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Cross-referencing the documentation
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is a reference to chapter 27, Overview of Stata estimation commands, in the User’s Guide; the second

is a reference to the regress entry in the Base Reference Manual; and the third is a reference to the

reshape entry in the Data Management Reference Manual.
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Intro — Introduction to Bayesian model averaging

Description Remarks and examples References Also see

Description
This entry provides a software-free introduction to Bayesianmodel averaging (BMA). See [BMA]BMA

commands for a suite of commands to perform BMA. Also see [BAYES] Intro for an introduction to

Bayesian analysis.

Remarks and examples
Remarks are presented under the following headings:

Brief motivation
What is model averaging and why do we need it?
Bayesian model averaging (BMA)
Concepts of BMA
Usage of BMA
BMA versus frequentist model averaging
Computational methods for BMA
Motivating examples

Example 1: BMA linear regression
Example 2: BMA for prediction compared with other approaches
Example 3: BMAwith small sample size and many predictors, 𝑛 ≤ 𝑝

Brief background and literature review

Brief motivation
Model averaging is a statistical approach that accounts for model uncertainty in your analysis. Instead

of relying on just one model, model averaging averages results over multiple plausible models based on

the observed data. In Bayesian model averaging (BMA), the “plausibility” of the model is described by

the posterior model probability, which is determined using the fundamental Bayesian principles—the

Bayes theorem—and applied universally to all data analyses.

Model averaging can be used to account for model uncertainty when estimating model parameters

and predicting new observations to avoid overly optimistic conclusions. It is particularly useful in ap-

plications with several plausible models, where there is no one definitive reason to choose a particular

model over the others. But even if choosing a single model is the end goal, model averaging can be

beneficial. For instance, BMA provides a principled way to identify important models and predictors

within the considered classes of models. Its framework allows you to learn about interrelations between

different predictors in terms of their tendency to appear in a model together, separately, or independently.

It can be used to evaluate the sensitivity of the final results to various assumptions about the importance

of different models and predictors. And it provides optimal predictions in the log-score sense.

What is model averaging and why do we need it?
The concept of a model is central in statistics. Classical statistical inference is based on the assump-

tion that there is an underlying data-generating model (DGM), and we can infer its characteristics from

the observed data. Selecting an appropriate model for the problem at hand is the first and crucial step

in performing statistical analyses. In some applications, we may have a strong theoretical or empirical

1



Intro — Introduction to Bayesian model averaging 2

evidence about the DGM. In other applications, usually of complex and unstable nature, such as those

in economics, psychology, and epidemiology, choosing a single reliable model can be difficult. In such

cases, it is important to have a principled way to account for the uncertainty in the model-selection pro-

cess. In practice, we are often interested in a particular property or quantity of the DGM. The classical

inferential approach involves choosing a model and estimating this quantity from the observed data con-

ditional on the chosen model. One drawback of working with a single model is that we may assign more

precision to our estimates than is supported by the data (Chatfield 1995 and Draper 1995). In predictive

inference, single-model approaches do not utilize all available information and may be unstable; see, for

example, Piironen and Vehtari (2017).

The model averaging approach is conceptually different. Instead of choosing one model, we consider

a list of candidate models. The quantity of interest is then estimated by an average across individual

model estimates. Averaging is weighed by how likely each model is. In this way, model averaging

accounts for the model-selection uncertainty.

The true DGM may or may not be in our list of candidate models. If it is, classical model-selection

approaches may work well. Otherwise, the larger the candidate model space is, the greater the possibility

of model selection to choose an incorrect model and make wrong conclusions. And the selected model

may change every time the new data become available. In model selection, it may not be clear what con-

stitutes a good candidate, given that the true model is unknown. Popular information-based criteria such

as the Bayesian information criterion measure how well a model fits the data and include an additional

penalty for its complexity. But a model often needs to be evaluated based on its predictive performance.

Improving predictive performance motivated a variety of methods known as ensemble methods such as

stacking (Wolpert 1992) and bagging (Breiman 1996). Model averaging can be viewed as an ensemble

method that improves predictive performance using optimal combinations in the space of considered

candidate models (Raftery and Zheng 2003).

Bayesian model averaging (BMA)
BMA (Leamer 1978) casts model averaging into a Bayesian framework. It provides a principled way to

definemodel weights as posterior model probabilities, which is universal to all data-generating processes.

BMA formulation emerges naturally as an application of a standard Bayesian predictive approach tomodel

averaging.

In BMA, model 𝑀 is a random variable with prior 𝑃(𝑀) distributed over some model space. Given
the observed data 𝐷, the likelihood of 𝑀 is the probability of 𝐷 with respect to 𝑀, 𝑃(𝐷|𝑀). The

posterior of 𝑀 is then given by the Bayes theorem

𝑃(𝑀|𝐷) = 𝑃(𝐷|𝑀)𝑃(𝑀)
∑𝑀∗ 𝑃(𝐷|𝑀∗)𝑃 (𝑀∗)

where we assume that the model space is discrete and take the sum over it in the denominator. Continuous

model spaces are also possible but will not be considered here. The quantity 𝑃(𝐷|𝑀) is known as the
marginal likelihood of model 𝑀. And 𝑃(𝑀|𝐷) is known as the posterior model probability and is a key
quantity in BMA inference and prediction. Also see Concepts of BMA.
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Let 𝑄 be any quantity of interest that is not model specific; that is, it should have the same interpre-

tation across all models in the model space. Let 𝑄𝑀 be its estimator with respect to model 𝑀. The BMA

estimator of 𝑄 can be written as

𝑄BMA = ∑
𝑀

𝑃(𝑀|𝐷)𝑄𝑀

The above formula follows from the fundamental BMA formula for the posterior distribution of𝑄 over

the model space,

𝑔(𝑄|𝐷) = ∑
𝑀

𝑃(𝑀|𝐷)𝑔(𝑄|𝐷, 𝑀)

where 𝑔(𝑄|𝐷, 𝑀) is the posterior distribution of𝑄 formodel𝑀. Then,𝑄BMA = 𝐸(𝑄|𝐷) is the posterior
mean of 𝑄, and 𝑄𝑀 = 𝐸(𝑄|𝐷, 𝑀) is the posterior mean of 𝑄 for model 𝑀.

The variability of 𝑄 is described by the posterior variance of 𝑄 with respect to 𝑔(𝑄|𝐷),

Var(𝑄|𝐷) = ∑
𝑀

𝑃(𝑀|𝐷)Var(𝑄|𝐷, 𝑀) + ∑
𝑀

𝑃(𝑀|𝐷) {𝐸(𝑄|𝐷, 𝑀) − 𝐸(𝑄|𝐷)}2

where the second term estimates the additional uncertainty about the estimated 𝑄 across models.

In a regression context, the notion of model averaging has a more specific formulation—model un-

certainty arises mainly from the uncertainty of which predictors should be included in the model.

Let 𝑌 be an outcome variable with 𝑝 potential predictors (regressors or covariates) x =
(𝑋1, 𝑋2, . . . , 𝑋𝑝). Let 𝐷 = {𝑦𝑖, 𝑥1𝑖, 𝑥2𝑖, . . . , 𝑥𝑝𝑖}𝑛

𝑖=1 be a sample of observations on 𝑌 and x. We

are not sure which predictors describe 𝑌 best and consider any subset of x as a potential candidate set.

We can enumerate all subsets and denote the 𝑗th subset by x𝑗. Then 𝑀𝑗, defined as the model corre-

sponding to x𝑗, is an element of the discrete model space {𝑀𝑗}2𝑝

𝑗=1. Two typical applications of BMA in

this context are estimating regression coefficients and predicting 𝑌 from a new observation x∗; also see

Usage of BMA for other applications.

Let β̂𝑀𝑗
be an estimate of a 𝑝 × 1 regression coefficient vector β with respect to model 𝑀𝑗, in which

the coefficients for predictors not in the model are set to zero. Then, the BMA estimate of β is

β̂
BMA

=
2𝑝

∑
𝑗=1

𝑃(𝑀𝑗|𝐷)β̂𝑀𝑗

Given a new observation x∗, a new outcome value 𝑦∗ can be obtained from the BMA predictive distri-

bution, which is as a mixture of the model-specific predictive distributions,

𝑝BMA(𝑦∗|x∗, 𝐷) =
2𝑝

∑
𝑗=1

𝑃(𝑀𝑗|𝐷)𝑝𝑗(𝑦∗|x∗, 𝐷, 𝑀𝑗)

where 𝑝𝑗(𝑦∗|x∗, 𝐷, 𝑀𝑗) is the posterior predictive density of 𝑌 for model 𝑀𝑗. The above is a special

case of the standard definition of the Bayesian posterior predictive distribution.
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BMA has many appealing statistical properties, as detailed in Steel (2020). For instance, Raftery and

Zheng (2003) show that BMA point estimators and predictors minimize the mean squared error weighted

by the prior. Madigan and York (1995) verify that BMA estimators maximize predictive ability, and Min

and Zellner (1993) find that BMA performs better than any other model-choice approach with respect to

the log predictive-score.

BMA is built on Bayesian principles. Thus, it faces the same challenges as standard Bayesian analyses

with respect to the specification of priors and the intensity of the computations. We discuss some of these

challenges in more detail in the next section.

Concepts of BMA
Here we briefly describe some of the concepts essential to BMA. For details in the context of linear re-

gression, see Remarks and examples andMethods and formulas of [BMA] bmaregress. Also see Hoeting

et al. (1999), Fernández, Ley, and Steel (2001a), Moral-Benito (2015), Fragoso, Bertoli, and Louzada

(2018), and Steel (2020).

BMA applies standard Bayesian principles to model averaging. Thus, all concepts of Bayesian analysis

apply to BMA as well; see [BAYES] Intro. Compared with standard Bayesian analyses, which condition

on a model, BMA views a model as random and assumes a prior distribution for it.

Model space. The extent to which BMA can properly account for model uncertainty relies on the

construction of the model space. BMA results are conditional on the considered model space. If the

model space does not include important candidate models, BMA will not be able to consider them and

incorporate them in the results. Themodel space should incorporate any aspects of model uncertainty that

needs to be accounted for. For instance, if one is uncertain about various functional forms of predictors,

these functional forms (and possibly more) should be included in the model space. Ideally, the model

space should contain the DGM, but BMAwas found to provide good results even when it does not, as long

as the model space is sufficiently large. In that case, BMA approximates the true DGM by a combination

of models within the considered class. See Steel (2020) for a detailed discussion of the construction of

the BMAmodel space.

Parameters of interest. When the goal of analysis is an estimation of a parameter of interest, it is

important that the parameter has the same interpretation across all models. For instance, see Interpretation

of BMA regression coefficients in Remarks and examples of [BMA] bmaregress.

Priors for models and model parameters. Specifying a prior distribution for a model parameter is

an integral part of a Bayesian model specification. BMA additionally specifies a prior distribution for a

model, typically, over a discrete model space. A variety of model priors and priors for model parameters

are suggested in the literature, both informative and noninformative, data agnostic and data driven (Steel

2020).

In the regression context, commonly used priors, such as a Zellner’s prior with a fixed 𝑔 parameter

for regression coefficients (Fernández, Ley, and Steel 2001a), provide exact computation of marginal

likelihoods. Although computationally convenient, these priors may not always provide the best predic-

tive performance. The application of 𝑔-priors with random 𝑔 parameters (Ley and Steel 2012) allows for
more flexible BMA analysis but complicates the model specification and simulation. See Introduction to

BMA for linear regression in Remarks and examples of [BMA] bmaregress for the discussion of various

priors in the context of BMA linear regression.

As with any Bayesian analysis, in the absence of strong information in the data about the DGM and

model parameters, BMA results can be sensitive to the choice of priors. Sensitivity analysis is recom-

mended to investigate the impact of priors on the results.



Intro — Introduction to Bayesian model averaging 5

Estimation: Model enumeration and Markov chain Monte Carlo (MCMC) sampling. Depend-

ing on the model complexity, it may be feasible to enumerate and consider all the models in the defined

space. In this case, the model space is fully explored. This is rarely feasible in practice. More com-

monly, MCMC sampling is used to explore the model space more efficiently by considering only more

likely models given the observed data, for example, the MCMC model composition (MC3) sampling pro-

posed by Madigan and York (1995). In addition to sampling of the model space, we may also need to

use MCMC sampling for model parameters when analytical expressions for their posterior distributions

are not available, which is common in practice. When MCMC sampling is used, it is important to verify

the convergence of MCMC; see Convergence of BMA in Remarks and examples of [BMA] bmaregress

in the context of linear regression.

Posterior model probability (PMP). The PMP is central to all BMA analyses. It represents the prob-

ability of a model given the observed data and model’s prior. It is used as a weight in BMA estimates of

parameters of interest and predictions. It is used to identify influential models. And it is used to compute

the posterior inclusion probability (PIP), which is used to identify important predictors. In special cases,

the PMP can be estimated exactly or analytically, in which case we refer to it as the analytical PMP. More

commonly, however, it is estimated based on the MCMC sample of models, in which case we refer to it

as the frequency PMP. Models with high PMPs are of interest in BMA analysis.

Posterior inclusion probability (PIP). The PIP is the probability that a predictor is included in amodel

computed over the model space given the observed data and the prior model probability. It measures the

importance of a predictor. Because the computation of the PIP is based on the PMP, we also distinguish

between the analytical PIP and frequency PIP. Predictors with high PIP values, commonly above 0.5, are

considered important predictors.

Jointness. Jointness is a concept particular to BMA. Because BMA considers multiple models, it can

estimate the tendency of predictors to be included jointly or exclusively across the models. Jointness

means that predictors tend to be included together in many models. Such predictors are then viewed

as complements, in the sense that their joint inclusion provides additional information in explaining the

outcome. Disjointness means that whenever one predictor is included in a model, the other tends to be

excluded. Such predictors are viewed as substitutes, meaning that only one of them is needed to explain

the outcome.

Inference. In the context of BMA, the inference focuses on exploring influential models, models

with high PMPs, and important predictors, predictors with high PIPs. The jointness or disjointness of

predictors is often also of interest. When averaging across the model space is applicable for a parameter

of interest, the parameter estimation is performed with respect to the posterior distribution over the model

space. Although the inference accounts for model uncertainty, it is important to remember that it is still

conditional on the explored model space.

Prediction. BMA is commonly used for prediction because of its theoretical properties and empirical

performance. When the model space contains the DGM, the BMApredictive mean minimizes the expected

squared error loss (Min and Zellner 1993). Madigan and Raftery (1994) compare the BMA predictive

performance with that of a single model using the log predictive-score (LPS) and conclude that BMA

performs at least as well. See Steel (2020) for more information.

Log predictive-score (LPS). LPS is the negative of the logarithm of the predictive density evaluated

at an observation (Good 1952). It is used to assess predictive performance of a model in the context of

BMA (for example, Madigan, Gavrin, and Raftery [1995] and Fernández, Ley, and Steel [2001a]). It can

also be used to compare model fit.
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Diagnostics. Model diagnostics are just as important for BMA as they are for a single-model analysis.

Any model checks that are commonly done with one model should be performed during BMA analysis as

well. Because of the manymodels, the application of such checks is not as straightforward. The literature

recommends that the checks be performed for the model with all predictors before the estimation and

for all high-PMP models after the estimation. For BMA, additional diagnostics include checking MCMC

convergence and performing a sensitivity analysis to the prior choices.

Sensitivity analysis. As with any Bayesian analysis, prior sensitivity analysis is important for BMA. In

the BMA context, the sensitivity analysis should be performed for both model priors and model parameter

priors.

Usage of BMA
Fragoso, Bertoli, and Louzada (2018) identified several main applications of BMA across various

disciplines such as “model choice”, “combination of multiple models for prediction”, and “combined

estimation”. We will refer to these simply as model choice, parameter estimation, and prediction.

BMAwas motivated in the context of prediction to improve out-of-sample predictive performance of

a model (for example, Hoeting et al. [1999]). BMA can be shown to produce optimal predictions with

respect to the LPS (Min and Zellner 1993) by averaging predictions from multiple models and weighing

them by the model’s importance. The model’s importance is estimated in a principled Bayesian way as

a PMP and applied universally to all data-generating processes. A few applications of BMA for prediction

can be found in Madigan and Raftery (1994), Raftery, Madigan, and Volinsky (1995), Volinsky et al.

(1997), Hoeting et al. (1999), Tobias and Li (2004), Kaplan and Lee (2018), and Darwen (2019).

The use of BMA for model choice amounts to identifying important models and predictors. The im-

portance of a model is based on the estimated PMP. And the importance of a predictor is based on the

estimated PIP, the probability that this predictor is included in a model estimated over the considered

model space. Some of the applications of model choice include Raftery, Madigan, and Hoeting (1997),

Hoeting et al. (1999), Fernández, Ley, and Steel (2001b), Eicher, Papageorgiou, and Raftery (2011),

Moral-Benito (2015), Arin and Braunfels (2018), and Peisker (2023).

BMA is also used to estimate a parameter common to all models. As with prediction, the BMA estimate

is a weighted average of the model-specific estimates with weights defined by PMPs. For instance, see

Hoeting et al. (1999), Koop (2003), Yin and Yuan (2009), Montgomery and Nyhan (2010), and Moral-

Benito (2015). But be mindful when using BMA to estimate partial regression coefficients in a linear

regression (Draper 1999; Banner and Higgs 2017); see Interpretation of BMA regression coefficients in

Remarks and examples of [BMA] bmaregress.

Wasserman (2000) also shows how to use BMA to perform Bayesian variable selection.

See Fragoso, Bertoli, and Louzada (2018) for more references and discussion of the BMA usage in

different research areas.

BMA versus frequentist model averaging
Frequentist model averaging (FMA) is an inferential procedure based on the so-called FMA estimator,

β̂
FMA

=
2𝑝

∑
𝑗=1

𝜔𝑗β̂𝑗

where 0 ≤ 𝜔𝑗 ≤ 1, ∑2𝑝

𝑗=1 𝜔𝑗 = 1, and β̂𝑗 is an estimator, usually ordinary least squares, of regression

parameters for model 𝑀𝑗. The weights 𝜔𝑗’s are chosen such that β̂FMA
has certain asymptotic properties.
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In contrast to BMA, where model estimators are weighted by PMPs, in FMA the weights are computed

for each model independently and then normalized. The most common choice is 𝜔𝑗 ∝ exp(−0.5𝐼𝑗)
(Buckland, Burnham, and Augustin 1997), where 𝐼𝑗 is an information criterion of the form

𝐼𝑗 = −2 log(𝐿𝑗) + 𝜓𝑗

This approach includes popular choices such as the Akaike information criterion, 𝜓𝑗 = 2𝑝𝑗, and

Bayesian information criterion, 𝜓𝑗 = 𝑝𝑗 log(𝑛), where 𝑝𝑗 is the number of predictors in the 𝑗th model.
Other approaches include weights based on Mallow’s criterion (Hansen 2007) and cross-validation

(Hansen and Racine 2012). A more in-depth exploration of the FMA, as applied in economics in par-

ticular, can be found in Moral-Benito (2015).

Compared with FMA, BMAprovides a unified and intuitive way to interpret the model’s and predictor’s

importance by using the respective PMPs and PIPs. In fact, the PMPs, which are derived from fundamen-

tal Bayesian principles, are used as weights in all BMA computations. BMA can also handle larger model

spaces more easily by using efficient MCMC sampling algorithms. Additionally, BMA benefits from sev-

eral appealing statistical properties such as calibration of credible intervals and optimal prediction in the

log-score sense. See Steel (2020) for details.

See De Luca and Magnus (2011) for the implementation of the weighted-average least-squares esti-

mator in Stata.

Computational methods for BMA
For a long time, the use of BMA in practice has been hindered by the lack of computationally feasible

estimation methods. Since then, a variety of specializedMCMCmethods have been developed to facilitate

Bayesian inference. Aunique challenge of BMA is the complex nature of the posterior domain—a discrete

mixture of models with continuous domains of varying dimensions.

One of the first general sampling methods for BMA was the MC3 (Madigan and York 1995), which

is a stochastic method that moves through the model space by changing one predictor, or a group of

predictors, at a time.

The availability of the analytical form for the marginal likelihood in linear models leads to fast and

efficient MC3 sampling methods. However, analytical marginals are not available for generalized linear

models and for most linear BMA models that include hyperparameters such as 𝑔-priors. Ley and Steel

(2012) proposed an adaptive MC3 method applicable to the latter case. Other adaptive MCMC methods

are also available (Atchadé and Rosenthal 2005).

Motivating examples
Consider the following simulated dataset. There are 𝑛 = 200 observations and 𝑝 = 10 predictors.

Each predictor x1 through x10 is generated independently from a standard normal distribution. The

outcome y is generated according to the following regression model, which we refer to as our DGM,

y = 0.5 + 1.2 × x2 + 5 × x10 + 𝜖

where 𝜖 ∼ 𝑁(0, 1) is a standard normal error term.
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. use https://www.stata-press.com/data/r19/bmaintro
(Simulated data for BMA example)
. summarize

Variable Obs Mean Std. dev. Min Max

y 200 .9944997 4.925052 -13.332 13.06587
x1 200 -.0187403 .9908957 -3.217909 2.606215
x2 200 -.0159491 1.098724 -2.999594 2.566395
x3 200 .080607 1.007036 -3.016552 3.020441
x4 200 .0324701 1.004683 -2.410378 2.391406

x5 200 -.0821737 .9866885 -2.543018 2.133524
x6 200 .0232265 1.006167 -2.567606 3.840835
x7 200 -.1121034 .9450883 -3.213471 1.885638
x8 200 -.0668903 .9713769 -2.871328 2.808912
x9 200 -.1629013 .9550258 -2.647837 2.472586

x10 200 .083902 .8905923 -2.660675 2.275681

We consider three toy examples. The first example briefly introduces BMA for linear regression and

compares it with standard linear regression. The second example compares the use of regression, stepwise

selection, lasso, and BMA for prediction. The third example revisits these tools in a more challenging

setting of 𝑛 = 𝑝.
Examples are presented under the following headings:

Example 1: BMA linear regression
Example 2: BMA for prediction compared with other approaches
Example 3: BMAwith small sample size and many predictors, 𝑛 ≤ 𝑝

Example 1: BMA linear regression
We first use regress to fit a standard linear regression of y on x1 through x10. We specify the

predictors by using the shortcut varlist notation x1-x10:

. regress y x1-x10
Source SS df MS Number of obs = 200

F(10, 189) = 396.30
Model 4607.24837 10 460.724837 Prob > F = 0.0000

Residual 219.723235 189 1.1625568 R-squared = 0.9545
Adj R-squared = 0.9521

Total 4826.9716 199 24.2561387 Root MSE = 1.0782

y Coefficient Std. err. t P>|t| [95% conf. interval]

x1 .0753537 .0781737 0.96 0.336 -.0788513 .2295587
x2 1.18854 .0716658 16.58 0.000 1.047172 1.329907
x3 -.1871012 .0789484 -2.37 0.019 -.3428344 -.0313679
x4 -.0459335 .0785503 -0.58 0.559 -.2008813 .1090144
x5 .0343498 .0793095 0.43 0.665 -.1220956 .1907953
x6 -.0149194 .0767357 -0.19 0.846 -.1662879 .136449
x7 .007174 .0831239 0.09 0.931 -.1567958 .1711437
x8 -.0384917 .0810626 -0.47 0.635 -.1983953 .1214119
x9 .0968948 .0817218 1.19 0.237 -.0643093 .2580989

x10 5.13251 .0877447 58.49 0.000 4.959426 5.305595
_cons .617996 .0791152 7.81 0.000 .4619337 .7740582
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regress identifies the two true predictors x2 and x10 as “statistically significant” (with 𝑝-values less
than 0.000). The estimate of the coefficient for x2 is 1.19 with a standard error of 0.072, and the 95%

confidence interval (CI) is [1.05, 1.33], which agrees with the true value of 1.2. The estimated coefficient
for x10 is 5.13 with a standard error of 0.088, and the 95% CI is [4.96, 5.31], which agrees with the true
value of 5. These findings are consistent with our true DGM. regress also reports a 𝑝-value of 0.019 for
x3, which is not in the DGM, with an estimated coefficient of −0.19 and a 95% CI of [−0.34, −0.03]. It
might be tempting to use the reported 𝑝-values to infer the importance of the predictors, but 𝑝-values do
not have such interpretation.

