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Description
stteffects ipwra estimates the average treatment effect (ATE), the average treatment effect on

the treated (ATET), and the potential-outcome means (POMs) from observational survival-time data

by inverse-probability-weighted regression adjustment (IPWRA). IPWRA estimators use missingness-

adjusted regression coefficients to compute averages of treatment-level predicted outcomes. Contrasts

of these averages estimate the treatment effects. stteffects ipwra offers several choices for the func-

tional forms of the outcome model, of the treatment model, and of the optional time-to-censoring model.

Binary and multivalued treatments are accommodated.

See [CAUSAL] stteffects intro for an overview of estimating treatment effects from observational

survival-time data.

Quick start
Specify time as observed failure time and fail as failure indicator

stset time, failure(fail)

ATE of binary treatment treat2 estimated by IPWRA using a Weibull model for time on x1 and x2 and

a logistic model for treat2 on x1 and w
stteffects ipwra (x1 x2) (treat2 x1 w)

Same as above, but estimate the ATET

stteffects ipwra (x1 x2) (treat2 x1 w), atet

Gamma model for time and probit model for treat2
stteffects ipwra (x1 x2, gamma) (treat2 x1 w, probit)

ATE for each level of three-valued treatment treat3
stteffects ipwra (x1 x2) (treat3 x1 w)

Same as above, and specify that treat3 = 3 is the control level using the value label “MyControl” for 3

stteffects ipwra (x1 x2) (treat3 x1 w), control(”MyControl”)

ATE of treat2 estimated by IPWRA using a Weibull model for time on x1 and x2, a logistic model for
treat2 on x1 and w, and a Weibull model for the time to censoring with covariates x1 and x2

stteffects ipwra (x1 x2) (treat2 x1 w) (x1 x2)

Gamma model for time, probit model for treat2, and gamma model for censoring
stteffects ipwra (x1 x2, gamma) (treat2 x1 w, probit) (x1 x2, gamma)

Menu
Statistics > Causal inference/treatment effects > Survival outcomes > Regression adjustment with IPW
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https://www.stata.com/manuals/causalstteffectsintro.pdf#causalstteffectsintro
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Syntax
stteffects ipwra (omvarlist [ , omoptions ]) (tvar tmvarlist [ , tmoptions ])

[ (cmvarlist [ , cmoptions ]) ] [ if ] [ in ] [ , stat options ]

omvarlist specifies the variables that predict the survival-time variable in the outcome model.

tvar must contain integer values representing the treatment levels.

tmvarlist specifies the variables that predict treatment assignment in the treatment model.

cmvarlist specifies the variables that predict censoring in the censoring model.

omoptions Description

Model

weibull Weibull; the default

exponential exponential

gamma two-parameter gamma

lnormal lognormal

ancillary(avarlist [ , noconstant ]) specify variables used to model ancillary parameter

noconstant suppress constant from outcome model

tmoptions Description

Model

logit logistic treatment model; the default

probit probit treatment model

hetprobit(varlist) heteroskedastic probit treatment model

noconstant suppress constant from treatment model

cmoptions Description

Model

weibull Weibull; the default

exponential exponential

gamma two-parameter gamma

lnormal lognormal

ancillary(avarlist [ , noconstant ]) specify variables used to model ancillary parameter

noconstant suppress constant from censoring model

stat Description

Stat

ate estimate average treatment effect in population; the default

atet estimate average treatment effect on the treated

pomeans estimate potential-outcome means

https://www.stata.com/manuals/causal.pdf#causalstteffectsipwraSyntaxomoptions
https://www.stata.com/manuals/causal.pdf#causalstteffectsipwraSyntaxtmoptions
https://www.stata.com/manuals/causal.pdf#causalstteffectsipwraSyntaxcmoptions
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/causal.pdf#causalstteffectsipwraSyntaxstat
https://www.stata.com/manuals/causal.pdf#causalstteffectsipwraSyntaxoptions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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options Description

SE/Robust

vce(vcetype) vcetype may be robust, cluster clustvar, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
aequations display auxiliary-equation results

noshow do not show st setting information

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

iterinit(#) specify starting-value iterations; seldom used

Advanced

pstolerance(#) set tolerance for the overlap assumption

osample(newvar) identify observations that violate the overlap assumption

control(# | label) specify the level of tvar that is the control

tlevel(# | label) specify the level of tvar that is the treatment

coeflegend display legend instead of statistics

You must stset your data before using stteffects; see [ST] stset.
omvarlist, tmvarlist, cmvarlist, and avarlist may contain factor variables; see [U] 11.4.3 Factor variables.

bootstrap, by, collect, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

fweights, iweights, and pweights may be specified using stset; see Weights under Remarks and examples in [ST] stset.
However, weights may not be specified if you are using the bootstrap prefix.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

ancillary(avarlist [ , noconstant ]) specifies the variables used to model the ancillary parameter.

By default, the ancillary parameter does not depend on covariates. Specifying ancillary(avarlist,
noconstant) causes the constant to be suppressed in the model for the ancillary parameter.

ancillary() may be specified for the model for survival-time outcome, for the model for the cen-

soring variable, or for both. If ancillary() is specified for both, the varlist used for each model

may be different.

noconstant; see [R] Estimation options.

https://www.stata.com/manuals/r.pdf#rvce_option
https://www.stata.com/manuals/causal.pdf#causalstteffectsipwraOptionsdisplay_options
https://www.stata.com/manuals/causal.pdf#causalstteffectsipwraOptionsmaxopts
https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
https://www.stata.com/manuals/ststset.pdf#ststsetRemarksandexamplesWeights
https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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� � �
Stat �

stat is one of three statistics: ate, atet, or pomeans. ate is the default.

ate specifies that the average treatment effect be estimated.

atet specifies that the average treatment effect on the treated be estimated.

pomeans specifies that the potential-outcome means for each treatment level be estimated.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some

kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that

use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

aequations specifies that the results for the outcome-model or treatment-model parameters be dis-

played. By default, the results for these auxiliary parameters are not displayed.

noshow prevents stteffects ipwra from showing the key st variables. This option is rarely used

because most people type stset, show or stset, noshow to permanently set whether they want to

see these variables mentioned at the top of the output of every st command; see [ST] stset.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: iterate(#), [no]log, and from(init specs); see [R]Maximize. These options are

seldom used.

init specs is one of

matname [ , skip copy ]
# [ , # . . . ], copy

iterinit(#) specifies the maximum number of iterations used to calculate the starting values. This

option is seldom used.

� � �
Advanced �

pstolerance(#) specifies the tolerance used to check the overlap assumption. The default value is

pstolerance(1e-5). stteffectswill exit with an error if an observation has an estimated propen-
sity score smaller than that specified by pstolerance().

osample(newvar) specifies that indicator variable newvar be created to identify observations that violate

the overlap assumption.

control(# | label) specifies the level of tvar that is the control. The default is the first treatment level.

You may specify the numeric level # (a nonnegative integer) or the label associated with the numeric

level. control() may not be specified with the statistic pomeans. control() and tlevel() may

not specify the same treatment level.

https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
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tlevel(# | label) specifies the level of tvar that is the treatment for the statistic atet. The default is
the second treatment level. You may specify the numeric level # (a nonnegative integer) or the label

associated with the numeric level. tlevel() may only be specified with statistic atet. tlevel()
and control() may not specify the same treatment level.

The following option is available with stteffects but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
If you are not familiar with the framework for treatment-effects estimation from observational

survival-time data, please see [CAUSAL] stteffects intro.

IPWRA estimators use estimated weights to obtain missingness-adjusted outcome-regression pa-

rameters. The missingness-adjusted outcome-regression parameters are used to compute averages of

treatment-level predicted outcomes. Contrasts of these averages estimate the treatment effects.

The estimated weights account for the missing potential outcome and, optionally, for data lost to

censoring. The weights are estimated using a treatment-assignment model and, optionally, a model for

the censoring time. A term in the estimator for the outcome-regression parameters accounts for data lost

to censoring when estimated weights are not used.

There are two versions of the IPWRA estimator because there are two methods of accounting for the

data lost to censoring.

1. IPWRA estimators that adjust for censoring by including a term in the likelihood function for the

outcome-model parameters are known as likelihood-adjusted-censoring IPWRA (LAC-IPWRA)

estimators.

2. IPWRA estimators that adjust for censoring by weighting the likelihood function for the

outcome-model parameters by estimated inverse-probability-of-censoring weights are known

as weighted-adjusted-censoring IPWRA (WAC-IPWRA) estimators.

The LAC-IPWRA estimators require fewer assumptions than the WAC-IPWRA estimators. Outlining

the steps performed by LAC-IPWRA and WAC-IPWRA estimators allows us to be more specific about the

tradeoffs between the estimators.

LAC-IPWRA estimators use a three-step approach to estimating treatment effects:

1. Estimate the parameters of a treatment-assignment model and compute inverse-probability-of-

treatment weights.

2. Obtain the treatment-specific predicted mean outcomes for each subject by using the weighted

maximum likelihood estimators. Estimated inverse-probability-of-treatment weights are used

to weight the maximum likelihood estimator. A term in the likelihood function adjusts for right-

censored survival times.

