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Description
didregress estimates the average treatment effect on the treated (ATET) from observational data by

difference-in-differences (DID) or difference-in-difference-in-differences (DDD). The ATET of a binary
or continuous treatment on a continuous outcome is estimated by fitting a linear model with time and
group fixed effects. The DID and DDD estimation performed by didregress can be applied to data
comprising repeated cross-sections in which different groups of individuals are observed at each time
period.

xtdidregress estimates the ATET from observational data by DID or DDD for panel data. The
ATET of a binary or continuous treatment on a continuous outcome is estimated by fitting a linear
model with time and panel fixed effects.

Quick start
DID estimate of the ATET of treat1 on outcome y1 modeled using covariates x1 and x2, and grpvar1

and tvar fixed effects, with the treatment occurring at the grpvar1 and tvar levels
didregress (y1 x1 x2) (treat1), group(grpvar1) time(tvar)

Same as above, but compute wild cluster–bootstrap p-values and confidence intervals with grpvar1
as the clustering variable

didregress (y1 x1 x2) (treat1), group(grpvar1) time(tvar) ///
wildbootstrap

Aggregate data at the grpvar1 and tvar levels to estimate the ATET

didregress (y1 x1 x2) (treat1), group(grpvar1) time(tvar) ///
aggregate(standard)

Same as above, but use the Donald and Lang (2007) method to compute the ATET and standard errors
didregress (y1 x1 x2) (treat1), group(grpvar1) time(tvar) ///

aggregate(dlang)

DDD estimate of the ATET of treat2 on outcome y2 modeled using covariates x1 and x2 and fixed
effects defined by two-way interactions for grpvar1, grpvar2, and tvar, with the treatment
occurring at the grpvar1, grpvar2, and tvar levels

didregress (y2 x1 x2) (treat2), group(grpvar1 grpvar2) time(tvar)

DID estimate of ATET of treat3 on outcome y3 using xtset data; y3 modeled using covariates x1
and x2, and individual (panel) and tvar fixed effects, with the treatment occurring at the grpvar1
and tvar levels

xtdidregress (y3 x1 x2) (treat3), group(grpvar1) time(tvar)
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Menu
didregress

Statistics > Causal inference/treatment effects > Continuous outcomes > Difference in differences (DID) > DID

xtdidregress

Statistics > Causal inference/treatment effects > Continuous outcomes > Difference in differences (DID) > Panel-data
DID (FE)

Syntax
DID for repeated cross-sectional data

didregress (ovar omvarlist) (tvar
[
, continuous

]
)
[

if
] [

in
] [

weight
]
,

group(groupvars)
[
time(timevar) options

]
DID for panel data

xtdidregress (ovar omvarlist) (tvar
[
, continuous

]
)
[

if
] [

in
] [

weight
]
,

group(groupvars)
[
time(timevar) options

]
ovar is the outcome of interest.

omvarlist specifies the covariates in the outcome model and may contain factor variables; see
[U] 11.4.3 Factor variables.

tvar must be a binary variable indicating observations subject to treatment or a continuous variable
measuring treatment intensity.

groupvars are categorical variables that indicate the group level at which the treatment occurs. At
least one group variable must be specified. If timevar is specified, at most two group variables
may be specified. If timevar is not specified, at most three group variables may be specified.

timevar is a time variable. It must be specified if groupvar has only one variable.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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options Description

Model
∗group(groupvars) specify group variables
‡time(timevar) specify time variable
nointeract exclude group() and time() interactions
nogteffects do not include group and time effects in the model
aggregate(aggmethod) aggregate to the levels defined by interacting groupvars and timevar
wildbootstrap

[
(wildopts)

]
compute confidence intervals and p-values with the wild bootstrap

SE/Robust

vce(vcetype) vcetype may be cluster clustvar, robust, hc2, or bootstrap

Reporting

level(#) set confidence level; default is level(95)

aequations display auxiliary-equation results
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

coeflegend display legend instead of statistics
∗group(groupvars) is required.

‡ time(timevar) is required when only one group is specified.
For xtdidregress, a panel variable must be specified using xtset; see [XT] xtset.
by, collect, and statsby are allowed; see [U] 11.1.10 Prefix commands.
fweights, aweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

aggmethod Description

standard aggregate data and fit model
dlang

[
, dlopt

]
aggregate data and fit model using Donald and Lang method

wildopts Description

errorweight(edtype) specify the error weight type edtype; default is
errorweight(rademacher)

reps(#) perform # wild bootstrap replications; default is reps(1000)

rseed(#) set random-number seed to #
blocksize(#) perform wild bootstrap in blocks of # replications

Options

� � �
Model �

group(groupvars) specifies group variables. It indicates the group level at which the treatment occurs.
groupvars may be, for example, states, counties, or hospitals. groupvars define the group levels for
which group effects are included in the model used to perform DID estimation and for which group

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/xtxtset.pdf#xtxtset
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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interactions are included in the model used to perform DDD estimation. group() also defines the
level clustering for the default cluster–robust standard errors. group() is required.

You may specify at most two group variables if you also specify a time variable in the time()
option or at most three group variables if no time variable is specified.

time(timevar) specifies the time variable. You may specify time() when one or two group variables
are specified in the group() option. time() is required when only one group variable is specified
in the group() option.

nointeract excludes groupvars and timevar interactions from being included in the model. By default,
didregress and xtdidregress include group and time interactions for your specification if
there is more than one group variable.

nogteffects specifies to not include group and time effects. By default, didregress adds group
and time dummies to the regression specification. By default, xtdidregress adds time dummies
to the fixed-effects specification.

aggregate(aggmethod) fits the model by aggregating data at the groupvars and timevar levels.
aggmethod may be either standard or dlang

[
, dlopt

]
.

standard specifies that aggregation is performed using the standard aggregation method. In this
case, a regression model is fit of the original outcome on covariates that vary within levels of
the groupvars and timevar interaction. The estimates of the group-time level effects from this
regression are used to construct a new dependent variable. These effects along with the remaining
covariates are then aggregated to the level of the of the groupvars and timevar interaction. The
final results are obtained by regressing the estimated group-time level effects on the remaining
covariates with this aggregated dataset and estimating group-level cluster–robust standard errors.

dlang
[
, dlopt

]
aggregates data using methods proposed by Donald and Lang (2007). dlopt may

be either constant or varying.

constant requests that standard errors be estimated using the standard ordinary least-squares
method, as suggested by Donald and Lang (2007). With this method, as with the standard
aggregation method, a single regression model is fit in the first step, so the coefficient
estimates are constant across levels of the groupvars and timevar interaction.

varying specifies that the aggregation method allow for varying coefficients on the covariates.
Specifically, in this case, separate regression models of the original outcome on covariates
that vary within levels of groupvars and timevar are fit for each level of the groupvars and
timevar interaction. Thus, this method allows the coefficients on these variables to vary.
The constant from each of these regressions forms the new dependent variable. The final
regression and standard error computations are equivalent to those used by the constant
method.

wildbootstrap
[
(wildopts)

]
computes confidence intervals and p-values with the wild bootstrap.