Let’s now use bmaregress to perform BMA for a linear regression:

. bmaregress y x1-x10
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 200
Linear regression No. of predictors = 10
Model enumeration Groups = 10

Always = 0
Priors: No. of models = 1,024

Models: Beta-binomial(1, 1) For CPMP >= .9 = 9
Cons.: Noninformative Mean model size = 2.479
Coef.: Zellner’s g

g: Benchmark, g = 200 Shrinkage, g/(1+g) = 0.9950
sigma2: Noninformative Mean sigma2 = 1.272

y Mean Std. dev. Group PIP

x2 1.198105 .0733478 2 1
x10 5.08343 .0900953 10 1
x3 -.0352493 .0773309 3 .21123
x9 .004321 .0265725 9 .051516
x1 .0033937 .0232163 1 .046909
x4 -.0020407 .0188504 4 .039267
x5 .0005972 .0152443 5 .033015
x8 -.0005639 .0153214 8 .032742
x7 -8.23e-06 .015497 7 .032386
x6 -.0003648 .0143983 6 .032361

Always
_cons .5907923 .0804774 0 1

Note: Coefficient posterior means and std. dev. estimated from 1,024 models.
Note: Default priors are used for models and parameter g.

We will describe only some of the more relevant information here, but see example 1 of

[BMA] bmaregress for details about the output of bmaregress.

bmaregress, with the default settings, considered all 210 = 1,024 possible models based on 10

predictors. Like regress, bmaregress identified the two true predictors, x2 and x10, with the estimated
PIPs of 1, labeled as PIP in the table. All other predictors have much lower PIP values, and all but the

PIP for x3 are below 10%. Unlike regress, we can use the PIP reported by bmaregress to describe

and compare the importance of predictors. PIP genuinely represents the probability of a predictor being

included in a model across the considered space of 1,024 possible models. For instance, the PIP of 0.2

for x3 is much lower than that for x2 and x10, so we can conclude that this predictor is not as important.
Also, its BMA coefficient (posterior mean) of −0.035 is much closer to 0 than that from regress.
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The BMA estimates of 1.2 (rounded) and 5.1 of the coefficients for x2 and x10, respectively, are close
to the true values of 1.2 and 5. The respective estimated posterior standard deviations, 0.073 and 0.090,

are slightly larger than those from regress. This is expected because the BMA estimates account for the

uncertainty about which predictors should be included in the regression model. bmaregress does not

report credible intervals by default for computational reasons, but you can obtain them as described in

example 5 of [BMA] bmaregress. Also, with real-world observational data, we should be mindful when

interpreting BMA regression coefficients; see Interpretation of BMA regression coefficients in Remarks

and examples of [BMA] bmaregress.

Although BMAdoes not “select” amodel, it does identify some of the influential models that contribute

more to the averaged results. In this example, we can already guess which model BMA identified as the

top model based on the reported PIP values by bmaregress, but let’s use bmastats models to confirm:

. bmastats models
Computing model probabilities ...
Model summary Number of models:

Visited = 1,024
Reported = 5

Analytical PMP Model size

Rank
1 .6292 2
2 .1444 3
3 .0258 3
4 .0246 3
5 .01996 3

Variable-inclusion summary

Rank Rank Rank Rank Rank
1 2 3 4 5

x2 x x x x x
x10 x x x x x
x3 x
x9 x
x1 x
x4 x

Legend:
x - estimated

As anticipated, the top model with a PMP, Analytical PMP, of 0.63 is the model that contains x2 and

x10. The next plausible model based on our sample is the one that also includes x3, but its PMP of 0.14

is much lower.

In the above, bmaregress used the default priors. These priors are offered for convenience and should
be carefully evaluated in each application. Also, sensitivity analysis should be performed to evaluate the

impact of different priors on the results; see, for example, example 11 of [BMA] bmaregress.

In BMA, the variance of the prior for the regression coefficients is proportional to the so-called 𝑔
parameter. By default, 𝑔 has a fixed value of max(𝑛, 𝑝2), which in our example is 𝑔 = 𝑛 = 200. We

can relax this by specifying a higher value for 𝑔, say, 1,000. This will reduce the shrinkage effect on the
coefficients and generally produce estimates that are closer to the ordinary least-squares estimates.
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Another important benefit of BMA is its ability to control model uncertainty through the model prior.

If, for example, we had a prior knowledge that predictors x1 and x3 through x9 are unlikely to be related

to y, we could incorporate this knowledge in our BMAmodel. In the following specification, we use the

mprior() option to specify the binomial model prior with the inclusion probability of 0.1 for x1 and x3
through x9 and the inclusion probability of 0.5 for x2 and x10.

. bmaregress y x1-x10, mprior(binomial x2 x10 0.5 x1 x3-x9 0.1)
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 200
Linear regression No. of predictors = 10
Model enumeration Groups = 10

Always = 0
Priors: No. of models = 1,024

Models: Binomial, IP varies For CPMP >= .9 = 2
Cons.: Noninformative Mean model size = 2.129
Coef.: Zellner’s g

g: Benchmark, g = 200 Shrinkage, g/(1+g) = 0.9950
sigma2: Noninformative Mean sigma2 = 1.276

y Mean Std. dev. Group PIP

x2 1.200944 .0730381 2 1
x10 5.080663 .0899736 10 1
x3 -.0106068 .0452704 3 .064039
x9 .0009677 .0126993 9 .012195
x1 .0008208 .0115323 1 .01149

Always
_cons .5884159 .0803504 0 1

Note: Coefficient posterior means and std. dev. estimated from 1,024 models.
Note: Default prior is used for parameter g.
Note: 5 predictors with PIP less than .01 not shown.

The effect of this model prior is that the posterior inclusion probability of predictors x1 and x3 through

x9 is now less than 8%. There is also a slight improvement in the estimates of the intercept and the

coefficient for x2.

The inclusion of prior assumptions supported by science and empirical work in a model is part of

standard Bayesian analysis. With such priors, the BMA framework has the potential to provide a more

reliable inference than the classical regression approach in the situations where the data have limited

information about the model and its parameters.
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Example 2: BMA for prediction compared with other approaches
In this example, we compute and compare predictions for the bmaintro dataset by using the following

methods: linear regression, regress (see [R] regress); stepwise selection with linear regression, the

stepwise prefix (see [R] stepwise); linear lasso variable selection, lasso linear (see [LASSO] lasso);

and BMA linear regression, bmaregress (see [BMA] bmaregress).

To compare predictive performance of the models, we split our dataset into two equal samples: one

for “training” the model (used for fitting) and the other for “testing” the model (used for prediction). We

store the resulting sample identifier in the sample variable. And we specify a random-number seed for

reproducibility.

. splitsample, generate(sample) nsplit(2) rseed(50)

Next, we fit each of the four commands using the training data, if sample == 1, and compute pre-

dictions using the test data, if sample == 2.

We start with regress to fit a linear regression and predict to obtain the linear predictor for y,
which we store in the yreg variable.

. regress y x1-x10 if sample == 1
Source SS df MS Number of obs = 100

F(10, 89) = 199.77
Model 2353.4317 10 235.34317 Prob > F = 0.0000

Residual 104.84695 89 1.17805562 R-squared = 0.9573
Adj R-squared = 0.9526

Total 2458.27865 99 24.8310975 Root MSE = 1.0854

y Coefficient Std. err. t P>|t| [95% conf. interval]

x1 .2278093 .1115858 2.04 0.044 .0060906 .449528
x2 1.040423 .1084559 9.59 0.000 .824924 1.255923
x3 -.2557993 .1140321 -2.24 0.027 -.4823787 -.0292199
x4 -.0182061 .1175268 -0.15 0.877 -.2517293 .2153171
x5 .0389276 .1187846 0.33 0.744 -.1970948 .27495
x6 .0120724 .1107333 0.11 0.913 -.2079523 .2320971
x7 .0792028 .1378848 0.57 0.567 -.1947713 .3531768
x8 -.0841665 .1259057 -0.67 0.506 -.3343384 .1660054
x9 .0039031 .1181302 0.03 0.974 -.2308191 .2386254

x10 5.281029 .1298317 40.68 0.000 5.023056 5.539002
_cons .5726978 .1175907 4.87 0.000 .3390475 .8063481

. predict yreg if sample == 2
(option xb assumed; fitted values)
(100 missing values generated)
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Next, we use stepwise to perform stepwise backward selection with the significance level of 0.05

for the removal of a predictor from the model. And we use predict to obtain the linear predictor from

the selected model and store it in the ysw variable.

. stepwise, pr(.05): regress y x1-x10 if sample == 1
Wald test, begin with full model:
p = 0.9737 >= 0.0500, removing x9
p = 0.9134 >= 0.0500, removing x6
p = 0.8862 >= 0.0500, removing x4
p = 0.7456 >= 0.0500, removing x5
p = 0.5099 >= 0.0500, removing x8
p = 0.5102 >= 0.0500, removing x7

Source SS df MS Number of obs = 100
F(4, 95) = 527.09

Model 2352.28746 4 588.071866 Prob > F = 0.0000
Residual 105.991183 95 1.11569666 R-squared = 0.9569

Adj R-squared = 0.9551
Total 2458.27865 99 24.8310975 Root MSE = 1.0563

y Coefficient Std. err. t P>|t| [95% conf. interval]

x1 .2143505 .1062623 2.02 0.046 .0033932 .4253078
x2 1.038816 .1028192 10.10 0.000 .8346945 1.242938
x3 -.2465552 .1087814 -2.27 0.026 -.4625137 -.0305968

x10 5.285204 .1231611 42.91 0.000 5.040698 5.52971
_cons .5527609 .1064491 5.19 0.000 .3414327 .7640891

. predict ysw if sample == 2
(option xb assumed; fitted values)
(100 missing values generated)
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We then use lasso for the linear model followed by lassocoef to see the coefficient estimates from

the selected model and by predict to compute and store the penalized linear predictor in the ylasso
variable.

. lasso linear y x1-x10 if sample == 1, rseed(18) nolog
Lasso linear model No. of obs = 100

No. of covariates = 10
Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda 4.697569 0 -0.0072 24.75885
43 lambda before .0943851 4 0.9506 1.213251

* 44 selected lambda .0860002 4 0.9507 1.211054
45 lambda after .0783602 4 0.9507 1.211522
48 last lambda .0592766 5 0.9503 1.220737

* lambda selected by cross-validation.
. lassocoef, display(coef) nolegend

active

x1 .1167579
x2 1.051272
x3 -.1659852

x10 4.53756
_cons 0

. predict ylasso if sample == 2
(options xb penalized assumed; linear prediction with penalized coefficients)

Finally, we use bmaregress to fit a BMA linear regression followed by bmapredict to compute the

posterior predictive mean and store it in the ybma variable.
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. bmaregress y x1-x10 if sample == 1
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 100
Linear regression No. of predictors = 10
Model enumeration Groups = 10

Always = 0
Priors: No. of models = 1,024

Models: Beta-binomial(1, 1) For CPMP >= .9 = 17
Cons.: Noninformative Mean model size = 2.804
Coef.: Zellner’s g

g: Benchmark, g = 100 Shrinkage, g/(1+g) = 0.9901
sigma2: Noninformative Mean sigma2 = 1.412

y Mean Std. dev. Group PIP

x10 5.18159 .1381456 10 1
x2 1.068169 .115504 2 1
x3 -.0676021 .1264303 3 .27554
x1 .0439351 .1014456 1 .20554
x8 -.0043739 .0369172 8 .05923
x9 -.0020804 .0305354 9 .054026
x7 .0022291 .0354666 7 .053837
x5 .0017863 .0301671 5 .053101
x6 .0004583 .0266441 6 .051342
x4 -.0000354 .0281472 4 .051285

Always
_cons .5575281 .1202808 0 1

Note: Coefficient posterior means and std. dev. estimated from 1,024 models.
Note: Default priors are used for models and parameter g.
. bmapredict ybma if sample == 2, mean
note: computing analytical posterior predictive means.

We now compute the mean squared error for each of the four predictions:

. generate mse_y = (y-yreg)^2
(100 missing values generated)
. generate mse_sw = (y-ysw)^2
(100 missing values generated)
. generate mse_lasso = (y-ylasso)^2
(100 missing values generated)
. generate mse_bma = (y-ybma)^2
(100 missing values generated)
. summarize mse*

Variable Obs Mean Std. dev. Min Max

mse_y 100 1.315471 1.544705 .0006445 8.494073
mse_sw 100 1.295875 1.57022 .0000219 8.754056

mse_lasso 100 1.246921 1.507352 .0003377 7.452369
mse_bma 100 1.174436 1.375909 .0002316 5.69697

The BMA prediction has the lowest mean squared error. Of course, a proper comparison of the techniques

requires a carefully designed simulation study.
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Example 3: BMA with small sample size and many predictors, 𝑛 ≤ 𝑝

Let’s now consider a case when the number of observations is too small relative to the number of

predictors.

. use https://www.stata-press.com/data/r19/bmaintrosmall, clear
(Simulated data for BMA example, small sample)
. notes list y
y:

1. y = .5 + 1.2*x2 + 5*x10 + rnormal()
. summarize

Variable Obs Mean Std. dev. Min Max

y 10 .0976614 4.145433 -5.263075 6.823442
x1 10 -.2640087 1.147843 -2.680089 1.069156
x2 10 -.5486203 1.202882 -2.306713 1.269136
x3 10 .4727975 1.193019 -.9573489 3.020441
x4 10 -.0216079 .8695972 -1.82316 1.216567

x5 10 .2634739 .9095448 -1.28917 1.439632
x6 10 .091497 1.36508 -2.567606 1.809207
x7 10 .3522653 1.033754 -1.115946 1.885638
x8 10 -.1419826 .4697729 -.8331077 .6677282
x9 10 -.0343085 1.213427 -2.035336 1.647427

x10 10 -.0635723 .7551339 -1.023638 1.19934

In our toy example, we have only 10 observations, which is too small to make any reliable inferential

conclusions. But we use it here for demonstration purposes to avoid dealing with too many variables. In

practice, one can imagine datasets with, say, 100 observations and more than 100 potential predictors of

which only a few are important in explaining the outcome, and we would like to investigate which ones.

The analysis below can be easily adapted to datasets with more observations and variables.

Considering that the number of predictors in our dataset equals the sample size, we expect the tradi-

tional linear regression analysis and stepwise selection to fail. And they do.

. regress y x1-x10
note: x10 omitted because of collinearity.

Source SS df MS Number of obs = 10
F(9, 0) = .

Model 154.661546 9 17.1846162 Prob > F = .
Residual 0 0 . R-squared = 1.0000

Adj R-squared = .
Total 154.661546 9 17.1846162 Root MSE = 0

y Coefficient Std. err. t P>|t| [95% conf. interval]

x1 -4.475056 . . . . .
x2 2.618239 . . . . .
x3 -3.52965 . . . . .
x4 -3.814989 . . . . .
x5 -.1365321 . . . . .
x6 1.262926 . . . . .
x7 1.092976 . . . . .
x8 -2.792013 . . . . .
x9 -.7586842 . . . . .

x10 0 (omitted)
_cons 1.051957 . . . . .
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Because of insufficient sample size, regress arbitrarily omits one of the highest collinear predictors

from the model because of collinearity. This happens to be one of the important predictors, x10. Also,
as expected, regress fails to produce standard errors and 𝑝-values for the coefficients.

stepwise is not designed for 𝑛 ≤ 𝑝 and errors out.

We run lasso linear and compute predictions as before in example 2, except we use the same sample
for fitting and prediction. Because of the small sample size, checking the out-of-sample (predictive)

performance of the models is not feasible. Instead, we compare their in-sample performance, also known

as model fit.

. lasso linear y x1-x10, rseed(18) nolog
Lasso linear model No. of obs = 10

No. of covariates = 10
Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda 3.539901 0 -0.2057 18.64734
55 lambda before .2871323 3 0.8906 1.692064

* 56 selected lambda .2740817 3 0.8907 1.690632
57 lambda after .2616242 3 0.8907 1.691032
60 last lambda .2275474 3 0.8897 1.70528

* lambda selected by cross-validation.
. lassocoef, display(coef) nolegend

active

x2 1.257819
x3 -.124988

x10 3.152851
_cons 0

. predict ylasso
(options xb penalized assumed; linear prediction with penalized coefficients)

The penalized coefficient of 3.15 for x10 is not as close to the true value of 5. However, when the goal of

the analysis is the optimal prediction, the actual coefficient estimates are of limited interest. And, in the

context of lasso, it would not be appropriate to use these penalized coefficient estimates for inference
anyway; see, for instance, [LASSO] dsregress instead.
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We now fit BMA linear regression and compute predictions by using bmaregress and bmapredict,
respectively.

. bmaregress y x1-x10
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 10
Linear regression No. of predictors = 10
Model enumeration Groups = 10

Always = 0
Priors: No. of models = 1,024

Models: Beta-binomial(1, 1) For CPMP >= .9 = 47
Cons.: Noninformative Mean model size = 2.967
Coef.: Zellner’s g

g: Benchmark, g = 100 Shrinkage, g/(1+g) = 0.9901
sigma2: Noninformative Mean sigma2 = 0.916

y Mean Std. dev. Group PIP

x10 4.785368 .7709731 10 .99683
x2 1.353152 .5137089 2 .94675
x3 -.1178808 .4227608 3 .18263
x1 .0877212 .5042626 1 .17811
x6 .0642453 .2037918 6 .15993
x8 -.1180912 .7904259 8 .12465
x9 .0469446 .2233004 9 .11361
x7 -.0404475 .2257238 7 .10327
x4 -.0364019 .4581988 4 .099553
x5 -.0046 .0954065 5 .062103

Always
_cons 1.216777 .399357 0 1

Note: Coefficient posterior means and std. dev. estimated from 1,024 models.
Note: Default priors are used for models and parameter g.
. bmapredict ybma, mean
note: computing analytical posterior predictive means.

bmaregress still identifies the two important predictors, but the PIP estimates are now smaller—0.997

and 0.947 for x10 and x2, respectively—compared with the values of 1 from example 2. This is expected

given such a small sample size. In fact, a PIP as low as 0.5 would still qualify the predictor as important.

The posterior mean estimates of the coefficients, 4.79 and 1.35, are reasonably close to their true values,

5 and 1.2, especially considering the small sample.

. generate mse_lasso = (y-ylasso)^2

. generate mse_bma = (y-ybma)^2

. summarize mse*
Variable Obs Mean Std. dev. Min Max

mse_lasso 10 .5736865 .7505244 .007729 2.541895
mse_bma 10 .3219035 .3677712 .0037272 1.186045

According to the smaller mean squared error, BMA produces predictions that are closer to the observed

values than lasso in this example. And, unlike lasso, BMA can produce credible intervals for the predic-

tions; see [BMA] bmapredict.
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It is difficult to generalize the conclusions based on these simple examples to other more complex

situations, because we only looked at one dataset and one realization of the DGM. A proper simulation

study is needed to make more general conclusions. But our limited findings appear to agree with some

of the results reported in the literature.

Brief background and literature review
The initial development of the concept of model averaging was driven by the application problems,

which have not been considered by mainstream statisticians. Barnard (1963) was one of the first to use

a combination of models. His research was in quality-control methods with application to airline data.

An early work by Bates and Granger (1969) introduced the idea of model combinations to problems

of forecasting and influenced a string of follow-up articles, such as Newbold and Granger (1974) and

Winkler and Makridakis (1983). During the 1970s, the development of model averaging took place

mostly in economics research.

In statistical research, model averaging was also motivated by problems of prediction. Roberts (1965)

viewed marginal distributions, either prior or posterior, as predictive distributions suitable to answer

questions about model selection, interpretation, and validation. He suggested combining two models

based on two different elicited priors. His idea was generalized by Leamer (1978), who was particularly

interested in the uncertainty involved in model selection. Despite this early work, it took another two

decades of the theoretical work for BMA to become a principled statistical method (Draper 1995; Kass

and Wasserman 1995; and George 2014). Meanwhile, the developments in Bayesian computation, such

as MCMC sampling methods, allowed researchers to effectively apply BMA in practice (Madigan and

York 1995; Raftery 1996; Raftery, Madigan, and Volinsky 1995; and Hoeting et al. 1999 ). Madigan and

Raftery (1994) showed the optimal predictive performance of BMA for high-dimensional contingency

tables in comparison with model-selection methods. Clyde (1999) investigated prior specification and

model search strategies in BMA.

The popularity of BMA in various scientific disciplines grew substantially. Fragoso, Bertoli, and

Louzada (2018) provide a systematic review of published articles from 1996 to 2014. An in-depth survey

of model-averaging application to problems of ecology is presented in Dormann et al. (2018). For ap-

plication of BMA in political science, see Adams, Bishin, and Dow (2004) and Montgomery and Nyhan

(2010).

The use of model-averaging methods in economic research remains strong. The application of BMA

to problems of empirical microeconomics, with emphasis on big-data problems, is discussed in Koop

(2017). Ageneral overview of the use of model averaging in economics is given by Steel (2020). Among

the questions in economic research, BMA has been traditionally applied to determining the growth fac-

tors driving economic processes (Brock and Durlauf 2001; Fernández, Ley, and Steel 2001b; Lenkoski,

Eicher, and Raftery 2014; and Eicher and Newiak 2013). BMA is also a popular approach in policy and

decision-making evaluation (Brock, Durlauf, and West 2003). The benefit of BMA as a tool for dealing

with uncertainty in economic research is well documented in Marinacci (2015).

