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Description
This entry provides an overview of the treatment-effects estimators that use observational survival-

time data and are implemented in stteffects. It also provides an overview of the potential-outcomes

framework and its application to survival-time data and to the interpretation of the treatment-effects

parameters estimated.

The stteffects command estimates average treatment effects (ATEs), average treatment effects on

the treated (ATETs), and potential-outcome means (POMs). Each of these effect parameters is discussed

in this entry. stteffects implements a variety of estimators for theATE,ATET, and POM. The treatment

effects can be estimated using regression adjustment (RA), inverse-probability weights (IPW), inverse-

probability-weighted regression adjustment (IPWRA), and weighted regression adjustment (WRA). This

entry also provides some intuition for the estimators and discusses the tradeoffs between them.

Remarks and examples
Remarks are presented under the following headings:

Introduction
A quick tour of the estimators

Regression adjustment
Inverse-probability weighting
Combinations of RA and IPW
Weighted regression adjustment

Average treatment effect on the treated
Comparison of treatment-effects estimators
Assumptions and tradeoffs

The conditional independence assumption
The sufficient overlap assumption
The correct adjustment for censoring assumption
Assumptions for the ATET

Specification diagnostics and tests
Multivalued treatments

Introduction
The stteffects command estimates treatment effects using observational survival-time data.

For some intuition about the methods implemented in the stteffects command, consider the fol-

lowing question: Does smoking decrease the time to a second heart attack in the population of women

aged 45–55 who have had one heart attack? Three aspects of this question stand out.

1. For ethical reasons, these data will be observational.

2. This question is about the time to an event, and such data are commonly known as survival-time

data or time-to-event data. These data are nonnegative and, frequently, right-censored.

3. Many researchers and practitioners want an effect estimate in easy-to-understand units of time.

Aspect 1 is one of the most common reasons for using observational data, and aspect 2 focuses interest

on survival-time data.
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We are most concerned with aspect 3 because it helps us define and understand the effect of interest.

In particular, we would like to know the average change in time to a second heart attack that would occur

in the population if all women smoked instead of if no women smoked. This effect is an ATE.

We must solve a missing-data problem to estimate the ATE. The ATE is the population average of the

contrast in outcomes when everyone gets the treatment and when no one gets the treatment. Formally,

we write this as

ATE = 𝐸(𝑡1 − 𝑡0)

where 𝑡1 is the survival time when a subject gets the treatment and 𝑡0 is the survival time when a subject

does not get the treatment. For each treatment level, there is a potential outcome that would be observed

if a subject received that treatment level: 𝑡1 is the potential outcome that would occur if someone gets

the treatment and 𝑡0 is the potential outcome that would occur if someone does not get the treatment. The

missing-data problem arises because each subject receives only one treatment level, and so we observe

only one of the two potential outcomes.

Much of the survival-time literature uses a hazard ratio as the effect of interest. The ATE has three

advantages over the hazard ratio as an effect measure.

1. The ATE measures the effect in the same time units as the outcome instead of in relative condi-

tional probabilities.

2. The ATE is much easier to explain to nontechnical audiences.

3. The models used to estimate the ATE can be much more flexible. Hazard ratios are useful for

population effects when they are constant, which occurs when the treatment enters linearly and

the distribution of the outcome has a proportional-hazards form. Neither linearity in treatment

nor proportional-hazards form is required for the ATE, and neither is imposed on the models fit

by the estimators implemented in stteffects.

The estimators implemented in stteffects use the common missing-data techniques of regression

modeling, weighting, and combinations thereof to account for data lost to censoring and to unobserved

potential outcomes.

Here we note only a few contributions and entry points to the vast literature on estimating ATEs.

The use of potential outcomes to define treatment effects has proved extraordinarily useful; see Holland

(1986), Rubin (1974), and Heckman (1997). Cameron and Trivedi (2005, chap. 25), Wooldridge (2010,

chap. 21), and Vittinghoff et al. (2012, chap. 9) provide excellent general introductions to estimating

ATEs.

Technical note
Left-truncation would be another type of missing data. The estimators implemented in stteffects

do not adjust for left-truncation, so stteffects cannot be used with delayed-entry data.

stteffects cannot be used with time-varying covariates or multiple-record data because these add

a repeated-measure structure that significantly complicates the estimation problem.

A quick tour of the estimators
The stteffects command implements five estimators of treatment effects. We introduce each one

by showing the basic syntax used to apply it to a common example dataset. See each command’s entry

for detailed information.

https://www.stata.com/manuals/causalstteffectsintro.pdf#causalstteffectsintroRemarksandexamplesaspect3
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We have some fictional data on the time to a second heart attack among women aged 45–55 years.

The treatment, smoking, is stored in the 0/1 indicator smoke. These data also contain each woman’s

age at the time of her first heart attack (age), and indices of her exercise level (exercise), diet quality
(diet), and education attainment (education) prior to her first heart attack.

