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Description
teffects aipw estimates the average treatment effect (ATE), the average treatment effect on the

treated (ATET), and the potential-outcome means (POMs) from observational data by augmented inverse-

probability weighting (AIPW). AIPW estimators combine aspects of regression-adjustment and inverse-

probability-weighted methods. AIPW estimators have the double-robust property. teffects aipw ac-

cepts a continuous, binary, count, fractional, or nonnegative outcome and allows a multivalued treatment.

See [CAUSAL] teffects intro or [CAUSAL] teffects intro advanced for more information about esti-

mating treatment effects from observational data.

Quick start
ATE of binary treatment treat2 byAIPW using a linear model for outcome y1 on x1 and x2 and a logistic

model for treat2 on x1 and w
teffects aipw (y1 x1 x2) (treat2 x1 w)

Same as above, but use a fractional logistic model for fractional outcome y2
teffects aipw (y2 x1 x2, flogit) (treat2 x1 w)

Same as above, but use a heteroskedastic probit model for binary outcome y3 and a probit model for

treat2
teffects aipw (y3 x1 x2, hetprobit(x1 x2)) (treat2 x1 w, probit)

ATE for each level of three-valued treatment treat3 on y1
teffects aipw (y1 x1 x2) (treat3 x1 w)

Same as above, and specify that treat3 = 3 is the control level

teffects aipw (y1 x1 x2) (treat3 x1 w), control(3)

Same as above, specified using the label “MyControl” corresponding to treat3 = 3

teffects aipw (y1 x1 x2) (treat3 x1 w), control(MyControl)

ATET of binary treatment treat2 byAIPW using a linear model for outcome y1 on x1 and x2 and a probit

model for treat2 on x1 and w
teffects aipw (y1 x1 x2) (treat2 x1 w, probit), atet

Menu
Statistics > Causal inference/treatment effects > Continuous outcomes > Augmented inverse-probability weight-
ing

Statistics > Causal inference/treatment effects > Binary outcomes > Augmented inverse-probability weighting

Statistics > Causal inference/treatment effects > Count outcomes > Augmented inverse-probability weighting
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https://www.stata.com/manuals/causalteffectsintro.pdf#causalteffectsintro
https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvanced
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Statistics > Causal inference/treatment effects > Fractional outcomes > Augmented inverse-probability weighting

Statistics > Causal inference/treatment effects > Nonnegative outcomes > Augmented inverse-probability weight-
ing

Syntax
teffects aipw (ovar omvarlist [ , omodel noconstant ])

(tvar tmvarlist [ , tmodel noconstant ]) [ if ] [ in ] [weight ]
[ , stat options ]

ovar is a binary, count, continuous, fractional, or nonnegative outcome of interest.

omvarlist specifies the covariates in the outcome model.

tvar must contain integer values representing the treatment levels.

tmvarlist specifies the covariates in the treatment-assignment model.

omodel Description

Model

linear linear outcome model; the default

logit logistic outcome model

probit probit outcome model

hetprobit(varlist) heteroskedastic probit outcome model

poisson exponential outcome model

flogit fractional logistic outcome model

fprobit fractional probit outcome model

fhetprobit(varlist) fractional heteroskedastic probit outcome model

omodel specifies the model for the outcome variable.

tmodel Description

Model

logit logistic treatment model; the default

probit probit treatment model

hetprobit(varlist) heteroskedastic probit treatment model

tmodel specifies the model for the treatment variable.

For multivalued treatments, only logit is available and multinomial logit is used.

stat Description

Stat

ate estimate average treatment effect in population; the default

atet estimate average treatment effect on the treated

pomeans estimate potential-outcome means

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/causalteffectsaipw.pdf#causalteffectsaipwSyntaxomodel
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/causalteffectsaipw.pdf#causalteffectsaipwSyntaxtmodel
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/causalteffectsaipw.pdf#causalteffectsaipwSyntaxweight
https://www.stata.com/manuals/causalteffectsaipw.pdf#causalteffectsaipwSyntaxstat
https://www.stata.com/manuals/causalteffectsaipw.pdf#causalteffectsaipwSyntaxoptions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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options Description

Model

nls estimate conditional means by nonlinear least squares

wnls estimate conditional means by weighted nonlinear least squares

SE/Robust

vce(vcetype) vcetype may be robust, cluster clustvar, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)
aequations display auxiliary-equation results

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

Advanced

pstolerance(#) set tolerance for overlap assumption

osample(newvar) newvar identifies observations that violate the overlap assumption

control(# | label) specify the level of tvar that is the control

tlevel(# | label) specify the level of tvar that is the treatment

coeflegend display legend instead of statistics

omvarlist and tmvarlist may contain factor variables; see [U] 11.4.3 Factor variables.

bayesboot, bootstrap, by, collect, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant; see [R] Estimation options.

nls specifies that the parameters of the outcome model be estimated by nonlinear least squares instead

of the default maximum likelihood.

wnls specifies that the parameters of the outcomemodel be estimated byweighted nonlinear least squares
instead of the default maximum likelihood. The weights make the estimator of the effect parameters

more robust to a misspecified outcome model.

� � �
Stat �

stat is one of three statistics: ate, atet, or pomeans. ate is the default.

ate specifies that the average treatment effect be estimated.

atet specifies that the average treatment effect on the treated be estimated.

pomeans specifies that the potential-outcome means for each treatment level be estimated.

https://www.stata.com/manuals/r.pdf#rvce_option
https://www.stata.com/manuals/causalteffectsaipw.pdf#causalteffectsaipwOptionsdisplay_options
https://www.stata.com/manuals/causalteffectsaipw.pdf#causalteffectsaipwOptionsmaxopts
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some

kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that

use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

aequations specifies that the results for the outcome-model or the treatment-model parameters be dis-

played. By default, the results for these auxiliary parameters are not displayed.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: iterate(#), [no]log, and from(init specs); see [R]Maximize. These options are

seldom used.

init specs is one of

matname [ , skip copy ]
# [ , # . . . ], copy

� � �
Advanced �

pstolerance(#) specifies the tolerance used to check the overlap assumption. The default value is

pstolerance(1e-5). teffectswill exit with an error if an observation has an estimated propensity
score smaller than that specified by pstolerance().

osample(newvar) specifies that indicator variable newvar be created to identify observations that violate
the overlap assumption.

control(# | label) specifies the level of tvar that is the control. The default is the first treatment level.

You may specify the numeric level # (a nonnegative integer) or the label associated with the numeric

level. control() may not be specified with statistic pomeans.

tlevel(# | label) specifies the level of tvar that is the treatment for the statistic atet. The default is
the second treatment level. You may specify the numeric level # (a nonnegative integer) or the label

associated with the numeric level. tlevel() may be specified only with statistic atet. tlevel()
and control() may not specify the same treatment level.

The following option is available with teffects aipw but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Overview
Video example

https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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Overview
AIPW estimators use inverse-probability weights to correct for the missing-data problem arising from

the fact that each subject is observed in only one of the potential outcomes; these estimators use an

augmentation term to correct the estimator in case the treatment model is misspecified. If the treatment

model is correctly specified, the augmentation term goes to zero in large samples.

AIPW estimators compute averages of the augmented inverse-probability-weighted outcomes for each

treatment level. Contrasts of these averages provide estimates of the treatment effects.

AIPW estimators use a model to predict treatment status, and they use another model to predict out-

comes. Because of the double-robust property, only one of these two models must be correctly specified

for the AIPW estimator to be consistent.

