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Description
This entry provides a technical overview of treatment-effects estimators and their implementation in

Stata. Those who are new to treatment-effects estimation may want to instead see [CAUSAL] teffects

intro.

The teffects command estimates average treatment effects (ATEs), average treatment effects among
treated subjects (ATETs), and potential-outcome means (POMs) using observational data.

Treatment effects can be estimated using regression adjustment (RA), inverse-probability weights

(IPW), and “doubly robust” methods, including inverse-probability-weighted regression adjustment (IP-

WRA) and augmented inverse-probability weights (AIPW), and via matching on the propensity score or

nearest neighbors.

The outcome can be continuous, binary, count, fractional, or nonnegative. Treatments can be binary

or multivalued.

Remarks and examples
This entry presents a technical overview of treatment-effects estimators and their implementation

in Stata. Users who are new to treatment-effects estimators for observational data should instead read

[CAUSAL] teffects intro.

Remarks are presented under the following headings:

Introduction
Defining treatment effects
The potential-outcome model
Assumptions needed for estimation

The CI assumption
The overlap assumption
The i.i.d. assumption

Comparing the ATE and ATET
Overview of treatment-effect estimators
RA estimators
IPW estimators
AIPW estimators
IPWRA estimators
Nearest-neighbor matching estimators
Propensity-score matching estimators
Choosing among estimators
Model choice

Introduction
The teffects commands estimate treatment effects from observed data. A treatment effect is the

change in an outcome caused by a subject, often an individual, getting one treatment instead of another.

We cannot estimate individual-level treatment effects, because we only observe each individual getting

one or another treatment.
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Potential-outcome models provide a solution to this missing-data problem and allow us to estimate

the distribution of individual-level treatment effects. A potential-outcome model specifies the potential

outcomes that each individual would obtain under each treatment level, the treatment assignment process,

and the dependence of the potential outcomes on the treatment assignment process.

When the potential outcomes do not depend on the treatment levels, after conditioning on covariates,

regression estimators, inverse-probability-weighted estimators, and matching estimators are commonly

used.

What we call the potential-outcome model is also known as the Rubin causal model and the coun-

terfactual model. See Rubin (1974); Holland (1986); Robins (1986); Heckman (1997); Heckman and

Navarro-Lozano (2004); Imbens (2004); Cameron and Trivedi (2005, chap. 2.7); Imbens andWooldridge

(2009); and Wooldridge (2010, chap. 21) for more detailed discussions.

Cameron and Trivedi (2022) provide an introduction to treatment-effects estimation and to commands

within Stata. For a discussion related to health econometrics, see Deb, Norton, and Manning (2017).

Defining treatment effects
Three parameters are often used to measure treatment effects: the average treatment effect (ATE), the

average treatment effect on the treated (ATET), and the potential-outcome means (POMs). In this section,

we define each of these terms and introduce the notation and parameters used in the rest of our discussion.

In the binary-treatment case, the two potential outcomes for each individual are 𝑦0𝑖 and 𝑦1𝑖; 𝑦0𝑖 is

the outcome that would be obtained if 𝑖 does not get the treatment, and 𝑦1𝑖 is the outcome that would be

obtained if 𝑖 gets the treatment. 𝑦0𝑖 and 𝑦1𝑖 are realizations of the random variables 𝑦0 and 𝑦1. Throughout

this entry, 𝑖 subscripts denote realizations of the corresponding unsubscripted random variables. We

do not discuss multivalued treatments here, because doing so only increases the number of parameters

and notation required and detracts from the essential points; see [CAUSAL] teffects multivalued for

information about multivalued treatments.

The parameters of interest summarize the distribution of the unobservable individual-level treatment

effect 𝑦1 −𝑦0. In defining the parameters, 𝑡 denotes a random treatment, 𝑡𝑖 denotes the treatment received

by individual 𝑖, 𝑡 = 1 is the treatment level, and 𝑡 = 0 is the control level. Given this notation, we can

now define our parameters of interest.

