
bmastats lps — Log predictive-score after BMA regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
bmastats lps computes and optionally stores in a new variable the log predictive-score (LPS) for ob-

servations after the bmaregress command. LPS is used to assess the predictive performance of Bayesian
model averaging (BMA) models.

Quick start
Compute and summarize LPS for all observations

bmastats lps

Same as above, but use a known variance to compute and report the entropy

bmastats lps, sigma2(0.1)

Compute LPS for the first 12 observations, and store them in newvar
bmastats lps in 1/12, generate(newvar)

Compute LPS for previously stored bma1 and bma2 estimation results, and store respective LPS in variables
newvar1 and newvar2

bmastats lps bma1 bma2, generate(newvar*)

Display multiple estimation results compactly in one table

bmastats lps bma1 bma2, compact

After fitting bmaregress using a training sample, sample == 1, compute LPS for out-of-sample obser-

vations—test sample sample == 2—to compare out-of-sample predictive performance of two BMA

models with estimation results stored in bma1 and bma2
bmastats lps bma1 bma2 if sample == 2

Menu
Statistics > Bayesian model averaging > Log predictive-score
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https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregress
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Syntax
Summarize LPS for current estimation results

bmastats lps [ if ] [ in ] [ , sigma2(#) generate(newvar[ , double ]) ]

Summarize LPS for multiple estimation results

bmastats lps namelist [ if ] [ in ] [ , sigma2(# [ # [ . . . ] ])

generate(newvarspec[ , double ]) compact ]

namelist includes names of previously stored estimation results after bmaregress. The current (active)
results are the default.

newvarspec is a newvar for a single estimation result or newvarlist or stub* for multiple estimation

results.

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

sigma2(# [ # [ . . . ] ]) specifies the variance to be used to compute the entropy. With out-of-sample

observations, the posterior mean estimate of the error variance from bmaregress is used. With mul-

tiple estimation results, you can specify just one variance value to be used for all estimation results

or specific values for each result. A missing value (.) in place of a # means that the default variance

estimate is to be used for the corresponding estimation result. This option is useful to compute the

entropy more precisely when the variance is known, such as during simulation studies.

generate(newvarspec[ , double ]) specifies the name (or names) of new variables to store the LPS

values. A new variable name is specified with one estimation result. A list of new variable names or

stub* is specified with multiple estimation results.

double specifies that the new variables be stored as double. If the double suboption is not specified,

the variables are stored using the current type as set by set type (see [D] generate), which is

float by default.

compact specifies that multiple estimation results be displayed in a compact form. By default, a separate
header and table are displayed for each estimation result. If option compact is specified, the results

are displayed in one table with a common header. If the variances differ across multiple estimation

results, the variance and entropy are not reported in the header. This option requires at least two

estimation results.

Remarks and examples
To evaluate the predictive performance of a model, one needs a measure that summarizes the quality

of predictions (Piironen and Vehtari 2017). Good (1952) suggests that such a measure be defined based

on the posterior predictive distribution. The LPS is defined as the negative of the log of the posterior

predictive density evaluated at an observation. The LPS for out-of-sample observations can be used to

evaluate the predictive performance of models. Fernández, Ley, and Steel (2001b) were among the first

to use the LPS to evaluate the predictive performance of BMA. And Ley and Steel (2012) compared a

variety of 𝑔-priors for the linear BMA using the LPS.

https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/bmabmastatslps.pdf#bmabmastatslpsSyntaxnamelist
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/bmabmastatslps.pdf#bmabmastatslpsOptionssigmaspec
https://www.stata.com/manuals/bmabmastatslps.pdf#bmabmastatslpsSyntaxnewvarspec
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/bmabmastatslps.pdf#bmabmastatslpsSyntaxnewvarspec
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/dgenerate.pdf#dgenerate
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As pointed out in Fernández, Ley, and Steel (2001a), the LPS is related to the Kullback–Leibler

divergence between the actual sampling density and the out-of-sample predictive density. In theory,

the expected LPS is bounded from below by the entropy of the sampling density, but in practice, this

may not always hold because the entropy itself is being estimated. The closer the expected value is

to the entropy, the more accurate the prediction. For the normal linear model, the entropy is given by

0.5{ log(2𝜋𝜎2) + 1}, where 𝜎2 is the error variance.

bmastats lps reports the mean, minimum, and maximum of LPS for each specified estimation result.