AIPW estimators use a three-step approach to estimating treatment effects:

1. They estimate the parameters of the treatment-assignment model and compute inverse-

probability weights.

2. They estimate separate regression models of the outcome for each treatment level and obtain

the treatment-specific predicted outcomes for each subject.

3. They compute the weighted means of the treatment-specific predicted outcomes, where the

weights include the inverse-probability weights computed in step 1. The contrasts of these

weighted averages provide the estimates of the treatment effects.

These steps produce consistent estimates of the effect parameters because treatment assignment is

assumed to be independent of the potential outcomes after conditioning on the covariates. The over-

lap assumption ensures that predicted inverse-probability weights do not get too large. The standard

errors reported by teffects aipw correct for the three-step process. See [CAUSAL] teffects intro or

[CAUSAL] teffects intro advanced for more information about this estimator.

We will illustrate the use of teffects aipw by using data from a study of the effect of a mother’s

smoking status during pregnancy (mbsmoke) on infant birthweight (bweight) as reported by Cattaneo

(2010). This dataset also contains information about each mother’s age (mage), education level (medu),
marital status (mmarried), whether the first prenatal exam occurred in the first trimester (prenatal1),
and whether this baby was the mother’s first birth (fbaby).

https://www.stata.com/manuals/causalteffectsintro.pdf#causalteffectsintro
https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvanced
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Example 1: Estimating the ATE
We begin by using teffects aipw to estimate the average treatment effect of mbsmoke on bweight.

We use a probit model to predict treatment status as a function of mmarried, mage, and fbaby; to maxi-
mize the predictive power of this model, we use factor-variable notation to incorporate quadratic effects

of the mother’s age, the only continuous covariate in our model. We use linear regression to model

birthweight, using prenatal1, mmarried, mage, and fbaby as explanatory variables. We type

. use https://www.stata-press.com/data/r19/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)
. teffects aipw (bweight prenatal1 mmarried mage fbaby)
> (mbsmoke mmarried c.mage##c.mage fbaby medu, probit)
Iteration 0: EE criterion = 4.629e-21
Iteration 1: EE criterion = 1.936e-25
Treatment-effects estimation Number of obs = 4,642
Estimator : augmented IPW
Outcome model : linear by ML
Treatment model: probit

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATE
mbsmoke

(Smoker
vs

Nonsmoker) -230.9892 26.21056 -8.81 0.000 -282.361 -179.6174

POmean
mbsmoke

Nonsmoker 3403.355 9.568472 355.68 0.000 3384.601 3422.109

The average birthweight if all mothers were to smoke would be 231 grams less than the average of

3,403 grams that would occur if none of the mothers had smoked.

By default, teffects aipw reports the ATE and the POM for the base (untreated) subjects. The

pomeans option allows us to view the treated subjects’ POM as well; the aequations option displays the

regression model coefficients used to predict the POMs as well as the coefficients from the model used to

predict treatment.



teffects aipw — Augmented inverse-probability weighting 7

Example 2: Displaying the POMs and equations
Here we use the pomeans and aequations options to obtain estimates of both POMs and view all the

fitted equations underlying our estimates:

. teffects aipw (bweight prenatal1 mmarried mage fbaby)
> (mbsmoke mmarried c.mage##c.mage fbaby medu, probit), pomeans aequations
Iteration 0: EE criterion = 4.629e-21
Iteration 1: EE criterion = 6.876e-26
Treatment-effects estimation Number of obs = 4,642
Estimator : augmented IPW
Outcome model : linear by ML
Treatment model: probit

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

POmeans
mbsmoke

Nonsmoker 3403.355 9.568472 355.68 0.000 3384.601 3422.109
Smoker 3172.366 24.42456 129.88 0.000 3124.495 3220.237

OME0
prenatal1 64.40859 27.52699 2.34 0.019 10.45669 118.3605
mmarried 160.9513 26.6162 6.05 0.000 108.7845 213.1181

mage 2.546828 2.084324 1.22 0.222 -1.538373 6.632028
fbaby -71.3286 19.64701 -3.63 0.000 -109.836 -32.82117
_cons 3202.746 54.01082 59.30 0.000 3096.886 3308.605

OME1
prenatal1 25.11133 40.37541 0.62 0.534 -54.02302 104.2457
mmarried 133.6617 40.86443 3.27 0.001 53.5689 213.7545

mage -7.370881 4.21817 -1.75 0.081 -15.63834 .8965804
fbaby 41.43991 39.70712 1.04 0.297 -36.38461 119.2644
_cons 3227.169 104.4059 30.91 0.000 3022.537 3431.801

TME1
mmarried -.6484821 .0554173 -11.70 0.000 -.757098 -.5398663

mage .1744327 .0363718 4.80 0.000 .1031452 .2457202

c.mage#
c.mage -.0032559 .0006678 -4.88 0.000 -.0045647 -.0019471

fbaby -.2175962 .0495604 -4.39 0.000 -.3147328 -.1204595
medu -.0863631 .0100148 -8.62 0.000 -.1059917 -.0667345

_cons -1.558255 .4639691 -3.36 0.001 -2.467618 -.6488926

The coefficient table indicates that the treated POM is 3,172 grams, 231 grams less than the untreated

POM. The sections of the table labeled OME0 and OME1 represent the linear regression coefficients for the

untreated and treated potential-outcome equations, respectively. The coefficients of the TME1 equation

are used in the probit model to predict treatment status.

As is well known, the standard probit model assumes that the error terms in the latent-utility frame-

work are homoskedastic; the model is not robust to departures from this assumption. An alternative is to

use the heteroskedastic probit model, which explicitly models the error variance as a function of a set of

variables.
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Example 3: Heteroskedastic probit treatment model
Here we refit our model as in the previous examples, but we instead use heteroskedastic probit to

model the treatment variable. We posit that the heteroskedasticity is a function of the mother’s age. We

type

. teffects aipw (bweight prenatal1 mmarried fbaby)
> (mbsmoke mmarried c.mage##c.mage fbaby medu, hetprobit(c.mage)), aequations
Iteration 0: EE criterion = 1.746e-19
Iteration 1: EE criterion = 4.222e-26
Treatment-effects estimation Number of obs = 4,642
Estimator : augmented IPW
Outcome model : linear by ML
Treatment model: heteroskedastic probit

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATE
mbsmoke

(Smoker
vs

Nonsmoker) -230.2699 27.35327 -8.42 0.000 -283.8814 -176.6585

POmean
mbsmoke

Nonsmoker 3403.657 9.540713 356.75 0.000 3384.957 3422.356

OME0
prenatal1 69.5048 27.04642 2.57 0.010 16.49479 122.5148
mmarried 173.74 24.63865 7.05 0.000 125.4491 222.0308

fbaby -79.19473 18.62584 -4.25 0.000 -115.7007 -42.68875
_cons 3260.768 28.29282 115.25 0.000 3205.315 3316.221

OME1
prenatal1 12.86437 39.83916 0.32 0.747 -65.21894 90.94768
mmarried 113.3491 39.47422 2.87 0.004 35.9811 190.7172

fbaby 64.22326 38.42042 1.67 0.095 -11.07939 139.5259
_cons 3051.268 37.30413 81.79 0.000 2978.153 3124.383

TME1
mmarried -.3551755 .1044199 -3.40 0.001 -.5598347 -.1505162

mage .0831898 .0349088 2.38 0.017 .0147699 .1516097

c.mage#
c.mage -.0013458 .0006659 -2.02 0.043 -.002651 -.0000406

fbaby -.1170697 .044998 -2.60 0.009 -.2052643 -.0288752
medu -.0435057 .0147852 -2.94 0.003 -.0724842 -.0145272

_cons -.8757021 .347814 -2.52 0.012 -1.557405 -.1939993

TME1_lnsigma
mage -.0236336 .0107134 -2.21 0.027 -.0446315 -.0026357

The equation labeled TME1 lnsigma represents the heteroskedasticity function used to model the

logarithm of the variance. Looking at theATE and POM estimates as well as their standard errors, we can

see that they are almost identical to the previous results. Thus, allowing for heteroskedasticity did not

change any of our previous conclusions.
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Rather than using maximum likelihood to fit the outcome model, you can instruct teffects aipw
to use a weighted nonlinear least-squares (WNLS) estimator instead. The WNLS estimator may be more

robust to outcome model misspecification.

