
teffects intro — Introduction to treatment effects for observational data

Description Remarks and examples References Also see

Description
This entry provides a nontechnical introduction to treatment-effects estimators and the teffects

command in Stata. Advanced users may want to instead read [CAUSAL] teffects intro advanced or skip

to the individual commands’ entries.

The teffects command estimates average treatment effects (ATEs), average treatment effects among

treated subjects (ATETs), and potential-outcome means (POMs) using observational data.

Treatment effects can be estimated using regression adjustment (RA), inverse-probability weights

(IPW), and “doubly robust” methods, including inverse-probability-weighted regression adjustment (IP-

WRA) and augmented inverse-probability weights (AIPW), and via matching on the propensity score or

nearest neighbors.

The outcome can be continuous, binary, count, fractional, or nonnegative. Treatments can be binary

or multivalued.

Remarks and examples
This entry presents a nontechnical overview of treatment-effects estimators for those who are new to

the subject of treatment-effects estimation or are at least new to Stata’s facilities for estimating treatment

effects. More advanced users may want to instead read [CAUSAL] teffects intro advanced or skip to the

individual commands’ entries.

Remarks are presented under the following headings:

Introduction
Defining treatment effects
Estimating treatment effects

Regression adjustment
Inverse-probability weighting
Doubly robust combinations of RA and IPW
Matching

Caveats and assumptions
A quick tour of the estimators

RA
IPW
IPWRA
AIPW
Nearest-neighbor matching
Propensity-score matching

Video examples
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Introduction
Suppose we have observed a sample of subjects, some of whom received a treatment and the rest of

whom did not. As the name suggests, in most applications, the “subjects” are indeed people. A “treat-

ment” could indeed be a medical treatment such as a new drug regimen or surgical procedure. In social

science applications, a treatment could be participation in a job-training program or inclusion in a class-

room or school in which a new pedagogical method is being used. However, not all applications use

individuals as the subjects. For example, a policy analyst might be interested in examining the impact

of an experimental program in which a national agency held a lottery to award only some local govern-

ments the resources needed to implement the program. Here the subjects are the local governments, and

treatment refers to whether a local government received the resources needed to implement the program.

We would like to know if a treatment has an effect on an outcome 𝑌. The outcome could be the

cholesterol level of a patient taking either an existing statin or a new experimental drug, or the outcome

could be the wage offered to a person who either did or did not participate in a job-training program. In

an ideal world, we would observe 𝑌 when a subject is treated (which we denote as 𝑌1), and we would

observe 𝑌 when the same subject is not treated (which we denote as 𝑌0). We would be careful to make

both observations under identical conditions so that the only difference is the presence or absence of the

treatment. We could then average the difference between 𝑌1 and 𝑌0 across all the subjects in our dataset

to obtain a measure of the average impact of the treatment.

Unfortunately, this ideal experiment is almost never available in observational data because it is not

possible to observe a specific subject having received the treatment and having not received the treatment.

When the outcome is the birthweight of a specific baby and the treatment is the mother smoking while

pregnant, it is impossible to observe the baby’s birthweight under both treatments of the mother smoking

and the mother not smoking.

A classic solution to this problem is to randomize the treatment. High costs or ethical issues rule

out this solution in many observational datasets. For example, we could not ask a random selection of

pregnant women to smoke.

The defining characteristic of observational data is that treatment status is not randomized. Moreover,

that implies that the outcome and treatment are not necessarily independent. The goal of the estimators

implemented by teffects is to utilize covariates to make treatment and outcome independent once we

condition on those covariates.

The treatment-effect estimators implemented by teffects allow us to estimate the efficacy of treat-

ments using observational data. The rest of this entry discusses these treatment-effect estimators at an

introductory level. For a more technical introduction, see [CAUSAL] teffects intro advanced.