By default, the command reports the LPS summaries computed using the current dataset that includes in-

sample observations, which were used during estimation and are identified by e(sample) == 1, for the
current or active estimation results. These summaries are useful when comparing multiple models. By

themselves, their values are not directly interpretable, unless the entropy is known or can be estimated

reliably. In this case, the closer the mean LPS is to the entropy, the better the model fit. For instance, if

you are using bmastats lps with a simulated dataset, you can specify the known error variance in the

sigma2() option, and the corresponding entropy value will be reported. You can compare this value with
the mean LPS to check model fit. When bmastats lps is used with only out-of-sample observations,

observations not used to fit the model for which e(sample) == 0, the command uses the posterior mean
estimate of the error variance from the fitted bmaregress model to estimate and report the entropy. You

can then compare the out-of-sample mean LPS with the estimated entropy to check the out-of-sample

model fit, assuming that the entropy estimate is a reliable estimate of the entropy of the true model. The

entropy estimate is not reported when bmastats lps is used with in-sample observations.

You can use the generate() option to store observation-specific LPS values in a new variable. This

is equivalent to using bmapredict, lps; see [BMA] bmapredict. With multiple estimation results, you

must specify the same number of new variable names or one variable stub in generate().

With multiple estimation results, bmastats lps displays a separate table for each result. You can use

the compact option to display the results in one table, which is more convenient for comparison.

Below, we demonstrate a more common usage of bmastats lps for comparing out-of-sample pre-

dictive performance of multiple BMAmodels.

https://www.stata.com/manuals/bmabmapredict.pdf#bmabmapredict
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Example 1: Prediction of systolic blood pressure
Consider the chd dataset from Hastie, Tibshirani, and Friedman (2009), which is a subset of the

coronary heart disease dataset used in Rossouw et al. (1983). It contains information about potential

heart disease factors such as age, adiposity, sbp (systolic blood pressure), tobacco (consumption

of), ldl (low density liboprotein), and others.

. use https://www.stata-press.com/data/r19/chd
(Coronary risk factor data from rural communities)
. describe
Contains data from https://www.stata-press.com/data/r19/chd.dta
Observations: 462 Coronary risk factor data from

rural communities
Variables: 10 7 Mar 2025 09:19

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

sbp int %8.0g Systolic blood pressure
tobacco float %6.2f Yearly tobacco use (kg)
ldl float %6.2f Low-density lipoprotein (LDL)
adiposity float %6.2f Body adiposity index
famhist byte %9.0g noyes Family history of ischaemic heart

disease
typea byte %8.0g Type A personality score
obesity float %6.2f Obesity (body mass index)
alcohol float %7.2f Alcohol use (grams/day)
age byte %8.0g Age (years)
chd byte %8.0g noyes Diagnosed with CHD

Sorted by:

We wish to use BMA to build a prediction model for systolic blood pressure using all other available

factors, tobacco through age, as predictors. We consider the log-transformed sbp variable, lsbp, to
make its distribution closer to normal. We also split the sample into five groups to have training and test

subsamples to evaluate the predictive performance of a model. Because the sample is split randomly, we

specify a random-number seed with splitsample for reproducibility.

. splitsample, generate(sample) nsplit(5) rseed(100)

. generate double lsbp = log(sbp)

Wewill use the first four subsamples as our training data to fit a model. And we will check the model’s

performance using the fifth, test, subsample. To demonstrate, we fit the bmaregress command using

the default settings.
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. bmaregress lsbp tobacco-age if sample != 5
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 370
Linear regression No. of predictors = 8
Model enumeration Groups = 8

Always = 0
Priors: No. of models = 256

Models: Beta-binomial(1, 1) For CPMP >= .9 = 7
Cons.: Noninformative Mean model size = 2.132
Coef.: Zellner’s g

g: Benchmark, g = 370 Shrinkage, g/(1+g) = 0.9973
sigma2: Noninformative Mean sigma2 = 0.015

lsbp Mean Std. dev. Group PIP

age .0020223 .0008055 8 .93569
adiposity .0042121 .0016916 3 .92348

obesity .0004441 .001573 6 .10111
typea -.0000344 .0002133 5 .047293

alcohol 9.80e-06 .0000733 7 .03971
tobacco -.0000101 .0002961 1 .028973

ldl -9.92e-06 .0005911 2 .02786
famhist .0000648 .0022977 4 .027833

Always
_cons 4.71339 .0366564 0 1

Note: Coefficient posterior means and std. dev. estimated from 256 models.
Note: Default priors are used for models and parameter g.