ATE The ATE is the average effect of the treatment in the population:

ATE = 𝐸(𝑦1 − 𝑦0)

POM The POM for treatment level 𝑡 is the average potential outcome for that treatment level:

POM𝑡 = 𝐸(𝑦𝑡)

ATET The ATET is the average treatment effect among those that receive the treatment:

ATET = 𝐸(𝑦1 − 𝑦0|𝑡 = 1)

For an illustration of these concepts, see Defining treatment effects in [CAUSAL] teffects intro.

https://www.stata.com/manuals/causalteffectsmultivalued.pdf#causalteffectsmultivalued
https://www.stata.com/manuals/causalteffectsintro.pdf#causalteffectsintroRemarksandexamplesDefiningtreatmenteffects
https://www.stata.com/manuals/causalteffectsintro.pdf#causalteffectsintro
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The potential-outcome model
Next we specify a potential-outcome model that serves as a touchstone for the rest of our discussion.

The model described here generates data in which 𝑦𝑖 is the observed outcome variable, 𝑡𝑖 is the treatment

variable, x𝑖 is a vector of covariates that affect the outcome, and w𝑖 is a vector of covariates that affect

the treatment assignment. x𝑖 and w𝑖 may have elements in common.

This potential-outcome model specifies that the observed outcome variable 𝑦 is 𝑦0 when 𝑡 = 0 and

that 𝑦 is 𝑦1 when 𝑡 = 1. Algebraically, we say that

𝑦 = (1 − 𝑡)𝑦0 + 𝑡𝑦1

The functional forms for 𝑦0 and 𝑦1 are

𝑦0 = x′β0 + 𝜖0 (1)

𝑦1 = x′β1 + 𝜖1 (2)

where β0 and β1 are coefficients to be estimated, and 𝜖0 and 𝜖1 are error terms that are not related to x or

w. This potential-outcome model separates each potential outcome into a predictable component, xβ𝑡,

and an unobservable error term, 𝜖𝑡.

The treatment assignment process is

𝑡 = {1 if w′𝛄 + 𝜂 > 0
0 otherwise

(3)

where𝛄 is a coefficient vector, and 𝜂 is an unobservable error term that is not related to either x orw. The

treatment assignment process is also separated into a predictable component, w′𝛄, and an unobservable
error term, 𝜂.

We emphasize six points about this model:

1. The observed data from this model contain 𝑦𝑖, 𝑡𝑖, w𝑖, and x𝑖. The data do not reveal both 𝑦0𝑖
and 𝑦1𝑖 for any given 𝑖.

2. The model for 𝑡 determines how the data on 𝑦0 and 𝑦1 are missing.

3. The model separates the potential outcomes and treatment assignment into observable and un-

observable components.

4. Whether 𝜂 is independent of the vector (𝜖0, 𝜖1) is essential in specifying the set of available

estimators.

5. The coefficient vectors β0, β1, and 𝛄 are auxiliary parameters. We use estimates of these

coefficient vectors to estimate the ATE, the POMs, and the ATET.

6. For notational simplicity, we represented 𝑦0 and 𝑦1 as linear functions. In practice, we can use

other functional forms.

In specifying this potential-outcomemodel, we explicitly showed the functional forms for the potential

outcomes and the treatment assignment process. To ease subsequent discussions, we refer to the set

of functional forms for the potential outcomes as the “outcome model”, and we refer to the treatment

assignment process as the “treatment model”.
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Assumptions needed for estimation
As with any type of estimator, we must make some assumptions to use treatment-effects estimators.

The particular assumptions we need for each estimator implemented by teffects and for each effect

parameter vary, but some version of each of the following is required.

CI The conditional-independence CI assumption restricts the dependence between the treatment

model and the potential outcomes.

Overlap The overlap assumption ensures that each individual could receive any treatment level.

i.i.d. The independent and identically distributed (i.i.d.) sampling assumption ensures that the poten-

tial outcomes and the treatment status of each individual are unrelated to the potential outcomes

and treatment statuses of all other individuals in the population.

We now discuss each assumption in detail.

The CI assumption

After conditioning on covariates, when no unobservable variable affects both treatment assignment

and the potential outcomes, the potential outcomes are conditionally independent of the treatment. In

epidemiological jargon, there are no unmeasured confounders. In econometric jargon, we have selection

on observables. If we observe enough covariates, the potential outcomes may indeed be conditionally

independent of the treatment.

Intuitively, the CI assumption says that only the covariates x affect both the treatment and the potential

outcomes. Any other factors that affect the treatment must be independent of the potential outcomes, and

any other factors that affect the potential outcomes must be independent of the treatment. Formally, the

CI assumption states that, conditional on covariates x, the treatment 𝑡 is independent of the vector of

potential outcomes (𝑦0, 𝑦1)′.