A survey of statistical methods accounting for model uncertainty demonstrates the advantage of BMA

over other popular model-selection methodologies (Porwal and Raftery 2022). For comparison of BMA

with other predictive methodologies, see Yao et al. (2018) and Piironen and Vehtari (2017).
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Description
This entry describes a suite of commands to perform Bayesian model averaging (BMA). BMA is a sta-

tistical procedure that performs inference and computes predictions by combining results from multiple

models according to Bayesian principles. It accounts for model uncertainty and thus can provide more

reliable inference and prediction than traditional methods that choose one model. See Brief motivation

in Remarks and examples of [BMA] Intro for a quick overview of BMA.

Setup

splitsample split data into random samples for training, validation,
and prediction

vl manage large variable lists conveniently

Estimation

bmaregress BMA linear regression

bmacoefsample Posterior samples of regression coefficients

Graphical commands

bmagraph Graphical summaries

bmagraph pmp Model-probability plots

bmagraph varmap Variable-inclusion maps

bmagraph msize Model-size distribution plots

bmagraph coefdensity Coefficient density plots

Postestimation statistics

bmastats Posterior summaries

bmastats msize Model-size summary

bmastats models Posterior model and variable-inclusion summaries

bmastats pip Posterior inclusion probabilities for predictors

bmastats jointness Jointness measures for predictors

bmastats lps Log predictive-score

Predictions

bmapredict BMA predictions

Remarks and examples
Here we provide a brief overview of the BMA commands implemented in Stata. See [BMA] Intro for

an introduction to the BMA methodology and Usage of BMA, in particular, for various applications of

BMA.
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The bmaregress estimation command implements BMA for linear regression. In the regression con-

text, the BMAmodel space consists of 2𝑝 regression models formed by all possible combinations of the

inclusion or exclusion of each of the 𝑝 predictors. The model is considered a discrete random parameter

with a prior distribution over themodel space. You can choose from a variety of prior model distributions.

The model parameters—the regression coefficients, intercept, and error variance—are also random, as

they are in standard Bayesian analysis. The intercept and error variance are assumed to have noninfor-

mative priors, and the regression coefficients are assumed to have a Zellner’s 𝑔-prior. The 𝑔 parameter

controls the shrinkage of coefficients toward zero and can be fixed or random. bmaregress supports

many fixed choices and hyperpriors for this parameter.

bmaregress explores the model space either by enumerating all possible regression models or by

sampling from the posterior model distribution. The sampling is based on specialized Markov chain

Monte Carlo (MCMC) algorithms. When sampling is used, you must check convergence of the results

before continuing with inference and prediction. This can be done visually with the bmagraph pmp
command; [BMA] bmagraph pmp.

bmaregress also offers various modeling options such as always including certain predictors and

keeping groups of predictors together in the models. It supports factor variables and offers several ways

of handlingmain effects and interactions duringmodel building. See [BMA] bmaregress for details about

the command.

bmaregress reports posterior summaries (over the model space) for regression coefficients as well as

posterior inclusion probabilities (PIPs) for the predictors. The PIPmeasures the importance of a predictor

in explaining the outcome over the model space. You can use bmastats pip to report PIPs for a subset

of predictors; [BMA] bmastats pip.

After bmaregress, you can use postestimation commands described in [BMA] bmastats and

[BMA] bmagraph for inference about models and predictors.

bmastats models summarizes models with high posterior model probabilities, PMPs, and the predic-

tors they include; see [BMA] bmastats models. bmagraph pmp and bmagraph varmap are its graphical

counterparts; see [BMA] bmagraph pmp and [BMA] bmagraph varmap.

bmastats msize and bmagraph msize provide the descriptive and graphical summaries, respec-

tively, for the posterior model-size distribution. These are useful to explore the complexity of the BMA

model; see [BMA] bmastats msize and [BMA] bmagraph msize.

The concept of jointness is of particular interest in BMA. It describes the tendency of a pair of vari-

ables to be included in the models together, separately, or independently. You can use the bmastats
jointness command to compute various measures of jointness; see [BMA] bmastats jointness.

The bmaregress command computes and reports the posterior means and standard deviations for

regression coefficients. To compute other posterior summaries such as credible intervals, you need a

posterior sample of regression coefficients. You can use the bmacoefsample command to generate this

sample of coefficients (and other model parameters); see [BMA] bmacoefsample. Once the sample is

available, many standard Bayesian postestimation commands can be used to summarize this sample such

as bayesstats summary. See [BMA] BMApostestimation for the full list.

The posterior distribution of the regression coefficients can be visualized by bmagraph coefdensity.
With a fixed 𝑔, you can use this command directly after bmaregress. With a random 𝑔, an MCMC

sample of model parameters must be simulated first by using bmacoefsample. See [BMA] bmagraph

coefdensity for details.
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Another important application of BMA is prediction. You can use bmapredict to compute vari-

ous predictions after bmaregress; see [BMA] bmapredict. As with some other postestimation com-

mands, certain predictions rely on an MCMC sample of model parameters. For those, you need to run

bmacoefsample first. If the sample is available, you can also use the bayespredict command to com-

pute more complicated predictions; [BAYES] bayespredict.

Finally, you can use the bmastats lps command to compare model fit and predictive performance of

BMAmodels by using the log predictive-score (LPS). The fit ofmodels is typically compared by computing

LPS for the estimation sample. Predictive performance is evaluated by computing LPS for the out-of-

sample observations, which were not used during estimation. See [BMA] bmastats lps for details.

For examples of BMA commands, see the following.

Getting started. Motivating examples in Remarks and examples of [BMA] Intro provides a quick

introduction to and motivation for the use of bmaregress. Getting started examples in Remarks and

examples of [BMA] bmaregress provides a tour of various BMA analysis in Stata.

Model choice and inference. BMA analysis of cross-country economic growth data in Remarks and

examples of [BMA] bmaregress demonstrates the use of BMA for inference and model choice, including

the investigation of jointness of predictors.

Prediction. The use of BMA for prediction is described in BMA predictive performance for the USA

crime rate data in Remarks and examples of [BMA] bmaregress and example 1 of [BMA] bmapredict.

The evaluation of a model’s predictive performance using the LPS is demonstrated in Remarks and ex-

amples in [BMA] bmastats lps with the application of predicting the systolic blood pressure.
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bmaregress — Bayesian model averaging for linear regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
bmaregress performs Bayesian model averaging (BMA) for linear regression, which accounts for

the uncertainty of which predictors should be included in the regression model. It can be used for in-

ference, prediction, or model selection. Inference can be made about models based on posterior model

probabilities (PMPs), importance of predictors based on posterior inclusion probabilities (PIPs), and re-

gression coefficients based on their posterior distributions. bmaregress allows you to include predictors
as groups and provides several ways of dealing with interaction terms. It supports a variety of priors for

models and regression coefficients. Also see Brief motivation in Remarks and examples of [BMA] Intro

for a quick overview of BMA.

Quick start
Perform BMA for linear regression of y on x1, x2, and x3 using the default model enumeration and the

default priors

bmaregress y x1 x2 x3

Same as above, but specify binomial model prior distribution with a 0.4 probability of inclusion for all

predictors

bmaregress y x1 x2 x3, mprior(binomial 0.4)

Same as above, but with prior probability of inclusion of 0.2 for x1 and 0.6 for x2
bmaregress y x1 x2 x3, mprior(binomial x1 0.2 x2 0.6)

Specify beta-binomial model prior with shape parameters 2 and 4

bmaregress y x1 x2 x3, mprior(betabinomial 2 4)

Specify a fixed value of 0.5 for the 𝑔 parameter of a Zellner’s 𝑔-prior for regression coefficients
bmaregress y x1 x2 x3, gprior(fixed 0.5)

Same as above, but use the Markov chain Monte Carlo (MCMC) model composition (MC3) sampling

algorithm with 5,000 burn-in iterations and MCMC sample size of 50,000

bmaregress y x1 x2 x3, gprior(fixed 0.5) sampling burnin(5000) ///
mcmcsize(50000)

Specify a random 𝑔 parameter with a hyper-𝑔 prior distribution with hyperparameter 3

bmaregress y x1 x2 x3, gprior(hyperg 3)

Specify that predictors x2 and x3 be considered as a group, and include predictor x4 in all models

bmaregress y (x4, always) x1 (x2 x3)

Specify factor variables a and b and their interaction, and request that no heredity rules be applied

bmaregress y x1 i.a##i.b, heredity(none)

26
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Redisplay results in variable input order, and report only predictors with PIP above 0.5

bmaregress, inputorder pipcutoff(0.5)

Save model results to bmadata.dta on replay, and store estimates in memory as bmaest
bmaregress, saving(bmadata.dta)
estimates store bmaest

Menu
Statistics > Bayesian model averaging > Linear regression

Syntax
BMA linear regression with in–out predictors

bmaregress depvar [ inoutvars ] [ if ] [ in ] [weight ]
[ , mprior(mspec) gprior(gspec) options ]

BMA linear regression with always-included predictors

bmaregress depvar (alwaysvars, always) [ inoutvars ] [ if ] [ in ] [weight ]
[ , mprior(mspec) gprior(gspec) options ]

BMA linear regression with groups of predictors

bmaregress depvar [ (alwaysvars, always) ] [ inoutspec ] [ if ] [ in ] [weight ]
[ , mprior(mspec) gprior(gspec) options ]

inoutvars and alwaysvars are varlist.

inoutspec is a combination of in–out terms inoutterm, where inoutterm is one of in–out predictors, var-

name, or one of in–out groups of predictors, (varlist). varname is always its own group; that is, (var-
name) is implied. Also see Groups of predictors in Remarks and examples.

inoutvars, alwaysvars, and inoutspec may not contain duplicate terms. See [D] vl for managing large

variable lists.
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options Description

Model

mprior(mspec) prior for model space; default is mprior(betabinomial)
gprior(gspec) prior for Zellner’s 𝑔 parameter; default is gprior(bench)
heredity(heredspec) heredity rule for interactions of predictors;

default is heredity(strong)
groupfv group all factor variables and their interactions

Simulation

enumeration model enumeration; default with fixed 𝑔 and no more than 12
predictors or groups; not allowed with random 𝑔

sampling model sampling; default with random 𝑔 or with more than 12
predictors or groups

mcmcsize(#) MCMC sample size; default is mcmcsize(10000)
burnin(#) burn-in period; default is burnin(2500)
thinning(#) thinning interval; default is thinning(1)
minitial(minitspec) initial model for MC3 sampling; default varies

ginitial(ginitspec) initial value for random 𝑔 for MC3 sampling; default varies

rseed(#) random-number seed

Reporting

saving(filename[ , replace ]) save simulation results to filename.dta
clevel(#) set credible interval (CrI) level for random 𝑔; default is

clevel(95)
hpd display highest posterior density (HPD) CrIs instead of the

default equal-tailed CrIs for random 𝑔
[ no ]dots suppress or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is dots
dots(#[ , every(#) ]) display dots as simulation is performed

inputorder display results in input order; default is descending order of PIP

recentered show coefficients for recentered predictors

pipcutoff(#) lowest PIP value for displaying results; default is pipcutoff(.01)
notable suppress estimation table

noheader suppress output header

title(string) display string as title above the table of parameter estimates

display options control spacing, line width, and base and empty cells

allcoef show all coefficients; equivalent to pipcutoff(0)

inoutvars, alwaysvars, and inoutspec may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, inoutvars, alwaysvars, and inoutspec may contain time-series operators; see [U] 11.4.4 Time-series varlists.

collect is allowed; see [U] 11.1.10 Prefix commands.

Only fweights are allowed; see [U] 11.1.6 weight.
allcoef does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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mspec Description

betabinomial same as betabinomial 1 1; the default
betabinomial #1 #2 beta-binomial prior using shape parameters of beta distribution

betabinomial # beta-binomial prior using expected model size #

uniform uniform prior

binomial # binomial prior with the same inclusion probability # for all
in–out terms

binomial same as binomial 0.5
binomial inoutterm # [ . . . ] binomial prior with specified inclusion probabilities

gspec Description

Fixed priors:

bench set 𝑔 = max(𝑛, 𝑝2); the default
uip set 𝑔 = 𝑛 (𝑛 is sample size); unit-information prior

ric set 𝑔 = 𝑝2 (𝑝 is the number of predictors); risk inflation criterion

sqrtn set 𝑔 =
√

𝑛
fixed # set 𝑔 to fixed value #

ebl empirical Bayes local estimate

Random priors:

betashrink #1 #2 beta prior with shapes #1 and #2 on shrinkage 𝛿 = 𝑔/(1 + 𝑔)
betabench # benchmark beta-shrinkage prior with shapes #×max(𝑛, 𝑝2) and #

hyperg # hyper-𝑔 prior with hyperparameter #

hypergn # hyper-𝑔/𝑛 prior with hyperparameter #

zsiow Zellner–Siow prior

robust robust prior

heredspec Description

strong strong heredity; the default

weak weak heredity

none no heredity

Options

� � �
Model �

mprior(mspec) specifies model prior, a prior distribution on the model space. In a regression setting,

this is equivalent to specifying prior probabilities for the inclusion of predictors in a model. A group

of predictors is viewed as one term in the model prior specification. That is, the prior inclusion

probability is specified for the entire group and not the individual predictors.

mspec is one of betabinomial, betabinomial #1 #2, betabinomial #, uniform, binomial #,

binomial, and binomial inoutterm # [ . . . ].
betabinomial, the default, and betabinomial #1 #2 specify a binomial model prior with an inclu-

sion probability (IP) and a beta prior on the IP. The two arguments specify the shape parameters of

the beta distribution. betabinomial is a synonym for betabinomial 1 1.
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betabinomial # specifies a binomial model prior and a beta prior for the IP. This specification in-

cludes one argument #, which is the expected number of inoutterms to be included (Ley and Steel

2009). # must be greater than 0 and less than the total number of inoutterms specified in the

regression model. If there are no groups specified, # is the expected model size.

uniform specifies a uniform model prior, which assumes an equal probability for each model.

binomial # specifies a binomial model prior, in which all inoutterms have the same IP # between 0

and 1.

binomial is a synonym for binomial 0.5.

binomial inoutterm # [ inoutterm # [ . . . ] ] specifies a binomial model prior with different values of
IP for inoutterms. IPs are specified as pairs consisting of an inoutterm and the corresponding IP

#, 0 < # < 1. inoutterms for which no IP is specified are assumed to have probability of 0.5.

The specified inoutterms must be one of the inoutterms from the regression model specification.

For grouped terms, it is sufficient to list one of the predictors from the group to specify the IP,

and this probability will be used for the entire group. But you may not specify different IPs for

multiple predictors from the same group. You can specify the same IP # for multiple predictors

from different groups by using binomial inoutterm [ inoutterm [ . . . ] ] #.
gprior(gspec) specifies a fixed value or a prior distribution (hyperprior) for parameter 𝑔 of a Zellner’s

𝑔-prior assumed for regression coefficients. Let 𝑝 be the number of predictors and 𝑛 be the sample

size.

gspec is one of the fixed priors—bench, uip, ric, sqrtn, fixed #, or ebl—or one of the random

priors—betashrink #1 #2, betabench #, hyperg #, hypergn #, zsiow, or robust.

The following are the fixed priors:

bench specifies the benchmark prior with 𝑔 = max(𝑛, 𝑝2), which is a combination of the unit-

information and risk inflation criterion priors. This is the default. This prior was suggested by

Fernández, Ley, and Steel (2001a), who found it to perform well in a variety of cases with respect

to a model’s predictive performance.

uip specifies the unit-information prior with 𝑔 = 𝑛 (Kass and Wasserman 1995), which assigns

the same amount of information to the prior for regression coefficients as is contained in one

observation. Under this prior, the Bayes factors behave like the Bayesian information criterion

(BIC).

ric specifies the prior based on the risk inflation criterion with 𝑔 = 𝑝2 (Foster and George 1994).

This prior has good small-sample properties.

sqrtn specifies the square-root 𝑛 prior with 𝑔 =
√

𝑛 (Porwal and Raftery 2022b).

fixed # specifies a fixed value # for 𝑔.
ebl use the empirical Bayes local estimate for 𝑔 as suggested by Liang et al. (2008). Instead of using

an a priori value for 𝑔, this prior estimates 𝑔 from the data and does it separately for each model.

The following are the random priors:

betashrink #1 #2 specifies a general beta-shrinkage prior, which uses a beta prior with shape pa-

rameters #1 and #2 for the shrinkage factor 𝛿 = 𝑔/(𝑔 + 1).
betabench # specifies the benchmark beta-shrinkage prior suggested by Ley and Steel (2012), which

uses a beta prior with shape parameters #× max(𝑛, 𝑝2) and # on the shrinkage factor 𝛿 = 𝑔/(𝑔+1).
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hyperg # specifies the hyper-𝑔 prior suggested by Liang et al. (2008), which is a beta prior with shape
parameters 1 and #/2 − 1 on shrinkage factor 𝛿 = 𝑔/(𝑔 + 1). The hyperparameter # must satisfy
2 < # ≤ 4.

hypergn # specifies the hyper-𝑔/𝑛 prior suggested by Liang et al. (2008), which is a beta prior with

shape parameters 1 and #/2 − 1 on 𝑔/(𝑔 + 𝑛). The hyperparameter # must satisfy 2 < # ≤ 4.

zsiow specifies a prior suggested by Zellner and Siow (1980), which is an inverse-gamma prior on 𝑔
with shape 0.5 and rate 𝑛/2.

robust specifies the robust prior as defined in Bayarri et al. (2012).

heredity(heredspec) specifies a heredity rule for interaction terms. This option is relevant only when
interaction terms, terms that include # or ##, are present; see [U] 11.4.3 Factor variables andHandling
factor variables and interactions in Remarks and examples.

heredspec is one of strong, weak, or none.

strong specifies that whenever an interaction is included in a model, all main effects are also in-

cluded, which aids interpretation. This is the default. This rule is the most restrictive for the model

space. If your goal is prediction, you may decide to choose a less restrictive rule.

weak specifies that whenever an interaction is included in a model, at least one main effect is also

included. This rule is less restrictive for the model space than heredity(strong).

none specifies that interactions be included independently of the main effects. This rule does not

make any additional restrictions for the model space and may be more beneficial when prediction

is of interest.

groupfv specifies that all factor-variable terms be grouped and is relevant only in the presence of factor

variables; see [U] 11.4.3 Factor variables and Handling factor variables and interactions in Remarks

and examples.

� � �
Simulation �

enumeration specifies that model enumeration be used to explore the model space. This option consid-

ers all 2𝑝 models, where 𝑝 is the number of predictors, and is thus not feasible with many predictors.

It is the default for a fixed 𝑔 when the number of predictors or groups is less than or equal to 12. And it
may not be specified with more than 24 predictors or groups of predictors. Only one of enumeration
or sampling may be specified.

enumeration is not allowed with a random 𝑔, meaning when one of the random 𝑔 priors is specified
in option gprior(): betashrink, betabench, hyperg, hypergn, zsiow, or robust.

Model enumeration is a deterministic procedure, so the following sampling options are not available

with it: mcmcsize(), burnin(), thinning(), minitial(), ginitial(), rseed(), clevel(),
and hpd. Also, options nodots, dots, and dots() are not relevant and thus ignored.

sampling specifies that sampling be used to explore the model space. This is the default with a random

𝑔 or when the number of predictors or groups is greater than 12. With a fixed 𝑔, the MC3 algorithm

(Madigan and York 1995) is used to sample from the model space (Fernández, Ley, and Steel 2001a

and Ley and Steel 2012). With a random 𝑔, a modified MC3 is used—MC3 is used to sample mod-

els, and an adaptive Metropolis–Hastings method is used to sample 𝑔. Only one of sampling or

enumeration may be specified.
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mcmcsize(#) specifies the target MCMC sample size for the model space. The default is

mcmcsize(10000). The total number of iterations for the MC3 algorithm equals the sum of the burn-

in iterations and the MCMC sample size (in the absence of thinning). If thinning is present, the total

number ofMCMC iterations is computed as burnin()+(mcmcsize()−1)×thinning()+1. Com-

putation time is proportional to the total number of iterations. The MCMC sample size determines the

precision of posterior summaries. Also see Convergence of BMA in Remarks and examples and

Burn-in period and MCMC sample size in [BAYES] bayesmh. This option is not allowed with model

enumeration.

burnin(#) specifies the number of iterations for the burn-in period ofMCMC. TheMCMC states simulated

during burn-in are not used for estimation. The default is burnin(2500). Also see Convergence of
BMA in Remarks and examples and Burn-in period and MCMC sample size in [BAYES] bayesmh.

This option is not allowed with model enumeration.

thinning(#) specifies the thinning interval. Only simulated values from every (1 + 𝑘 × #)th iteration
for 𝑘 = 0, 1, 2, . . . are saved in the final MCMC sample; all other simulated values are discarded. The

default is thinning(1); that is, all simulation values are saved. Thinning greater than one is typically
used for decreasing the autocorrelation of the simulated MCMC sample. This option is not allowed

with model enumeration.

minitial(minitspec) specifies an initial model for the MCMC sample of models. This option is not

allowed with model enumeration.

minitspec is one of random, varlist, null, or full.

random specifies that the initial model for the MCMC be generated randomly from the model prior

distribution. This is the default with fewer than 1,000 predictors.

varlist specifies that the initial model include a given set of predictors varlist. The initial model must

be compatible with the specified regression model for the in–out predictors. For example, if you

specified the following command,

. bmaregress x1 (x2 x3) (x4, always)

then the valid initial model may 1) include or exclude both x2 and x3 and 2) include or exclude

x1.

null specifies that the null model, the model with only a constant term, be used as initial. This is the

default with 1,000 predictors or more.

full specifies that the full model, the model that includes all predictors, be used as initial.

ginitial(ginitspec) specifies the initial 𝑔 value for theMCMC for random 𝑔. This option is allowed only
with random 𝑔 priors specified in option gprior(): betashrink, betabench, hyperg, hypergn,
zsiow, or robust. This option is not allowed with model enumeration.

ginitspec is one of ebl, random, or #.

ebl specifies that the empirical Bayes local estimate for the initial model be used as the initial value

for 𝑔. This is the default.
random specifies that the initial value for 𝑔 be generated randomly from its prior distribution.

# specifies the initial value for 𝑔.
rseed(#) sets the random-number seed. This option can be used to reproduce results. rseed(#) is

equivalent to typing set seed # prior to calling bmaregress; see [R] set seed. This option is not

allowed with model enumeration.
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� � �
Reporting �

saving(filename[ , replace ]) saves simulation results in filename.dta. The replace option speci-

fies to overwrite filename.dta if it exists. If the saving() option is not specified, bmaregress saves

simulation results in a temporary file for later access by postestimation commands. This temporary

file will be overridden every time bmaregress is run and will also be erased if the current estimation

results are cleared. saving() may be specified during estimation or on replay.

