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Description
cate estimates conditional average treatment effects (CATEs), which are average treatment effects

(ATEs) conditional on a set of variables for which the treatment effects may vary. Estimating CATEs

allows us to study treatment-effect heterogeneity and evaluate treatment-assignment policies.

cate provides three different CATE estimates: individualized average treatment effects (IATEs), group

average treatment effects (GATEs), and sorted group average treatment effects (GATESs). IATEs are treat-

ment effects conditional on observation-level characteristics; there is one IATE for each observation in

the data. GATEs are treatment effects conditional on prespecified groups; there is a treatment effect for

each group. GATESs are treatment effects for a prespecified number of groups, where the groups are

determined by the quantiles of the IATEs.

To estimate CATEs, cate fits an outcome model and a treatment-assignment model. These models can

be fit using cross-fitting via lasso, random forest, or parametric regression. The CATEs themselves can

be estimated using a partialing-out (PO) estimator or an augmented inverse-probability weighting (AIPW)

estimator, either via random forest or linear regression.

Quick start
Estimate the IATE function for outcome y and treatment treat, conditioning on covariates x1-x5 and

i.group1, using the PO estimator, and report the ATE

cate po (y x1-x5 i.group1) (treat)

Same as above, but add variables w1-w100 as control variables in the outcome and treatment models

cate po (y x1-x5 i.group1) (treat), controls(w1-w100)

Same as above, but use the AIPW estimator

cate aipw (y x1-x5 i.group1) (treat), controls(w1-w100)

Estimate the GATEs for the groups defined by variable group2
cate aipw (y x1-x5 i.group1) (treat), controls(w1-w100) group(group2)

Same as above, but reestimate the GATEs for groups defined by variable group1 without refitting the

IATE function

cate, reestimate group(group1)

Divide the data into five groups based on quintiles of the IATE estimates, and estimate the GATESs for

those groups

cate aipw (y x1-x5 i.group1) (treat), controls(w1-w100) group(5)

Same as above, but divide the data into four groups (quartiles of the IATE estimates), and reestimate the

GATESs for these groups

cate, reestimate group(4)
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Perform cross-fitting with five folds instead of the default ten folds

cate aipw (y x1-x5 i.group1) (treat), controls(w1-w100) xfolds(5)

Perform random forest for the outcome and treatment models

cate aipw (y x1-x5 i.group1) (treat), controls(w1-w100) ///
omethod(rforest) tmethod(rforest)

Same as above, but use the out-of-bag prediction-based algorithm instead of cross-fitting

cate aipw (y x1-x5 i.group1) (treat), controls(w1-w100) ///
omethod(rforest) tmethod(rforest) oob

Use linear regression to fit the outcome model, logit regression to fit the treatment model, and linear

regression to fit the CATE model

cate aipw (y x1-x5 i.group1) (treat), ///
omethod(regress) tmethod(logit) cmethod(regress)

Menu
Statistics > Causal inference/treatment effects > Continuous outcomes > Conditional average treatment effects

Syntax

Partialing-out estimator

cate po (ovar catevarlist) (tvar) [ if ] [ in ] [ , options ]

Augmented inverse-probability weighting estimator

cate aipw (ovar catevarlist) (tvar) [ if ] [ in ] [ , options ]

ovar is a continuous outcome of interest.

catevarlist specifies the covariates of the CATE model—the conditioning variables for the treatment ef-

fects. catevarlist may contain factor variables; see [U] 11.4.3 Factor variables.

tvar must be a binary variable representing the treatment levels.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/causalcate.pdf#causalcateSyntaxoptions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/causalcate.pdf#causalcateSyntaxoptions
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables


cate — Conditional average treatment-effects estimation 3

options Description

Model

controls(varlist) specify the control variables for the outcome and treatment models
∗ group(varname) compute the GATE for each group defined by varname
∗ group(#) divide the data into # groups based on IATEs and compute the GATES

for each group

rseed(#) set random-number seed

xfolds(#) use cross-fitting algorithm with # folds; default is xfolds(10)

Method

omethod(om spec) specify estimation method for outcome model;
default is omethod(lasso)

tmethod(tm spec) specify estimation method for treatment model;
default is tmethod(lasso)

cmethod(cm spec) specify estimation method for CATE model; default is
cmethod(rforest)

Advanced
† reestimate reestimate GATEs or GATESs with a new specification in group()

and without refitting IATE function
‡ oob use out-of-bag prediction-based algorithm instead of cross-fitting

treatcontrols(varlist) use variables in varlist as controls for treatment model instead
of variables specified in controls() (AIPW estimator only)

pstolerance(#) set tolerance for overlap assumption; default is pstolerance(1e-5)
osample(newvar) generate newvar to identify observations that violate the

overlap assumption

rflistwise omit observations with missing covariate values when random forest
is used for all models

Reporting

level(#) set confidence level; default is level(95)
[ no ]log suppress iteration log

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

∗Only one of group(varname) or group(#) may be specified.
†reestimate may be specified with group(#) only if group(#) has been specified in the previous cate estimation. If

reestimate is specified with group(new varname), where new varname is different than the previous group(var-
name), then new varname must have been a factor variable in catevarlist in the previous cate estimation.

‡oob may not be specified with group(#) or xfolds(). oob is only allowed if the random forest method has been specified
for both the outcome and the treatment models (omethod(rforest) and tmethod(rforest)).

collect is allowed; see [U] 11.1.10 Prefix commands.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

om spec Description

lasso[ , lasso options ] use linear lasso to fit the outcome model; the default

sqrtlasso[ , lasso options ] use square-root lasso to fit the outcome model

rforest[ , rforest options ] use random forest to fit the outcome model

regress use linear regression to fit the outcome model

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/causalcate.pdf#causalcateSyntaxomspec
https://www.stata.com/manuals/causalcate.pdf#causalcateSyntaxtmspec
https://www.stata.com/manuals/causalcate.pdf#causalcateSyntaxcmspec
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/causalcate.pdf#causalcateOptionsdisplay_options
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/causalcate.pdf#causalcateOptionsom_lasso_options
https://www.stata.com/manuals/causalcate.pdf#causalcateOptionsom_sqrtlasso_options
https://www.stata.com/manuals/causalcate.pdf#causalcateOptionsom_rforest_options
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tm spec Description

lasso[ , lasso options ] use logit lasso to fit the treatment model; the default

rforest[ , rforest options ] use random forest to fit the treatment model

logit use logit regression to fit the treatment model

probit use probit regression to fit the treatment model

cm spec Description

rforest[ , rforest options ] use random forest to fit the CATE model; the default

regress use linear regression to fit the CATE model

rforest options Description

samprate(#) specify sampling rate for observations; default is samprate(0.5)
ntrees(#) specify number of trees in the forest; default is ntrees(2000)
cintrees(#) specify number of trees in each group to compute the confidence

intervals; default is cintrees(2)
splitminobs(#) specify minimum number of observations to split a node; default is

splitminobs(6)
splitmeanvars(#) specify mean number of variables to be split in each node;

default is splitmeanvars(ceil(sqrt(𝑝) + 20))
with 𝑝 as the dimension of catevarlist

nohonest do not use an honest tree

honestrate(#) set sampling rate for honest tree; default is honestrate(0.5)

Options

� � �
Model �

controls(varlist) specifies the control variables for the outcome and treatment models. catevarlist

and the specified control variables are the covariates in the outcome and the treatment models. If no

control variables are specified, then the variables specified in catevarlist will be the only covariates

for both models.

group(varname) computes the GATE for each group defined by the levels of varname. TheATE for each

level in the group variable will be estimated. The grouping variable will be added as a factor variable

in catevarlist. Only one of group(varname) or group(#) may be specified.

group(#) computes the GATESs by dividing the observations into # groups. The groups are generated

from the quantiles of the estimates of the IATEs. The observations are sorted based on the IATEs and

grouped into # levels. For example, if we specify group(4), the data would be divided into four

groups. The first group will contain observations with IATE estimates greater than the 75th percentile

of the overall IATE estimates, the second group will contain observations that lie between the 50th and

the 75th percentiles, the third group will contain those between the 25th and 50th percentiles, and the

last group will contain those below the 25th percentile. Once the groups are formed, cate computes

the ATE for each group. Only one of group(#) or group(varname) may be specified.

rseed(#) sets the random-number seed. rseed(#) is equivalent to typing set seed # prior to running

cate. Random numbers are used to produce split samples for cross-fitting. To reproduce results, you

must either use this option or use set seed. See [R] set seed.

https://www.stata.com/manuals/causalcate.pdf#causalcateOptionstm_lasso_options
https://www.stata.com/manuals/causalcate.pdf#causalcateOptionstm_rforest_options
https://www.stata.com/manuals/causalcate.pdf#causalcateOptionscm_rforest_options
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rsetseed.pdf#rsetseed
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xfolds(#) specifies the number of folds for cross-fitting. The default is xfolds(10); that is, cross-
fitting is done by randomly dividing the original data into 10 folds.

� � �
Method �

omethod(om spec) specifies the estimation method for the outcome model. om specmay be lasso[ ,
lasso options ]; sqrtlasso[ , lasso options ]; rforest[ , rforest options ]; or regress. The de-
fault is omethod(lasso).

lasso[ , lasso options ] specifies that linear lasso be used to fit the outcome model. lasso options

are selection(), grid(), stop(), cvtolerance(), bictolerance(), tolerance(),
and dtolerance(); see [LASSO] lasso options. If selection() is not specified, then

selection(plugin) is assumed; that is, the plugin penalty parameter is used.

sqrtlasso[ , lasso options ] specifies that square-root lasso be used to fit the outcome model.

lasso options are selection(), grid(), stop(), cvtolerance(), bictolerance(),
tolerance(), and dtolerance(); see [LASSO] lasso options. If selection() is not specified,

then selection(plugin) is assumed; that is, the plugin penalty parameter is used.

rforest[ , rforest options ] specifies that random forest be used to fit the outcome model. rfor-

est options are samprate(), ntrees(), cintrees(), splitminobs(), splitmeanvars(),
nohonest, and honestrate().

samprate(#) sets the sampling rate for observations when drawing the random sample for each

tree. The sampling is without replacement. The sampling rate must be in the range (0, 1). The

default is samprate(0.5), meaning that half of the estimation sample is used to construct each

tree. Using a random sample to construct each tree makes the random forest more robust to the

overfitting issues.

ntrees(#) sets the number of trees in the random forest. The default is ntrees(2000). Using
more trees in the random forest usually implies more stable estimates, but it also requires longer

computational time.

cintrees(#) sets the number of trees in each group or bag when using the bootstrap of little bags

to compute the confidence intervals of the random forest’s predictions. Each tree in the same

bag draws a random sample from the same half-size sample, which allows us to estimate the

variance of the random forest’s prediction. The default is cintrees(2), two trees in each bag.

splitminobs(#) sets the minimum number of observations to perform a split in a node. A node

must have at least # observations to be split. The default is splitminobs(6).

splitmeanvars(#) sets the mean number of variables to be split in each node. In each tree

node in a random forest, only a random subset of variables is searched to find the best split-

ting variable and value. The number of variables in this subset is also random and equals

max(min(𝑚, 𝑝), 1), where 𝑝 is the dimension of catevarlist and 𝑚 follows a Poisson distribu-

tion with mean #. The default is splitmeanvars(ceil(sqrt(𝑝) + 20)).

nohonest specifies not to use an honest tree. Honest splitting in an honest tree is the critical fea-

ture that allows us to make inferences on the random forest’s prediction. Confidence intervals

and standard errors for the random forest’s prediction cannot be estimated when nohonest is

specified.

honestrate(#) specifies the fraction of the sample used for splitting the honest tree. For a

random sample 𝑆 drawn to create a tree, an honest tree divides sample 𝑆 into two disjoint parts

𝐴 and 𝐵. Part 𝐴 is used to split the tree and part 𝐵 is used to label the tree. honestrate()

https://www.stata.com/manuals/lassolassooptions.pdf#lassolassooptions
https://www.stata.com/manuals/lassolassooptions.pdf#lassolassooptions
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specifies the fraction of the sample 𝑆 to be used as part𝐴. Honest splitting is the key feature that

allows inference on the random forest’s prediction. The default is honestrate(0.5), where
half of the data in 𝑆 is used to split the tree and the other half is used to label the tree.

regress specifies that linear regression be used to fit the outcome model. Thus, this option imposes

a parametric assumption on the outcome model.

tmethod(tm spec) specifies the estimation method for the treatment model. tm spec may be lasso[ ,
lasso options ], rforest[ , rforest options ], logit, or probit. The default is tmethod(lasso).

lasso[ , lasso options ] specifies that logit lasso be used to fit the treatment model. lasso options

are selection(), grid(), stop(), cvtolerance(), bictolerance(), tolerance(),
and dtolerance(); see [LASSO] lasso options. If selection() is not specified, then

selection(plugin) is assumed; that is, the plugin penalty parameter is used.

rforest[ , rforest options ] specifies that random forest be used to fit the treatment model. rfor-

est options are samprate(), ntrees(), cintrees(), splitminobs(), splitmeanvars(),
nohonest, and honestrate(); see rforest options.

logit specifies that a logit model be used to fit the treatment model. Thus, this option imposes a

parametric assumption on the treatment model.

probit specifies that a probit model be used to fit the treatment model. Thus, this option imposes a

parametric assumption on the treatment model.

cmethod(cm spec) specifies the estimation method for the CATE model. cm spec may be rforest[ ,
rforest options ] or regress. The default is cmethod(rforest).

rforest[ , rforest options ] specifies that random forest be used to fit the CATE model. rfor-

est options are samprate(), ntrees(), cintrees(), splitminobs(), splitmeanvars(),
nohonest, and honestrate(); see rforest options.

regress specifies that linear regression be used to fit the CATE model. Thus, this option assumes a

parametric assumption on the CATE model.

� � �
Advanced �

reestimate reestimates GATEs or GATESs with a new specification in group(). It is much faster than

estimating GATEs or GATESs from scratch because it uses existing results from the previous cate
estimation for the estimates of the IATE function. The typical usages of this option are the following:

reestimate with the group(new varname) option reestimates the GATEs with the group variable

new varname. This syntax requires that the group variable new varnamewas specified as a factor

variable in catevarlist in the previous cate estimation. For example, after using cate to estimate

the GATE for each level of group variable group1,

cate (y x1 x2 i.group2) (treat), group(group1)

we can estimate the GATE for each level of group variable group2:

cate, reestimate group(group2)

Notice above that group2 is specified as a factor variable in catevarlist.

https://www.stata.com/manuals/lassolassooptions.pdf#lassolassooptions
https://www.stata.com/manuals/causalcate.pdf#causalcateOptionsrforest_options
https://www.stata.com/manuals/causalcate.pdf#causalcateOptionsrforest_options


cate — Conditional average treatment-effects estimation 7

reestimatewith the group(#) option reestimates theGATESs with # data-driven groups. This syntax

requires that option group(#) has been specified in the previous cate estimation. For example,

after using cate to estimate the GATESs with 4 data-driven groups,

cate (y x1 x2) (treat), group(4)

we can estimate the GATESs with 5 data-driven groups:

cate, reestimate group(5)

Notice that we specified option group(#) in the previous cate specification.

oob uses the out-of-bag prediction-based algorithm instead of cross-fitting. It requires that the random

forest is used to fit the outcome model and the treatment model; that is, both omethod(rforest)
and tmethod(rforest) must be specified with oob. The out-of-bag prediction-based algorithm

is generally faster than cross-fitting under the same setup. However, this algorithm does not allow

computing the GATESs; thus, oob may not be combined with group(#).

treatcontrols(varlist) specifies that varlist be used as controls in the treatment model instead

of the variables specified in controls(). This option is only allowed for the AIPW estimator.

If treatcontrols() is not specified, then the variables in catevarlist and the variables speci-

fied in controls() are used as covariates in both the outcome and the treatment models. If

treatcontrols(varlist) is specified, then the treatment model instead uses varlist as covariates.

pstolerance(#) specifies the tolerance used to check the overlap assumption. The default value is

pstolerance(1e-5). cate will exit with an error if an observation has an estimated propensity

score smaller than that specified by pstolerance().

osample(newvar) generates indicator variable newvar identifying observations that violate the overlap

assumption.

rflistwise specifies that listwise deletion be used when the random forest method is used for all mod-

els. By default, when omethod(rforest), tmethod(rforest), and cmethod(rforest) are all

specified, observations with missing covariate values will be used because the random forest method

can use missing covariate values in estimation. See Generalized random forest in Methods and for-

mulas.

When rflistwise is specified, observations with missing covariate values are not used to estimate

the CATEs. If one of omethod(), tmethod(), or cmethod() does not use rforest, then observations
with missing covariate values will not be used for estimating the CATEs.

� � �
Reporting �

level(#); see [R] Estimation options.