3. Compute the means of the treatment-specific predicted mean outcomes. Contrasts of these

averages provide the estimates of theATEs. By restricting the computations of the means to the

subset of treated subjects, we can obtain the ATETs.

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/causalstteffectsintro.pdf#causalstteffectsintro
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WAC-IPWRA estimators use a four-step approach to estimating treatment effects:

1. Estimate the parameters of a treatment-assignment model and compute inverse-probability-of-

treatment weights.

2. Estimate the parameters of a time-to-censoring model and compute inverse-probability-of-

censoring weights.

3. Obtain the treatment-specific predicted mean outcomes for each subject by using the weighted

maximum likelihood estimators. Estimated inverse-probability-of-treatment weights and

inverse-probability-of-censoring weights are used to weight the maximum likelihood estimator.

The inverse-probability-of-censoring weights account for right-censored survival times.

4. Compute the means of the treatment-specific predicted mean outcomes. Contrasts of these

averages provide the estimates of theATEs. By restricting the computations of the means to the

subset of treated subjects, we can obtain the ATETs.

TheWAC-IPWRA estimators require that the censoring time be random and that the time-to-censoring

model be well specified. The implementedWAC-IPWRA estimators also require that the time-to-censoring

process not vary by treatment level. The LAC-IPWRA estimators do not require these extra assumptions

because they use a likelihood term instead of weights to adjust for the data lost to censoring.

Here we note only a few entry points to the vast literature on estimators that combine IPW and RA

methods. Hirano, Imbens, and Ridder (2003), Imbens (2000, 2004), Imbens and Wooldridge (2009),

Rosenbaum and Rubin (1983), Robins and Rotnitzky (1995, 2006), Robins, Rotnitzky, and Zhao (1995),

Wooldridge (2002, 2007), Cameron and Trivedi (2005, chap. 25), Wooldridge (2010, chap. 21), and

Vittinghoff et al. (2012, chap. 9) provide excellent general introductions to estimating ATEs and to the

IPWRA estimators in particular.

Like streg and other survival-time commands, stteffects ipwra uses the outcome variable and

the failure indicator computed by, and optionally weights specified with, stset. stteffects ipwra is

not appropriate for data with time-varying covariates, also known as multiple-record survival-time data,

or for delayed-entry data.

Example 1: Estimating the ATE by LAC-IPWRA
Suppose we wish to study the effect of smoking on the time to a second heart attack among women

aged 45–55 years. In our fictional sheart dataset, atime is the observed time in years to a second

heart attack or censoring, and fail is the 0/1 indicator that a second heart attack was observed. (When

fail is 1, atime records the time to the second heart attack; when fail is 0, atime records a censored

observation of the time to a second heart attack.) We previously stset these data; see A quick tour of

the estimators in [CAUSAL] stteffects intro.

The treatment, smoking, is stored in the 0/1 indicator smoke. These data also contain age at the time
of the first heart attack (age), and indices of the level of exercise (exercise), diet quality (diet), and
education (education) prior to the first heart attack.

We can use stteffects ipwra to estimate the ATE. We model the mean survival time using the

default Weibull model, controlling for age, exercise, diet, and education. We model treatment

assignment using the default logit model with covariates age, exercise, and education. We do not

specify a time-to-censoring model so that we obtain the LAC estimator.

https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/causalstteffectsintro.pdf#causalstteffectsintroRemarksandexamplesAquicktouroftheestimators
https://www.stata.com/manuals/causalstteffectsintro.pdf#causalstteffectsintroRemarksandexamplesAquicktouroftheestimators
https://www.stata.com/manuals/causalstteffectsintro.pdf#causalstteffectsintro
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. use https://www.stata-press.com/data/r19/sheart
(Time to second heart attack (fictional))
. stteffects ipwra (age exercise diet education) (smoke age exercise education)

Failure _d: fail
Analysis time _t: atime

Iteration 0: EE criterion = 7.439e-15
Iteration 1: EE criterion = 1.730e-26
Survival treatment-effects estimation Number of obs = 2,000
Estimator : IPW regression adjustment
Outcome model : Weibull
Treatment model: logit
Censoring model: none

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -1.591874 .4837332 -3.29 0.001 -2.539973 -.643774

POmean
smoke

Nonsmoker 4.214263 .2598689 16.22 0.000 3.704929 4.723597

When every woman smoked in the population of women aged 45–55 years who have had a heart

attack, the average time to a second heart attack is estimated to be 1.59 years less than when no women

in the population of interest smoked. The estimated average time to a second heart attack when nowomen

in the population of interest smoked is 4.21 years.

The ratio of the ATE to the control-level potential-outcome mean (POM) measures the importance of

the effect. In this example, when all women smoked, the time to the second heart attack falls by an

estimated 38% relative to the case in which no women smoked. See example 3 in [CAUSAL] stteffects

ra for an example that uses nlcom to compute a point estimate and a confidence interval for this ratio.

https://www.stata.com/manuals/causalstteffectsra.pdf#causalstteffectsraRemarksandexamplesex3
https://www.stata.com/manuals/causalstteffectsra.pdf#causalstteffectsra
https://www.stata.com/manuals/causalstteffectsra.pdf#causalstteffectsra
https://www.stata.com/manuals/rnlcom.pdf#rnlcom
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Example 2: Different outcome and treatment models
Instead of aWeibull model for the outcome model, we could have used an exponential, a gamma, or a

lognormal model. Instead of a logit model for the treatment assignment, we could have used a probit or

a heteroskedastic probit model. This example uses a gamma model for the outcome and a probit model

for the treatment assignment.

. stteffects ipwra (age exercise diet education, gamma)
> (smoke age exercise education, probit)

Failure _d: fail
Analysis time _t: atime

Iteration 0: EE criterion = 2.644e-13
Iteration 1: EE criterion = 2.153e-23
Survival treatment-effects estimation Number of obs = 2,000
Estimator : IPW regression adjustment
Outcome model : gamma
Treatment model: probit
Censoring model: none

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -1.387303 .4786032 -2.90 0.004 -2.325348 -.4492583

POmean
smoke

Nonsmoker 3.97986 .2258474 17.62 0.000 3.537207 4.422512

The estimatedATE of −1.39 and control-level POM of 3.98 are similar to the values of −1.59 and 4.21

that we obtained in example 1.

https://www.stata.com/manuals/causalstteffectsipwra.pdf#causalstteffectsipwraRemarksandexamplesex1


stteffects ipwra — Survival-time inverse-probability-weighted regression adjustment 9

Example 3: Estimating the ATE by WAC-IPWRA
Rather than using LAC, we may want to specify a time-to-censoring model. We now use stteffects

ipwra to estimate the ATE by WAC-IPWRA. We use the same specification of the outcome and treatment

models that we used in example 1. However, now we specify a time-to-censoring model, using the

default Weibull model with covariates age, exercise, diet, and education.

. stteffects ipwra (age exercise diet education) (smoke age exercise education)
> (age exercise diet education)

Failure _d: fail
Analysis time _t: atime

Iteration 0: EE criterion = 3.673e-18
Iteration 1: EE criterion = 8.511e-31
Survival treatment-effects estimation Number of obs = 2,000
Estimator : IPW regression adjustment
Outcome model : Weibull
Treatment model: logit
Censoring model: Weibull

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -2.285057 .7318456 -3.12 0.002 -3.719448 -.8506656

POmean
smoke

Nonsmoker 4.385841 .6427521 6.82 0.000 3.12607 5.645612

The estimatedATE of −2.29 differs from theATE of −1.59 estimated by LAC-IPWRA, but the estimates

of the control-level POM are similar between the two models: 4.39 for the WAC compared with 4.21 for

the LAC.

https://www.stata.com/manuals/causalstteffectsipwra.pdf#causalstteffectsipwraRemarksandexamplesex1
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Example 4: Estimating the ATET by LAC-IPWRA
Intuitively, the ATET measures the effect of the treatment on an at-risk subpopulation. Sometimes

the subpopulation that gets the treatment defines such an at-risk subpopulation. The ATET has the added

benefit that it can be estimated under weaker conditions than the ATE; see Assumptions and tradeoffs

under Remarks and examples in [CAUSAL] stteffects intro.