Like streg and other survival-time commands, stteffects uses the outcome variable and the failure
indicator computed by stset. In this dataset, atime is the observed time in years to the second heart

attack, and fail is the 0/1 indicator that a second heart attack was observed and recorded in atime.
(When fail is 1, atime records the time to the second attack; when fail is 0, atime records a censored

observation of the time to the second attack.)

We begin our examples by first reading in the data and then specifying the raw outcome and failure

variables to stset.
. use https://www.stata-press.com/data/r19/sheart
(Time to second heart attack (fictional))
. stset atime, failure(fail)
Survival-time data settings

Failure event: fail!=0 & fail<.
Observed time interval: (0, atime]

Exit on or before: failure

2,000 total observations
0 exclusions

2,000 observations remaining, representing
1,208 failures in single-record/single-failure data

3,795.226 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 34.17743

The output indicates that 1,208 of the 2,000 observations record actual time to a second heart attack.

The remaining observations were censored. Now that we have stset the data, we can use stteffects.

Regression adjustment

Regression modeling of the outcome variable is a venerable approach to solving the missing-data

problem in treatment-effects estimation. Known as the regression-adjustment (RA) estimator, this method

uses averages of predicted outcomes to estimate the ATE. If the outcome model is well specified, this

approach is surprisingly robust.
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Example 1: RA estimation
We now use stteffects ra to estimate the ATE by RA. We model the outcome as a function of age,

exercise, diet, and education, and we specify that smoke is the treatment variable.

. stteffects ra (age exercise diet education) (smoke)
Failure _d: fail

Analysis time _t: atime
Iteration 0: EE criterion = 1.006e-14
Iteration 1: EE criterion = 2.302e-25
Survival treatment-effects estimation Number of obs = 2,000
Estimator : regression adjustment
Outcome model : Weibull
Treatment model: none
Censoring model: none

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -1.956657 .3331787 -5.87 0.000 -2.609676 -1.303639

POmean
smoke

Nonsmoker 4.243974 .2620538 16.20 0.000 3.730358 4.75759

When all women in the population smoke, the average time to a second heart attack is estimated to be

1.96 years less than when no women smoke. The estimated average time to a second heart attack when

no women smoke is 4.24 years.

The output reports that a Weibull model was used for the outcome. The other outcome models avail-

able are exponential, gamma, and log normal. See example 2 in [CAUSAL] stteffects ra for an application

of the gamma parameterization to this model.

The ratio of the ATE to control-level POM measures the importance of the effect. In this example,

when all women smoke, the time to a second heart attack falls by an estimated 46% relative to the case

in which none of them smoke. See example 3 in [CAUSAL] stteffects ra for an example that uses nlcom
to compute a point estimate and a confidence interval for this ratio.

Unlike the IPW estimator discussed in the next section, RA does not model treatment assignment or

the censoring process. Treatment assignment is handled by fitting separate models for each treatment

level and averaging the predicted outcomes. As is standard in the survival-time literature, the censoring

term in the log-likelihood function accounts for censoring; see Kalbfleisch and Prentice (2002, chap. 3),

Cameron and Trivedi (2005, chap. 17), Cleves, Gould, and Marchenko (2016, chap. 13), andWooldridge

(2010, chap. 22).

See [CAUSAL] stteffects ra for further discussion of this command and the RA estimator.

https://www.stata.com/manuals/causalstteffectsra.pdf#causalstteffectsraRemarksandexamplesex2
https://www.stata.com/manuals/causalstteffectsra.pdf#causalstteffectsra
https://www.stata.com/manuals/causalstteffectsra.pdf#causalstteffectsraRemarksandexamplesex3
https://www.stata.com/manuals/causalstteffectsra.pdf#causalstteffectsra
https://www.stata.com/manuals/causalstteffectsra.pdf#causalstteffectsra


stteffects intro — Introduction to treatment effects for observational survival-time data 5

Inverse-probability weighting

Sometimes researchers are more comfortable modeling treatment assignment than the outcome.

Inverse-probability-weighted (IPW) estimators use weighted averages of the observed outcome to es-

timate the POMs and the ATE. The weights correct for the missing data. When there is no censoring, the

missing potential outcome is the only missing data, and the weights are constructed from a model of

treatment assignment. When the data may be censored, the weights must control for censoring and the

missing potential outcome. In this case, IPW estimators construct the weights from two models, one for

the censoring time and one for treatment assignment.

Example 2: IPW estimation
Here we use stteffects ipw to estimate the effect of smoking on the time to a second heart attack.

The model of assignment to the treatment smoke depends on age, exercise, diet, and education.
The time-to-censoring model also depends on age, exercise, diet, and education.