[ no ]log displays or suppresses a log showing the progress of the estimation. The log is displayed by

default unless you used set iterlog off to suppress it; see set iterlog in [R] set iter.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/causalcate.pdf#causalcateMethodsandformulasgrf_formulas
https://www.stata.com/manuals/causalcate.pdf#causalcateMethodsandformulas
https://www.stata.com/manuals/causalcate.pdf#causalcateMethodsandformulas
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rsetiter.pdf#rsetiter
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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Remarks and examples
Remarks are presented under the following headings:

Introduction
What is a CATE?
Different versions of the CATE
Overview of the cate suite

Workflows
Workflow 1: Exploiting the IATE function heterogeneity
Workflow 2: Prespecified group hypothesis testing
Workflow 3: Data-driven group hypothesis testing
Workflow 4: Evaluation of counterfactual policies
Workflow 5: Evaluating policies designed using the IATE estimates

Examples
Example 1: Explore treatment-effect heterogeneity
Example 2: Add high-dimensional controls
Example 3: Estimate the ATEs over prespecified groups
Example 4: Estimate the ATEs over values of a continuous variable
Example 5: Use the AIPW estimator
Example 6: Data-driven group hypothesis testing
Example 7: Flexible models
Example 8: Treatment-assignment policy evaluation

Introduction
Treatment effects estimate the causal effect of a treatment on an outcome. This effect may be constant

or it may vary across different subpopulations. For example, a labor economist may want to know if the

earnings of immigrants and nonimmigrants are affected differently by a job training program and, if

so, by how much. An online shopping company may want to know the effect of a price discount on

purchasing behavior for customers with different demographic characteristics such as age or income. A

medical team may want to measure the effect of smoking on stress levels for individuals in different age

groups.

The ATE is a popular way to summarize the treatment effects by taking the mean of the effects over

the population. The ATE characterizes the whole distribution of treatment effects when the treatment

effect is constant across the population. However, when the treatment effects are heterogeneous and the

units react differently to the same treatment, estimating only the mean of treatment effects may mask the

underlying mechanism of how the treatment affects different units. For example, the estimated ATE may

be close to zero when some groups experience positive effects while other groups experience adverse

effects.

In contrast to the ATE, the CATEs help us better understand the heterogeneous nature of treatment

effects. Like the ATE, the CATEs are averages of treatment effects, but unlike the ATE, the averages are

taken over population subgroups. Imagine that we have a microscope to observe the treatment effects.

The ATE only allows us to look at the effects at the most coarse precision, but the CATEs allow us to

zoom in on particular parts of the population. Furthermore, once we understand the heterogeneity of

treatment effects, we can evaluate different treatment-assignment policies that may shed light on which

policy would result in better overall outcomes for different groups in the population.

In summary, the advantage of studying the CATEs is, at least, two-fold:

1. It improves understanding of the treatment-effect heterogeneity.

2. It builds a foundation to optimize the assignment to treatment.
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What is a CATE?

So what is a CATE precisely? Under the potential outcome framework, we define 𝑦𝑖(1) to be the

potential outcome if unit 𝑖 is treated and define 𝑦𝑖(0) to be the potential outcome if unit 𝑖 is not treated.
x𝑖 is a vector of characteristics for unit 𝑖. The CATE is defined as

CATE ≡ 𝜏(x) = 𝐸{𝑦𝑖(1) − 𝑦𝑖(0)|x𝑖 = x}

That is, the CATE is the expectation of the difference between the treated and untreated potential outcomes

conditional on the characteristics, x𝑖, being equal to x.

We can identify 𝜏(x) via either a partial linear or a fully interactive model. Here we build intuition by

focusing on identification of the CATE via the partial linear model. For notational simplicity, we drop the

subscript 𝑖 indicating the 𝑖th observation to refer to a random variable. We refer to the observed outcome

as 𝑦 and the binary treatment indicator as 𝑑.
In the simplest case, when the treatment effects are constant or when we are interested in estimating

the ATE, the partial linear model is

𝑦 = 𝑑 ∗ 𝜏 + 𝑔(x,w) + 𝜖
𝑑 = 𝑓(x,w) + 𝑢

Here we divide the variables into two groups: x and w. We will differentiate the two shortly. The

outcome model is partial linear because the observed outcome is a sum of the treatment effects 𝑑 ∗ 𝜏,
a nonparametric function 𝑔(x,w), and the error term 𝜖. The treatment assignment is modeled by the

function 𝑓(x,w) and an additive error term 𝑢. By definition, we can write the potential outcome models

as

𝑦(1) = 𝜏 + 𝑔(x,w) + 𝜖
𝑦(0) = 𝑔(x,w) + 𝜖

Thus, 𝜏 characterizes the ATE.
ATE ≡ 𝐸{𝑦(1) − 𝑦(0)} = 𝜏

Now let’s go one step further. Suppose the treatment effects are heterogeneous and depend on x. We

can rewrite the outcome model as

𝑦 = 𝑑 ∗ 𝜏(x) + 𝑔(x,w) + 𝜖

where x is a vector of conditioning variables for the treatment effects. 𝜏(x) is a function of x that inter-
acts with the treatment 𝑑. Notice that 𝜏(x) is a function of x but not of w. w is an optional vector of

additional control variables for the outcome and treatment-assignment models, which can potentially be

high-dimensional. This model is flexible and general because it does not impose parametric assumptions

on 𝜏(x) or 𝑔(x,w). The potential outcomes now become

𝑦(1) = 𝜏(x) + 𝑔(x,w) + 𝜖
𝑦(0) = 𝑔(x,w) + 𝜖

Thus, the CATE is 𝜏(x).
𝐸{𝑦(1) − 𝑦(0)|x} = 𝜏(x)
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If we impose parametric assumptions such as 𝜏(x) = x′𝛽 and 𝑔(x,w) = x′𝛾1 +w′𝛾2, we can estimate

this special model by running a regression of 𝑦 on x, w, and the interaction between 𝑑 and x. However,

this parametric assumption may be too strong and hard to satisfy with our data. In the implementation of

cate, we focus on a more general case that does not impose a parametric form on 𝜏(x) or the nuisance
parameters 𝑔(x,w) and 𝑓(x,w). The parameter of interest, 𝜏(x), can be estimated nonparametrically via

the generalized random forest proposed in Athey, Tibshirani, andWager (2019). The nuisance parameters

can be estimated using lasso or random forest. However, if we want to impose a parametric assumption

on either 𝜏(x) or the nuisance parameters, cate can also fit such models.

Different versions of the CATE

The granularity of the conditional set x𝑖 determines the subpopulation. Thus, the CATE has different

versions or names depending on the definition of the conditional set x𝑖.

IATE: At the finest level, when x𝑖 refers to the characteristics of a specific observation, the CATEmeasures

the expected treatment effect for individuals with the same characteristics as this observation. This

version of CATE is also called IATE. In literature, people often refer to IATE as CATE, even though

IATE is a special version of CATE. In our terminology, we use IATEwhen we refer to the finest level

of CATE.

Under the unconfoundedness assumption, it is possible to identify and estimate 𝜏(x) if we are
willing to impose some restrictions on 𝜏(x). In particular, when x is a low-dimensional vector

and 𝜏(x) is smooth enough as defined in Athey, Tibshirani, and Wager (2019), we can nonpara-

metrically estimate the IATE and provide confidence intervals using the generalized random forest

proposed in Athey, Tibshirani, and Wager (2019).

GATE: If x𝑖 is a prespecified grouping, denoted by 𝐺𝑖, the CATE measures the ATE for each group. This

version of CATE is also called GATE.

In particular, the GATE is defined as

𝜏(𝑔) = 𝐸{𝑦𝑖(1) − 𝑦𝑖(0)|𝐺𝑖 = 𝑔}

where 𝐺𝑖 is a prespecified grouping and 𝑔 is a specific group. The GATEs are coarser than the

IATEs because they focus on group effects instead of individual effects.

For the GATEs, we must specify the group variable, 𝐺𝑖, before analyzing the data to avoid

𝑝-value hacking, as discussed in Head et al. (2015).

GATES: Sometimes, we do not have a group variable to specify but still want to understand the underlying

treatment-effect heterogeneity. In such cases, we can discover the groups in a data-driven way by

using the sorted IATEs. This version of CATE is known as GATES.

The groups are generated by the quantiles of the IATE estimates. For example, let’s say we

want to divide the data into four groups. The first group will consist of the observations with

IATE estimates greater than the 75th percentile of the overall IATE estimates, the second group will

include observations whose estimates lie between the 50th and 75th percentiles, the third group

will contain observations with estimates between the 25th and 50th percentile, and the last group

will contain observations with estimates below the 25th percentile.

Once we have the groups as above, we can estimate the GATEs as usual.

https://www.stata.com/manuals/causalintro.pdf#causalIntroRemarksandexamplesunconfoundedness
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The cate command estimates IATEs, GATEs with prespecified groups, and GATESs, for which groups

are determined in a data-driven way. cate helps us answer questions about treatment heterogeneity, such

as the following:

1. Are the treatment effects heterogeneous?

2. How do the treatment effects vary with some variables?

3. Do the treatment effects vary between prespecified groups?

4. Do the data discover groups where treatment effects are different?

Additionally, we can use the estimates obtained from cate to measure the effect of counterfac-

tual treatment-assignment policies on the outcome by using postestimation commands such as estat
policyeval and estat ate. Suppose a hypothetical treatment-assignment policy assigns some indi-

viduals in the sample to be treated and some others not to be treated. Using estat policyeval and

estat ate postestimation commands, we may answer questions such as the following:

1. If we implement such a policy, how would the average outcome in the population change?

2. Which policy is better among a candidate set of policies?

Overview of the cate suite

Here we outline the Stata commands to estimate, predict, visualize, and make inferences about the

CATEs. In particular, these Stata commands can be grouped into the following categories:

Estimation: cate po estimates the IATE function by using the PO estimator discussed in
Nie and Wager (2021) via the generalized random forest proposed in
Athey, Tibshirani, and Wager (2019). This method is the default and is
also known as causal forest.

cate aipw estimates the IATE function by using the AIPW estimator discussed
in Knaus (2022) and Kennedy (2023) via the honest regression random
forest proposed in Wager and Athey (2018) by default.

cate with option group(varname) estimates the GATEs by taking the means of
the AIPW scores implied by the model (the estimates of the individual-level
treatment effects) over the group variable varname. This method is
discussed in Semenova and Chernozhukov (2021) and Knaus (2022).

cate with option group(#) estimates the GATESs for # groups with levels based
on the rankings of the IATE estimates. This method is discussed in
Chernozhukov et al. (2006). Once the groups
are discovered, the GATESs are estimated as the GATEs.

Prediction: predict predicts the IATE function 𝜏(x), its standard errors, and the lower
and upper bounds of the pointwise confidence intervals. The estimates of
standard errors and confidence intervals are computed using the bootstrap of
little bags proposed in Athey, Tibshirani, and Wager (2019).

https://www.stata.com/manuals/causalcatepostestimation.pdf#causalcatepostestimationestatsyntax_policy
https://www.stata.com/manuals/causalcatepostestimation.pdf#causalcatepostestimationestatsyntax_policy
https://www.stata.com/manuals/causalcatepostestimation.pdf#causalcatepostestimationestatsyntax_ate
https://www.stata.com/manuals/causalcatepostestimation.pdf#causalcatepostestimationestatsyntax_policy
https://www.stata.com/manuals/causalcatepostestimation.pdf#causalcatepostestimationestatsyntax_ate
https://www.stata.com/manuals/causalcate.pdf#causalcateSyntax
https://www.stata.com/manuals/causalcate.pdf#causalcateSyntax
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/causalcatepostestimation.pdf#causalcatepostestimationpredictSyntaxforpredict
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Visualization: categraph histogram plots the histogram of estimated IATEs and shows how
the IATEs are distributed. This histogram can serve as a preliminary
visualization of the treatment-effect heterogeneity.

categraph gateplot plots the estimate of the GATE or GATES and its confidence
interval for each group. It visualizes the trend of the GATE or GATES function.

categraph iateplot plots the IATE function with varying values of x.
If x is a vector, we can allow one variable to vary, fix the values of the other
variables, and then use categraph iateplot to plot the function.

Inference: estat heterogeneity tests whether the treatment effects are heterogeneous using
the method proposed by Chernozhukov et al. (2006).

estat gatetest tests whether the estimated GATEs or GATESs are equal
across the groups.

estat classification compares the means of a variable in the group with the largest
treatment effect and the group with the smallest treatment effect. It is used to compare
the properties of the subpopulations with the largest and smallest effects.

estat ate computes the ATE for a subpopulation. This command can be useful
for policy evaluations.

estat projection fits a linear regression of the estimated IATE on a vector of
variables. It provides a linear approximation of the IATE function.

estat series fits a nonparametric series regression of the estimated IATE on a
vector of variables using B-spline, piecewise polynomial spline, or polynomial
basis. It provides a nonparametric approximation of the IATE function, as discussed
in Semenova and Chernozhukov (2021).

estat policyeval evaluates and compares the prespecified treatment-assignment
policy. In particular, it computes the value of a treatment-assignment policy or
compares the difference of two policies’ values if specified.

Workflows
Here we provide possible workflows that may be useful, depending on the question of interest. Work-

flows 1 to 3 help us to answer questions regarding the treatment-effects heterogeneity, and workflows 4

and 5 help us to evaluate treatment-assignment policies. Below, we list the questions of interest for each

workflow. Then, we will discuss the details of the workflows.

1. Understand treatment-effect heterogeneity:

• Workflow 1: Exploiting the IATE function heterogeneity

Given an estimate of the IATE function, are the treatment effects heterogeneous?

• Workflow 2: Prespecified group hypothesis testing

We have some prespecified groups and we want to test whether the treatment effects are

the same across these groups or study how the effects differ across them.

https://www.stata.com/manuals/causalcatepostestimation.pdf#causalcatepostestimationcategraphsyntax_hist
https://www.stata.com/manuals/causalcatepostestimation.pdf#causalcatepostestimationcategraphsyntax_gateplot
https://www.stata.com/manuals/causalcatepostestimation.pdf#causalcatepostestimationcategraphsyntax_iateplot
https://www.stata.com/manuals/causalcatepostestimation.pdf#causalcatepostestimationestatsyntax_hetero
https://www.stata.com/manuals/causalcatepostestimation.pdf#causalcatepostestimationestatsyntax_gatetest
https://www.stata.com/manuals/causalcatepostestimation.pdf#causalcatepostestimationestatsyntax_class
https://www.stata.com/manuals/causalcatepostestimation.pdf#causalcatepostestimationestatsyntax_ate
https://www.stata.com/manuals/causalcatepostestimation.pdf#causalcatepostestimationestatsyntax_proj
https://www.stata.com/manuals/causalcatepostestimation.pdf#causalcatepostestimationestatsyntax_series
https://www.stata.com/manuals/causalcatepostestimation.pdf#causalcatepostestimationestatsyntax_policy
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• Workflow 3: Data-driven group hypothesis testing

We do not know the groups for which the treatment effects may vary, so we ask the data

to discover these groups and study whether certain variables may be correlated with the

treatment-effect heterogeneity.

2. Policy evaluation:

• Workflow 4: Evaluation of counterfactual policies

We want to evaluate some prespecified treatment-assignment policies and compare them.

• Workflow 5: Evaluating policies designed using the IATE estimates

We want to evaluate a policy that is designed based on the IATE estimates. For example,

we want to treat all units with an IATE greater than a fixed cost and evaluate the effect of

such a policy on the outcome.

Workflow 1: Exploiting the IATE function heterogeneity

1. Suppose the outcome variable is y, the CATE covariates are x1-x5, the treatment variable is treat,
and the control variables are w1-w100. Estimate the IATE function. (We demonstrate using the PO

estimator but could also use the AIPW estimator.)

cate po (y x1-x5) (treat), controls(w1-w100)

2. Plot the histogram of IATE estimates.

categraph histogram

3. Test whether the effects are heterogeneous.

estat heterogeneity

4. Regress the estimated IATE function on variables that may impact treatment effects to understand

the mechanism underlying the treatment-effect heterogeneity.

estat projection x1-x5

5. Estimate theATE for a subpopulation of interest. Suppose we suspect that the variable x1 positively
affects the treatment effects; we can estimate the ATE for the subpopulation where x1 is greater

than 0.8.

estat ate if x1 > 0.8

6. Plot the IATE function for x1 while the other variables are fixed at specific values, such as their

means.

estat iateplot x1, at((mean) x2-x5)
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Workflow 2: Prespecified group hypothesis testing

1. Estimate the GATE function over the levels of group variable gvar. (We demonstrate using the

AIPW estimator but could also use the PO estimator.)

cate aipw (y x1-x5) (treat), controls(w1-w100) group(gvar)

2. Visualize the GATE estimates and their confidence intervals.

categraph gateplot

3. Test whether the GATEs are the same across groups.

estat gatetest

Workflow 3: Data-driven group hypothesis testing

1. Estimate the GATES function for five groups created by dividing data into groups based on rank-

ings of the IATE estimates. (We demonstrate using the AIPW estimator but could also use the PO

estimator.)

cate aipw (y x1-x5) (treat), controls(w1-w100) group(5)

2. Visualize the GATES estimates and their confidence intervals.

categraph gateplot

3. Test whether the GATESs are the same across groups.

estat gatetest

4. Compare the mean of x1 in the groups with the smallest and largest treatment effects.

estat classification x1

Workflow 4: Evaluation of counterfactual policies

1. Estimate the IATE function. (We demonstrate using the PO estimator but could also use the AIPW

estimator.)

cate po (y x1-x5) (treat), controls(w1-w100)

2. Estimate the average outcome in the population for a potential policy. Suppose the policy1
variable stores the treatment assignments for each observation under a counterfactual policy; we

estimate the average outcome for policy1.

estat policyeval policy1

3. Compare the average outcomes in the population for multiple potential policies. Suppose the

policy2 variable stores the treatment assignments for an alternative policy; we compare average

outcomes for policy1 and policy2.

estat policyeval policy1 policy2
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Workflow 5: Evaluating policies designed using the IATE estimates

1. Split the sample into training and testing data.

splitsample, split(0.6 0.4) generate(group)

2. Estimate the IATE function using the training data, group = 1. (We demonstrate using the PO

estimator but could also use the AIPW estimator.)

cate po (y x1-x5) (treat) if group == 1 , controls(w1-w100)

3. Predict the IATE function in the testing data, group = 2; the predicted IATE function is used to

construct the policy rule.

predict tauhat if group == 2

4. Estimate the IATE function using the testing data; the AIPW scores will be to compute the ATE in

the testing sample.

cate po (y x1-x5) (treat) if group == 2, controls(w1-w100)

5. Estimate the ATE for the entire testing sample.

estat ate if group == 2

6. Estimate the ATE for a subset of units in the testing sample based on the IATE predictions. For

instance, estimate the ATE for units with predicted IATEs greater than 50 in the testing sample.

estat ate if group == 2 & tauhat >= 50

Examples
In the following examples, we illustrate how to use cate to study treatment-effect heterogeneity and

to evaluate treatment-assignment policies. In particular, in examples 1 to 7, we demonstrate commands

to evaluate the effects of 401(k) program eligibility on net financial wealth. Suppose that we want to

answer the following questions:

1. Are the effects of 401(k) eligibility on net wealth heterogeneous? In other words, do the treatment

effects vary across individuals or groups?