With a small number of predictors, the model space is explored fully by model enumeration. The default

fixed benchmark 𝑔-prior is used, which results in a negligible shrinkage factor of almost 1. The posterior
mean size of the models is 2.1, and all potential predictors have PIPs greater than 2%.

We use the bmastats lps command to evaluate the prediction performance of the fit model on the

test sample by using the condition if sample == 5.

. bmastats lps if sample == 5
Log predictive-score (LPS)
Number of observations = 92
Posterior mean sigma2 = .015329
Entropy = -.670055

Mean Minimum Maximum

LPS -.5183101 -1.169732 4.861686

Note: Using analytical PMPs.

The command reports the number of predicted observations, the estimated entropy, and the variance

estimate used to compute the entropy in the header. The output table reports the mean, minimum, and

maximum LPS values.

The mean LPS of −0.52 is, as expected, greater than the entropy estimate, −0.67. The closer it is to

the entropy, the better the predictive performance. The actual LPS values cannot be interpreted, but we

can use them to compare the predictive performances among several BMAmodels.
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Based on their PIPs above 90%, age and adiposity appear to be the more important predictors of

the elevated blood pressure (at least based on our training sample). We may ask what would be the

performance of the model using only these two predictors?

To fit just one model of interest using bmaregress, we can specify all predictors of interest as one

always-included group as follows. (In this case, the results from bmaregress will be similar to those

from regress; see [R] regress.)

. bmaregress lsbp (age adiposity, always) if sample != 5
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 370
Linear regression No. of predictors = 2
Model enumeration Groups = 0

Always = 2
Priors: No. of models = 1

Models: Beta-binomial(1, 1) For CPMP >= .9 = 1
Cons.: Noninformative Mean model size = 2.000
Coef.: Zellner’s g

g: Benchmark, g = 370 Shrinkage, g/(1+g) = 0.9973
sigma2: Noninformative Mean sigma2 = 0.015

lsbp Mean Std. dev. Group PIP

Always
age .002073 .0005608 0 1

adiposity .0044281 .0010493 0 1
_cons 4.715601 .0236217 0 1

Note: Coefficient posterior means and std. dev. estimated from 1 model.
Note: Default priors are used for models and parameter g.

bmaregress visits only one model: regress lsbp age adiposity. In this case, the prior model prob-
ability has no effect on the BMA results, and bmaregress is equivalent to fitting a Bayesian linear model

with Zellner’s 𝑔-prior on regression coefficients with 𝑔 = 370 and Jeffreys prior for the error variance

parameter; see [BAYES] bayes: regress or [BAYES] bayesmh.

Let’s calculate the mean LPS score for this model on the test sample.

. bmastats lps if sample == 5
Log predictive-score (LPS)
Number of observations = 92
Posterior mean sigma2 = .015277
Entropy = -.67177

Mean Minimum Maximum

LPS -.5173158 -1.171843 4.890529

Note: Using analytical PMPs.

The mean LPS score of −0.52 is about the same as that of the full BMA regression, which suggests a

similar predictive performance for the two models.

https://www.stata.com/manuals/rregress.pdf#rregress
https://www.stata.com/manuals/bayesbayesregress.pdf#bayesbayesregress
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
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We can also investigate the impact of a particular factor on the prediction performance of our BMA

model. For instance, in the first model, the tobacco usage term had a PIP of about 3%. Wemay investigate

further whether the tobacco usage indeed has a relatively low impact on systolic blood pressure. To do

this, we can fit BMA to all predictors except tobacco and compare its predictive performance to the full

model.

