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Description
telasso estimates the average treatment effect (ATE), the average treatment effect on the treated

(ATET), and the potential-outcome means (POMs) from observational data by augmented inverse-

probability weighting (AIPW) while using lasso methods to select from potential control variables to

be included in the model.

AIPW estimators combine aspects of regression-adjustment and inverse-probability-weighted meth-

ods. AIPW estimators have the double-robust property.

telasso accepts a continuous, binary, count, or nonnegative outcome.

See [CAUSAL] teffects intro or [CAUSAL] teffects intro advanced for more information about esti-

mating treatment effects from observational data. See [LASSO] Lasso inference intro for more informa-

tion on estimating coefficients and standard errors for a subset of variables while using lasso methods to

select from a set of control variables.

Quick start
ATE of binary treatment treat using a linear model for outcome y1 on x1–x100 and a logistic model

for treat on w1–w100; use lassos to select variables from x1–x100 for the outcome model and from

w1–w100 for the treatment model

telasso (y1 x1-x100) (treat w1-w100)

Same as above, but estimate the ATET

telasso (y1 x1-x100) (treat w1-w100), atet

Use a Poisson model for count outcome y2
telasso (y2 x1-x100, poisson) (treat w1-w100)

Same as above, but use a probit model for treat
telasso (y2 x1-x100, poisson) (treat w1-w100, probit)

Use BIC instead of a plugin iterative formula to select the optimal 𝜆∗ in each lasso

telasso (y1 x1-x100) (treat w1-w100), selection(bic)

Perform cross-fitting with five folds

telasso (y1 x1-x100) (treat w1-w100), xfolds(5)

Same as above, but repeat the cross-fitting procedure 15 times and average the results

telasso (y1 x1-x100) (treat w1-w100), xfolds(5) resample(15)

Use BIC to select covariates in the lasso for y1 for treatment level 1 only

telasso (y1 x1-x100, lasso(1, selection(bic)) (treat w1-w100)

Use cross-validation (CV) for the lasso for treat only

telasso (y1 x1-x100) (treat w1-w100, lasso(selection(cv)))
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https://www.stata.com/manuals/causalteffectsintro.pdf#causalteffectsintro
https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvanced
https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintro
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Menu
Statistics > Causal inference/treatment effects > Continuous outcomes > AIPW with lasso covariate selection

Statistics > Causal inference/treatment effects > Binary outcomes > AIPW with lasso covariate selection

Statistics > Causal inference/treatment effects > Count outcomes > AIPW with lasso covariate selection

Statistics > Causal inference/treatment effects > Nonnegative outcomes > AIPW with lasso covariate selection

Syntax
telasso (ovar omvarlist [ , omodel om options ])

(tvar tmvarlist [ , tmodel tm options ]) [ if ] [ in ] [weight ] [ , stat options ]

ovar is a binary, count, continuous, or nonnegative outcome of interest.

omvarlist specifies the covariates in the outcome model.

tvar must contain a binary value representing the treatment levels.

tmvarlist specifies the covariates in the treatment model.

omodel Description

Model

linear linear outcome model; the default

logit logistic outcome model

probit probit outcome model

poisson exponential-mean outcome model

om options Description

Model

lasso([ #, ] lasso options) specify options for the lassos for ovar at treatment
level #; may be repeated

∗ sqrtlasso use square-root lassos instead of lassos for ovar
∗ sqrtlasso([ #, ] lasso options) specify options for the square-root lassos for ovar

at treatment level #; may be repeated

noconstant suppress constant term

ainclude(varlist) specify variables that should always be included in the
outcome model

noselection suppress model selection for the outcome model
∗ exposure(varname𝑒) include ln(varname𝑒) in model with coefficient constrained to 1

∗sqrtlasso() may be specified only when omodel is linear.
exposure() may be specified only when omodel is poisson.

tmodel Description

Model

logit logistic treatment model; the default

probit probit treatment model

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/causaltelasso.pdf#causaltelassoSyntaxomodel
https://www.stata.com/manuals/causaltelasso.pdf#causaltelassoSyntaxom_options
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/causaltelasso.pdf#causaltelassoSyntaxtmodel
https://www.stata.com/manuals/causaltelasso.pdf#causaltelassoSyntaxtm_options
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/causaltelasso.pdf#causaltelassoSyntaxweight
https://www.stata.com/manuals/causaltelasso.pdf#causaltelassoSyntaxstat
https://www.stata.com/manuals/causaltelasso.pdf#causaltelassoSyntaxoptions
https://www.stata.com/manuals/causaltelasso.pdf#causaltelassoOptionslasso_options_om
https://www.stata.com/manuals/causaltelasso.pdf#causaltelassoOptionssqrtlasso_options_om
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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tm options Description

Model

lasso(lasso options) specify options for the lasso for tvar

noconstant suppress constant term

ainclude(varlist) specify variables that should always be included in the
treatment model

noselection suppress model selection for the treatment model

stat Description

Stat

ate estimate average treatment effect in population; the default

atet estimate average treatment effect on the treated

pomeans estimate potential-outcome means

options Description

Selection

selection(plugin) use a plugin iterative formula to select an optimal value of
the lasso penalty parameter 𝜆∗ for each lasso; the default

selection(cv) use CV to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

selection(adaptive) use adaptive lasso to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

selection(bic) use BIC to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

xfolds[(#)] use # folds for cross-fitting

resample[(#)] repeat sample splitting # times and average results

SE/Robust

vce(vcetype) vcetype may be robust or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization

rseed(#) set random-number seed

verbose display a verbose iteration log

[ no ]log display or suppress an iteration log

https://www.stata.com/manuals/causaltelasso.pdf#causaltelassoOptionslasso_options_tm
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/r.pdf#rvce_option
https://www.stata.com/manuals/causaltelasso.pdf#causaltelassoOptionsdisplay_options
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Advanced

pstolerance(#) set tolerance for overlap assumption

osample(newvar) newvar identifies observations that violate the overlap
assumption

control(# | label) specify the level of tvar that is the control

reestimate refit the model after using lassoselect to select
a different 𝜆∗

noheader do not display the header on the coefficient table

coeflegend display legend instead of statistics

omvarlist and tmvarlist may contain factor variables; see [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.

