573

Bus
income -.0126298 .0080906 -1.56 0.119 -.0284871 .0032276
_cons -.0790918 .4743972 -0.17 0.868 -1.008893 .8507097

Car
income -.0048661 .0079038 -0.62 0.538 -.0203573 .0106251
_cons -1.880932 .7879178 -2.39 0.017 -3.425223 -.3366416

/lnsigmaP1 -.169762 .3069501 -0.55 0.580 -.7713733 .4318492
/lnsigmaP2 -.2570832 .4928909 -0.52 0.602 -1.223132 .7089652

/atanhrP1 .9761636 .3285363 2.97 0.003 .3322443 1.620083
/atanhrP2 .5716999 .3792762 1.51 0.132 -.1716678 1.315067

sigma1 1 (base alternative)
sigma2 1 (scale alternative)
sigma3 .8438656 .2590247 .4623777 1.540103
sigma4 .7733039 .3811544 .2943071 2.031888

rho3_2 .7514003 .1430439 .320536 .9246362
rho4_2 .5166066 .278054 -.1700011 .865552
rho4_3 .7514003 .1430439 .320536 .9246362

(mode=Air is the alternative normalizing location)
(mode=Train is the alternative normalizing scale)

We display the covariance and correlation estimates:

. estat covariance

Air Train Bus Car

Air 1
Train 0 1

Bus 0 .6340809 .7121092
Car 0 .3994939 .4903372 .5979989



cmmprobit — Multinomial probit choice model 23

. estat correlation

Air Train Bus Car

Air 1.0000
Train 0.0000 1.0000

Bus 0.0000 0.7514 1.0000
Car 0.0000 0.5166 0.7514 1.0000

The alternative air is the basealternative(), so its standard deviation is 1 and its correlation with

other alternatives is 0. Because train is the scalealternative(), its standard deviation is 1. The

missing values in our pattern matrix were specified consistently with these settings.

The correlation of bus and train and the correlation of bus and car are equal because of the speci-

fication of “1 1” in the matrix corpat. There was only one “2” in corpat, so the correlation of train
and car was unconstrained.

Convergence problems
If you experience convergence problems, first try increasing intpoints(), the number of points

used to compute the integral in the simulated likelihood. See Setting the number of integration points in

[CM] Intro 5.

Second, examine your model specification, and reduce the number of variance and correlation pa-

rameters you are estimating. Start with a simple model with only one or two parameters, and then in-

crease the number of parameters one by one. When the true variance for one or more elements of the

variance–covariance matrix is zero, the model will have problems converging, as it should because the

model is misspecified.

If you are using the structural option, note that changing the basealternative() and

scalealternative() can affect convergence because different specifications for them can possibly

specify different models.

Third, try using different starting values, such as convergent results from a simpler model. See the

from() option in [R]Maximize.

Finally, you may want to try specifying nopivot, specifying antithetics, specifying

technique(nr) with difficult, or specifying a switching algorithm in the technique() option. If

you wish to use the BHHH algorithm along with another maximization algorithm in technique(), you
must specify the initbhhh(#) option, where # is the number of BHHH iterations to use before switching

to the algorithm specified in technique(). See technique(algorithm spec) in [R]Maximize.

https://www.stata.com/manuals/cmintro5.pdf#cmIntro5Remarksandexamplesintpoints
https://www.stata.com/manuals/cmintro5.pdf#cmIntro5
https://www.stata.com/manuals/rmaximize.pdf#rMaximizeMaximizationoptionsml_from
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
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Stored results
cmmprobit stores the following in e():

Scalars

e(N) number of observations

e(N case) number of cases

e(N ic) 𝑁 for Bayesian information criterion (BIC)

e(N clust) number of clusters

e(k) number of parameters

e(k alt) number of alternatives

e(k indvars) number of alternative-specific variables

e(k casevars) number of case-specific variables

e(k sigma) number of variance estimates

e(k rho) number of correlation estimates

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(df m) model degrees of freedom

e(ll) log simulated-likelihood

e(const) constant indicator

e(i base) base alternative index

e(i scale) scale alternative index

e(mc points) number of Monte Carlo replications

e(mc burn) starting sequence index

e(mc antithetics) antithetics indicator

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(fullcov) unstructured covariance indicator