. bmaregress lsbp ldl-age if sample != 5
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 370
Linear regression No. of predictors = 7
Model enumeration Groups = 7

Always = 0
Priors: No. of models = 128

Models: Beta-binomial(1, 1) For CPMP >= .9 = 6
Cons.: Noninformative Mean model size = 2.150
Coef.: Zellner’s g

g: Benchmark, g = 370 Shrinkage, g/(1+g) = 0.9973
sigma2: Noninformative Mean sigma2 = 0.015

lsbp Mean Std. dev. Group PIP

age .0020391 .0007811 7 .94501
adiposity .0041866 .0016762 2 .92399

obesity .0004608 .0015953 5 .10886
typea -.0000412 .0002329 4 .056801

alcohol .0000118 .0000802 6 .04785
ldl -.0000121 .0006497 1 .033757

famhist .0000758 .0025216 3 .03369

Always
_cons 4.713174 .0370391 0 1

Note: Coefficient posterior means and std. dev. estimated from 128 models.
Note: Default priors are used for models and parameter g.
. bmastats lps if sample == 5
Log predictive-score (LPS)
Number of observations = 92
Posterior mean sigma2 = .015323
Entropy = -.670276

Mean Minimum Maximum

LPS -.5186576 -1.169858 4.855259

Note: Using analytical PMPs.

The mean LPS score of −0.52 is again close to that of the full model. This suggests that excluding the

tobacco predictor does not diminish the predictive performance of the model. It does not appear to be

a strong predictor in this dataset.
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To more easily compare the LPS from the above models, we could have stored the estimation results

from eachmodel first and then specified these results with bmastats lps. To store the estimation results,
we must use the saving() option with bmaregress. For instance,

. quietly bmaregress lsbp tobacco-age if sample != 5, saving(bma1)

. estimates store bma1

. quietly bmaregress lsbp (age adiposity, always) if sample != 5, saving(bma2)

. estimates store bma2

. quietly bmaregress lsbp ldl-age if sample != 5

. bmastats lps bma1 bma2 . if sample == 5, compact
Log predictive-score (LPS)
Number of observations = 92

LPS Mean Minimum Maximum

bma1 -.5183101 -1.169732 4.861686
bma2 -.5173158 -1.171843 4.890529

Active -.5186576 -1.169858 4.855259

Notes: Using analytical PMPs.
Result Active has the smallest mean LPS.

We also specified the compact option to display the results in one table with a common header. Because

the variance estimates differ between the estimation results, the variance and entropy are not shown in the

header. (You can see them if you do not specify compact.) If the variances were the same, the variance
and the entropy would have been displayed.

Remember to remove the generated datasets if they are no longer needed.

. erase bma1.dta

. erase bma2.dta

In addition to the regression-function specification, in BMA, it is also important to evaluate the effect

of different prior specifications on the results. Depending on how much information there is in the data

about the data-generating process, different prior specifications may lead to different conclusions. We

explore this in example 2.

Example 2: Comparing different g-priors using cross-validation
For some data, the performance of linear BMA may depend strongly on the choice of the prior for

regression coefficients (Fernández, Ley, and Steel 2001a). The classical Zellner’s 𝑔-prior is commonly
used in BMA for regression coefficients. The 𝑔 parameter of this prior can be fixed or random. For a

random 𝑔, a hyperprior for 𝑔 must be specified. With a variety of prior choices available for 𝑔, the BMA

specification can be challenging. As an objective criterion for choosing a prior, we can use a model’s

predictive performance on the data not used for fitting the model. In this example, we show how we can

use cross-validation of log predictive-score to compare different choices of priors.

Let’s continue with the analysis of the chd dataset from example 1. Here we will compare five dif-

ferent priors for 𝑔: two fixed and three random. The two fixed priors are the default benchmark, bench,
and empirical Bayes local, ebl. The former uses a constant 𝑔-value for all models, whereas the latter
uses a model-specific 𝑔. The three random priors are the benchmark beta-shrinkage, betabench(1);
hyper-𝑔/𝑛, hypergn(3); and robust, robust; see Priors for parameter g in Methods and formulas of

[BMA] bmaregress for details.

https://www.stata.com/manuals/bma.pdf#bmabmastatslpsRemarksandexamplesbmastlpexcv
https://www.stata.com/manuals/bmaglossary.pdf#bmaGlossaryrandomg
https://www.stata.com/manuals/bma.pdf#bmabmastatslpsRemarksandexamplesbmastlpexsbp
https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregressMethodsandformulasPriorsforparameterg
https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregressMethodsandformulas
https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregress
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In example 1, we randomly split our sample into five subsamples. For cross-validation, we will treat

each of five subsamples as a test sample and fit each of five models to the remaining four subsamples,

which will give us 25 results. For each model 𝑖 and test sample 𝑗, we will save the mean LPS in a 5-by-5

matrix.