The saved dataset has the following structure. Variable chain is the chain identifier; it is al-

ways 1. Variable index records iteration numbers. Variables loglikelihood, logposterior,
and logmprior record the log-likelihood, log-posterior, and log model-prior, respectively.

logposterior records the joint posterior of models and 𝑔. Variable g records the used fixed value

of Zellner’s 𝑔 parameter or a sample from its posterior distribution. Variable logs2delta contains

a sample from the posterior distribution of parameter ln(𝑠2
𝑗,𝛿), defined in Conditional posterior dis-

tribution of model parameters of Methods and formulas. This parameter corresponds to the log of

two times the inverse-gamma scale parameter of the posterior distribution of error variance for a

given model. Model states are encoded as binary vectors and saved in variables state eq1 p1
through state eq1 p𝑝 for each of the 𝑝 predictors. Each of these variables can be viewed as a

sample from a posterior distribution of a random indicator for inclusion of the respective predictor

in a model. The model-specific posterior mean estimates of coefficients are saved in mean eq1 p1
through mean eq1 p𝑝. The model-specific posterior variance estimates of coefficients are saved in
var eq1 p1 through var eq1 p𝑝. Variable hash records information used by bmaregress to

identify models. bmaregress saves only model states and parameter values that are different from

one iteration to another and the frequency of each state in variable frequency. Thus, index may

not necessarily contain consecutive integers. Remember to use frequency as a frequency weight if

you need to obtain any summaries of this dataset.

clevel(#) specifies the credible level, as a percentage, for equal-tailed and HPD CrIs for random 𝑔. The
default is clevel(95) or as set by [BAYES] set clevel.

hpd displays the HPD CrIs instead of the default equal-tailed CrIs for random 𝑔.
Options clevel() and hpd are not allowed with model enumeration. These options are allowed only

with random 𝑔 priors specified in option gprior(): betashrink, betabench, hyperg, hypergn,
zsiow, or robust.

nodots, dots, dots(#), and dots(#, every(#)) specify to suppress or display dots during simula-

tion. nodots, the default, suppresses the display of dots. dots displays dots every 100 iterations and

iteration numbers every 1,000 iterations; it is a synonym for dots(100, every(1000)). dots(#)
displays a dot every # iterations. If dots(. . ., every(#)) is specified, then an iteration number is dis-
played every #th iteration instead of a dot. dots(, every(#)) is equivalent to dots(1, every(#)).
During the adaptation period, a symbol a is displayed instead of a dot. The dots options are ignored

with model enumeration.

inputorder specifies that the results be displayed in the order in which predictors are specified in the

model. By default, the results are displayed in the descending order of PIP.

recentered specifies that coefficients for the recentered predictors be shown in the output table. By

default, the coefficients for the untransformed predictors are shown. The two representations are

related by a linear transformation that affects only the constant term in the model.

pipcutoff(#) specifies the lowest PIP limit for displaying the results. The results for predictors with

PIP lower than this limit are not shown in the output table. The default is pipcutoff(0.01). For
models with many predictors, you can limit the displayed results by using a higher pipcutoff().
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notable suppresses the estimation table from the output.

noheader suppresses the output header either at estimation or upon replay.

title(string) specifies an optional title for the command that is displayed above the table of the pa-

rameter estimates.

display options: vsquish, noemptycells, baselevels, allbaselevels, nofvlabel,
fvwrap(#), fvwrapon(style), and nolstretch; see [R] Estimation options.

The following option is available with bmaregress but is not shown in the dialog box:

allcoef shows all regression coefficients. This is equivalent to pipcutoff(0). This option may pro-

duce a lengthy output with many predictors.

Remarks and examples
Remarks are presented under the following headings:

Introduction to BMA for linear regression
Convergence of BMA
Interpretation of BMA regression coefficients
Using the bmaregress command
Groups of predictors
Handling factor variables and interactions

Examples are presented under the following headings:

Getting started examples
Example 1: BMA linear regression (model enumeration)
Example 2: Exploring high-posterior probability models
Example 3: Model-size distribution
Example 4: Posterior distributions of regression coefficients
Example 5: Credible intervals
Example 6: Comparison with standard linear regression
Example 7: Jointness of predictors
Example 8: Exploring model space using MC3 (model sampling)
Example 9: Checking BMA convergence
Example 10: BMA linear regression using different g-priors
Example 11: Sensitivity analysis of model priors
Example 12: Comparing model fit using the log predictive-score
Example 13: BMA predictions
Example 14: Cleanup after BMA analysis

BMA predictive performance for the USA crime rate data
Example 15: BMA regression for the USA crime rate
Example 16: Assessing BMA predictive performance

BMA analysis of cross-country economic growth data
Example 17: BMA linear regression of economic growth
Example 18: Model and variable-inclusion summaries
Example 19: Coefficient summaries
Example 20: Jointness measures
Example 21: BMA regression of economic growth using random parameter g

Introduction to BMA for linear regression
A widely used technique in data analysis is model selection, which comprises two stages: choosing

an optimal model for the data based on specific criteria and conducting inference based on the selected

model. The inference is conditional on the assumption that the data are actually generated from this

model. This approach does not account for the uncertainty of model selection and thus may render the
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results more precise than they actually are. This may lead to overly confident inferential conclusions

and predictions. And if the selected model is substantively different from the true generating model, the

results may even be biased.

Instead of selecting just one model, BMA (Leamer 1978) considers a set of plausible models and bases

its inference on averaging across those models, weighing by model probabilities given the observed data.

BMA is a principled statistical method that addresses the problem of underestimating or rather ignoring

model uncertainty. You may not need model averaging for every data analysis, but even if you need to

choose just one model, you may find BMA helpful for selecting the best one available for your data.

See [BMA] Intro for a general introduction to BMA. In this entry, we focus on BMA for linear regression.

In what follows, we present some of the main concepts of BMA following the discussions in Steel (2020),

Moral-Benito (2015), and Hoeting et al. (1999).

In a regression setting with 𝑝 potential predictors, model uncertainty is confined to which predictors

should be included in the model (for example, Steel [2020] and Moral-Benito [2015]). There are 2𝑝

possible regression models that include or exclude each of the 𝑝 predictors in a model. Variable-selection
methods such as stepwise regression and information critera focus on selecting one “best” model for the

data according to some criteria. Depending on the application, results based on a single model may be

overly optimistic (for example, Steel [2020]).

Unlike variable-selection methods, BMA incorporates (potentially) all models from the considered

model space by averaging over it to estimate model parameters and obtain predictions. That is, in the

context of a linear regression, BMA would potentially account for all 2𝑝 models in the analysis. When

we say “account for all 2𝑝 models”, we mean that BMAwill consider these models and adjust parameter

estimates for the likeliness of eachmodel. Thus, BMA results incorporate the uncertainty about themodel-

selection process.

Suppose we have an outcome 𝑌 and 𝑝 predictors 𝑋1, 𝑋2, . . . , 𝑋𝑝. We want to model 𝑌 as a linear

function of these predictors, but we do not know which ones to include in the model. We can use a BMA

linear regression to explore all 2𝑝 models.

Model setup. Consider an 𝑛 × 1 vector of outcome values y = (𝑦1, 𝑦2, . . . , 𝑦𝑛)′, an 𝑛 × 𝑝 design

matrix X containing values of 𝑝 predictors, and an 𝑛 × 1 vector of ones 1𝑛. Let 𝑀𝑗 be a regression

model that contains a subset of 𝑝𝑗 predictors stored in an 𝑛 × 𝑝𝑗 design submatrix X𝑗. Then, for each

𝑗 ∈ {1, 2, . . . , 2𝑝}, consider a linear regression 𝑀𝑗,

y = 𝛼1𝑛 + X𝑗β𝑗 + ε𝑗

where 𝛼 is an unknown intercept, β𝑗 is a 𝑝𝑗 ×1 vector of unknown (𝑀𝑗-specific) regression coefficients,

and ε𝑗 = (𝜖1,𝑗, 𝜖2,𝑗, . . . , 𝜖𝑛,𝑗)′ is an 𝑛 × 1 vector of model-specific error terms, which are independently

normally distributed with mean zero and variance 𝜎2.

Priors. In a Bayesian linear regression (see [BAYES] bayes: regress), we assume a prior

𝑝(𝛼,β𝑗, 𝜎2|𝑀𝑗) for model parameters 𝛼, β𝑗, and 𝜎2, which is conditional on model 𝑀𝑗. In a BMA

framework, model 𝑀𝑗 itself is considered random and thus assumed to have a discrete prior 𝑃(𝑀𝑗) for
𝑗 ∈ {1, 2, . . . , 2𝑝}.

A BMA linear regression assumes noninformative priors for 𝛼 and 𝜎2 and a Zellner’s 𝑔-prior for β𝑗.

Thus, the prior for regression coefficients is controlled by the 𝑔 parameter of a Zellner’s 𝑔-prior; 𝑔 can

be fixed or random. For a random 𝑔, a prior distribution (hyperprior) is specified for 𝑔. The 𝑔 param-

eter controls the amount of shrinkage of regression coefficients toward zero. Smaller 𝑔 leads to more

shrinkage. There are many choices for a 𝑔-prior; see Priors for parameter g in Methods and formulas.
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Fernández, Ley, and Steel (2001a) suggest that the so-called benchmark prior, where 𝑔 = max(𝑛, 𝑝2),
tends to perform well in a variety of cases with respect to a model’s predictive performance. Other priors

suggested in the literature are 𝑔 =
√

𝑛, local empirical Bayes, and hyper-𝑔 priors (Porwal and Raftery

2022a). The use of hyperpriors is often suggested to deal with data robustness, when small differences in

the data can lead to substantive changes in the results. See Steel (2020) and references therein for more

discussion.

There are also a number of choices for a model prior𝑃(𝑀𝑗); see Priors on the model space inMethods

and formulas. Auniform prior, which assumes that eachmodel is equally likely, and a beta-binomial prior

with shape parameters of 1, which assumes that models of all sizes are equally likely, are some of the

common choices. See Moral-Benito (2015), Steel (2020), and Fragoso, Bertoli, and Louzada (2018) for

a discussion of various model priors and Ley and Steel (2009), Ley and Steel (2012), and Porwal and

Raftery (2022b) for a comparison of performance of different priors.

As with any Bayesian results, BMA results (in particular, PMPs) can be sensitive to the choice of priors.

See Steel (2020) for a discussion of the role of priors on both PMPs and posterior inference. Regardless

of the chosen prior, you should perform sensitivity analysis using a variety of relevant priors to evaluate

their impact on final results.

Estimation. The estimation of PMPs, model probabilities conditional on the observed data, is central

to BMA estimation. PMPs are used as weights in the averaging of the model-specific results that produces

the final BMA results. How PMPs are estimated depends on how the model space is explored and whether

the 𝑔 parameter is fixed or random.

For a moderate number of predictors, say, 𝑝 ≤ 24, model enumeration can be used to explore the

entire space of 2𝑝 models. With more predictors, model enumeration becomes less feasible, and an

MCMC sampling algorithm, for example, MC3 (Madigan and York 1995), is used to explore the model

space.

When 𝑔 is fixed, analytical formulas are available to compute PMPs. We refer to these PMPs as analyt-

ical PMPs, 𝑃𝑎(𝑀𝑗|y). In the case of sampling, analytical PMPs are conditional on the model space visited

by the sampling algorithm. When 𝑔 is random, what we call a modified MC3 algorithm—MC3 for model

space and adaptive Metropolis–Hastings (MH) for 𝑔—is used to jointly sample the model space and 𝑔. In
this case, analytical formulas for PMPs are not available, and PMPs are estimated from the MCMC sample

of models by using frequencies. We refer to these PMPs as frequency PMPs, 𝑃𝑓(𝑀𝑗|y).
Convergence. See Convergence of BMA.

Inference. In addition to standard Bayesian posterior inference for model parameters, BMA provides

inference for models via PMP and formal assessment of the importance of considered predictors in re-

lation to the outcome via PIP, which is a probability that a predictor is included in a model given the

observed data. Models with high PMPs are of interest. And predictors with high PIPs are of interest. See

[BMA] bmastats models and [BMA] bmastats pip.

Posterior inference for model parameters is performed with respect to the posterior distributions of

model parameters over all models. For instance, with model enumeration, posterior mean and variance

for regression coefficients are computed based on the posterior distribution of β and defined as follows,

β
BMA

= µ
BMA

= 𝐸(β|y) =
2𝑝

∑
𝑗=1

𝑃𝑎(𝑀𝑗|y)µ𝑗

Var(β|y) =
2𝑝

∑
𝑗=1

𝑃𝑎(𝑀𝑗|y) {Var(β𝑗) + µ𝑗µ
′
𝑗} − µ

BMA
µ′
BMA

where µ𝑗 is the posterior mean of regression coefficients β𝑗 based on model 𝑀𝑗.
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Also see Interpretation of BMA regression coefficients.

Prediction. The early use of BMAwas in the context of prediction. The posterior predictive density of

y over all models is defined as a weighted PMP average of posterior predictive densities of y conditional

on each model (for example, Moral-Benito [2015]). See [BMA] bmapredict for details.

Regression modeling and model space. As with a standard linear regression, you should also care-

fully consider the parameterization of the regression function in a BMA linear regression. This essentially

relates to the definition of the BMAmodel space. Most theoretical results for BMA are developed under

the assumption that the “true” model is included in the model space, although Steel (2020) comments

that BMA can be shown to be robust to this assumption.

For instance, any interaction and nonlinear terms that might improve the explanatory power of the

regression model need to be considered. If they are omitted from the model space at the onset, there

is no chance for BMA to explore the models involving these terms. But care should be taken with how

to include such terms properly in a BMA regression depending on the research objective; see Groups of

predictors and Handling factor variables and interactions.

Model diagnostics. In addition to MCMC convergence diagnostics as described in Convergence of

BMA, any model diagnostics such as residual analysis used for a standard linear regression should be

considered for a BMA linear regression as well. But because there are multiple models, the application of

model checks is not as straightforward for BMA. Ideally, diagnostics should be explored for each model.

This may not be feasible with many models. One recommendation in the literature is to perform model

checks for the full model before the estimation and check diagnostics for at least the models with high

PMP after estimation (Hoeting et al. 1999). Also see Banner and Higgs (2017) for other recommendations.

For various usages and applications of BMA in practice, see Usage of BMA in Remarks and examples

of [BMA] Intro. For technical details about BMA computations, see Methods and formulas.

Convergence of BMA
As with standard Bayesian estimation, whenever sampling is used, the convergence of BMA needs to

be checked before proceeding with the analysis. In addition to standard MCMC convergence diagnostics

for model parameters (see Convergence of MCMC in Remarks and examples of [BAYES] bayesmh), the

convergence of the model MCMC sample must be established.

For models with many predictors, convergence may be difficult (or even infeasible) to achieve unless

the model space is restricted using a strong model prior. An example of a strong model prior is an

independent Bernoulli prior, where a small group of predictors is assigned a high probability of inclusion

and the rest are assigned a low probability of inclusion. The default model prior used by bmaregress
specifies an equal probability for a model of any size.

Sampling correlation (Fernández, Ley, and Steel 2001a) is used to evaluate theMCMC convergence of

the BMAmodel. It is defined as the correlation between the analytical and frequency PMPs. It measures

the agreement between the expected and observed PMPs. When sampling correlation has a low positive

value (less than 10%) or even negative, nonconvergence is suspected. You should review your model

specification carefully and potentially increase the MCMC sample size.

Sampling correlation can also bemissing. This is always the case when there is only one visitedmodel.

It is possible that there is only one plausible model in the BMAmodel space, which BMA found. In this

case, there is no reason to suspect nonconvergence. However, in general, unless the regression model
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has no predictors, one visited model is insufficient to explore the full model space, and you should not

trust the reported results. You may also get a missing sampling correlation when there is an insufficient

number of MCMC iterations.

Sampling correlation is not a formal measure of MCMC convergence in BMA. Its precision may vary

from one sample to another. In fact, with a random 𝑔, there is no reliable way to estimate sampling

correlation, because there is no analytical formula for PMP. In this case, sampling correlation is computed

based on the harmonic-mean approximation of the analytical PMP distribution and is thus subject to the

accuracy of the approximation, in addition to the inherent sampling variability. You should interpret a

sampling-correlation value as a guide for BMA convergence rather than a formal assessment of it.

There is no formal way to determine BMA convergence. Sampling correlation is just one way to

exploreMCMC convergence numerically. You should also look at graphical convergence diagnostics (see

[BMA] bmagraph pmp) and use other standard MCMC diagnostic tools (see Convergence of MCMC in

Remarks and examples of [BAYES] bayesmh).

Interpretation of BMA regression coefficients
To avoid the infamous problem of mixing “apples and oranges” during averaging in BMA, it is im-

portant that a quantity being averaged has a common interpretation across all models (for example, Steel

[2020] and Fragoso, Bertoli, and Louzada [2018]). The motivation for BMA originally was in the con-

text of predicting new outcome values. Because such predictions have the same interpretation across all

models, the application of averaging is justified.

ABMA linear model also provides model-averaged estimates for the regression coefficients, intercept,

and error variance. The error variance has a common meaning across the models, so the averaging is

applicable. During estimation, BMA recenters predictors to make them orthogonal to the intercept, so the

intercept also has the same interpretation across all models. The regression coefficients, however, should

be evaluated more carefully.

In one of the comments to Hoeting et al. (1999), Draper (1999) points out that the meaning of the

coefficient of 𝑋1 in a regression of 𝑌 on 𝑋1 is different from that in a regression of 𝑌 on 𝑋1 and 𝑋2.

Hoeting et al. (1999) respond that one can recast BMA into a one-model space by viewing it as a standard

Bayesian linear regression including all predictors, in which the prior allows some of the regression

coefficients to be zero or close to zero. Banner and Higgs (2017) further investigate the use of BMA in

practice for the interpretation of partial regression coefficients and provide some guidance and graphical

tools to aid interpretation.

In summary, when the predictors are orthogonal or in the case of a simple linear regression, the (partial)

regression coefficients have the same interpretation across models and their averaged BMA estimates

are appropriate. This might be rare in practice, especially with observational data. In more realistic

situations such as in the presence of collinear predictors or interaction terms, care should be taken with

the interpretation of BMA coefficients as partial regression coefficients. In these cases, perhaps the BMA

inference should shift toward estimation of marginal effects instead.

In a Bayesian context, the interpretation of regression coefficients, particularly in the presence of

collinearity, should also be considered in the context of their prior distribution. As indicated by Leamer

(1973), “a well-defined prior distribution can have no problem interpreting the sample evidence.” From

this perspective, the interpretation of regression coefficients should account for their prior information,

especially in cases when the observed data do not provide sufficient evidence. Of course, the exploration

of the sensitivity of the results to the assumed prior becomes even more important in such cases.
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Using the bmaregress command
The bmaregress command performs BMA for linear regression. It explores the model space either

exhaustively, when this is feasible, or by usingMCMC. It reports various summaries of the visited models

and included predictors, and posterior distributions of model parameters.

The simplest syntax of bmaregress is the same as for regress (see [R] regress)—you list the de-

pendent and predictor variables following the command:

. bmaregress y x1 x2 x3

With this specification, each of the three variables x1, x2, and x3 will be in and out of the model, that is,

will be either included or excluded from the model.

If you wish to always include some of the predictors in the model, you can use the following specifi-

cation:

. bmaregress y (x1 x3, always) x2

You can also group predictors so that each group is in and out of the model. This is useful with factor

variables and variables that are functions of other variables that you may want to include together in the

regression models:

. bmaregress y x1 (x2 x3)

In the above, x2 and x3 will always be included or excluded together. So, technically, bmaregress
determines the model space by the number of groups 𝑝𝑔. In this example, the model space will include

22 = 4 models and not 23 = 8. Also see Groups of predictors.

In the presence of interactions, bmaregress always includes all main effects whenever the corre-

sponding interaction is in the model, but you can change this with the heredity() option. See Handling

factor variables and interactions.

bmaregress uses the default beta-binomial prior with shape parameters of one on the model space,

which assumes the uniform prior for the model size, and the default benchmark (fixed) prior for the

𝑔 parameter. You can change them by specifying the mprior() and gprior() options, respectively.

Default priors are provided for convenience. They are chosen based on the recommendations in the

literature, which found them to be fairly uninformative in a variety of cases. But they may not apply

to all cases. It is important that you carefully evaluate the choice of priors and specify the priors that

are appropriate for your model and research questions. You cannot simply rely on the provided defaults.

It is also important that you consider various priors to check the sensitivity of the results to the prior

assumptions. See Priors in Introduction to BMA for linear regression.

By default, bmaregress uses model enumeration to explore the model space fully with up to 12 pre-

dictors or, more precisely, with up to 12 groups of predictors, ignoring the always group. For more than

12 predictors, it uses theMC3 sampling algorithm. If desired, you can use sampling with 12 predictors or

fewer by specifying the sampling option. You can also use model enumeration with up to 24 predictors

by specifying the enumeration option. With a random 𝑔, the model space cannot be explored fully, and
a modified version of MC3 is used: MC3 is used to sample models, and an adaptive MH, similar to that

described in [BAYES] bayesmh, is used to sample 𝑔.
When a sampling method is used, bmaregress uses 2,500 burn-in iterations and an MCMC sample

size of 10,000. You can change this, respectively, with options burnin() and mcmcsize(). Also, with
sampling, the results produced by bmaregress are stochastic: they can change from one run of the

command to another. You can specify the rseed() option for reproducibility.
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bmaregress also supports various reporting options. For instance, with many predictors or with a

random 𝑔, you may want to specify the dots and related options to see the simulation progress. By

default, the predictors are listed in the order from highest to lowest PIP. You can use the inputorder
option to display them in the order they are specified with bmaregress.

Finally, you can use the saving() option to save your BMA MCMC results to a file. This can be

done during or after estimation. Some postestimation commands such as bmacoefsample, estimates
store, and estimates save require that you save your BMA results before running the commands.

As with anyMCMC algorithms, theMC3 algorithms require that you check sampling convergence; see

Convergence of BMA. You should always use bmagraph pmp to explore sampling convergence graphi-

cally after bmaregress.

You can use bmastats models and bmagraph varmap to explore model and variable-inclusion sum-

maries and bmastats pip to explore variable-inclusion probabilities. bmastats msize and bmagraph
msize provide information about the model size. bmastats jointness reports whether pairs of pre-

dictors tend to be included in the model together or separately. bmastats lps can be used to check

the predictive performance of the fitted BMA model and compare it with other potential BMA models.

bmacoefsample samples regression coefficients and other model parameters from their posterior distri-

butions, and bmagraph coefdensity plots these distributions. Finally, if you are interested in a BMA

prediction, use bmapredict.

There are also two Stata commands that help you prepare your data and specify predictors before your

BMA analysis: splitsample and vl. splitsample divides your sample into several random subsam-

ples, which can be used for training, validation, and prediction (testing). vl is useful for managing a

potentially large set of predictors for use with bmaregress. It helps you specify predictors conveniently
without typing every variable name. See [D] splitsample and [D] vl for details.