The CI assumption allows us to estimate the effects by regression-adjustment (RA) methods, inverse-

probability-weighting (IPW) methods, methods that combine RA and IPW concepts, and matching meth-

ods. The data only reveal information about 𝐸(𝑦0|x,w, 𝑡 = 0) and 𝐸(𝑦1|x,w, 𝑡 = 1), but we are

interested in an average of 𝐸(𝑦0|x,w) and 𝐸(𝑦1|x,w), where x represents the outcome covariates and w
the treatment-assignment covariates. The CI assumption allows us to estimate𝐸(𝑦0|x,w) and𝐸(𝑦1|x,w)
directly from the observations for which 𝐸(𝑦0|x,w, 𝑡 = 0) and 𝐸(𝑦1|x,w, 𝑡 = 1), respectively.

For our potential-outcome model presented in (1) through (3), the CI assumption can be viewed as a

set of restrictions on the covariance matrix of the error terms. Suppose that the vector of unobservables

(𝜖0, 𝜖1, 𝜂) is normally distributed

⎛⎜
⎝

𝜖0
𝜖1
𝜂

⎞⎟
⎠

∼ 𝑁
⎧{
⎨{⎩

⎛⎜
⎝

0
0
0
⎞⎟
⎠

, ⎛⎜
⎝

𝜎2
0 𝜌01𝜎0𝜎1 𝜌𝜂0𝜎0

𝜌01𝜎0𝜎1 𝜎2
1 𝜌𝜂1𝜎1

𝜌𝜂0𝜎0 𝜌𝜂1𝜎1 1
⎞⎟
⎠

⎫}
⎬}⎭

(4)

where 𝜎0 is the standard deviation of 𝜖0, 𝜌01 is the correlation between 𝜖0 and 𝜖1, 𝜎1 is the standard

deviation of 𝜖1, 𝜌𝜂0 is the correlation between 𝜂 and 𝜖0, and 𝜌𝜂1 is the correlation between 𝜂 and 𝜖1. As

is standard in the normally distributed latent-variable specification of a binary-dependent variable, we

normalize the variance of 𝜂 to 1.
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CI specifies that 𝜌𝜂0 = 𝜌𝜂1 = 0 so that we can write (4) as

⎛⎜
⎝
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𝜖1
𝜂
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𝜌01𝜎0𝜎1 𝜎2
1 0

0 0 1
⎞⎟
⎠

⎫}
⎬}⎭

Writing the covariance matrix this way makes clear what we mean by conditional independence: unob-

served shocks that affect whether a subject is treated do not have any effect on the potential outcomes,

and unobserved shocks that affect a potential outcome do not affect treatment.

teffects implements estimators that require the CI assumption. See [CAUSAL] etregress and

[CAUSAL] etpoisson for commands that handle two cases in which the CI assumption is replaced by

precise specifications of the joint dependence among the unobservables. Brown and Mergoupis (2011)

discuss the itreatreg command that extends [CAUSAL] etregress.

The CI assumption is also known as unconfoundedness and selection-on-observables in the literature.

See Rosenbaum and Rubin (1983); Heckman (1997); Heckman and Navarro-Lozano (2004); Cameron

and Trivedi (2005, sec. 25.2.1); Tsiatis (2006, sec. 13.3); Angrist and Pischke (2009, chap. 3); Imbens

and Wooldridge (2009); and Wooldridge (2010, sec. 21.3). Some discussions with Stata commands can

be found in Becker and Caliendo (2007), Nichols (2007), and Daniel, De Stavola, and Cousens (2011).

Technical note
In fact, full CI is stronger than what we need to estimate the ATE, the ATET, or the POMs. For the

estimators implemented in teffects, we only need a conditional mean independence (CMI) assumption.

Intuitively, the CMI assumption says that after accounting for the covariates x𝑖, the treatment does not

affect the conditional mean of each potential outcome. Formally, the CMI requires that 𝐸(𝑦0|x, 𝑡) =
𝐸(𝑦0|x) and that 𝐸(𝑦1|x, 𝑡) = 𝐸(𝑦1|x). The CMI assumption allows the conditional variance to depend

on the treatment, while the CI assumption does not.

The CI assumption implies the CMI assumption, but not vice versa.