Defining treatment effects
We introduce treatment effects more formally by using the potential-outcomes framework, which is

also known as the counterfactual framework. What is a potential outcome? Consider a subject that did

not receive treatment so that we observe 𝑌0. What would 𝑌1 be for that same subject if it were exposed

to treatment? We call 𝑌1 the potential outcome or counterfactual for that subject. For a subject that did

receive treatment, we observe 𝑌1, so 𝑌0 would be the counterfactual outcome for that subject. We can

view this as a missing-data problem, and treatment-effect methods can account for that problem.

Treatment-effect estimators allow us to estimate three parameters. The potential-outcome means

(POMs) are the means of 𝑌1 and 𝑌0 in the population. The average treatment effect (ATE) is the mean of

the difference (𝑌1 − 𝑌0). Finally, the average treatment effect on the treated (ATET) is the mean of the

difference (𝑌1 − 𝑌0) among the subjects that actually receive the treatment.

https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvanced
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To develop our intuition, suppose we have observed a sample of patients, some of whom received a

medication to reduce their blood pressure. Figure 1 plots each of our patient’s systolic blood pressures

as a function of weight. We use the color red to indicate patients who did not receive the drug and blue

to indicate patients who did receive the drug.
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Figure 1.

A remarkable feature of our data is that the average blood pressure of patients not taking the drug is

160, and the average blood pressure of patients taking the drug is also 160. Can we therefore conclude

that taking the drug has no impact on blood pressure? The answer is no.

Because this is observational data, we could not randomly assign who would receive the drug and

who would not. As a result, treatment status could be related to covariates that also affect blood pressure.

Heavier patients were more likely to be prescribed the medication, and blood pressure is correlated with

weight. The difference in sample means does not estimate the true average treatment effect, because

blood pressure depends on weight and weight is correlated with the treatment.

Suppose that we did in fact observe both potential outcomes for all patients. In figure 2, we continue to

use solid dots for our observed data points, and we introduce hollow dots to represent the counterfactual

outcomes. That is, the red hollow dots represent the blood pressures we would measure if only our treated

patients had not taken the drug, and the blue hollow dots represent the blood pressures we would measure

if only our untreated patients had taken the drug. The red and blue dashed lines represent the untreated

and treated POMs, respectively. That is, the red line represents the mean of all the red dots, and the blue

line represents the mean of all the blue dots.

https://www.stata.com/manuals/causalteffectsintro.pdf#causalteffectsintroRemarksandexamplesfigure1
https://www.stata.com/manuals/causalteffectsintro.pdf#causalteffectsintroRemarksandexamplesfigure2
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Figure 2.

If we did have the data represented by the hollow dots, then we could say that the average treatment

effect is the difference between the mean of all the red dots and the mean of all the blue dots. In this ideal

scenario, there are no missing data on the other potential outcome, and we have all the data we need to

use the difference in means to estimate the ATE.

Looking at figure 2, we can see why a difference in means using only the solid dots does not estimate

theATE. Using only the solid red dots underestimates the average blood pressure for untreated individuals,

and using only the solid blue dots overestimates the average blood pressure for treated individuals.

Estimating an ATE is essentially a missing-data problem. When covariates that affect the potential

outcomes are related to treatment, we cannot use a difference in sample means, because the missing data

are informative.

The treatment-effect estimators implemented in teffects allow for covariates like weight to be re-

lated to the potential outcomes and the treatment. Essentially, the estimators implemented by teffects
utilize covariates to fill in the hollow circles or otherwise account for how the missing data depend on

covariates that affect the potential outcomes.

Estimating treatment effects
We cannot estimate theATE by simply taking the difference between the sample means for the treated

and untreated subjects, because there are covariates that are related to the potential outcomes and the

treatment. The estimators implemented by teffects require us to specify enough of these covariates so

that after we condition on these covariates, any remaining influences on the treatment are not related to

the potential outcomes. teffects implements several different estimators to accomplish this, including

regression adjustment (RA), inverse-probability weighting (IPW), “doubly robust” methods that combine

elements of RA and IPW, and matching methods. Here we introduce the methods by using intuition and

simple examples.