Example 4: Using the WNLS estimator
Here we useWNLS to fit our outcome model:

. teffects aipw (bweight prenatal1 mmarried mage fbaby)
> (mbsmoke mmarried c.mage##c.mage fbaby medu, probit), wnls
Iteration 0: EE criterion = 2.788e-20
Iteration 1: EE criterion = 9.910e-25
Treatment-effects estimation Number of obs = 4,642
Estimator : augmented IPW
Outcome model : linear by WNLS
Treatment model: probit

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATE
mbsmoke

(Smoker
vs

Nonsmoker) -227.1956 27.34794 -8.31 0.000 -280.7966 -173.5946

POmean
mbsmoke

Nonsmoker 3403.251 9.596622 354.63 0.000 3384.442 3422.06

TheATE of −227 is slightly greater than theATE of −231 estimated in example 1. The estimated POMs

are nearly indistinguishable.

https://www.stata.com/manuals/causalteffectsaipw.pdf#causalteffectsaipwRemarksandexamplesex1
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Example 5: Estimating ATET
So far, we have discussed estimates of ATE. Here we wish to estimate the ATET. We do so simply by

specifying option atet:

. teffects aipw (bweight fbaby mage mmarried prenatal1)
> (mbsmoke fbaby foreign medu mmarried, probit), atet
Iteration 0: EE criterion = 2.079e-19
Iteration 1: EE criterion = 2.149e-25
Treatment-effects estimation Number of obs = 4,642
Estimator : augmented IPW
Outcome model : linear by ML
Treatment model: probit

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATET
mbsmoke

(Smoker
vs

Nonsmoker) -228.0266 23.18451 -9.84 0.000 -273.4674 -182.5858

POmean
mbsmoke

Nonsmoker 3365.686 13.4482 250.27 0.000 3339.328 3392.044

The estimated POM is 3,366, which tells us that, if all smoking mothers in the population instead chose

not to smoke, the average birthweight of their babies would be 3,366 grams. The observed birthweight

among this group of mothers, however, is lower on average by 228 grams, which we learn from the

estimated ATET of −228.
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Example 6: Estimating ATET with multivalued treatment
We can also estimate ATETs with multivalued treatments. Here we use the variable msmoke as our

treatment variable, which has four levels representing one control group and three treatment groups:

. teffects aipw (bweight fbaby mage mmarried prenatal1)
> (msmoke fbaby foreign medu mmarried), atet
Iteration 0: EE criterion = 7.107e-13
Iteration 1: EE criterion = 3.101e-26
Treatment-effects estimation Number of obs = 4,642
Estimator : augmented IPW
Outcome model : linear by ML
Treatment model: (multinomial) logit

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATET
msmoke

(1--5 daily
vs

0 daily) -156.7646 36.7927 -4.26 0.000 -228.8769 -84.65219
(6--10 daily

vs
0 daily) -209.2045 35.01555 -5.97 0.000 -277.8337 -140.5753

(11+ daily
vs

0 daily) -220.3197 33.84588 -6.51 0.000 -286.6564 -153.983

POmean
msmoke

0 daily 3351.16 14.88082 225.20 0.000 3321.994 3380.325

When estimatingATETwith multivalued treatments, we need to specify not only the group to be taken

as the control group but also the group to be taken as the treated. By default, teffects uses the first

level of the treatment variable as the control group (here msmoke = 0) and the second level as the group

of treated (msmoke = 1). To change this, we could specify the control() and tlevel() options, but

here we leave it at the default.

The POM shown at the bottom of the output is an estimate of 𝐸{𝑌𝑖(0)|𝑡 = 1}. It tells us that, among
the population of light-smoking mothers (smoking 1–5 cigarettes per day), the birthweight of their babies

would be 3,351 grams on average if none of them chose to smoke. This average birthweight is higher

by 157 grams compared with the observed birthweight among women of this group, as indicated by the

first ATET in the output table, which is an estimate of 𝐸{𝑌𝑖(1) − 𝑌𝑖(0)|𝑡 = 1}. The second ATET in the

output is an estimate of 𝐸{𝑌𝑖(2) − 𝑌𝑖(0)|𝑡 = 1}. That is, among the group of light-smoking mothers, if
they were to smoke more (that is, 6–10 cigarettes per day), the difference in average birthweight would

now grow to 209 grams. Likewise, the thirdATET in the output (an estimate of 𝐸{𝑌𝑖(3) − 𝑌𝑖(0)|𝑡 = 1})
tells us that, if light-smoking mothers were to smoke even more, the average birthweight of their babies

would be 220 grams lower than the average birthweight in the counterfactual case where none of these

mothers smoked.

Video example
Treatment effects: Augmented inverse-probability weighting

https://www.youtube.com/watch?v=HqShQ1RcP5s&feature=c4-overview&list=UUVk4G4nEtBS4tLOyHqustDA
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Stored results
teffects aipw stores the following in e():
Scalars

e(N) number of observations

e(nj) number of observations for treatment level j

e(N clust) number of clusters

e(k eq) number of equations in e(b)
e(k levels) number of levels in treatment variable

e(treated) level of treatment variable defined as treated

e(control) level of treatment variable defined as control

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) teffects
e(cmdline) command as typed

e(depvar) name of outcome variable

e(tvar) name of treatment variable

e(subcmd) aipw
e(tmodel) logit, probit, or hetprobit
e(omodel) linear, logit, probit, hetprobit, poisson, flogit, fprobit, or

fhetprobit
e(stat) statistic estimated, ate, atet, or pomeans
e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(tlevels) levels of treatment variable

e(cme) ml, nls, or wnls
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
The methods and formulas presented here provide the technical details underlying the estimators

implemented in teffects ra, teffects ipw, teffects aipw, and teffects ipwra. See Methods

and formulas of [CAUSAL] teffects nnmatch for the methods and formulas used by teffects nnmatch
and teffects psmatch.

https://www.stata.com/manuals/causalteffectsnnmatch.pdf#causalteffectsnnmatchMethodsandformulas
https://www.stata.com/manuals/causalteffectsnnmatch.pdf#causalteffectsnnmatchMethodsandformulas
https://www.stata.com/manuals/causalteffectsnnmatch.pdf#causalteffectsnnmatch
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Methods and formulas are presented under the following headings:

Parameters and notation
Overview of EE estimators
VCE for EE estimators
TM and OM estimating functions

TM estimating functions
logit and probit
hetprobit
mlogit

OM estimating functions
OM QML

linear
logit, flogit, probit, and fprobit
hetprobit and fhetprobit
poisson

OMWNL
linear
logit, flogit, probit, and fprobit
hetprobit and fhetprobit
poisson

Effect estimating functions
RA estimators

RA for POM
RA for ATE
RA for ATET

IPW estimators
IPW for POM
IPW for ATE
IPW for ATET

AIPW estimators
AIPW for POM
AIPW for ATE
AIPW for ATET

IPWRA estimators

Parameters and notation
We begin by reviewing the effect parameters estimated by teffects and some essential notation.