Default weights are not allowed. iweights are allowed when selection(plugin), selection(adaptive),
selection(cv), or selection(bic) is specified. fweights are allowed when selection(plugin) or
selection(bic) is specified. See [U] 11.1.6 weight.

reestimate, noheader, and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

Options specific to the outcome model (om options) are the following:

lasso([ #, ] lasso options) lets you set different options for different lassos or set advanced options for

all lassos for the outcome model. Specify a # followed by the options to apply settings to the lasso

of ovar at treatment level # only. This option is repeatable as long as a different treatment level is

given in each specification. If # is not specified, the lasso options apply to lassos of ovar at all treat-

ment levels. lasso options are selection(), grid(), stop(), cvtolerance(), bictolerance(),
tolerance(), and dtolerance(); see [LASSO] lasso options. When lasso([ #, ] selection())
is specified, it overrides any global selection() option for the outcome variable at the specified

treatment level.

sqrtlasso specifies that square-root lassos rather than lassos should be used in selecting variables in

models for the outcome at both treatment levels. This option is not allowed if omodel is logit,
probit, or poisson.

sqrtlasso([ #, ] lasso options) works like the option lasso(), except square-root lassos for the

outcome variable are done rather than regular lassos. This option is not allowed if omodel

is logit, probit, or poisson. Specify a # followed by the options to apply settings to

the lasso of ovar at treatment level # only. This option is repeatable as long as a differ-

ent treatment level is given in each specification. If # is not specified, the lasso options ap-

ply to lassos of ovar at all treatment levels. lasso options are selection(), grid(), stop(),
cvtolerance(), bictolerance(), tolerance(), and dtolerance(); see [LASSO] lasso options.
When sqrtlasso([ #, ] selection()) is specified, it overrides any global selection() option for
the outcome variable at the specified treatment level.

noconstant suppresses the constant term in the outcome model.

ainclude(varlist) specifies variables that are always included in the outcomemodel. Lassoswill choose
to include or exclude other variables in omvarlist.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/lassolassoselect.pdf#lassolassoselect
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/lassolassooptions.pdf#lassolassooptions
https://www.stata.com/manuals/lassolassooptions.pdf#lassolassooptions
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noselection specifies not to perform model selection in the outcome model.

exposure(varname𝑒) specifies a variable that reflects the amount of exposure over which the dependent
variable events were observed for each observation; ln(varname𝑒) with coefficient constrained to be

1 is entered into the log-link function. This option may be specified only when omodel is poisson.

Options specific to the treatment model (tm options) are the following:

lasso(lasso options) lets you set advanced options for the lasso for the treatment model. lasso options

are selection(), grid(), stop(), cvtolerance(), bictolerance(), tolerance(), and

dtolerance(); see [LASSO] lasso options. When lasso(selection()) is specified, it overrides

any global selection() option for the treatment variable.

noconstant suppresses the constant term in the treatment model.

ainclude(varlist) specifies variables that are always included in the treatment model. Lassos will

choose to include or exclude other variables in tmvarlist.

noselection specifies not to perform model selection in the treatment model.

� � �
Selection �

selection(plugin | cv | adaptive | bic) specifies the selection method for choosing an optimal value
of the lasso penalty parameter 𝜆∗ for each lasso or square-root lasso estimation. Separate lassos are

estimated for the outcome variable at each treatment level and for the treatment variable. Specifying

selection() changes the selection method for all these lassos. You can specify different selection

methods for different lassos by using lasso() or sqrtlasso() in the outcome model specification

or the option lasso() in the treatment model specification. When lasso() or sqrtlasso() is used

to specify a different selection method for the lassos of outcome or treatment variables, they override

the global setting made using selection() for the specified model.

selection(plugin) is the default. It selects 𝜆∗ based on a “plugin” iterative formula dependent on

the data. See [LASSO] lasso options.

selection(cv) selects the 𝜆∗ that gives the minimum of the CV function. See [LASSO] lasso options.

selection(adaptive) selects 𝜆∗ using the adaptive lasso selection method. It cannot be specified

when sqrtlasso() is specified for the outcome model. See [LASSO] lasso options.

selection(bic) selects the 𝜆∗ that gives the minimum of the BIC function. See [LASSO] lasso

options.

xfolds[(#)] specifies the number of folds for cross-fitting. Not specifying xfolds or xfolds(#) is

equivalent to specifying xfolds(1). In other words, by default no cross-fitting is done. Specifying
xfolds alone is equivalent to specifying xfolds(10); that is, cross-fitting is done by randomly

dividing the original data into 10 folds.

resample[(#)] specifies that sample splitting be repeated and results averaged. This reduces the effects
of the randomness of sample splitting on the estimated coefficients. Not specifying resample or

resample(#) is equivalent to specifying resample(1). In other words, by default no resampling is
done. Specifying resample alone is equivalent to specifying resample(10); that is, sample splitting
is repeated 10 times. For each sample split, lassos are computed. So when this option is not speci-

fied, lassos are repeated xfolds(#) times. But when resample(#) is specified, lassos are repeated

xfolds(#) × resample(#) times. Thus, while we recommend using resample to get final results,

note that it can be an extremely time-consuming procedure.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/lassolassooptions.pdf#lassolassooptions
https://www.stata.com/manuals/lassolassooptions.pdf#lassolassooptions
https://www.stata.com/manuals/lassolassooptions.pdf#lassolassooptions
https://www.stata.com/manuals/lassolassooptions.pdf#lassolassooptions
https://www.stata.com/manuals/lassolassooptions.pdf#lassolassooptions
https://www.stata.com/manuals/lassolassooptions.pdf#lassolassooptions
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� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some

kinds of misspecification (robust) and that allow for intragroup correlation (cluster clustvar); see

[R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �

rseed(#) sets the random-number seed. This option can be used to reproduce results. rseed(#) is

equivalent to typing set seed # prior to running telasso. Random numbers are used to produce

split samples for cross-fitting. So for all selection() options, if you want to reproduce your results,

you must either use this option or use set seed. See [R] set seed.

verbose displays a verbose log showing the iterations of each lasso estimation. This option is useful

when doing selection(cv) or selection(adaptive). It allows monitoring the progress of the

lasso estimations for these selection methods, which can be time consuming when there are many

variables specified in omvarlist or tmvarlist.