e(structcov) 1 if structured covariance, 0 otherwise

e(cholesky) Cholesky-factored covariance indicator

e(alt min) minimum number of alternatives

e(alt avg) average number of alternatives

e(alt max) maximum number of alternatives

e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) cmmprobit
e(cmdline) command as typed

e(depvar) name of dependent variable

e(caseid) name of case ID variable

e(altvar) name of alternatives variable

e(alteqs) alternative equation names

e(alt#) alternative labels

e(wtype) weight type

e(wexp) weight expression

e(marktype) casewise or altwise, type of markout
e(key N ic) cases, key for 𝑁 for Bayesian information criterion (BIC)

e(title) title in estimation output

e(clustvar) name of cluster variable

e(correlation) correlation structure

e(stddev) variance structure

e(chi2type) Wald, type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
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e(mc method) technique used to generate sequences

e(mc rngstate) random-number state used

e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(datasignature) the checksum

e(datasignaturevars) variables used in calculation of checksum

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(stats) alternative statistics

e(stdpattern) variance pattern

e(stdfixed) fixed and free standard deviations

e(altvals) alternative values

e(altfreq) alternative frequencies

e(alt casevars) indicators for estimated case-specific coefficients—e(k alt) × e(k casevars)
e(corpattern) correlation structure

e(corfixed) fixed and free correlations

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.
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Methods and formulas
Methods and formulas are presented under the following headings:

Overview
Simulated likelihood

Overview
The simulated maximum-likelihood estimates for the MNP are obtained using ml; see [R] ml. The

likelihood evaluator implements the Geweke–Hajivassiliou–Keane (GHK) algorithm to approximate the

multivariate distribution function (Geweke 1989; Hajivassiliou and McFadden 1998; Keane andWolpin

1994). The technique is also described in detail by Genz (1992), but Genz describes a more general

algorithm where both lower and upper bounds of integration are finite. We briefly describe the GHK

simulator and refer you to Bolduc (1999) for the score computations.

As discussed earlier, the utilities (latent variables) for a 𝐽-alternativemodel are 𝜂𝑖𝑗 = x𝑖𝑗β+z𝑖α𝑗+𝜉𝑖𝑗,

for 𝑗 = 1, . . . , 𝐽, 𝑖 = 1, . . . , 𝑛, and ξ′
𝑖 = (𝜉𝑖,1, . . . , 𝜉𝑖,𝐽) ∼ MVN(0, 𝛀). The experimenter observes

alternative 𝑘 for the 𝑖th observation if 𝑘 = arg max(𝜂𝑖𝑗, 𝑗 = 1, . . . , 𝐽). Let

𝑣𝑖𝑗′ = 𝜂𝑖𝑗 − 𝜂𝑖𝑘

= (x𝑖𝑗 − x𝑖𝑘)β + z𝑖(α𝑗 − α𝑘) + 𝜉𝑖𝑗 − 𝜉𝑖𝑘

= δ𝑖𝑗′β + z𝑖𝛄𝑗′ + 𝜖𝑖𝑗′

where 𝑗′ = 𝑗 if 𝑗 < 𝑘 and 𝑗′ = 𝑗−1 if 𝑗 > 𝑘, so that 𝑗′ = 1, . . . , 𝐽 −1. Further, ε𝑖 = (𝜖𝑖1, . . . , 𝜖𝑖,𝐽−1) ∼
MVN(0, 𝚺(𝑘)). 𝚺 is indexed by 𝑘 because it depends on the choice made. We denote the deterministic

part of the model as 𝜆𝑖𝑗′ = δ𝑖𝑗′β + z𝑗𝛄𝑗′ , and the probability of this event is

Pr(𝑦𝑖 = 𝑘) = Pr(𝑣𝑖1 ≤ 0, . . . , 𝑣𝑖,𝐽−1 ≤ 0)
= Pr(𝜖𝑖1 ≤ −𝜆𝑖1, . . . , 𝜖𝑖,𝐽−1 ≤ −𝜆𝑖,𝐽−1)