2. If the treatment effects are heterogeneous, how do they vary across levels of prespecified group

variables, such as income category, home ownership, or education level?

3. Do the data discover groups in which the treatment effects are particularly high or low?

In example 8, we demonstrate commands to evaluate the effects of two types of lung transplants on

patients’ health outcomes. Supposing a doctor has a treatment-assignment recommendation rule, we

want to evaluate the overall outcomes if this treatment-assignment rule is implemented.

https://www.stata.com/manuals/causalcate.pdf#causalcateRemarksandexamplesExample1Exploretreatment-effectheterogeneity
https://www.stata.com/manuals/causalcate.pdf#causalcateRemarksandexamplesExample7Flexiblemodels
https://www.stata.com/manuals/causalcate.pdf#causalcateRemarksandexamplesExample8Treatment-assignmentpolicyevaluation
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Example 1: Explore treatment-effect heterogeneity

Suppose we want to estimate the effect of 401(k) eligibility (e401k) on net financial assets (asset)
using data reported by Chernozhukov and Hansen (2004). These data are from a sample of households in

the 1990 Survey of Income and Program Participation (SIPP). The data contain information on the head

of the household: income level category (incomecat), age (age), years of education (educ), whether
they receive pension benefits (pension), marital status (married), whether they participate in an IRA

(ira), whether they own a home (ownhome), and whether there are two earners in the same household

(twoearn).

We believe that the treatment effects of e401k on asset could vary based on incomecat, age, educ,
pension, married, ira, ownhome, and twoearn, which we denote as x. asset(1) represents the poten-
tial outcomes (net financial assets) of being eligible for a 401(k), and asset(0) represents the potential
outcomes of not being eligible for a 401(k). We want to estimate the effects of 401(k) eligibility on assets

conditional on the variables x. In other words, we are interested in estimating the effects as a function of

x. Precisely, we want to estimate

𝐸{asset(1) − asset(0)|x}

This version of CATEs is also known as individualized average treatment effects (IATEs) because x refers

to individual characteristics. In the syntax of cate, x is referred to as the catevarlist.

In this example, we use the PO estimator in the partial linear model to estimate the IATE function.

Without assuming any additional control variables, the partial linear model for asset is

asset = e401k ∗ 𝜏(x) + 𝑔(x) + 𝜖

where 𝜏(x) is a function of x that interacts with the treatment e401k, 𝑔(x) is a nonparametric nuisance

function, and 𝜖 is the error term for the outcome. The treatment-assignment model for the treatment

e401k is

e401k = 𝑓(x) + 𝑢
where 𝑓(x) is a nonparametric nuisance function and 𝑢 is an error term for the treatment.

The potential outcomes are

asset(1) = 𝜏(x) + 𝑔(x) + 𝜖
asset(0) = 𝑔(x) + 𝜖

Thus, the function 𝜏(x) identifies the IATE function.

𝜏(x) = 𝐸{asset(1) − asset(0)|x}

Notice that we do not assume any functional form of 𝜏(x), and it can be as simple as a linear model or

any arbitrary function of x. Here we want the data to tell us what this function 𝜏(x) looks like instead of
assuming a specific functional form. We can use cate to estimate the function 𝜏(x) nonparametrically

via the generalized random forest proposed in Athey, Tibshirani, and Wager (2019); this method is also

known as causal forest and is the default method used by cate.

First, we open the assets3 data. To save some typing later, we define a global macro, catecovars,
to represent the IATE conditioning variables x.

. use https://www.stata-press.com/data/r19/assets3
(Excerpt from Chernozhukov and Hansen (2004))
. global catecovars age educ i.(incomecat pension married twoearn ira ownhome)
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We are ready to fit the model using cate. We specify po to use the partialing-out estimator. We

specify the outcome variable asset and catevarlist (the x variables) in the first set of parentheses and

the treatment-assignment variable e401k in the second set. We also specify the rseed() option to make

the results reproducible. The first portion of the output is

. cate po (assets $catecovars) (e401k), rseed(12345671)
Cross-fit fold 1 of 10 ...
Performing lasso for outcome assets ...
Performing lasso for treatment e401k ...
(output omitted )

Cross-fit fold 10 of 10 ...
Performing lasso for outcome assets ...
Performing lasso for treatment e401k ...

This iteration log corresponds to the cross-fitting process that is used to fit the outcome model for

assets and the treatment model for e401k. To estimate the IATE function 𝜏(x), the PO estimator needs

to partial out the nuisance functions 𝑔(x) and 𝑓(x). To do this, cate needs to estimate the expectation

of the outcome and the treatment variable conditional on x. By default, the lasso for the linear model is

used to estimate the outcome assets, and the lasso for the logit model is used to estimate the treatment

e401k. To guard against errors when fitting the nuisance functions (variable selection errors when using
lasso and prediction errors when using random forest), cate uses cross-fitting. By default, ten-fold

cross-fitting is used. See Methods and formulas for details.

We can also use other alternatives, such as a random forest or a parametric model, to estimate the

outcome and the treatment models. Here, we use the default lasso for both models.

The remaining output is

Performing random forest for IATE ...
Estimating AIPW scores ...
Estimating ATE ...
Conditional average treatment effects Number of observations = 9,913
Estimator: Partialing out Number of folds in cross-fit = 10
Outcome model: Linear lasso Number of outcome controls = 17
Treatment model: Logit lasso Number of treatment controls = 17
CATE model: Random forest Number of CATE variables = 17

Robust
assets Coefficient std. err. z P>|z| [95% conf. interval]

ATE
e401k

(Eligible
vs

Not elig..) 7937.182 1153.017 6.88 0.000 5677.309 10197.05

POmean
e401k

Not eligi.. 14016.38 833.4423 16.82 0.000 12382.87 15649.9

We see that a random forest is used to estimate the IATE function once the cross-fitting is finished. It

then estimates the AIPW scores, not to be confused with the AIPW estimator. The AIPW scores are doubly

robust estimates of individual-level treatment effects. The average of these AIPW scores is the ATE. The

estimated ATE indicates that if everyone in the population is eligible for a 401(k), the net financial assets

https://www.stata.com/manuals/causalcate.pdf#causalcateMethodsandformulas
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will, on average, be $7,937 larger than the net financial assets if no one is eligible for a 401(k). The

potential outcome mean indicates that net financial assets are expected to be $14,016 if no one is eligible

for a 401(k).

In addition to the ATE that we see in the output, cate also estimates the IATE function 𝜏(x), and we

can use it to predict the treatment effects for each observation. We can use categraph histogram to

draw a histogram of the predicted 𝜏(x) function and see its distribution.
. categraph histogram
(bin=39, start=-40204.13, width=2975.4332)
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The graph shows that treatment effects are mostly positive but have a fat right tail. Thus, theATEmay

underestimate the effect of 401(k) eligibility on assets for some groups.

Although the histogram above allows us to inspect the distribution of treatment effects visually, we

should not use it as conclusive evidence to support treatment-effect heterogeneity. For example, when

the number of observations in the sample is small or when the number of the CATE conditioning variables

x is very large, we will likely see a well-spread histogram of IATE predictions due to the estimation noise

even if the actual CATE function is constant.

To statistically test whether the treatment effects are heterogeneous, we use estat heterogeneity.

. estat heterogeneity
Treatment-effects heterogeneity test
H0: Treatment effects are homogeneous

chi2(1) = 4.11
Prob > chi2 = 0.0427

We find evidence against the null hypothesis that the treatment effects are homogeneous.
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To further explore the heterogeneity of treatment effects, we want to know whether a variable posi-

tively or negatively affects the treatment effects. One way to do this is by linearly projecting the AIPW

scores, the individual-level treatment effects estimated by cate, on the variables of interest. We use

estat projection.

. estat projection
Treatment-effects linear projection Number of obs = 9,913

F(11, 9901) = 4.90
Prob > F = 0.0000
R-squared = 0.0045
Adj R-squared = 0.0034
Root MSE = 1.146e+05

Robust
Coefficient std. err. t P>|t| [95% conf. interval]

age 205.1206 117.9809 1.74 0.082 -26.14605 436.3873
educ -442.4583 488.4721 -0.91 0.365 -1399.963 515.0466

incomecat
1 -2439.222 2013.522 -1.21 0.226 -6386.136 1507.692
2 1874.817 2295.155 0.82 0.414 -2624.154 6373.788
3 5707.689 3298.341 1.73 0.084 -757.7313 12173.11
4 18194.6 5398.391 3.37 0.001 7612.651 28776.54

pension
Receives .. 3817.355 2454.437 1.56 0.120 -993.8419 8628.553

married
Married -2399.333 3403.066 -0.71 0.481 -9070.035 4271.37

twoearn
Yes -1428.041 4347.025 -0.33 0.743 -9949.094 7093.013

ira
Yes -2438.404 3619.217 -0.67 0.500 -9532.807 4656

ownhome
Yes 3162.649 1669.587 1.89 0.058 -110.081 6435.379

_cons 232.7251 8072.023 0.03 0.977 -15590.08 16055.53

Without specifying any variables, estat projection projects the AIPW scores on all the variables

defined in x. In other words, it performs a regression of 𝜏(x) on the conditioning variables in our model.

We can interpret the coefficients as the effects of variables on the linear approximation of treatment

effects. For example, the coefficient for 4.incomecat is 18,195. We can say that being in the highest

income category increases the 401(k) eligibility effects on assets by $18,195 over being in the lowest

income category if the treatment effects are linearly approximated by the variables defined in x.

We can also plot the estimated IATE function by allowing one variable to vary and fixing the other

variables to set values. For example, we can plot the function 𝜏(x) by allowing educ to vary and fixing

the values of the other variables.
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We use categraph iateplot. We specify the variable educ to allow the IATE function to vary with

educ. By default, the continuous variables, such as age, are fixed at their sample means, and the factor

variables are fixed at their base levels.

. categraph iateplot educ
Note: IATE estimated at fixed values of covariates other than educ.

Variable Statistic Value Type

age mean 41.05891 continuous
incomecat base 0 factor

ira base 0 factor
married base 0 factor
ownhome base 0 factor
pension base 0 factor
twoearn base 0 factor
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categraph iateplot plots the prediction of the IATE function at different education levels while

holding other variables fixed. It also plots the 95% pointwise confidence interval for each prediction.

Below 10 years of education, the effects seem constant. The treatment effects are larger for people with

12 to 14 years of education and then vary for 15 or more years of education. However, with the wide

confidence intervals for the IATEs, especially at the higher education levels, we cannot conclude that the

IATEs vary across education levels when the other variables are fixed at these levels.

Example 2: Add high-dimensional controls

In the previous example, the control variables for the outcome and the treatment-assignment model

coincide with catevarlist or the x variables. In this example, we want to allow more flexible models for

the outcome and the treatment-assignment by adding high-dimensional controls.

The partial linear model with high-dimensional controls is defined as

asset = e401k ∗ 𝜏(x) + 𝑔(x,w) + 𝜖
e401k = 𝑓(x,w) + 𝑢

where w is a vector of additional control variables. The nuisance functions 𝑔(x,w) and 𝑓(x,w) now

depend on both x and w.
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The potential outcomes are now

asset(1) = 𝜏(x) + 𝑔(x,w) + 𝜖
asset(0) = 𝑔(x,w) + 𝜖

Thus, the function 𝜏(x) identifies the IATE function.

𝜏(x) = 𝐸{asset(1) − asset(0)|x}

Here we want to include the interactions between the continuous variables (age and educ) and the fac-
tor variables (incomecat, pension, married, twoearn, ira, and ownhome) as controls in the outcome

and treatment-assignment models. We define a global macro, controls, to represent the interaction

terms.

. global fvars incomecat pension married twoearn ira ownhome

. global controls c.(educ age)#i.($fvars)

We add the controls() option to our cate command to include the additional control variables in

both the outcome and the treatment model. We also specify option nolog to suppress the iteration log.

. cate po (assets $catecovars) (e401k), rseed(12345671) controls($controls)
> nolog
Conditional average treatment effects Number of observations = 9,913
Estimator: Partialing out Number of folds in cross-fit = 10
Outcome model: Linear lasso Number of outcome controls = 47
Treatment model: Logit lasso Number of treatment controls = 47
CATE model: Random forest Number of CATE variables = 17

Robust
assets Coefficient std. err. z P>|z| [95% conf. interval]

ATE
e401k

(Eligible
vs

Not elig..) 8107.563 1144.817 7.08 0.000 5863.763 10351.36

POmean
e401k

Not eligi.. 13902.88 838.5924 16.58 0.000 12259.27 15546.49

The header shows that there are now 47 control variables for both the outcome and the treatment

model. After accounting for these controls, the ATE indicates that if everyone in the population were

eligible for a 401(k), the net financial assets would be $8,108 more than if no one in the population were

eligible. This is a larger estimated effect of 401(k) eligibility on financial assets than the ATE of $7,937

estimated in example 1.

https://www.stata.com/manuals/causalcate.pdf#causalcateRemarksandexamplesExample1Exploretreatment-effectheterogeneity
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We can again use categraph histogram to visualize the distribution of the predicted IATE function.

. categraph histogram
(bin=39, start=-41089.941, width=2938.3059)
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The IATE predictions are primarily positive, and the distribution has a fat right tail. This may imply

that the ATE underestimates the treatment effects for some groups in the population. To statistically test

if the treatment effects are heterogeneous, we use estat heterogeneity.

. estat heterogeneity
Treatment-effects heterogeneity test
H0: Treatment effects are homogeneous

chi2(1) = 4.19
Prob > chi2 = 0.0406

We find evidence against the null hypothesis that the treatment effects are homogeneous, which is the

same conclusion as in example 1.

Finally, we can use categraph iateplot to plot the IATE function by allowing one variable to vary

and fixing the other variables at some values. We plot the IATE function with respect to the level of

education (educ).

. categraph iateplot educ
Note: IATE estimated at fixed values of covariates other than educ.

Variable Statistic Value Type

age mean 41.05891 continuous
incomecat base 0 factor

ira base 0 factor
married base 0 factor
ownhome base 0 factor
pension base 0 factor
twoearn base 0 factor

https://www.stata.com/manuals/causalcate.pdf#causalcateRemarksandexamplesExample1Exploretreatment-effectheterogeneity
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The graph shows that the treatment effects are larger for people with 12 to 14 years of education while

holding other variables fixed. Again, the confidence intervals for the IATEs are wide, especially at the

highest education levels.

Example 3: Estimate the ATEs over prespecified groups

In examples 1 and 2, we learned that the treatment effects of 401(k) eligibility on financial assets are

heterogeneous. To further characterize this heterogeneity, we want to know how the ATEs vary across

population groups defined by variables such as income category or home ownership.

In general, we refer to a group variable as 𝐺 and a specific level of the group variable as 𝑔. We want

to estimate the ATE conditional on belonging to group 𝑔, that is, 𝐺 = 𝑔. We are interested in estimating

𝜏(𝑔) = 𝐸{asset(1) − asset(0)|𝐺 = 𝑔}

The function 𝜏(𝑔) is referred to as the GATE function. In our case, the first 𝐺 variable of interest is the

income category (incomecat). We will consider the home ownership indicator (ownhome) later.

We use table to report the minimum, maximum, and median income for the five income categories.

. table incomecat, stat(min income) stat(max income) stat(median income) nototal

Minimum value Maximum value Median

Income category
0 0 17196 12240
1 17214 26523 21735
2 26526 37275 31482
3 37296 53841 44379
4 53844 242124 69612

Levels 0 and 1 are low-income groups, levels 2 and 3 are middle-income groups, and level 4 is the

high-income group.

https://www.stata.com/manuals/causalcate.pdf#causalcateRemarksandexamplesExample1Exploretreatment-effectheterogeneity
https://www.stata.com/manuals/causalcate.pdf#causalcateRemarksandexamplesExample2Addhigh-dimensionalcontrols
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The GATEs are summaries of the IATE function over the groups defined by variable 𝐺. Because we

already estimated the IATE function in example 2, there is no need to estimate it again. By specifying the

option reestimate, we can reuse the IATE function and only reestimate the effects reported, here the

GATEs for incomecat. With this option, cate will require less computational time than estimating the

GATEs from scratch. We specify group(incomecat) to estimate GATEs for the income categories.