See [CAUSAL] teffects intro advanced for a more technical introduction, and see the individual com-

mands’ entries for estimator-specific details.

https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvanced
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Regression adjustment

The RA method extends the idea of using sample means to estimate treatment effects by using a re-

gression model to predict potential outcomes adjusted for covariates. In the examples here, we use linear

regression, but the teffects ra command provides you with the flexibility to use logistic, probit, and

heteroskedastic probit regression models for binary outcomes as well as Poisson regression for nonneg-

ative outcomes; see [CAUSAL] teffects ra for more information.

bweightex.dta is a hypothetical dataset based on Cattaneo (2010) that we have created to illustrate

treatment-effects estimators using graphs. The subjects in this dataset are women who were pregnant,

some of whom smoked during the pregnancy. The outcome variable is the birthweight of the baby, and

we want to know whether smoking during pregnancy affects the birthweight. The dataset also contains

other demographic variables that we will use later.

Figure 3 illustrates the relationship between birthweight and smoking status as a function of the

mother’s age:
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Figure 3.

We see that smokers tend to be older than nonsmokers and that birthweight depends on smoking.

Therefore, the difference between the sample means of birthweights of babies born to smokers and non-

smokers will not estimate the true average treatment effect.

We also still have the same problem as in the previous section: we do not observe the counterfac-

tual birthweights of babies. Suppose, however, that we did. In figure 4, we use solid points to represent

observed birthweights and the colors red to represent nonsmokers and blue to represent smokers. The hol-

low points represent the counterfactual birthweights. The hollow blue points represent the birthweights

of babies that we would observe if only our young nonsmoking mothers had instead smoked during their

pregnancies. Similarly, the hollow red points represent the birthweights of babies that we would observe

if only our older smoking mothers had instead not smoked during their pregnancies.

https://www.stata.com/manuals/causalteffectsra.pdf#causalteffectsra
https://www.stata.com/manuals/causalteffectsintro.pdf#causalteffectsintroRemarksandexamplesfigure4
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Figure 4 suggests a way to estimate the potential outcomes for each mother:
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Figure 4.

We could fit a linear regression of birthweight on mother’s age by using the observed birthweights for

nonsmokers, and we could do likewise for smokers. The following graph includes these two regression

lines:
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Regression lines for the observations

Figure 5.

Figure 5 illustrates the principle behind the RAmethod. We use the red regression line to predict each

baby’s birthweight assuming the mother did not smoke, and we use the blue regression line to predict

each baby’s birthweight assuming the mother did smoke. The treatment effect of smoking for a mother

of a particular age is the vertical difference between the red and blue regression lines.

The three parameters we mentioned in the introduction are now easy to estimate. For each mother,

we obtain two values, say, bw0 and bw1, representing our predictions of her baby’s birthweight assuming

the mother did not or did smoke, respectively. The means of these variables represent the untreated and

treated POMs. The ATE is the sample mean of the difference (bw1 − bw0), and the ATET is the sample

mean of that difference computed using only the mothers who in fact did smoke during pregnancy.
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Adding the circles highlights the fact that the average age is higher for smokers than for nonsmokers.

Even though the blue and red lines have different slopes, if the average age was the same for smokers

and nonsmokers, a difference in the sample means of birthweights could still estimate the true ATE.

Figure 5 lets us address onemore issue. Users who are versed in regression analysis may be inclined to

estimate the effect of smoking using a regression model for birthweight as a function of smoking and the

mother’s age. We clearly see in figure 5 that regression lines for smokers and nonsmokers have different

slopes—the effect of age on birthweight is not the same for smokers and nonsmokers. In regression

analysis, we would therefore include an interaction term between smoking and age. The RAmethod fits

separate regression lines for smokers and nonsmokers, which also handles these differential effects of

age on smoking.