Groups of predictors
The bmaregress command allows you to group predictors using the parentheses notation. In the

context of BMA, a group of predictors is treated as one in-and-out term—all predictors in the group are

either included or excluded from linear regression models. The model space of a BMA linear regression

is thus defined by the grouping of predictors. The number of groups 𝑝𝑔 determines the size of the model

space, 2𝑝𝑔 . The model prior distribution, specified with option mprior(), is also imposed on the space
of groups.

For example, suppose we have three predictors x1, x2, and x3, and x2 and x3 are grouped together:

. bmaregress y x1 (x2 x3)

The model space comprises four possible regression models: no predictors, only x1, only x2 and x3, and
all variables x1, x2, and x3. The default model prior distribution is beta-binomial with shape parameters
of 1.

We can use the mprior() option to specify, say, a binomial prior with the following prior probabilities
of inclusion of predictors and groups of predictors:

. bmaregress y x1 (x2 x3), mprior(binomial x1 0.4 (x2 x3) 0.6)

In the above command, we set the probability of inclusion to 0.4 for x1 and to 0.6 for the group that

includes x2 and x3.

In the output of bmaregress, the Group column contains the information about the groups of predic-

tors.
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Grouping restricts the model space and may diminish the predictive performance of a BMA linear

regression, so it should be used thoughtfully.

Handling factor variables and interactions
The levels of a categorical predictor, excluding the base level, are commonly treated as independent

in-and-out terms in variable-selection methods. Suppose a categorical predictor a has four levels, with

one being the base level, and is included as a factor variable in the model:

. bmaregress y i.a

The above introduces three regression terms: 2.a, 3.a, and 4.a, which will be in and out of the model
independently. The model space will then include the regression models regress y 2.a, regress y
3.a, regress y 4.a.

If you wish to treat these three terms as one group, you can type

. bmaregress y (i.a)

or you can use the groupfv option,

. bmaregress y i.a, groupfv

In this case, the model space will include only the regression model regress y 2.a 3.a 4.a and the

constant-only model.

The groupfv option will group all specified factor variables. For example, the specification

. bmaregress y i.a i.b i.a#i.b, groupfv

will introduce three groups: (i.a), (i.b), and (i.a#i.b).

However, the following specification will group all interactions and main effects in one group

(i.a##i.b):

. bmaregress y i.a##i.b, groupfv

If you include an interaction in your BMAmodel, you need to consider the relationship between this

interaction and the main effects. Do you want the interaction to be included in regression models in-

dependently of the main effects or not? If your goal is inference and interpretation of coefficients, you

might want to include the main effects whenever the interaction is included. For prediction, you might

choose to keep the model space larger (by allowing the interaction terms to be included without main

effects) for more optimal prediction.

This relationship between the main effects and interactions is controlled by the heredity() option.

By default, heredity(strong) is assumed, which does not allow the interactions to be in a regression

model without all corresponding main effects. You can specify heredity(weak), which will include

at least one of the main effects together with the interaction. Or you can specify heredity(none), in
which case the interactions and main effects will be included in a model independently.

For instance, consider binary predictors a and b. Under strong heredity,

. bmaregress y i.a i.b i.a#i.b, heredity(strong)

will consider five models that include 1) only intercept, 2) i.a, 3) i.b, 4) i.a and i.b, and 5) i.a, i.b,
and i.a#i.b. Note that the intercept will also be included in all models.
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Under weak heredity,

. bmaregress y i.a i.b i.a#i.b, heredity(weak)

will additionally consider two more models that include 6) i.a and i.a#i.b and 7) i.b and i.a#i.b.

With no heredity, heredity(none), a model with only an interaction term i.a#i.b will also be

considered. This gives us a total of eight models.

Getting started examples
In our first series of examples, we use a small dataset, performance, surveying the employee satis-

faction with their supervisors in a large financial organization. The dataset is adapted fromChatterjee and

Hadi (2012, sec. 3.3). It contains 7 variables and 30 observations, representing 30 different departments

in the surveyed organization.

. use https://www.stata-press.com/data/r19/performance
(Data on employee satisfaction with supervisor)
. describe
Contains data from https://www.stata-press.com/data/r19/performance.dta
Observations: 30 Data on employee satisfaction

with supervisor
Variables: 7 23 Feb 2025 12:57

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

rating byte %8.0g Overall rating of supervisor’s
performance

complaints byte %8.0g Handling of employee complaints
privileges byte %8.0g Does not allow special privileges
learning byte %8.0g Opportunity to learn new things
raises byte %8.0g Raises based on performance
critical byte %8.0g Supervisor is too critical
advance byte %8.0g Rating of employee’s advancement

Sorted by:

The outcome of interest is the overall department rating with values in the 0 to 100 range. The observed

values for the dependent variable rating are between 40 and 85. They are computed based on the per-

centage of favorable survey responses from each department. The other variables record the percentages

of favorable responses to each of six survey questions. Although all variables have integer values, we

regard them as continuous and model the response using a linear regression. In their analysis of this

dataset in Chatterjee and Hadi (2012), the authors conclude that the complaints and learning vari-

ables explain most of the variation in the response. Let’s apply BMA to this dataset.
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Example 1: BMA linear regression (model enumeration)
Using the performance dataset described above, we apply BMA to rating with all other variables as

predictors by using the bmaregress command. We use varlist notation complaints-advance to refer

to all variables in the dataset between complaints and advance.

. bmaregress rating complaints-advance
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
Model enumeration Groups = 6

Always = 0
Priors: No. of models = 64

Models: Beta-binomial(1, 1) For CPMP >= .9 = 10
Cons.: Noninformative Mean model size = 1.699
Coef.: Zellner’s g

g: Benchmark, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 52.302

rating Mean Std. dev. Group PIP

complaints .7052859 .1224289 1 .99973
learning .0603014 .1285281 3 .25249
advance -.0167921 .073883 6 .13148

privileges -.0074174 .0488635 2 .10998
raises .0070789 .0670475 4 .10642

critical .0009713 .0437848 5 .098534

Always
_cons 14.8472 7.874219 0 1

Note: Coefficient posterior means and std. dev. estimated from 64 models.
Note: Default priors are used for models and parameter g.

The BMAmodel summary and regression results are displayed in the header and estimation table, which

we describe in detail below.

Header. The header reports 30 observations and 𝑝 = 6 predictors. By default, Model enumeration
is used, so bmaregress visited all possible 26 = 64 models. Of those models, 10 contribute to the

cumulative PMP (CPMP) of at least 0.9. The mean model size is 1.699, which suggests that on average,

the models included roughly two predictors.

The default priors are as described in Using the bmaregress command. bmaregress always uses the

same noninformative priors for the constant and error variance, which are proportional to 1/𝜎2, and a

Zellner’s 𝑔-prior for regression coefficients. But there are several options for the model and parameter

𝑔 priors. The default model prior is Beta-binomial(1, 1), which assigns an equal probability for

each model size. The default 𝑔-prior is the Benchmark prior with a fixed value for 𝑔 = max(𝑛, 𝑝2) =
max(30, 36) = 36, following Fernández, Ley, and Steel (2001a). This corresponds to the shrinkage

parameter 𝛿 = 𝑔/(1 + 𝑔) = 0.973, where 𝛿 = 1 means no shrinkage and 𝛿 = 0 means complete

shrinkage (a coefficient is essentially forced to be zero). In this example, we assume little shrinkage a

priori. But we explore the effect of different priors on these data in examples 10, 11, and 12.

From the header, the posterior mean estimate of the error variance, Mean sigma2, is 52.3.

bmaregress uses model enumeration by default when there are few predictors or, more precisely,

groups of predictors (no more than 12) and when 𝑔 is fixed.
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Estimation table. The estimation table reported by bmaregress includes estimates of posterior

means and standard deviations of coefficients for each predictor, as well as predictors’ estimated pos-

terior inclusion probabilities, PIPs. In the case of enumeration, as in our example, these estimates are

based on analytical formulas and thus are exact. The table also reports the grouping information—each

variable is its own group in our example.

The complaints predictor has, by far, the highest PIP of all predictors—the total posterior probability

of the models that include complaints is almost 1, or 0.99973 to be exact. It is followed by learning
with a PIPof 0.25. All other predictors have lower PIPs between 0.13 and 0.1. Both variables have positive

posterior mean coefficients. Thus, we can conclude that a better handling of complaints, complaints,
and more opportunities to learn new things, learning, appear to positively affect the rating scores.

These findings agree with Chatterjee and Hadi (2012).

In a BMA regression, the constant term is always included, so it is displayed in a separate equation

labeled Always. If we specify any other predictors to be included in all models, they will be listed in

this same equation. The intercept or, more generally, the Always group does not affect the grouping

information.

Notes. The command concludes with a couple of notes. The first note reminds us that the reported

posterior means and standard deviations are estimated from 64 visited models. We need to interpret

these averaged estimates thoughtfully; see Interpretation of BMA regression coefficients. We are also

reminded that the default priors were used for models and parameter 𝑔; see Priors in Introduction to BMA

for linear regression and discussion about the default priors in Using the bmaregress command. With

many predictors, you might also see a note about some predictors being omitted from the output because

of their PIP being less than 0.01. You can use the allcoef option (or, equivalently, pipcutoff(0))
to see all predictors or specify a higher cutoff in pipcutoff() to further restrict the list of displayed

predictors.

Displaying results in input order. By default, bmaregress displays results according to PIP, from
highest to lowest. You can use the inputorder option to display results in the input variable order. This

might be useful when you want to compare results with other Stata commands such as regress.

. bmaregress, noheader inputorder

rating Mean Std. dev. Group PIP

complaints .7052859 .1224289 1 .99973
privileges -.0074174 .0488635 2 .10998

learning .0603014 .1285281 3 .25249
raises .0070789 .0670475 4 .10642

critical .0009713 .0437848 5 .098534
advance -.0167921 .073883 6 .13148

Always
_cons 14.8472 7.874219 0 1

Note: Coefficient posterior means and std. dev. estimated from 64 models.
Note: Default priors are used for models and parameter g.
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Displaying PIP. Instead of replaying all the results from bmaregress, we can display only the PIP

estimates by using the bmastats pip command.

. bmastats pip
Posterior inclusion probability (PIP)
No. of obs = 30
No. of predictors = 6

Groups = 6
Always = 0

Reported = 6
No. of models = 64
Mean model size = 1.699

PIP Group

complaints .99973 1
learning .25249 3
advance .13148 6

privileges .10998 2
raises .10642 4

critical .098534 5

Always
_cons 1 0

Note: Using analytical PMPs.

bmastats pip is particularly useful if we would like to see PIP only for a subset of predictors.

. bmastats pip complaints learning
Posterior inclusion probability (PIP)
No. of obs = 30
No. of predictors = 6

Groups = 6
Always = 0

Reported = 2
No. of models = 64
Mean model size = 1.699

PIP Group

complaints .99973 1
learning .25249 3

Always
_cons 1 0

Note: Using analytical PMPs.
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Saving BMAresults. Before we proceed, let’s store our current estimation results. Similarly to other

Bayesian estimation commands, we first need to save BMA simulation or, in this example, enumeration

results in a dataset. We can then use estimates store or estimates save (see [R] estimates) to store

BMA estimation results.

. bmaregress, saving(bmadata_enum)
note: file bmadata_enum.dta saved.
. estimates store bmareg

We saved the BMA enumeration results in the bmadata enum dataset, and we stored the BMA estima-

tion results as bmareg. Remember to remove the generated dataset when it is no longer needed; see

example 14.

Example 2: Exploring high-posterior probability models
Exploring models with high PMPs is an integral part of BMA inference. We can use bmastats models

to explore individual models after bmaregress.

. bmastats models
Computing model probabilities ...
Model summary Number of models:

Visited = 64
Reported = 5

Analytical PMP Model size

Rank
1 .5556 1
2 .1169 2
3 .04072 2
4 .03932 2
5 .03804 2

Variable-inclusion summary

Rank Rank Rank Rank Rank
1 2 3 4 5

complaints x x x x x
learning x

raises x
privileges x

advance x

Legend:
x - estimated

By default, bmastats models lists the top five models ranked by PMP along with the table listing the

included predictors for each model. The top ranked model has a PMP of 0.56 and contains only one

predictor, complaints. The second-ranked model adds learning as a predictor and has a much lower

PMP of 0.12. It appears that the default BMAmodel for these data tends to favor regression models with

two predictors, one of which is always complaints.
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The variable-inclusion summary can be explored more conveniently visually by using the bmagraph
varmap command.

. bmagraph varmap
Computing model probabilities ...

critical

raises

privile~s

advance

learning

complai~s

0 .2 .4 .6 .8 1
Cumulative posterior model probability

Positive
Negative
Not included

Coefficient

All 64 visited models shown. 

Variable-inclusion map

By default, the first top 100 models are plotted. In our example, this means that all 64 models are shown

on the graph. We can see that the top model contains only complaintswith a PMP or, equivalently, CPMP

of roughly 0.56 (the width of the first bar). The next highest-PMP model contains both complaints
and learning, with a CPMP of roughly 0.67 (the sum of widths of the first two bars). Essentially all

models include complaints, and learning is the next most frequently included predictor. Predictors

raises and critical appear in some models too. All of these predictors have positive coefficients,

although the latter two change the sign for some models with small PMPs. Predictors advance and

privileges are included in some models too, but they have negative coefficients in all of those models.

See [BMA] bmagraph varmap for details.
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In the output header, bmaregress reported that there are 10 models that contribute to the CPMP of

0.9. We can see the actual CPMPs for each model by using the cumulative() option:

. bmastats models, cumulative(0.9)
Computing model probabilities ...
Model summary Number of models:

Visited = 64
Reported = 10

Analytical CPMP Model size

Rank
1 .5556 1
2 .6724 2
3 .7132 2
4 .7525 2
5 .7905 2
6 .8271 2
7 .8598 3
8 .8796 3
9 .8942 3

10 .9086 3

Variable-inclusion summary

Rank Rank Rank Rank Rank Rank
1 2 3 4 5 6

complaints x x x x x x
learning x

raises x
privileges x

advance x
critical x

Legend:
x - estimated

Rank Rank Rank Rank
7 8 9 10

complaints x x x x
learning x x x x

raises x
privileges x

advance x
critical x

Legend:
x - estimated
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We can also plot the CPMPs by using the bmagraph pmp command with the cumulative option. We

also specify options to add several reference lines to the graph:

. bmagraph pmp, cumulative xline(10 30) yline(.907 1) xlabel(10 30, add)
note: frequency estimates not available with model enumeration; option

nofreqline implied.
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All 64 visited models shown. 

Cumulative posterior model probability

Again, the default top 100 models and thus all 64 models in our example are shown on the plot. We can

see that the CPMP of about 0.9 is reached with 10 models and of 1 with roughly 30 models, so the rest of

the visited models have essentially 0 PMPs and do not contribute to the averaged results.

With sampling, when an MCMC model sample is available, bmagraph pmp also reports the frequency

PMP distribution estimated from the MCMC sample. This estimate is not available with model enumera-

tion.
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Example 3: Model-size distribution
Another aspect of exploring the model space is the model size weighted by PMP. It is useful to compare

the prior and posterior distributions of the size of the visited models.

. bmagraph msize
note: frequency posterior model-size distribution not available.
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Model-size distributions

The default beta-binomial prior is uniform over the model size. Compared with the prior, the posterior

prior is skewed to the left, favoring models with fewer predictors. In fact, the mode of the distribution

corresponds to the model with only one predictor, which we know is complaints. Thus, the data suggest
more parsimonious models than our prior expectation.

Instead of the entire distribution, we can use bmastats msize to explore the summaries of the model-
size distributions.

. bmastats msize
Model-size summary
Number of models = 64
Model size:

Minimum = 0
Maximum = 6

Mean Median

Prior
Analytical 3.0000 3

Posterior
Analytical 1.6986 1

Note: Frequency summaries not available.

The posterior mean size is the same as the one reported by bmaregress in the header. The posterior

mean model size of 1.7 is smaller than the assumed prior mean model size of 3.
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Example 4: Posterior distributions of regression coefficients
The bmaregress command computes and reports only the posterior means and standard deviations of

the regression coefficients. But we can use bmagraph coefdensity to plot the entire posterior densities

for the regression coefficients.

For a fixed 𝑔, as in our example, the posterior distributions for the regression coefficients can be com-
puted analytically, so we can use bmagraph coefdensity directly after bmaregress. With a random 𝑔,
the analytical computation is not available, and the MCMC sampling is needed to approximate these dis-

tributions. In that case, the bmacoefsample command needs to be run first to obtain posterior samples

of regression coefficients.

Let’s look at the distributions of regression coefficients for complaints and learning. Similarly
to other Stata Bayesian commands, we use the curly-braces notation to refer to model parameters—the

regression coefficients here:

. bmagraph coefdensity {complaints}
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Analytical posterior density

The posterior density of a regression coefficient is a mixture of a point mass at zero, which represents the

probability of not being included in the model and a continuous density conditional on being included.

For coefficient {complaints} (or using its full name {rating:complaints}), the probability of non-
inclusion is very low, 0.0003, so the red line that represents it is not even visible on the graph. So the

posterior density of {complaints} is essentially a continuous density, with a mean of roughly 0.7 and

with a slight skewness to the left. Most of the mass of the distribution is between roughly 0.025 and 1.1,

away from 0.
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Let’s plot the posterior density for {learning}:

. bmagraph coefdensity {learning}
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The probability of inclusion for {learning} is about 0.25, so we see the red vertical line with the

horizontal reference line at a noninclusion probability of roughly 1 − 0.25 = 0.75. Conditional on the

inclusion, the continuous density has its mass between roughly −0.2 and 0.7, which includes zero.

The posterior means and standard deviations reported by bmaregress are computed with respect to

the above mixtures of distributions.

Example 5: Credible intervals
The analytical formulas for posterior credible intervals (CrIs) are not as straightforward as for the

posterior means and standard deviations, so bmaregress does not report them by default. But they

can be computed based on a sample from the posterior distributions of regression coefficients. The

bmacoefsample command (see [BMA] bmacoefsample) generates such samples. Once the posterior

samples of regression coefficients are available, we can use a standard Bayesian postestimation com-

mand, bayesstats summary (see [BAYES] bayesstats summary), to report the posterior summaries for

regression coefficients, including CrIs. To run bmacoefsample, we must first save theMCMC simulation

dataset from bmaregress, which we already did in example 1.
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. bmacoefsample, rseed(18)
Simulation (10000): ....5000....10000 done
. bayesstats summary
Posterior summary statistics MCMC sample size = 10,000

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

rating
complaints .7046698 .1224187 .001224 .7098586 .4528384 .9331236
privileges -.0076884 .0498252 .000491 0 -.1663752 .0341648

learning .0601684 .1283288 .001288 0 0 .4350166
raises .0070129 .069632 .000675 0 -.077316 .2114686

critical .0009327 .0442536 .000443 0 -.08034 .1035208
advance -.016395 .073175 .000732 0 -.2646079 .0299074

_cons 14.92624 7.832332 .078323 14.97213 -1.027763 30.11586

sigma2 52.113 14.80086 .148009 49.78668 30.43213 87.38376
g 36 0 0 36 36 36

The results above are posterior summaries based on the MCMC samples of model parameters from their

respective posterior distributions. The MCMC estimates of posterior means and standard deviations for

regression coefficients are very similar to the exact values reported by bmaregress. But bayesstats
summary additionally reports CrIs. The equal-tailed CrIs are reported by default, but we can request the

highest posterior density (HPD) CrIs instead:

. bayesstats summary {complaints} {learning}, hpd
Posterior summary statistics MCMC sample size = 10,000

HPD
rating Mean Std. dev. MCSE Median [95% cred. interval]

complaints .7046698 .1224187 .001224 .7098586 .4584306 .9362436
learning .0601684 .1283288 .001288 0 0 .3942063

We used the hpd option to report HPD CrIs and requested results only for regression coefficients

{complaints} and {learning}. (To distinguish between the actual variable names and the regres-

sion coefficients associated with those variables, bayesstats summary uses the {} specification.)
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Example 6: Comparison with standard linear regression
Let’s redisplay our earlier BMA results here for convenience:

. bmaregress, noheader inputorder

rating Mean Std. dev. Group PIP

complaints .7052859 .1224289 1 .99973
privileges -.0074174 .0488635 2 .10998

learning .0603014 .1285281 3 .25249
raises .0070789 .0670475 4 .10642

critical .0009713 .0437848 5 .098534
advance -.0167921 .073883 6 .13148

Always
_cons 14.8472 7.874219 0 1

Note: Coefficient posterior means and std. dev. estimated from 64 models.
Note: Default priors are used for models and parameter g.

We can compare our BMA findings with the results from a standard linear regression (see [R] regress):

. regress rating complaints-advance
Source SS df MS Number of obs = 30

F(6, 23) = 10.50
Model 3147.96634 6 524.661057 Prob > F = 0.0000

Residual 1149.00032 23 49.9565359 R-squared = 0.7326
Adj R-squared = 0.6628

Total 4296.96667 29 148.171264 Root MSE = 7.068

rating Coefficient Std. err. t P>|t| [95% conf. interval]

complaints .6131876 .1609831 3.81 0.001 .2801687 .9462066
privileges -.0730501 .1357247 -0.54 0.596 -.3538181 .2077178

learning .3203321 .1685203 1.90 0.070 -.0282787 .668943
raises .0817321 .2214777 0.37 0.715 -.3764293 .5398936

critical .0383814 .1469954 0.26 0.796 -.2657018 .3424647
advance -.2170567 .1782095 -1.22 0.236 -.5857111 .1515977

_cons 10.78708 11.58926 0.93 0.362 -13.18713 34.76128

As expected, the coefficient estimates for complaints are similar between the two commands, be-

cause complaints was included in almost all models by bmaregress. The PIP of 0.9997 is comparable

“in spirit” with the low 𝑝-value of 0.001 from regress, which suggests that complaints is an impor-

tant predictor of rating. Unlike the 𝑝-value, however, we can interpret PIP as how likely (or unlikely,

1 − PIP) it is for complaints to be included in the model. In general, we would expect the coefficient

estimates between bmaregress and regress to be similar for predictors with high PIP (in the absence

of collinearity).

For regression coefficients with lower PIP, we see the effect of shrinking toward zero by bmaregress,
which is reasonable—one would expect that the effect of weak predictors should be downweighted. For

example, the coefficient for learning from bmaregress is 0.06, while the one from regress is 0.32.

We can also compare posterior standard deviations from bmaregress with standard errors from

regress. Both represent the uncertainty in the coefficient estimates. The Std. dev. for complaints
from bmaregress is 0.12 and the Std. err. from regress is 0.16. Unlike standard errors, the pos-

terior standard deviations additionally incorporate the uncertainty about the inclusion of the specified

predictors in the model.
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The 95% equal-tailed CrI for complaints from example 5 is [0.45, 0.93] and is narrower than the 95%
confidence interval (CI) of [0.28, 0.95]. Unlike the CI, CrI can be interpreted as the range to which the

coefficient for complaints belongs with the 0.95 probability. For {learning}, the difference between
CrI and CI is larger, as expected for predictors with lower PIPs.