The wild bootstrap is constructed imposing the null hypothesis that the ATET is 0; that is, it
is a restricted wild bootstrap. Confidence intervals are computed separately from the p-values.
The bounds of the confidence interval are computed using a bisection optimization algorithm
described in Methods and formulas. wildopts are errorweight(edtype), reps(#), rseed(#),
and blocksize(#).

errorweight(edtype) defines the error weight used to draw residuals from the wild bootstrap.
edtype is one of rademacher (the default), mammen, webb, normal, or gamma.

rademacher multiplies the residuals at each bootstrap replication with a randomly generated
variable that takes the value of 1 with probability 0.5 and the value of −1 with probability
0.5. errorweight(rademacher) is the default.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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mammen multiplies the residuals at each bootstrap replication with a randomly generated variable
that takes the value of 1−φ with probability φ/

√
5 and φ otherwise, where φ = (1+

√
5)/2.

webb multiplies the residuals at each bootstrap replication with a randomly generated variable
that takes the values −

√
3/2, −

√
2/2, −

√
1/2,

√
1/2,

√
2/2, and

√
3/2, each with

probability 1/6.

normal multiplies the residuals at each bootstrap replication with a randomly generated normal
distribution variable with the first four moments given by 0, 1, 0, and 3.

gamma multiplies the residuals at each bootstrap replication with a randomly generated gamma
distribution variable with shape parameter 4 and scale parameter 1/2.

reps(#) performs # wild bootstrap replications. The default is reps(1000).

rseed(#) sets the random-number seed to #.

blocksize(#) specifies that the wild bootstrap be performed in blocks, with # replications per block.
The wild bootstrap computation requires a matrix with dimensions (# groups)×(# replications).
If this is too large, you can reduce the matrix to (# groups) × (# block size) and loop
(# replications)/(# block size) times. When the same random seed is set, using a different
block size does not change the numerical results; it only modifies the computation method. The
block size must be less than or equal to the number of bootstrap replications.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that allow for
intragroup correlation (cluster clustvar), that are robust to some kinds of misspecification
(robust), that are bias-corrected cluster–robust using the degrees-of-freedom adjustment proposed
by Bell and McCaffrey (2002) (hc2), and that use bootstrap sampling done at the group level
(bootstrap); see [R] vce option.

vce(cluster clustvar), the default, uses the first variable specified in the group(groupvars)
option.

vce(hc2) specifies bias-corrected cluster–robust standard errors with the degrees-of-freedom
adjustment proposed by Bell and McCaffrey (2002). As with vce(hc2) in [R] regress, the
residuals are rescaled by the projection matrix to improve the small-sample properties of the
variance estimates. For more details, see Methods and formulas.

Specifying vce(robust) is equivalent to specifying vce(cluster clustvar), where clustvar is
the first variable specified in the group(groupvars) option.

� � �
Reporting �

level(#); see [R] Estimation options.

aequations specifies that the results for the outcome-model parameters be displayed. By default,
the results for these auxiliary parameters are not displayed.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

The following option is available with didregress and xtdidregress but is not shown in the
dialog box:

coeflegend; see [R] Estimation options.

https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/rregress.pdf#rregress
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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Remarks and examples stata.com

Remarks are presented under the following headings:

Introduction
DID estimation
Graphical diagnostics and tests
Specifying a 2-by-2 DID
Standard error considerations
Default cluster–robust standard errors

Introduction

DID is one of the most venerable causal inference methods used by researchers. DID estimates the
average treatment effect on the treated group (ATET).

To obtain the ATET using DID, one must compute the difference of the mean outcome for the treatment
and the control groups before and after the treatment. This eliminates time-invariant unobservable
group characteristics that confound the ATET; however, this is not enough to identify an effect. There
may be time-varying unobservable confounders with an effect on the treatment group even after we
control for time-invariant unobservable group characteristics. DID eliminates time-varying confounders
by including a control group that is subject to the same time-varying confounders as the treatment
group.

The ATET is then consistently estimated, differencing the mean outcome for the treatment and
control groups over time to eliminate time-invariant unobservable characteristics and also differencing
the mean outcome of these groups to eliminate time-varying unobservable effects common to both
groups. These two differences give the DID method its name and highlight its intuitive appeal. More
appealing is the fact that you can get the effect of interest, the ATET, from one parameter in a linear
regression.

Below, we illustrate how to use didregress and xtdidregress. For more information about
the methods used below, see [CAUSAL] DID intro. For general discussions of the DID methodology,
see Angrist and Pischke (2009, 2015), Blundell and Dias (2009), Imbens and Wooldridge (2009),
Lechner (2011), Abadie and Cattaneo (2018), and Wing, Simon, and Bello-Gomez (2018) and the
references therein.

DID estimation

Example 1: Fitting a DID model

A health provider is interested in studying the effect of a new hospital admissions procedure on
the satisfaction of patients. The provider has monthly data on patients from January to July. The new
admissions procedure was implemented in April by hospitals that were under new management. Of
the 46 hospitals in the study, 18 implemented the new procedure.

The health provider will use a DID regression to analyze the effect of the new admissions procedure
on the hospitals that participated in the program. The outcome of interest is patient satisfaction,
satis, which is recorded as an average of the responses to a set of four questions asked to patients.
satis may take values between 0 and 10, where 10 is the greatest possible level of satisfaction and 0
is utter disappointment. The procedure variable marks the treated observations; it is 1 if a surveyed
individual was admitted to the hospital using the new procedure after March and 0 otherwise. To get
the ATET on the outcome satis, we type

. didregress (satis) (procedure), group(hospital) time(month)

http://stata.com
https://www.stata.com/manuals/causaldidintro.pdf#causalDIDintro
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The first set of parentheses is used to specify the outcome of interest followed by the covariates
in the model. In this case, there are no covariates, just the outcome, satis. The second set of
parentheses is used to specify the binary variable that indicates the treated observations, procedure.
The group() and time() options are used to construct group and time fixed effects that are included
in the model. The variable specified in group() is also important because it defines the level of
clustering for the default cluster–robust standard errors; in this case, we cluster at the hospital level.
The results from this command are as follows:

. use https://www.stata-press.com/data/r18/hospdd
(Artificial hospital admission procedure data)

. didregress (satis) (procedure), group(hospital) time(month)

Treatment and time information

Time variable: month
Control: procedure = 0
Treatment: procedure = 1

Control Treatment

Group
hospital 28 18

Time
Minimum 1 4
Maximum 1 4

Difference-in-differences regression Number of obs = 7,368
Data type: Repeated cross-sectional

(Std. err. adjusted for 46 clusters in hospital)

Robust
satis Coefficient std. err. t P>|t| [95% conf. interval]

ATET
procedure

(New
vs

Old) .8479879 .0321121 26.41 0.000 .7833108 .912665

Note: ATET estimate adjusted for group effects and time effects.

The first table gives information about the treated and control groups and about treatment timing.
The first segment with the title Group tells us the number of treated and control hospitals: 28 hospitals
were using the old procedure and 18 hospitals were using the new one. The second segment of the
table gives information about the first time we observe hospitals in the control group and the first
time we observe the treatment (the new admission procedure) for hospitals in the treatment group.
In this example, all hospitals that adopted the new procedure did so in April, time period 4. If some
hospitals had adopted the policy later, the minimum and maximum time of first treatment would
differ.

The ATET is 0.85, almost a 1-point increase in satisfaction relative to the case where none of the
treated hospitals enacted the new procedure. In other words, if the hospitals that implemented the
new admission procedure had not done so, their satisfaction ratings would be lower by almost one
point on average.

We now explore whether the trajectories of satis are parallel for the control and treatment groups
prior to the date when the new procedure was implemented. We are checking what is known as the
parallel-trends or common-trends assumption, an important assumption of the DID model, as discussed
in [CAUSAL] DID intro. A visual diagnostic of this assumption can be obtained by plotting the means

https://www.stata.com/manuals/causaldidintro.pdf#causalDIDintro
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of the outcome over time for both groups or by visualizing the results of the linear-trends model. We
can perform both of these diagnostic checks by using estat trendplots. To obtain figure 1 below,
we type

. estat trendplots
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Figure 1.

The graph seems to indicate that the parallel-trends assumption is satisfied. Prior to the policy
implementation, treated and control hospitals followed a parallel path.

We could also perform a test to see if the trajectories are parallel by augmenting our original model
to include variables representing time trends before and after the treatment for both groups of hospitals.
The linear-trends model estimates a coefficient for the differences in linear trends prior to treatment,
and if that coefficient is 0, the linear pretreatment trends are parallel. Otherwise, identification of the
ATET may become questionable.