. stteffects ipwra (age exercise diet education)
> (smoke age exercise education), atet

Failure _d: fail
Analysis time _t: atime

Iteration 0: EE criterion = 2.815e-19
Iteration 1: EE criterion = 1.938e-31
Survival treatment-effects estimation Number of obs = 2,000
Estimator : IPW regression adjustment
Outcome model : Weibull
Treatment model: logit
Censoring model: none

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATET
smoke

(Smoker
vs

Nonsmoker) -1.775107 .3437506 -5.16 0.000 -2.448846 -1.101368

POmean
smoke

Nonsmoker 4.062424 .2779877 14.61 0.000 3.517578 4.60727

When all women in the subpopulation smoked, the average time to a second heart attack is estimated

to be 1.78 years less than when no women in the subpopulation of interest smoked. If no women in the

subpopulation of interest smoked, the average time to a second heart attack is 4.06 years.

https://www.stata.com/manuals/causalstteffectsintro.pdf#causalstteffectsintroRemarksandexamplesAssumptionsandtradeoffs
https://www.stata.com/manuals/causalstteffectsintro.pdf#causalstteffectsintro
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Stored results
stteffects ipwra stores the following in e():

Scalars

e(N) number of observations

e(nj) number of observations for treatment level j

e(N clust) number of clusters

e(k eq) number of equations in e(b)
e(k levels) number of levels in treatment variable

e(treated) level of treatment variable defined as treated

e(control) level of treatment variable defined as control

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) stteffects
e(cmdline) command as typed

e(dead) d
e(depvar) t
e(tvar) name of treatment variable

e(subcmd) ipwra
e(omodel) outcome model: weibull, exponential, gamma, or lognormal
e(tmodel) treatment model: logit, probit, or hetprobit
e(cmodel) censoring model: weibull, exponential, gamma, or lognormal (if specified)

e(stat) statistic estimated: ate, atet, or pomeans
e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(tlevels) levels of treatment variable

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.
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Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
Regression-adjusted estimators
Weighted-adjusted-censoring assumptions
Weighted regression-adjusted estimators
Inverse-probability-weighted estimators

Uncensored data
Inverse-probability-weighted regression-adjustment estimators

Weighted-adjusted-censoring IPWRA
Likelihood-adjusted-censoring IPWRA

Functional-form details

Introduction
This section presents the methods and formulas used by the estimators implemented in stteffects

ra, stteffects wra, stteffects ipw, and stteffects ipwra. This section assumes that you are

familiar with the concepts and intuition from the estimators discussed in [CAUSAL] teffects intro ad-

vanced.

Each of the estimators implemented in stteffects has a multistep logic but is implemented as one

step by simultaneously solving the estimating equations that define each step. This one-step estimating-

equation approach provides consistent point estimates and a consistent variance–covariance of the esti-

mator (VCE); see Newey (1984), Wooldridge (2010), and Drukker (2014).

Survival-time treatment-effects estimators handle two types of missing data. First, only one of the

potential outcomes is observed, as is standard in causal inference. Second, the potential outcome for

the received treatment may be censored. The data missing because of censoring may be handled by an

outcome model, a censoring model, or both, just like the data missing due to observing only one potential

outcome.

Technical note
Delayed entry would be a third type of missing data. The left-truncation process caused by delayed en-

try would also need to be modeled to estimateATE parameters. The estimators implement in stteffects
do not allow for delayed entry because they do not have a method for modeling how the left-truncation

process selects the sample, conditional on the covariates.

All the implemented estimators are combinations of regression-adjustment (RA) and inverse-

probability-weighted (IPW) techniques. RA estimators use an outcome model to account for the missing

potential outcome and for censoring. IPW estimators use models for treatment assignment and censoring

to construct weights that account for the missing potential outcome and for censoring.

The remainder of this section provides technical details about how the estimators in stteffects
were implemented. We provide details only for the two-treatment-level case to simplify the formulas.

We provide outlines for how the extensions to the multiple-treatment-level case were implemented.

https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvanced
https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvanced
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Regression-adjusted estimators
We begin with the RA estimators implemented in stteffects ra. The RA estimators have the fol-

lowing logic:

RA1. For each treatment level 𝜏 ∈ {0, 1}, estimate by maximum likelihood (ML) the parameters β𝜏
of a parametric model for the survival-time outcome 𝑡 in which 𝐹(𝑡|x, 𝜏 ,β𝜏) is the distribution
of 𝑡 conditional on covariates x and treatment level 𝜏. Denote the estimates β𝜏 by β̂ra,𝜏.

RA2. Use the estimated β̂
ra,𝜏 and the functional form implied by 𝐹(𝑡|x, 𝜏 ,β𝜏) to estimate the mean

survival time, conditional on x and treatment level 𝜏, for each sample observation, denoted by
𝐸(𝑡𝑖|x𝑖, 𝜏 , β̂

ra,𝜏). Conditional independence of the treatment and the survival-time potential

outcomes ensures that 𝐸(𝑡|x, 𝜏 ,β𝜏) = 𝐸(𝑡𝜏|x,β𝜏), where 𝑡𝜏 is the potential survival-time out-

come corresponding to treatment level 𝜏. Under correct model specification, sample averages
of 𝐸(𝑡𝑖|x𝑖, 𝜏 , β̂

ra,𝜏) consistently estimate the POM for treatment level 𝜏, denoted by POM𝜏.

RA3. A contrast of the estimated POMs estimates the ATE.

If estimating anATET, step RA2 is modified to use only the treated observations when estimating

the POMs. A contrast of these POMs then estimates the ATET.

The contribution of the 𝑖th observation to the log likelihood that is maximized in step RA1 is

𝐿ra(𝑡𝑖, x𝑖, 𝜏 , β̂
ra,𝜏) = 𝜛𝑖(𝜏𝑖 == 𝜏) [(1 − 𝑐𝑖) ln{𝑓(𝑡𝑖|x𝑖, 𝜏 , β̂

ra,𝜏)}

+ 𝑐𝑖 ln{1 − 𝐹(𝑡𝑖|x𝑖, 𝜏 , β̂
ra,𝜏)}]

(1)

where 𝜛𝑖 is the observation-level weight, 𝑐𝑖 is the 0/1 indicator for whether the survival-time ob-

servation on person 𝑖 was censored, and 𝑓(𝑡𝑖|x𝑖, 𝜏 , β̂
ra,𝜏) is the density corresponding to distribution

𝐹(𝑡𝑖|x𝑖, 𝜏 , β̂
ra,𝜏). The first term inside the curly braces in (1) accounts for the noncensored observations,

and the second term inside the curly braces accounts for the censored observations.
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The RA estimators for the POMs simultaneously solve estimating equations (2a) through (2d) for β̂
ra,0,

β̂
ra,1, P̂OMra,0, and P̂OMra,1.

1/𝑁
𝑁

∑
𝑖=1

sra(𝑡𝑖, x𝑖, 0, β̂
ra,0, 𝐹 ) = 0 (2a)

1/𝑁
𝑁

∑
𝑖=1

sra(𝑡𝑖, x𝑖, 1, β̂
ra,1, 𝐹 ) = 0 (2b)

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 0, β̂
ra,0) − P̂OMra,0} = 0 (2c)

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
ra,1) − P̂OMra,1} = 0 (2d)

where

sra(𝑡𝑖, x𝑖, 0, β̂
ra,0, 𝐹 ) =

𝜕𝐿ra(𝑡𝑖,x𝑖,0,β̂
ra,0)

𝜕β̂
ra,0

is the vector of score equations from the ML estimator for

β̂
ra,0 based on survival-time model 𝐹,

sra(𝑡𝑖, x𝑖, 1, β̂
ra,1, 𝐹 ) =

𝜕𝐿ra(𝑡𝑖,x𝑖,1,β̂
ra,1)

𝜕β̂
ra,1

is the vector of score equations from the ML estimator for

β̂
ra,1 based on survival-time model 𝐹,

𝐸(𝑡𝑖|x𝑖, 𝜏 = 0, β̂
ra,0) is the predicted mean survival time assuming treatment level 0 for observation

𝑖 conditional on x𝑖, and

𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
ra,1) is the predicted mean survival time assuming treatment level 1 for observation

𝑖 conditional on x𝑖.

The ATE is estimated by replacing (2d) with

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
ra,1) − P̂OMra,0 − ÂTEra} = 0 (3)

and the ATET is estimated by replacing (2c) and (3) with

1/𝑁1

𝑁
∑
𝑖=1

𝜛𝑖(𝜏𝑖 == 1) {𝐸(𝑡𝑖|x𝑖, 𝜏 = 0, β̂
ra,0) − P̂OMra,cot,0} = 0

1/𝑁1

𝑁
∑
𝑖=1

𝜛𝑖(𝜏𝑖 == 1) {𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
ra,1) − P̂OMra,cot,0 − ÂTETra} = 0

where𝑁1 = ∑𝑁
𝑖=1(𝑡𝑖 == 1) and P̂OMra,cot,0 is the estimated conditional-on-treatment POM for treatment

level 0.
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Asymptotic standard errors for estimating equation estimators, also known as exactly identified gen-

eralized method of moments estimators, are standard in the literature; see Newey (1984), Newey and

McFadden (1994), Tsiatis (2006), and Wooldridge (2010). These standard errors always have a robust

structure and have been generalized to cluster–robust standard errors (see Wooldridge [2010]).

The score equations and the functional form for the predicted mean survival time depend on the model

for survival-time outcome 𝐹. We provide these details below, under Functional-form details.

Weighted-adjusted-censoring assumptions
All estimators that permit you to model the time to censoring are subject to three assumptions:

1. The censoring time must be random.

2. The censoring time must be from a known distribution.

3. The distribution of the censoring time cannot vary by treatment level.

We call these three requirements theWAC assumptions. If theWAC assumptions are violated, you can

use either an RA estimator or the LAC version of the IPWRA estimator.

Technical note
We now describe how the observed survival-time outcome 𝑡 is generated from the random censoring

time 𝑡𝑐, the received treatment 𝜏, and the potential-outcome survival times 𝑡0 and 𝑡1 under the WAC

assumptions. First, each potential outcome is either censored or not censored.