SeeWooldridge (2010, sec. 21.2 and 21.3) for an excellent introduction to this topic, and see Cattaneo,

Drukker, and Holland (2013) for some discussion of the multiple treatment case.

The overlap assumption

The overlap assumption requires that each individual have a positive probability of receiving each

treatment level. Formally, the overlap assumption requires that for each possible x in the population and

each treatment level ̃𝑡, 0 < Pr(𝑡 = ̃𝑡|x) < 1. Rosenbaum and Rubin (1983) call the combination of the CI

and overlap assumptions strong ignorability; see also Abadie and Imbens (2006, 237–238) and Imbens

and Wooldridge (2009).

https://www.stata.com/manuals/causaletregress.pdf#causaletregress
https://www.stata.com/manuals/causaletpoisson.pdf#causaletpoisson
https://www.stata.com/manuals/causaletregress.pdf#causaletregress
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The i.i.d. assumption

The third of the three assumptions listed above is the i.i.d. assumption; it is the standard assumption

of having an i.i.d. sample from the population. In potential-outcome models, i.i.d. sampling implies that

the potential outcomes and treatment status of each individual are unrelated to the potential outcomes

and treatment statuses of all the other individuals in the population. I.i.d. sampling rules out interactions

among the individuals. For instance, models of vaccinations in epidemiology and general equilibrium

effects in economics violate the independence assumption. This third assumption is a part of what is

known as the stable unit treatment value assumption (SUTVA); see Wooldridge (2010, 905) and Imbens

and Wooldridge (2009).

Comparing the ATE and ATET
When comparing the ATE and the ATET, two points should be mentioned.

First, the assumptions required to estimate the ATET are less restrictive than the assumptions required

to estimate the ATE. Estimating the ATET requires a weaker form of the CI assumption and a weaker

version of the overlap assumption.

To estimate theATE under CI, we require that the unobservables in the treatmentmodel be conditionally

independent of the unobservables in both potential outcomes. In contrast, we can estimate theATET under

CI when the unobservables in the treatment model are conditionally independent of just the control-level

potential outcome; see Wooldridge (2010, 906–912).

Although the ATE version of overlap requires that all covariate patterns have a positive probability

of being allocated to each treatment state, we can estimate the ATET when only the covariate patterns

for which someone is treated have a positive probability of being allocated to each treatment state. This

weaker overlap assumption can be important in some studies. For example, Heckman (1997) discusses

how theATETmakes sense in job-training programs for whichmany types of individuals have zero chance

of signing up. See also Wooldridge (2010, 911–913).

Second, theATET reduces to theATE when the mean of the covariates among the treated is the same as

the mean of the covariates in the population and when the average contribution from the unobservables

for the participants is zero.

Overview of treatment-effect estimators
We can classify the estimators implemented by teffects into five categories: 1) estimators based on

a model for the outcome variable; 2) estimators based on a model for treatment assignment; 3) estimators

based on models for both the outcome variable and the treatment assignment; 4) estimators that match

on covariates; and 5) estimators that match on predicted probabilities of treatment. Within each category

of estimator, there is a variety of choices about the functional forms for the models.

Because there are several categories of estimators, the user must decide whether to model the out-

comes, the probability of treatment, or both. Under correct model specification, using an outcome model

and a model for the probability of treatment will produce more efficient estimates. Surprisingly, some of

the estimators that use both models only require that one of the two be correctly specified to consistently

estimate the effects of interest, a property known as the double-robust property.
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With the exception of using a matching estimator with a single continuous covariate, some choice of

functional forms is required. There are two aspects one must consider when choosing the functional form

for the outcome or treatment assignment. First, one must select the functional form for the conditional

mean or conditional probability; depending on the variable being modeled, a linear, a binary choice, or

an exponential model may be appropriate. Second, one must determine the appropriate polynomials of

the covariates to include in the model. teffects offers a wide variety of options to specify different

functional form choices for the conditional mean and conditional probability models. The factor-variable

notation in Stata allows us to easily specify the desired polynomial in the covariates.

We now provide some intuition behind each type of estimator.

RA estimators
RA estimators use means of predicted outcomes for each treatment level to estimate each POM. ATEs

and ATETs are differences in estimated POMs.