We can perform this test by using estat ptrends:

. estat ptrends

Parallel-trends test (pretreatment time period)
H0: Linear trends are parallel

F(1, 45) = 0.55
Prob > F = 0.4615

We do not have evidence to reject the null hypothesis of parallel trends in this case. Both the test
and the graphical analysis support the parallel-trends assumption and, therefore, our ATET estimate.

Example 2: Fitting a DDD model

The results in example 1 could come into question if they could be the consequence of other
unobserved variables rather than the consequence of the new hospital admissions procedure. The
health provider administrators believe that responses to the survey are related to the frequency of
individuals’ hospital visits. The patients may have unobserved characteristics that affect both how
frequently they visit the hospital and how they feel about the admissions procedure. In other words,
there might be unobserved characteristics that confound the effect of the new hospital admissions
procedure. The administrators decide to obtain the ATET by using a DDD model. They want to estimate
the average treatment effect on patients who visit the hospital with high or very high frequencies.
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To do this, we will first create a new variable hightrt to be our new treatment identifier.
Observations are now marked as treated (hightrt = 1) if hospital visit frequency by an individual
is high or very high (frequency = 3 or 4) and if the hospital implemented the new admissions
procedure in April.

. generate hightrt = procedure==1 & (frequency==3 | frequency==4)

. label define trt 0 "Untreated" 1 "Treated"

. label values hightrt trt

The DDD model will incorporate both hospital and frequency of usage effects as well as their
interaction with time effects. To fit the model, we incorporate a new group variable, frequency:

. didregress (satis) (hightrt), group(hospital frequency) time(month)

(output omitted )
Treatment and time information

Time variable: month
Control: hightrt = 0
Treatment: hightrt = 1

Control Treatment

Group
hospital 28 18

frequency 2 2

Time
Minimum 1 4
Maximum 1 4

Triple-differences regression Number of obs = 7,368
Data type: Repeated cross-sectional

(Std. err. adjusted for 46 clusters in hospital)

Robust
satis Coefficient std. err. t P>|t| [95% conf. interval]

ATET
hightrt

(Treated
vs

Untreated) .764154 .0402603 18.98 0.000 .6830655 .8452425

Note: ATET estimate adjusted for group effects, time effects, and group- and
time-effects interactions.

The omitted output after the command corresponds to the factor-variable interactions that include the
base categories. This is common when you fit DDD models that by default include group interactions
and group and time interactions.

The first table above has information on the second group variable, frequency, for which low and
medium frequencies are controls and high and very high frequencies are treated. The second table
shows that the ATET is now smaller, but the policies still increase satisfaction.
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Example 3: DID for panel-data model

Moser and Voena (2012) look at the effect of compulsory licensing on domestic inventions.
Compulsory licensing allows firms in developing countries to produce foreign inventions without
the consent of foreign patent owners. Having access to foreign technology may discourage domestic
inventions, but it could also enhance local production.

Moser and Voena consider legislation that occurred during World War I called Trading With the
Enemy Act (TWEA). By 1919, German-owned patents were systematically licensed to U.S. companies.
In Moser and Voena (2012), the treated observations correspond to a subclass in the chemical industry
that was granted at least one of the TWEA patents after 1918, as reported by United States Patent
and Trademark Office (USPTO). A subclass is a group of firms in an industry that employ similar
technologies, as defined by the USPTO.

The outcome of interest is the number of patents granted to inventors from the U.S. in that
subclass, uspatents. This measures domestic innovation. Moser and Voena also include the number
of non-TWEA patents granted to the subclass that were from foreign inventors, fpatents. fpatents
measure innovation in the subclass that is not from U.S. inventors. We observe the same subclasses
at each point in time from 1875 to 1939. Thus, we have a panel dataset.

To fit the model, we first xtset our data at the subclass level, classid:

. use https://www.stata-press.com/data/r18/patents
(Excerpt from Moser and Voena (2012))

. xtset classid

Panel variable: classid (balanced)

Below, we fit a DID model for the number of patents granted to U.S. inventors in a subclass,
controlling for the number of non-TWEA patents granted to foreign inventors. The treatment indicator
gotpatent is 1 if the subclass received a TWEA patent after 1918 and is 0 otherwise. The model
includes year fixed effects and subclass fixed effects.
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. xtdidregress (uspatents fpatents) (gotpatent), group(classid) time(year)

Treatment and time information

Time variable: year
Control: gotpatent = 0
Treatment: gotpatent = 1

Control Treatment

Group
classid 6912 336

Time
Minimum 1875 1919
Maximum 1875 1919

Difference-in-differences regression Number of obs = 471,120
Data type: Longitudinal

(Std. err. adjusted for 7,248 clusters in classid)

Robust
uspatents Coefficient std. err. t P>|t| [95% conf. interval]

ATET
gotpatent
(Patent

vs
None) .150516 .0356081 4.23 0.000 .0807137 .2203183

Note: ATET estimate adjusted for covariates, panel effects, and time effects.

The ATET is 0.15, which means that in subclasses that were awarded one or more patents, domestic
inventors produced an average of 0.15 additional patents after the TWEA compared with the scenario
in which no patents are awarded for those subclasses.

Graphical diagnostics and tests

Example 4: DID diagnostic graphs and tests

As illustrated in example 1, when conducting a DID study, it is common to complement the
regression analysis with graphical diagnostics and tests that provide evidence of whether an estimated
effect can be given a causal interpretation. As discussed in [CAUSAL] DID intro, we would like to
observe that the treated and control groups had mean outcomes that evolved similarly to each other
over time prior to the treatment. This is usually referred to as a parallel-trends or common-trends
assumption. We would also like to ascertain that neither the control nor the treatment group changed
their behavior in anticipation of the treatment. This is assessed using a Granger-type test.

Below, we use simulated data to illustrate the diagnostics and tests available after didregress and
xtdidregress. Simulated data helps us know exactly what we should expect and how to interpret
it.

Suppose we have a panel dataset with 10 time points, denoted by t1, where a treatment has taken
place between t1 = 5 and t1 = 6. We have a set of covariates, x1 and x2, and an outcome, y1.
The outcome could be something like patient satisfaction, as in example 1, or the number of patents
filed by U.S. inventors, as in example 3.

https://www.stata.com/manuals/causaldidintro.pdf#causalDIDintro
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We fit the model:

. use https://www.stata-press.com/data/r18/parallelt
(Simulated data to test parallel-trends assumption)

. xtset id1

Panel variable: id1 (unbalanced)

. xtdidregress (y1 c.x1##c.x2) (treated1), group(id1) time(t1)

Treatment and time information

Time variable: t1
Control: treated1 = 0
Treatment: treated1 = 1

Control Treatment

Group
id1 102 98

Time
Minimum 1 6
Maximum 1 6

Difference-in-differences regression Number of obs = 2,000
Data type: Longitudinal

(Std. err. adjusted for 200 clusters in id1)

Robust
y1 Coefficient std. err. t P>|t| [95% conf. interval]

ATET
treated1

(Treated
vs

Untreated) .5069426 .0220218 23.02 0.000 .4635166 .5503686

Note: ATET estimate adjusted for covariates, panel effects, and time effects.

Is this result valid? We can first explore the assumption of parallel trends graphically, comparing the
trajectories of the outcome variable for the control and treatment groups prior to the date of treatment.
We can check this assumption by plotting the means of the outcome over time for both groups or by
visualizing the results of the linear-trends model. We can perform both of these diagnostic checks by
using estat trendplots.
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. estat trendplots
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Figure 2.

Looking at the plotted observed means (left side of figure 2), the outcome trajectories in the control
and treatment groups prior to the treatment are somewhat different. While we can observe declining
trends in both groups, it looks as though the decline is progressing more rapidly in the control group,
especially between time points three and five. We can get a clearer picture of this by looking at the
results of the linear-trends model on the right side of figure 2. The group-level trajectories are shown
with respect to a common reference point, t1 = 1, which makes it easy to discern whether they are
parallel. In this case, we can see that they are not. The differences between the treatment and control
groups are growing larger over time up to t1 = 5 (posttreatment time periods are not relevant when
assessing the parallel-trends assumption). Judging by figure 2 alone, we should be concerned about
whether the parallel-trends assumption holds for our effect estimate.