. stteffects ipw (smoke age exercise diet education)
> (age exercise diet education)

Failure _d: fail
Analysis time _t: atime

Iteration 0: EE criterion = 2.042e-18
Iteration 1: EE criterion = 2.488e-30
Survival treatment-effects estimation Number of obs = 2,000
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: logit
Censoring model: Weibull

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -2.187297 .6319837 -3.46 0.001 -3.425962 -.9486314

POmean
smoke

Nonsmoker 4.225331 .517501 8.16 0.000 3.211047 5.239614

When all women in the population smoke, the average time to a second heart attack is estimated to be

2.19 years less than when no women smoke. The estimated average time to a second heart attack when

no women smoke is 4.23 years. When all women smoke, the average time to a second heart attack falls

by an estimated 52% relative to the case when no women smoke.

The estimates have changed; however, the interpretation is the same as for the RA estimator because

the IPW and RA estimators are estimating the same population effects. Under correct model specification,

the estimates will differ in finite samples, but the size of these differences will decrease as the sample

size gets larger. For the case at hand, the estimated ATE and control-level POM are roughly similar to

those produced by the RA estimator using the Weibull model for the outcome.
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Recall that IPW estimators are weighted averages of observed outcomes and that the weights control

for the missing outcomes. Weights in survival-time data have two components: one for the missing

potential outcome and one for data lost to censoring. We used a logit model for treatment assignment, so

the component of the weights that controls for the missing potential outcome comes from the estimated

logit parameters. We used a Weibull model for the time to censoring, so the component of the weights

that controls for data lost to censoring comes from the estimated Weibull parameters.

Using weighting from an estimated treatment-assignment model to control for the missing potential

outcome is standard in the treatment-effects literature; for example, see [CAUSAL] teffects intro ad-

vanced, Wooldridge (2010, chap. 21), Vittinghoff et al. (2012, chap. 9), Hirano, Imbens, and Ridder

(2003), Cattaneo (2010), and Cattaneo, Drukker, and Holland (2013). Modeling the time to censoring is

specific to the survival-time treatment-effects literature; see Bai, Tsiatis, and O’Brien (2013) and Robins

and Rotnitzky (2006). See Methods and formulas in [CAUSAL] stteffects ipwra for more details.

See [CAUSAL] stteffects ipw for further discussion of this command and the IPW estimator.

Combinations of RA and IPW

More efficient estimators are obtained by combining IPW and RA, due to Wooldridge (2007) and

Wooldridge (2010, chap. 21) and denoted by IPWRA. Unlike the estimators discussed in Wooldridge

(2010, chap. 21), both the treatment and the outcome models must be correctly specified to estimate the

ATE.

The IPWRA estimator uses estimated weights that control for missing data to obtain missingness-

adjusted regression coefficients that are used to compute averages of predicted outcomes to estimate the

POMs. The estimated ATE is a contrast of the estimated POMs. These weights always involve a model

for treatment assignment. You choose whether to account for censoring by including a term in the log-

likelihood function or whether to use weights that also account for the data lost to censoring.

https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvanced
https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvanced
https://www.stata.com/manuals/causalstteffectsipwra.pdf#causalstteffectsipwraMethodsandformulas
https://www.stata.com/manuals/causalstteffectsipwra.pdf#causalstteffectsipwra
https://www.stata.com/manuals/causalstteffectsipw.pdf#causalstteffectsipw
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Example 3: Likelihood-adjusted-censoring IPWRA estimation
We model the outcome (time to a second heart attack) as a function of age, exercise, diet, and

education. We model assignment to the treatment smoke as a function of the same covariates.

. stteffects ipwra (age exercise diet education)
> (smoke age exercise diet education)

Failure _d: fail
Analysis time _t: atime

Iteration 0: EE criterion = 6.476e-15
Iteration 1: EE criterion = 1.097e-26
Survival treatment-effects estimation Number of obs = 2,000
Estimator : IPW regression adjustment
Outcome model : Weibull
Treatment model: logit
Censoring model: none

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -1.592494 .4872777 -3.27 0.001 -2.54754 -.637447

POmean
smoke

Nonsmoker 4.214523 .2600165 16.21 0.000 3.7049 4.724146

The estimatedATE of −1.59 and control-level POM of 4.21 are similar to the reported values of −1.96

and 4.24 in example 1.

We did not specify a model for the time to censoring, so censoring is handled by including a term in

the log-likelihood function in theWeibull outcome model. We denote this likelihood-adjusted-censoring

(LAC) version of the IPWRA estimator by LAC-IPWRA.

https://www.stata.com/manuals/causalstteffectsintro.pdf#causalstteffectsintroRemarksandexamplesex1
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Example 4: Weighted-adjusted-censoring IPWRA estimation
Instead of including a term in the log-likelihood function, the weighted-adjusted-censoring IPWRA

(WAC-IPWRA) estimator uses estimated weights to adjust for censoring. We model the time to a second

heart attack as a function of age, exercise, diet, and education; we model assignment to the treat-
ment smoke as a function of the same covariates; and we model the time to censoring as a function of

age, exercise, and diet.