The potential outcome that an individual would obtain if given treatment level 𝑡 ∈ {0, 1, . . . , 𝑞} is 𝑦𝑡.

Each 𝑦𝑡 is a random variable, the realizations of which are 𝑦𝑡𝑖. Throughout this document, 𝑖 subscripts
denote realizations of the corresponding, unsubscripted random variables.

The three parameters of interest are

1. the potential-outcome mean (POM) 𝛼𝑡 = 𝐸(𝑦𝑡);
2. the average treatment effect (ATE) 𝜏𝑡 = 𝐸(𝑦𝑡 − 𝑦0); and
3. the average treatment effect on the treated (ATET) 𝛿𝑡 = 𝐸(𝑦𝑡 − 𝑦0|𝑡 = ̃𝑡).

The no-treatment level is 0.

The estimators implemented in teffects use three assumptions to justify the equations used for

estimation and inference about the effect parameters of interest:

1. Conditional mean independence (CMI) allows us to estimate potential-outcome means from the

observed outcomes in the sample.

2. Overlap ensures that we have data on each type of individual in each treatment level.

https://www.stata.com/manuals/causalteffectsaipw.pdf#causalteffectsaipwMethodsandformulasTMlogit
https://www.stata.com/manuals/causalteffectsaipw.pdf#causalteffectsaipwMethodsandformulasTMhetprobit
https://www.stata.com/manuals/causalteffectsaipw.pdf#causalteffectsaipwMethodsandformulasTMmlogit
https://www.stata.com/manuals/causalteffectsaipw.pdf#causalteffectsaipwMethodsandformulasQMLlinear
https://www.stata.com/manuals/causalteffectsaipw.pdf#causalteffectsaipwMethodsandformulasQMLlogit
https://www.stata.com/manuals/causalteffectsaipw.pdf#causalteffectsaipwMethodsandformulasQMLhetprobit
https://www.stata.com/manuals/causalteffectsaipw.pdf#causalteffectsaipwMethodsandformulasQMLpoisson
https://www.stata.com/manuals/causalteffectsaipw.pdf#causalteffectsaipwMethodsandformulasWNLlinear
https://www.stata.com/manuals/causalteffectsaipw.pdf#causalteffectsaipwMethodsandformulasWNLlogit
https://www.stata.com/manuals/causalteffectsaipw.pdf#causalteffectsaipwMethodsandformulasWNLhetprobit
https://www.stata.com/manuals/causalteffectsaipw.pdf#causalteffectsaipwMethodsandformulasWNLpoisson
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3. Independent observations ensure that the outcome and treatment for one individual has no effect

on the outcome or treatment for any other individual.

teffects ra implements some regression-adjustment (RA) estimators; teffects ipw implements

some inverse-probability-weighted (IPW) estimators; teffects ipwra implements some inverse-

probability-weighted regression-adjustment (IPWRA) estimators; and teffects aipw implements some

augmented inverse-probability-weighted (AIPW) estimators. All are implemented as estimating-equation

(EE) estimators. The estimators are consistent and asymptotically normally distributed under the CMI,

overlap, and independence assumptions.

Overview of EE estimators
EE estimators compute estimates by solving sample estimating equations. The sample estimating

equations are the sample equivalents of population expectation equations.

Each EE estimator specifies a set of estimating equations for the effect parameters of interest and a set

of estimating equations for the auxiliary parameters in the outcome model (OM) or the treatment model

(TM). The next few sections provide tremendous detail about the estimating equations that define the RA,

IPW, AIPW, and IPWRA estimators.

Ignoring the details for a moment, EE estimators solve systems of equations to compute estimates. A

standard robust estimator is consistent for the variance of the estimator (VCE). All the details involve the

equations specified by choices of estimator and functional forms for the OM or TM.

When used, the OM is a model for the conditional mean of the outcome variable. We let 𝜇(x, 𝑡,β𝑡)
denote a conditional-mean model for the outcome 𝑦 conditional on covariates x and treatment level 𝑡.
Mathematically, 𝐸(𝑦|x, 𝑡) = 𝜇(x, 𝑡,β𝑡), where β𝑡 are the parameters of the conditional-mean model

given treatment level 𝑡. The table below provides details about the available functional forms.

Outcome model Functional form for 𝜇(x, 𝑡,β𝑡)
linear xβ𝑡

logit, flogit exp(xβ𝑡)/{1 + exp(xβ𝑡)}
probit, fprobit Φ(xβ𝑡)

poisson exp(xβ𝑡)
hetprobit, fhetprobit Φ{ẋβ̇𝑡/ exp(ẍβ̈𝑡)}

In the cases of hetprobit and fhetprobit, we use ẋ and ̇β𝑡 to denote the variables and parameters

in the index function, and we use ẍ and ̈β𝑡 to denote the variables and parameters in the variance equation.

We define x′ = (ẋ′, ẍ′) and β′
𝑡 = (β̇′

𝑡, β̈
′
𝑡).

We write the vector of parameters for the outcome model over all treatment levels as β′ =
(β′

0,β1, . . . ,β′
𝑞).

Next we provide details about the estimating equations implied by each functional form choice.
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When used, the TM is a model for the conditional probability of treatment. We let 𝑝(z, 𝑡, 𝛄) denote
the conditional probability model for the probability that a person receives treatment 𝑡, conditional on
covariates z. The table below provides details about the functional form options allowed in the case of a

binary treatment.

Treatment model Functional form for 𝑝(z, 𝑡, 𝛄)
logit exp(z𝛄)/{1 + exp(z𝛄)}
probit Φ(z𝛄)

hetprobit Φ{ ̇z𝛄̇/ exp( ̈z𝛄̈)}

In the case of hetprobit, we use ̇z and 𝛄̇ to denote the variables and parameters in the index function,

and we use ̈z and 𝛄̈ to represent the variables and parameters in the variance equation. We define z′ =
( ̇z′, ̈z′), and 𝛄′ = (𝛄̇′, 𝛄̈′).

In the multivalued-treatment case, 𝑝(z, 𝑡, 𝛄) is specified as a multinomial logit with 𝑝(z, 𝑡, 𝛄) =
exp(z𝛄𝑡)/{1 + ∑𝑞

𝑘=1 exp(z𝛄𝑘)} and 𝛄′ = (𝛄′
1, 𝛄′

2, . . . , 𝛄′
𝑞). (We present formulas for the case with

treatment level 0 as the base with 𝛄′
0 = 0′; see [R] mlogit for background.) In teffects, the logit

option in the treatment-model specification means binary logit for the binary-treatment case and multino-

mial logit for themultivalued-treatment case: this simplifies the use of the command andmakes statistical

sense.

Below we provide details about the estimating equations implied by each functional form

choice. The effect parameters of interest are

1. the POMs denoted by α′ = (𝛼0, 𝛼1, . . . , 𝛼𝑞);
2. the ATEs denoted by τ′ = (𝜏1, 𝜏2, . . . , 𝜏𝑞); and

3. the ATETs denoted by δ′ = (𝛿1, 𝛿2, . . . , 𝛿𝑞).
We denote the effect parameters by 𝜗 and all the parameters in any particular case by θ. More for-

mally, θ is the concatenation of the effect parameters, the OM parameters, and the TM parameters;

θ′ = (𝜗′,β′, 𝛄′), where 𝜗 is α, τ, or δ, and β or 𝛄 may not be present, depending on the case at

hand.