A more formal way to assess whether the pretreatment trajectories are parallel is to perform a
test on the linear-trends model coefficient that captures the differences in the trends between treated
and controls. If the pretreatment trends are actually linear in both groups, then this coefficient will
be 0 because there are no differences in the slopes between the two groups. Thus, by testing this
coefficient against 0, we have a test of the null hypothesis that the pretreatment period trajectories
are parallel. We can perform this test by using estat ptrends:

. estat ptrends

Parallel-trends test (pretreatment time period)
H0: Linear trends are parallel

F(1, 199) = 39.97
Prob > F = 0.0000

We reject the null hypothesis of the linear trends being parallel.

We can also think of nonparallel as an indication of an anticipatory treatment effect. We saw that
the trends were not parallel before the treatment took place, which could indicate a treatment effect
even before the treatment is implemented. Thus, another way to state our parallel-trends assumption
is that there should be no treatment effect in anticipation of the treatment. To test this assumption, we
could fit a Granger-type causality model where we augment our model with dummies that indicate
future treatment status for each time period prior to the treatment. A joint test of the coefficients on
these dummies against 0 can be used as a test of the null hypothesis that no anticipatory effects have
taken place. We can perform this test by using estat granger:
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. estat granger

Granger causality test
H0: No effect in anticipation of treatment

F(4, 199) = 18.17
Prob > F = 0.0000

The result suggests that we reject the null hypothesis of no anticipatory effects prior to treatment.
Thus, based on the results of both estat ptrends and estat granger, we conclude that we should
be concerned about identification of ATET.

Notice that the parallel-trends F test consumes only 1 numerator degree of freedom, while the
Granger causality F test consumes 4. That is because we have five pretreatment time periods and thus
four coefficients to test. In this example, both tests would be appropriate, but the parallel-trends test
has higher statistical power. However, as we will see below, the less-powered Granger test is more
flexible and can be used in situations where the differences between treatment and control groups are
nonlinear in pretreatment periods.

Example 5: DID diagnostics and tests with nonlinear mean outcome differences

We now look at a different outcome and policy using the same simulated dataset as in example 4.
We fit the same model but with the new variables:

. xtset id2

Panel variable: id2 (balanced)

. xtdidregress (y2 c.z1##c.z2) (treated2), group(id2) time(t2)

Treatment and time information

Time variable: t2
Control: treated2 = 0
Treatment: treated2 = 1

Control Treatment

Group
id2 480 520

Time
Minimum 1 6
Maximum 1 6

Difference-in-differences regression Number of obs = 10,000
Data type: Longitudinal

(Std. err. adjusted for 1,000 clusters in id2)

Robust
y2 Coefficient std. err. t P>|t| [95% conf. interval]

ATET
treated2

(Treated
vs

Untreated) .2636651 .0097188 27.13 0.000 .2445936 .2827367

Note: ATET estimate adjusted for covariates, panel effects, and time effects.
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Here is the diagnostic plot produced by estat trendplots:
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Figure 3.

Inspecting the observed means over the pretreatment time periods, we can see that no considerable
change has occurred in the outcome of the treatment group over time. For the control group, on the
other hand, we observe a somewhat U-shaped trajectory in advance of the treatment. However, if
we look at the plot from the linear-trends model, both trajectories appear somewhat U-shaped, and
the trends appear to be almost parallel. Indeed, if we use estat ptrends, we fail to reject the null
hypothesis of parallel trends:

. estat ptrends

Parallel-trends test (pretreatment time period)
H0: Linear trends are parallel

F(1, 999) = 2.13
Prob > F = 0.1446

The Granger causality test can handle cases in which the trajectories are nonlinear and for which
estat ptrends will fail to reject the null hypothesis when it should:

. estat granger

Granger causality test
H0: No effect in anticipation of treatment

F(4, 999) = 9.86
Prob > F = 0.0000

We correctly reject the null hypothesis of no effect in anticipation of the treatment.
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Example 6: Diagnostics and tests when parallel-trends assumption is satisfied

Finally, we look at a case where the assumption of parallel trends is satisfied. Again, we use the
simulated dataset from example 4. We fit the following model:

. xtset id3

Panel variable: id3 (balanced)

. xtdidregress (y3 c.w1##c.w2) (treated3), group(id3) time(t3)

Treatment and time information

Time variable: t3
Control: treated3 = 0
Treatment: treated3 = 1

Control Treatment

Group
id3 502 498

Time
Minimum 1 6
Maximum 1 6

Difference-in-differences regression Number of obs = 10,000
Data type: Longitudinal

(Std. err. adjusted for 1,000 clusters in id3)

Robust
y3 Coefficient std. err. t P>|t| [95% conf. interval]

ATET
treated3

(Treated
vs

Untreated) .4996049 .0102458 48.76 0.000 .4794991 .5197107

Note: ATET estimate adjusted for covariates, panel effects, and time effects.

Using estat trendplots, we obtain
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This time, the trajectories of the observed means appear to be parallel before the treatment occurs.
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Both follow a declining trend up to the last pretreatment time point. Looking at the results from
the linear-trends model, the pretreatment trajectories appear to be the same. Using estat ptrends
yields the following result:

. estat ptrends

Parallel-trends test (pretreatment time period)
H0: Linear trends are parallel

F(1, 999) = 0.00
Prob > F = 0.9688

We cannot reject the null hypothesis of parallel linear trends. Likewise, using estat granger,
we do not reject the null hypothesis of the absence of anticipatory effects:

. estat granger

Granger causality test
H0: No effect in anticipation of treatment

F(4, 999) = 0.52
Prob > F = 0.7220

Example 7: Time-specific treatment effects

As we have seen in the previous examples, we can use estat granger to test for treatment
effects occurring prior to the point at which treatment has been administered. Beyond the particular
purpose of this test, however, it can be instructive to inspect not only pretreatment effects but also
posttreatment effects that are allowed to vary over time. That is, rather than relying on a single
treatment-effect estimate that is assumed to be constant over time, it can be instructive to check
whether treatment effects change as time unfolds. We can fit a model that includes lags and leads of
an indicator for the time period in which the treatment began. The coefficients on the lags can be used
to assess whether there is any change in the treatment effect during posttreatment time periods. We
can use the postestimation command estat grangerplot to fit such a model and plot the resulting
coefficients. This model is also sometimes referred to as an event study model in the literature; see
Schmidheiny and Siegloch (2019) and Clarke and Tapia-Schythe (2021).
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We start by fitting the following DID model:

. use https://www.stata-press.com/data/r18/hospdd
(Artificial hospital admission procedure data)

. didregress (satis) (procedure), group(hospital) time(month)

Treatment and time information

Time variable: month
Control: procedure = 0
Treatment: procedure = 1

Control Treatment

Group
hospital 28 18

Time
Minimum 1 4
Maximum 1 4

Difference-in-differences regression Number of obs = 7,368
Data type: Repeated cross-sectional

(Std. err. adjusted for 46 clusters in hospital)

Robust
satis Coefficient std. err. t P>|t| [95% conf. interval]

ATET
procedure

(New
vs

Old) .8479879 .0321121 26.41 0.000 .7833108 .912665

Note: ATET estimate adjusted for group effects and time effects.