[ no ]log displays or suppresses a log showing the progress of the estimation. By default, one-line mes-

sages indicatingwhen each lasso estimation begins are shown. Specify verbose to see amore detailed
log.

� � �
Advanced �

pstolerance(#) specifies the tolerance used to check the overlap assumption. The default value is

pstolerance(1e-5). telasso will exit with an error if an observation has an estimated propensity

score smaller than that specified by pstolerance().

osample(newvar) specifies that indicator variable newvar be created to identify observations that violate
the overlap assumption.

control(# | label) specifies the level of tvar that is the control. The default is the first treatment level.

You may specify the numeric level # (a nonnegative integer) or the label associated with the numeric

level. control() may not be specified with statistic pomeans.

The following options are available with telasso but are not shown in the dialog box:

reestimate is an advanced option that refits the telasso model based on changes made to the underly-

ing lassos using lassoselect. After running telasso, you can select a different 𝜆∗ for one or more

of the lassos estimated by telasso. After selecting 𝜆∗, you type telasso, reestimate to refit the

telasso model based on the newly selected 𝜆’s.
reestimate may be combined only with reporting options.

noheader prevents the coefficient table header from being displayed.

coeflegend; see [R] Estimation options.

https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rsetseed.pdf#rsetseed
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/lassolassoselect.pdf#lassolassoselect
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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Remarks and examples
Remarks are presented under the following headings:

Overview
Estimating the ATE with lassos for covariate selection
Choosing the tuning parameter
Estimating the ATET
High-dimensional semiparametric models

Overview
telasso estimates treatment effects while using lasso techniques to select the variables in the model.

Like the lasso for inference commands, inferences drawn about the ATEs, ATETs, and POMs reported by

telasso are robust to model selection mistakes made by lasso. In addition, like the teffects aipw
command, the estimated effects are consistent if the functional form of only one of the outcome or treat-

ment model is correctly specified. Thus, telasso is a version of the AIPW estimator that also allows for

covariate selection via lasso and is robust to functional formmisspecification in one of the models as well

as errors in selection of covariates by lasso. It is, however, required that the true covariates are a sub-

set of the specified list of potential covariates. See [CAUSAL] teffects intro or [CAUSAL] teffects intro

advanced for an introduction of treatment effects estimation. See [CAUSAL] teffects aipw for more infor-

mation on theAIPW estimator. See [LASSO] Lasso intro for an introduction to lasso. See [LASSO] Lasso

inference intro for an introduction to making inference after using lasso for model selection.

Researchers who have datasets with many variables, sometimes more than observations, face difficult

decisions. They cannot use all the variables in their dataset as covariates in a model, and therefore, they

may want to use a model selection method such as lasso to select covariates. In addition, rather than

simply allowing covariates to enter a model linearly, researchers may want to fit a more flexible and

realistic model to their data by including higher-order terms, interactions, spline basis functions, and the

like, but this can also produce more terms than can be included in a model and require a method such as

lasso for selection. The lasso methods used in telasso allow for making valid inference after selecting

from among the potential covariates.

In the context of treatment-effect estimation, why do we need model selection? It is because of

the intrinsic conflicts between two crucial assumptions used to identify treatment effects: conditional

independence (CI) and overlap assumptions. CI means that, dependent on a set of control variables, the

potential outcome is independent of the treatment assignment. The more variables there are in the model,

the more plausible it is that the CI assumption is satisfied. On the other hand, the overlap assumption

implies that there is always a positive probability that any given unit is treated or untreated. The fewer

variables there are in the model, the more comfortable we can be that the overlap assumption is satisfied.

To summarize, the conflict is that the CI assumption expects many variables in the model, but the overlap

assumption expects few variables. By including many potential variables in the model and allowing lasso

to select from among them, we can reconcile this conflict. For a more detailed discussion, see Farrell

(2015) and Chernozhukov et al. (2018).

Model selection, however, does not come for free. If researchers use model selection but conduct

inference ignoring the fact that they did model selection, the inference results are possibly wrong. This

is because model selection techniques make mistakes. Making inferences without considering the vari-

ability in model selection is a dangerous practice (see Leeb and Pötscher [2005] and Leeb and Pötscher

[2006]). Instead, the inference should be robust to model selection mistakes.

https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintro
https://www.stata.com/manuals/causalteffectsaipw.pdf#causalteffectsaipw
https://www.stata.com/manuals/causalteffectsintro.pdf#causalteffectsintro
https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvanced
https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvanced
https://www.stata.com/manuals/causalteffectsaipw.pdf#causalteffectsaipw
https://www.stata.com/manuals/lassolassointro.pdf#lassoLassointro
https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintro
https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintro
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Recently, Farrell (2015) and Chernozhukov et al. (2018) proposed that modern model selection tech-

niques, such as lasso methods for inference, be combined with the doubly robust AIPW estimator in

Rosenbaum and Rubin (1983) to estimate the ATEs. The intuition behind this method is twofold. On

one hand, lasso techniques resolve the conflicts between the CI and overlap assumptions. Although CI

assumption expects many variables, we only need the covariates that matter for the outcome. If lasso

selects a sparse model, the overlap assumption is more plausible to be satisfied. On the other hand, the

proposed estimator should guard against model selection mistakes. The doubly robust AIPW estimator

happens to satisfy this property. Double robustness also means that the estimates of treatment effects are

consistent if either the outcome model or the treatment model is correctly specified.

telasso implements estimators in Chernozhukov et al. (2018) for the ATEs, ATETs, and POMs from

observational data.