= (2𝜋)−(𝐽−1)/2 |𝚺(𝑘)|−1/2 ∫
−𝜆𝑖1

−∞
· · · ∫

−𝜆𝑖,𝐽−1

−∞
exp(−1

2
z′𝚺−1

(𝑘)z) 𝑑z
(2)

https://www.stata.com/manuals/rml.pdf#rml


cmmprobit — Multinomial probit choice model 27

Simulated likelihood
For clarity in the discussion that follows, we drop the index denoting case so that for an arbitrary

observation υ′ = (𝑣1, . . . , 𝑣𝐽−1), λ′ = (𝜆1, . . . , 𝜆𝐽−1), and ε′ = (𝜖1, . . . , 𝜖𝐽−1).
The Cholesky-factored variance–covariance, 𝚺 = LL′, is lower triangular,

L =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑙11 0 . . . 0
𝑙21 𝑙22 . . . 0
⋮ ⋮ ⋮

𝑙𝐽−1,1 𝑙𝐽−1,2 . . . 𝑙𝐽−1,𝐽−1

⎞⎟⎟⎟⎟⎟⎟
⎠

and the correlated utility errors can be expressed as linear functions of uncorrelated normal variates,

ε = Lζ, where ζ′ = (𝜁1, . . . , 𝜁𝐽−1) and 𝜁𝑗 ∼ iid 𝑁(0, 1). We now have υ = λ + Lζ, and by defining

𝑧𝑗 =
⎧{
⎨{⎩

− 𝜆1
𝑙11

for 𝑗 = 1

− 𝜆𝑗+∑𝑗−1
𝑖=1 𝑙𝑗𝑖𝜁𝑖
𝑙𝑗𝑗

for 𝑗 = 2, . . . , 𝐽 − 1
(3)

we can express the probability statement (2) as the product of conditional probabilities

Pr(𝑦𝑖 = 𝑘) = Pr (𝜁1 ≤ 𝑧1) Pr (𝜁2 ≤ 𝑧2 | 𝜁1 ≤ 𝑧1) · · ·
Pr (𝜁𝐽−1 ≤ 𝑧𝐽−1 | 𝜁1 ≤ 𝑧1, . . . , 𝜁𝐽−2 ≤ 𝑧𝐽−2)

because

Pr(𝑣1 ≤ 0) = Pr(𝜆1 + 𝑙11𝜁1 ≤ 0)

= Pr(𝜁1 ≤ − 𝜆1
𝑙11

)

Pr(𝑣2 ≤ 0) = Pr(𝜆2 + 𝑙21𝜁1 + 𝑙22𝜁2 ≤ 0)

= Pr(𝜁2 ≤ −𝜆2 + 𝑙21𝜁1
𝑙22

| 𝜁1 ≤ − 𝜆1
𝑙11

)

. . .

The Monte Carlo algorithm then must make draws from the truncated standard normal distribution.

It does so by generating 𝐽 − 1 uniform variates, 𝛿𝑗, 𝑗 = 1, . . . , 𝐽 − 1, and computing

̃𝜁𝑗 =
⎧{
⎨{⎩

Φ−1 {𝛿1Φ (− 𝜆1
𝑙11

)} for 𝑗 = 1

Φ−1 {𝛿𝑗Φ ( −𝜆𝑗−∑𝑗−1
𝑖=1 𝑙𝑗𝑖

̃𝜁𝑖
𝑙𝑗𝑗

)} for 𝑗 = 2, . . . , 𝐽 − 1

Define ̃𝑧𝑗 by replacing
̃𝜁𝑖 for 𝜁𝑖 in (3) so that the simulated probability for the 𝑙th draw is

𝑝𝑙 =
𝐽−1
∏
𝑗=1

Φ( ̃𝑧𝑗)

To increase accuracy, the bounds of integration, 𝜆𝑗, are ordered so that the largest integration intervals are

on the inside. The rows and columns of the variance–covariance matrix are pivoted accordingly (Genz

1992).

https://www.stata.com/manuals/cmcmmprobit.pdf#cmcmmprobitMethodsandformulaseq2
https://www.stata.com/manuals/cmcmmprobit.pdf#cmcmmprobitMethodsandformulaseq3
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For a more detailed description of the GHK algorithm in Stata, see Gates (2006).

Repeated draws are made, say, 𝑁, and the simulated likelihood for the 𝑖th case, denoted 𝐿𝑖, is com-

puted as

𝐿𝑖 = 1
𝑁

𝑁
∑
𝑙=1

𝑝𝑙

The overall log simulated-likelihood is ∑𝑖 log𝐿𝑖.