We can now simply use estat grangerplot to plot pre- and postintervention treatment effects:

. estat grangerplot

This yields the following graph:
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By default, estat grangerplot uses all available leads and lags, and in this case, we have
estimates for two leads and four lags. For identification purposes, we must omit one of the indicator
variables. By default, estat grangerplot omits the first lead, which sets the coefficient to 0
that corresponds to the time period prior to treatment administration. Thus, the plotted effects are
normalized with respect to that time period. If we wanted, we could change the baseline period by
using the baseline() option. We can see that the coefficients on the leads that correspond to the first
two months are both close to 0, which shows that there are no substantial effects in the pretreatment
era. The posttreatment effects for months 4 to 7 range between around 0.8 and 0.9. When we account
for the uncertainty of these estimates, as indicated by the plotted 95% confidence intervals, it appears
as though the treatment effects are rather stable over time in this example.

Rather than just plotting the coefficients, we could be interested in looking at a table with the
numeric results. We can obtain the underlying results by specifying the verbose option. We are also
using the nodraw option to see only the numeric results and not draw the graph again:

. estat grangerplot, nodraw verbose

Linear regression, absorbing indicators Number of obs = 7,368
Absorbed variable: hospital No. of categories = 46

F(12, 45) = 94.68
Prob > F = 0.0000
R-squared = 0.5334
Adj R-squared = 0.5298
Root MSE = 0.7240

(Std. err. adjusted for 46 clusters in hospital)

Robust
satis Coefficient std. err. t P>|t| [95% conf. interval]

month
February -.007044 .0263953 -0.27 0.791 -.0602068 .0461188

March .0335696 .0255925 1.31 0.196 -.0179764 .0851156
April .0187852 .0250623 0.75 0.457 -.0316927 .0692632

May -.0211152 .0269569 -0.78 0.438 -.0754092 .0331788
June .0091208 .0179016 0.51 0.613 -.026935 .0451766
July -.0203444 .0306266 -0.66 0.510 -.0820296 .0413407

_lead3 .027897 .035569 0.78 0.437 -.0437426 .0995367
_lead2 .0217322 .0380076 0.57 0.570 -.054819 .0982833
_lag0 .8228153 .0494933 16.62 0.000 .7231307 .9224999
_lag1 .9040498 .0469682 19.25 0.000 .8094511 .9986486
_lag2 .844724 .0608006 13.89 0.000 .7222654 .9671826
_lag3 .8978885 .0511588 17.55 0.000 .7948494 1.000928
_cons 3.433074 .0198449 173.00 0.000 3.393104 3.473044

The coefficients on the variables that begin with lead and lag are the ones that are plotted in
our graph.

As an interesting side note, notice that our original DID model is a special case of the model that
we fit with estat grangerplot. Specifically, it is the model that includes only a single lead and
no lags. To reproduce our original DID result, we can use the nleads() and nlags() options:
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. estat grangerplot, nodraw verbose nleads(1) nlags(0)

Linear regression, absorbing indicators Number of obs = 7,368
Absorbed variable: hospital No. of categories = 46

F(7, 45) = 138.73
Prob > F = 0.0000
R-squared = 0.5333
Adj R-squared = 0.5299
Root MSE = 0.7238

(Std. err. adjusted for 46 clusters in hospital)

Robust
satis Coefficient std. err. t P>|t| [95% conf. interval]

month
February -.0096077 .0184317 -0.52 0.605 -.0467311 .0275158

March .0219686 .018251 1.20 0.235 -.0147907 .0587279
April -.0032839 .0221028 -0.15 0.883 -.0478013 .0412335

May -.0094027 .0232399 -0.40 0.688 -.0562103 .0374048
June -.0038375 .0190634 -0.20 0.841 -.0422332 .0345581
July -.0111941 .0230029 -0.49 0.629 -.0575244 .0351361

_lag0 .8479879 .0321121 26.41 0.000 .7833108 .912665
_cons 3.444675 .011354 303.39 0.000 3.421807 3.467543

As we can see, the results match the ones we obtained earlier with didregress.

Notice also that the model used by estat granger is a special case as well; it is the model with
all available leads and no lags. To re-create the test result from estat granger, we use the post
option to store the results:

. estat grangerplot, nodraw verbose post nlags(0)

Linear regression, absorbing indicators Number of obs = 7,368
Absorbed variable: hospital No. of categories = 46

F(9, 45) = 113.78
Prob > F = 0.0000
R-squared = 0.5333
Adj R-squared = 0.5298
Root MSE = 0.7239

(Std. err. adjusted for 46 clusters in hospital)

Robust
satis Coefficient std. err. t P>|t| [95% conf. interval]

month
February -.007044 .0263899 -0.27 0.791 -.0601959 .0461079

March .0335696 .0255873 1.31 0.196 -.0179658 .085105
April .0002573 .0243547 0.01 0.992 -.0487955 .0493101

May -.0058616 .0249982 -0.23 0.816 -.0562105 .0444874
June -.0002964 .0199414 -0.01 0.988 -.0404605 .0398678
July -.007653 .0251828 -0.30 0.763 -.0583738 .0430679

_lead3 .027897 .0355617 0.78 0.437 -.043728 .099522
_lead2 .0217322 .0379998 0.57 0.570 -.0548033 .0982676
_lag0 .8673694 .0424929 20.41 0.000 .7817844 .9529544
_cons 3.433074 .0198408 173.03 0.000 3.393113 3.473035
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We can now test whether the coefficients on the leads are jointly 0:

. test _lead3 _lead2

( 1) _lead3 = 0
( 2) _lead2 = 0

F( 2, 45) = 0.33
Prob > F = 0.7239

The test result indicates that we cannot reject the null hypothesis that the coefficients are jointly 0.
We fit our original model again to compare the results with the ones from estat granger:

. quietly didregress (satis) (procedure), group(hospital) time(month)

. estat granger

Granger causality test
H0: No effect in anticipation of treatment

F(2, 45) = 0.33
Prob > F = 0.7239

As we can see, the results are the same. Using estat grangerplot followed by test allows us
to perform additional tests of lags and leads that are not available through estat granger.

Specifying a 2-by-2 DID

Example 8: Specifying a 2-by-2 DID

didregress and xtdidregress by default fit generalized DID models, also known as two-
way fixed-effects models. Yet DID models sometimes are viewed from a two-period and two-group
perspective, a 2-by-2 DID. You can also fit a 2-by-2 DID using didregress and xtdidregress. In
fact, you will get equivalent results using a 2-by-2 DID or a generalized DID. The generalized DID is
the default because it allows for a wider range of specifications that would not be feasible within the
2-by-2 framework, such as cases when the intervention occurs at different points in time.

In example 1, we got the ATET for hospitals that instituted a new admissions procedure. We typed
the following:

. use https://www.stata-press.com/data/r18/hospdd

. didregress (satis) (procedure), group(hospital) time(month)

This implies that we are regressing satis on procedure and indicators for hospitals and for months.
The indicators are created and added as regressors to our model by default. To fit a 2-by-2 model,
we need to omit the hospital and month indicators and instead add an indicator for the period after
treatment and an indicator for groups that are treated.

This is what we do below. We create the treatment-group indicator based on the fact that the
variable procedure is 1 for individuals that experienced the new procedure and 0 otherwise; this
variable identifies treated hospitals. We create the posttreatment indicator based on the fact that the
new procedures are established after March, which has a value of 3 in the data.

. bysort hospital: egen treated = max(procedure)

. generate post = month>3
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We now fit
. didregress (satis i.treated i.post) (procedure), nogteffects
> group(hospital) time(month)

Treatment and time information

Time variable: month
Control: procedure = 0
Treatment: procedure = 1

Control Treatment

Group
hospital 28 18

Time
Minimum 1 4
Maximum 1 4

Difference-in-differences regression Number of obs = 7,368
Data type: Repeated cross-sectional

(Std. err. adjusted for 46 clusters in hospital)

Robust
satis Coefficient std. err. t P>|t| [95% conf. interval]

ATET
procedure

(New
vs

Old) .8479879 .0320051 26.50 0.000 .7835263 .9124494

Note: ATET estimate adjusted for covariates.

We add the new indicators to our list of covariates and use the nogteffects option to exclude
the group and time indicators that were included by default.