The telasso estimator uses a five-step approach to estimating ATE:

1. It uses lasso techniques to select variables in the outcome model for each treatment level.

2. Based on the selected variables in step 1, it fits separate regression models of the outcome for

each treatment level and obtains the treatment-specific predicted outcomes for each subject.

3. It uses lasso techniques to select variables in the treatment model.

4. Based on the selected variables in step 3, it estimates the parameters of the treatment model and

computes inverse-probability weights.

5. It computes the weighted means of the treatment-specific predicted outcomes, where the

weights are the inverse-probability weights computed in step 4. The contrasts of these weighted

averages provide the estimates of the ATE.

Steps 1 and 3 perform the model selection for the outcome and treatment models, respectively. Using

the selected variables, steps 2, 4, and 5 construct moment conditions to estimating ATEs. The resulting

estimator is consistent under CI, overlap, and independent and identically distributed assumptions. The

inference is robust to the mild model selection mistakes that could happen in steps 1 and 3. This estimator

is also robust to model misspecification in either the outcome or the treatment model because of the

double robust moment condition used in step 5.

telasso also implements the double machine learning estimator in Chernozhukov et al. (2018) for

ATEs,ATETs, and POMs. Double machine learning relaxes the sparsity assumption needed for lasso meth-

ods. The sparsity assumption implies that lasso can only have good properties if it selects a few variables

from a potentially large number of candidates. Double machine learning allows telasso to select more

variables in the models and still be valid.

telasso allows the outcome variable to be modeled using a linear, logistic, probit, or Poisson model.

For a linear outcome model, square-root lasso can be used instead of lasso in step 1.

Estimating the ATE with lassos for covariate selection
In some cases, we want to estimate a treatment effect when we have several variables in our dataset

that, when interacted, create a large set of candidate covariates in our model.

Example 1: ATE of bilateral lung transplant
We first illustrate telasso with an example that compares two types of lung transplants. Bilateral

lung transplant (BLT) is usually associated with a higher death rate in the short term after the operation but

with a more significant improvement in the quality of life compared with the single lung transplant (SLT).
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As a result, for patients who need to decide between these two treatment options, knowing the effect of

BLT (versus SLT) on quality of life is essential. We can measure quality of life based on an individual’s

forced expiratory volume in one second (FEV1).

We have a fictional dataset (lung.dta) inspired by Koch, Vock, and Wolfson (2018). The outcome

(fev1p) is FEV1% measured one year after the operation. FEV1% is the percentage of FEV1 that the

patient has relative to a healthy person with similar characteristics. The treatment variable (transtype)
indicates whether the treatment is BLT or SLT. To open the dataset and describe it, we type

. use https://www.stata-press.com/data/r19/lung
(Fictional data on lung transplant)
. describe *, short
Variable Storage Display Value

name type format label Variable label

agep byte %10.0g Patient age (years)
bmip double %10.0g Patient body mass index
diabetesp byte %12.0g lbdiab Patient diabetes status
heightp double %10.0g Patient height (cm)
o2amt double %10.0g Oxygen delivered
karn byte %8.0g lbyes Karnofsky score > 60
lungals double %10.0g Lung allocation score
racep byte %8.0g lbrace Patient race
sexp byte %8.0g lbsex Patient gender
lifesvent byte %8.0g lbyes Life support ventilator needed
assisvent byte %8.0g lbyes Assisted ventilation needed
centervol double %10.0g Center volume
walkdist double %10.0g Walking distance in 6 minutes
o2rest byte %8.0g lbyes Oxygen needed at rest
aged byte %10.0g Donor age (years)
raced byte %8.0g lbrace Donor race
bmid double %10.0g Donor body mass index
smoked byte %8.0g lbyes Donor if has history of smoking
cmv byte %8.0g lbyes Positive cytomegalovirus test
deathcause byte %8.0g lbyes Cause of death - traumatic brain

injury
diabetesd byte %12.0g lbdiab Donor diabetes status
expandd byte %8.0g lbyes Expanded donor needed
heightd double %10.0g Donor height (cm)
sexd byte %8.0g lbsex Donor gender
distd int %10.0g Donor to treatment center

distance
lungpo2 double %10.0g Lung PO2
lungalloc byte %8.0g lballo Lung allocation status
hratio double %10.0g Height ratio
ischemict double %10.0g Ischemic time
genderm byte %19.0g lbgm Matching gender status
racem byte %17.0g lbrm Matching race status
transtype byte %8.0g lbtau Lung transplant type
fev1p double %10.0g Percentage of predicted value of

FEV1

Thirty-one variables measure some characteristics of the patients and donors. To construct control

variables, we want to use these variables and the interactions among them. It would be tedious to type

these variable names one by one to distinguish between continuous and categorical variables. vl is a

suite of commands that simplifies this process.

https://www.stata.com/manuals/dvl.pdf#dvl
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First, we use vl set to automatically partition the variables into continuous and categorical variables.

The global macro $vlcategorical contains all the categorical variable names, and $vlcontinuous
contains all the continuous variable names.

. vl set

Macro’s contents

Macro # Vars Description

System
$vlcategorical 18 categorical variables
$vlcontinuous 13 continuous variables
$vluncertain 2 perhaps continuous, perhaps categorical variables
$vlother 0 all missing or constant variables

Notes
1. Review contents of vlcategorical and vlcontinuous to ensure they are

correct. Type vl list vlcategorical and type vl list vlcontinuous.
2. If there are any variables in vluncertain, you can reallocate them

to vlcategorical, vlcontinuous, or vlother. Type
vl list vluncertain.