̃𝑡0 = 𝑡𝑐(𝑡0 ≥ 𝑡𝑐) + 𝑡0{1 − (𝑡0 ≥ 𝑡𝑐)}
̃𝑡1 = 𝑡𝑐(𝑡1 ≥ 𝑡𝑐) + 𝑡1{1 − (𝑡1 ≥ 𝑡𝑐)}

Under theWAC assumptions, 𝑡𝑐 is a random variable from a known distribution, and 𝑡𝑐 does not vary by

treatment level.

Next, the received treatment 𝜏 ∈ {0, 1} determines which, possibly censored, potential outcome is

observed.

𝑡 = (1 − 𝜏) ̃𝑡0 + 𝜏 ̃𝑡1

The 0/1 indicator for whether the observed 𝑡 was censored, denoted by 𝑐, is given by

𝑐 = (1 − 𝜏)(𝑡0 ≥ 𝑡𝑐) + 𝜏(𝑡1 ≥ 𝑡𝑐)

Weighted regression-adjusted estimators
As is standard in the survival literature, the RA estimators account for censored survival times by

adding a term to the log-likelihood function for censored observations [see (1)]. In contrast, weighted

regression-adjustment (WRA) estimators use weights to account for censored observations and are subject

to the WAC assumptions.

https://www.stata.com/manuals/causalstteffectsipwra.pdf#causalstteffectsipwraMethodsandformulasFunctional-formdetails
https://www.stata.com/manuals/causalstteffectsipwra.pdf#causalstteffectsipwraMethodsandformulaswac
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Wooldridge (2007) and Lin (2000) derived estimators for the regression parameters that maximize a

weighted objective function of the uncensored observations. Each observation-level weight is the inverse

of the probability of not being censored. Like the RA estimators, theWRA estimators use averages of the

predicted mean survival times to estimate treatment-effect parameters.

TheWRA estimators have the following logic.

WRA1. Estimate by ML the parameters 𝛄 of a parametric survival-time model for the time to censoring

𝑡𝑐, in which 𝐹𝑐(𝑡𝑐|w, 𝛄) is the distribution of 𝑡𝑐 conditional on covariates w. Note that the cen-

soring process does not vary by treatment level and that we only observe 𝑡𝑐 when the observed

potential outcome was censored. Denote the estimates of 𝛄 by 𝛄̂.
WRA2. For each treatment level 𝜏 ∈ {0, 1}, estimate by weighted maximum likelihood (WML) the

β𝜏 parameters of a parametric survival-time model, denoted by 𝐹(𝑡|x, 𝜏 ,β𝜏), where 𝑡 is the
survival-time outcome and x are the covariates. The weights are the inverse of the estimated

probabilities of not being censored, 1/{1−𝐹𝑐(𝑡𝑐|w, 𝛄̂)}, and only the uncensored observations
are used. Denote the estimates of β𝜏 by β̂wra,𝜏.

WRA3. Use the estimated β̂
wra,𝜏 and the functional form implied by 𝐹(𝑡|x, 𝜏 ,β𝜏) to estimate the mean

survival time, conditional on x and treatment level 𝜏, for each sample observation, denoted by
𝐸(𝑡𝑖|x𝑖, 𝜏 , β̂

wra,𝜏). Conditional independence of the treatment and the survival-time potential
outcomes ensures that 𝐸(𝑡|x, 𝜏 ,β𝜏) = 𝐸(𝑡𝜏|x,β𝜏), where 𝑡𝜏 is the potential survival-time out-

come corresponding to treatment level 𝜏. Under correct model specification, sample averages
of 𝐸(𝑡𝑖|x𝑖, 𝜏 , β̂

wra,𝜏) consistently estimate the POM for treatment level 𝜏, denoted by POM𝜏.

WRA4. A contrast of the estimated POMs estimates the ATE.

If estimating anATET, stepWRA3 is modified to use only the treated observations when estimat-

ing the POMs. A contrast of these POMs then estimates the ATET.

The contribution of the 𝑖th observation to the log likelihood that is maximized in stepWRA1 is

𝐿𝑐,wra(𝑡𝑖,w𝑖, 𝛄̂) = 𝜛𝑖 [𝑐𝑖 ln{𝑓𝑐(𝑡𝑖|w𝑖, 𝛄̂)} + (1 − 𝑐𝑖) ln{1 − 𝐹𝑐(𝑡𝑖|w𝑖, 𝛄̂)}] (4)

where𝜛𝑖 is the observation-level weight, 𝑐𝑖 is the 0/1 indicator for whether the survival-time observation

on person 𝑖 was censored, 𝑡𝑖 is the observed failure time, and 𝑓𝑐(𝑡𝑖|w𝑖, 𝛄̂) is the density corresponding to
conditional time-to-censoring distribution 𝐹𝑐(𝑡𝑖|w𝑖, 𝛄̂). When 𝑐𝑖 = 1, 𝑡𝑖 is the time to censoring. When

𝑐𝑖 = 0, the censoring time is not observed; we only know that it is greater than the observed 𝑡𝑖. The first

term accounts for the observations in which 𝑡𝑖 is observed to be the censoring time, and the second term

accounts for the observations in which the censoring time is greater than the observed 𝑡𝑖.

The contribution of the 𝑖th observation to the log likelihood that is maximized in stepWRA2 is

𝐿wra(𝑡𝑖, x𝑖, 𝜏 , β̂
wra,𝜏) = 𝜛𝑖(𝜏𝑖 == 𝜏) [ (1 − 𝑐𝑖)

{1 − 𝐹𝑐(𝑡𝑖|w𝑖, 𝛄̂)}
] ln{𝑓(𝑡𝑖|x𝑖, 𝜏 , β̂

wra,𝜏)} (5)

where 𝑓(𝑡𝑖|x𝑖, 𝜏 , β̂
wra,𝜏) is the density corresponding to distribution𝐹(𝑡𝑖|x𝑖, 𝜏 , β̂

wra,𝜏). Equation (5) does
not contain a term that adjusts for censoring; see (1) for a comparison. Rather, it uses inverse-probability

weights to account for both the censored and the uncensored observations.
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TheWRA estimators for the POMs simultaneously solve estimating equations (6a) through (6e) for 𝛄̂,
β̂

wra,0, β̂wra,1, P̂OMwra,0, and P̂OMwra,1.

1/𝑁
𝑁

∑
𝑖=1

swra(𝑡𝑖,w𝑖, 𝛄̂, 𝐹𝑐) = 0 (6a)

1/𝑁
𝑁

∑
𝑖=1

swra(𝑡𝑖, x𝑖, 0, β̂
wra,0, 𝐹 ) = 0 (6b)

1/𝑁
𝑁

∑
𝑖=1

swra(𝑡𝑖, x𝑖, 1, β̂
wra,1, 𝐹 ) = 0 (6c)

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 0, β̂
wra,0) − P̂OMwra,0} = 0 (6d)

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
wra,1) − P̂OMwra,1} = 0 (6e)

where

swra(𝑡𝑖,w𝑖, 𝛄̂, 𝐹𝑐) = 𝜕𝐿𝑐,wra(𝑡𝑖,w𝑖,𝛄̂)
𝜕𝛄̂ is the vector of score equations from theML estimator for 𝛄̂ based

on survival-time model 𝐹𝑐,

swra(𝑡𝑖, x𝑖, 0, β̂
wra,0, 𝐹 ) =

𝜕𝐿(𝑡𝑖,x𝑖,0,β̂
wra,0)

𝜕β̂
wra,0

is the vector of score equations from the WML estimator

for β̂
wra,0 based on survival-time model 𝐹,

swra(𝑡𝑖, x𝑖, 1, β̂
wra,1, 𝐹 ) =

𝜕𝐿(𝑡𝑖,x𝑖,1,β̂
wra,1)

𝜕β̂
wra,1

is the vector of score equations from the WML estimator

for β̂
wra,1 based on survival-time model 𝐹,

𝐸(𝑡𝑖|x𝑖, 𝜏 = 0, β̂
wra,0) is the predicted mean survival time assuming treatment level 0 for observation

𝑖 conditional on x𝑖, and

𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
wra,1) is the predicted mean survival time assuming treatment level 1 for observation

𝑖 conditional on x𝑖.

The observation-level scores swra(𝑡𝑖, x𝑖, 0, β̂
wra,0, 𝐹 ) and swra(𝑡𝑖, x𝑖, 1, β̂

wra,1, 𝐹 ) also depend on 𝑐𝑖, w𝑖,

𝛄̂, and 𝐹𝑐, but we ignored this dependence to simplify the notation.
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The ATE is estimated by replacing (6e) with

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
wra,1) − P̂OMwra,0 − ÂTEwra} = 0 (7)

and the ATET is estimated by replacing (6e) and (7) with

1/𝑁1

𝑁
∑
𝑖=1

𝜛𝑖(𝜏𝑖 == 1) {𝐸(𝑡𝑖|x𝑖, 𝜏 = 0, β̂
wra,0) − P̂OMwra,cot,0} = 0

1/𝑁1

𝑁
∑
𝑖=1

𝜛𝑖(𝜏𝑖 == 1) {𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
wra,1) − P̂OMwra,cot,0 − ÂTETwra} = 0

where P̂OMwra,cot,0 is the estimated conditional-on-treatment POM.