The CI assumption implies that we can estimate 𝐸(𝑦0|x) and 𝐸(𝑦1|x) directly from the observations

for which 𝑡 = 0 and 𝑡 = 1, respectively. Regression adjustment fits separate regressions for each

treatment level and uses averages of the predicted outcomes over all the data to estimate the POMs. The

estimatedATEs are differences in the estimated POMs. The estimatedATETs are averages of the predicted

outcomes over the treated observations.

RA is a venerable estimator. See Lane and Nelder (1982); Cameron and Trivedi (2005, chap. 25);

Wooldridge (2010, chap. 21); and Vittinghoff et al. (2012, chap. 9). The usefulness of RA has been

periodically questioned in the literature because it relies on specifying functional forms for the conditional

means and because it requires having sufficient observations of each covariate pattern in each treatment

level; see Rubin (1973) for an early salvo. Our experience is that RA is an exceptionally useful base-

case estimator. We describe its relative advantages and disadvantages in the course of covering other

estimators.

IPW estimators
IPW estimators use weighted averages of the observed outcome variable to estimate means of the po-

tential outcomes. The weights account for the missing data inherent in the potential-outcome framework.

Each weight is the inverse of the estimated probability that an individual receives a treatment level. Out-

comes of individuals who receive a likely treatment get a weight close to one. Outcomes of individuals

who receive an unlikely treatment get a weight larger than one, potentially much larger.

IPW estimators model the probability of treatment without any assumptions about the functional form

for the outcome model. In contrast, RA estimators model the outcome without any assumptions about the

functional form for the probability of treatment model.

IPW estimators become extremely unstable as the overlap assumption gets close to being violated.

When the overlap assumption is nearly violated, some of the inverse-probability weights become very

large, IPW estimators produce erratic estimates, and the large-sample distribution provides a poor ap-

proximation to the finite-sample distribution of IPW estimators. This instability occurs even though the

functional form for the treatment model is correctly specified.
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In contrast, when the overlap assumption is nearly violated, there are very few observations in a

treatment level for some covariate patterns, so RA estimators use the model to predict in regions in which

there are very little data. If the model is well specified and there are “enough” observations, an RA

estimator will not become unstable as quickly as an IPW estimator, and the large-sample distribution of

the RA estimator still provides a good approximation to the finite-sample distribution. However, in real

situations in which “all models are approximate”, relying on a correctly specified outcome model with

little data is extremely risky.

IPW estimators are a general approach tomissing-data problems that obey some CI assumptions. While

IPW is an old idea in statistics that dates back to Horvitz and Thompson (1952), biostatisticians and

econometricians have been actively working on extending it to handle modern problems and estimation

methods. See Robins and Rotnitzky (1995); Robins, Rotnitzky, and Zhao (1994, 1995); and Wooldridge

(2002, 2007). IPW has been used extensively in the modern treatment-effect estimation literature. See

Imbens (2000); Hirano, Imbens, and Ridder (2003); Tan (2010); Wooldridge (2010, chap. 19); van der

Laan and Robins (2003); and Tsiatis (2006, chap. 6).

To see the intuition behind IPW, consider a study with observed outcome variable 𝑦, treatment variable
𝑡 ∈ {0, 1}, and potential outcomes 𝑦0 and 𝑦1. As part of this process, we need to estimate the POM for

treatment 𝑡 = 1, 𝐸(𝑦1). Using the observed data, 𝑦𝑖𝑡𝑖 is 𝑦1𝑖 when 𝑡 = 1, but 𝑦1𝑖 is unobserved when

𝑡 = 0. An IPW estimator for 𝐸(𝑦1) is 1/𝑁 ∑𝑁
𝑖=1 𝑦𝑖𝑡𝑖/𝑝(x𝑖), where 𝑝(x𝑖) is the probability that 𝑡𝑖 = 1

and is a function of the covariates x𝑖. If 𝑦1𝑖 were always observed, the weights would all equal 1. This

IPW estimator places a larger weight on those observations for which 𝑦1𝑖 is observed even though its

observation was not likely.

AIPW estimators
Instead of modeling either the outcome, like RA, or the treatment probability, like IPW, augmented

inverse-probability-weighted (AIPW) estimators model both the outcome and the treatment probability.

A surprising fact is that only one of the two models must be correctly specified to consistently estimate

the treatment effects, a property of theAIPW estimators known as being “doubly robust”. Given that two

models instead of one are used, it is less surprising that the AIPW estimators can be more efficient than

either the RA or the IPW estimators, though deriving this result is rather technical and relies on the theory

of semiparametric estimators.