3. Use vl move to move variables among classifications. For example,
type vl move (x50 x80) vlcontinuous to move variables x50 and x80 to
the continuous classification.

4. vlnames are global macros. Type the vlname without the leading
dollar sign ($) when using vl commands. Example: vlcategorical not
$vlcategorical. Type the dollar sign with other Stata commands to
get a varlist.

. display ”$vlcontinuous”
bmip heightp o2amt lungals centervol walkdist bmid heightd distd lungpo2
> hratio ischemict fev1p
. display ”$vlcategorical”
diabetesp karn racep sexp lifesvent assisvent o2rest raced smoked cmv
> deathcause diabetesd expandd sexd lungalloc genderm racem transtype

Second, we use vl create to create customized variable lists. Specifically, $cvars contains all the

continuous variables except the outcome (fev1p), and $fvars consists of all the categorical variables

except the treatment (transtype). Finally, vl sub substitutes the global macro $allvars with the

full second-order interaction between the continuous variables in $cvars and categorical variables in

$fvars. We will use $allvars as the control variables for both outcome model and treatment model.

. vl create cvars = vlcontinuous - (fev1p)
note: $cvars initialized with 12 variables.
. vl create fvars = vlcategorical - (transtype)
note: $fvars initialized with 17 variables.
. vl sub allvars = c.cvars i.fvars c.cvars#i.fvars
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Now we are ready to use telasso to estimate the ATEs. We assume a linear outcome model and a

logit treatment model, the defaults for telasso. We type

. telasso (fev1p $allvars) (transtype $allvars)
Estimating lasso for outcome fev1p if transtype = 0 using plugin method ...
Estimating lasso for outcome fev1p if transtype = 1 using plugin method ...
Estimating lasso for treatment transtype using plugin method ...
Estimating ATE ...
Treatment-effects lasso estimation Number of observations = 937
Outcome model: linear Number of controls = 454
Treatment model: logit Number of selected controls = 8

Robust
fev1p Coefficient std. err. z P>|z| [95% conf. interval]

ATE
transtype

(BLT
vs

SLT) 37.51841 .1606703 233.51 0.000 37.20351 37.83332

POmean
transtype

SLT 46.4938 .2021582 229.99 0.000 46.09757 46.89002

The FEV1% if all the patients were to choose BLT is expected to be 38 percentage points higher than

the 46% average expected if all patients were to choose a SLT.Among the 454 control variables, telasso
selects only 8 of them. To summarize the model selection for both the outcome and the treatment models,

we can use lassoinfo.

. lassoinfo
Estimate: active
Command: telasso

No. of
Selection selected

Variable Model method lambda variables

fev1p
transt~e ~0 linear plugin .2239121 5
transt~e ~1 linear plugin .1986153 6

transtype logit plugin .0748279 3

https://www.stata.com/manuals/lassolassoinfo.pdf#lassolassoinfo


telasso — Treatment-effects estimation using lasso 12

If we want to see which variables are selected by each lasso, we can use lassocoef. Notice that there
are two lassos associated with the outcome of fev1p. One is for outcome fev1p when the treatment

transtype is 0, and the other is for fev1p when transtype is 1. So, in lassocoef, we need to use

the options tlevel() and for() to refer to the lasso for the outcome variable at a specified treatment

level. In contrast, for the treatment of transtype, there is only one lasso; therefore, we only need to use
option for() to specify the lasso for the treatment variable.

. lassocoef (., for(fev1p) tlevel(0)) (., for(fev1p) tlevel(1))
> (., for(transtype))

fev1p(0) fev1p(1) transtype

heightp x x
centervol x x
walkdist x x x
lungpo2 x x x

diabetesd#c.lungpo2
0 x

diabetesp#c.walkdist
0 x

assisvent#c.walkdist
0 x

ischemict x
_cons x x x

Legend:
b - base level
e - empty cell
o - omitted
x - estimated

The lassos selected walkdist and lungpo2 in all three models, while heightp, centervol,
0.diabetesd#c.lungpo2, 0.diabetesp#c.walkdist, 0.assisvent#c.walkdist, and ischemict
were each selected as covariates in one or two models.

https://www.stata.com/manuals/lassolassocoef.pdf#lassolassocoef
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Choosing the tuning parameter
By default, telasso uses a plugin method to choose the tuning parameter 𝜆 in the lasso steps. We

can also use BIC, cross-validation, or adaptive lasso to select the optimal 𝜆.

Example 2: Choosing 𝜆 via BIC
Here we use the selection(bic) option to select 𝜆 by minimizing BIC.

. telasso (fev1p $allvars) (transtype $allvars), selection(bic)
Estimating lasso for outcome fev1p if transtype = 0 using BIC ...
Estimating lasso for outcome fev1p if transtype = 1 using BIC ...
Estimating lasso for treatment transtype using BIC ...
Estimating ATE ...
Treatment-effects lasso estimation Number of observations = 937
Outcome model: linear Number of controls = 454
Treatment model: logit Number of selected controls = 18

Robust
fev1p Coefficient std. err. z P>|z| [95% conf. interval]

ATE
transtype

(BLT
vs

SLT) 37.54872 .2222001 168.99 0.000 37.11322 37.98423

POmean
transtype

SLT 46.44739 .2282797 203.47 0.000 45.99997 46.89481

We can interpret the estimation results in a similar way as in example 1. The FEV1% if all the patients

were to choose BLT is expected to be 38 percentage points higher than the average of 46% that would

be expected if all patients were to choose a SLT. This result is similar to example 1, where we used the

default plugin method to select the tuning parameter. However, among 454 controls, telasso with BIC

selects 18 of them, which is more than the plugin method selected.

https://www.stata.com/manuals/causaltelasso.pdf#causaltelassoRemarksandexamplesex1
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We can use bicplot for a global view about how the BIC function changes as the 𝜆’s change. Here we
show the BIC plot for the outcome fev1p when treatment transtype is 1. In bicplot, we use options
for() and tlevel() to refer to the lasso for the outcome variable at a specified treatment level.