. cate, group(incomecat) reestimate
Estimating GATE ...
Conditional average treatment effects Number of observations = 9,913
Estimator: Partialing out Number of folds in cross-fit = 10
Outcome model: Linear lasso Number of outcome controls = 47
Treatment model: Logit lasso Number of treatment controls = 47
CATE model: Random forest Number of CATE variables = 17

Robust
assets Coefficient std. err. z P>|z| [95% conf. interval]

GATE
incomecat

0 4089.228 900.535 4.54 0.000 2324.212 5854.244
1 830.3422 1687.517 0.49 0.623 -2477.13 4137.815
2 5602.296 1300.555 4.31 0.000 3053.256 8151.336
3 9084.531 2265.143 4.01 0.000 4644.933 13524.13
4 20929.77 4706.377 4.45 0.000 11705.44 30154.1

ATE
e401k

(Eligible
vs

Not elig..) 8107.563 1144.817 7.08 0.000 5863.763 10351.36

POmean
e401k

Not eligi.. 13902.88 838.5924 16.58 0.000 12259.27 15546.49

The results show both the ATE and the GATEs. For example, the GATE estimate for the high-income

group (level 4) is $20,930. For those in the high-income group, being eligible for a 401(k) is expected to

increase net financial assets by $20,930 compared with the net financial assets if not eligible for a 401(k).

In contrast, the GATE estimate for the lowest income group (level 0) is only $4,089. In other words,

people who earn more benefit more from working for a company with a 401(k) plan. The ATE estimate

indicates that the treatment effects for the population are expected to be $8,108. The variation in the

estimated GATEs across income categories indicates that using the ATE alone does not fully characterize

the treatment effects.
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We can use categraph gateplot to visualize the GATE estimates and see if there is any trend.

. categraph gateplot
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The graph illustrates the upward trend between the income group and the treatment effects.

To further test whether the treatment effects are heterogeneous across income groups, we use estat
gatetest.

. estat gatetest
Group treatment-effects heterogeneity test
H0: Group average treatment effects are homogeneous
( 1) [GATE]0bn.incomecat - [GATE]1.incomecat = 0
( 2) [GATE]0bn.incomecat - [GATE]2.incomecat = 0
( 3) [GATE]0bn.incomecat - [GATE]3.incomecat = 0
( 4) [GATE]0bn.incomecat - [GATE]4.incomecat = 0

chi2(4) = 21.84
Prob > chi2 = 0.0002

We find evidence that the group treatment effects are not homogeneous.
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To compare the treatment-effects difference between groups, we use contrast.

. contrast r.incomecat
warning: cannot perform check for estimable functions.
Contrasts of marginal linear predictions
Margins: asbalanced

df chi2 P>chi2

GATE
incomecat
(1 vs 0) 1 2.90 0.0884
(2 vs 0) 1 0.91 0.3388
(3 vs 0) 1 4.20 0.0404
(4 vs 0) 1 12.35 0.0004

Joint 4 21.84 0.0002

Contrast Std. err. [95% conf. interval]

GATE
incomecat
(1 vs 0) -3258.886 1912.767 -7007.84 490.0682
(2 vs 0) 1513.068 1581.899 -1587.397 4613.534
(3 vs 0) 4995.303 2437.588 217.7184 9772.887
(4 vs 0) 16840.54 4791.758 7448.869 26232.22

The output shows the difference in each group’s ATE compared with the lowest income group (level 0).

Except for income group 1, we see that the difference in GATEs increases as income level increases,

which corresponds with our conjecture that people who earn more benefit more from being eligible for

a 401(k).
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Similarly, we can estimate the GATEs for home ownership. We again specify option reestimate to

reuse the cate estimation results and specify option group(ownhome) to estimate the GATEs for home

ownership categories.

. cate, group(ownhome) reestimate
Estimating GATE ...
Conditional average treatment effects Number of observations = 9,913
Estimator: Partialing out Number of folds in cross-fit = 10
Outcome model: Linear lasso Number of outcome controls = 47
Treatment model: Logit lasso Number of treatment controls = 47
CATE model: Random forest Number of CATE variables = 17

Robust
assets Coefficient std. err. z P>|z| [95% conf. interval]

GATE
ownhome

0 3319.503 795.4385 4.17 0.000 1760.472 4878.534
1 10858.26 1742.672 6.23 0.000 7442.69 14273.84

ATE
e401k

(Eligible
vs

Not elig..) 8107.563 1144.817 7.08 0.000 5863.763 10351.36

POmean
e401k

Not eligi.. 13902.88 838.5924 16.58 0.000 12259.27 15546.49

Among people who own a home, being eligible for a 401(k) is expected to increase their net finan-

cial assets by $10,858 compared with the net financial assets if not eligible for a 401(k). This effect is

substantially larger than $8,108, the ATE in the population.

We use estat gatetest to test whether the GATEs are heterogeneous.

. estat gatetest
Group treatment-effects heterogeneity test
H0: Group average treatment effects are homogeneous
( 1) [GATE]0bn.ownhome - [GATE]1.ownhome = 0

chi2(1) = 15.49
Prob > chi2 = 0.0001

We find evidence that the GATEs are not homogeneous.

Finally, we use contrast to further quantify the difference of the effects between the groups.

. contrast r.ownhome
warning: cannot perform check for estimable functions.
Contrasts of marginal linear predictions
Margins: asbalanced

df chi2 P>chi2

GATE
ownhome 1 15.49 0.0001
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Contrast Std. err. [95% conf. interval]

GATE
ownhome

(Yes vs No) 7538.76 1915.627 3784.201 11293.32

For homeowners, the GATE of 401(k) eligibility on financial assets is $7,539 more than that for the

nonhomeowners.

Example 4: Estimate the ATEs over values of a continuous variable

In example 3, we estimated the ATEs over levels of categorical variables. Sometimes, however, we

want to estimate theATEs over values of a continuous variable. For example, we may want to know how

the effects of 401(k) eligibility vary with income (not with income categories).

For a continuous variable 𝑍 and a specific value 𝑧 of variable 𝑍, we are interested in estimating

𝜏(𝑧) = 𝐸{asset(1) − asset(0)|𝑍 = 𝑧}

Semenova and Chernozhukov (2021) proposed the use of nonparametric series regression to approximate

the function 𝜏(𝑧). Specifically, they suggest running a series regression of the AIPW scores estimated in

cate on the variable 𝑍. To do this after cate, we use estat series. We specify income after estat
series to indicate that we want to estimate the ATEs over values of income. We also specify the graph
option to plot the estimated function. To reduce the impact of outliers (very high incomes) on estimation,

we restrict the sample to incomes less than or equal to $150,000, which is the 99th percentile of incomes

in the sample. We also specify the option knots(5) to choose five knots in the generated B-spline terms.

. estat series income if income <= 150000, graph knots(5)
Computing approximating function

Computing average derivatives
Nonparametric series regression for IATE
Cubic B-spline estimation Number of obs = 9,884

Number of knots = 5

Robust
Effect std. err. z P>|z| [95% conf. interval]

income .1966117 .0521898 3.77 0.000 .0943216 .2989018

Note: Effect estimates are averages of derivatives.

The estimate shows the marginal effect of income on the 401(k) eligibility treatment effects on the

net financial assets. Thus, the average marginal effect of a change in income on the treatment effects

is $0.20, indicating that people who earn more benefit more from working in a company with a 401(k)

plan.

https://www.stata.com/manuals/causalcate.pdf#causalcateRemarksandexamplesExample3EstimatetheATEsoverprespecifiedgroups
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Because we specified the graph option, we obtain the following graph that illustrates how the treat-

ment effect changes with income.
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Each point in the plot corresponds to the estimated ATE at a given income level. It also plots the 95%

confidence interval. The graph shows an upward trend between income level and the treatment effects,

especially at higher income levels. However, the confidence intervals for the ATEs are also wide at the

higher income levels. Compared with the categraph gateplot we used for the income category in

example 3, the series graph reveals a more nuanced and nonlinear relationship between income and the

treatment effects.

Example 5: Use the AIPW estimator

In addition to the PO estimator in a partial linear model, we can also estimate the IATE function in a

fully interactive model by using the AIPW estimator. For example, let’s estimate the IATE function as in

example 2 but using the AIPW estimator.

The IATE function we want to estimate is

𝜏(x) = 𝐸{asset(1) − asset(0)|x}

where asset(1) and asset(0) are the treated and untreated potential outcomes, respectively. x are the

treatment-effects covariates.

The fully interactive model is

asset(1) = 𝑔1(x,w) + 𝜖1

asset(0) = 𝑔0(x,w) + 𝜖2

e401k = 𝑓(x,w2) + 𝑢

where w and w2 are vectors of additional control variables for the outcome and treatment models, re-

spectively. By default, w2 is the same as w, but it can be different if specified. 𝑔1(x,w) and 𝑔0(x,w)
are the nonparametric models for the treated and untreated potential outcomes, respectively. 𝜖1 and 𝜖2
are the error terms. 𝑓(x,w2) is a nonparametric model for the treatment, and 𝑢 is the error term. The

fully interactive model allows the treatment effect to interact with both x and w; thus, it is more general

than the partial linear model. Note that estimating 𝜏(x) now requires that we also estimate three nuisance

functions: 𝑔1(x,w), 𝑔0(x,w), and 𝑓(x,w2).

https://www.stata.com/manuals/causalcate.pdf#causalcateRemarksandexamplesExample3EstimatetheATEsoverprespecifiedgroups
https://www.stata.com/manuals/causalcate.pdf#causalcateRemarksandexamplesExample2Addhigh-dimensionalcontrols
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We specify aipw after cate to invoke the AIPW estimator. The first portion of the output is

. cate aipw (assets $catecovars) (e401k), rseed(12345671) controls($controls)
Cross-fit fold 1 of 10 ...
Estimating lasso for outcome assets if e401k = 0 ...
Estimating lasso for outcome assets if e401k = 1 ...
Performing lasso for treatment e401k ...

⋮
(output omitted )

⋮
Cross-fit fold 10 of 10 ...
Estimating lasso for outcome assets if e401k = 0 ...
Estimating lasso for outcome assets if e401k = 1 ...
Performing lasso for treatment e401k ...

The iteration log shows that two potential outcome models and a treatment model are fit using ten-

fold cross-fitting. By default, the potential outcome models are estimated using a linear lasso and the

treatment model is estimated with a logit lasso.

The remaining portion of the output is

Estimating AIPW scores ...
Estimating random forest for IATE ...
Estimating ATE ...
Conditional average treatment effects Number of observations = 9,913
Estimator: Augmented IPW Number of folds in cross-fit = 10
Outcome model: Linear lasso Number of outcome controls = 47
Treatment model: Logit lasso Number of treatment controls = 47
CATE model: Random forest Number of CATE variables = 17

Robust
assets Coefficient std. err. z P>|z| [95% conf. interval]

ATE
e401k

(Eligible
vs

Not elig..) 8164.364 1151.125 7.09 0.000 5908.2 10420.53

POmean
e401k

Not eligi.. 13910.87 842.0945 16.52 0.000 12260.39 15561.34

We see that random forest is used to estimate the IATE function once the cross-fitting is finished. Then

the AIPW scores implied by the fully interactive model are computed, and the ATE is an average of the

AIPW scores. The estimated ATE indicates that if everyone in the population is eligible for a 401(k), the

net financial assets will, on average, be $8,164 more than if no one in the population is eligible for a

401(k). The $8,164 ATE estimate is similar to the $8,108 result in example 2.

Both the PO and theAIPW estimators are Neyman orthogonal, implying that theATE estimation results

are robust in response to the machine learning estimation errors in the outcome and the treatment model.

However, theAIPW estimator is asymptoticallymore efficient than the PO estimator (seeKennedy [2023]).

In addition, the AIPW estimator enjoys a doubly robust property, meaning that only one of the outcome

model or the treatment-assignment model needs to be correctly specified to consistently estimate theATE

(see Chernozhukov et al. [2018]).

https://www.stata.com/manuals/causalcate.pdf#causalcateRemarksandexamplesExample2Addhigh-dimensionalcontrols
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Another advantage of the AIPW estimator over the PO estimator is that it allows us to use different

control variables in the outcome and the treatment model. For example, suppose we want to add the

square of age as an additional control in the treatment-assignment model. In cate, we specify the option
treatcontrols($controls c.age#c.age) to use c.age#c.age as the additional control variable in

the treatment model.

. cate aipw (assets $catecovars) (e401k), rseed(12345671) controls($controls)
> treatcontrols($controls c.age#c.age) nolog
Conditional average treatment effects Number of observations = 9,913
Estimator: Augmented IPW Number of folds in cross-fit = 10
Outcome model: Linear lasso Number of outcome controls = 47
Treatment model: Logit lasso Number of treatment controls = 48
CATE model: Random forest Number of CATE variables = 17

Robust
assets Coefficient std. err. z P>|z| [95% conf. interval]

ATE
e401k

(Eligible
vs

Not elig..) 8164.364 1151.125 7.09 0.000 5908.2 10420.53

POmean
e401k

Not eligi.. 13910.87 842.0945 16.52 0.000 12260.39 15561.34

The ATE estimate does not change in this case even though the outcome model has one extra control

variable. The results in this example imply that our results are robust to a different control specification.

We can use the same set of postestimation commands to explore, summarize, and visualize the treat-

ment effects afterAIPW estimation as we did after PO estimation. The conclusions for our example would

be similar; thus, we will not repeat those postestimation commands here.

Example 6: Data-driven group hypothesis testing

In example 3, we summarized the heterogeneous treatment effects by estimating the ATEs for the

prespecified groups of income category and home ownership. We emphasize that these group variables

must be prespecified before the data collection and analysis to avoid 𝑝-value hacking as discussed in

Head et al. (2015). This scenario is suitable when researchers know a priori across which groups they

would like to explore treatment-effect heterogeneity.

However, we sometimes do not knowwhich variable is linked to the heterogeneity of treatment effects;

we want the data to discover these variables. Chernozhukov et al. (2006) suggest ranking the treatment

effects first and then performing a classification analysis based on the groups induced by the treatment-

effects ranking.

For example, suppose we estimate the IATE of 401(k) eligibility on net financial assets for each obser-

vation, and we divide the data into four groups based on the IATE prediction’s ranking. The first group

is the people in the top 25% of the treatment effects in the data, and the last group is the people in the

bottom 25% of the treatment effects in the data. We want to know whether the mean income differs for

the groups with the largest and the smallest treatment effects.

https://www.stata.com/manuals/causalcate.pdf#causalcateRemarksandexamplesExample3EstimatetheATEsoverprespecifiedgroups
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In cate, we specify the group(#) option to rank the data based on the estimated IATEs. In the fol-

lowing example, we specify group(4) to divide the data into four groups based on the IATE ranking. We

also specify the option xfolds(5) to use five-fold cross-fitting. The first portion of the output is

. cate po (assets $catecovars) (e401k), rseed(12345671) controls($controls)
> group(4) xfolds(5)
Cross-fit fold 1 of 5 ...
Performing lasso for outcome assets ...
Performing lasso for treatment e401k ...
Estimating IATE rankings ...
Estimating AIPW scores ...

⋮
(output omitted )

⋮
Cross-fit fold 5 of 5 ...
Performing lasso for outcome assets ...
Performing lasso for treatment e401k ...
Estimating IATE rankings ...
Estimating AIPW scores ...

The iteration logs show that the IATE rankings are computed using cross-fitting. This procedure is

necessary because it avoids the overfitting issues by using one sample to estimate the IATE function and

a different sample to predict the IATE function.

The remaining output is as follows:

Performing random forest for IATE ...
Estimating AIPW scores ...
Estimating sorted GATE ...
Conditional average treatment effects Number of observations = 9,913
Estimator: Partialing out Number of folds in cross-fit = 5
Outcome model: Linear lasso Number of outcome controls = 47
Treatment model: Logit lasso Number of treatment controls = 47
CATE model: Random forest Number of CATE variables = 17

Robust
assets Coefficient std. err. z P>|z| [95% conf. interval]

GATES
rank

1 13529.88 3792.728 3.57 0.000 6096.266 20963.49
2 11190.14 1646.548 6.80 0.000 7962.962 14417.31
3 4026.967 1154.876 3.49 0.000 1763.452 6290.481
4 3993.897 1627.408 2.45 0.014 804.236 7183.558

ATE
e401k

(Eligible
vs

Not elig..) 8183.327 1148.204 7.13 0.000 5932.888 10433.77

POmean
e401k

Not eligi.. 13881.65 840.706 16.51 0.000 12233.89 15529.4

The remaining output shows the ATEs for the groups sorted by IATE predictions, also known as the

GATESs. The GATES for the group with the largest treatment effects is $13,530. The results show a

substantial difference of GATESs estimates between the most and the least affected groups.



cate — Conditional average treatment-effects estimation 33

In some cases, however, the highest-ranking group does not necessarily have a greater GATES estimate

than the lowest-ranking group because the rankings are generated using cross-fitting to avoid overfitting.

The rankings depend on the IATE estimates’ quantiles in each cross-fitting fold but not the whole sample.