In the subsections below, we discuss estimators for the elements in θ in detail and note how these

elements change over the cases defined by effect parameters and estimators. The parameter vector θ
denotes all the parameters, no matter which particular case is under consideration.

The EE estimators described in this section are defined by a set of equations,

𝐸{s(x, z,θ)} = 0

where s(x, z,θ) is a vector of estimating functions. Note the notation: estimating equations equate the

expected value of a vector of estimating functions to zero.

Because each of the estimating functions has mean zero, we can construct estimators that find the

estimates θ̂ by solving a system of equations,

1/𝑁
𝑁

∑
𝑖
s𝑖(x𝑖, z𝑖, θ̂) = 0

where s𝑖(x𝑖, z𝑖, θ̂) are the sample realizations of the estimating functions. In other words, the parameter
estimates set the average of the realizations of each estimating function to zero. Almost all the details

below involve specifying the sample realizations s𝑖(x𝑖, z𝑖, θ̂).

https://www.stata.com/manuals/rmlogit.pdf#rmlogit
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Estimators that set the expected value of estimating functions to zero are known as estimating-

equations (EE) estimators, M estimators, or Z estimators in the statistics literature and as generalized

method of moments (GMM) estimators in the econometrics literature. See van der Vaart (1998, 41), Ste-

fanski and Boos (2002), and Tsiatis (2006, sec. 3.2) for statistics; and see Wooldridge (2010, chap. 14),

Cameron and Trivedi (2005, chap. 6), and Newey and McFadden (1994) for econometrics.

We refer to them as EE estimators because this name is closest to being independent of any discipline.

The estimators are implemented using gmm because they are exactly identified generalized method of

moments (GMM) estimators. When weights are specified by the user, they are applied to the estimating

equations just as gmm applies user-specified weights.

Each estimator has a set of estimating equations for the effect parameters and either an OM or a TM,

or both. The OM parameters or the TM parameters are auxiliary parameters used to estimate the effect

parameters of interest.

Each set of parameters has its own set of sample estimating equations:

1/𝑁 ∑𝑖 s𝑒,𝑖(x𝑖, z𝑖, θ̂) = 0 are the sample estimating equations for the effect parameters. These

equations determine the effect parameter estimates ̂𝜗 as functions of the data and the other

estimated parameters.

1/𝑁 ∑𝑖 som,𝑖(x𝑖, 𝑤𝑖, β̂) = 0 are the sample estimating equations for OM parameters that use

the weights 𝑤𝑖, which are functions of the TM parameters.

1/𝑁 ∑𝑖 stm,𝑖(z𝑖, 𝛄̂) = 0 are the sample estimating equations for TM parameters.

The whole set of sample estimating functions is s𝑖(x𝑖, z𝑖, θ̂) with

s𝑖(x𝑖, z𝑖, θ̂)′ = (s𝑒,𝑖(x𝑖, z𝑖, θ̂)′, som,𝑖(x𝑖, 𝑤𝑖(𝑡), β̂)′, stm,𝑖(z𝑖, 𝛄̂)′)

although not all the estimators have each of three components.

VCE for EE estimators
TheHuber/White/robust sandwich estimator is consistent for the variance–covariance of the estimator

(VCE). See van der Vaart (1998, 41), Stefanski and Boos (2002), and Tsiatis (2006, sec. 3.2) for statistics;

and see Wooldridge (2010, chap. 14), Cameron and Trivedi (2005, chap. 6), and Newey and McFadden

(1994) for econometrics.

The formula is

V̂ = (1/𝑁)G S G ′

where

G = {(1/𝑁) ∑
𝑖

𝜕𝑠𝑖(x𝑖, z𝑖, θ̂)
𝜕θ̂

}
−1

and

S = (1/𝑁) ∑
𝑖

𝑠𝑖(x𝑖, z𝑖, θ̂)𝑠𝑖(x𝑖, z𝑖, θ̂)′

The matrix G is not symmetric because our EE estimators come from stacking moment conditions

instead of optimizing a single objective function. The implication is that the robust formula should

always be used because, even under correct specification, the nonsymmetric G and the symmetric S

converge to different matrices.
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TM and OM estimating functions

Although the sample estimating functions for the effect parameters, the s𝑒,𝑖(x𝑖, z𝑖, θ̂), are estimator
specific, the sample estimating functions for the TM parameters, the stm,𝑖(z𝑖, 𝛄̂), and the sample estimat-
ing functions for the OM parameters, the som,𝑖(x𝑖, 𝑤𝑖(𝑡), β̂)′, are used in multiple estimators. We provide

details about the TM and the OM sample estimating functions here.

TM estimating functions

The sample estimating functions used to estimate the parameters of the TM 𝑝(z, 𝑡, 𝛄) are the sample
score equations from the quasimaximum likelihood (QML) estimator.

In the binary-treatment case, 𝑝(z, 𝑡, 𝛄) may be logit, probit, or heteroskedastic probit. In the

multivalued-treatment case, 𝑝(z, 𝑡, 𝛄) is a multinomial logit. We now give formulas for the stm,𝑖(z𝑖, 𝛄̂)
for each case.

logit and probit

In the logit and probit cases,

stm,𝑖(z𝑖, 𝛄̂) = [
𝑔(z𝑖𝛄̂

′) {𝑡𝑖 − 𝐺(z𝑖𝛄̂
′)}

𝐺(z𝑖𝛄̂
′) {1 − 𝐺(z𝑖𝛄̂

′)}
] z𝑖

where 𝐺(𝑧) is the logistic cumulative distribution function for the logit, 𝐺(𝑧) is the normal cumulative
distribution function for the probit, and 𝑔(⋅) = {𝜕𝐺(𝑧)}/(𝜕𝑧) is the corresponding density function.

hetprobit

In the hetprobit case, there are two sets of sample score equations, stm,1,𝑖(z𝑖, 𝛄̂) and stm,2,𝑖(z𝑖, 𝛄̂):

stm,1,𝑖(z𝑖, 𝛄̂) = ( 𝜙 {𝑞 (z𝑖, 𝛄̂)} [𝑡𝑖 − Φ {𝑞 (z𝑖, 𝛄̂)}]
Φ {𝑞 (z𝑖, 𝛄̂)} [1 − Φ {𝑞 (z𝑖, 𝛄̂)}] exp( ̈z𝑖̂̈𝛄

′
)
) ̇z′

𝑖

and

stm,2,𝑖(z𝑖, 𝛄̂) = ( 𝜙 {𝑞 (z𝑖, 𝛄̂)} ̇z𝑖̂̇𝛄
′
[Φ {𝑞 (z𝑖, 𝛄̂)} − 𝑡𝑖]

Φ {𝑞 (z𝑖, 𝛄̂)} [1 − Φ {𝑞 (z𝑖, 𝛄̂)}] exp( ̈z𝑖̂̈𝛄
′
)
) ̈z′

𝑖

where 𝜙(⋅) is the standard normal density function, and 𝑞 (z𝑖, 𝛄̂) = ( ̇z𝑖̂̇𝛄
′
/ exp( ̈z𝑖̂̈𝛄

′
)).

mlogit

In the mlogit case, 𝑝(z, 𝑡, 𝛄) = exp(z𝛄𝑡)/ {1 + ∑𝑞
𝑘=1 exp(z𝛄𝑘)}. We present formulas for the

case with treatment level 0 as the base with 𝛄′
0 = 0′; see [R] mlogit for background.