To avoid manually fitting 25 models, we will automate this task by writing a simple program later.

But first, let’s go over one step of this automation manually. We will use a robust prior for 𝑔 and, as in

example 1, withhold the fifth sample for testing.

We use the gprior(robust) option to specify the robust 𝑔-prior and, because this is a random prior,

use the rseed() option for reproducibility.

. bmaregress lsbp tobacco-age if sample != 5, gprior(robust) rseed(18)
Burn-in ...
Simulation ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 370
Linear regression No. of predictors = 8
MC3 and adaptive MH sampling Groups = 8

Always = 0
No. of models = 78

For CPMP >= .9 = 9
Priors: Mean model size = 2.366

Models: Beta-binomial(1, 1) Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 10,000
Coef.: Zellner’s g Acceptance rate = 0.3419

g: Robust
sigma2: Noninformative Mean sigma2 = 0.015

Sampling correlation = 0.9974

lsbp Mean Std. dev. Group PIP

age .0020676 .0007043 8 .9688
adiposity .0041715 .0015489 3 .9442

obesity .0004562 .0015458 6 .1378
typea -.0000531 .0002624 5 .0739

ldl -.0000286 .0009378 2 .0716
alcohol .0000163 .0000937 7 .0665
famhist .0001123 .0032103 4 .0555
tobacco -.000021 .0003703 1 .0474

Always
_cons 4.713145 .0364241 0 1

Note: Coefficient posterior means and std. dev. estimated from 78 models.
Note: Default prior is used for models.

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

g 325.2053 671.8658 18.0907 185.5779 82.95733 1396
Shrinkage .9945226 .0029212 .000183 .9946403 .9880892 .9992842

The results are somewhat similar to those from the first model in example 1, except 𝑔 is now random and

Markov chain Monte Carlo (MCMC) sampling is used to estimate its posterior distribution.

https://www.stata.com/manuals/bma.pdf#bmabmastatslpsRemarksandexamplesbmastlpexsbp
https://www.stata.com/manuals/bma.pdf#bmabmastatslpsRemarksandexamplesbmastlpexsbp
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. bmastats lps if sample == 5
Log predictive-score (LPS)
Number of observations = 92
Posterior mean sigma2 = .015309
Entropy = -.670731

Mean Minimum Maximum

LPS -.5191868 -1.170108 4.839892

Note: Using frequency PMPs.
. return list
scalars:

r(N) = 92
r(sigma2) = .0153086079526961

r(entropy) = -.6707314655467329
macros:

r(pmptype) : ”frequency”
matrices:

r(summary) : 1 x 3
. matrix list r(summary)
r(summary)[1,3]

Mean Minimum Maximum
LPS -.51918683 -1.1701082 4.839892
. display el(r(summary),1,1)
-.51918683

After running bmastats lps, we use return list to display the stored results. The LPS summary is

stored in the r(summary) matrix. We can access its first element, the mean LPS, by using the el() Stata

matrix function.

Let’s now automate the above in a program.

. program bma_cv
1. args matlps i gprior extraopts
2. forvalues j = 1/5 {
3. bmaregress lsbp tobacco-age if sample != ‘j’, ///

> gprior(‘gprior’) ‘extraopts’
4. bmastats lps if sample == ‘j’
5. matrix ‘matlps’[‘i’,‘j’] = el(r(summary),1,1)
6. }
7. end

The bma cv program takes four arguments: a matrix name matlps to store the mean LPS values, the ma-

trix row index i, the prior specification gprior, and any additional options extraopts for bmaregress,
such as rseed() for the random 𝑔-priors. We then perform cross-validation by looping over the five sub-

samples and withholding each one of them for testing. For each prior 𝑖, we save the mean LPS for each

cross-validation sample 𝑗 in row ‘i’ and column ‘j’ of the specified matrix ‘matlps’.
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We create a 5-by-5 matrix lpscvmat to store the mean LPS values and call the bma cv program

for each prior specification. Because the last three priors are random and thus use MCMC sampling to

estimate the results, the program may take a few moments longer to run compared with the one for the

fixed priors.