Thus, an observation with a higher ranking implies only that this observation has greater IATE estimates

compared with other observations in a particular fold; it does not necessarily mean that it has greater IATE

estimates compared with the full sample. If the treatment effects are genuinely homogeneous, we would

observe GATES estimates that are similar across ranking levels. See Methods and formulas for details.

We can visualize the GATES estimates using categraph gateplot.

. categraph gateplot
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To test whether the treatment effects are homogeneous across the group, we use estat gatetest.
We specify levels 1 and 4 to compare the groups with the largest and smallest effects.

. estat gatetest 1 4
Sorted group treatment-effects heterogeneity test
H0: Sorted group average treatment effects are homogeneous
( 1) [GATES]1bn.rank - [GATES]4.rank = 0

chi2(1) = 5.34
Prob > chi2 = 0.0209

We find evidence that the GATESs are not homogeneous across the groups with the largest and smallest

effects.

https://www.stata.com/manuals/causalcate.pdf#causalcateMethodsandformulas
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We can use estat classification to test whether the means of some variables are different be-

tween the groups with the largest and smallest effects. For example, we can test whether the income

level has different means in groups ranked 1 and 4.

. estat classification income
Classification t test with equal variances

Group Obs Mean Std. err. Std. dev. [95% conf. interval]

1 2,480 62522.61 513.3117 25562.71 61516.05 63529.17
4 2,475 26420.44 367.1063 18263.31 25700.57 27140.31

Combined 4,955 44489.74 406.6722 28626.37 43692.48 45287

diff 36102.17 631.2817 34864.58 37339.76

diff = mean(1) - mean(4) t = 57.1887
H0: diff = 0 Degrees of freedom = 4953

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 1.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 0.0000

The income levels are higher in the group with the largest effects than in the group with the smallest

effects.

We can do a similar classification analysis for age and ownhome.

. estat classification ownhome
Classification t test with equal variances

Group Obs Mean Std. err. Std. dev. [95% conf. interval]

1 2,480 .8584677 .0070009 .3486401 .8447396 .8721959
4 2,475 .4056566 .0098718 .4911179 .3862986 .4250145

Combined 4,955 .6322906 .0068507 .4822304 .6188603 .645721

diff .4528112 .0120983 .4290932 .4765291

diff = mean(1) - mean(4) t = 37.4278
H0: diff = 0 Degrees of freedom = 4953

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 1.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 0.0000

. estat classification age
Classification t test with equal variances

Group Obs Mean Std. err. Std. dev. [95% conf. interval]

1 2,480 45.16815 .1808494 9.006225 44.81351 45.52278
4 2,475 35.26747 .2175367 10.82231 34.8409 35.69405

Combined 4,955 40.22281 .1579318 11.1171 39.91319 40.53242

diff 9.90067 .2828416 9.346176 10.45517

diff = mean(1) - mean(4) t = 35.0043
H0: diff = 0 Degrees of freedom = 4953

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 1.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 0.0000
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More people in group 1 own homes than in group 4, and people are older in group 1 than people in

group 4.

The analysis suggests that individuals who are older, have a home, and have a higher income see a

more substantial effect of 401(k) eligibility on net financial assets. Without any ex-ante assumptions

about the effect of eligibility, we can learn from the data which subpopulations defined by covariates

would benefit more with greater access to a 401(k).

Finally, we can specify the group(#) option with reestimate if we want to divide the data into a

different number of ranking groups but want to avoid recomputing the IATE function. It is much faster

than estimating GATESs from scratch. Here, we specify the group(2) option to divide the data into two

ranking levels.

. cate, group(2) reestimate
Estimating sorted GATE ...
Conditional average treatment effects Number of observations = 9,913
Estimator: Partialing out Number of folds in cross-fit = 5
Outcome model: Linear lasso Number of outcome controls = 47
Treatment model: Logit lasso Number of treatment controls = 47
CATE model: Random forest Number of CATE variables = 17

Robust
assets Coefficient std. err. z P>|z| [95% conf. interval]

GATES
rank

1 12360.48 2067.996 5.98 0.000 8307.28 16413.68
2 4010.449 997.4399 4.02 0.000 2055.502 5965.395

ATE
e401k

(Eligible
vs

Not elig..) 8183.327 1148.204 7.13 0.000 5932.888 10433.77

POmean
e401k

Not eligi.. 13881.65 840.706 16.51 0.000 12233.89 15529.4

Example 7: Flexible models

In the CATE estimation, we need to specify the estimation methods in three different models: the out-

come model, the treatment-assignment model, and the CATE model. The outcome and treatment models

are the nuisance parameters, which we are not interested in making inferences about. The CATE model

is the object of interest, and we want to make inferences on IATEs, ATEs, GATEs, and GATESs.

In the previous examples, we used the lasso linear model for the outcome model, the lasso logit model

for the treatmentmodel, and the random forest for the IATE function 𝜏(x), the default in cate. Sometimes,

however, we want to use different techniques to explore data based on different assumptions. For the

outcome and treatment models, we can use a semi-parametric method such as lasso, a nonparametric

method such as random forest, or a purely parametric method such as linear or logistic regression. For

the IATE function, we can use either a nonparametric method, such as random forest, or a parametric

method, such as linear regression. We can try different models to see how sensitive the results are to the

modeling methods and assumptions.
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In the case of our 401(k) eligibility example, we will try the parametric models, which are estimated

using parametric methods, and the nonparametric models, which are estimated using random forest.

Parametric models like linear regression are easier to compute and interpret than nonparametric mod-

els such as a random forest. However, the assumptions of a parametricmodel are less likely to be satisfied.

Nevertheless, we can use it as a benchmark. For example, suppose we assume a linear model for the out-

come, a logit model for the treatment, and the linear model for the IATE. Under these assumptions, the

IATE function is

𝜏(x) = x′𝛽

Thus, the outcome and treatment models under these parametric assumptions become

asset = e401k ∗ (x′𝛽) + x′𝛾1 + 𝜖

Pr(e401k = 1|x) = exp(x′𝛾2)
1 + exp(x′𝛾2)

In cate, we specify the omethod(regress) option to use linear regression for the outcome, the

tmethod(logit) option to use a logit model for the treatment, and the cmethod(regress) option to

use linear regression for the IATE function.

. cate po (assets $catecovars) (e401k), rseed(12345671)
> omethod(regress) tmethod(logit) cmethod(regress) nolog
Conditional average treatment effects Number of observations = 9,913
Estimator: Partialing out Number of folds in cross-fit = 10
Outcome model: Linear regression Number of outcome controls = 17
Treatment model: Logit Number of treatment controls = 17
CATE model: Linear regression Number of CATE variables = 17

Robust
assets Coefficient std. err. z P>|z| [95% conf. interval]

ATE
e401k

(Eligible
vs

Not elig..) 7904.218 1155.565 6.84 0.000 5639.351 10169.08

POmean
e401k

Not eligi.. 13977.45 831.0932 16.82 0.000 12348.54 15606.37
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We can interpret the results as before. If we plot the IATE function over one variable, such as educ,
we see a straight line, which is expected due to the parametric assumption on the IATE function 𝜏(x).

. categraph iateplot educ
Note: IATE estimated at fixed values of covariates other than educ.

Variable Statistic Value Type

age mean 41.05891 continuous
incomecat base 0 factor

ira base 0 factor
married base 0 factor
ownhome base 0 factor
pension base 0 factor
twoearn base 0 factor

-30000
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IATE function for educ

Interestingly, the graph shows a downward trend between the years of education and the IATEs, and the

estimates of the IATEs are not different from zero (the confidence intervals include zero for all education

levels). This conclusion is very different from that in examples 1 and 2 when we use the random forest

to estimate the IATE function. It may imply that the parametric assumptions on the IATE function are too

strong.

In contrast to the pure parametric model, we can use the random forest in the outcome, the treatment,

and the IATE models. Random forest allows us to model flexibly without imposing restrictive assump-

tions. Another advantage is that we can use the out-of-bag predictions from the random forest to avoid

using cross-fitting, which may be time consuming.

We specify the omethod(rforest) and tmethod(rforest) options to use the random forest model

for both the outcome and the treatment models. The default method for the IATE estimation is already a

random forest, so we do not need to specify the cmethod() option here. In addition, to use the out-of-bag
prediction-based algorithm, we specify the oob option.

https://www.stata.com/manuals/causalcate.pdf#causalcateRemarksandexamplesExample1Exploretreatment-effectheterogeneity
https://www.stata.com/manuals/causalcate.pdf#causalcateRemarksandexamplesExample2Addhigh-dimensionalcontrols
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. cate po (assets $catecovars) (e401k), rseed(12345671)
> omethod(rforest) tmethod(rforest) oob
Performing random forest for outcome assets ...
Performing random forest for treatment e401k ...
Performing random forest for IATE ...
Estimating AIPW scores ...
Estimating ATE ...
Conditional average treatment effects Number of observations = 9,913
Estimator: Partialing out Number of folds in cross-fit = 1
Outcome model: Random forest Number of outcome controls = 17
Treatment model: Random forest Number of treatment controls = 17
CATE model: Random forest Number of CATE variables = 17

Robust
assets Coefficient std. err. z P>|z| [95% conf. interval]

ATE
e401k

(Eligible
vs

Not elig..) 8225.258 1173.862 7.01 0.000 5924.53 10525.99

POmean
e401k

Not eligi.. 14016.34 850.1257 16.49 0.000 12350.13 15682.56

The results are a little different from those in examples 1 and 2. This is expected because, in exam-

ples 1 and 2, we used the lasso methods for the outcome and treatment models.

We can test whether the treatment effects are heterogeneous using estat heterogeneity.

. estat heterogeneity
Treatment-effects heterogeneity test
H0: Treatment effects are homogeneous

chi2(1) = 4.07
Prob > chi2 = 0.0437

We find evidence that the treatment effects are not homogeneous.

To compare with the parametric model, we can also plot the IATE function with respect to education

(educ).

. categraph iateplot educ
Note: IATE estimated at fixed values of covariates other than educ.

Variable Statistic Value Type

age mean 41.05891 continuous
incomecat base 0 factor

ira base 0 factor
married base 0 factor
ownhome base 0 factor
pension base 0 factor
twoearn base 0 factor



cate — Conditional average treatment-effects estimation 39

0

5000

10000

15000

20000

IA
T

E

0 5 10 15 20
Years of education

95% CI

IATE function for educ

Compared with the parametric IATE function, the graph shows a nonlinear form, and the treatment effects

are more substantial for people with 12 to 15 years of education while holding other variables fixed.

The random forest method puts less restrictive assumptions on the data generating process (DGP) than

the lasso method, and thus, random forest may model the real-world data better. However, the caveats

are that the random forest can not handle high-dimensional controls like lasso, and it takes much longer

to compute when there are many observations in the data. In contrast, lasso can be considered a semi-

parametric model by approximating a function using a set of basis functions. It can approximate the

DGP reasonably well when the underlying function is sparse, meaning only a few terms among high-

dimensional controls have nonzero coefficients.

Example 8: Treatment-assignment policy evaluation

In examples 1 to 7, we use cate to study the treatment-effects heterogeneity from different per-

spectives, such as IATEs, GATEs, and GATESs. Sometimes, researchers are not interested in the treatment-

effects heterogeneity itself but instead want to use the estimated treatment effects to evaluate a treatment-

assignment policy.

We want to evaluate the policy by answering questions such as the following:

1. If we implement such a policy, what is the average outcome of the population?

2. If we have alternative policies, which one is better?

For the first question, we compute the average outcome if the treatment is assigned according to the

policy, which is also known as the policy’s value. Precisely, the value of the treatment-assignment policy,

Π(𝜋), is defined as
Π(𝜋) = 𝐸{𝜋𝑖𝑦𝑖(1) + (1 − 𝜋𝑖) 𝑦𝑖(0)}

where 𝜋𝑖 ∈ [0, 1] is a prespecified treatment-assignment probability for the 𝑖th observation. Thus, 𝜋𝑖
is referred to as the policy. 𝑦𝑖(1) and 𝑦𝑖(0) are the potential outcomes for being treated or not treated,

respectively.

https://www.stata.com/manuals/causalcate.pdf#causalcateRemarksandexamplesExample1Exploretreatment-effectheterogeneity
https://www.stata.com/manuals/causalcate.pdf#causalcateRemarksandexamplesExample7Flexiblemodels
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For the second question, we compute the value difference between the two policies,

Π(𝜋𝐴) − Π(𝜋𝐵)

where 𝜋𝐴 and 𝜋𝐵 are two different treatment-assignment policies.

We illustrate how to use cate to evaluate a hypothetical treatment-assignment policy that assigns

patients to two types of lung transplants. Bilateral lung transplant (BLT) is usually associatedwith a higher

death rate in the short term after the operation but with a more significant improvement in the quality of

life compared with a single lung transplant (SLT). Suppose a doctor has a simple treatment-assignment

rule, which assigns a patient to BLT if the patient’s walking distance is greater than 500 meters in six

minutes and if the patient does not have diabetes. The doctor wants to evaluate this policy by answering

the following two questions:

1. What would be the average outcome if this policy is implemented?

2. Is this policy better than the treatment assignment observed in the data?

We have a fictional dataset (lung.dta) inspired by Koch, Vock, andWolfson (2018). An individual’s

forced expiratory volume in one second (FEV1) measures a patient’s quality of life. The outcome of

interest is the percentage of FEV1 that a patient has relative to a healthy person with similar characteristics,

FEV1% (fev1p), measured one year after the operation. The treatment variable (transtype) indicates
whether the treatment is BLT or SLT.
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To open the dataset and describe it, we type

. use https://www.stata-press.com/data/r19/lung, clear
(Fictional data on lung transplant)
. describe *, short
Variable Storage Display Value

name type format label Variable label

agep byte %10.0g Patient age (years)
bmip double %10.0g Patient body mass index
diabetesp byte %12.0g lbdiab Patient diabetes status
heightp double %10.0g Patient height (cm)
o2amt double %10.0g Oxygen delivered
karn byte %8.0g lbyes Karnofsky score > 60
lungals double %10.0g Lung allocation score
racep byte %8.0g lbrace Patient race
sexp byte %8.0g lbsex Patient gender
lifesvent byte %8.0g lbyes Life support ventilator needed
assisvent byte %8.0g lbyes Assisted ventilation needed
centervol double %10.0g Center volume
walkdist double %10.0g Walking distance in 6 minutes
o2rest byte %8.0g lbyes Oxygen needed at rest
aged byte %10.0g Donor age (years)
raced byte %8.0g lbrace Donor race
bmid double %10.0g Donor body mass index
smoked byte %8.0g lbyes Donor if has history of smoking
cmv byte %8.0g lbyes Positive cytomegalovirus test
deathcause byte %8.0g lbyes Cause of death - traumatic brain

injury
diabetesd byte %12.0g lbdiab Donor diabetes status
expandd byte %8.0g lbyes Expanded donor needed
heightd double %10.0g Donor height (cm)
sexd byte %8.0g lbsex Donor gender
distd int %10.0g Donor to treatment center

distance
lungpo2 double %10.0g Lung PO2
lungalloc byte %8.0g lballo Lung allocation status
hratio double %10.0g Height ratio
ischemict double %10.0g Ischemic time
genderm byte %19.0g lbgm Matching gender status
racem byte %17.0g lbrm Matching race status
transtype byte %8.0g lbtau Lung transplant type
fev1p double %10.0g Percentage of predicted value of

FEV1

Thirty-one variables measure characteristics of the patients and donors. To construct catevarlist and

the control variables, we want to use these variables and the interactions among them. The following

commands create global macro catecovars to represent the covariates in the IATE function and global

macro controls to represent the additional control variables in the outcome and treatment models.

. global cvars bmip heightp o2amt lungals centervol walkdist bmid heightd
> distd lungpo2 hratio ischemict
. global fvars diabetesp karn racep sexp lifesvent assisvent o2rest raced
> smoked cmv deathcause diabetesd expandd sexd lungalloc genderm racem
. global catecovars c.($cvars) i.($fvars)
. global controls c.($cvars)#i.($fvars)
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The hypothetical policy variable policy1 assigns a patient to BLT if the patient’s walking distance is

more than 500 meters and if the patient does not have diabetes.

. generate policy1 = walkdist > 500 & !diabetesp & !missing(walkdist)

To evaluate policy1, we first need to use cate and estimate the potential outcomes for each individ-

ual.

. cate aipw (fev1p $catecovars) (transtype), rseed(12345671) controls($controls)
> nolog
Conditional average treatment effects Number of observations = 937
Estimator: Augmented IPW Number of folds in cross-fit = 10
Outcome model: Linear lasso Number of outcome controls = 454
Treatment model: Logit lasso Number of treatment controls = 454
CATE model: Random forest Number of CATE variables = 46

Robust
fev1p Coefficient std. err. z P>|z| [95% conf. interval]

ATE
transtype

(BLT
vs

SLT) 37.5243 .1646795 227.86 0.000 37.20153 37.84707

POmean
transtype

SLT 46.49502 .2025403 229.56 0.000 46.09805 46.892

The FEV1% if all the patients were to be assigned to BLT is expected to be 38 percentage points higher

than the 46% average expected if all patients were to be assigned to SLT.

TheATE is a special version of policy evaluation. TheATE estimates the difference in average outcomes

between the two policies: everyone is treated versus everyone is untreated. Here is an illustration.
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We create the variable treatall representing a policy that assigns each patient to BLT treatment. In

contrast, variable treatnone represents a policy that assigns each patient to SLT treatment.