If we force all variables to always be in the model, which we can do by specifying all the predictors

in a group with the always suboption, our BMAmodel will mimic the regression results more closely.

. bmaregress rating (complaints-advance, always)
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
Model enumeration Groups = 0

Always = 6
Priors: No. of models = 1

Models: Beta-binomial(1, 1) For CPMP >= .9 = 1
Cons.: Noninformative Mean model size = 6.000
Coef.: Zellner’s g

g: Benchmark, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 45.707

rating Mean Std. dev. Group PIP

Always
complaints .596615 .1518883 0 1
privileges -.0710758 .1280569 0 1

learning .3116745 .1589997 0 1
raises .0795232 .2089652 0 1

critical .0373441 .1386909 0 1
advance -.2111903 .1681415 0 1

_cons 12.24238 10.9364 0 1

Note: Coefficient posterior means and std. dev. estimated from 1 model.
Note: Default priors are used for models and parameter g.

There is only one model and all predictors have PIPs of 1. The above model corresponds to the BMA

model with the highly informative model prior distribution that assigns the probability of 1 to the full

model and 0 to all other models. Equivalently, this prior assumes that the probability of inclusion for each

predictor is exactly 1. We investigate the effect of priors on the results in more detail in examples 10, 11,

and 12. The above model is also equivalent to a Bayesian linear regression with noninformative priors

for the error variance and intercept and with a Zellner’s 𝑔-prior for the regression coefficients.
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Example 7: Jointness of predictors
In BMA, in addition to exploring the importance of individual predictors, we can investigate whether

this importance depends on the presence of other predictors across the models. The tendency of the pre-

dictors to appear together or separately in the models is known as jointness. The bmastats jointness
command computes various jointness measures for pairs of predictors.

As a quick demonstration, let’s investigate the jointness between, for instance, complaints and

raises.

. bmastats jointness complaints raises
Variables: complaints raises

Jointness

Doppelhofer--Weeks -2.388135
Ley--Steel type 1 .1062777
Ley--Steel type 2 .1189158

Yule’s Q -.831836

Notes: Using analytical PMPs. See
thresholds.

bmastats jointness reports four measures of jointness. Based on the thresholds described in Remarks

and examples in [BMA] bmastats jointness, such as −2.39 < −2 for the Doppelhofer–Weeks measure,

all four measures agree that the two predictors are disjoint or the so-called substitutes. This means that

when one is included in the model, the inclusion of the other does not provide any additional information

for explaining the outcome. See [BMA] bmastats jointness for more information and example 20 for

another example.
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Example 8: Exploring model space using MC3 (model sampling)
For models with many predictors, complete enumeration of all possible models becomes infeasible.

The alternative is to use MCMC to sample the model space. The MCMC model composition sampling,

MC3 (Madigan and York 1995), is commonly used in BMA to explore the model space.

In bmaregress, MC3 sampling can be requested by specifying the sampling option. The MC3 sam-

pling is actually the default when the number of predictors (or groups of predictors) is greater than 12.

Because MC3 sampling is stochastic, for reproducibility, we need to specify a random-number seed,

for example, rseed(18). The sampling includes the burn-in phase, during which the model space is

explored for models with high posterior probabilities, followed by an active sampling phase, during

which all visited models are saved and accounted for during estimation.

. bmaregress rating complaints-advance, sampling rseed(18)
Burn-in ...
Simulation ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
MC3 sampling Groups = 6

Always = 0
No. of models = 32

For CPMP >= .9 = 10
Priors: Mean model size = 1.699

Models: Beta-binomial(1, 1) Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 10,000
Coef.: Zellner’s g Acceptance rate = 0.2417

g: Benchmark, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 52.292

Sampling correlation = 0.9990

rating Mean Std. dev. Group PIP

complaints .705479 .1218881 1 1
learning .0601919 .1282869 3 .25234
advance -.0167514 .0737415 6 .13141

privileges -.0074265 .048844 2 .10996
raises .0069949 .0666406 4 .10629

critical .0009699 .0437742 5 .098526

Always
_cons 14.84478 7.871046 0 1

Note: Coefficient posterior means and std. dev. estimated from 32 models.
Note: Default priors are used for models and parameter g.

bmaregress now uses MC3 sampling. The header additionally reports standard MCMC summaries, in-

cluding the number of burn-in and MCMC iterations and the acceptance rate. The sampling correlation is

also reported. It is used to check convergence; see Convergence of BMA.
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The reported sampling correlation, 0.9990, is very close to 1, which suggests that the sampling algo-

rithm has converged and the sample of models approximates the true model posterior distribution well.

Consequently, the posterior mean and standard deviation estimates are very close to their exact values

obtained by enumeration in example 1. The same is true for the PIP estimates, which match their exact

counterparts closely.

Example 9: Checking BMA convergence
A graphical summary of the MC3 convergence is provided by the bmagraph pmp command. It shows

the analytical andMCMC sampling probabilities of the visitedmodels, ordered decreasingly by their PMPs.

Upon convergence, these two curves should overlap closely, as is the case in our example.

. bmagraph pmp
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We can also explore the CPMPs by specifying the cumulative option. The analytical and sampling

cumulative probabilities overlap closely too.

. bmagraph pmp, cumulative
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The cumulative graph also shows the contributions of the top PMP models. In our example, the top 6

models contribute to about 80% of the total probability mass on the model space.

Example 10: BMA linear regression using different g-priors
As we mentioned in Using the bmaregress command, bmaregress provides default priors for con-

venience. It is important to explore other available prior choices during your analysis. Here we focus on

the 𝑔-priors, and we explore the model priors in example 11.
By default, bmaregress uses the benchmark prior from Fernández, Ley, and Steel (2001a), which is

𝑔 = max(𝑛, 𝑝2), where 𝑔 = 𝑛 corresponds to the unit-information prior and 𝑔 = 𝑝2 corresponds to the

risk inflation criterion prior. Because the number of observations, 30, is less than the number of predictors

squared, the benchmark 𝑔-prior is equivalent to using the risk inflation criterion, gprior(ric).

. bmaregress rating complaints-advance, gprior(ric) saving(bmadata_ric)
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
Model enumeration Groups = 6

Always = 0
Priors: No. of models = 64

Models: Beta-binomial(1, 1) For CPMP >= .9 = 10
Cons.: Noninformative Mean model size = 1.699
Coef.: Zellner’s g

g: Risk inflation, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 52.302

rating Mean Std. dev. Group PIP

complaints .7052859 .1224289 1 .99973
learning .0603014 .1285281 3 .25249
advance -.0167921 .073883 6 .13148

privileges -.0074174 .0488635 2 .10998
raises .0070789 .0670475 4 .10642

critical .0009713 .0437848 5 .098534

Always
_cons 14.8472 7.874219 0 1

Note: Coefficient posterior means and std. dev. estimated from 64 models.
Note: Default prior is used for models.
file bmadata_ric.dta saved.
. estimates store ric

We stored BMA estimation results for later comparison.
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Let’s specify the unit-information 𝑔-prior, gprior(uip):

. bmaregress rating complaints-advance, gprior(uip) saving(bmadata_uip)
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
Model enumeration Groups = 6

Always = 0
Priors: No. of models = 64

Models: Beta-binomial(1, 1) For CPMP >= .9 = 11
Cons.: Noninformative Mean model size = 1.777
Coef.: Zellner’s g

g: Unit-information, g = 30 Shrinkage, g/(1+g) = 0.9677
sigma2: Noninformative Mean sigma2 = 52.739

rating Mean Std. dev. Group PIP

complaints .6988904 .1242031 1 .99969
learning .0658469 .1334993 3 .27425
advance -.0194169 .0791369 6 .14818

privileges -.0083983 .0519289 2 .12391
raises .0079323 .071638 4 .11984

critical .0012079 .0467515 5 .11142

Always
_cons 15.05253 7.983872 0 1

Note: Coefficient posterior means and std. dev. estimated from 64 models.
Note: Default prior is used for models.
file bmadata_uip.dta saved.
. estimates store uip

Using this prior reduces the fixed value of 𝑔 from 36 to 30 and the shrinkage factor from 0.973 to 0.968.

The reported posterior means are only slightly different from the ric results, which are the same as

in example 1, and the PIP order of the predictors remains the same. A theoretical benefit of the unit-

information prior is its consistency, in the sense that if a true data-generating model is in the considered

model space, its PMPwill go to one as the sample size goes to infinity (Fernández, Ley, and Steel 2001a).

Other fixed 𝑔-priors often considered in the literature are the square-root 𝑛 prior, gprior(sqrtn),
and the empirical Bayes (local) prior, gprior(ebl).
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The square-root 𝑛 prior sets 𝑔 =
√

𝑛, which is 𝑔 =
√
30 = 5.48 in our example.

. bmaregress rating complaints-advance, gprior(sqrtn) saving(bmadata_sqrtn)
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
Model enumeration Groups = 6

Always = 0
Priors: No. of models = 64

Models: Beta-binomial(1, 1) For CPMP >= .9 = 22
Cons.: Noninformative Mean model size = 2.818
Coef.: Zellner’s g

g: g = sqrt(n) = 5.48 Shrinkage, g/(1+g) = 0.8456
sigma2: Noninformative Mean sigma2 = 64.848

rating Mean Std. dev. Group PIP

complaints .585586 .1441692 1 .99743
learning .1134179 .1641032 3 .48829
advance -.0512107 .126477 6 .36728

privileges -.0201474 .0851126 2 .3289
raises .0203943 .1270875 4 .32382

critical .0053258 .0832724 5 .31268

Always
_cons 20.79312 9.495701 0 1

Note: Coefficient posterior means and std. dev. estimated from 64 models.
Note: Default prior is used for models.
file bmadata_sqrtn.dta saved.
. estimates store sqrtn

This prior substantively reduces parameter 𝑔 from 36 to 5.48 and the shrinkage factor from 0.973 to 0.846.

The posterior mean error variance is noticeably higher. The posterior mean estimates of coefficients are

somewhat different. The coefficient for complaints is slightly smaller (0.6 versus 0.7), the coefficient

for learning is larger (0.11 versus 0.06), and the other coefficients are about 10 times larger, but they

are still close to 0. The PIPs of all predictors except complaints are much higher too: about twice as

high for learning and three times as high for the other predictors. These results appear to be closer

to those from regress in example 6. Under this more informative prior, the BMAmodel favors models

with more predictors, which is indicated by the increased posterior mean model size from 1.7 to 2.8. We

explore these differences further in examples 11 and 12.
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The local empirical Bayes prior uses a model-specific 𝑔 estimated from the data for each model.

. bmaregress rating complaints-advance, gprior(ebl) saving(bmadata_ebl)
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
Model enumeration Groups = 6

Always = 0
Priors: No. of models = 64

Models: Beta-binomial(1, 1) For CPMP >= .9 = 14
Cons.: Noninformative Mean model size = 1.872
Coef.: Zellner’s g

g: Empirical Bayes (local) Shrinkage, g/(1+g) = 0.9696
sigma2: Noninformative Mean sigma2 = 52.442

rating Mean Std. dev. Group PIP

complaints .6989413 .1302979 1 .99949
learning .0694007 .1373262 3 .28635
advance -.0234091 .0869118 6 .16924

privileges -.0096619 .0563268 2 .14424
raises .0092523 .0797441 4 .14018

critical .001859 .0519251 5 .13209

Always
_cons 14.95335 8.048125 0 1

Note: Coefficient posterior means and std. dev. estimated from 64 models.
Note: Default prior is used for models.
file bmadata_ebl.dta saved.
. estimates store ebl

The results are again similar to the default ones and those from other priors, except the previous square-

root 𝑛 prior.
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We can also specify one of the random priors, for example, a hyper-𝑔 prior with hyperparameter 3:

. bmaregress rating complaints-advance, gprior(hyperg 3) saving(bmadata_hyperg3)
Burn-in ...
Simulation ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
MC3 and adaptive MH sampling Groups = 6

Always = 0
No. of models = 38

For CPMP >= .9 = 17
Priors: Mean model size = 2.096

Models: Beta-binomial(1, 1) Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 10,000
Coef.: Zellner’s g Acceptance rate = 0.5895

g: Hyper-g(3)
sigma2: Noninformative Mean sigma2 = 55.351

Sampling correlation = 0.9935

rating Mean Std. dev. Group PIP

complaints .6741553 .1420621 1 .9984
learning .0765859 .1437933 3 .316
advance -.0307362 .099772 6 .2259

privileges -.012216 .0648199 2 .1925
raises .0126483 .0932019 4 .182

critical .0027903 .0617168 5 .1814

Always
_cons 16.36026 8.877669 0 1

Note: Coefficient posterior means and std. dev. estimated from 38 models.
Note: Default prior is used for models.

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

g 843.7276 27512.51 581.21 23.32369 3.531358 587.8747
Shrinkage .9410376 .0591481 .00196 .9588878 .7793152 .9983018

file bmadata_hyperg3.dta saved.
. estimates store hyperg3
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Or the robust prior:

. bmaregress rating complaints-advance, gprior(robust) rseed(18)
> saving(bmadata_robust)
Burn-in ...
Simulation ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
MC3 and adaptive MH sampling Groups = 6

Always = 0
No. of models = 34

For CPMP >= .9 = 12
Priors: Mean model size = 1.734

Models: Beta-binomial(1, 1) Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 10,000
Coef.: Zellner’s g Acceptance rate = 0.4232

g: Robust
sigma2: Noninformative Mean sigma2 = 53.095

Sampling correlation = 0.9994

rating Mean Std. dev. Group PIP

complaints .7000463 .1273543 1 .9998
learning .0594904 .1286095 3 .25
advance -.0192712 .0797935 6 .1503
raises .0079416 .0727859 4 .1201

privileges -.0072591 .0487009 2 .1069
critical .0014397 .0466476 5 .1067

Always
_cons 15.24911 7.988166 0 1

Note: Coefficient posterior means and std. dev. estimated from 34 models.
Note: Default prior is used for models.

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

g 152.668 1968.132 43.5265 33.81024 8.205076 610.6026
Shrinkage .9656427 .0276071 .001234 .9712728 .8913639 .9983649

file bmadata_robust.dta saved.
. estimates store robust

With a random 𝑔, the sampling algorithm is a modified MC3 that uses MC3 for model exploration and an

adaptive MH for sampling 𝑔. Also, the parameter 𝑔 and shrinkage are now stochastic, and their posterior

summaries are displayed at the bottom of the estimation table.

By specifying a hyperprior for 𝑔, we let the data guide the value for 𝑔 instead of using a fixed value. For
instance, for the robust prior, the posterior mean estimate for 𝑔 of roughly 153 is substantially larger than
the values we assumed in previous examples. But it also has a high variability, which is not surprising for

a sample of only 30 observations. With this prior, although 𝑔 is much higher, the results are still similar,

and our conclusions remain unchanged.

Overall, the results in this example appear to be fairly robust to a variety of 𝑔-priors, except the
square-root 𝑛 prior. See example 12 for a comparison of these priors by using the log predictive-score.

We explore the sensitivity of the results to different priors further in example 11.
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See Fernández, Ley, and Steel (2001a) for a comparison of various fixed 𝑔 priors, Liang et al. (2008)

for a discussion of local empirical Bayes, hyper-𝑔, and hyper-𝑔/𝑛 priors, and Ley and Steel (2012) and

Porwal and Raftery (2022b) for a comparison of many other priors.

In this example, we generated several MCMC simulation datasets, which you might want to erase at

the end of the analysis; see example 14.

Example 11: Sensitivity analysis of model priors
In example 10, we considered several 𝑔-priors. In this example, we explore several model priors.
As a reference, we refit our default bmaregress model, but this time specifying the default

Beta-binomial(1, 1) prior explicitly. We also save the BMA MCMC results in bmadata betabinom.dta
and store estimation results as betabinom.

. bmaregress rating complaints-advance, mprior(betabinomial)
> saving(bmadata_betabinom)
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
Model enumeration Groups = 6

Always = 0
Priors: No. of models = 64

Models: Beta-binomial(1, 1) For CPMP >= .9 = 10
Cons.: Noninformative Mean model size = 1.699
Coef.: Zellner’s g

g: Benchmark, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 52.302

rating Mean Std. dev. Group PIP

complaints .7052859 .1224289 1 .99973
learning .0603014 .1285281 3 .25249
advance -.0167921 .073883 6 .13148

privileges -.0074174 .0488635 2 .10998
raises .0070789 .0670475 4 .10642

critical .0009713 .0437848 5 .098534

Always
_cons 14.8472 7.874219 0 1

Note: Coefficient posterior means and std. dev. estimated from 64 models.
Note: Default prior is used for parameter g.
file bmadata_betabinom.dta saved.
. estimates store betabinom
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The above prior is the uniform (noninformative) prior for themodel size. Alternatively, we can assume

the uniform prior for the model space, which assumes that each model is equally likely, with a probability

of 1/64 in our example. This is equivalent to assuming that each predictor has the same probability of

being included in the model.

. bmaregress rating complaints-advance, mprior(uniform) saving(bmadata_uniform)
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
Model enumeration Groups = 6

Always = 0
Priors: No. of models = 64

Models: Uniform For CPMP >= .9 = 13
Cons.: Noninformative Mean model size = 2.043
Coef.: Zellner’s g

g: Benchmark, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 51.603

rating Mean Std. dev. Group PIP

complaints .6903531 .1291635 1 .99968
learning .0918832 .1486692 3 .38708
advance -.0243892 .087595 6 .19757

privileges -.0109805 .0591344 2 .16143
raises .0098927 .0801092 4 .15484

critical .0008905 .0524265 5 .14236

Always
_cons 14.40123 8.301086 0 1

Note: Coefficient posterior means and std. dev. estimated from 64 models.
Note: Default prior is used for parameter g.
file bmadata_uniform.dta saved.
. estimates store uniform

The posterior mean model size is slightly larger, 2 versus 1.7, under the uniform prior. But the results

are very similar to those using the default beta-binomial prior.

Whenwe assume a noninformative prior, we allow the data to “speak for themselves” when estimating

model parameters. Sometimes, however, the data may have little to say. This is especially common with

small datasets. In this case, it might be reasonable to explore more informative priors. The performance
dataset is a relatively small dataset. We have already seen some dependency of this dataset on one of the

𝑔-priors in example 10. Let’s see what happens as we introduce more information about the models.
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Let’s continue with the beta-binomial prior but make it informative. The beta-binomial prior assumes

a binomial distribution for the inclusion of predictors in a model with the same IP and assumes a beta dis-

tribution for the IP. One way to modify this prior is to specify a desired expected mean model size instead

of assuming that models of all sizes are equally likely. Given that we have two predictors that stand out,

we may consider a prior that gives more weight to smaller models. On the other hand, all predictors have

PIP above 10%, so it may not be unreasonable to also consider larger models. Let’s use beta-binomial

priors with the expected mean model size of 2 and 5. We specify the mprior(betabinomial 2) and

mprior(betabinomial 5) options, respectively.

. bmaregress rating complaints-advance, mprior(betabinomial 2)
> saving(bmadata_betabinom2)
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
Model enumeration Groups = 6

Always = 0
Priors: No. of models = 64

Models: Beta-binomial, mean = 2 For CPMP >= .9 = 7
Cons.: Noninformative Mean model size = 1.522
Coef.: Zellner’s g

g: Benchmark, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 52.639

rating Mean Std. dev. Group PIP

complaints .7116651 .1185252 1 .99975
learning .0458966 .1135214 3 .19841
advance -.0105735 .0597458 6 .094173

privileges -.0051842 .041615 2 .080238
raises .005258 .0565843 4 .078173

critical .0004494 .0371854 5 .071644

Always
_cons 15.00536 7.675558 0 1

Note: Coefficient posterior means and std. dev. estimated from 64 models.
Note: Default prior is used for parameter g.
file bmadata_betabinom2.dta saved.
. estimates store betabinom2
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The results are very similar to those using the default prior.

. bmaregress rating complaints-advance, mprior(betabinomial 5)
> saving(bmadata_betabinom5)
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
Model enumeration Groups = 6

Always = 0
Priors: No. of models = 64

Models: Beta-binomial, mean = 5 For CPMP >= .9 = 15
Cons.: Noninformative Mean model size = 2.159
Coef.: Zellner’s g

g: Benchmark, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 51.509

rating Mean Std. dev. Group PIP

complaints .6914498 .1304325 1 .99971
learning .0923695 .1546786 3 .35955
advance -.0362158 .104821 6 .22875

privileges -.0138814 .0646952 2 .19699
raises .0133366 .0926326 4 .19141

critical .003734 .0601699 5 .1824

Always
_cons 14.52747 8.31467 0 1

Note: Coefficient posterior means and std. dev. estimated from 64 models.
Note: Default prior is used for parameter g.
file bmadata_betabinom5.dta saved.
. estimates store betabinom5

The posterior mean model size is slightly higher, but the results are still similar to the above.
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With the beta-binomial prior, the IP is allowed to be inferred from the data. It may be difficult to

estimate the IP reliably with small datasets. If we want to fix this probability, we can use the binomial

prior. Let’s specify the binomial priors with mean model sizes of 2 and 5. With the binomial prior, we

need to specify the IP. For the mean model size of 2, the corresponding IP is 2/𝑝 = 2/6 = 0.33, and for

the mean size of 5, it is 5/𝑝 = 5/6 = 0.83.

. bmaregress rating complaints-advance, mprior(binomial 0.33)
> saving(bmadata_binom2)
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
Model enumeration Groups = 6

Always = 0
Priors: No. of models = 64

Models: Binomial, IP = 0.33 For CPMP >= .9 = 7
Cons.: Noninformative Mean model size = 1.561
Coef.: Zellner’s g

g: Benchmark, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 52.561

rating Mean Std. dev. Group PIP

complaints .7090898 .119952 1 .99975
learning .0499472 .1158814 3 .22295
advance -.0091067 .0564581 6 .096086

privileges -.0051623 .0422812 2 .084251
raises .0056663 .057094 4 .082806

critical .0002176 .0379403 5 .075179

Always
_cons 14.87536 7.771313 0 1

Note: Coefficient posterior means and std. dev. estimated from 64 models.
Note: Default prior is used for parameter g.
file bmadata_binom2.dta saved.
. estimates store binom2
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The results for the binomial prior with the mean model size of 2 are again similar to the previous results.

. bmaregress rating complaints-advance, mprior(binomial 0.83)
> saving(bmadata_binom5)
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
Model enumeration Groups = 6

Always = 0
Priors: No. of models = 64

Models: Binomial, IP = 0.83 For CPMP >= .9 = 23
Cons.: Noninformative Mean model size = 3.836
Coef.: Zellner’s g

g: Benchmark, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 48.343

rating Mean Std. dev. Group PIP

complaints .6368386 .1435817 1 .99951
learning .2237682 .1794828 3 .80435
advance -.1102228 .1561712 6 .61442

privileges -.0376032 .0996713 2 .49344
raises .0313871 .1470874 4 .47092

critical .0112057 .0948876 5 .45346

Always
_cons 13.47056 9.637186 0 1

Note: Coefficient posterior means and std. dev. estimated from 64 models.
Note: Default prior is used for parameter g.
file bmadata_binom5.dta saved.
. estimates store binom5

The results for the binomial prior with the mean model size of 5 are different and more similar to the

results from regress in example 6. This is not surprising considering that this prior favors larger mod-

els—the posterior mean model size is now roughly 4.