. matrix lpscvmat = J(5, 5, .)

. quietly bma_cv lpscvmat 1 ”bench”

. quietly bma_cv lpscvmat 2 ”ebl”

. quietly bma_cv lpscvmat 3 ”betabench 1” ”rseed(18)”

. quietly bma_cv lpscvmat 4 ”hypergn 3” ”rseed(18)”

. quietly bma_cv lpscvmat 5 ”robust” ”rseed(18)”

. matrix rownames lpscvmat = ”bench” ”ebl” ”betabench 1” ”hypergn 3” ”robust”

. matrix colnames lpscvmat = ”CV1” ”CV2” ”CV3” ”CV4” ”CV5”

. matlist lpscvmat
CV1 CV2 CV3 CV4 CV5

bench -.5771455 -.6311993 -.6583148 -.7233847 -.5183101
ebl -.5778856 -.6339036 -.6623052 -.7182023 -.5224309

betabench 1 -.5774324 -.6320177 -.6591742 -.7232513 -.5199717
hypergn 3 -.5774459 -.6322509 -.6600753 -.7212745 -.5203261

robust -.5758851 -.6344241 -.6594026 -.7210064 -.5191868

Smaller mean LPS scores indicate better predictive performance. All mean LPSs are rather similar,

which suggests a similar predictive performance for the models with considered priors (assuming a sim-

ilar variability between LPSs).

We can use a Mata matrix function, colmin(), to compute the smallest mean LPS value among all

models for each cross-validated sample.

. mata: colmin(st_matrix(”lpscvmat”))
1 2 3 4

1 -.5778855962 -.6344241355 -.6623052219 -.723384674

5

1 -.5224308762

The second model, ebl, has the lowest mean LPS for the majority of models.
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Let’s fit a model using the ebl 𝑔-prior to the entire dataset.
. bmaregress lsbp tobacco-age, gprior(ebl)
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 462
Linear regression No. of predictors = 8
Model enumeration Groups = 8

Always = 0
Priors: No. of models = 256

Models: Beta-binomial(1, 1) For CPMP >= .9 = 46
Cons.: Noninformative Mean model size = 3.516
Coef.: Zellner’s g

g: Empirical Bayes (local) Shrinkage, g/(1+g) = 0.9660
sigma2: Noninformative Mean sigma2 = 0.016

lsbp Mean Std. dev. Group PIP

age .0026375 .0006026 8 .99981
adiposity .0024261 .0016807 3 .7727

alcohol .0003029 .0003148 7 .58378
obesity .0014017 .0021937 6 .40683
tobacco .0001807 .0007427 1 .2009

typea -.0000758 .0003079 5 .19862
famhist -.0005746 .0052701 4 .17773

ldl -8.63e-06 .0013313 2 .17572

Always
_cons 4.706904 .0433882 0 1

Note: Coefficient posterior means and std. dev. estimated from 256 models.
Note: Default prior is used for models.

Using the full dataset and the ebl prior, age is still a highly important predictor with a PIP of close to 1.

The PIP of 0.77 for adiposity is now smaller, but the PIPs of 0.58 and 0.41 for alcohol and obesity,
respectively, are now noticeably higher. The other predictors have slightly higher PIPs too, but they are

still somewhat weak predictors relative to the other four.

If we run models using the other considered priors, we will find that our conclusions about the relative

importance of predictors are almost the same. Of course, the PIP estimates themselves will be different

because different priors impose different levels of shrinkage for the coefficients.