. generate treatall = 1

. generate treatnone = 0

We can use estat policyeval to compare these treatment policies.

. estat policyeval treatall treatnone
Treatment-assignment policy evaluation Number of obs = 937

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

Value
policy

treatall 84.01932 .3085432 272.31 0.000 83.41459 84.62406
treatnone 46.49502 .2025403 229.56 0.000 46.09805 46.892

Contrast
policy

(treatall
vs

treatnone) 37.5243 .1646795 227.86 0.000 37.20153 37.84707

The value of a policy is the average outcome if the policy is implemented. For example, the value of

treatnone is 46.5, which means that the expected FEV1% is 46.5% if all patients are assigned to SLT.

By definition, the value of treatnone corresponds to the potential outcome mean if the treatment status

is SLT, and in the cate output, the POmean for SLT is indeed 46.5. That is,

Π(treatnone) = 𝐸{0 ∗ fev1p(1) + 1 ∗ fev1p(0)} = 𝐸{fev1p(0)}

Similarly, the value of treatall is the potential outcome if all patients are assigned to BLT. That is,

Π(treatall) = 𝐸{1 ∗ fev1p(1) + 0 ∗ fev1p(0)} = 𝐸{fev1p(1)}

The contrast is the difference in the values of the two policies. The contrast between treatall and

treatnone is 37.5, which means that the FEV1% is 37.5% higher if all patients are assigned to BLT over

SLT. By definition, the contrast between treatall and treatnone is the ATE, and the ATE estimate in

the cate output is indeed 37.5. That is,

Π(treatall) − Π(treatnone) = 𝐸{fev1p(1) − fev1p(0)} = ATE

Now we are ready to evaluate the hypothetical policy policy1, which assigns a patient to BLT if the

patient’s walking distance is greater than 500 meters and the patient does not have diabetes.

. estat policyeval policy1
Treatment-assignment policy evaluation Number of obs = 937

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

Value
policy

policy1 72.66426 .714435 101.71 0.000 71.26399 74.06452
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The average FEV1% is 72.6% if this policy is implemented. We can compare this with the observed

treatment policy (transtype).

. estat policyeval policy1 transtype
Treatment-assignment policy evaluation Number of obs = 937

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

Value
policy

policy1 72.66426 .714435 101.71 0.000 71.26399 74.06452
transtype 66.53891 .5149955 129.20 0.000 65.52954 67.54828

Contrast
policy

(policy1
vs

transtype) 6.125348 .9130896 6.71 0.000 4.335725 7.91497

The average FEV1% is 6.1% higher if policy1 is implemented compared with the actual treatment-

assignment policy transtype.

Stored results
cate stores the following in e():

Scalars

e(N) number of observations

e(n xfolds) number of folds for cross-fitting

e(k controls om) number of controls in the outcome model

e(k controls tm) number of controls in the treatment model

e(k cate covars) number of covariates in the CATE model

e(gateslevel) number of sub-levels in the data-driven group if group(#) specified

e(samprate om) sampling rate for outcome model, if omethod(rforest) specified

e(ntrees om) number of trees for outcome model, if omethod(rforest) specified

e(cintrees om) number of trees in each group for outcome model, if omethod(rforest) specified

e(splitminobs om) minimum number of observations to split a node for outcome model, if

omethod(rforest) specified
e(splitmeanvars om) mean number of variables to be split in each node for outcome model, if

omethod(rforest) specified
e(honestrate om) sampling rate for honest tree for outcome model, if omethod(rforest) specified

e(samprate tm) sampling rate for treatment model, if tmethod(rforest) specified

e(ntrees tm) number of trees for treatment model, if tmethod(rforest) specified

e(cintrees tm) number of trees in each group for treatment model, if tmethod(rforest) specified

e(splitminobs tm) minimum number of observations to split a node for treatment model, if

tmethod(rforest) specified
e(splitmeanvars tm) mean number of variables to be split in each node for treatment model, if

tmethod(rforest) specified
e(honestrate tm) sampling rate for honest tree for treatment model, if tmethod(rforest) specified

e(samprate cm) sampling rate for CATE model, if cmethod(rforest) specified

e(ntrees cm) number of trees for CATE model, if cmethod(rforest) specified

e(cintrees cm) number of trees in each bag for CATE model, if cmethod(rforest) specified

e(splitminobs cm) minimum number of observations to split a node for CATE model, if

cmethod(rforest) specified
e(splitmeanvars cm) mean number of variables to be split in each node for CATE model, if

cmethod(rforest) specified
e(honestrate cm) sampling rate for honest tree for CATE model, if cmethod(rforest) specified
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Macros

e(cmd) cate
e(cmdline) command as typed

e(depvar) name of outcome variable

e(tvar) name of treatment variable

e(gate var) GATE variable

e(cate covars) name of CATE covariates

e(covars om) covariates for outcome model

e(covars tm) covariates for treatment model

e(lasso selection om) lasso selection method for outcome model

e(lasso selection tm) lasso selection method for treatment model

e(estimator) name of estimator

e(omethod) estimation method for outcome model

e(tmethod) estimation method for treatment model

e(cmethod) estimation method for CATE model

e(title) title in estimation output

e(predict) program used to implement predict
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(rngstate) random-number state used

e(properties) b V
e(marginsnotok) predictions disallowed by margins

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
The methods and formulas are presented under the following headings:

PO for the partial linear model
PO IATE estimator
PO GATE estimator with prespecified groups
PO GATES estimator with data-driven groups

AIPW for the fully interactive model
AIPW IATE estimator
AIPW GATE estimator with prespecified groups
AIPW GATES estimator with data-driven groups

Generalized random forest
Honest tree
Honest random forest
Confidence intervals
Missing values

We can group the estimation methods by the outcome model. The outcome model can be expressed

as a partial linear or fully interactive model. For the partial linear model, the estimation method is the

PO estimator proposed in Nie and Wager (2021). The fully interactive model’s estimation methods are
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built around theAIPW estimator discussed in Knaus (2022) and Kennedy (2023). We will briefly discuss

the features of these two estimators and compare them. For notational simplicity, we drop the subscript

𝑖 indicating the 𝑖th observation to refer to a random variable.

PO for the partial linear model
The partial linear model is

𝑦 = 𝑑 ∗ 𝜏(x) + 𝑔(x,w) + 𝜖
𝑑 = 𝑓(x,w) + 𝑢

where 𝑦 is the outcome variable, 𝑑 is a binary treatment, x is a vector of covariates for the IATE function,

w are optional controls for both the outcome and the treatment models, and 𝑔(x,w) and 𝑓(x,w) are

nuisance functions for the outcome and the treatment, respectively. 𝜖 and 𝑢 are the error terms.

Let 𝑦(1) be the potential outcome when the unit is treated and 𝑦(0) be the potential outcome when

the unit is not treated. By definition, the potential outcomes are

𝑦(1) = 𝜏(x) + 𝑔(x,w) + 𝜖
𝑦(0) = 𝑔(x,w) + 𝜖

Thus, the IATE function is 𝜏(x) = 𝐸{𝑦(1) − 𝑦(0)|x}.
To estimate 𝜏(x), we need to partial-out the nuisance functions 𝑔(x,w) and 𝑓(x,w). To do this, we

need to construct residuals of the outcome and the treatment that are independent of w and x. First, we

take the expectation of 𝑦 conditional on x and w. That is,

𝐸(𝑦|x,w) = 𝑓(x,w)𝜏(x) + 𝑔(x,w)

Note that unconfoundedness implies that 𝐸(𝜖|x,w) = 𝐸(𝑢|x,w) = 0, and therefore we have

𝐸(𝑑|x,w) = 𝑓(x,w). Thus, subtracting 𝐸(𝑦|x,w) from 𝑦 removes the term 𝑔(x,w).

𝑦 − 𝐸(𝑦|x,w) = {𝑑 − 𝑓(x,w)}𝜏(x) + 𝜖

We can estimate 𝐸(𝑦|x,w) and 𝑓(x,w) via lasso, random forest, or parametric regression. Then we

use the residuals to estimate 𝜏(x). Let ℎ(x,w) = 𝐸(𝑦|x,w), and let ℎ̂(x,w) and ̂𝑓(x,w) be the estimates

for ℎ(x,w) and 𝑓(x,w), respectively. We construct the PO version of 𝑦 and 𝑑 as

̃𝑦 = 𝑦 − ℎ̂(x,w)
̃𝑑 = 𝑑 − ̂𝑓(x,w)

One way we can estimate 𝜏(x) is by solving the local moment condition

𝑁
∑
𝑖=1

[𝛼(𝑥𝑖)𝑑𝑖 {𝑦𝑖 − 𝑑𝑖𝜏(x)}] = 0

where 𝛼(𝑥𝑖) defines the local weights that attach more weight to observations that are close to x. We

use the generalized random forest proposed in Athey, Tibshirani, andWager (2019) to solve this moment

condition. For details on causal forest, see Generalized random forest.

https://www.stata.com/manuals/causalcate.pdf#causalcateMethodsandformulas
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Another way to estimate 𝜏(x) is by assuming a linear functional form for the CATE, 𝜏(x) = x𝛽, and
estimating 𝛽 using linear regression.

Next we discuss the PO estimator for IATEs, GATEs, and GATESs.

PO IATE estimator

In practice, the partialed-out residuals ̃𝑑 and ̃𝑦 are constructed using the out-of-sample prediction.

In particular, ℎ̂(x𝑖,w𝑖) = ℎ̂(−𝑖)(x𝑖,w𝑖) is the out-of-sample prediction of 𝑦𝑖, with ℎ̂(−𝑖)(x,w) estimated

using data that exclude observation 𝑖. Similarly, ̂𝑓(x𝑖,w𝑖) = ̂𝑓 (−𝑖)(x𝑖,w𝑖) is the out-of-sample prediction

of 𝑑𝑖.

The residuals are based on the out-of-sample prediction.

𝑦𝑖
(−𝑖) = 𝑦𝑖 − ℎ̂(−𝑖)(x𝑖,w𝑖)

𝑑𝑖
(−𝑖)

= 𝑑𝑖 − ̂𝑓 (−𝑖)(x𝑖,w𝑖)

Thus, in practice, we solve the moment condition

𝑁
∑
𝑖=1

[𝛼(𝑥𝑖)𝑑𝑖
(−𝑖)

{𝑦𝑖
(−𝑖) − 𝑑𝑖

(−𝑖)
𝜏(x)}] = 0

We can construct the out-of-sample prediction using the cross-fitting technique. We split the data into

𝐾 folds, define the main sample as the observations in the 𝑘th fold, and define the auxiliary sample as the

observations not in the 𝑘th fold. We estimate all the nuisance functions using the auxiliary sample and get

the out-of-sample predictions in the main sample. After circulating through all the folds, we eventually

compute the out-of-sample predictions for the full sample. For details of the cross-fitting version of the

PO estimator for the IATE, see algorithm 1 below.

Algorithm 1: PO for the IATE using cross-fitting

1. Define the input.

(a) Set the number of cross-fitting folds 𝐾.

(b) Set the estimation method for the outcome model. It can be one of random forest, lasso,

square-root lasso, or linear regression.

(c) Set the estimation method for the treatment model. It can be one of probability forest, lasso,

probit, or logit.

2. Do the cross-fitting to construct the residuals.

(a) Randomly split the data into 𝐾 folds.

(b) For each fold 𝑘 = 1 to 𝐾, do the following:

i. Define the main sample 𝑆𝑀 as the observations in the 𝑘th fold and the auxiliary sample

𝑆𝐴 as the observations not in the 𝑘th fold.
ii. Construct outcome residuals.

A. Using the auxiliary sample 𝑆𝐴, train the outcome model ℎ̂𝐴(x,w).
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B. Based on ℎ̂𝐴(x,w), predict the outcome in the main sample 𝑆𝑀. Denote the pre-

diction as ̂𝑦𝑀.

C. Compute outcome residuals in the main sample ̃𝑦𝑀 = 𝑦 − ̂𝑦𝑀.

iii. Construct treatment residuals.

A. Using the auxiliary sample 𝑆𝐴, train the treatment model ̂𝑓𝐴(x,w).
B. Based on ̂𝑓𝐴(x,w), predict the outcome in the main sample 𝑆𝑀. Denote the pre-

diction as ̂𝑑𝑀.

C. Compute treatment residuals in the main sample ̃𝑑𝑀 = 𝑑 − ̂𝑑𝑀.

3. Using the full sample, estimate the function 𝜏(x) via linear regression or via generalized random
forest as in Athey, Tibshirani, and Wager (2019):

𝑁
∑
𝑖=1

[𝛼(𝑥𝑖)𝑑𝑖
(−𝑖)

{𝑦𝑖
(−𝑖) − 𝑑𝑖

(−𝑖)
𝜏(x)}] = 0

Cross-fitting can be applied to generic machine learning techniques. However, by construction, it is

computationally demanding.

When the outcome and treatment models are estimated using random forest, we can use a particular

case of cross-fitting that saves computational time. That is, we can use the out-of-bag predictions to

construct the residuals. The out-of-bag prediction for an observation is constructed using only the trees

in the random forest that do not contain this observation. See Generalized random forest for more details.

This procedure is equivalent to cross-fitting but has a faster computation time. For details of the out-of-

bag prediction-based PO estimator for the IATE, see algorithm 2 below.

Algorithm 2: PO for the IATE using out-of-bag prediction

1. Construct outcome residuals.

(a) Use the full sample, fit a regression forest for the outcome model, and denote it as ℎ̂(x,w).
(b) Based on ℎ̂(x,w), compute the out-of-bag prediction for the full sample, and denote it as

̂𝑦(oob).

(c) Compute the outcome residuals for the full sample: ̃𝑦 = 𝑦 − ̂𝑦(oob).

2. Construct treatment residuals.

(a) Use the full sample, fit a probability forest for the treatment model, and denote it as ̂𝑓(x,w).
(b) Based on ̂𝑓(x,w), compute the out-of-bag prediction for the full sample, and denote it as

̂𝑑(oob).

(c) Compute the treatment residuals for the full sample: ̃𝑑 = 𝑑 − ̂𝑑(oob).

3. Using the full sample, estimate the function 𝜏(x) via linear regression or via generalized random
forest:

𝑁
∑
𝑖=1

[𝛼(𝑥𝑖)𝑑𝑖
(−𝑖)

{𝑦𝑖
(−𝑖) − 𝑑𝑖

(−𝑖)
𝜏(x)}] = 0

cate po implements both algorithms 1 and 2, and the cross-fitting-based PO estimator in algorithm 1

is the default. In algorithm 2, the oob option specifies to use the out-of-bag prediction, and it also requires
that options omethod() and tmethod() be specified with random forest.

https://www.stata.com/manuals/causalcate.pdf#causalcateMethodsandformulas
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In practice, we need to specify the following points in cate po for the IATE estimation:

1. The outcome variable 𝑦 and the treatment variable 𝑑.

2. The treatment-effects conditioning variables x, which correspond to catevarlist in the syntax of

cate.

3. The controls() option with the control variables w, which are empty by default.

4. The cmethod() option with the estimation method for the IATE function 𝜏(x), which can be either
random forest or linear regression. The default is random forest.

5. The omethod() option with the estimation method for 𝐸(𝑦|x,w), which can be lasso, random

forest, or linear regression. The default is lasso.

6. The tmethod() option with the estimation method for the treatment model 𝑓(x,w), which can be
logit, probit, lasso, or random forest. The default is lasso.

At minimum, we must specify points 1 and 2 and use the default settings for the other points.

Here is a general note on choosing between random forest, lasso, and parametric regression: Random

forest is suitable when the number of covariates is low-dimensional relative to the number of observations

and the function is smooth enough. Lasso is suitable when the model can be approximated by a sparse

function, which can be very useful in the presence of high-dimensional controls. Parametric regression

is easy to compute and interpret but imposes strong assumptions that may be too hard to satisfy with

real-world data. In terms of computational speed, lasso is generally faster than random forest.

PO GATE estimator with prespecified groups

The GATE estimator is constructed by regressing the AIPW scores implied by the partial linear model

on the group dummy variables, following Semenova and Chernozhukov (2021). In the partial linear

model, the AIPW score is defined as

Γ𝑖 = ̂𝜏 (−𝑖)(x𝑖) + 𝑑𝑖 − ̂𝑓 (−𝑖)(x𝑖,w𝑖)
̂𝑓 (−𝑖)(x𝑖,w𝑖) {1 − ̂𝑓 (−𝑖)(x𝑖,w𝑖)}

{𝑦𝑖 − ̂𝜇(−𝑖)(x𝑖,w𝑖, 𝑑𝑖)}

where

1. ̂𝜏 (−𝑖)(x𝑖) is the out-of-bag prediction of IATE produced by predict after cate po. If CATE is

estimated by linear regression, then ̂𝜏 (−𝑖)(x𝑖) is the linear prediction.

2. 𝑑𝑖 is the treatment indicator.

3. ̂𝑓 (−𝑖)(x𝑖,w𝑖) is the prediction of propensity scores. These out-of-sample predictions are already

produced in the cross-fitting algorithm 1 or the out-of-bag prediction algorithm 2.

4. 𝑦𝑖 is the outcome.