Inverse-probability-weighted estimators
IPW estimators are weighted averages of the observed outcome. The weights correct for missing data

due to unobserved potential outcomes and censoring. Each weight is the inverse of the probability that a

given value is observed. Observed values that were not likely to be observed have higher weights.

When the outcome variable is never censored, the missing data are the unobserved potential outcome

and an observation’s weight is the inverse of a treatment probability. When the outcomemay be censored,

the censoring is an additional source of missing data. In this case, an observation’s weight is the inverse

of the joint probability that an observation is uncensored and has a particular treatment level.

To define this joint probability, the censoring time must be random. In practice, we make the WAC

assumptions.

As is standard in the survival-time literature, we assume that the censoring-time process is independent

of treatment assignment after conditioning on the covariates. This conditional independence assumption

implies that the probability that observation 𝑖 receives treatment level 1 and is not censored is the product
of the probability that 𝑖 gets treatment level 1 and the probability that 𝑖 is not censored at time 𝑡𝑖, which

we denote by

𝑝(z𝑖,α){1 − 𝐹𝑐(𝑡𝑖|w𝑖, 𝛄)}

where

𝑝(z𝑖,α) is the modeled probability that 𝑖 gets treatment level 1, conditional on covariates z𝑖 with

parameters α, and

𝐹𝑐(𝑡𝑖|w𝑖, 𝛄) is the survival-time model for the censoring time, conditional on covariates w𝑖 with

parameters 𝛄, and evaluated at time 𝑡𝑖.

Bai, Tsiatis, and O’Brien (2013) formally derive these weights to control jointly for the missing potential

outcome and censoring.

The IPW estimators have the following logic.

IPW1. Estimate byML the parameters 𝛄 of a parametric survival-time model for the time to censoring,

in which 𝐹𝑐(𝑡𝑐|w, 𝛄) is the distribution of censoring time, conditional on covariates w. Denote
the estimates of 𝛄 by 𝛄̂.

IPW2. Estimate by ML the parameters α of a parametric model for the probability of treatment model

𝑝(z𝑖,α). Denote the estimates of α by α̂.

https://www.stata.com/manuals/causalstteffectsipwra.pdf#causalstteffectsipwraMethodsandformulaswac
https://www.stata.com/manuals/causalstteffectsipwra.pdf#causalstteffectsipwraMethodsandformulaswac


stteffects ipwra — Survival-time inverse-probability-weighted regression adjustment 19

IPW3. Use the 𝛄̂ estimated in IPW1 and the α̂ estimated in IPW2 to construct inverse-probabilityweights

by (8a) for treatment level 1 and by (8b) for treatment level 0.

𝜔𝑖,1 = (𝜏𝑖 == 1)(𝑐𝑖 == 0)
[𝑝(z𝑖, α̂){1 − 𝐹𝑐(𝑡𝑖|w𝑖, 𝛄̂)}]

(8a)

𝜔𝑖,0 = (𝜏𝑖 == 0)(𝑐𝑖 == 0)
[{1 − 𝑝(z𝑖, α̂)}{1 − 𝐹𝑐(𝑡𝑖|w𝑖, 𝛄̂)}]

(8b)

IPW4. Use the estimated weights to estimate each POM𝜏 by a weighted average of the uncensored

observations on the observed potential outcome.

The contribution of the 𝑖th observation to the log likelihood that is maximized in step IPW1 is

𝐿𝑐,ipw(𝑡𝑖,w𝑖, 𝛄̂) = 𝜛𝑖 [𝑐𝑖 ln{𝑓𝑐(𝑡𝑖|w𝑖, 𝛄̂)} + (1 − 𝑐𝑖) ln{1 − 𝐹𝑐(𝑡𝑖|w𝑖, 𝛄̂)}]

where the definitions and intuition are as described after (4).

The contribution of the 𝑖th observation to the log likelihood that is maximized in step IPW2 is

𝐿𝑝,ipw(𝜏𝑖, z𝑖, α̂) = 𝜛𝑖 [(𝜏𝑖 == 1) ln{𝑝(z𝑖, α̂)} + {1 − (𝜏𝑖 == 1)} ln{1 − 𝑝(z𝑖, α̂)}]

where 𝑝(z𝑖, α̂) is the model for the probability that 𝑖 gets treatment level 1.
The IPW estimators for the POMs simultaneously solve estimating equations (9a) through (9d) for 𝛄̂,

α̂, P̂OMipw,0, and P̂OMipw,1.

1/𝑁
𝑁

∑
𝑖=1

sipw(𝑡𝑖,w𝑖, 𝛄̂, 𝐹𝑐) = 0 (9a)

1/𝑁
𝑁

∑
𝑖=1

sipw(𝜏𝑖, z𝑖, α̂, 𝑝) = 0 (9b)

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖𝜔𝑖,0 (𝑡𝑖 − P̂OMipw,0) = 0 (9c)

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖𝜔𝑖,1 (𝑡𝑖 − P̂OMipw,1) = 0 (9d)

where

sipw(𝑡𝑖,w𝑖, 𝛄̂, 𝐹𝑐) = 𝜕𝐿𝑐,ipw(𝑡𝑖,w𝑖,𝛄̂)
𝜕𝛄̂ is the vector of score equations from theML estimator for 𝛄̂ based

on survival-time model 𝐹𝑐, and

sipw(𝜏𝑖, z𝑖, α̂, 𝑝) = 𝜕𝐿𝑝,ipw(𝜏𝑖,z𝑖,α̂)
𝜕α̂ is the vector of score equations from the ML estimator for α̂ based

on probability model 𝑝.
The literature on IPW estimators discusses using normalized versus unnormalized weights, with nor-

malized weights doing better in simulation studies; see Busso, DiNardo, and McCrary (2014) for ex-

ample. The way that weights enter moment equations (9c) and (9d) implies that they are normalized,

because the scale of the weights does not affect the estimates.

https://www.stata.com/manuals/causalstteffectsipwra.pdf#causalstteffectsipwraMethodsandformulasstep_ipw1
https://www.stata.com/manuals/causalstteffectsipwra.pdf#causalstteffectsipwraMethodsandformulasstep_ipw2
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The estimated ATE is computed as

P̂OMipw,1 − P̂OMipw,0 = ÂTEipw

The estimated ATET uses weights

𝜔𝑖,cot,1 = (𝜏𝑖 == 1)(𝑐𝑖 == 0)
[{1 − 𝐹𝑐(𝑡𝑖|w𝑖, 𝛄̂)}]

(10a)

for treatment level 1 and

𝜔𝑖,cot,0 = 𝑝(z𝑖, α̂)(𝜏𝑖 == 0)(𝑐𝑖 == 0)
[{1 − 𝑝(z𝑖, α̂)}{1 − 𝐹𝑐(𝑡𝑖|w𝑖, 𝛄̂)}]

(10b)

for treatment level 0, and replaces (9c) and (9d) with

1/𝑁1

𝑁
∑
𝑖=1

𝜛𝑖𝜔𝑖,cot,0 (𝑡𝑖 − P̂OMipw,cot,0) = 0 (11a)

1/𝑁1

𝑁
∑
𝑖=1

𝜛𝑖𝜔𝑖,cot,1 (𝑡𝑖 − P̂OMipw,cot,1) = 0 (11b)

and then computes

P̂OMipw,cot,1 − P̂OMipw,cot,0 = ÂTETipw

These IPW estimators can be viewed as weighted IPW estimators and are thus related to those in Hirano,

Imbens, and Ridder (2003).

Uncensored data

As mentioned, when the outcome variable is never censored, the missing data are the unobserved

potential outcome and an observation’s weight is the inverse of a treatment probability. In the never-

censored case, the IPW estimators are identical to those implemented in teffects ipw; see IPW estima-

tors under Methods and formulas in [CAUSAL] teffects aipw.

stteffects ipw computes the estimator for never-censored data when a censoring model is not

specified and there are no censored observations in the sample. In the never-censored case, the following

changes are made to the IPW estimator for the POMs and the ATE.

1. Step IPW1 is not performed.

2. The weights in (8a) and (8b) for the POMs and the ATE are replaced with (12a) for treatment

level 1 and (12b) for treatment level 0.

𝜔𝑖,1 = (𝜏𝑖 == 1)
𝑝(z𝑖, α̂)

(12a)

𝜔𝑖,0 = (𝜏𝑖 == 0)
{1 − 𝑝(z𝑖, α̂)}

(12b)

3. Only moment conditions (9b), (9c), and (9d) are used.

https://www.stata.com/manuals/causalteffectsipw.pdf#causalteffectsipw
https://www.stata.com/manuals/causalteffectsaipw.pdf#causalteffectsaipwMethodsandformulasIPWestimators
https://www.stata.com/manuals/causalteffectsaipw.pdf#causalteffectsaipwMethodsandformulasIPWestimators
https://www.stata.com/manuals/causalteffectsaipw.pdf#causalteffectsaipw
https://www.stata.com/manuals/causalstteffectsipwra.pdf#causalstteffectsipwraMethodsandformulasstep_ipw1
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The following changes also are made to the IPW estimator for the ATET.

1. Step IPW1 is not performed.

2. The weights in (10a) and (10b) are replaced with (13a) for treatment level 1 and (13b) for

treatment level 0.