There are 𝑞 vectors of sample estimating functions for the mlogit case, stm,𝑘,𝑖(z𝑖, 𝛄̂) for each 𝑘 ∈
{1, . . . , 𝑞}, 1 for each vector 𝛄̂𝑘, 𝑘 ∈ {1, . . . , 𝑞}. These sample estimating functions are

stm,𝑘,𝑖(z𝑖, 𝛄̂) = {{1 − 𝑝(z𝑖, 𝑘, 𝛄̂)}z′
𝑖 𝑡𝑖 = 𝑘

−𝑝(z𝑖, 𝑘, 𝛄̂)z′
𝑖 otherwise

https://www.stata.com/manuals/rmlogit.pdf#rmlogit
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OM estimating functions

The parameters of the OM 𝜇(x, 𝑡,β𝑡) are estimated either by weighted QML or by weighted nonlinear

least squares. The estimating functions used to estimate the parameters of the OM are either the score

equations from the weighted QML estimator or the moment conditions for the weighted nonlinear least-

squares estimator.

The estimating functions for the OM parameters in 𝜇(x, 𝑡,β𝑡) vary over the models for the conditional
mean because 𝜇(x, 𝑡,β𝑡) may be linear, logit, probit, heteroskedastic probit, or poisson.

Let 𝑁𝑡 be the number of observations in treatment level 𝑡, and let 𝑡𝑖(𝑡) = 1 if 𝑡𝑖 = 𝑡, with 𝑡𝑖(𝑡) = 0

if 𝑡𝑖 ≠ 𝑡.
There are two sets of sample estimating functions for the OM parameters with weights 𝑤𝑖(𝑡):

1. sml,om,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡)} are the sample estimating functions for the weighted QML estimator.

2. snls,om,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡)} are the sample estimating functions for the weighted nonlinear least-squares

estimator.

OM QML

Here are the formulas for the sml,om,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡} for each functional form choice.

linear

In the linear case,

sml,om,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡} = 𝑤𝑖(𝑡)𝑡𝑖(𝑡)(𝑦𝑖 − x𝑖β̂
′
𝑡)x

′
𝑖

logit, flogit, probit, and fprobit

In the logit, flogit, probit, and fprobit cases,

sml,om,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡} = 𝑤𝑖(𝑡)𝑡𝑖(𝑡)
⎡
⎢
⎣

𝑔(x𝑖β̂
′
𝑡) {𝑦𝑖 − 𝐺(x𝑖β̂

′
𝑡)}

𝐺(x𝑖β̂
′
𝑡) {1 − 𝐺(x𝑖β̂

′
𝑡)}

⎤
⎥
⎦
x𝑖

where 𝐺(𝑧) is the logistic cumulative distribution function for the logit and flogit, 𝐺(𝑧) is the normal cu-
mulative distribution function for the probit and fprobit, and 𝑔(⋅) = {𝜕𝐺(𝑧)}/(𝜕𝑧) is the corresponding
density function.

hetprobit and fhetprobit

In the hetprobit and fhetprobit cases, there are two sets of sample score equations,

sml,om,1,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡} and sml,om,2,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡}:

sml,om,1,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡} = 𝑤𝑖(𝑡)𝑡𝑖(𝑡)
⎛⎜⎜
⎝

𝜙 {𝑞 (x𝑖, β̂𝑡)} [𝑦𝑖 − Φ {𝑞 (x𝑖, β̂𝑡)}]

Φ {𝑞 (x𝑖, β̂𝑡)} [1 − Φ {𝑞 (x𝑖, β̂𝑡)}] exp(ẍ𝑖
̂̈β

′

𝑡)

⎞⎟⎟
⎠
ẋ′

𝑖

and

sml,om,2,𝑖(x𝑖, 𝑤𝑖(𝑡), β̂𝑡) = 𝑤𝑖(𝑡)𝑡𝑖(𝑡)
⎛⎜⎜
⎝

𝜙 {𝑞 (x𝑖, β̂𝑡)} ẋ𝑖
̂̇β

′

𝑡 [Φ {𝑞 (x𝑖, β̂𝑡)} − 𝑦𝑖]

Φ {𝑞 (x𝑖, β̂𝑡)} [1 − Φ {𝑞 (x𝑖, β̂𝑡)}] exp( ̈x𝑖
̂̈β

′

𝑡)

⎞⎟⎟
⎠
ẍ′

𝑖
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where 𝜙(⋅) is the standard normal density function, sml,om,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡}
′ =

[sml,om,1,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡}
′, sml,om,2,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡}

′], and 𝑞 (x𝑖, β̂𝑡) = (ẋ𝑖
̂̇β

′

𝑡/ exp(ẍ𝑖
̂̈β

′

𝑡)).

poisson

In the poisson case,

sml,om,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡} = 𝑤𝑖(𝑡)𝑡𝑖(𝑡){𝑦𝑖 − exp(x𝑖β̂
′
𝑡)}x

′
𝑖

OM WNL

Here are the formulas for the snls,om,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡)} for each functional form choice.

linear

In the linear case,

snls,om,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡} = 𝑤𝑖(𝑡)𝑡𝑖(𝑡)(𝑦𝑖 − x𝑖β̂
′
𝑡)x

′
𝑖

logit, flogit, probit, and fprobit

In the logit, flogit, probit, and fprobit cases,

snls,om,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡} = 𝑤𝑖(𝑡)𝑡𝑖(𝑡) [𝑔(x𝑖β̂
′
𝑡) {𝑦𝑖 − 𝐺(x𝑖β̂

′
𝑡)}] x𝑖

where 𝐺(𝑧) is the logistic cumulative distribution function for the logit and flogit, 𝐺(𝑧) is the normal cu-
mulative distribution function for the probit and fprobit, and 𝑔(⋅) = {𝜕𝐺(𝑧)}/(𝜕𝑧) is the corresponding
density function.

hetprobit and fhetprobit

In the hetprobit and fhetprobit cases, there are two sets of sample score equations,

snls,om,1,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡} and snls,om,2,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡}:

snls,om,1,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡} = 𝑤𝑖(𝑡)𝑡𝑖(𝑡)
⎛⎜
⎝

𝜙 {𝑞 (x𝑖, β̂𝑡)}

exp(ẍ𝑖
̂̈β

′

𝑡)
[𝑦𝑖 − Φ {𝑞 (x𝑖, β̂𝑡)}]⎞⎟

⎠
ẋ′

𝑖

and

snls,om,2,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡} = 𝑤𝑖(𝑡)𝑡𝑖(𝑡)
⎛⎜
⎝

𝜙 {𝑞 (x𝑖, β̂𝑡)}

exp(ẍ𝑖
̂̈β

′

𝑡)
ẋ𝑖

̂̇β
′

𝑡 [Φ {𝑞 (x𝑖, β̂𝑡)} − 𝑦𝑖]
⎞⎟
⎠
ẍ′

𝑖

where 𝜙(⋅) is the standard normal density function, snls,om,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡}
′ =

[snls,om,1,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡}
′, snls,om,2,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡}

′], and 𝑞 (x𝑖, β̂𝑡) = (ẋ𝑖
̂̇β

′

𝑡/ exp(ẍ𝑖
̂̈β

′

𝑡)).



teffects aipw — Augmented inverse-probability weighting 20

poisson

In the poisson case,

snls,om,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡} = 𝑤𝑖(𝑡)𝑡𝑖(𝑡){𝑦𝑖 − exp(x𝑖β̂
′
𝑡)} exp(x𝑖β̂

′
𝑡)x

′
𝑖

Effect estimating functions
We now describe the sample estimating functions for the effect parameters, which vary over estimator

and effect parameter.