5. ̂𝜇(−𝑖)(x𝑖,w𝑖, 𝑑𝑖) is the out-of-sample prediction of the outcome mean conditional on both the con-

trols and the treatment status. It is defined as

̂𝜇(−𝑖)(x𝑖,w𝑖, 𝑑𝑖) = ℎ̂(−𝑖)(x𝑖,w𝑖) + {𝑑𝑖 − ̂𝑓 (−𝑖)(x𝑖,w𝑖)} ̂𝜏 (−𝑖)(x𝑖)

where ℎ̂(−𝑖)(x𝑖,w𝑖) is the out-of-sample prediction of 𝐸(𝑦|x,w), which are already computed in

either algorithm 1 or 2 when estimating the IATE function.
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Here we derive ̂𝜇(−𝑖)(x𝑖,w𝑖, 𝑑𝑖). By the definition of the partial linear model, ℎ(x,w) = 𝐸(𝑦|x,w) =
𝜏(x)𝑓(x,w)+𝑔(x,w). Denote 𝜇0(x,w) as the conditional expected value of the potential outcome when

it is not treated. It is defined as

𝜇0(x,w) = 𝑔(x,w) = ℎ(x,w) − 𝜏(x)𝑓(x,w)

Denote𝜇1(x,w) as the conditional expected value of the potential outcomewhen it is treated. It is defined

as

𝜇1(x,w) = 𝜇0(x,w) + 𝜏(x) = ℎ(x,w) + {1 − 𝑓(x,w)}𝜏(x)

Thus, the cross-fitting version of 𝜇(x,w, 𝑑) is defined as above.
We already computed all the necessary terms when fitting the IATE function, so it is computationally

convenient to compute the AIPW scores. Once we get the AIPW scores, computing the GATE is easy. Just

run a linear regression of the AIPW scores on the group indicators. For details on estimating the GATE in

the partial linear model, see algorithm 3 below.

Algorithm 3: PO for the GATE with a prespecified group

1. Set the group indicator variable 𝐺.

2. Run either algorithm 1 or algorithm 2 to get the following terms:

(a) 𝑦𝑖
(−𝑖) = ℎ̂(−𝑖)(x𝑖,w𝑖)

(b) 𝑑𝑖
(−𝑖)

= ̂𝑓 (−𝑖)(x𝑖,w𝑖)

3. Compute the out-of-bag prediction of the IATE ̂𝜏 (−𝑖)(x𝑖).

4. Compute the AIPW scores for the partial linear model:

Γ𝑖 = ̂𝜏 (−𝑖)(x𝑖) + 𝑑𝑖 − ̂𝑓 (−𝑖)(x𝑖,w𝑖)
̂𝑓 (−𝑖)(x𝑖,w𝑖) {1 − ̂𝑓 (−𝑖)(x𝑖,w𝑖)}

{𝑦𝑖 − ̂𝜇(−𝑖)(x𝑖,w𝑖, 𝑑𝑖)}

with

̂𝜇(−𝑖)(x𝑖,w𝑖, 𝑑𝑖) = ℎ̂(−𝑖)(x𝑖,w𝑖) + {𝑑𝑖 − ̂𝑓 (−𝑖)(x𝑖,w𝑖)} ̂𝜏 (−𝑖)(x𝑖)

5. Run ordinary least-squares (OLS) regression of theAIPW scores Γ𝑖 on the group dummy indicators

based on 𝐺. The coefficients estimated on these indicators are the GATEs.

PO GATES estimator with data-driven groups

Suppose we do not know which groups we should condition on when computing the GATEs. We can

ask the data to discover the groups based on the sorted estimates of the IATEs. The groups are generated

by the quantiles of IATE estimates. For example, if we want to divide the IATEs into four groups, the

first group will be observations with IATE estimates greater than the 75th percentile of the overall IATE

estimates; the second group will be observations with estimates between the 50th and 75th percentiles;

the third group will be between the 25th and 50th percentiles; and the last group will be below the 25th

percentile.
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We use the cross-fitting technique to generate the group’s ranking to avoid overfitting. Suppose we

split the data into 𝐾 folds. For each fold, we do the following. Observations in the 𝑘th fold are defined
as the main sample, and observations in the other folds are defined as the auxiliary sample. First, we

train an IATE model using the auxiliary sample. Second, we predict the IATE function 𝜏(x) in the main

sample and denote the prediction as ̂𝜏 (x)(𝑘). The ranking in the main sample depends on the quantile of

̂𝜏 (x)(𝑘). After circulating all the folds, we divide the full sample into the prespecified number of groups.

Because of the nature of cross-fitting, using the data to discover groups is time consuming. In addition,

it requires a large sample because we need to fit a separate random forest model for the IATE in each fold.

Once the group is discovered, we run an OLS regression of the AIPW scores, which is generated in the

cross-fitting procedure, to the group indicator. For details of the GATES estimator with the data-driven

group for the partial linear model, see algorithm 4. For a discussion of using the sorted effects to generate

the group, see Chernozhukov et al. (2006, sec. E) and Golub Capital Social Impact Lab (2023, chap. 4).

Algorithm 4: GATES estimator for data-driven group for partial linear model

1. Define the input.

(a) Set number of cross-fitting folds 𝐾.

(b) Set the estimation method for the outcome model. It can be one of random forest, lasso,

square-root lasso, or linear regression.

(c) Set the estimation method for the treatment model. It can be one of random forest, lasso,

logit, or probit.

(d) Set the number of groups 𝐺 to divide.

2. Do the cross-fitting to construct the AIPW scores and group ranking.

(a) Randomly split the data into 𝐾 folds.

(b) For each fold 𝑘 = 1 to 𝐾, do the following:

i. Define the main sample 𝑆𝑀 as the observations in the 𝑘th fold and the auxiliary sample

𝑆𝐴 as the observations not in the 𝑘th fold.
ii. Construct the outcome prediction.

A. Using the auxiliary sample 𝑆𝐴, train the outcome model ℎ̂𝐴(x,w).
B. Based on ℎ̂𝐴(x,w), predict the outcome in the main sample 𝑆𝑀. Denote the pre-

diction as ℎ̂𝑀(x𝑖,w𝑖).
iii. Construct the treatment prediction.

A. Using the auxiliary sample 𝑆𝐴, train the treatment model ̂𝑓𝐴(x,w).
B. Based on ̂𝑓𝐴(x,w), predict the propensity score in the main sample 𝑆𝑀. Denote

the prediction as ̂𝑓𝑀(x𝑖,w𝑖).
iv. Construct the IATE ranking.

A. Using the auxiliary sample 𝑆𝐴, fit the IATE model ̂𝜏 (x)𝐴 using algorithm 1.

B. Based on ̂𝜏 (x)𝐴, predict 𝜏(x) in the main sample and denote it as ̂𝜏 (x)𝑀.

C. Generate the ranking in the main sample using the quantiles of ̂𝜏 (x)𝑀.
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v. Construct the AIPW scores in the main sample:

Γ𝑀
𝑖 = ̂𝜏𝑀(x𝑖) + 𝑑𝑖 − ̂𝑓𝑀(x𝑖,w𝑖)

̂𝑓𝑀(x𝑖,w𝑖) {1 − ̂𝑓𝑀(x𝑖,w𝑖)}
{𝑦𝑖 − ̂𝜇𝑀(x𝑖,w𝑖, 𝑑𝑖)}

with

̂𝜇𝑀(x𝑖,w𝑖, 𝑑𝑖) = ℎ̂𝑀(x𝑖,w𝑖) + {𝑑𝑖 − ̂𝑓𝑀(x𝑖,w𝑖)} ̂𝜏𝑀(x𝑖)

3. Regress theAIPW scores on the group dummies based on the IATE quantiles to estimate the GATESs.

AIPW for the fully interactive model
The fully interactive model is

𝑦(1) = 𝑔1(x,w) + 𝜖1

𝑦(0) = 𝑔0(x,w) + 𝜖0

𝑑 = 𝑓(x,w2) + 𝑢

where 𝑔1(x,w) and 𝑔0(x,w) are the models for the potential outcomes 𝑦(1) and 𝑦(0), respectively. 𝜖1
and 𝜖0 are the error terms. w2 is a vector of control variables for the treatment model. By default, w2 is

equal to w. However, it can be different if specified. The other terms, 𝑑, x, w, and 𝑓(x,w2), are the same

as seen in the partial linear model. The fully interactive model allows the treatment effect to interact with

both x and w; thus, it is more general than the partial linear model.

By definition, the IATE function 𝜏(x) is

𝜏(x) = 𝐸{𝑦(1) − 𝑦(0)|x} = 𝐸{𝑔1(x,w) − 𝑔0(x,w)|x}

Intuitively, we can regress 𝑔1(x,w) − 𝑔0(x,w) on x to estimate 𝜏(x). This method is also known

as regression adjustment (RA). However, RA is vulnerable to machine learning mistakes made when

estimating 𝑔1(x,w) and 𝑔0(x,w). Similarly, the inverse-probability weighting (IPW) estimator is also a

bad choice. In contrast, the classical AIPW estimator, known as a doubly robust estimator, is Neyman

orthogonal (see Chernozhukov et al. [2018] and Knaus [2022]). The AIPW version of the potential

outcomes are

𝑦(1)AIPW = 𝑔1(x,w) + 𝐼(𝑑 = 1){𝑦 − 𝑔1(x,w)}
𝑓(x,w2)

𝑦(0)AIPW = 𝑔0(x,w) + 𝐼(𝑑 = 0){𝑦 − 𝑔0(x,w)}
1 − 𝑓(x,w2)

Thus, 𝜏(x) can also be written as

𝜏(x) = 𝐸 {𝑦(1)AIPW − 𝑦(0)AIPW|x}

Given the estimates of 𝑔1(x,w), 𝑔0(x,w), and 𝑓(x,w2), let 𝑦(1)
AIPW

and 𝑦(0)
AIPW

be estimates of

𝑦(1)AIPW and 𝑦(0)AIPW, respectively. Let Γ̂ = 𝑦(1)
AIPW

− 𝑦(0)
AIPW

be an estimate of the AIPW scores.

We estimate 𝜏(x) by solving the local moment condition

𝑁
∑
𝑖=1

[𝛼(x𝑖) {Γ̂𝑖 − 𝜏(x)}] = 0
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where 𝛼(x𝑖) defines the local weights that attach more weight to observations that are close to x. To

solve this moment condition, we use the honest regression forest proposed in Wager and Athey (2018)

and implement it using the generalized random forest in Athey, Tibshirani, andWager (2019). For details

on honest regression forest, see Generalized random forest.

AIPW IATE estimator

To guard against machine learning estimation bias in the nuisance function, we need to construct the

AIPW scores using the out-of-sample prediction. We estimate the IATE function 𝜏(x) by solving
𝑁

∑
𝑖=1

[𝛼(x𝑖) {Γ̂(−𝑖)
𝑖 − 𝜃(x)}] = 0

where Γ̂(−𝑖)
𝑖 are predictions of the AIPW scores for the 𝑖th observation via estimation of the nuisance

function using observations excluding the 𝑖th observation.
We can construct the out-of-sample prediction using the cross-fitting technique. We split the data

into 𝐾 folds, define the main sample as the observations in the 𝑘th fold, and define the auxiliary sample

as the observations not in the 𝑘th fold. We estimate all the nuisance functions by using the auxiliary

sample and get the out-of-sample predictions in the main sample. After circulating through all the folds,

we eventually compute the out-of-sample predictions for the full sample. For details of the cross-fitting

version of the AIPW estimator for the IATE, see algorithm 5 below.

Algorithm 5: AIPW estimator for the IATE using cross-fitting

1. Define the input.

(a) Set the number of cross-fitting folds 𝐾.

(b) Set the estimation method for the outcome model. It can be one of random forest, lasso,

square-root lasso, or linear regression.

(c) Set the estimation method for the treatment model. It can be one of random forest, lasso,

logit, or probit.

2. Do the cross-fitting to construct the AIPW scores.

(a) Randomly split the data into 𝐾 folds.

(b) For each fold 𝑘 = 1 to 𝐾, do the following:

i. Define the main sample 𝑆𝑀 as the observations in the 𝑘th fold and the auxiliary sample

𝑆𝐴 as the observations not in the 𝑘th fold.
ii. Construct 𝑔1(x,w).

A. Using the auxiliary sample 𝑆𝐴 and treated observations (𝑑𝑖 = 1), train the outcome

model ̂𝑔𝐴
1 (x,w).

B. Based on ̂𝑔𝐴
1 (x,w), predict the treated potential outcome in the main sample 𝑆𝑀.

Denote the prediction as 𝑦(1)
𝑀
.

iii. Construct 𝑔0(x,w).
A. Using the auxiliary sample 𝑆𝐴 and untreated observations (𝑑𝑖 = 0), train the out-

come model ̂𝑔𝐴
0 (x,w).

B. Based on ̂𝑔𝐴
0 (x,w), predict the untreated potential outcome in the main sample 𝑆𝑀.

Denote the prediction as 𝑦(0)
𝑀
.

https://www.stata.com/manuals/causalcate.pdf#causalcateMethodsandformulas
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iv. Construct the propensity score.

A. Using the auxiliary sample 𝑆𝐴, train the outcome model ̂𝑓𝐴(x,w).
B. Based on ̂𝑓𝐴(x,w), predict the propensity score in the main sample 𝑆𝑀. Denote

the prediction as ̂𝑑𝑀.

v. Construct the AIPW score in the main sample 𝑆𝑀 as

Γ𝑀
𝑖 =

⎡
⎢⎢
⎣

𝑦(1)
𝑀

𝑖 +
𝑑𝑖 {𝑦𝑖 − 𝑦(1)

𝑀

𝑖 }

̂𝑑𝑀
𝑖

⎤
⎥⎥
⎦

−
⎡
⎢⎢
⎣

𝑦(0)
𝑀

𝑖 +
(1 − 𝑑𝑖) {𝑦𝑖 − 𝑦(0)

𝑀

𝑖 }

1 − ̂𝑑𝑀
𝑖

⎤
⎥⎥
⎦

3. Fit an honest random forest regression of Γ on x using the generalized random forest in Athey,

Tibshirani, and Wager (2019) or fit a linear regression of Γ on x.

Cross-fitting can be applied to generic machine learning techniques. However, by construction, it is

computationally demanding.

When the outcome and treatment models are estimated using random forest, we can use a particular

case of cross-fitting that saves computational time. That is, we can use the out-of-bag predictions to

construct the residuals. The out-of-bag prediction for an observation is constructed using only the trees

in the random forest that do not contain this observation. See Generalized random forest for more details.

This procedure is equivalent to cross-fitting but has a faster computation time. For details of the out-of-

bag prediction-based PO estimator for the IATE, see algorithm 6 below.

Algorithm 6: AIPW estimator for the IATE using out-of-bag prediction

1. Construct 𝑔1(x,w).

(a) Using the full sample and the treated observations (𝑑𝑖 = 1), fit a regression forest for the

outcome model. Denote it as ̂𝑔1(x,w).
(b) Based on ̂𝑔1(x,w), predict the treated potential outcome for the full sample using the out-

of-bag prediction. Denote it as 𝑦(1)
(oob)

.

2. Construct 𝑔0(x,w).

(a) Using the full sample and the untreated observations (𝑑𝑖 = 0), fit a regression forest for the

outcome model. Denote it as ̂𝑔0(x,w).
(b) Based on ̂𝑔0(x,w), predict the treated potential outcome for the full sample using the out-

of-bag prediction. Denote it as 𝑦(0)
(oob)

.

3. Construct the propensity score.

(a) Using the full sample, fit a probability forest for the treatment model. Denote it as ̂𝑓(x,w).
(b) Based on ̂𝑓(x,w), predict the propensity score for the full sample using the out-of-bag pre-

diction. Denote it as ̂𝑑(oob).

4. Construct the AIPW scores as

Γ𝑖 =
⎡
⎢⎢
⎣

𝑦(1)
(oob)

𝑖 +
𝑑𝑖 {𝑦𝑖 − 𝑦(1)

(oob)

𝑖 }

̂𝑑(oob)
𝑖

⎤
⎥⎥
⎦

−
⎡
⎢⎢
⎣

𝑦(0)
(oob)

𝑖 +
(1 − 𝑑𝑖) {𝑦𝑖 − 𝑦(0)

(oob)

𝑖 }

1 − ̂𝑑(oob)
𝑖

⎤
⎥⎥
⎦

https://www.stata.com/manuals/causalcate.pdf#causalcateMethodsandformulas
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5. Fit a random forest regression of Γ on x using the generalized random forest in Athey, Tibshirani,

and Wager (2019) or fit a linear regression of Γ on x.

cate aipw implements both algorithms 5 and 6, and the cross-fitting-based AIPW estimator in algo-

rithm 5 is the default. The oob option specifies to use the out-of-bag prediction in algorithm 6, and it

requires that options omethod() and tmethod() be specified with random forest.

In practice, we must specify the following points in cate aipw for the IATE estimation:

1. The outcome variable 𝑦 and the treatment variable 𝑑.

2. The treatment-effects conditioning variables x, which correspond to catevarlist in the syntax of

cate.

3. The controls() option with the control variables w, which are empty by default.

4. The cmethod() option with the estimation method for the IATE function 𝜏(x), which can be either
random forest or linear regression. The default is random forest.

5. The omethod() option with the estimation method for 𝑔1(x,w) and 𝑔0(x,w) can be lasso, random
forest, or linear regression. The default is lasso.

6. The tmethod() option with the estimation method for the treatment model 𝑓(x,w), which can be
logit, probit, lasso, or random forest. The default is lasso.