Inverse-probability weighting

As we remarked in our discussion of the RA method, we cannot simply use the sample mean birth-

weights of babies born to smokers and nonsmokers to estimate the effect of smoking. If we did that, we

would conflate the negative effect of smoking with the positive effect of age and the positive relationship

between age and smoking. IPW is a treatment-effects estimator that uses weighted means rather than

simple unweighted means to disentangle the effects of treatment and other confounders like age.

The concept underlying IPW can be gleaned from figure 2, where, as you will recall, the hollow points

represent counterfactual outcomes. As we demonstrated in Defining treatment effects, we could estimate

the average treatment effect if we knew the means of all the nonsmoking outcomes and the means of all

the smoking outcomes. In the context of figure 4, we need the mean of all the red points, both solid and

hollow, and the mean of all the blue.

If we could observe all of these points, then theATEwould be the difference between those two means.

However, the outcomes illustrated by the hollow circles are unobserved. IPW estimators view the hollow

circles as missing data and use weights to correct the estimates of the treated and untreated sample means

for the missing data. If we calculate the mean nonsmoking birthweight using just the solid red points,

that mean is biased downward because we are ignoring the hollow red points, which correspond to higher

birthweights.

In IPW, we apply more weight to the solid red points corresponding to older mothers and less weight

to those corresponding to younger mothers. Using this weighting scheme will pull up the estimated mean

birthweight of babies born to nonsmokingmothers to estimate the truemean of all nonsmoking outcomes.

The method for obtaining the mean smoking birthweight is virtually the same: we need to apply more

weight to the younger smoking mothers than to the older smoking mothers to better approximate the true

mean of all smoking outcomes.

Where do these weights for the weightedmeans come from? As the name implies, IPW uses the inverse

(reciprocal) of the probability of being in the observed treatment group. These probabilities are obtained

by modeling the observed treatment as a function of subject characteristics that determine treatment

group. In our exposition of the RAmethod, we focused solely on the mother’s age and smoking status as

determinants of each baby’s birthweight. To make the results comparable, we will use the same model

in this example.

https://www.stata.com/manuals/causalteffectsintro.pdf#causalteffectsintroRemarksandexamplesfigure5
https://www.stata.com/manuals/causalteffectsintro.pdf#causalteffectsintroRemarksandexamplesfigure2
https://www.stata.com/manuals/causalteffectsintro.pdf#causalteffectsintroRemarksandexamplesDefiningtreatmenteffects
https://www.stata.com/manuals/causalteffectsintro.pdf#causalteffectsintroRemarksandexamplesfigure4
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We first fit a logistic model of the mother’s smoking status, mbsmoke, as a function of the mother’s

age (mage):

. use https://www.stata-press.com/data/r19/bweightex
(Hypothetical birthweight data)
. logistic mbsmoke mage
Logistic regression Number of obs = 60

LR chi2(1) = 30.45
Prob > chi2 = 0.0000

Log likelihood = -26.362201 Pseudo R2 = 0.3661

mbsmoke Odds ratio Std. err. z P>|z| [95% conf. interval]

mage 1.631606 .21316 3.75 0.000 1.263022 2.107754
_cons 7.76e-06 .0000243 -3.76 0.000 1.69e-08 .0035718

Note: _cons estimates baseline odds.

Next, we compute the inverse-probability weights, which we will store in a variable called ps. In the
IPWmethod, for subjects who did receive treatment, the weight is equal to the reciprocal of the predicted

probability of treatment. For subjects who did not receive treatment, the weight is equal to the reciprocal

of the predicted probability of not receiving treatment; the probability of not receiving treatment is just

one minus the probability of receiving treatment:

. predict ps
(option pr assumed; Pr(mbsmoke))
. replace ps = 1/ps if mbsmoke==1
(30 real changes made)
. replace ps = 1/(1-ps) if mbsmoke==0
(30 real changes made)
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Figure 6.