The point estimates are identical. What changes are the standard errors. They change because we
have a different number of regressors.

Standard error considerations

Example 9: Standard errors and data aggregation

In example 3, we had 336 treated subclasses and 7,248 subclasses in total. However, many studies
face the challenge of having very few elements per group. In fact, sometimes the data analyzed consist
of only two groups—the treatment group in which treatment is administered to members of the group
and the controls group in which no treatment is administered. Think, for example, of an analysis at
the state level where one state is treated and one state is controlled. As discussed in [CAUSAL] DID
intro, these scenarios with few elements pose a challenge for inference. For a good discussion on
these issues, see MacKinnon (2019).

didregress and xtdidregress provide alternatives in such cases. One alternative is to compute
standard errors by using the wild cluste–bootstrap. Another alternative is to use bias-corrected clustered
standard errors with the degrees-of-freedom adjustment proposed by Bell and McCaffrey (2002). A
final alternative is to aggregate your data and then compute effects and standard errors such as
proposed by Donald and Lang (2007) or use bias-corrected standard errors.

https://www.stata.com/manuals/causaldidintro.pdf#causalDIDintro
https://www.stata.com/manuals/causaldidintro.pdf#causalDIDintro
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Below, we explore these options using simulated data. We created a dataset with 2,000 individuals
and five time periods. The treatment occurs at the county level and there are six counties. Two of
the counties, county 1 and county 2, receive the treatment and the remaining four counties do not.
The true value of the ATET is −1.0. As we see below, the groups are unbalanced.

. use https://www.stata-press.com/data/r18/smallg
(Simulated data with a small number of groups)

. tab county

County Freq. Percent Cum.

1 715 7.15 7.15
2 2,570 25.70 32.85
3 3,410 34.10 66.95
4 2,285 22.85 89.80
5 920 9.20 99.00
6 100 1.00 100.00

Total 10,000 100.00

First, we fit the model using the default standard errors, which perform well with many balanced
groups but not necessarily well with data like these. We compare the other results with these results.

. didregress (outcome x i.b) (treated), group(county) time(year)

Treatment and time information

Time variable: year
Control: treated = 0
Treatment: treated = 1

Control Treatment

Group
county 4 2

Time
Minimum 2011 2013
Maximum 2011 2013

Difference-in-differences regression Number of obs = 10,000
Data type: Repeated cross-sectional

(Std. err. adjusted for 6 clusters in county)

Robust
outcome Coefficient std. err. t P>|t| [95% conf. interval]

ATET
treated

(Treated
vs

Untreated) -.9394987 .0884134 -10.63 0.000 -1.166773 -.7122247

Note: ATET estimate adjusted for covariates, group effects, and time effects.

For this draw, the point estimates are reasonably close to the true value of −1.0, and the true
values are contained inside the confidence interval.

Next, we use the wild cluster–bootstrap. For a good introduction to the methodology, see Cameron,
Gelbach, and Miller (2008), MacKinnon and Webb (2018), and Roodman et al. (2019). The wild
cluster–bootstrap works well in scenarios like the one above, where there are few groups.
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We use the wild cluster bootstrap to construct p-values and confidence intervals, imposing the null
hypothesis that the ATET is 0. We describe both computations in Methods and formulas. Here are the
results:

. didregress (outcome x i.b) (treated), group(county) time(year)
> wildbootstrap(rseed(123) errorweight(webb))

Performing 1,000 replications for p-value for constraint
treated = 0 ...

Computing confidence interval for treated

Lower bound: .........10.........20...... done (26)
note: lower-bound CI achieved F(-1.25) = 0.0240, but target is F(x) = .025.
note: the sorted bootstrap t statistics have at least two tied values

adjacent to the t statistic under the null; this prevents the CI bound
from converging to the target.

Upper bound: ...... done (6)
Treatment and time information

Time variable: year
Control: treated = 0
Treatment: treated = 1

Control Treatment

Group
county 4 2

Time
Minimum 2011 2013
Maximum 2011 2013

DID with wild-cluster bootstrap inference Number of obs = 10,000
Replications = 1,000

Data type: Repeated cross-sectional
Error weight: webb

outcome Coefficient t P>|t| [95.10% conf. interval]

ATET
treated

(Treated vs Untreated) -.9394987 -10.63 0.020 -1.248532 -.5621484

Note: 95.10% confidence interval is wider than requested.
Note: ATET estimate adjusted for covariates, group effects, and time effects.

Above, we first see the iterations used to find the confidence interval lower bound and upper
bound. The optimization algorithm sometimes converges to a level that is below the test size. In such
cases, the confidence interval is conservative. In the example above, instead of a 95% confidence
interval, you obtain a 95.1% confidence interval. If there are t statistics that have exactly the same
value across bootstrap replications, the algorithm will not solve exactly for the requested confidence
level. We also use errorweight() with error weight webb to compute the wild bootstrap. This is
best in cases with less than 10 groups, as suggested by Roodman et al. (2019). The results from the
wild bootstrap suggest more uncertainty than the default confidence interval.

Now we look at two data aggregation methods. In both cases, data aggregation occurs in two
steps. In the first step, we regress the outcome on the set of covariates that vary at the individual,
group, and time levels. We then estimate the group–time fixed effects from this procedure to use
in a second stage as the new dependent variable. In the second stage, we aggregate the remaining
covariates and the new dependent variable at the group and time levels and run a regression. This
aggregation strategy is described in more detail in Bertrand, Duflo, and Mullainathan (2004), Donald
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and Lang (2007), and Cameron and Miller (2015). We also describe the aggregation methods in
Methods and formulas.

Below, we aggregate the data as described above and estimate bias-corrected standard errors by using
the degrees-of-freedom adjustment suggested by Bell and McCaffrey (2002). This method of getting
standard errors is computationally intensive, so it is well suited for cases where the dimensionality
of the problem is reduced via aggregation.

. didregress (outcome x i.b) (treated), group(county) time(year)
> aggregate(standard) vce(hc2)

Computing degrees of freedom ...

Treatment and time information

Time variable: year
Control: treated = 0
Treatment: treated = 1

Control Treatment

Group
county 4 2

Time
Minimum 2011 2013
Maximum 2011 2013

Difference-in-differences regression Number of obs = 30
No. of clusters = 6

Data type: Repeated cross-sectional
Aggregation: Standard

Robust HC2
outcome Coefficient std. err. t P>|t| [95% conf. interval]

ATET
treated

(Treated
vs

Untreated) -.9958521 .1373277 -7.25 0.017 -1.566242 -.4254624

Note: ATET estimate adjusted for covariates, group effects, and time effects.

We see that the confidence intervals are again wider than with the default standard errors. It is
also worth noticing that we went from 10,000 observations to 30. This is because we aggregated at
the county and year levels. We have six counties and five years.
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We could also aggregate our data and compute the t statistics using the degrees of freedom proposed
by Donald and Lang (2007). This gives us

. didregress (outcome x i.b) (treated), group(county) time(year)
> aggregate(dlang)

Treatment and time information

Time variable: year
Control: treated = 0
Treatment: treated = 1

Control Treatment

Group
county 4 2

Time
Minimum 2011 2013
Maximum 2011 2013

Difference-in-differences regression Number of obs = 30
Data type: Repeated cross-sectional
Aggregation: Donald--Lang

outcome Coefficient Std. err. t P>|t| [95% conf. interval]

ATET
treated

(Treated
vs

Untreated) -.9958521 .1224496 -8.13 0.000 -1.248576 -.7431287

Note: ATET estimate adjusted for covariates, group effects, and time effects.

Again, we see wider confidence intervals.