At minimum, we must specify points 1 and 2 and use the default settings for the other points.

Both PO and AIPW are consistent estimators of 𝜏(x) under similar regularity conditions, and they are

Neyman orthogonal in the sense that the estimates are robust to the machine learning mistakes made in

the nuisance parameters, such as 𝑔(x,w) or 𝑓(x,w).
The AIPW estimator is more efficient than the PO estimator. That is, in large samples, the AIPW esti-

mates of the IATE function are more precise than the PO estimates (see Kennedy [2023]). In addition, the

AIPW estimator has double robustness; that is, the estimator is still consistent even if the outcome model

or the treatment model is misspecified (see Chernozhukov et al. [2018]).

However, the PO estimator is more robust than theAIPW estimator when there are some nearly perfect

predictions of the propensity score 𝑓(x,w). More precisely, the AIPW estimator needs to compute the

inverse of propensity score 𝑓(x,w) or 1−𝑓(x,w), which lies between 0 and 1. Thus, theAIPW estimator

may be undefined whenever the propensity score 𝑓(x,w) estimates are close to 0 or 1. In contrast, the

PO estimator does not have these issues.

AIPW GATE estimator with prespecified groups

The GATE estimator for the fully interactive model is the OLS estimate for theAIPW scores on the group

indicator, following Semenova and Chernozhukov (2021).

In the full interactive model, the AIPW score is defined as

Γ𝑖 =
⎡
⎢⎢
⎣

𝑦(1)
(−𝑖)

𝑖 +
𝑑𝑖 {𝑦𝑖 − 𝑦(1)

(−𝑖)

𝑖 }

̂𝑑(−𝑖)
𝑖

⎤
⎥⎥
⎦

−
⎡
⎢⎢
⎣

𝑦(0)
(−𝑖)

𝑖 +
(1 − 𝑑𝑖) {𝑦𝑖 − 𝑦(0)

(−𝑖)

𝑖 }

1 − ̂𝑑(−𝑖)
𝑖

⎤
⎥⎥
⎦
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where

1. 𝑦𝑖 is the observed outcome.

2. 𝑑𝑖 is the observed treatment indicator.

3. 𝑦(1)
(−𝑖)

𝑖 is the out-of-sample prediction of the treated potential outcome.

4. 𝑦(0)
(−𝑖)

𝑖 is the out-of-sample prediction of the untreated potential outcome.

5. ̂𝑑(−𝑖)
𝑖 is the out-of-sample prediction of the propensity score.

The scores can be obtained using either the cross-fitting AIPW estimator in algorithm 5 or the out-

of-bag prediction-based AIPW estimator in algorithm 6. After the AIPW scores are obtained, the GATE

estimator is just the OLS estimate of scores on the group indicator. For details of estimating the GATE in

the fully interactive model, see algorithm 7 below.

Algorithm 7: GATE estimator with a prespecified group

1. Select the group variable 𝐺.

2. Run either algorithm 5 or algorithm 6 to obtain the AIPW scores Γ(−𝑖)
𝑖 .

Γ(−𝑖)
𝑖 =

⎡
⎢⎢
⎣

𝑦(1)
(−𝑖)

𝑖 +
𝑑𝑖 {𝑦𝑖 − 𝑦(1)

(−𝑖)

𝑖 }

̂𝑑(−𝑖)
𝑖

⎤
⎥⎥
⎦

−
⎡
⎢⎢
⎣

𝑦(0)
(−𝑖)

𝑖 +
(1 − 𝑑𝑖) {𝑦𝑖 − 𝑦(0)

(−𝑖)

𝑖 }

1 − ̂𝑑(−𝑖)
𝑖

⎤
⎥⎥
⎦

3. Run OLS of Γ on the group indicators based on 𝐺.

AIPW GATES estimator with data-driven groups

In the fully interactive model, the procedure to compute the GATESs with data-driven groups is very

similar to that for the partial linear model. The only difference is using the AIPW scores implied by

the fully interactive model. For details of estimating the GATESs with data-driven groups for the fully

interactive model, see algorithm 8.

Algorithm 8: GATES estimator with data-driven groups in fully interactive model

1. Define the input.

(a) Set the number of cross-fitting folds 𝐾.

(b) Select the estimation method for the outcome and treatment models.

2. Perform cross-fitting to construct the AIPW scores.

(a) Randomly split the data into 𝐾 folds.

(b) For each fold 𝑘 = 1 to 𝐾, do the following:

i. Define the main sample 𝑆𝑀 as the observations in folds 𝑘 and the auxiliary sample 𝑆𝐴

as the observations not in folds 𝑘.
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ii. Construct 𝑔1(x,w).
A. Using the auxiliary sample 𝑆𝐴 and treated observations (𝑑𝑖 = 1), train the outcome

model ̂𝑔𝐴
1 (x,w).

B. Based on ̂𝑔𝐴
1 (x,w), predict the treated potential outcome in the main sample 𝑆𝑀.

Denote the prediction as 𝑦(1)
𝑀
.

iii. Construct 𝑔0(x,w).
A. Using the auxiliary sample 𝑆𝐴 and untreated observations (𝑑𝑖 = 0), train the out-

come model ̂𝑔𝐴
0 (x,w).

B. Based on ̂𝑔𝐴
0 (x,w), predict the untreated potential outcome in the main sample 𝑆𝑀.

Denote the prediction as 𝑦(0)
𝑀
.

iv. Construct the propensity score.

A. Using the auxiliary sample 𝑆𝐴, train the outcome model ̂𝑓𝐴(x,w).
B. Based on ̂𝑓𝐴(x,w), predict the propensity score in the main sample 𝑆𝑀. Denote

the prediction as ̂𝑑𝑀.

v. Construct the AIPW score in the main sample 𝑆𝑀 as

Γ𝑀
𝑖 =

⎡
⎢⎢
⎣

𝑦(1)
𝑀

𝑖 +
𝑑𝑖 {𝑦𝑖 − 𝑦(1)

𝑀

𝑖 }

̂𝑑𝑀
𝑖

⎤
⎥⎥
⎦

−
⎡
⎢⎢
⎣

𝑦(0)
𝑀

𝑖 +
(1 − 𝑑𝑖) {𝑦𝑖 − 𝑦(0)

𝑀

𝑖 }

1 − ̂𝑑𝑀
𝑖

⎤
⎥⎥
⎦

vi. Construct the IATE ranking.

A. Using the auxiliary sample 𝑆𝐴, train the IATE model ̂𝜏 (x)𝐴 using algorithm 5.

B. Based on ̂𝜏 (x)𝐴, predict 𝜏(x) in the main sample, and denote it as ̂𝜏 (x)𝑀.

C. Generate the ranking in the main sample based on the quantiles of ̂𝜏 (x)𝑀.

3. Run an OLS regression of the AIPW scores on the generated groups’ indicator dummies.

Generalized random forest
The generalized random forest, proposed in Athey, Tibshirani, and Wager (2019), solves the moment

condition

𝐸 {𝜓𝜃(x)(o𝑖)|x𝑖 = x} = 0

where 𝜃(x) is a parameter of interest, o𝑖 is a vector of variables including the outcome variable and some

covariates, and x𝑖 is a vector of covariates in the function 𝜃(x).
The form of 𝜓𝜃(x)(o𝑖) varies depending on the context. For example, in the regression or probability

random forest, the parameter of interest is 𝜃(x) = 𝐸(𝑦|x), and the moment condition is

𝐸 {𝑦𝑖 − 𝜃(x)|x𝑖 = x} = 0

In the causal random forest, the parameter of interest is 𝜃(x) = 𝜏(x), and the moment condition is

𝐸 [ ̃𝑑𝑖 { ̃𝑦𝑖 − 𝜃(x) ̃𝑑𝑖} ∣x𝑖 = x] = 0

where ̃𝑑 and ̃𝑦 are partialed-out residuals of 𝑑 and 𝑦 discussed in the PO estimator.
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To estimate 𝜃(x), generalized random forest solves the empirical moment condition

𝑁
∑
𝑖=1

𝛼𝑖(x)𝜓𝜃(x)(o𝑖) = 0

where 𝛼𝑖(x) defines the local weights that attach more weight to observations close to 𝑥. Generalized
random forest obtains 𝛼𝑖(x) by averaging the neighborhood implied by a forest. See Athey, Tibshirani,

and Wager (2019, sec. 2) for a detailed discussion.

The generalized random forest is an ensemble of honest trees, which we explain next.

Honest tree

A tree is an algorithm that divides the data into different parts, such that each part consists of obser-

vations that are as similar as possible. The following graph illustrates a regular regression tree:

x15 <= -0.58  

x19 <= 0.36   x20 <= 0.42   

x10 <= 1.78   
size = 5

 Y = 1.40   
x11 <= -1.22  

size = 9
 Y = 5.42   

size = 9
 Y = -4.06  

size = 1
 Y = 2.67   

size = 1
 Y = -5.94  

x12 <= -0.52  

size = 2
 Y = -2.54  

size = 8
 Y = 1.69   

For example, in the above graph, we first look at variable 𝑥15 to determine how to divide the data.

If its value is smaller than or equal to −0.58, that observation goes to the left; otherwise, it goes to the

right. Each time we split the data, it is represented by a node. We recursively continue this procedure

until we hit a “leaf” node, which means we cannot find a variable to split the data.

The leaf nodes in the graph are represented as a blue rectangle. A leaf node defines a part of the tree

partition. For example, the leftmost leaf has 9 observations (size = 9 and 𝑌 = −4.06 in the graph). We

can travel to this leaf by finding observations satisfying three conditions: 𝑥15 ≤ −0.58, 𝑥19 ≤ 0.36, and

𝑥10 ≤ 1.78. These three conditions correspond to the three nodes from the top to the bottom, enabling

us to travel from the top to the particular leaf.
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In each leaf node, the mean of the outcome within a leaf is used to label the leaf or attach a value to it.

Thus, constructing a tree involves two main steps: splitting the tree and labeling the tree. More precisely,

tree construction involves the following:

1. Splitting the tree: For each node, find a splitting variable 𝑥𝑠 and a value 𝑣𝑠 such that the resulting

divisions are as different as possible. In particular, we find 𝑥𝑠 and 𝑣𝑠 by solving

(𝑥𝑠, 𝑣𝑠) = argmin(𝑥𝑚,𝑣𝑚)∈x×𝐷(𝑥𝑚) {cost(𝑥𝑚 ≤ 𝑣𝑚) + cost(𝑥𝑚 > 𝑣𝑚)}

where cost(⋅) is a cost function that characterizes the node’s homogeneity and its definition varies

depending on the context. For example, in the regression forest, the cost function is the mean

squared error of the outcome; in the probability forest, the cost function is the Gini index for the

outcome; in the causal forest, the cost function is the squared sum of the influence function implied

by the causal forest moment condition. For details, see Athey, Tibshirani, andWager (2019, sec. 2).

2. When there are not enough observations in any node, the algorithm stops searching. The

splitminobs() option specifies the minimum number of observations needed to perform a split.

3. Labeling the tree: In each leaf, attach a value or a label to the leaf. The labeling formula varies

depending on the context. In the regression or probability forest, the label is the outcome’s mean

within a leaf. In the causal forest, the label consists of the means of the outcome, the treatment,

and their interactions. For details, see Athey, Tibshirani, and Wager (2019, sec. 2).

An honest tree differs from a regular tree by dividing the sample into two subsamples. One is used to

split the tree, and the other is used to label the leaves. For details, see algorithm 9 below.

Algorithm 9: Honest tree

1. Split the data into two parts: 𝐴 and 𝐵. The honestrate() option specifies the fraction of the

data used to construct 𝐴.

2. Use sample 𝐴 to split the tree.

3. Use sample 𝐵 to label the tree.

Honest random forest

The honest random forest is an ensemble of honest trees with some requirements on the randomness

of the tree. There are two main requirements: first, each tree must use a random subsample of the data;

second, for each node in the tree, only a random subset of the variables may be searched to find the best

variable to split. For more details on the honest random forest, see algorithm 10 below.

Algorithm 10: Honest random forest

1. Define 𝐵 as the number of trees, which can be specified in the ntrees() option.

2. For each tree 𝑏 = 1 to 𝐵, do the following:

(a) Draw a random sample 𝑆𝑏 of the full data. The samprate() option specifies the fraction of

the sample.
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(b) Based on 𝑆𝑏, construct an honest tree using algorithm 9. In each node of the honest tree, only

a random subset of variables is searched to find the best variable to split. Themean number of

this variable set follows a Poisson distribution with expectation 𝜇. The splitmeanvars()
option specifies 𝜇.

3. Use the forest to construct local weights 𝛼𝑖(x), and then estimate 𝜃(x) by solving the moment

condition ∑𝑁
𝑖=1 𝛼𝑖(x)𝜓𝜃(x)(o𝑖) = 0.

Confidence intervals

The confidence intervals of the estimate 𝜃(x) in generalized random forest are constructed using the

delta method, as discussed in Athey, Tibshirani, and Wager (2019, sec. 4). In particular, the confidence

intervals with significance level 𝛼 are defined as

lim𝑛→∞𝐸 [𝜃(x) ∈ { ̂𝜃(x) ± Φ−1(1 − 𝛼/2)𝜎̂(x)}] = 𝛼

where Φ−1(⋅) is the inverse function of the Gaussian cumulative distribution function and 𝜎̂(x) is an

estimate of the standard errors of ̂𝜃(x).
The variance of 𝜃(x) is defined as

𝑉 𝑎𝑟{𝜃(x)} = 𝜉′𝑉 (x)−1𝐻(x)𝑉 (x)−1𝜉

where 𝑉 (x) = 𝜕𝐸{𝜓𝜃(x)(o)|x𝑖=x}
𝜕𝜃(x) , 𝜉 is the subvector selector, and 𝐻(x) = 𝑉 𝑎𝑟 {∑𝑁

𝑖=1 𝛼𝑖𝜓𝜃(x)(o𝑖)}. See
Athey, Tibshirani, andWager (2019, sec. 4) for a detailed discussion on 𝑉 (x) and 𝜉. We use the bootstrap

of little bags to estimate 𝐻(x). See algorithm 11 for details.

Algorithm 11: Bootstrap of little bags

1. Define the number of trees in each bag, 𝑙, which can be specified in the cintrees() option.

2. Define the number of trees in the forest, 𝐵, which can be specified in the ntrees() option.

3. For each bag, 𝑔 = 1, . . . , ⌈𝐵/𝑙⌉, draw a random half-sample 𝐻𝑔 ⊂ {1, . . . , 𝑛} of size ⌈𝑛/2⌉,
where 𝑛 is the total number of observations.

4. For each tree, 𝑏 = 1, . . . , 𝐵, draw a random sample 𝐼𝑏 ⊆ 𝐻⌈𝑏/𝑙⌉, and build an honest tree using 𝐼𝑏.

This step implies that the trees in the same bag are drawing samples from the same half-sample

𝐻𝑔.

5. Define Ψ𝑏{𝜃(x)} = ∑𝑛
𝑖=1 𝛼𝑏𝑖(x)𝜓𝜃(x)(o𝑖), where 𝛼𝑏𝑖(x) is the tree-level local weight. Similarly,

define Ψ{𝜃(x)} = ∑𝑛
𝑖=1 𝛼𝑖(x)𝜓𝜃(x)(o𝑖), where 𝛼𝑖(x) is the forest-level local weight. Estimate

𝐻(x) as

𝐻(x) = 𝐸
⎧{
⎨{⎩

(1
𝑙

𝑙
∑
𝑏=1

Ψ𝑏 − Ψ)
2⎫}
⎬}⎭

− 1
𝑙 − 1

𝐸
⎧{
⎨{⎩

1
𝑙

𝑙
∑
𝑏=1

(Ψ𝑏 − 1
𝑙

𝑙
∑
𝑏=1

Ψ𝑏)
2⎫}
⎬}⎭

where the expectation is taken over the bags.

See Athey, Tibshirani, and Wager (2019, sec. 4.1) for a detailed discussion on the consistency of the

bootstrap of little bags.
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Missing values

Random forest can handle missing values in covariates. When facing a missing value of a covariate,

there are three possible scenarios for splitting a node. All three scenarios are computed for every variable

in the random subset of variables to search, and the one with the best cost function is used. For more

discussion, see Twala, Jones, and Hand (2008).

1. Scenario 1: All observations that are not missing in a specific covariate are sent to the left node,

and all the other observations are sent to the right node.

Missing values can provide information on the dependent variable, and potentially, a missing value

of a covariate can be used to split a node in the tree.

2. We use the optimal nonmissing value of the specific covariate (the value that minimizes the cost)

to split observations and then proceed as follows:

(a) Scenario 2: The observations with missing values are sent to the right node.

(b) Scenario 3: The observations with missing values are sent to the left node.

In cate, the observations with missing covariate values are kept if the random forest is used in all

the models, that is, when omethod(), tmethod(), and cmethod() all use rforest. Specifying the

rflistwise option will drop the observations with missing covariate values when all the models are

estimated using random forest.

In contrast, if one of omethod(), tmethod(), or cmethod() does not use rforest, the observations
with missing covariates will be dropped before any computation. This is because estimation methods

such as lasso, regress, and probit will predict missing values if one of the covariates is missing,

and the predicted missing values make the dependent variable of the IATE estimation missing. Because

random forest cannot handle missing dependent variable values, these observations will be dropped even-

tually.
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