If the true likelihood is 𝐿𝑖, the error bound on the approximation can be expressed as

|𝐿𝑖 − 𝐿𝑖| ≤ 𝑉 (𝐿𝑖)𝐷𝑁{(𝛿𝑖)}

where 𝑉 (𝐿𝑖) is the total variation of 𝐿𝑖 and 𝐷𝑁 is the discrepancy, or nonuniformity, of the set of abscis-

sas. For the uniform pseudo–random sequence, 𝛿𝑖, the discrepancy is of order 𝑂{( log log𝑁/𝑁)1/2}.
The order of discrepancy can be improved by using quasi–random sequences.

Quasi–Monte Carlo integration is carried out by cmmprobit by replacing the uniform deviates

with either the Halton or the Hammersley sequences. These sequences spread the points more evenly

than the uniform random sequence and have a smaller order of discrepancy, 𝑂 [{( log𝑁)𝐽−1}/𝑁] and
𝑂 [{( log𝑁)𝐽−2}/𝑁], respectively. The Halton sequence of dimension 𝐽 − 1 is generated from the first

𝐽 − 1 primes, 𝑝𝑘, so that on draw 𝑙 we have h𝑙 = {𝑟𝑝1
(𝑙), 𝑟𝑝2

(𝑙), . . . , 𝑟𝑝𝐽−1
(𝑙)}, where

𝑟𝑝𝑘
(𝑙) =

𝑞

∑
𝑗=0

𝑏𝑗𝑘(𝑙)𝑝−𝑗−1
𝑘 ∈ (0, 1)

is the radical inverse function of 𝑙 with base 𝑝𝑘 so that ∑𝑞
𝑗=0 𝑏𝑗𝑘(𝑙)𝑝𝑗

𝑘 = 𝑙, where 𝑝𝑞
𝑘 ≤ 𝑙 < 𝑝𝑞+1

𝑘 (Fang

and Wang 1994).

This function is demonstrated with base 𝑝3 = 5 and 𝑙 = 33, which generates 𝑟5(33). Here 𝑞 = 2,

𝑏0,3(33) = 3, 𝑏1,5(33) = 1, and 𝑏2,5(33) = 1, so that 𝑟5(33) = 3/5 + 1/25 + 1/625.
The Hammersley sequence uses an evenly spaced set of points with the first 𝐽 − 2 components of the

Halton sequence

h𝑙 = {2𝑙 − 1
2𝑁

, 𝑟𝑝1
(𝑙), 𝑟𝑝2

(𝑙), . . . , 𝑟𝑝𝐽−2
(𝑙)}

for 𝑙 = 1, . . . , 𝑁.

For a more detailed description of the Halton and Hammersley sequences, see Drukker and Gates

(2006).

Computations for the derivatives of the simulated likelihood are taken from Bolduc (1999). Bolduc

gives the analytical first-order derivatives for the log of the simulated likelihoodwith respect to the regres-

sion coefficients and the parameters of the Cholesky-factored variance–covariance matrix. cmmprobit
uses these analytical first-order derivatives and numerical second-order derivatives.

This command supports the clustered version of the Huber/White/sandwich estimator of the variance

using vce(robust) and vce(cluster clustvar). See [P] robust, particularlyMaximum likelihood es-

timators and Methods and formulas. Specifying vce(robust) is equivalent to specifying vce(cluster
caseid), where caseid is the variable that identifies the cases.

https://www.stata.com/manuals/p_robust.pdf#p_robust
https://www.stata.com/manuals/p_robust.pdf#p_robustRemarksandexamplesMaximumlikelihoodestimators
https://www.stata.com/manuals/p_robust.pdf#p_robustRemarksandexamplesMaximumlikelihoodestimators
https://www.stata.com/manuals/p_robust.pdf#p_robustMethodsandformulas
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Also see
[CM] cmmprobit postestimation — Postestimation tools for cmmprobit

[CM] cmclogit — Conditional logit (McFadden’s) choice model

[CM] cmmixlogit — Mixed logit choice model

[CM] cmroprobit — Rank-ordered probit choice model

[CM] cmset — Declare data to be choice model data

[CM] margins —Adjusted predictions, predictive margins, and marginal effects

[CM] nlogit — Nested logit regression

[R] mlogit — Multinomial (polytomous) logistic regression

[R] mprobit — Multinomial probit regression
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