Figure 6 replicates figure 3 with one twist. Rather than making all the points the same size, we have

made the size of the points proportional to the IPW variable ps. Notice that the largest blue points cor-
respond to the youngest smoking mothers in our sample, so they will receive the most weight when we

compute the weighted mean birthweight of babies born to smoking mothers, just as we explained we

wanted to do. Similarly, the red points corresponding to older nonsmoking mothers are larger, represent-

ing larger weights.

https://www.stata.com/manuals/causalteffectsintro.pdf#causalteffectsintroRemarksandexamplesfigure3
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There is a caveat to the IPW estimator. When we fit our logistic or probit model to obtain the predicted

probabilities, it is possible that some of the predictions will be close to zero. Because the IPW is the

reciprocal of that probability, the weight becomes arbitrarily large as the probability goes to zero. In

those cases, the IPW can become unstable. We can improve the estimated IPW by developing a more

accurate treatment model. For example, in our dataset, we have other variables such as marital status

and the education level of the baby’s father that may also help predict whether the mother smoked during

pregnancy. We excluded these variables for simplicity, but in a real analysis, we would want to use all

relevant data.

This phenomenon of unstable IPWs is related to the concept of overlap, which means that every subject

must have a strictly positive probability of obtaining treatment. We remarked that in our sample, we had

few young mothers who smoked. As should be clear from figure 6, the overlap assumption is likely to

be violated—young mothers do not appear to have a positive probability of being smokers. We would

want to check this assumption before proceeding with an IPW analysis. See [CAUSAL] teoverlap and

[CAUSAL] teffects intro advanced for more information about overlap.

Another limitation of the IPW estimator is that we are using weighted means to estimate the POMs and

ATE. Thus, unlike the RA estimator, we cannot obtain subject-level predictions of the treatment effects or

potential outcomes, because we do not have the two regression lines that we can use to predict outcomes

for each subject.

Doubly robust combinations of RA and IPW

You may have noticed a clear distinction between the RA and IPW estimators. In the case of RA, we

built linear regression models to predict the outcomes (birthweights) of each subject but said nothing

about how treatment (smoking) arises. In the case of IPW, we built a logistic regression model to predict

treatment status but did not build a formal model of the outcome. Doubly robust estimators combine the

outcome modeling strategy of RA and the treatment modeling strategy of IPW. These estimators have a

remarkable property: although they require us to build two models, we only need to specify one of the

two models correctly. If we misspecify the treatment model but correctly specify the outcome model,

we still obtain correct estimates of the treatment effect. If we correctly specify the treatment model but

misspecify the outcome model, we again will obtain correct estimates of the treatment effect.

Stata’s teffects command implements two doubly robust estimators, the augmented inverse-

probability-weighted (AIPW) estimator and the inverse-probability-weighted regression-adjustment (IP-

WRA) estimator. These estimators combine elements of RA and IPW to be more robust to misspecification.

TheAIPW estimator is an IPW estimator that includes an augmentation term that corrects the estimator

when the treatment model is misspecified. When the treatment model is correctly specified, the augmen-

tation term vanishes as the sample size becomes large. Like the IPW, the AIPW does not perform well

when the predicted treatment probabilities are too close to zero or one.

The IPWRA estimator is an RA estimator that uses estimated inverse-probability weights to correct

the estimator when the regression function is misspecified. When the regression function is correctly

specified, the weights do not affect the consistency of the estimator.

https://www.stata.com/manuals/causalteffectsintro.pdf#causalteffectsintroRemarksandexamplesfigure6
https://www.stata.com/manuals/causalteoverlap.pdf#causalteoverlap
https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvanced
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Matching

Matching estimators are based on the idea of comparing the outcomes of subjects that are as similar as

possible with the sole exception of their treatment status. In our birthweight and smoking example, we

could select a mother who smokes and select a mother of the same age who does not smoke and compare

the birthweights of their infants. The data of each mother serve as the potential outcome for the other

mother.