RA estimators

RA estimators estimate the effect parameters using means of the observation-level predictions of the

conditional means of the outcomes. There is no model for the conditional probability of treatment.

The RA estimators use unweighted QML estimators to estimate the parameters of the conditional mean

model. In other words, the RA estimators use the sample estimating functions sml,om,𝑖(x𝑖, 1, β̂), given
above.

For the RA estimators, the vector of sample estimating functions is the concatenation of the sample

estimating functions for the effect parameters with the sample estimating functions for theOM parameters.

Algebraically,

sra,𝑖(x𝑖, θ̂)′ = sra,𝑒,𝑖(x𝑖, θ̂, β̂)′, sml,om,𝑖(x𝑖, 1, β̂)′

The estimating functions sra,𝑒,𝑖(x𝑖, θ̂, β̂)′ vary over the effect parameter.

RA for POM

The RA estimators for the POM parameters estimate θ′ = (α′,β′) using two types of estimating

equations: 1) those for the POM parameters α, and 2) those for the conditional-mean model parameters
β𝑡 in 𝜇(x, 𝑡,β𝑡).

The sample estimating functions for the β̂𝑡 are given in OM estimating functions above.

The elements of sra,𝑒,𝑖(x𝑖, α̂, β̂) for the POM parameters α are given by

𝜇(x𝑖, 𝑡, β̂𝑡) − ̂𝛼𝑡 (RAPOM)

RA for ATE

The RA estimators for the ATE parameters estimate θ′ = (τ′,β′) using two types of estimating equa-
tions: 1) those for the ATE parameters τ, and 2) those for the OM parameters β𝑡 in 𝜇(x, 𝑡,β𝑡).

The sample estimating functions that determine the β̂𝑡 are given in OM estimating functions with

𝑤𝑖(𝑡) = 1.

The elements of sra,𝑒,𝑖(x𝑖, ̂τ, β̂) for the ATE parameters τ are given by

𝜇(x𝑖, 𝑡, β̂𝑡) − 𝜇(x𝑖, 0, β̂𝑡) − ̂𝜏𝑡 (RAATE)

https://www.stata.com/manuals/causalteffectsaipw.pdf#causalteffectsaipwMethodsandformulasOMestimatingfunctions
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RA for ATET

The RA estimators for the ATET parameters estimate θ′ = (δ′,β′) using two types of estimating

equations: 1) those for the ATET parameters δ, and 2) those for the OM parameters β𝑡 in 𝜇(x, 𝑡,β𝑡).

The sample estimating functions that determine the β̂𝑡 are given in OM estimating functions above

with 𝑤𝑖(𝑡) = 1.

The elements of sra,𝑒,𝑖(x𝑖, ̂δ, β̂) for the ATET parameters δ are given by

𝑁𝑡𝑖( ̃𝑡)/𝑁 ̃𝑡 {𝜇(x𝑖, 𝑡, β̂𝑡) − 𝜇(x𝑖, 0, β̂𝑡) − ̂𝛿𝑡} (RAATET)

IPW estimators

IPW estimators estimate the effect parameters using means of the observed outcomes weighted by the

inverse probability of treatment. There is no outcome model. The IPW estimators use QML estimators to

estimate the parameters of the conditional probability model.

The vector of estimating functions is the concatenation of the estimating functions for the effect pa-

rameters with the estimating functions for the conditional-probability parameters. The sample estimating

functions used by the IPW estimators are

sipw,𝑖(x𝑖, θ̂)′ = sipw,𝑒,𝑖(x𝑖, θ̂, 𝛄̂)′, stm,𝑖(z𝑖, 1, 𝛄̂)′

The estimating functions sipw,𝑒,𝑖(z𝑖, θ̂, 𝛄̂)′ vary over the effect parameter.

All the IPW estimators use normalized inverse-probability weights. These weights are not related to

the weights 𝑤𝑖(𝑡) that were used in the OM equations. The functional form for the normalized inverse-

probability weights varies over the effect parameters POM, ATE, and ATET.

The POM and ATE estimators use normalized inverse-probability weights. The unnormalized weights

for individual 𝑖 and treatment level 𝑡 are 𝑑𝑖(𝑡) = 𝑡𝑖(𝑡)/𝑝(z𝑖, 𝑡, 𝛄̂), and the normalized weights are 𝑑𝑖(𝑡) =
𝑁𝑡𝑑𝑖(𝑡)/ ∑𝑁

𝑖 𝑑𝑖(𝑡).
The ATET estimator uses normalized treatment-adjusted inverse-probability weights. The treatment-

adjusted inverse-probability weights adjust the inverse-probability weights for the probability of getting

the conditional treatment ̃𝑡. The unnormalized weights are 𝑓𝑖 = 𝑝(z𝑖, ̃𝑡, 𝛄̂)/𝑝(z𝑖, 𝑡𝑖, 𝛄̂), and the normal-
ized weights are 𝑓𝑖 = 𝑁𝑓𝑖/ ∑𝑁

𝑖 𝑓𝑖.

The IPW effect estimators are weighted cell averages. The sample estimating functions used in POM

estimators are the sample estimating functions fromweightedOLS regression on treatment-cell indicators.

The POM estimators use a full set of 𝑞 + 1 of treatment indicator variables a𝑖. (The 𝑖th observation on

the 𝑘th variable in a𝑖 is 1 if 𝑖 received treatment 𝑘 − 1 and 0 otherwise, for 𝑘 ∈ {1, 2, . . . , 𝑞 + 1}.)
The sample estimating functions used in the ATE and the ATET estimators are the sample estimating

functions from weighted OLS regression on treatment-cell indicators, excluding the indicator for the con-

trol level and including a constant term. The variables ã𝑖 used in the ATE and ATET sample estimating

functions include 𝑞 of treatment indicator variables and a variable that is always 1. (The first 𝑞 variables
in ã𝑖 are treatment indicators: the 𝑖th observation on the 𝑘th variable in ã𝑖 is 1 if 𝑖 received treatment 𝑘
and 0 otherwise, for 𝑘 ∈ {1, 2, . . . , 𝑞}. The (𝑞 + 1)th variable is always 1.) This definition of ã𝑖 sets the

last treatment level to be the control; renaming the treatments handles the more general case allowed for

by teffects.

https://www.stata.com/manuals/causalteffectsaipw.pdf#causalteffectsaipwMethodsandformulasOMestimatingfunctions
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Having defined a𝑖 and ã𝑖, we can give the sample estimating functions that the IPW estimators use for

the effects parameters.

IPW for POM

We begin with the IPW estimators for the potential-outcome means. In this case, θ′ = (α′, 𝛄′).
The sample estimating functions for the 𝛄̂ are given in TM estimating functions above.

The sample estimating functions for α̂ are given by

sipw,𝑒,𝑖,𝑡(z𝑖, α̂, 𝛄̂)′ = 𝑑𝑖(𝑡)(𝑦𝑖 − a𝑖α̂)a′
𝑖 (IPWPOM)

IPW for ATE

The full parameter vector for the IPW estimators for the ATE is θ′ = (τ′, 𝛄′).
The sample estimating functions for the 𝛄̂ are given in TM estimating functions above.

The sample estimating functions for ̂τ are given by

sipw,𝑒,𝑖,𝑡(z𝑖, ̂τ, 𝛄̂)′ = 𝑑𝑖(𝑡)(𝑦𝑖 − ã𝑖 ̂τ)ã′
𝑖 (IPWATE)

IPW for ATET

The full parameter vector for the IPW estimators for the ATET is θ′ = (δ′, 𝛄′).
The sample estimating functions for the 𝛄̂ are given in TM estimating functions above.