. stteffects ipwra (age exercise diet education)
> (smoke age exercise diet education) (age exercise diet)

Failure _d: fail
Analysis time _t: atime

Iteration 0: EE criterion = 2.797e-13
Iteration 1: EE criterion = 2.021e-25
Survival treatment-effects estimation Number of obs = 2,000
Estimator : IPW regression adjustment
Outcome model : Weibull
Treatment model: logit
Censoring model: Weibull

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -2.037944 .6032549 -3.38 0.001 -3.220302 -.855586

POmean
smoke

Nonsmoker 4.14284 .4811052 8.61 0.000 3.199891 5.085789

The estimatedATE of −2.04 and control-level POM of 4.14 are similar to the reported values of −1.96

and 4.24 in example 1.

The weights for censoring are constructed from the estimated parameters because we specified a time-

to-censoring model.

Under correct specification, both versions of the IPWRA estimator estimate the same ATE and control-

level POM as estimated by RA and IPW.

The addition of the time-to-censoring model makes the WAC-IPWRA somewhat less robust than the

LAC-IPWRA estimator. Weighting methods to control for censoring also place more restrictive assump-

tions on the censoring process. For example, the censoring time must be random, otherwise it would

be impossible to construct the weights. In Assumptions and tradeoffs below, we discuss the tradeoffs

among the estimators and the assumptions that each requires. For the moment, we note that we believe

the LAC-IPWRA estimator is more robust than theWAC-IPWRA estimator.

See [CAUSAL] stteffects ipwra for further discussion of this command and the IPWRA estimator.

https://www.stata.com/manuals/causalstteffectsintro.pdf#causalstteffectsintroRemarksandexamplesex1
https://www.stata.com/manuals/causalstteffectsintro.pdf#causalstteffectsintroRemarksandexamplesAssumptionsandtradeoffs
https://www.stata.com/manuals/causalstteffectsipwra.pdf#causalstteffectsipwra
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Weighted regression adjustment

When estimating the parameters of an outcome model, the weighted regression-adjustment (WRA)

estimator uses weights instead of a term in the log-likelihood function to adjust for censoring. These

weights are constructed from a model for the censoring process. The estimated parameters are sub-

sequently used to compute averages of predicted outcomes that estimate the POMs. A contrast of the

estimated POMs estimates the ATE.

Example 5: WRA estimation
Wemodel the time to a second heart attack as a function of age, exercise, diet, and education; we

specify that smoke is the treatment; and we model the time to censoring as a function of age, exercise,
and diet.

. stteffects wra (age exercise diet education) (smoke) (age exercise diet)
Failure _d: fail

Analysis time _t: atime
Iteration 0: EE criterion = 7.116e-15
Iteration 1: EE criterion = 5.984e-27
Survival treatment-effects estimation Number of obs = 2,000
Estimator : weighted regression adjustment
Outcome model : Weibull
Treatment model: none
Censoring model: Weibull

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -2.152014 .4986005 -4.32 0.000 -3.129253 -1.174775

POmean
smoke

Nonsmoker 4.079273 .4379517 9.31 0.000 3.220903 4.937642

The estimatedATE of −2.15 and control-level POM of 4.08 are similar to the reported values of −1.96

and 4.24 in example 1. Like the other estimators discussed, theWRA estimators estimate the same effect

parameters as the RA estimator, so the interpretation is the same.

In many survival-time applications, using weights to adjust for censoring is probably less robust than

just including a term in the log-likelihood function for the outcome model. The model used to construct

the weights is just as complicated as the outcome model, and including the term in the log-likelihood

function places fewer restrictions on the censoring process, as discussed in The correct adjustment for

censoring assumption below.

See [CAUSAL] stteffects wra for further discussion of this command and theWRA estimator.

https://www.stata.com/manuals/causalstteffectsintro.pdf#causalstteffectsintroRemarksandexamplesex1
https://www.stata.com/manuals/causalstteffectsintro.pdf#causalstteffectsintroRemarksandexamplesThecorrectadjustmentforcensoringassumption
https://www.stata.com/manuals/causalstteffectsintro.pdf#causalstteffectsintroRemarksandexamplesThecorrectadjustmentforcensoringassumption
https://www.stata.com/manuals/causalstteffectswra.pdf#causalstteffectswra
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Average treatment effect on the treated
Intuitively, the average treatment effect on the treated (ATET) is the effect in a well-defined, at-risk

subpopulation. Sometimes the subpopulation that gets the treatment defines such an at-risk subpopula-

tion. For example, we may want to know the average change in time to a second heart attack among

female smokers aged 45–55 who have had a heart attack if they all became nonsmokers. This effect is

the ATET.

Below, we use stteffects ra to estimate the ATET by RA.