Beware that the results will also change if you use a different random-number seed. But for stable

datasets and models, changing the random-number seed should not affect the conclusions.
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Stored results
bmastats lps stores the following in r() with one estimation result:

Scalars

r(N) number of observations

r(sigma2) variance used to compute entropy

r(entropy) entropy estimate

Macros

r(name) name of the estimation result (if any specified)

r(pmptype) analytical or frequency

Matrices

r(summary) summary matrix with mean, minimum, and maximum LPS

bmastats lps stores the following in r() for each #th estimation result:

Scalars

r(N#) number of observations

r(sigma2 #) variance used to compute entropy

r(entropy#) entropy estimate

Macros

r(name#) name of the #th estimation result

r(pmptype#) analytical or frequency

Matrices

r(summary#) summary matrix with mean, minimum, and maximum LPS

bmastats lps, compact stores the following in r() with multiple estimation results:

Macros

r(names) names of estimation results

r(pmptypes) type of PMP for each model: analytical or frequency

Matrices

r(N) numbers of observations

r(sigma2) variances used to compute entropy

r(entropy) entropy estimates

r(summary) summary matrix with mean, minimum, and maximum LPS for all estimation results
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Methods and formulas
Let 𝑦∗ be a new observation of the outcome and x∗ be a 𝑝-vector of new values for the predictors, and

let z∗ = x∗ −x, where x′ = 1′X/𝑛 is a 𝑝 ×1 vector of predictor means. Let y be an 𝑛-vector of observed
outcome values. LPS for 𝑦∗ is defined as

LPS𝑦∗ = − log{𝑓(𝑦∗|y, z∗)}

For a BMA linear model with a Zellner’s 𝑔-prior for the regression coefficients and fixed 𝑔, 𝑓(𝑦∗|y, z∗)
is a 2𝑝 mixture of 𝑡 distributions. In this case, LPS can be calculated exactly, if we enumerate the entire
model space (Fernández, Ley, and Steel 2001a),

LPS𝑦∗ = − log{
2𝑝

∑
𝑗=1

𝑃𝑎(𝑀𝑗|y)𝑓(𝑦∗|𝑀𝑗, y, z∗
𝑗)}

where 𝑃𝑎(𝑀𝑗|y)’s are the analytical PMPs defined by (7) in Posterior model probability in Methods and

formulas of [BMA] bmaregress and 𝑓(𝑦∗|𝑀𝑗, y, z∗
𝑗) is the conditional posterior predictive distribution,

which is a 𝑡-distribution with (𝑛 − 1) degrees of freedom and location and scale given by (5) and (6) in

Conditional posterior predictive distribution in Methods and formulas of [BMA] bmaregresswith 𝑞 = 1.

With fixed 𝑔 and when model sampling is used, such as when bmaregress’s sampling option is

specified, the above formula is computed with respect to the set 𝐽 ⊂ {1, 2, . . . , 2𝑝} of distinct models

visited by the MCMC sampler.

With random 𝑔, we have an MCMC sample {𝑔𝑡, 𝑚𝑡} of size 𝑇 from the joint 𝑔 and model posterior

distribution. Then, 𝑓(𝑦∗|y, z∗) in the definition of LPS is replaced with the following frequency-based

MCMC estimator,

̂𝑓(𝑦∗|y, z∗) = 1
𝑇

𝑇
∑
𝑡=1

𝑓(𝑦∗|𝑔𝑡, 𝑚𝑡, y, z∗)

where 𝑓(𝑦∗|𝑔𝑡, 𝑚𝑡, y, z∗) is the density of the location-scale 𝑡 distribution with the respective mean and
scale given by (5) and (6) in Conditional posterior predictive distribution in Methods and formulas of

[BMA] bmaregress with 𝑞 = 1 and 𝑗 substituted for 𝑡. The bmastats lps command thus computes the

following frequency-based LPS estimator:

L̂PS𝑦∗ = − log{ ̂𝑓(𝑦∗|y, z∗)}

Fernández, Ley, and Steel (2001b) and Ley and Steel (2012) suggest exploring the summary statistics

of LPS such as the mean, minimum, and maximum to evaluate the quality of the predictions.

The entropy of a continuous distribution with density 𝑓(𝑥) is defined to be −𝐸[ log{𝑓(𝑥)}]. For a
normal distribution with mean 𝜇 and variance 𝜎2, the entropy is

1
2

{1 + log(2𝜋𝜎2)}

bmastats lps reports the estimated entropy with 𝜎2 in the above replaced by the estimated posterior

mean variance as described by (13) and (14) in Posterior inclusion probability in Methods and formulas

of [BMA] bmaregress.
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