The sample estimating functions for ̂δ are given by

sipw,𝑒,𝑖,𝑡(z𝑖, ̂δ, 𝛄̂)′ = 𝑓𝑖(𝑡)(𝑦𝑖 − ã𝑖
̂δ)ã′

𝑖 (IPWATET)

AIPW estimators

This section documents the sample estimating functions used by the augmented inverse-probability-

weighted (AIPW) estimators implemented in teffects. These AIPW estimators are efficient-influence-

function estimators as discussed in [CAUSAL] teffects intro and [CAUSAL] teffects intro advanced. The

teffects implementation was primarily inspired by Cattaneo, Drukker, and Holland (2013), which

was based on Cattaneo (2010). Tan (2010) was influential by identifying the implemented weighted

nonlinear least-squares estimator as having relatively good properties when both the conditional mean

function and the conditional probability function are misspecified. TheATET implementation follows the

moment functions outlined in Farrell (2015).

The AIPW estimating functions for the treatment parameters include terms from a conditional proba-

bility model and from a conditional mean model for the outcome.

The sample-estimation-equations vector has three parts for the AIPW estimators:

saipw,𝑖(x𝑖, z𝑖, θ̂)′ = [saipw,𝑒,𝑖(x𝑖, z𝑖, θ̂)′, saipw,tm,𝑖(z𝑖, 𝛄̂)′, saipw,om,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂}′]

The sample estimating functions for the parameters of the TM are the stm,𝑖(z𝑖, 𝛄̂) given in TM esti-

mating functions above.

https://www.stata.com/manuals/causalteffectsaipw.pdf#causalteffectsaipwMethodsandformulasTMestimatingfunctions
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teffects aipw implements three AIPW estimators: the standard AIPW estimator, the NLS AIPW esti-

mator, and theWNLS AIPW estimator.

The three AIPW estimators differ in how they estimate the parameters of the OM.

By default, teffects aipw uses the standardAIPW estimator that estimates the parameters of the OM

by the unweighted ML estimator, whose sample estimating functions, sml,om,𝑖(x𝑖, 1, β̂), are given in OM
estimating functions above.

When the nls option is specified, teffects aipw uses the NLS AIPW estimator that estimates

the parameters of the OM by the unweighted NLS estimator, whose sample estimating functions,

snls,om,𝑖(x𝑖, 1, β̂), are given in OM estimating functions above.

When the wnls option is specified, teffects aipw uses theWNLS AIPW estimator that estimates the

parameters of the OM by theWNLS estimator, whose sample estimating functions, snls,om,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂},
are given in OM estimating functions above. The weights for person 𝑖 in treatment level 𝑡 are

𝑤𝑖(𝑡) = 𝑡𝑖(𝑡)
𝑝(z𝑖, 𝑡, 𝛄̂)

{ 𝑡𝑖(𝑡)
𝑝(z𝑖, 𝑡, 𝛄̂)

− 1} (WNLSW)

Now we discuss the sample estimating functions for the effect parameters, the s𝑒,𝑖(x𝑖, z𝑖, θ̂).

AIPW for POM

We begin with the AIPW estimators for the potential-outcome means. In this case, θ′ = (α′, 𝛄′,β′),
and the elements of saipw,𝑒,𝑖(x𝑖, z𝑖, θ̂) are given by

𝑡𝑖(𝑡)
𝑝(z𝑖, 𝑡, 𝛄̂)

𝑦𝑖 − 𝜇(x𝑖, β̂𝑡) { 𝑡𝑖(𝑡)
𝑝(z𝑖, 𝑡, 𝛄̂)

− 1} − 𝛼𝑡

AIPW for ATE

The AIPW estimators for the ATE estimate θ′ = (τ′, 𝛄′,β′), and the elements of saipw,𝑒,𝑖(x𝑖, z𝑖, θ̂) are
given by

𝑡𝑖(𝑡)
𝑝(z𝑖, 𝑡, 𝛄̂)

𝑦𝑖 − 𝜇(x𝑖, β̂𝑡) { 𝑡𝑖(𝑡)
𝑝(z𝑖, 𝑡, 𝛄̂)

− 1} − 𝜏0 if 𝑡 = 0

𝑡𝑖(𝑡)
𝑝(z𝑖, 𝑡, 𝛄̂)

𝑦𝑖 − 𝜇(x𝑖, β̂𝑡) { 𝑡𝑖(𝑡)
𝑝(z𝑖, 𝑡, 𝛄̂)

− 1} − 𝜏𝑡 − 𝜏0 if 𝑡 > 0

AIPW for ATET

TheAIPW estimators for theATET estimate θ′ = (δ′, 𝛄′,β′) and the elements of saipw,𝑒,𝑖(x𝑖, z𝑖, θ̂) are
given by

𝑡𝑖( ̃𝑡)
𝑝 ̃𝑡

𝜇(x𝑖, β̂𝑡) + 𝑡𝑖(𝑡)
𝑝 ̃𝑡

𝑝(z𝑖, ̃𝑡, 𝛄̂){𝑦𝑖 − 𝜇(x𝑖, β̂𝑡)}
𝑝(z𝑖, 𝑡, 𝛄̂)

− 𝑡𝑖( ̃𝑡)
𝑝 ̃𝑡

𝛿0 if 𝑡 = 0

𝑡𝑖( ̃𝑡)
𝑝 ̃𝑡

𝜇(x𝑖, β̂𝑡) + 𝑡𝑖(𝑡)
𝑝 ̃𝑡

𝑝(z𝑖, ̃𝑡, 𝛄̂){𝑦𝑖 − 𝜇(x𝑖, β̂𝑡)}
𝑝(z𝑖, 𝑡, 𝛄̂)

− 𝑡𝑖( ̃𝑡)
𝑝 ̃𝑡

(𝛿𝑡 − 𝛿0) if 𝑡 > 0

where ̃𝑡 is the conditional treatment, 𝑁 ̃𝑡 is the number of treated observations, and 𝑝 ̃𝑡 = 𝑁 ̃𝑡/𝑁.
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IPWRA estimators

The IPWRA estimators combine inverse-probability weighting (IPW) with regression-adjustment (RA)

methods. The sample estimating functions for IPWRA include sample estimating functions from both RA

and IPW. The vector of sample estimating functions is

sipwra,𝑖(x𝑖, θ̂)′ = sra,𝑒,𝑖(x𝑖, ̂𝜗, β̂)′, sml,om,𝑖{x𝑖, 𝑤𝑖(𝑗), β̂}′, stm,𝑖(z𝑖, 𝛄̂)′

where θ̂
′

= ( ̂𝜗′, β̂
′
, 𝛄̂′), ̂𝜗 = α̂ for POM, ̂𝜗 = ̂τ𝑡 for ATE, and ̂𝜗 = ̂δ𝑡 for ATET. The sample esti-

mating functions, sra,𝑒,𝑖(x𝑖, ̂𝜗, β̂), for POM, ATE, and ATET are given in equations (RAPOM), (RAATE),

and (RAATET). For the OM sample estimating functions, sml,om,𝑖(⋅), we replace the RA unity weights,

𝑤𝑖(𝑡) = 1, with 𝑑𝑖(𝑗) for POM or ATE and 𝑓𝑖 for ATET, the normalized inverse-probability weights de-

scribed in IPW estimators above. The specific form of the OM sample estimating functions are given

in OM estimating functions above. The TM sample estimating functions are given in TM estimating

functions above.
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