. bicplot, for(fev1p) tlevel(1)
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BIC plot for fev1p

From this plot, we can see that the optimal 𝜆 = 0.11 is chosen by the minimum BIC. If we want to

investigate this further, we can use lassoknots to see which variables are selected or dropped for each

𝜆.
. lassoknots, for(fev1p) tlevel(1) display(nonzero var bic)

No. of
nonzero Variables (A)dded, (R)emoved,

ID lambda coef. BIC or left (U)nchanged

2 4.823808 1 3510.118 A walkdist
5 3.649034 2 3335.87 A lungpo2

28 .4294227 3 1863.595 A heightp
29 .391274 4 1838.266 A centervol
35 .2239014 6 1682.065 A 0.diabetesp#c.walkdist

0.assisvent#c.walkdist
40 .1406166 7 1623.74 A heightd

* 43 .1063713 7 1599.977 U
44 .0969216 9 1606.419 A 0.karn#c.walkdist

0.raced#c.lungpo2
45 .0883113 12 1619.473 A 0.sexd#c.centervol

1.racep#c.centervol
0.deathcause#c.centervol

46 .080466 13 1620.666 A 1.lungalloc#c.lungpo2

* lambda selected by Bayesian information criterion.

We see that the 43rd 𝜆, with value 0.1064, minimizes the BIC function, and there are seven selected

variables at this 𝜆.
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Estimating the ATET
Sometimes, we want to estimate the ATETs to determine the effect on those who actually received the

treatment.

Example 3: ATET for BLT
We use the atet option to estimate the ATETs. We type

. telasso (fev1p $allvars) (transtype $allvars), atet
Estimating lasso for outcome fev1p if transtype = 0 using plugin method ...
Estimating lasso for outcome fev1p if transtype = 1 using plugin method ...
Estimating lasso for treatment transtype using plugin method ...
Estimating ATET ...
Treatment-effects lasso estimation Number of observations = 937
Outcome model: linear Number of controls = 454
Treatment model: logit Number of selected controls = 8

Robust
fev1p Coefficient std. err. z P>|z| [95% conf. interval]

ATET
transtype

(BLT
vs

SLT) 35.78157 .1831478 195.37 0.000 35.42261 36.14053

POmean
transtype

SLT 43.35214 .2190783 197.88 0.000 42.92275 43.78153

For the patients who have a BLT, we expect the average FEV1% to be 36 percentage points higher than

if all of them choose an SLT.

High-dimensional semiparametric models
Sometimes, the theory suggests that some variables are essential to control the confounders, but it is

silent on the functional form of the model. In the next example, we will illustrate how to use telasso
to estimate the ATE in a high-dimensional semiparametric model.

Example 4: ATE of 401(k) eligibility
We want to estimate the effect of 401(k) eligibility (e401) on net financial assets (asset) using data

reported by Chernozhukov and Hansen (2004). These data are from a sample of households in the 1990

Survey of Income and Program Participation (SIPP). The data contain information on the head of the

household: income (income), age (age), years of education (educ), whether to receive pension benefit
(pension), marital status (married), and whether to participate in the IRA (ira).

One concern when determining the effect of 401(k) eligibility on financial assets is that choosing to

work for a company that offers a 401(k) plan is not randomly assigned. To overcome this issue, Poterba,

Venti, and Wise (1994, 1995) propose that after conditioning on income, we can take working for a

company that offers a 401(k) as exogenous.
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We want to include income and age as covariates in the model, but we do not want to assume that

they enter the model linearly. Because we want a more flexible model, we use makespline to create B-

splines of order 3 with 3 knots at percentiles of variables income and age. The generated variables will
be used to form a semiparametric model. These variables have the common stub bs for easy reference

later.

. use https://www.stata-press.com/data/r19/assets, clear
(Excerpt from Chernozhukov and Hansen (2004))
. makespline bspline income age, basis(_bs) knots(3)

We describe the generated B-spline variables. Seven terms are generated for each of the original

variables.

. describe _bs*
Variable Storage Display Value

name type format label Variable label

_bs_1_1 double %10.0g B-spline basis term 1 for income
_bs_1_2 double %10.0g B-spline basis term 2 for income
_bs_1_3 double %10.0g B-spline basis term 3 for income
_bs_1_4 double %10.0g B-spline basis term 4 for income
_bs_1_5 double %10.0g B-spline basis term 5 for income
_bs_1_6 double %10.0g B-spline basis term 6 for income
_bs_1_7 double %10.0g B-spline basis term 7 for income
_bs_2_1 double %10.0g B-spline basis term 1 for age
_bs_2_2 double %10.0g B-spline basis term 2 for age
_bs_2_3 double %10.0g B-spline basis term 3 for age
_bs_2_4 double %10.0g B-spline basis term 4 for age
_bs_2_5 double %10.0g B-spline basis term 5 for age
_bs_2_6 double %10.0g B-spline basis term 6 for age
_bs_2_7 double %10.0g B-spline basis term 7 for age

Next, we define the control variables as the categorical variables (pension, married, and ira),
the generated spline variables ( bs*), and all interactions among these variables. The global macro

$controls contains the defined control variables, and we will use it in both the outcome and the treat-

ment model.

. global vars c.(_bs*) i.(pension married ira)

. global controls $vars ($vars)#($vars)

Now, we are ready to use telasso to estimate the ATEs of 401(k) eligibility on net financial assets.