. stteffects ra (age exercise diet education) (smoke), atet
Failure _d: fail

Analysis time _t: atime
Iteration 0: EE criterion = 1.006e-14
Iteration 1: EE criterion = 2.985e-26
Survival treatment-effects estimation Number of obs = 2,000
Estimator : regression adjustment
Outcome model : Weibull
Treatment model: none
Censoring model: none

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATET
smoke

(Smoker
vs

Nonsmoker) -1.527476 .2489203 -6.14 0.000 -2.015351 -1.039602

POmean
smoke

Nonsmoker 3.436937 .2217808 15.50 0.000 3.002255 3.87162

Now, all effects are calculated only for the subpopulation of women aged 45–55 years who smoke

after their first heart attack. If no women in the subpopulation were to smoke, the average time to a second

heart attack would be 3.44 years. When all women in the subpopulation smoke (the observed behavior),

the average time to a second heart attack is estimated to be 1.53 years less than if no women in the

subpopulation had smoked. In other words, if we could somehow turn all smokers in the subpopulation

into nonsmokers, the average time to a second heart attack would be 3.44 years instead of 1.91 years

(3.44 − 1.53 = 1.91).

These point estimates are a little different than those for the ATE and the control-level POM in the full

population of women aged 45–55 years who have had one heart attack. The difference indicates that this

particular health cost of smoking may be smaller among women who choose to smoke than in the full

population.

Comparison of treatment-effects estimators
We can classify the estimators implemented in stteffects into five categories: 1) estimators based

on a model for the outcome variable; 2) estimators based on models for the treatment assignment and the

censoring time; 3) estimators based on models for the outcome variable and the treatment assignment;

4) estimators based on models for the outcome variable, the treatment assignment, and the censoring

time; and 5) estimators based on models for the outcome variable and the censoring time.
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Because there are several categories of estimators, the user must decide whether tomodel the outcome,

the probability of treatment, the time to censoring, or some combination thereof.

Each category of estimator contains a variety of choices about the functional forms for the models.

We now provide some intuition behind each category of estimator and discuss the relationships.

1. When modeling only the outcome, separate outcome models for each treatment level account

for treatment assignment, and censoring is adjusted for in the log-likelihood function. This

approach is used in the RA estimators.

2. Some researchers would rather avoid modeling the outcome. Some estimators use weighted

averages of the observed outcome to estimate the effect. When estimating treatment effects

from observational survival-time data, the weights used must account for treatment assignment

and censoring. Models for treatment assignment and time to censoring are used to construct

the weights. This approach is used in the IPW estimators.

3. When seeking a more efficient estimator, it is natural to model both the outcome and the treat-

ment and to adjust for censoring in the outcomemodel. This approach is used in the LAC-IPWRA

estimators.

4. When seeking a more efficient estimator, another natural approach is to model both the outcome

and the treatment and to adjust for censoring by weights that come from a time-to-censoring

model. This approach is used in theWAC-IPWRA estimators.

5. We could modify approach 1 to model the outcome and the time to censoring so that censoring

is handled by weighting and its own model instead of by likelihood adjustment. This approach

is used in theWRA estimators.

While researcher preferences over what to model largely dictate the approach selected, we quickly

note two points that could affect which approach works best. First, we can adjust for censoring by

weighting only when censoring time is random. Second, weighting estimators become unstable if the

weights get too large.

In the next section, we elaborate on the assumptions needed and the tradeoffs among the approaches

to estimation.

Assumptions and tradeoffs
The estimators implemented in stteffects require three assumptions: conditional independence,

sufficient overlap, and correct adjustment for censoring.

The conditional independence assumption

All estimators implemented in stteffects require the potential outcomes to be independent of the

treatment assignment after conditioning on the covariates. Randomized experiments and the Heckman

selection model are two motivating frameworks for the conditional independence assumption.

When the treatment is assigned randomly, the randomization ensures that the potential outcomes are

independent of the treatment assignment. In observational data, the treatment is not randomly assigned.

However, many important questions can only be answered using observational data because it would

be unethical to randomly allocate hazardous treatments, for example, smoking. The conditional inde-

pendence assumption in observational data says that treatment assignment is as good as random after

conditioning on the covariates.
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We can also understand conditional independence from a modeling framework. The Heckman se-

lection model specifies that each of the potential outcomes and the treatment assignment process are

functions of observable covariates and unobservable errors. The potential outcomes are conditionally

independent of the treatment assignment when the unobservable errors in the treatment-assignment pro-

cess are independent of the unobservable errors in each of the potential-outcome processes. See The CI

assumption in [CAUSAL] teffects intro advanced for a detailed example.

Both frameworks lead to the same conclusion: we need to observe and to condition on a sufficient

number of covariates.

Essentially, all the estimators in stteffects are equally susceptible to violations of the conditional

independence assumption. No one estimator is any more robust to the conditional independence assump-

tion than any other one.

Estimating the ATE among the subpopulation of those who get the treatment requires a significantly

weaker version of the CI assumption; see Assumptions for the ATET below.

For more details about the conditional independence assumption, see The CI assumption in

[CAUSAL] teffects intro advanced, and see Rosenbaum and Rubin (1983), Heckman (1997), Imbens

and Wooldridge (2009), Cameron and Trivedi (2005, sec. 25.2), Wooldridge (2010, chap. 21), and Vit-

tinghoff et al. (2012, chap. 9).