𝜔𝑖,cot,1 = (𝜏𝑖 == 1) (13a)

𝜔𝑖,cot,0 = 𝑝(z𝑖, α̂)(𝜏𝑖 == 0)
{1 − 𝑝(z𝑖, α̂)}

(13b)

3. Only moment conditions (9b) (11a), and (11b) are used.

Inverse-probability-weighted regression-adjustment estimators
IPWRAestimators are averages of treatment-specific predicted conditional means that weremade using

missingness-adjusted regression parameters. These estimators areWooldridge’s IPWRA for survival-time

outcomes; see Wooldridge (2010, chap. 21) and Wooldridge (2007).

The censored observations can be handled either by weighting under the WAC assumptions to obtain

the WAC-IPWRA estimator or by adding a term to the log-likelihood function (which we call likelihood-

adjusted censoring) to obtain the LAC-IPWRA estimator. Correspondingly, there are two versions of for-

mulas for the IPWRA estimator.

1. When a censoringmodel is specified, stteffects ipwra uses the formulas for theWAC-IPWRA

estimator given in Weighted-adjusted-censoring IPWRA.

2. When a censoring model is not specified, stteffects ipwra uses the formulas for the LAC-

IPWRA given in Likelihood-adjusted-censoring IPWRA, below.

The WAC-IPWRA estimator requires that some observations be censored and that the WAC assump-

tions hold; see Weighted-adjusted-censoring assumptions, above. The LAC-IPWRA estimator handles the

case in which no observations are censored and requires the weaker independent censoring assumptions,

which allows for fixed censoring times.

https://www.stata.com/manuals/causalstteffectsipwra.pdf#causalstteffectsipwraMethodsandformulasstep_ipw1
https://www.stata.com/manuals/causalstteffectsipwra.pdf#causalstteffectsipwraMethodsandformulaswacipwra
https://www.stata.com/manuals/causalstteffectsipwra.pdf#causalstteffectsipwraMethodsandformulaslacipwra
https://www.stata.com/manuals/causalstteffectsipwra.pdf#causalstteffectsipwraMethodsandformulaswac
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Weighted-adjusted-censoring IPWRA

When a censoring model is specified, stteffects ipwra uses the formulas for the WAC-IPWRA es-

timator to obtain the model-based weights that account for censoring. For notational conciseness and to

reinforce its dependence on random censoring, we denote the WAC-IPWRA estimator by IPWRAR in lists

and formulas. TheWAC-IPWRA estimators have the following logic.

IPWRAR1. Estimate byML the parameters𝛄 of a parametric survival-timemodel for the time to censoring,

in which 𝐹𝑐(𝑡𝑐|w, 𝛄) is the censoring-time distribution, conditional on covariates w. We

denote the estimates of 𝛄 by 𝛄̂.
IPWRAR2. Estimate byML the parametersα of a parametric model for the probability of treatment model

𝑝(z𝑖,α). We denote the estimates of α by α̂.

IPWRAR3. For each treatment level 𝜏 ∈ {0, 1}, estimate byWML the parametersβ𝜏 of a parametric model

for the survival-time outcome 𝑡, in which 𝐹(𝑡|x, 𝜏 ,β𝜏) is the distribution of 𝑡 conditional on
covariates x and treatment level 𝜏. For the ATE, the weights are those in equations (8a) and

(8b). For theATET, the weights are those in equations (10a) and (10b). We denote the estimates

of β
ipwrar,𝜏 by β̂𝜏.

IPWRAR4. Use the estimated β̂
ipwrar,𝜏 and the functional form implied by 𝐹(𝑡|x, 𝜏 ,β𝜏) to estimate the

mean survival time, conditional on x and treatment level 𝜏, for each sample observation, de-
noted by 𝐸(𝑡𝑖|x𝑖, 𝜏 , β̂

ipwrar,𝜏). Conditional independence of the treatment and the survival-

time potential outcomes ensures that 𝐸(𝑡|x, 𝜏 ,β𝜏) = 𝐸(𝑡𝜏|x,β𝜏), where 𝑡𝜏 is the potential

survival-time outcome corresponding to treatment level 𝜏. Under correct model specification,
sample averages of 𝐸(𝑡𝑖|x𝑖, 𝜏 , β̂

ipwrar,𝜏) consistently estimate the POM for treatment level 𝜏,
denoted by POM𝜏.

The contribution of the 𝑖th observation to the log likelihood that is maximized in step IPWRAR1 is

𝐿𝑐,ipwrar(𝑡𝑖,w𝑖, 𝛄̂) = 𝜛𝑖 [𝑐𝑖 ln{𝑓𝑐(𝑡𝑖|w𝑖, 𝛄̂)} + (1 − 𝑐𝑖) ln{1 − 𝐹𝑐(𝑡𝑖|w𝑖, 𝛄̂)}]

where the definitions and intuition are as described after (4).

The contribution of the 𝑖th observation to the log likelihood that is maximized in step IPWRAR2 is

𝐿𝑝,ipwrar(𝜏𝑖, z𝑖, α̂) = 𝜛𝑖 [(𝜏𝑖 == 1) ln{𝑝(z𝑖, α̂)} + {1 − (𝜏𝑖 == 1)} ln{1 − 𝑝(z𝑖, α̂)}]

where 𝑝(z𝑖, α̂) is the model for the probability that 𝑖 gets treatment level 1.
The weights and the parameters in step IPWRAR3 used to estimate the ATE differ from those used

to estimate the ATET. For the ATE, the contribution of the 𝑖th observation to the log likelihood that is

maximized in step IPWRAR3 is

𝐿ipwrar(𝑡𝑖, x𝑖, 𝜏 , β̂
ipwrar,ate,𝜏) = 𝜛𝑖𝜔𝑖,𝜏 ln{𝑓(𝑡𝑖|x𝑖, 𝜏 , β̂

ipwrar,ate,𝜏)}

where 𝜔𝑖,1 is given in (8a), 𝜔𝑖,0 is given in (8b), and 𝑓(𝑡𝑖|x𝑖, 𝜏 , β̂
ipwrar,ate,𝜏) is the density corresponding

to distribution 𝐹(𝑡𝑖|x𝑖, 𝜏 , β̂
ipwrar,ate,𝜏). LikeWRA, only the uncensored observations are used because the

weights account for censoring.

https://www.stata.com/manuals/causalstteffectsipwra.pdf#causalstteffectsipwraMethodsandformulasstep_ipwrar1
https://www.stata.com/manuals/causalstteffectsipwra.pdf#causalstteffectsipwraMethodsandformulasstep_ipwrar2
https://www.stata.com/manuals/causalstteffectsipwra.pdf#causalstteffectsipwraMethodsandformulasstep_ipwrar3
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The IPWRAR estimators for the POMs simultaneously solve estimating equations (14a) through (14f)

for 𝛄̂, α̂, β̂
ipwrar,ate,0, β̂ipwrar,ate,0, P̂OMipwrar,0, and P̂OMipwrar,1.

1/𝑁
𝑁

∑
𝑖=1

sipwrar(𝑡𝑖,w𝑖, 𝛄̂, 𝐹𝑐) = 0 (14a)

1/𝑁
𝑁

∑
𝑖=1

sipwrar(𝜏𝑖, z𝑖, α̂, 𝑝) = 0 (14b)

1/𝑁
𝑁

∑
𝑖=1

sipwrar(𝑡𝑖, x𝑖, 0, β̂
ipwrar,ate,0, 𝐹 ) = 0 (14c)

1/𝑁
𝑁

∑
𝑖=1

sipwrar(𝑡𝑖, x𝑖, 1, β̂
ipwrar,ate,1, 𝐹 ) = 0 (14d)

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 0, β̂
ipwrar,ate,0) − P̂OMipwrar,0} = 0 (14e)

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
ipwrar,ate,1) − P̂OMipwrar,1} = 0 (14f)

where

sipwrar(𝑡𝑖,w𝑖, 𝛄̂, 𝐹𝑐) = 𝜕𝐿𝑐,ipwrar(𝑡𝑖,w𝑖,𝛄̂)
𝜕𝛄̂ is the vector of score equations from the ML estimator for 𝛄̂

based on survival-time model 𝐹𝑐,

sipwrar(𝜏𝑖, z𝑖, α̂, 𝑝) = 𝜕𝐿𝑝,ipwrar(𝜏𝑖,z𝑖,α̂)
𝜕α̂ is the vector of score equations from the ML estimator for α̂

based on probability model 𝑝,

sipwrar(𝑡𝑖, x𝑖, 0, β̂
ipwrar,ate,0, 𝐹 ) =

𝜕𝐿ipwrar(𝑡𝑖,x𝑖,0,β̂
ipwrar,ate,0)

𝜕β̂
ipwrar,ate,0

is the vector of score equations from the ML

estimator for β̂
ipwrar,ate,0 based on survival-time model 𝐹,

sipwrar(𝑡𝑖, x𝑖, 1, β̂
ipwrar,ate,1, 𝐹 ) =

𝜕𝐿ipwrar(𝑡𝑖,x𝑖,1,β̂
ipwrar,ate,1)

𝜕β̂
ipwrar,ate,1

is the vector of score equations from the ML

estimator for β̂
ipwrar,ate,1 based on survival-time model 𝐹,

𝐸(𝑡𝑖|x𝑖, 𝜏 = 0, β̂
ipwrar,ate,0) is the predicted mean survival time assuming treatment level 0 for obser-

vation 𝑖 conditional on x𝑖, and

𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
ipwrar,ate,1) is the predicted mean survival time assuming treatment level 1 for obser-

vation 𝑖 conditional on x𝑖.