Whenever you have few elements for each group and the groups are unbalanced, as in this example,
you should be careful not to base your conclusions solely on the default cluster–robust standard
errors. As was mentioned in [CAUSAL] DID intro, you should validate your conclusions by using
one of the standard error computations suggested above.

https://www.stata.com/manuals/causaldidintro.pdf#causalDIDintro
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Default cluster–robust standard errors

Example 10: Default cluster–robust standard errors with didregress and xtdidregress

We have stated that didregress was designed to handle repeated cross-sections and xtdidregress
was designed to handle panel datasets. However, you can use xtdidregress when you have repeated
cross-sections. For instance, for the hospital dataset in example 1, you may have typed

. use https://www.stata-press.com/data/r18/hospdd
(Artificial hospital admission procedure data)

. xtset hospital

Panel variable: hospital (unbalanced)

. xtdidregress (satis) (procedure), group(hospital) time(month)

Treatment and time information

Time variable: month
Control: procedure = 0
Treatment: procedure = 1

Control Treatment

Group
hospital 28 18

Time
Minimum 1 4
Maximum 1 4

Difference-in-differences regression Number of obs = 7,368
Data type: Longitudinal

(Std. err. adjusted for 46 clusters in hospital)

Robust
satis Coefficient std. err. t P>|t| [95% conf. interval]

ATET
procedure

(New
vs

Old) .8479879 .0320138 26.49 0.000 .7835088 .9124669

Note: ATET estimate adjusted for panel effects and time effects.

You will get the same point estimate as you would get with didregress but different standard
errors. The reason is that xtdidregress with cluster–robust standard errors does not count the group
variables as regressors in the degrees-of-freedom correction used to compute standard errors. It relies
on the asymptotic theory of fixed-effects regression, where the number of group effects are expected
to grow with the sample size. Put differently, xtdidregress is using xtreg, fe to compute the
default cluster–robust standard errors. didregress uses areg, which assumes the number of groups
is fixed and counts them in the degrees-of-freedom computation.

As a practical matter, these standard errors are going to be close to each other when the number
of observations per cluster is large, as is the case for this example. As the number of observations
per cluster becomes smaller, however, the standard errors will differ more, with standard errors of
didregress tending to be larger.

Which estimator to use depends on the assumptions you would like to make about your data. If
you think your data should be treated as panel data, with the number of groups growing with the
sample size, then even if you have repeated cross-sections, you should use xtdidregress.
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More in-depth discussions about cluster–robust standard errors can be found in Cameron and
Miller (2015) and Wooldridge (2010).

Stored results
didregress stores the following in e():

Scalars
e(N) number of observations
e(N clust) number of clusters
e(tmin) minimum of first observed treatment time across groups
e(tmax) maximum of first observed treatment time across groups
e(N reps) number of bootstrap replications
e(df r) residual degrees of freedom
e(blocksize) block size used in wild bootstrap computations

Macros
e(cmd) didregress
e(cmdline) command as typed
e(depvar) name of outcome variable
e(treatment) indicator for treated observations
e(treatment type) binary or continuous
e(wtype) weight type
e(wexp) weight expression
e(wb weight) wild bootstrap error weight
e(datatype) data type
e(groupvars) group variables
e(clustvar) name of cluster variable
e(timevar) time variable
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e( contrast not ok) prediction disallowed by contrast

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators
e(group count) matrix with number of groups and treatment time
e(fwboot) wild bootstrap estimates
e(wboot) wild bootstrap statistics and constraint
e(aggmethod) aggregation method

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.
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xtdidregress stores the following in e():

Scalars
e(N) number of observations
e(N clust) number of clusters
e(tmin) minimum of first observed treatment time across groups
e(tmax) maximum of first observed treatment time across groups
e(N reps) number of bootstrap replications
e(df r) residual degrees of freedom
e(blocksize) block size used in wild bootstrap computations

Macros
e(cmd) xtdidregress
e(cmdline) command as typed
e(depvar) name of outcome variable
e(treatment) indicator for treated observations
e(treatment type) binary or continuous
e(wtype) weight type
e(wexp) weight expression
e(wb weight) wild bootstrap error weight
e(datatype) data type
e(groupvars) group variables
e(clustvar) name of cluster variable
e(panelvar) panel variable
e(timevar) time variable
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e( contrast not ok) prediction disallowed by contrast

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators
e(group count) matrix with number of groups and treatment time
e(fwboot) wild bootstrap estimates
e(wboot) wild bootstrap statistics and constraint
e(aggmethod) aggregation method

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

DID for repeated cross-sectional data
DDD model

DID and DDD models with longitudinal data
Aggregation estimators
Wild bootstrap confidence intervals and p-values
Bias-corrected clustered standard error
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DID for repeated cross-sectional data

The DID model for repeated cross-sectional data fit by didregress is given by

yist = γs + γt + zistβ +Dstδ + εist (1)

where i is the observation-level index, s is a group-level index, and t is a time-level index. For
example, we might have yearly repeated cross-sectional data for individuals living in different states;
in this case, i denotes the individual, s the state, and t the year. In (1) above, γs are group fixed
effects and γt are time fixed effects. zist are the covariates, and εist is the error term. Dst is the
treatment that varies at the group and time levels. Dst could be binary or continuous.

If yist is y in the data, then zist are z1 and z2, Dst is d, the group is state, and time is year.
To fit the model, you would type

didregress (y z1 z2) (d), group(state) time(year)

which is equivalent to typing
areg y z1 z2 i.year d, absorb(state) vce(cluster state)

The methods and formulas for this model are those of a linear regression and can be found in
Methods and formulas in [R] areg.

DDD model

The DDD model is given by

yisgt = γs + γg + γt + γsγt + γgγt + γsγg + zisgtβ +Dsgtδ + εisgt (2)

where i is the observation-level index, s and g are group-level indices, and t is a time-level index.
For example, we might have yearly repeated cross-sectional data for older and younger individuals
living in different states. In this case, i denotes the individual, s the state, g age group, and t the
year. In (2) above, γs are group s fixed effects, γg are group g fixed effects, and γt are time fixed
effects. zist are the covariates, and εisgt is the error term. Dsgt denotes the treatment that varies at
the group s, group g, and time levels. Dsgt could be binary or continuous.

Say you now want to fit a DDD, where the treatment occurs for group2 in some of the states,
state. You would type

didregress (y z1 z2) (d), group(state group2) time(year)

didregress would construct the group and time interactions in (2) and fit a linear regression.
The methods and formulas for the specification are the same as those in Methods and formulas in
[R] areg.

DID and DDD models with longitudinal data

The DID model for longitudinal data fit by xtdidregress is given by

yist = αi + γt + zistβ +Dstδ + εist (3)

where i is the observation-level index, s is a group-level index, and t is a time-level index. For
example, we might have a longitudinal dataset of individuals over time living in a given state; in this
case, i denotes the individual, s the state, and t the year. In (3) above, αi are individual fixed effects
and γt are time fixed effects. zist are the covariates, and εist is the error term. Dst denotes the
treatment that varies at the group and time levels. Dst could be binary or continuous. Individuals, i,
are assumed to be nested within the group; thus, group effects are subsumed by the individual effects.

https://www.stata.com/manuals/rareg.pdf#raregMethodsandformulas
https://www.stata.com/manuals/rareg.pdf#rareg
https://www.stata.com/manuals/rareg.pdf#raregMethodsandformulas
https://www.stata.com/manuals/rareg.pdf#rareg
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If yist is y in the data, then zist are z1 and z2, Dst is d, the group is state, time is year, and
individuals are denoted by id. To fit the model, you would type

xtset id year
xtdidregress (y z1 z2) (d), group(state) time(year)

which is equivalent to typing

xtreg y z1 z2 i.year d, fe vce(cluster state)

The methods and formulas for this model are those of a within estimator computed by xtreg,
fe and can be found in Methods and formulas in [XT] xtreg.