It appears that the results are somewhat robust to the considered model priors except for

gprior(binomial 0.83). We evaluate these priors more formally in example 12.

Example 12: Comparing model fit using the log predictive-score
As we discussed in Model diagnostics and Regression modeling and model space in Introduction

to BMA for linear regression, the definition of the model space and model diagnostics are important

after BMA linear regression. Before you proceed with bmaregress, it is beneficial that you explore

the regression diagnostics for at least the full model first. In addition to checking standard regression

assumptions, you will benefit from exploring alternative regression specifications to ensure that you

include all relevant predictors in the BMA model space; see [R] regress postestimation. After fitting

bmaregress, you should check regression diagnostics for models with higher PMPs, such as the two

models we identified in example 2. You should also check the sensitivity of the results to the default

priors, as we showed in examples 10 and 11 and continue exploring in this example. And, if sampling is

used, we should also check BMA convergence; see example 9.
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In example 10, the choice of prior does not appear to affect the results except for one prior. Let’s go

ahead and compare those different prior specifications more formally by using the log predictive-score

(LPS). The LPS is defined as the negative of the log of the posterior predictive density evaluated at an

observation. The smaller its value, the better the model fit. The bmastats lps command computes

LPS. We can use this command for in-sample observations used during estimation and for out-of-sample

observations. The former can be used for comparing model goodness of fit, and the latter can be used

for checking predictive performance of the model. We will compare the goodness of fit here.

. bmastats lps ric uip sqrtn ebl hyperg3 robust, compact
Log predictive-score (LPS)
Number of observations = 30

LPS Mean Minimum Maximum

ric 3.33244 2.890314 4.429047
uip 3.3322 2.89472 4.422744

sqrtn 3.36909 2.999145 4.388221
ebl 3.331938 2.892466 4.418862

hyperg3 3.339529 2.916094 4.413267
robust 3.335522 2.897331 4.432305

Notes: Results using analytical and frequency PMPs.
Result ebl has the smallest mean LPS.

bmastats lps reports that the ebl prior has the lowest mean LPS, but all mean LPS values (and other

summaries), except sqrtn, are similar.

Similarly to 𝑔-priors, we can evaluate the model priors from example 10 by using the LPS.

. bmastats lps uniform betabinom betabinom2 betabinom5 binom2 binom5, compact
Log predictive-score (LPS)
Number of observations = 30

LPS Mean Minimum Maximum

uniform 3.324591 2.884711 4.394576
betabinom 3.33244 2.890314 4.429047

betabinom2 3.336546 2.892654 4.445658
betabinom5 3.323516 2.885564 4.386189

binom2 3.335636 2.891732 4.438463
binom5 3.295903 2.865979 4.258077

Notes: Using analytical PMPs.
Result binom5 has the smallest mean LPS.

The binom5 prior, mprior(binomial 0.83), with the mean model size of 5, has the smallest mean LPS.

It also has the smaller mean LPS than the above ebl prior.

In conclusion, all considered priors identified complaints as a highly important predictor of rating
and learning as the predictor with the next highest PIP. The actual estimates of PIPs, except for

complaints, and posterior summaries appeared to be dependent on whether the BMA model favored

the smaller or larger models. This may be explained by the presence of correlation between some of

the predictors. The noninformative model priors such as betabinomial (the default) and uniform and

𝑔-priors assuming shrinkage 𝛿 = 𝑔/(𝑔 +1) closer to 1 favored smaller models for these data. The sqrtn
𝑔-prior and binomial 0.83 model prior (with the mean model size of five) favored the larger models.
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In the above, we considered the 𝑔-priors and model priors independently. But it is important to con-
sider their combination when evaluating model performance. To explore model fit, we computed LPS us-

ing the entire estimation sample. We could have instead split our data into a training and test subsamples

and evaluated the out-of-sample performance of the priors by fitting the models using the training sub-

sample and computing LPS using the test subsample; see the examples in [BMA] bmastats lps, including

how to use cross-validation to check the model performance. Such an approach is important for evaluat-

ing the predictive performance of the model, especially when prediction is the final goal of the analysis.

But, because of the smaller sample size, this approach may not be as viable for the performance dataset.

LPS is used to evaluate the predictive performance of models in the context of BMA (Fernández, Ley,

and Steel (2001b); Ley and Steel (2012)), but we can also use other diagnostic measures such as mean

squared error or CrI coverage to compare model fit and its predictive performance; see example 16 and

Remarks and examples in [BMA] bmapredict.

In this example, we generated several datasets with BMA results, which we can remove at the end of

the analysis; see example 14.

Example 13: BMA predictions
In addition to identifying high PMPmodels and important predictors, BMA is also used for prediction

that accounts for model uncertainty. In fact, BMAwas originated in the context of prediction. In predic-

tion, it is particularly important that the considered model space is as rich as possible to obtain accurate

predictions.

You can use the bmapredict command to compute posterior predictive summaries such as mean,

standard deviations, and CrIs, or you can simulate an entire predictive sample; see [BMA] bmapredict.

For posterior means and standard deviations, analytical expressions are available with fixed 𝑔, so you
can use bmapredict directly after bmaregress to compute those summaries.

Recall our BMAmodel from example 1. Let’s compute posterior predictive means for rating based

on this model.

. estimates restore bmareg
(results bmareg are active now)
. bmapredict pmean, mean
note: computing analytical posterior predictive means.

Let’s now compute the 95% equal-tailed predictive CrIs. The analytical expressions for these are not

as straightforward and require approximation. But we can compute them based on a predictive MCMC

sample. To generate this sample, we must first obtain the MCMC sample of model parameters. This is

done by bmacoefsample. To use bmapredict, we must also save the MCMC model parameter sample

with bmacoefsample.

. bmacoefsample, saving(bmacoef) rseed(18)
Simulation (10000): ....5000....10000 done
file bmacoef.dta saved.
. bmapredict cri_l cri_u, cri
note: computing credible intervals using simulation.
Computing predictions ...
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Let’s summarize the predictions:

. summarize rating pmean cri_l cri_u
Variable Obs Mean Std. dev. Min Max

rating 30 64.63333 12.17256 40 85
pmean 30 64.63333 9.788015 43.71523 82.16643
cri_l 30 49.68274 9.812 27.45753 66.24698
cri_u 30 79.67859 9.794941 59.52461 98.29689

The predicted summaries look reasonable for rating. The mean of posterior predictive means over ob-
servations is 64.63 and matches the mean of rating. The mean posterior predictive lower 95% credible

bound is 49.7 and the upper is 79.7. Also see Remarks and examples in [BMA] bmapredict for how to

evaluate the quality of predictions.

Example 14: Cleanup after BMA analysis
With BMA, we often need to generate and save many datasets that contain simulation summaries.

Remember to remove them whenever you no longer need them. We remove the following BMA datasets

generated by Getting started examples:

. erase bmadata_enum.dta

. erase bmadata_ric.dta

. erase bmadata_uip.dta

. erase bmadata_sqrtn.dta

. erase bmadata_ebl.dta

. erase bmadata_hyperg3.dta

. erase bmadata_robust.dta

. erase bmadata_betabinom.dta

. erase bmadata_betabinom2.dta

. erase bmadata_betabinom5.dta

. erase bmadata_binom2.dta

. erase bmadata_binom5.dta

. erase bmadata_uniform.dta

. erase bmacoef.dta

BMA predictive performance for the USA crime rate data
Consider a study from 1960 on the factors influencing criminal activity in the USA (Ehrlich 1973;

Becker 1968; and Brier and Fienberg 1980). The earlier work by Ehrlich (1973) focused on the relation-

ship between crime rate and the probability of imprisonment and average time served in state prisons. The

dataset uscrime is from Vandaele (1978). It contains 16 variables and 47 observations, one for 47 dif-

ferent states in the USA. The outcome of interest, ln offenses, accounts for the rate of criminal activity
per head of population on the log scale. The rest of the variables measure different socio-economic and

punishment-related factors, also on the log scale. Variables ln prisonp and ln prisont correspond

to the predictors of interest in the analysis by Ehrlich (1973) in the log scale. (In what follows, when we

mention predictors, we will imply their log-transformed versions without stating this explicitly.)
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. use https://www.stata-press.com/data/r19/uscrime
(1960 crime rates for 47 states in the USA)
. describe
Contains data from https://www.stata-press.com/data/r19/uscrime.dta
Observations: 47 1960 crime rates for 47 states

in the USA
Variables: 16 23 Feb 2025 13:08

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

ln_offenses float %9.0g Number of offenses per million
population, log scale

ln_malepop float %9.0g Number of males of age 14-24 per
1,000 population, log scale

southern byte %8.0g Indicator variable for southern
state

ln_meaneduc float %9.0g Mean years of schooling, log
scale

ln_police60 float %9.0g Police expenditure in 1960, log
scale

ln_police59 float %9.0g Police expenditure in 1959, log
scale

ln_labor float %9.0g Labor force participation rate,
log scale

ln_mtofpop float %9.0g Number of males per 1,000
females, log scale

ln_pop float %9.0g State population size in hundred
thousands, log scale

ln_nonwhite float %9.0g Number of nonwhites per 1,000
people, log scale

ln_unemp24 float %9.0g Unemployment rate of urban males,
age 14-24, log scale

ln_unemp39 float %9.0g Unemployment rate of urban males,
age 35-39, log scale

ln_wealth float %9.0g Wealth in tens of dollars, log
scale

ln_ineq float %9.0g Income inequality, log scale
ln_prisonp float %9.0g Probability of imprisonment, log

scale
ln_prisont float %9.0g Average time served in state

prisons, log scale

Sorted by:

Raftery, Madigan, and Hoeting (1997) provide an extensive analysis of this dataset in the context of

BMA. We will follow some of their analyses by using bmaregress.

Example 15: BMA regression for the USA crime rate
We first use bmaregress to fit a BMA linear regression of ln offenses on the remaining 15 vari-

ables. With more than 12 predictors, bmaregress uses stochastic MC3 sampling, so we specify the

rseed() option for reproducibility. Alternatively, we could still use enumeration to visit all 215 = 32,768

models by specifying the enumeration option, but we stick with the MC3 sampling to mimic the setup

of Raftery, Madigan, and Hoeting (1997) more closely. We also specify the uniform prior on the model

space to be more consistent with the authors’ setup, because, by default, bmaregress assumes a uniform

prior on the model size.
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. bmaregress ln_offenses ln_malepop-ln_prisont, mprior(uniform) rseed(18)
Burn-in ...
Simulation ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 47
Linear regression No. of predictors = 15
MC3 sampling Groups = 15

Always = 0
No. of models = 803

For CPMP >= .9 = 245
Priors: Mean model size = 6.428

Models: Uniform Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 10,000
Coef.: Zellner’s g Acceptance rate = 0.2902

g: Benchmark, g = 225 Shrinkage, g/(1+g) = 0.9956
sigma2: Noninformative Mean sigma2 = 0.037

Sampling correlation = 0.9380

ln_offenses Mean Std. dev. Group PIP

ln_ineq 1.460748 .3458405 13 .99948
ln_meaneduc 1.855513 .6249968 3 .9692
ln_prisonp -.1834373 .1198622 14 .81149
ln_malepop 1.091052 .732965 1 .77907

ln_police60 .6916081 .5425088 4 .66525
ln_nonwhite .0517939 .0582191 9 .51981
ln_unemp39 .1545517 .198343 11 .4623

ln_police59 .3509272 .5211463 5 .36779
ln_pop -.0142643 .0336552 8 .20569

ln_prisont -.0427634 .1211644 15 .17169
ln_wealth .0973078 .2782722 12 .15905
southern .0192679 .0682639 2 .11977

ln_unemp24 -.0033401 .1010699 10 .088322
ln_mtofpop .0522426 .4667382 7 .063663

ln_labor .008854 .140245 6 .045103

Always
_cons -21.67062 6.336048 0 1

Note: Coefficient posterior means and std. dev. estimated from 803 models.
Note: Default prior is used for parameter g.

From the output, the uniform prior is used for the model space, and the benchmark prior of Fernández,

Ley, and Steel (2001a) with 𝑔 = 152 = 225 for these data is used for the regression coefficients. The

shrinkage factor of 225/(225 + 1) = 0.9956 corresponds to little shrinkage of coefficients toward zero.

The MC3 sampling has an acceptance rate of about 30% and fairly high sampling correlation of about

94%. We do not suspect nonconvergence, but it is a good practice to look at the graphical convergence

summary as well. We will leave you to verify this by running bmagraph pmp. This means that the visited
803 models are among models with high posterior probabilities, and the drawn MCMC sample provides

a good representation of the model posterior distribution.

The top three predictors with PIP above 80% are income inequality, ln ineq, mean years of schooling,
ln meaneduc, and probability of imprisonment, ln prisonp. Other important predictors for crime rate
are percentage of males, ln malepop, and police expenditure in 1960, ln police60. These factors

were also selected in Raftery, Madigan, and Hoeting (1997) by using various model-selection criteria.
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We use the bmastats models command to inspect the top 5 models by PMP.

. bmastats models
Computing model probabilities ...
Model summary Number of models:

Visited = 803
Reported = 5

Analytical PMP Frequency PMP Model size

Rank
1 .0412 .0339 6
2 .03963 .0454 7
3 .0266 .0293 6
4 .02633 .0126 5
5 .02605 .0142 5

Note: Using analytical PMP for model ranking.
Variable-inclusion summary

Rank Rank Rank Rank Rank
1 2 3 4 5

ln_malepop x x x x x
ln_meaneduc x x x x x
ln_police60 x x x x
ln_unemp39 x x x x

ln_ineq x x x x x
ln_prisonp x x x x

ln_nonwhite x
ln_police59 x

Legend:
x - estimated

The top model has PMP of 0.04 and includes six predictors: ln malepop, ln meaneduc, ln police60,
ln unemp39, ln ineq, and ln prisonp. The posterior mean estimate for probability of imprisonment
from the earlier estimation table is negative, −0.18, which indicates its deterrent “effect” on the outcome.

(Asmentioned in Raftery, Madigan, andHoeting [1997], the term “effect” in this analysis is used loosely.)

In addition to ln prisonp, the model considered in Ehrlich (1973), includes time served in prison,

ln prisont, as a deterrent to criminal activity. In view of our BMA analysis, this predictor has a PIP of

only 0.17 and is not included in the top five models. In the context of model selection, when we work

with a single model, there is uncertainty about the inclusion of this predictor (Raftery, Madigan, and

Hoeting 1997).

Example 16: Assessing BMA predictive performance
To assess the predictive performance of our BMA regression, we randomly split the dataset into two

equal subsets, fit the model to one of them and test the predictive performance on the other. We adopt

the prediction analysis of Raftery, Madigan, and Hoeting (1997) for comparison. We will obtain the 90%

predictive CrIs for the test subsample and compute the percentage of the observed values that fall within

these intervals.
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We use the splitsample command to create the sample variable, which identifies the training and

test subsamples.

. splitsample, generate(sample) nsplit(2) rseed(18)

We then refit our model using the first subsample. We also save the MCMC model simulation results

in a dataset, bma1model.dta, to use bmacoefsample later.

. bmaregress ln_offenses ln_malepop-ln_prisont if sample == 1,
> mprior(uniform) rseed(18) saving(bma1model)
Burn-in ...
Simulation ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 24
Linear regression No. of predictors = 15
MC3 sampling Groups = 15

Always = 0
No. of models = 845

For CPMP >= .9 = 246
Priors: Mean model size = 4.254

Models: Uniform Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 10,000
Coef.: Zellner’s g Acceptance rate = 0.2532

g: Benchmark, g = 225 Shrinkage, g/(1+g) = 0.9956
sigma2: Noninformative Mean sigma2 = 0.043

Sampling correlation = 0.9556

ln_offenses Mean Std. dev. Group PIP

ln_ineq 1.742633 .571148 13 .96936
ln_police60 1.066626 .7762218 4 .7983
ln_meaneduc .9848326 1.016487 3 .56043
ln_prisonp -.0533234 .1007384 14 .2904

ln_labor .531245 1.073081 6 .26204
ln_police59 .1248871 .7554263 5 .2585

ln_pop -.029143 .0621607 8 .23924
ln_unemp39 .1347758 .3466462 11 .19688
ln_wealth .1413427 .471408 12 .13636

ln_unemp24 -.0771369 .2646401 10 .12362
ln_prisont .0209606 .1144098 15 .10844

southern .0139217 .0754495 2 .092931
ln_malepop .0731975 .3506361 1 .083313

ln_nonwhite .0034271 .0257528 9 .068867
ln_mtofpop .0052071 .6672984 7 .065453

Always
_cons -17.13352 8.459582 0 1

Note: Coefficient posterior means and std. dev. estimated from 845 models.
Note: Default prior is used for parameter g.
file bma1model.dta saved.
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The MCMC model simulation file saved by bmaregress contains the information about the visited

models and model-specific posterior means and standard deviations of regression coefficients. But

to compute CrIs, we also need an MCMC sample from posterior distributions of the model parame-

ters. The bmacoefsample command generates such a sample. We also save the MCMC results from

bmacoefsample in bma1coef.dta, as required by bmapredict, which we will use later to generate

CrIs.

. bmacoefsample, saving(bma1coef) rseed(18)
Simulation (10000): ....5000....10000 done
file bma1coef.dta saved.

The MCMC dataset bma1coef contains the draws from the posterior distribution of model parameters,

which will be used to generate CrIs.

We now use bmapredict to compute the 90% lower and upper CrIs using the test sample and save

them in new variables bma1l and bma1u.

. bmapredict bma1l bma1u if sample == 2, cri clevel(90) rseed(18)
note: computing credible intervals using simulation.
Computing predictions ...

Now we compute the actual CrI coverage.

. generate bma1cov90 = ln_offenses < bma1u & ln_offenses > bma1l if sample == 2
(24 missing values generated)
. summarize bma1cov90

Variable Obs Mean Std. dev. Min Max

bma1cov90 23 .8695652 .3443502 0 1

We obtain about 87% coverage for the observed outcome in the test sample, which is close to the theoret-

ical 90%. In Raftery, Madigan, and Hoeting (1997), the authors report a predictive coverage of 80% for

Occam’s window algorithm and a 67% coverage or below for various other model selection procedures.

For comparison, let’s also compute predictive CrI coverages based on two regression models: one that

includes all predictors, the full model, and one that corresponds to the highest posterior model (HPM),

rank 1, model from example 15.

We can still use bmaregress to fit these models, but we now need to specify the relevant predictors

to be always included in the model.

. bmaregress ln_offenses (ln_malepop-ln_prisont, always) if sample == 1,
> mprior(uniform) saving(bma2model) notable
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 24
Linear regression No. of predictors = 15
Model enumeration Groups = 0

Always = 15
Priors: No. of models = 1

Models: Uniform For CPMP >= .9 = 1
Cons.: Noninformative Mean model size = 15.000
Coef.: Zellner’s g

g: Benchmark, g = 225 Shrinkage, g/(1+g) = 0.9956
sigma2: Noninformative Mean sigma2 = 0.010

file bma2model.dta saved.

As expected, there is only one visited model in the model space.



bmaregress — Bayesian model averaging for linear regression 79

We now repeat the earlier computations of CrIs and their coverage for the full model.

. bmacoefsample, saving(bma2coef) rseed(18)
Simulation (10000): ....5000....10000 done
file bma2coef.dta saved.
. bmapredict bma2l bma2u if sample==2, cri clevel(90) rseed(18)
note: computing credible intervals using simulation.
Computing predictions ...
. generate bma2cov90 = ln_offenses < bma2u & ln_offenses > bma2l if sample == 2
(24 missing values generated)
. summarize bma2cov90

Variable Obs Mean Std. dev. Min Max

bma2cov90 23 .3913043 .4990109 0 1

The full model achieves only 39% coverage, which is substantially lower than the BMA coverage.

Next we compute predictions using the HPM model reported by the bmaregress command in

example 15. It includes the following six predictors: ln malepop, ln meaneduc, ln police60,
ln unemp39, ln ineq, and ln prisonp. We specify these variables in the always group and then

compute the predictive CrI coverage as before.

. bmaregress ln_offenses
> (ln_malepop ln_meaneduc ln_police60 ln_unemp39 ln_ineq ln_prisonp, always)
> if sample == 1, mprior(uniform) saving(bma3model) notable
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 24
Linear regression No. of predictors = 6
Model enumeration Groups = 0

Always = 6
Priors: No. of models = 1

Models: Uniform For CPMP >= .9 = 1
Cons.: Noninformative Mean model size = 6.000
Coef.: Zellner’s g

g: Benchmark, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 0.036

file bma3model.dta saved.
. bmacoefsample, saving(bma3coef) rseed(18)
Simulation (10000): ....5000....10000 done
file bma3coef.dta saved.
. bmapredict bma3l bma3u if sample==2, cri clevel(90) rseed(18)
note: computing credible intervals using simulation.
Computing predictions ...
. generate bma3cov90 = ln_offenses < bma3u & ln_offenses > bma3l if sample == 2
(24 missing values generated)
. summarize bma3cov90

Variable Obs Mean Std. dev. Min Max

bma3cov90 23 .826087 .3875534 0 1

This model produces the predictive CrI coverage of about 83%, but it is still lower than the BMAmodel

with coverage of 87%.
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Once we are done with our analysis, we can remove the extra variables and datasets that we created:

. drop bma*l bma*u bma*cov90

. erase bma1model.dta

. erase bma2model.dta

. erase bma3model.dta

. erase bma1coef.dta

. erase bma2coef.dta

. erase bma3coef.dta

BMA analysis of cross-country economic growth data
In the following series of examples, we apply BMA to an extensively studied problem of economic

growth. We follow some of the methodology and use the dataset from Fernández, Ley, and Steel (2001b),

which is considered one of the fundamental papers on BMA. Also see, for instance, Eicher, Papageorgiou,

and Raftery (2011), who investigated the effect of different BMA priors in a study of economic growth

determinants and found that a uniform model prior and a unit-information 𝑔-prior performed best among
considered priors. And see Ley and Steel (2009) for the effect of prior assumptions in economic growth

modeling.

The econgrowth dataset contains information about 72 countries, including their average per capita

gross domestic product (GDP) computed over the period 1960 through 1992, size of labor force, life

expectancy, etc. It is a subset from an earlier study in Sala-I-Martin (1997). Below, we describe the

variables in the dataset.