The sufficient overlap assumption

The sufficient overlap assumption requires that each individual have a sufficiently positive probability

of being assigned to each treatment level. We believe that the RA estimator is more robust than the other

estimators to near violations of the sufficient overlap condition, under correct model specification.

The overlap condition has no specification test, but using teoverlap and then summarizing the pre-

dicted treatment probabilities presents good diagnostics of overlap problems.

The correct adjustment for censoring assumption

The correct adjustment for censoring assumption has two parts. First, either the censoring time must

be fixed or the process must be conditionally-on-covariates independent of the potential outcomes and

the treatment-assignment process. This assumption is standard in survival analysis; see, for example,

Kalbfleisch and Prentice (2002, chap. 3).

Second, themethod used to adjust to censoringmust be correct. For the RAand LAC-IPWRAestimators,

which use likelihood-adjusted censoring, the second assumption is no more restrictive than assuming

correct specification of the outcome model. For the IPW,WAC-IPWRA, andWRA estimators, which adjust

by weighting, the second assumption requires that the censoring be random and that the censoring process

be correctly modeled.

https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvancedRemarksandexamplesTheCIassumption
https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvancedRemarksandexamplesTheCIassumption
https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvanced
https://www.stata.com/manuals/causalstteffectsintro.pdf#causalstteffectsintroRemarksandexamplesAssumptionsfortheATET
https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvancedRemarksandexamplesTheCIassumption
https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvanced
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Under correct specification, all the estimators in stteffects perform well. However, we believe

that estimators that use likelihood adjustment instead of weighting are more robust for three reasons.

1. The estimators that use weighting to adjust for censoring cannot handle fixed censoring pro-

cesses. If the censoring process is not random, the weights are not well defined.

2. The estimators that use weighting to adjust for censoring do not allow the random censoring

process to vary by treatment level.

3. The estimators that use weighting to adjust for censoring require an additional sufficient overlap

condition: the probability of not being censored must be sufficiently greater than 0 or else the

weights that adjust for censoring get too large.

While the estimators that useWAC instead of LAC require a few more assumptions, some researchers

are more comfortable modeling the treatment and censoring than the outcome. In this case, the IPW or

WAC-IPWRA estimator would be the estimator of choice.

See Specification diagnostics and tests below for information about testing these assumptions.

Assumptions for the ATET

We noted in Average treatment effect on the treated that the ATET is sometimes more interesting than

the ATE. We can also estimate the ATET under less restrictive versions of the conditional independence

assumption and the sufficient overlap assumption than those required for the ATE.

While ATE estimation requires that the potential outcomes for both the treated and the not treated be

conditionally independent of treatment assignment, ATET estimation requires that only the not treated

potential outcome be conditionally independent of treatment assignment.

This weaker version of conditional independence allows the gains from the treatment to be related to

treatment assignment, after conditioning on the covariates. We can estimate the ATET, but not the ATE, if

some unobserved factor increases (or decreases) the likelihood of assignment to the treatment, increases

(or decreases) the time to event in the treatment group, and has no effect on the time to event when not

in the treatment group.

For example, suppose that smoking is an acquired taste and that individuals who acquire the taste for

smoking more easily are less adversely affected by smoking and otherwise similar to everyone else when

not smoking. Taste for smoking is unobservable, and our data have no measure of this variable. In this

case, we could estimate the ATET but not the ATE.

The weaker version of the sufficient overlap assumption only requires that each individual in the

treated subpopulation have a positive probability of not getting treated. In contrast, ATE estimation re-

quires that each individual in the population have a positive probability of getting each treatment level.

In particular, we can estimate the ATET, but not the ATE, when some individuals in the population have

zero chance of getting the treatment. For example, we could estimate the ATET, but not the ATE, if some

women will never smoke for religious reasons.

Even when the conditions forATE estimation hold, theATE andATETmay differ. Finding that theATET

is significantly different from the ATE does not mean that the ATE is incorrectly estimated.

See Heckman (1997) and Wooldridge (2010, 911–912) for more information about the assumptions

necessary to estimate the ATET.

https://www.stata.com/manuals/causalstteffectsintro.pdf#causalstteffectsintroRemarksandexamplesSpecificationdiagnosticsandtests
https://www.stata.com/manuals/causalstteffectsintro.pdf#causalstteffectsintroRemarksandexamplesAveragetreatmenteffectonthetreated
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Specification diagnostics and tests
After stteffects ipw and stteffects ipwra, some specification checks for the treatment-

assignment model and the overlap condition are available.

The checks for the treatment-assignment model are known as balance checks. When the covariate

distributions are invariant to the treatment level, the covariates are said to be balanced. The concept

of balanced covariates comes from the experimental literature, in which random treatment assignment

ensures that the covariates are balanced.