Intuitively, theAIPW estimator is an IPW that includes an augmentation term that corrects the estimator

when the treatment model is misspecified. When the treatment is correctly specified, the augmentation

term vanishes as the sample size becomes large. Like the IPW, the AIPW does not perform well when the

predicted treatment probabilities are too close to zero or one.

AIPW estimators emerge naturally from a technique of producing more efficient estimators from esti-

mators that have a few main parameters of interest and some auxiliary, or nuisance, parameters used in

estimating the few main parameters. This method constructs efficient estimating equations for the main

parameters that are orthogonal to the auxiliary parameters. The estimators produced by this method are

known as efficient-influence function (EIF) estimators.

To gain some intuition, consider finding an EIF estimator from an IPW estimator for two POMs. Note

that we only care about the two POM parameters and not about the many auxiliary parameters used to

estimate the treatment probabilities. EIF estimators project the equations that yield the POM parameters

onto the equations that yield the auxiliary treatment-model parameters and then use the residuals from

this projection to estimate the POM parameters.



teffects intro advanced — Advanced introduction to treatment effects for observational data 9

We refer to these estimators as “AIPW estimators” instead of “EIF estimators” because the former is

commonly used in the biostatistical literature for some of the binary-treatment estimators and because the

term “augmented inverse-probability-weighted” tells more about how these estimators relate to the other

implemented estimators; see Tsiatis (2006) and Tan (2010). The estimators implemented in teffects
aipw with the wnls option are based on those of Rubin and van der Laan (2008), which did well in

simulations reported by Tan (2010), and denoted as ̃𝛼𝑅𝑉( ̂𝜋) in Tan (2010, 663).
When either the outcome model or the treatment model is well specified, the AIPW estimators imple-

mented in teffects aipw are more robust than either the RA or the IPW estimators because the AIPW

estimators are doubly robust but the RA and IPW estimators are not. When both the outcome and the

treatment model are misspecified, which estimator is more robust is a matter of debate in the literature;

see Kang and Schafer (2007) and Robins et al. (2007) for some debate, and see Tan (2010) for a more

recent discussion.

To the best of our knowledge, there is no general solution to the question of which estimator performs

best when both the outcome and the treatment models are misspecified. We suspect that the answer

depends on the true models, the implemented specifications, and the polynomials in the covariates used.

To help users through this process, the estimators implemented in teffects offer many functional forms
to approximate either the outcome process or the treatment process. In addition, Stata’s factor-variable

notation makes it easy to include polynomials in the covariates. Both of these approximation methods

rely on having enough data. teffects also makes it easy to compare the results produced by different

estimators.

The literature on these methods is vast and growing. For double-robust results and explanations, see

Robins and Rotnitzky (1995); Robins, Rotnitzky, and Zhao (1995); van der Laan and Robins (2003,

chap. 6); Bang and Robins (2005); Tsiatis (2006, chap. 13); Wooldridge (2007; 2010, sec. 21.3.4); and

Tan (2010).

IPWRA estimators
Like AIPW estimators, inverse-probability-weighted regression-adjustment (IPWRA) estimators com-

bine models for the outcome and treatment status; also likeAIPW estimators, IPWRA estimators are doubly

robust. IPWRA estimators emerge naturally from a robust approach to missing-data methods. IPWRA esti-

mators use the inverse of the estimated treatment-probability weights to estimate missing-data-corrected

regression coefficients that are subsequently used to compute the POMs.

As far as we know, there is no literature that compares the relative efficiency of AIPW estimators,

which emerge from a general approach to creating efficient estimators, and the IPWRA estimators, which

emerge from a robust-correction approach to missing-data analysis.

The IPWRA estimators are also know as “Wooldridge’s double-robust” estimators because they were

derived in Wooldridge (2007) and discussed at length in Wooldridge (2010, section 21.3.4).

Nearest-neighbor matching estimators
Matching estimators use an average of the outcomes of the nearest individuals to impute the miss-

ing potential outcome for each sampled individual. The difference between the observed outcome and

the imputed potential outcome is an estimate of the individual-level treatment effect. These estimated

individual-level treatment effects are averaged to estimate the ATE or the ATET.
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teffects nnmatch determines the “nearest” by using a weighted function of the covariates for each

observation. This type of matching is known as nearest-neighbor matching (NNM). teffects psmatch
determines the “nearest” by using the estimated treatment probabilities, which are known as the propen-

sity scores. This second type of matching is known as propensity-score matching (PSM).