For a single covariate such as age, identifying a pair of comparable mothers is not difficult. If we have

a second covariate that is categorical, such as race, we might still be able to identify pairs of mothers

who are the same age and of the same race assuming our dataset is large enough. However, once we

consider covariates that are measured on continuous scales or allow for more than a few discrete ones,

then finding identical matches is a challenge. The solution is to use what is called a similarity measure,

which is a statistic that measures how “close” two observations are. teffects offers twomethods to find

comparable observations based on similarity measures: nearest-neighbor matching and propensity-score

matching.

Nearest-neighbor matching (NNM) is accomplished by calculating the “distance” between pairs of ob-

servations with regard to a set of covariates and then “matching” each subject to comparable observations

that are closest to it. For example, suppose we have a variable that records each subject’s annual income

to the penny. Say one subject who received treatment had an income of $69,234.21. The likelihood that

our dataset has an untreated subject who also earned $69,234.21 is nil. However, we can determine the

difference between each untreated subject’s income and our treated subject’s income, then match our

treated subject with the untreated subjects whose income differences are smallest. Measuring the dis-

tance between subjects when we have multiple covariates is no challenge. By default, teffects uses

what is known as the Mahalanobis distance, which is really nothing more than the Pythagorean theorem

adapted to handle the fact that covariates may be correlated and measured on different scales.

NNM does not use a formal model for either the outcome or the treatment status, but this flexibility

comes at a price. When matching on more than one continuous covariate, the NNM estimator must be

augmented with a bias-correction term. teffects nnmatch uses a linear function of the covariates

specified in the biasadj() option to remove the large-sample bias.

Propensity-score matching (PSM) is an alternative to NNM. PSM matches on the estimated predicted

probabilities of treatment, known as the propensity scores. PSM does not require bias correction, because

it uses a model for the treatment. If the treatment model is reasonably well specified, PSM will perform

at least as well as NNM; see [CAUSAL] teffects intro advanced.

Caveats and assumptions
To use the estimators implemented in teffects, we must make several assumptions about the pro-

cess that generated our data. Different estimators and statistics may require slightly more or slightly less

restrictive assumptions and may exhibit varying degrees of robustness to departures from these assump-

tions, but in general, all the estimators require some form of the following three assumptions.

The independent and identically distributed (i.i.d.) sampling assumption ensures that the outcome

and treatment status of each individual are unrelated to the outcome and treatment status of all the other

individuals in the population. Correlated data arising from hierarchical or longitudinal study designs do

not meet this assumption.

https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvanced
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The conditional-independence (CI) assumption means once we control for all observable variables,

the potential outcomes are independent of treatment assignment. The easiest way to understand the CI

assumption is to understand when it is violated. In our birthweight example, suppose mothers who did

not smoke were more health conscious and consumed better prenatal diets than those who did smoke.

Unless we explicitly controlled for health awareness or diet, our model would violate the CI assumption:

the mother’s decision to smoke or not smoke would not be independent of the baby’s birthweight. If we

did not control for health awareness, we would overstate the negative impact of smoking on birthweight.

Babies born to mothers who smoke weigh less than babies born to nonsmoking mothers not just because

of the effects of cigarettes but also because of poorer prenatal diets.

In a study examining the effect of a job-training program, the CI assumption requires that there not be

any unobserved factors such as ambition or work ethic that influence both whether a person enrolls in

the program and the wage received upon completion. To use the methods implemented by the teffects
estimators, we must have variables in our dataset that allow us to control for those types of factors.

We mentioned the third assumption, overlap, in our discussions of IPW. More formally, the overlap

assumption states that each individual have a positive probability of receiving treatment. In our birth-

weight example, we noted that there were no observations on young smokers and older nonsmokers.

Perhaps we just have an unlucky sample, but to accurately assess the impact of treatment using these

methods, we must have overlap to accurately estimate the counterfactual birthweights. In the context of

matching estimators, overlap essentially means that we can actually match treated subjects with similar

nontreated subjects.