In observational data, the covariates are almost never balanced in the raw data. Weightingmethods can

be viewed as using a treatment-assignment model to balance the covariates. If the treatment-assignment

model is well specified, the weights constructed from this model will balance the covariates. One of the

nice features of balance checks is that they do not depend on the outcome or its distribution. This fact

is especially useful for survival-time outcomes because censoring of the outcome has no effect on the

balance checks, so the balance checks implemented in tebalance work without modification.

Conditional on the treatment-assignment model being well specified, we can use the estimated prob-

abilities of treatment, known as the propensity scores, to look for signs that the overlap condition is

violated. These checks depend only on the estimated treatment probabilities and are not affected by any

censoring of the outcome, so the methods implemented in teoverlap work without modification.

We begin examining our model by using tebalance summarize after refitting the models used by

the LAC-IPWRA estimator.

. quietly stteffects ipwra (age exercise diet education)
> (smoke age exercise diet education)
. tebalance summarize
Covariate balance summary

Raw Weighted

Number of obs = 2,000 2,000.0
Treated obs = 738 994.1
Control obs = 1,262 1,005.9

Standardized differences Variance ratio
Raw Weighted Raw Weighted

age -.3122094 -.0184574 .8547308 .9370065
exercise -.4975269 -.0458412 .4966778 .8342339

diet -.2479756 .0021802 .7937645 1.095347
education -.4801442 -.0216366 .6015139 .978078

The weighted standardized differences are much closer to 0 than the raw standardized differences,

and the weighted variance ratios are much closer to 1 than the raw variance ratios. These results in-

dicate that the model-based treatment weights balanced the covariates; see [CAUSAL] tebalance and

[CAUSAL] tebalance summarize for details.

https://www.stata.com/manuals/causaltebalance.pdf#causaltebalance
https://www.stata.com/manuals/causalteoverlap.pdf#causalteoverlap
https://www.stata.com/manuals/causaltebalance.pdf#causaltebalance
https://www.stata.com/manuals/causaltebalancesummarize.pdf#causaltebalancesummarize
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The diagnostics presented by tebalance summarize are not a formal test. However, we can use

tebalance overid to conduct a formal test of the hypothesis that the weights constructed from the

treatment-assignment model balanced the covariates.

. tebalance overid
Iteration 0: Criterion = .22681884
Iteration 1: Criterion = .22692316 (backed up)
Iteration 2: Criterion = .23090157
Iteration 3: Criterion = .23114612
Iteration 4: Criterion = .23256286
Iteration 5: Criterion = .23286304
Iteration 6: Criterion = .23335857
Iteration 7: Criterion = .2335567
Iteration 8: Criterion = .2335671
Iteration 9: Criterion = .23356711
Overidentification test for covariate balance
H0: Covariates are balanced

chi2(5) = 3.28142
Prob > chi2 = 0.6567

There is no significant evidence against the null hypothesis. The interpretation is that we do not reject

the null hypothesis that the treatment-assignment model is well specified; see [CAUSAL] tebalance and

[CAUSAL] tebalance overid for details.

Given that we do not reject the treatment-assignmentmodel, we can use thismodel to look for evidence

that the overlap condition is violated. We begin by using teoverlap.

. teoverlap, ptlevel(Smoker)

0

1

2

3

4

D
en

si
ty

0 .2 .4 .6
Propensity score for smoke = Smoker

smoke=Nonsmoker
smoke=Smoker

The densities of the propensity scores for the smokers and nonsmokers appear to have the same sup-

port, indicating that there is no violation of the overlap condition. The only indicator of a possible prob-

lem is that the support of the density for nonsmokers gets very close to 0. This problem would affectATE

estimation but not ATET estimation, as discussed in Assumptions and tradeoffs. To further investigate,

we compute and summarize the predicted propensity score by treatment level.

https://www.stata.com/manuals/causaltebalance.pdf#causaltebalance
https://www.stata.com/manuals/causaltebalanceoverid.pdf#causaltebalanceoverid
https://www.stata.com/manuals/causalstteffectsintro.pdf#causalstteffectsintroRemarksandexamplesAssumptionsandtradeoffs
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. predict ps1, ps tlevel(Smoker)

. summarize ps1 if smoke == 0
Variable Obs Mean Std. dev. Min Max

ps1 1,262 .3410001 .1381673 .014819 .6161401
. summarize ps1 if smoke == 1

Variable Obs Mean Std. dev. Min Max

ps1 738 .4168805 .1107557 .0454891 .6216282

To interpret these results, recall that ATE estimation requires that the minimum propensity score for

each treatment level be sufficiently greater than 0 and that the maximum propensity score for each treat-

ment level be sufficiently less than 1. Also recall that ATET estimation only requires that the maximum

propensity score for each treatment level be sufficiently less than 1.

For ATE estimation, only the minimum predicted propensity score for nonsmokers presents a chal-

lenge, and 0.015 is probably not too small. For ATET estimation, neither maximum causes concern.