The DDD model is given by

yisgt = αi + γt + γtγs + γtγg + zistβ +Dstδ + εisgt

Aggregation estimators

To discuss the aggregation estimators, it is instructive to rewrite the covariate vector zist as
consisting of group and time invariant components z1st and time-, group-, and individual-varying
components z2ist. The DID model can now be expressed as

yist = γs + γt + z1stβ1 + z2istβ2 +Dstδ + εist

yist = z2istβ2 + Cst + εist (4)

Cst = γs + γt + z1stβ1 +Dstδ + νst (5)

The standard and dlang, constant aggregation methods regress yist on z2ist in (4) and then
obtain an estimate of Cst, Ĉst. After we regress yist on z2ist, we get an estimate of the group–time
effects Ĉst from yist− z2istβ̂2− ε̂ist. These effect estimates come from using predict with option
d after areg. We then aggregate the data at the s and t levels. With the aggregated data, we run a
regression of Ĉst on z1st and on Dst using group and time fixed effects in (5). The dlang method
computes the ordinary least-squares standard errors from this second stage. The standard method
uses cluster–robust standard errors clustered at the group level by default.

The dlang, varying method runs a regression for each group defined by s and t and obtains
an estimate of Cst as the set of constants for each regression. Whereas in the first case β2 was the
same vector across the sample, in this case, we will get a different estimate of the slope coefficient
for each group. The second step is the same as for dlang, constant.

Wild bootstrap confidence intervals and p-values

The wild cluster–bootstrap is a bit different from the conventional bootstrap in that it keeps the
covariates fixed and constructs the new dependent variables using the residuals from the original
regression. The wild bootstrap procedure proceeds as follows:

1. Fit a restricted model, where the ATET is constrained to be 0. In other words, imposing the
null hypothesis that the ATET is 0. Obtain the predicted values, ŷr, and residuals, ûr, from the
restricted model, where the subscript r refers to the bootstrap replicates. Also fit the unrestricted
model and compute the t statistic, t, testing the null hypothesis ATET = 0.

https://www.stata.com/manuals/xtxtreg.pdf#xtxtregMethodsandformulas
https://www.stata.com/manuals/xtxtreg.pdf#xtxtreg
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2. At each of the subsequent B − 1 bootstrap steps, compute y∗ = ŷr + ûr � (Kw), where w
is a column vector of length S, the number of clusters, containing the wild bootstrap weights,
and K is an N × S matrix with elements ki,j = 1 if observation i, i = 1, . . . , N , is in
group j and 0 otherwise. The operator � is the Hadamard product that performs elementwise
multiplication. By default, wj = 1 with probability 0.5 and wj = −1 with probability 0.5, that
is, the rademacher error weights.

Alternatively, use one of the following error weights w:

• mammen, which is 1−φ with probability φ/
√

5 and φ otherwise, where φ = (1 +
√

5)/2.

• webb, which takes the values −
√

3/2, −
√

2/2,−
√

1/2,
√

1/2,
√

2/2, and
√

3/2, each
with probability 1/6.

• normal, which is a normal distribution with the first four moments given by 0, 1, 0,
and 3.

• gamma, which is a gamma distribution with shape parameter 4 and scale parameter 1/2.

3. For each bootstrap sample, compute the unrestricted model and the null hypothesis t statistic,
t∗. Include the observed t statistic, t in this set.

4. Given the B bootstrapped t statistics t∗b , b = 1, . . . , B, compute the wild bootstrap lower-tail
p-value

Pl(t) =
1

B

B∑
b=1

I(|t| < |t∗b |)

and the upper-tail p-value

Pu(t) =
1

B

B∑
b=1

I(|t| > |t∗b |)

The reported equal-tail p-value is Pet(t) = 2 min{Pl(t), Pu(t)}.
5. Compute the wild bootstrap confidence interval by searching for the lower limit and upper limit

separately using the bisection root-finding algorithm. In doing so, find the quantities ATET = cl
and ATET = cu, cl < cu, such that (100 − L)/2% of the bootstrapped distribution of the t
statistics testing ATET = c is contained in either the lower or the upper tail. By default, L = 95.

The search algorithm does not always generate an L% confidence interval. One reason for this
situation is if B(100 − L)/200 is not an integer, then there is not a slot in the sorted vector t∗

that corresponds to the upper- or lower-tail area (100 − L)/200. See Roodman et al. (2019, 8)
for a good discussion.

Also, although a low-probability event, if at least one of the computed t∗ is (numerically) equal
to the t testing ATET = c, or if there are ties between other computed values in t∗ adjacent to
the t testing ATET = c, then the algorithm will not achieve the optimal coverage. In this case, we
choose the confidence interval that is more conservative than requested. The achieved confidence
level is reported in the ATET coefficient table.

The chance of ties in t∗ increases if the number of clusters, S, is small and the rademacher
error weights are used, because there are 2S possible combinations of the two values 1 and −1
in the weight vector w. For example, if S = 10, then there are 1,024 possible combinations.
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Bias-corrected clustered standard error
Let there be S clusters, s = 1, . . . , S, each with Ns observations, and let N be the number of

observations in the data. Let Xs be the covariate matrix for cluster s, and let X be the covariate
matrix for all observations with dimension N × L. Also, define INs

to be an identity matrix of
dimension Ns, and define Pss = Xs (X

′X)
−1

X′s as a projection matrix for cluster s. Finally, let
ε̂s be the residuals corresponding to cluster s. The bias-corrected cluster variance–covariance matrix
is given by the following:

V =

(
S∑

s=1

X′sXs

)−1 S∑
s=1

X′s (INs
−Pss)

−1/2
ε̂sε̂
′
s

{
(INs

−Pss)
−1/2

}′
Xs

(
S∑

s=1

X′sXs

)−1
(6)

Let P be the projection matrix for all the data, and let (IN −P)s be an Ns ×N matrix of rows
of the N ×N matrix (IN −P). Finally, let eL,k be an L vector with kth component equal to 1 and
equal to 0 elsewhere. We define the matrix G as the matrix with sth column given by

Gs = (IN −P)
′
s (INs

−Pss)
−1/2

Xs (X
′X)
−1

eL,k

We compute the degrees-of-freedom adjustment proposed by Bell and McCaffrey (2002), KBM,
as follows,

KBM =
tr (G′G)

2

tr
{
(G′G)

2
}

=

(∑S
i=1 λi

)2
∑S

i=1 λ
2
i

where tr(·) is the trace function and λi is the ith eigenvalue of the matrix G′G.

When S is large, computing the eigenvalues can be time consuming. We define

as = (INs −Pss)
− 1

2 Xs (X
′X)
−1

eL,k

bs = Psas

A = (a′1a1, . . . ,a
′
SaS)

′
= (A1, A2, . . . , AS)

′

B = (b1, . . . ,bS) =

 B1,1 B1,2 · · · B1,S

...
...

. . .
...

BN,1 BN,2 · · · BN,S


where Ps = X(X′X)−1X′s andBi,s, i = 1, . . . , N , are the elements of the vectors bs, s = 1, . . . , S.
Then G′G = diag(A)−B′B. We now express the adjusted degrees of freedom (Kolesár 2021) as

KBM =

(∑S
s=1As −

∑N
i=1

∑S
s=1B

2
i,s

)2
∑S

s=1A
2
s − 2

∑S
s=1As

∑N
i=1B

2
i,s +

∑S
s1=1

∑S
s2=1

(
b′s1bs2

)2



34 didregress — Difference-in-differences estimation

which can be computed efficiently in Mata and using QR decomposition. For example, by decomposing
X = QR, where Q is n × k and orthonormal and R is k × k and upper triangular. The matrix
B can be rewritten so that it has dimension k × S instead of N × S. We can do even better if the
column rank of X is r ≤ k by taking advantage of QR column pivoting.

When weights are specified, we use the weighted-covariate matrix X̃ = diag(w)
1
2X and its

corresponding projection matrix P̃, as well as the cluster covariance matrices X̃s, their projection
matrices P̃ss, and weighted residuals ε̃s = diag(ws)

1
2 ε̂s.

For the ATET coefficient, we use the standard errors from (6) and the degrees of freedom in KBM

to construct confidence intervals.
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