We use a linear nonparametric series to approximate the outcome model. Moreover, we use a logit

nonparametric series to approximate the treatment model. The global macro $controls defines terms

in the nonparametric series.

https://www.stata.com/manuals/rmakespline.pdf#rmakespline
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. telasso (assets $controls) (e401 $controls), rseed(111)
Estimating lasso for outcome assets if e401k = 0 using plugin method ...
Estimating lasso for outcome assets if e401k = 1 using plugin method ...
Estimating lasso for treatment e401k using plugin method ...
Estimating ATE ...
Treatment-effects lasso estimation Number of observations = 9,913
Outcome model: linear Number of controls = 221
Treatment model: logit Number of selected controls = 47

Robust
assets Coefficient std. err. z P>|z| [95% conf. interval]

ATE
e401k

(Eligible
vs

Not elig..) 8395.301 1159.093 7.24 0.000 6123.521 10667.08

POmean
e401k

Not eligi.. 13849.61 813.9608 17.02 0.000 12254.28 15444.94

The net financial assets if all the workers work for the companies with a 401(k) plan is expected to

be $8,395 more than the average of $13,850 that is expected if all the workers work for the companies

without a 401(k) plan.

Stored results
telasso stores the following in e():
Scalars

e(N) number of observations

e(N0) number of observations for treatment level 0

e(N1) number of observations for treatment level 1

e(N clust) number of clusters

e(k omvars) number of potential control variables in the outcome model

e(k omvars sel) number of selected control variables in the outcome model

e(k tmvars) number of potential control variables in the treatment model

e(k tmvars sel) number of selected control variables in the treatment model

e(k controls) number of potential control variables in the outcome and treatment models

e(k controls sel) number of selected control variables in the outcome and treatment models

e(k levels) number of levels in treatment variable

e(n xfolds) number of folds for cross-fitting

e(n resample) number of resamples

e(treated) level of treatment variable defined as treated

e(control) level of treatment variable defined as control

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) telasso
e(cmdline) command as typed

e(depvar) name of outcome variable

e(tvar) name of treatment variable

e(tmodel) logit or probit
e(omodel) linear, logit, probit, or poisson
e(omvars) potential control variables in the outcome model

e(omvars sel) selected control variables in the outcome model
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e(tmvars) potential control variables in the treatment model

e(tmvars sel) selected control variables in the treatment model

e(stat) statistic estimated: ate, atet, or pomeans
e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(tlevels) levels of treatment variable

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(rngstate) random-number state used

e(properties) b V
e(predict) program used to implement predict
e(select cmd) program used to implement lassoselect
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

The model
Neyman orthogonal moments
Double machine learning

Resampling the partitions

The model
We consider estimating the ATEs, ATETs, and POMs when the treatment effects are heterogeneous and

the treatment is binary. For notational simplicity, we drop the subscript 𝑖 indicating the 𝑖th observation.
The outcome model is

𝑦 = 𝑔0(𝜏, x) + 𝑢 𝐸(𝑢|𝜏, x) = 0

where 𝑦 is the outcome variable, 𝜏 is the binary treatment variable, x are potentially high-dimensional

control variables in the outcome model, and 𝑔0(𝜏, x) is the expected potential outcome given a level of
treatment and covariates x. Because each unit can only be treated or not treated, the observed outcome

𝑦 can only be one of 𝑔0(1, x) + 𝑢 or 𝑔0(0, x) + 𝑢.
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The treatment model is

𝜏 = 𝑚0(z) + 𝑣 𝐸(𝑣|z) = 0

where z are potentially high-dimensional covariates in the treatment model. 𝑚0(z) is the expected value
of 𝜏 given z. In other words, 𝑚0(z) is the probability of a unit getting treated given z.

The parameter of interest 𝜃0 is ATE, ATET, or POMs.

ATE is

𝜃0 = 𝐸 {𝑔0(1, x) − 𝑔0(0, x)}

ATET is

𝜃0 = 𝐸 {𝑔0(1, x) − 𝑔0(0, x)|𝜏 = 1}

POMs when 𝜏 = 1 is

𝜃0 = 𝐸 {𝑔0(1, x)}

POMs when 𝜏 = 0 is

𝜃0 = 𝐸 {𝑔0(0, x)}

We have several remarks about the above model.

1. The outcomemodel can be one of linear, logit, probit, or poisson. Letβ𝑡 be the outcome

model parameters when treatment 𝜏 = 𝑡. The table below provides details about the available

functional form of 𝑔0(𝜏, x).

Outcome model Functional form for 𝑔0(𝜏 = 𝑡, x)
linear x′β𝑡
logit exp(x′β𝑡)/{1 + exp(x′β𝑡)}
probit Φ(x′β𝑡)
poisson exp(x′β𝑡)

2. The treatment model can be either logit or probit. Let 𝛾 be the parameters in the treatment

model. The table below provides details about the available functional form of 𝑚0(z).

Treatment model Functional form for 𝑚0(z)
logit exp(z′𝛄)/{1 + exp(z′𝛄)}
probit Φ(z′𝛄)

3. Both x and z can be high dimensional, and there may be more variables than the number of

observations. However, the outcome model parameter β𝑡 and the treatment model parameter

𝛄 are assumed to be sparse. This means that there are only a few nonzero elements in both β𝑡
and 𝛄.

4. Although we assume that the functional forms of 𝑔0(⋅) and 𝑚0(⋅) are known, we do not know
which variables should enter the model. We use lasso techniques to select variables from the

potential high-dimensional controls x and z. The resulting estimators should guard against

possible model selection errors made by lassos.

Next we discuss the methods that telasso uses to estimate ATEs, ATETs, and POMs.
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Neyman orthogonal moments
Denote 𝜃0 as the parameter of interest, which can be ATE, ATET, or POM. Following Chernozhukov

et al. (2018), we use the following moment conditions to estimate 𝜃0.