For information about choosing among the stteffects estimators and their functional forms for the

different models, see Model choice under Remarks and examples in [CAUSAL] teffects intro advanced.

Multivalued treatments
stteffects can estimate treatment effects for multivalued treatments; here we provide some exam-

ples. See [CAUSAL] teffects multivalued for an introduction to interpreting effects from multivalued

treatments.

Example 6: Multivalued ATE estimation
We have another fictional dataset that records the time to a second heart attack among women aged

45–55 years. In this dataset, atime is the observed time in years to the second heart attack, and fail
is the 0/1 indicator that a second heart attack was observed and recorded in atime. (When fail is 1,

atime records the time to the second attack; when fail is 0, atime records a censored observation of

the time to the second attack.)

These data also contain the age at the time of the first heart attack (age), and indices of each woman’s
exercise level (exercise), diet quality (diet), and education attainment (education) prior to her first
heart attack.

The treatment, smoking, is stored in the categorical variable smoke, which has the following value

labels. The women who never smoked are labeled as N; the women who previously smoked but quit

before their first heart attack are labeled as B; the women who previously smoked but quit after their first
heart attack are labeled as A; and the women who continued to smoke after their first heart attack are

labeled as S.

https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvancedRemarksandexamplesModelchoice
https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvanced
https://www.stata.com/manuals/causalteffectsmultivalued.pdf#causalteffectsmultivalued
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We begin by first reading in the data and then reviewing information previously stored using stset.

. use https://www.stata-press.com/data/r19/sheartm, clear
(Time to second heart attack (fictional))
. stset
-> stset atime, failure(fail)
Survival-time data settings

Failure event: fail!=0 & fail<.
Observed time interval: (0, atime]

Exit on or before: failure

10,000 total observations
0 exclusions

10,000 observations remaining, representing
9,741 failures in single-record/single-failure data

27,999.155 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 17.40826

We continue by tabulating the treatment variable smoke.

. tabulate smoke
Smoking

level Freq. Percent Cum.

N 3,167 31.67 31.67
B 2,263 22.63 54.30
A 1,924 19.24 73.54
S 2,646 26.46 100.00

Total 10,000 100.00

We see that 31.67% of the women never smoked, 22.63% of the women previously smoked but quit

before their first heart attack, 19.24% of the women previously smoked but quit after their first heart

attack, and 26.46% of the women continued to smoke after their first heart attack.
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We now use stteffects ra to estimate the ATE by RA. We model the outcome as a function of age,
exercise, diet, and education, and we specify that smoke is the treatment variable.

. stteffects ra (age exercise diet education) (smoke)
Failure _d: fail

Analysis time _t: atime
Iteration 0: EE criterion = 1.390e-20
Iteration 1: EE criterion = 1.375e-29
Survival treatment-effects estimation Number of obs = 10,000
Estimator : regression adjustment
Outcome model : Weibull
Treatment model: none
Censoring model: none

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATE
smoke

(B vs N) -.4129793 .0317 -13.03 0.000 -.47511 -.3508485
(A vs N) -1.281031 .032866 -38.98 0.000 -1.345447 -1.216614
(S vs N) -2.167359 .0338994 -63.93 0.000 -2.233801 -2.100917

POmean
smoke

N 3.745919 .0289014 129.61 0.000 3.689273 3.802565

The average time to a second heart attack is 0.41 years sooner when all the women smoked at some

point but quit before their first heart attack than when all the women never smoked. The average time to

a second heart attack is 1.28 years sooner when all the women smoked at some point but quit after their

first heart attack than when all the women never smoked. The average time to a second heart attack is

2.17 years sooner when all the women continued to smoke after their first heart attack than when all the

women never smoked.
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Example 7: Multivalued ATET estimation
In the at-risk subpopulation of women who continued to smoke, we want to estimate the effect of

continuing to smoke (S) versus quitting after the first heart attack (A). Below we estimate the ATETs by

RA, specifying A to be the control level and S to be the treatment level.

. stteffects ra (age exercise diet education) (smoke), atet control(A) tlevel(S)
Failure _d: fail

Analysis time _t: atime
Iteration 0: EE criterion = 1.390e-20
Iteration 1: EE criterion = 1.372e-29
Survival treatment-effects estimation Number of obs = 10,000
Estimator : regression adjustment
Outcome model : Weibull
Treatment model: none
Censoring model: none

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATET
smoke

(N vs A) 1.290123 .0377552 34.17 0.000 1.216125 1.364122
(B vs A) .8748349 .0239595 36.51 0.000 .8278751 .9217946
(S vs A) -.8869257 .0272301 -32.57 0.000 -.9402958 -.8335557

POmean
smoke

A 2.500108 .0217833 114.77 0.000 2.457413 2.542802

The parameter (S vs A) is the one of interest. The estimate implies that the average time to a second

heart attack among women who continue to smoke is 0.89 years sooner when they all continue to smoke

than when they all quit smoking after their first heart attack.
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