The ATE is estimated by replacing (14f) with

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
ipwrar,ate,1) − P̂OMipwrar,0 − ÂTEipwrar} = 0
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For the ATET, the contribution of the 𝑖th observation to the weighted log likelihood that is maximized in
step IPWRAR3 is

𝐿ipwrar(𝑡𝑖, x𝑖, 𝜏 , β̂
ipwrar,ate,𝜏) = 𝜛𝑖𝜔𝑖,cot,𝜏(𝜏𝑖 == 𝜏) ln{𝑓(𝑡𝑖|x𝑖, 𝜏 , β̂

ipwrar,atet,𝜏)}

where 𝜔𝑖,cot,1 is given in (10a), 𝜔𝑖,cot,0 is given in (10b), and 𝑓(𝑡𝑖|x𝑖, 𝜏 , β̂
ipwrar,atet,𝜏) is the density corre-

sponding to distribution 𝐹(𝑡𝑖|x𝑖, 𝜏 , β̂
ipwrar,atet,𝜏).

The WAC-IPWRA estimators for the conditional-on-treatment POMs simultaneously solve estimating

equations (15a) through (15f) for β̂
ipwrar,atet,0, β̂ipwrar,atet,0, 𝛄̂, α̂, P̂OMipwrar,cot,0, and P̂OMipwrar,cot,1.

1/𝑁
𝑁

∑
𝑖=1

sipwrar(𝑡𝑖,w𝑖, 𝛄̂, 𝐹𝑐) = 0 (15a)

1/𝑁
𝑁

∑
𝑖=1

sipwrar(𝜏𝑖, z𝑖, α̂, 𝑝) = 0 (15b)

1/𝑁
𝑁

∑
𝑖=1

sipwrar(𝑡𝑖, x𝑖, 0, β̂
ipwrar,atet,0, 𝐹 ) = 0 (15c)

1/𝑁
𝑁

∑
𝑖=1

sipwrar(𝑡𝑖, x𝑖, 1, β̂
ipwrar,atet,1, 𝐹 ) = 0 (15d)

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 0, β̂
ipwrar,atet,0) − P̂OMipwrar,cot,0} = 0 (15e)

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
ipwrar,atet,1) − P̂OMipwrar,cot,1} = 0 (15f)

where

sipwrar(𝑡𝑖,w𝑖, 𝛄̂, 𝐹𝑐) = 𝜕𝐿𝑐,ipwrar(𝑡𝑖,w𝑖,𝛄̂)
𝜕𝛄̂ is the vector of score equations from the ML estimator for 𝛄̂

based on survival-time model 𝐹𝑐,

sipwrar(𝜏𝑖, z𝑖, α̂, 𝑝) = 𝜕𝐿𝑝,ipwrar(𝜏𝑖,z𝑖,α̂)
𝜕α̂ is the vector of score equations from the ML estimator for α̂

based on probability model 𝑝,

sipwrar(𝑡𝑖, x𝑖, 0, β̂
ipwrar,atet,0, 𝐹 ) =

𝜕𝐿ipwrar(𝑡𝑖,x𝑖,0,β̂
ipwrar,atet,0)

𝜕β̂
ipwrar,atet,0

is the vector of score equations from the

WML estimator for β̂
ipwrar,atet,0 based on survival-time model 𝐹,

sipwrar(𝑡𝑖, x𝑖, 1, β̂
ipwrar,atet,1, 𝐹 ) =

𝜕𝐿ipwrar(𝑡𝑖,x𝑖,1,β̂
ipwrar,atet,1)

𝜕β̂
ipwrar,atet,1

is the vector of score equations from the

WML estimator for β̂
ipwrar,atet,1 based on survival-time model 𝐹,

𝐸(𝑡𝑖|x𝑖, 𝜏 = 0, β̂
ipwrar,atet,0) is the predicted mean survival time assuming treatment level 0 for obser-

vation 𝑖 conditional on x𝑖, and

𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
ipwrar,atet,1) is the predicted mean survival time assuming treatment level 1 for obser-

vation 𝑖 conditional on x𝑖.

https://www.stata.com/manuals/causalstteffectsipwra.pdf#causalstteffectsipwraMethodsandformulasstep_ipwrar3
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The ATET is estimated by replacing (15f) with

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
ipwrar,atet,1) − P̂OMipwrar,cot,0 − ÂTETipwrar} = 0

Likelihood-adjusted-censoring IPWRA

When a censoring model is not specified, stteffects ipwra uses the formulas for the LAC-IPWRA

estimator that add a term to the log-likelihood function. For notational conciseness and to reinforce its

use of an additional term in the log likelihood, we denote the LAC-IPWRA estimator by IPWRAL in lists

and formulas.

The methods and formulas for the LAC-IPWRA estimator differ in three ways from those for theWAC-

IPWRA estimator.

1. No censoring model is specified, so LAC-IPWRA does not perform a version of step IPWRAR1

and it does not use the moment equations (14a).

2. The weights only depend on the treatment level and treatment assignment probabilities, not on

the censoring.

3. TheWML estimator for β𝜏 includes a term for censored observations and censored observations

are used. Recall that for the WAC-IPWRA estimator, the weights used in the WML estimator for

β𝜏 account for the censoring, and the censored observations are not used in theWML estimator.

The LAC-IPWRA estimators have the following logic.

IPWRAL1. Estimate byML the parametersα of a parametric model for the probability of treatment model

𝑝(z𝑖,α).
IPWRAL2. For each treatment level 𝜏 ∈ {0, 1}, estimate byWML the parametersβ𝜏 of a parametric model

for the survival-time outcome 𝑡 in which 𝐹(𝑡|x, 𝜏 ,β𝜏) is the distribution of 𝑡 conditional on
covariates x and treatment level 𝜏. The weights depend only on the treatment level and the

treatment-assignment probabilities. For theATE, the weights are those in (12a) and (12b). For

theATET, the weights are those in (13a) and (13b). We denote the estimates of β𝜏 by β̂ipwral,𝜏.

IPWRAL3. Use the estimated β̂
ipwral,𝜏 and the functional form implied by 𝐹(𝑡|x, 𝜏 ,β𝜏) to estimate the

mean survival time, conditional on x and treatment level 𝜏, for each sample observation, de-
noted by 𝐸(𝑡𝑖|x𝑖, 𝜏 , β̂

ipwral,𝜏). Conditional independence of the treatment and the survival-

time potential outcomes ensures that 𝐸(𝑡|x, 𝜏 ,β𝜏) = 𝐸(𝑡𝜏|x,β𝜏), where 𝑡𝜏 is the potential

survival-time outcome corresponding to treatment level 𝜏. Under correct model specification,
sample averages of 𝐸(𝑡𝑖|x𝑖, 𝜏 , β̂

ipwral,𝜏) consistently estimate the POM for treatment level 𝜏,
denoted by POM𝜏.

The contribution of the 𝑖th observation to the log likelihood that is maximized in step IPWRAL1 is

𝐿𝑝,ipwral(𝜏𝑖, z𝑖, α̂) = 𝜛𝑖 [(𝜏𝑖 == 1) ln{𝑝(z𝑖, α̂)} + {1 − (𝜏𝑖 == 1)} ln{1 − 𝑝(z𝑖, α̂)}]

where 𝑝(z𝑖, α̂) is the model for the probability that 𝑖 gets treatment level 1.

https://www.stata.com/manuals/causalstteffectsipwra.pdf#causalstteffectsipwraMethodsandformulasstep_ipwrar1
https://www.stata.com/manuals/causalstteffectsipwra.pdf#causalstteffectsipwraMethodsandformulasstep_ipwral1
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The weights and the parameters in step IPWRAL2 used to estimate the ATE differ from those used

to estimate the ATET. For the ATE, the contribution of the 𝑖th observation to the log likelihood that is

maximized in step IPWRAL2 is

𝐿ipwral(𝑡𝑖, x𝑖, 𝜏 , β̂
ipwral,ate,𝜏) = (𝜏𝑖 == 𝜏)𝜛𝑖𝜔𝑖,𝜏 {(1 − 𝑐𝑖) ln{𝑓(𝑡𝑖|x𝑖, 𝜏 , β̂

ipwrar,ate,𝜏)}

𝑐𝑖 ln{1 − 𝐹(𝑡𝑖|x𝑖, 𝜏 , β̂
ipwrar,ate,𝜏)}}

where𝜔𝑖,1 is given in (12a), 𝜔𝑖,0 is given in (12b), and 𝑓(𝑡𝑖|x𝑖, 𝜏 , β̂
ipwral,ate,𝜏) is the density corresponding

to distribution 𝐹(𝑡𝑖|x𝑖, 𝜏 , β̂
ipwral,ate,𝜏). Unlike theWRA estimator, the censored observations are used, and

there is a term in the likelihood function to account for censoring.