NNM is nonparametric in that no explicit functional form for either the outcomemodel or the treatment

model is specified. This flexibility comes at a price; the estimator needs more data to get to the true

value than an estimator that imposes a functional form. More formally, the NNM estimator converges

to the true value at a rate slower than the parametric rate, which is the square root of the sample size,

when matching on more than one continuous covariate. teffects nnmatch uses bias correction to fix

this problem. PSM provides an alternative to bias correction because it matches on a single continuous

covariate, the estimated treatment probabilities.

Abadie and Imbens (2006, 2011) derived the rate of convergence of the NNM estimator and the bias-

corrected NNM estimator and the large-sample distributions of the NNM and the bias-corrected NNM es-

timators. These articles provided the formal results that built on methods suggested in Rubin (1973,

1977).

teffects nnmatch is based on the results in Abadie and Imbens (2006, 2011) and a previous imple-

mentation in Abadie et al. (2004).

Propensity-score matching estimators
Instead of performing bias correction to handle the case of more than one continuous covariate, a com-

mon solution is to combine all the covariate information into estimated treatment probabilities, known

as propensity scores, and use this single continuous covariate as the matching variable.

The term “propensity score” is widely used, but we continue to refer to it as the “treatment probability”

to be consistent with the other estimators. We call the estimator that matches on the estimated treatment

probabilities the “propensity-score matching (PSM) estimator” because the latter term is ubiquitous.

In effect, the PSM estimator parameterizes the bias-correction term in the treatment probability model.

One advantage of matching on the estimated treatment probabilities over the bias-correction method

is that one can explore the fit of different treatment probability models using standard methods before

performing the nonparametric matching. For example, one can select the treatment model by minimizing

an information criterion under i.i.d. sampling. We know of no counterpart for selecting the proper order

of the bias-correction term for the NNM estimator.

Matching on estimated treatment probability models has been very popular since Rosenbaum and

Rubin (1983) showed that if adjusting for covariates x𝑖 is sufficient to estimate the effects, then one can

use the probability of treatment to perform the adjustment. Abadie and Imbens (2012) derived a method

to estimate the standard errors of the estimator that matches on estimated treatment probabilities, and

this method is implemented in teffects psmatch.

Choosing among estimators
There is no definitive way to select one of the estimators implemented in teffects over the others.

We offer three observations about the tradeoffs among the estimators.

First, if the outcome model is correctly specified, the RA estimator will break down more slowly than

the IPW, AIPW, IPWRA, or PSM estimators as the overlap assumption begins to fail. This result depends

critically on the ability of the RA estimator to predict into regions in which there are little data.
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Second, if the overlap assumption holds, theAIPW and IPWRA estimators have the double-robust prop-

erty for some functional form combinations. The double-robust property says that if either the outcome

model or the treatment model is correctly specified, we can consistently estimate the effects. The prop-

erties of double-robust estimators when both models are misspecified are not known, although there

is some discussion in the literature about the properties of the AIPW estimators; see Kang and Schafer

(2007), Robins et al. (2007), and Tan (2010).

Third, all the estimators require the same assumptions, so if each is correctly specified, they should

all produce similar results. Of course, just because they produce similar results does not mean that they

are correctly specified; it is possible that they are just behaving similarly in response to some underlying

problem.

Model choice
teffects offers a broad selection of functional form combinations so that you can choose a combi-

nation that fits your data. Picking a functional form that respects the values of the observed outcomes is

usually best. Select linear for continuous outcomes over the real line; logit, probit, or hetprobit
for binary outcomes; and poisson for counts or nonnegative outcomes.

For binary treatments, you can select among logit, probit, or hetprobit models. For multivalued

treatments, only the multinomial logit is available to model the treatment probabilities.

Selecting a functional form of a given set of covariates is a famously difficult problem in statistics.

In the treatment-effects context, Cattaneo, Drukker, and Holland (2013) found that model selection by

minimizing an information criterion worked well. Cattaneo, Drukker, and Holland (2013) discuss a

method and a community-contributed command to facilitate the process.
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