A quick tour of the estimators
The teffects command implements six estimators of treatment effects. We introduce each one by

showing the basic syntax one would use to apply them to our birthweight example. See each command’s

entry for more information.

RA

teffects ra implements the RA estimator. We estimate the effect of a mother’s smoking behav-

ior (mbsmoke) on the birthweight of her child (bweight), controlling for marital status (mmarried),
the mother’s age (mage), whether the mother had a prenatal doctor’s visit in the baby’s first trimester

(prenatal1), and whether this baby is the mother’s first child (fbaby). We use linear regression (the

default) to model bweight:
. use https://www.stata-press.com/data/r19/cattaneo2
. teffects ra (bweight mmarried mage prenatal1 fbaby) (mbsmoke)

IPW

teffects ipw implements the IPW estimator. Here we estimate the effect of smoking by using a

probit model to predict the mother’s smoking behavior as a function of marital status, the mother’s age,

and indicators for first-trimester doctor’s visits and firstborn status:

. teffects ipw (bweight) (mbsmoke mmarried mage prenatal1 fbaby, probit)

https://www.stata.com/manuals/causalteffectsra.pdf#causalteffectsra
https://www.stata.com/manuals/causalteffectsipw.pdf#causalteffectsipw
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IPWRA

teffects ipwra implements the IPWRA estimator. We model the outcome, birthweight, as a linear

function of marital status, the mother’s age, and indicators for first-trimester doctor’s visits and firstborn

status. We use a logistic model (the default) to predict the mother’s smoking behavior, using the same

covariates as explanatory variables:

. teffects ipwra (bweight mmarried mage prenatal1 fbaby) ///
(mbsmoke mmarried mage prenatal1 fbaby)

AIPW

teffects aipw implements theAIPW estimator. Here we use the same outcome- and treatment-model

specifications as we did with the IPWRA estimator:

. teffects aipw (bweight mmarried mage prenatal1 fbaby) ///
(mbsmoke mmarried mage prenatal1 fbaby)

Nearest-neighbor matching

teffects nnmatch implements the NNM estimator. In this example, we match treated and untreated

subjects based on marital status, the mother’s age, the father’s age, and indicators for first-trimester doc-

tor’s visits and firstborn status. We use the Mahalanobis distance based on the mother’s and father’s

ages to find matches. We use exact matching on the other three variables to enforce the requirement that

treated subjects are matched with untreated subjects who have the same marital status and indicators for

first-trimester doctor’s visits and firstborn statuses. Because we are matching on two continuous covari-

ates, we request that teffects nnmatch include a bias-correction term based on those two covariates:

. teffects nnmatch (bweight mage fage) (mbsmoke), ///
ematch(prenatal1 mmarried fbaby) biasadj(mage fage)

Propensity-score matching

teffects psmatch implements the PSM estimator. Here wemodel the propensity score using a probit

model, incorporating marital status, the mother’s age, and indicators for first-trimester doctor’s visits and

firstborn status as covariates:

. teffects psmatch (bweight) (mbsmoke mmarried mage prenatal1 fbaby, probit)

Video examples
Introduction to treatment effects in Stata, part 1

Introduction to treatment effects in Stata, part 2

https://www.stata.com/manuals/causalteffectsipwra.pdf#causalteffectsipwra
https://www.stata.com/manuals/causalteffectsaipw.pdf#causalteffectsaipw
https://www.stata.com/manuals/causalteffectsnnmatch.pdf#causalteffectsnnmatch
https://www.stata.com/manuals/causalteffectspsmatch.pdf#causalteffectspsmatch
https://www.youtube.com/watch?v=p578jxAPJT4&feature=c4-overview&list=UUVk4G4nEtBS4tLOyHqustDA
https://www.youtube.com/watch?v=v4l3F3BrtlQ
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