The moment condition for estimating ATE is

𝜓(w; 𝜃,η) = {𝑔(1, x) − 𝑔(0, x)} + 𝜏 {𝑦 − 𝑔(1, x)}
𝑚(z)

− (1 − 𝜏) {𝑦 − 𝑔(0, x)}
1 − 𝑚(z)

− 𝜃 (1)

where w = (𝑦, x′, z′, 𝜏)′ and η is the nuisance parameter consisting of 𝑔(𝜏, x) and 𝑚(z). Using the

variables selected by lassos, 𝑔(1, x), 𝑔(0, x), and 𝑚(z) are approximations to the true functions 𝑔0(1, x),
𝑔0(0, x), and 𝑚0(z), respectively.

The moment condition for estimating ATET is

𝜓(w; 𝜃;η) = 𝜏{𝑦 − 𝑔(0, x)}
𝑝

− 𝑚(z)(1 − 𝜏){𝑦 − 𝑔(0, x)}
𝑝{1 − 𝑚(z)}

− 𝜏𝜃
𝑝

(2)

where 𝑝 = 𝐸(𝜏).
The moment condition for estimating POM for 𝜏 = 1 is

𝜓(w; 𝜃,η) = 𝑔(1, x) + 𝜏 {𝑦 − 𝑔(1, x)}
𝑚(z)

− 𝜃 (3)

The moment condition for estimating POM for 𝜏 = 0 is

𝜓(w; 𝜃,η) = 𝑔(0, x) + (1 − 𝜏) {𝑦 − 𝑔(0, x)}
1 − 𝑚(z)

− 𝜃 (4)

To estimate 𝜃0, we first use lasso techniques to select variables in the outcome and treatment models.

Based on the selected variables, we can estimate the post-lasso predictions for 𝑔(𝜏, x) and 𝑚(z). Denote
η̃ as the estimates for 𝑔(𝜏, x) and 𝑚(z).

The estimator ̂𝜃 for 𝜃0 is the solution to

1
𝑛

𝑛
∑
𝑖=1

[𝜓𝑖(w; 𝜃, η̃)] = 0 (5)

The variance estimator for ̂𝜃 is

1
𝑛2

𝑛
∑
𝑖=1

[𝜓𝑖(w; ̂𝜃, η̃)2] = 0

To identify 𝜃0, we need to assume the conditional mean independence, overlap, and independent

treatment assignment. For a detailed discussion of these assumptions, see [CAUSAL] teffects intro or

[CAUSAL] teffects intro advanced.

The moment conditions defined in (1) to (4) are Neyman orthogonal. Intuitively, Neyman orthogo-

nal moments mean that the estimator or parameter of interest is still consistent even if model selection

makes some mild mistakes. For a formal introduction on Neyman orthogonality, see section 2.1 in Cher-

nozhukov et al. (2018).

https://www.stata.com/manuals/causalteffectsintro.pdf#causalteffectsintro
https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvanced
https://www.stata.com/manuals/causaltelasso.pdf#causaltelassoMethodsandformulaseq1
https://www.stata.com/manuals/causaltelasso.pdf#causaltelassoMethodsandformulaseq4
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The moment conditions in (1) to (4) also imply the AIPW estimator for treatment effects. The AIPW

estimator is doubly robust in the sense that only one of the outcome model or the treatment model is

required to be correctly specified.

Double machine learning
telasso also implements the double machine learning estimator in Chernozhukov et al. (2018) for

ATEs, ATETs, and POMs. One advantage of double machine learning is that it allows telasso to se-

lect more variables in the models. The sparsity assumption is crucial for the validity of the estimators

implemented in telasso. In other words, the sparsity assumption allows only a few variables to be

selected. Double machine learning techniques relax this sparsity requirement to some extent such that

more variables can be selected and the estimation results are still valid.

telasso with the xfold() option implements cross-fit estimation forATEs,ATETs, and POMs. Cross-

fit estimation fits the nuisance parameters and parameter of interest in different samples. It has the

following structure.

Let 𝐾 be the specified number of cross-fitting folds.

1. Randomly partition the sample into 𝐾 subsamples called folds.

2. Define 𝐼𝑘 to be the observations in fold 𝑘, and define 𝐼𝐶𝑘 to be the sample observations not

in fold 𝑘.
3. For each 𝑘 = 1, . . . , 𝐾, fill in the observations of 𝑖 ∈ 𝐼𝑘 for the moment condition 𝜓(⋅) in

(1), (2), (3), or (4) depending on the specified statistic.

a. Using observations 𝑖 ∈ 𝐼𝐶𝑘, perform model selection, and estimate the parameters in

the outcome and treatment models.

b. Based on the estimates in step 3a, predict the nuisance parameter η̃𝑘 for observations

𝑖 ∈ 𝐼𝑘.

c. Based on η̃𝑘, fill in the moment conditions 𝜓(⋅) for observations 𝑖 ∈ 𝐼𝑘.

4. The estimator ̂𝜃 is the solution in (5).

Resampling the partitions

The 𝐾 folds are chosen once by default. Specify the resample(#) option to have the 𝐾 folds ran-

domly selected # times. This resampling removes the dependence of the estimator on any specifically

selected folds, at the cost of more computer time.

Let 𝑆 be the specified number of resamples.

1. For each random partition 𝑠 = 1, . . . , 𝑆, use a cross-fit estimator to obtain point estimate ̂𝜃𝑠
and the estimated VCE V̂ar(𝜃𝑠).

2. The mean resampling-corrected point estimates are

̃𝜃 = 1
𝑆

𝑆
∑
𝑠=1

̂𝜃𝑠

3. The mean resampling-corrected estimate of the VCE is

Ṽar( ̃𝜃) = 1
𝑆

𝑆
∑
𝑠=1

{ V̂ar(𝜃𝑠) + ( ̂𝜃𝑠 − ̃𝜃)( ̂𝜃𝑠 − ̃𝜃)′}
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