The LAC-IPWRA estimators for the POMs simultaneously solve estimating equations (16a) through

(16e) for α̂, β̂
ipwral,ate,0, β̂ipwral,ate,0, P̂OMipwral,0, and P̂OMipwral,1.

1/𝑁
𝑁

∑
𝑖=1

sipwral(𝜏𝑖, z𝑖, α̂, 𝑝) = 0 (16a)

1/𝑁
𝑁

∑
𝑖=1

sipwral(𝑡𝑖, x𝑖, 0, β̂
ipwral,ate,0, 𝐹 ) = 0 (16b)

1/𝑁
𝑁

∑
𝑖=1

sipwral(𝑡𝑖, x𝑖, 1, β̂
ipwral,ate,1, 𝐹 ) = 0 (16c)

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 0, β̂
ipwral,ate,0) − P̂OMipwral,0} = 0 (16d)

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
ipwral,ate,1) − P̂OMipwral,1} = 0 (16e)

where

sipwral(𝜏𝑖, z𝑖, α̂, 𝑝) = 𝜕𝐿𝑝,ipwral(𝜏𝑖,z𝑖,α̂)
𝜕α̂ is the vector of score equations from the ML estimator for α̂

based on probability model 𝑝,

sipwral(𝑡𝑖, x𝑖, 0, β̂
ipwral,ate,0, 𝐹 ) =

𝜕𝐿ipwral(𝑡𝑖,x𝑖,0,β̂
ipwral,ate,0)

𝜕β̂
ipwral,ate,0

is the vector of score equations from theWML

estimator for β̂
ipwral,ate,0 based on survival-time model 𝐹,

sipwral(𝑡𝑖, x𝑖, 1, β̂
ipwral,ate,1, 𝐹 ) =

𝜕𝐿ipwral(𝑡𝑖,x𝑖,1,β̂
ipwral,ate,1)

𝜕β̂
ipwral,ate,1

is the vector of score equations from theWML

estimator for β̂
ipwral,ate,1 based on survival-time model 𝐹,

𝐸(𝑡𝑖|x𝑖, 𝜏 = 0, β̂
ipwral,ate,0) is the predicted mean survival time assuming treatment level 0 for obser-

vation 𝑖 conditional on x𝑖, and

𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
ipwral,ate,1) is the predicted mean survival time assuming treatment level 1 for obser-

vation 𝑖 conditional on x𝑖.

The ATE is estimated by replacing (16e) with

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
ipwral,ate,1) − P̂OMipwral,0 − ÂTEipwral} = 0

https://www.stata.com/manuals/causalstteffectsipwra.pdf#causalstteffectsipwraMethodsandformulasstep_ipwral2
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For the ATET, the contribution of the 𝑖th observation to the WML function that is maximized in step

IPWRAL2 is

𝐿ipwral(𝑡𝑖, x𝑖, 𝜏 , β̂
ipwral,atet,𝜏) = (𝜏𝑖 == 𝜏)𝜛𝑖𝜔𝑖,cot,𝜏 {(1 − 𝑐𝑖) ln{𝑓(𝑡𝑖|x𝑖, 𝜏 , β̂

ipwrar,atet,𝜏)}

𝑐𝑖 ln{1 − 𝐹(𝑡𝑖|x𝑖, 𝜏 , β̂
ipwrar,atet,𝜏)}}

where 𝜔𝑖,cot,1 is given in (13a), 𝜔𝑖,cot,0 is given in (13b), and 𝑓(𝑡𝑖|x𝑖, 𝜏 , β̂
ipwral,atet,𝜏) is the density cor-

responding to distribution 𝐹(𝑡𝑖|x𝑖, 𝜏 , β̂
ipwral,atet,𝜏). Again unlike theWRA, the censored observations are

used, and there is a term in the likelihood function to account for censoring.

The LAC-IPWRA estimators for the conditional-on-treatment POMs simultaneously solve estimating

equations (17a) through (17e) for α̂, β̂
ipwral,atet,0, β̂ipwral,atet,0, P̂OMipwral,cot,0, and P̂OMipwral,cot,1.

1/𝑁
𝑁

∑
𝑖=1

sipwral(𝜏𝑖, z𝑖, α̂, 𝑝) = 0 (17a)

1/𝑁
𝑁

∑
𝑖=1

sipwral(𝑡𝑖, x𝑖, 0, β̂
ipwral,atet,0, 𝐹 ) = 0 (17b)

1/𝑁
𝑁

∑
𝑖=1

sipwral(𝑡𝑖, x𝑖, 1, β̂
ipwral,atet,1, 𝐹 ) = 0 (17c)

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 0, β̂
ipwral,atet,0) − P̂OMipwral,cot,0} = 0 (17d)

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
ipwral,atet,1) − P̂OMipwral,cot,1} = 0 (17e)

where

sipwral(𝜏𝑖, z𝑖, α̂, 𝑝) = 𝜕𝐿𝑝,ipwral(𝜏𝑖,z𝑖,α̂)
𝜕α̂ is the vector of score equations from the ML estimator for α̂

based on probability model 𝑝,

sipwral(𝑡𝑖, x𝑖, 0, β̂
ipwral,atet,0, 𝐹 ) =

𝜕𝐿ipwral(𝑡𝑖,x𝑖,0,β̂
ipwral,atet,0)

𝜕β̂
ipwral,atet,0

is the vector of score equations from the

WML estimator for β̂
ipwral,atet,0 based on survival-time model 𝐹,

sipwral(𝑡𝑖, x𝑖, 1, β̂
ipwral,atet,1, 𝐹 ) =

𝜕𝐿ipwral(𝑡𝑖,x𝑖,1,β̂
ipwral,atet,1)

𝜕β̂
ipwral,atet,1

is the vector of score equations from the

WML estimator for β̂
ipwral,atet,1 based on survival-time model 𝐹,

𝐸(𝑡𝑖|x𝑖, 𝜏 = 0, β̂
ipwral,atet,0) is the predicted mean survival time assuming treatment level 0 for obser-

vation 𝑖 conditional on x𝑖, and

𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
ipwral,atet,1) is the predicted mean survival time assuming treatment level 1 for obser-

vation 𝑖 conditional on x𝑖.

The ATET is estimated by replacing (17e) with

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
ipwral,atet,1) − P̂OMipwral,cot,0 − ÂTETipwral} = 0
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Functional-form details
In this section, we specify the functional forms for the conditional distribution function used in the

survival-time outcome model 𝐹, the conditional distribution function used in the survival-time censoring
model 𝐹𝑐, and the conditional distribution used to model the treatment probabilities 𝑝.

You may choose among the same set of conditional distribution functions for either 𝐹 or 𝐹𝑐:

exponential, weibull, lnormal, or gamma.

Name Cumulative Density Mean

exponential 1 − exp(−𝜆𝑖𝑡𝑖) 𝜆𝑖exp(−𝜆𝑖𝑡𝑖) 1/𝜆𝑖
Weibull 1 − exp{−(𝜆𝑖𝑡𝑖)𝑠𝑖} 𝑠𝑖𝑡

𝑠𝑖−1
𝑖 𝜆𝑠𝑖

𝑖 exp{−(𝜆𝑖𝑡𝑖)𝑠𝑖} (1/𝜆𝑖)Γ{(𝑠𝑖 + 1)/𝑠𝑖}
log normal Φ{(ln(𝑡𝑖) − 𝜆𝑖)/𝑠𝑖} (1/(𝑠𝑖𝑡𝑖))𝜙{(ln(𝑡𝑖) − 𝜆𝑖)/𝑠𝑖} exp(𝜆𝑖 + 𝑠2

𝑖 /2)
gamma gammap{𝑠𝑖, (𝑠𝑖𝑡𝑖/𝜆𝑖)} (𝑠𝑠𝑖

𝑖 𝑡𝑠𝑖−1
𝑖 )/{𝜆𝑠𝑖

𝑖 Γ(𝑠𝑖)}exp(−𝑠𝑖𝑡𝑖/𝜆𝑖) 𝜆𝑖

where the following table specifies how 𝜆𝑖 and 𝑠𝑖 are parameterized in terms of the covariates x𝑖 and the

ancillary covariates x̃𝑖, respectively.

Name 𝜆𝑖 𝑠𝑖
exponential exp(−x𝑖β)
Weibull exp(−x𝑖β) exp(x̃𝑖β̃)
log normal x𝑖β exp(x̃𝑖β̃)
gamma exp(x𝑖β) exp(−2x̃𝑖β̃)

For the treatment-assignment models, the probit model uses the standard normal distribution, the

logit uses the standard logistic distribution, the hetprobit model uses

Φ{z1α1/ exp(z2α2)}

and the multinomial logit uses

𝑝(z, 𝑡) = exp(zα𝑡)/{1 +
𝑞

∑
𝑘=1

exp(zα𝑘)}

where the notation is defined below.

In the hetprobit model, z1 are the covariates specified in the treatment-assignment speci-

fication, z2 are the covariates specified in the hetprobit() option, and α1 and α2 are the

corresponding coefficients.

In the multinomial logit model, z are the covariates specified in the treatment-assignment spec-

ification and 𝛼𝑘 are the coefficients; see [R] mlogit for further details.
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