. use https://www.stata-press.com/data/r19/econgrowth
(Economic growth data)
. describe
Contains data from https://www.stata-press.com/data/r19/econgrowth.dta
Observations: 72 Economic growth data

Variables: 43 8 Mar 2025 10:17
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

gdpgrowth float %9.0g * Average annual growth in GDP per
capita, 1960-1992

abslat float %9.0g Absolute latitude (degrees)
age byte %8.0g Age
area int %8.0g Surface area (in 1,000s of square

kilometers)
blmktpm float %9.0g Premium for black market
brit byte %8.0g British colony dummy
buddha float %9.0g Fraction Buddhist
catholic float %9.0g Fraction Catholic
civllib float %9.0g * Civil liberties index
confucian float %9.0g Fraction Confucian
ecoorg byte %8.0g * Degree of capitalism
english float %9.0g Fraction speaking English
equipinv float %9.0g Share of output invested in

physical equipment
ethnol float %9.0g Ethnolinguistic fractionalization
foreign float %9.0g Fraction speaking language other

than English
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french byte %8.0g French colony dummy
gdp60 float %9.0g Log of GDP per capita in 1960
highenroll float %9.0g Higher education enrollment
hindu float %9.0g Fraction Hindu
jewish float %9.0g Fraction Jewish
labforce float %9.0g Labor force (in 1,000s)
latamerica byte %8.0g Latin America dummy
lifeexp float %9.0g Life expectancy
mining float %9.0g Fraction of GDP in mining
muslim float %9.0g Fraction Muslim
nequipinv float %9.0g Share of output invested in items

other than equipment
outwaror byte %8.0g Outward orientation
polrights float %9.0g * Political rights index
popg float %9.0g Annual percent change in the

population
prexports float %9.0g Proportion of exports that are

primary, 1970
protestants float %9.0g Fraction Protestants
prscenroll float %9.0g Primary school enrollment

(proportion)
publedupct float %9.0g Public education share
revncoup float %9.0g Revolutions and coups
rfexdist int %8.0g Exchange rate distortions
ruleoflaw float %9.0g Index developed by the World

Justice Project (WJP)
spanish byte %8.0g Spanish colony dummy
stdbmp float %9.0g Std. dev. of black market premium
subsahara byte %8.0g Sub-Saharan dummy
wardummy byte %8.0g War dummy
workpop float %9.0g Log of employment-population

ratio
yrsopen float %9.0g Fraction of years an economy has

been open between 1950 and 1990
y float %9.0g * Average annual growth in GDP per

capita, 1960-1992
* indicated variables have notes

Sorted by:

We are interested in identifying the factors explaining the growth rate by considering a regression

model of GDP growth over a host of country characteristics. BMA will be used to account for model

uncertainty.

Example 17: BMA linear regression of economic growth
We fit the same BMA regression model as described in Fernández, Ley, and Steel (2001b). It uses

a uniform prior on the model space, where each model has the same prior probability and a Zellner’s

𝑔-prior for the regression coefficients with 𝑔 = max(𝑛, 𝑝2) = 1,681, where 𝑛 = 72 is the sample size

and 𝑝 = 41 is the number of predictors. This benchmark prior, gprior(benchmark), is the default in
bmaregress.

With so many possible predictors, the model space is too big to explore by model enumeration, so

the MC3 sampling will be used. We increase the MCMC sample size to 200,000 and set a random-number

seed for reproducibility. With that many iterations, the command will take a few moments to run, so we

display a dot every 5,000 iterations to monitor the progress.
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. bmaregress gdpgrowth abslat-yrsopen, mprior(uniform) mcmcsize(200000)
> rseed(18) dots(5000)
Burn-in (2500): done
Simulation (200000): ........................................ done
Computing model probabilities ...
Bayesian model averaging No. of obs = 72
Linear regression No. of predictors = 41
MC3 sampling Groups = 41

Always = 0
No. of models = 22,019

For CPMP >= .9 = 3,911
Priors: Mean model size = 9.593

Models: Uniform Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 200,000
Coef.: Zellner’s g Acceptance rate = 0.1724

g: Benchmark, g = 1,681 Shrinkage, g/(1+g) = 0.9994
sigma2: Noninformative Mean sigma2 = .000055

Sampling correlation = 0.9427

gdpgrowth Mean Std. dev. Group PIP

gdp60 -.0161835 .0029825 16 .99977
confucian .0563652 .0128534 9 .99861

lifeexp .0008438 .0003119 22 .95731
equipinv .1648326 .0619083 12 .95457

subsahara -.0118906 .0079718 38 .77207
muslim .0087556 .007237 24 .67147

ruleoflaw .0082255 .0084833 35 .53652
yrsopen .0071409 .008048 41 .48922
ecoorg .0013196 .0014889 10 .48642

protestants -.0058382 .0070492 30 .46548
nequipinv .0252486 .0319193 25 .4349

mining .0169622 .0224533 23 .41827
latamerica -.0014542 .0036659 21 .16994
prscenroll .0035024 .0087742 31 .16556

buddha .0018523 .0050603 6 .14496
blmktpm -.0010587 .0029964 4 .13458

catholic -.0003605 .0027147 7 .098655
hindu -.0018908 .007526 18 .079742

civllib -.0001846 .0007183 8 .078893
prexports -.0005476 .002645 29 .054696
polrights -.0000816 .0004163 27 .050608
rfexdist -2.71e-06 .0000142 34 .046846

age -1.79e-06 .0000106 2 .038836
wardummy -.000138 .0008583 39 .035901
foreign .0001651 .0010763 14 .035183
english -.0002166 .0013975 11 .034352

labforce 1.95e-09 1.77e-08 20 .029665
ethnol .0001246 .0010726 13 .023176
french .000088 .0007816 15 .021807

spanish .000089 .0009374 36 .021585
stdbmp -3.24e-07 2.83e-06 37 .021269
abslat 1.84e-07 .000019 1 .016268

workpop -.0001042 .0013305 40 .015206
outwaror -.0000245 .00035 26 .014345

popg .0021388 .0272493 28 .01341
highenroll -.0003523 .0045785 17 .01317

brit -.000021 .0003203 5 .010822
jewish -.000091 .0016002 19 .010737

publedupct .000255 .0143465 32 .010524
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Always
_cons .0705111 .0208966 0 1

Note: Coefficient posterior means and std. dev. estimated from 22,019 models.
Note: Default prior is used for parameter g.
Note: 2 predictors with PIP less than .01 not shown.

The number of models visited by MC3 is 22,019. Of those, 3,911 contribute to the CPMP of at least 0.9,

so we can expect many models with low PMPs. The mean model size is 9.6, so, on average, models tend

to include about 10 predictors. The overall acceptance rate is about 17%, which is a reasonable value for

MC3 sampling in a high-dimensional space. The sampling correlation is about 0.94, so nonconvergence

should not be suspected. Recall that this is the correlation between the analytical posterior model prob-

abilities and their MCMC sampling frequencies. We can use the bmagraph pmp command to plot these

frequencies for visual inspection.

. bmagraph pmp

0

.005

.01

.015

.02

P
ro

ba
bi

lit
y

0 20 40 60 80 100
Model

Analytical PMP
Frequency PMP

Top 100 models shown out of 22,019 visited. 

Posterior model probability

For the first 100 models, the frequency PMPs are below the analytical PMPs because we explored only

a small fraction of all possible models, and the PMP distribution has a long and heavy tail. With the

increase of the MCMC sample size, the differences will diminish. We do not have a reason to suspect

nonconvergence.
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bmaregress reports results for 39 out of 41 predictors. Two of the predictors have PIPs less than 0.01

and thus are not reported. If we want, we can specify the allcoef option on replay to see all coefficients.

. bmaregress, allcoef noheader

gdpgrowth Mean Std. dev. Group PIP

gdp60 -.0161835 .0029825 16 .99977
confucian .0563652 .0128534 9 .99861

lifeexp .0008438 .0003119 22 .95731
equipinv .1648326 .0619083 12 .95457

subsahara -.0118906 .0079718 38 .77207
muslim .0087556 .007237 24 .67147

ruleoflaw .0082255 .0084833 35 .53652
yrsopen .0071409 .008048 41 .48922
ecoorg .0013196 .0014889 10 .48642

protestants -.0058382 .0070492 30 .46548
nequipinv .0252486 .0319193 25 .4349

mining .0169622 .0224533 23 .41827
latamerica -.0014542 .0036659 21 .16994
prscenroll .0035024 .0087742 31 .16556

buddha .0018523 .0050603 6 .14496
blmktpm -.0010587 .0029964 4 .13458

catholic -.0003605 .0027147 7 .098655
hindu -.0018908 .007526 18 .079742

civllib -.0001846 .0007183 8 .078893
prexports -.0005476 .002645 29 .054696
polrights -.0000816 .0004163 27 .050608
rfexdist -2.71e-06 .0000142 34 .046846

age -1.79e-06 .0000106 2 .038836
wardummy -.000138 .0008583 39 .035901
foreign .0001651 .0010763 14 .035183
english -.0002166 .0013975 11 .034352

labforce 1.95e-09 1.77e-08 20 .029665
ethnol .0001246 .0010726 13 .023176
french .000088 .0007816 15 .021807

spanish .000089 .0009374 36 .021585
stdbmp -3.24e-07 2.83e-06 37 .021269
abslat 1.84e-07 .000019 1 .016268

workpop -.0001042 .0013305 40 .015206
outwaror -.0000245 .00035 26 .014345

popg .0021388 .0272493 28 .01341
highenroll -.0003523 .0045785 17 .01317

brit -.000021 .0003203 5 .010822
jewish -.000091 .0016002 19 .010737

publedupct .000255 .0143465 32 .010524
revncoup 7.98e-06 .0005547 33 .0090622

area -2.05e-09 5.24e-08 3 .0088675

Always
_cons .0705111 .0208966 0 1

Note: Coefficient posterior means and std. dev. estimated from 22,019 models.
Note: Default prior is used for parameter g.



bmaregress — Bayesian model averaging for linear regression 85

Commonly in BMA, a predictor is considered important if its PIP is greater than 0.5. In this example, we

see that several predictors, such as log of GDP in 1960, fraction Confucian, life expectancy, equipment

investment, sub-Saharan indicator, fraction Muslim, and rule of law, play an important role in explaining

economic growth. On the other hand, predictors with low PIPs, such as surface area with PIP below 0.01,

contribute little to explaining the economic growth.

Example 18: Model and variable-inclusion summaries
Let’s continue with example 17 and use bmastats models to explore the top models visited by

bmaregress. To limit the number of predictors displayed for each model to only those with PIP above

0.1, we specify the pipcutoff(0.1) option.

. bmastats models, pipcutoff(0.1)
Computing model probabilities ...
Model summary Number of models:

Visited = 22,019
Reported = 5

Analytical PMP Frequency PMP Model size

Rank
1 .01869 .01019 10
2 .01632 .008705 9
3 .01088 .00448 8
4 .007274 .00335 7
5 .006697 .00289 7

Note: Using analytical PMP for model ranking.
Variable-inclusion summary

Rank Rank Rank Rank Rank
1 2 3 4 5

confucian x x x x x
ecoorg x x

equipinv x x x x x
gdp60 x x x x x

lifeexp x x x x x
muslim x x x x x

nequipinv x x
protestants x x

ruleoflaw x x
subsahara x x x x

mining x
yrsopen x x x

Legend:
x - estimated

By default, the command displays the top five models ranked by PMP. It reports both analytical and

frequency PMPs, which are similar because the model converged. It also reports the model sizes. The

predictors included in each reported model are displayed in a separate table. The pipcutoff(0.1)
option did not have an effect in our example, because all predictors in these top five models have a PIP

greater than 0.1, which can be verified by running the command without this option.
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The top model has a rather low PIP of 0.019 and includes 10 predictors, among which there are all 7

important predictors. We can list the PIPs for the predictors of the top model by using bmastats pip:

. bmastats pip confucian ecoorg equipinv gdp60 lifeexp muslim nequipinv
> protestants ruleoflaw subsahara
Posterior inclusion probability (PIP)
No. of obs = 72
No. of predictors = 41

Groups = 41
Always = 0

Reported = 10
No. of models = 22,019
Mean model size = 9.593

PIP Group

gdp60 .99977 16
confucian .99861 9

lifeexp .95731 22
equipinv .95457 12

subsahara .77207 38
muslim .67147 24

ruleoflaw .53652 35
ecoorg .48642 10

protestants .46548 30
nequipinv .4349 25

Always
_cons 1 0

Note: Using analytical PMPs.

The other three predictors have PIPs above 0.4.

The rank 2 model with a PMP of 0.016 includes the same predictors as the top model, except for

protestants. The remaining models have relatively lower PMPs. The presence of so many models

with similar low probabilities means that there are many plausible models that can be considered for

these data. Thus, if we were to choose just one, it would have been difficult to select the “best” one.

We may be also interested in some specific regression models from the BMA model sample. For

example, we may be interested in models that include any of the seven important predictors, which we

can specify in the include() option. And, in addition to the HPM, we may want to explore the median

probability model (MPM). MPM is the model that includes only predictors with a PIP greater or equal to

0.5 (Fletcher 2018). The include() option may select many models, so we consider only those with

PMP above 0.0025.
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. bmastats models, hpm mpm pmpcutoff(0.0025)
> include(gdp60 confucian lifeexp equipinv subsahar muslim ruleoflaw)
Computing model probabilities ...
Model summary Number of models:

Visited = 22,019
Reported = 13

Analytical PMP Frequency PMP Model size

Rank
(HPM) 1 .01869 .01019 10

2 .01632 .008705 9
7 .005889 .003555 8
9 .005764 .0039 10

15 .004007 .00218 11
16 .003959 .00171 9
17 .003956 .001865 11
18 .003762 .002795 11
21 .003527 .001275 8
22 .003362 .00143 11
26 .003097 .00111 10
30 .002701 .00149 11

(MPM) 33 .002628 .00183 7

Notes: Using analytical PMP for model ranking.
3,932 models with PMP less than .0025 not shown.

Note: Use option vartable to display variable-inclusion table for more than
12 models.

There are 13 models that include the important predictors and have a PMP above 0.0025, and there are

3,932 more models with a PMP below that. The MPM includes our seven important predictors. Its PMP

is only 0.0026. With many predictors, it is not unreasonable to see so many models with low PMP in the

absence of the strong information in the data about the model.

The bmastats msize command summarizes the sizes of the explored models. The model size is

the number of predictors included in the model. In addition to the posterior mean size, which is also

reported in the header of bmaregress, the command reports the posterior median size and the mini-

mum and maximum model sizes. For comparison, it also reports the summaries for the prior model-size

distribution.

. bmastats msize
Model-size summary
Number of models = 22,019
Model size:

Minimum = 4
Maximum = 22

Mean Median

Prior
Analytical 11.0877 11

Posterior
Analytical 9.5933 10
Frequency 10.4171 10
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The smallest model includes only 4 predictors, and the largest model includes 22 predictors. The analyt-

ical posterior median size is 10 compared with the mean of 9.59. The posterior model-size summaries

are similar to the prior ones. And frequency model-size summaries computed from the MCMC sample

are similar to the analytical ones, as would be expected for the converged model.

We can plot the entire distributions of model sizes by using bmagraph msize.

. bmagraph msize
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The model-size distributions are fairly similar with the posterior one shifted to the left, favoring slightly

smaller models than what was assumed a priori.

Example 19: Coefficient summaries
Let’s use bmagraph coefdensity to look at the distributions of regression coefficients for gdp60

and ruleoflaw.

. bmagraph coefdensity {gdp60}
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For coefficient {gdp60} (or using its full name {gdpgrowth:gdp60}), the probability of noninclusion
is very low, 0.0002, so the red line that represents it is not even visible on the graph. Thus the posterior

density of {gdp60} is essentially a continuous normal-like density, centered at about −0.015 with most

of its mass between roughly −0.025 and −0.005, away from 0.

We now look at the posterior density for the {ruleoflaw} coefficient.

. bmagraph coefdensity {ruleoflaw}
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The probability of noninclusion for {ruleoflaw} is about 0.46, so we see the red vertical line meets the

horizontal reference line at roughly 0.46. Conditional on the inclusion, the continuous density is centered

around 0.015 with most of its mass between 0 and 0.03.

The posterior means and standard deviations reported by bmaregress are computed with respect to

the above mixtures of distributions.

If we want to compute CrIs, we need to use bmacoefsample first to obtain samples of regression

coefficients from their posterior distributions, shown above for {gdp60} and {ruleoflaw}. To run

bmacoefsample, we need to save our BMA sampling results first, which we can do on replay:

. bmaregress, saving(bmadata_econgrowth)
note: file bmadata_econgrowth.dta saved.
. bmacoefsample, mcmcsize(10000) rseed(18)
Simulation (10000): ....5000....10000 done

bmacoefsample uses the same MCMC size as bmaregress to generate the sample, unless the

mcmcsize() option is specified. Here we do not need 200,000 samples of coefficients, so we specify a

smaller number of 10,000. The size of this sample affects the accuracy of theMCMC-based computations

of the posterior summaries of regression coefficients.
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Once we have an MCMC sample of coefficients, many Bayesian postestimation commands are avail-

able. For example, we can use bayesstats summary to compute the 95% HPD CrIs for the coefficients

of, say, equipinv and ruleoflaw.

. bayesstats summary {gdpgrowth: equipinv ruleoflaw}, hpd
Posterior summary statistics MCMC sample size = 10,000

HPD
gdpgrowth Mean Std. dev. MCSE Median [95% cred. interval]

equipinv .1653323 .0627102 .000627 .1684731 0 .2607861
ruleoflaw .0082453 .0084968 .000085 .0078141 0 .0219461

The first two columns report the posterior means and standard deviations based on theMCMC simulation,

which approximate the analytical ones reported by bmaregress. The MCMC-based estimates are similar

to the analytical ones. The MCSE column reports the Monte Carlo standard errors, which describes the

precision of the posterior-mean estimates and depends on the size of the MCMC sample specified in

mcmcsize() with bmacoefsample. The last two columns report the 95% HPD CrIs. For instance, the

reported 95% CrI for {ruleoflaw} is consistent with its posterior density shown above.

We can also use bayesstats summary to compute posterior summaries for expressions of coef-

ficients. Suppose we are interested in estimating the posterior probability that both coefficients for

equipinv and ruleoflaw are positive. We can do this as follows:

. bayesstats summary
((({gdpgrowth:ruleoflaw} > 0) & ({gdpgrowth:equipinv} > 0)))
Posterior summary statistics MCMC sample size = 10,000

expr1 : ({gdpgrowth:ruleoflaw} > 0) & ({gdpgrowth:equipinv} > 0)

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

expr1 .496 .500009 .004948 0 0 1

The probability of both of these coefficients being positive is about 50%.

Example 20: Jointness measures
In the context of BMA, we can explore additional characteristics about the included predictors such as

their tendencies of being included in a model together, separately, or independently. This is described by

the so-called jointness measures.
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Let’s compute jointness measures for some predictors. First, we compute these measures for a pair of

predictors with high PIPs: gdp60 and lifeexp. We use the bmastats jointness command for this.

. bmastats jointness gdp60 lifeexp
Computing model probabilities ...
Variables: gdp60 lifeexp

Jointness

Doppelhofer--Weeks 6.944544
Ley--Steel type 1 .9575255
Ley--Steel type 2 22.54354

Yule’s Q .9980741

Notes: Using analytical PMPs. See
thresholds.

All reported jointness measures suggest that the two predictors are complements, which means that

they each contain additional information that helps explain the outcome. For instance, the Doppel-

hofer–Weeks measure is 6.94 > 2, which means “strong jointness”, and the Ley–Steel type 2 measure

is 22.54 > 10, which also indicates “strong jointness”; see [BMA] bmastats jointness for details.

Second, let’s compute jointness measures for a pair of predictors with lower PIPs, for example,

polrights and civllib.

. bmastats jointness polrights civllib
Computing model probabilities ...
Variables: polrights civllib

Jointness

Doppelhofer--Weeks -2.669263
Ley--Steel type 1 .0024346
Ley--Steel type 2 .0024405

Yule’s Q -.8703767

Notes: Using analytical PMPs. See
thresholds.

All reported jointness measures suggest that the two predictors are substitutes, which means that they do

not bring any additional information to help explain the outcome when included together. For instance,

the Doppelhofer–Weeks measure is −2.67 < −2, which means “strong disjointness”, and the Ley–Steel

type 2 measure is 0.0024 < 0.01, which indicates “decisive disjointness”.

Example 21: BMA regression of economic growth using random parameter g
By default, bmaregress uses a fixed value for the 𝑔 parameter of a Zellner’s 𝑔-prior, which limits

the class of explored regression models. There is no one optimal value for 𝑔. A more general class of

models can be considered by allowing 𝑔 to vary between models according to a prespecified hyperprior

distribution.

The bmaregress command supports a number of hyperpriors for 𝑔: betashrink, betabench,
hyperg, hypergn, zsiow, and robust. Below, we use the betabench prior for illustration. This hyper-

prior is controlled by a parameter 𝑎, 𝑎 > 0, and it is equivalent to specifying the Beta{𝑎× max(𝑛, 𝑝2), 𝑎}
prior distribution on the shrinkage 𝛿 = 𝑔/(𝑔 + 1). We choose 𝑎 = 10, which corresponds to the
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Beta(16,810, 10) prior. The prior mean for the shrinkage is thus very close to 1, 0.9994 to be exact.

We first run the model without showing the output table. We do not want to focus on the results before

we check the MCMC convergence and make sure that the sample we generated is representative of the

model posterior distribution.

. bmaregress gdpgrowth abslat-yrsopen, mprior(uniform) gprior(betabench 10)
> rseed(18) notable
Burn-in ...
Simulation ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 72
Linear regression No. of predictors = 41
MC3 and adaptive MH sampling Groups = 41

Always = 0
No. of models = 1,685

For CPMP >= .9 = 1,070
Priors: Mean model size = 10.870

Models: Uniform Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 10,000
Coef.: Zellner’s g Acceptance rate = 0.5655

g: Benchmark-beta-shrinkage(10)
sigma2: Noninformative Mean sigma2 = .000054

Sampling correlation = 0.1080

Here the MC3 algorithm did not converge. It visited only 1,685 models, a very small portion of the entire

model space, and, not surprisingly, the sampling correlation is relatively low, about 11%, which suggests

inadequate exploration of the model space.

But if we look at the diagnostics plot of the 𝑔 parameter, it shows sufficient mixing with diminishing

autocorrelation after 10 lags and does not raise any convergence issues.

. bayesgraph diagnostics {g}
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So the convergence for 𝑔 does not imply convergence over the model space. To improve the latter, we

specify a larger initial value for 𝑔, 1,000, which is closer to the prior mean of 𝑔, and increase the MCMC

sample size to 40,000.

. bmaregress gdpgrowth abslat-yrsopen, mprior(uniform) gprior(betabench 10)
> ginit(1000) mcmcsize(40000) rseed(18)
Burn-in ...
Simulation ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 72
Linear regression No. of predictors = 41
MC3 and adaptive MH sampling Groups = 41

Always = 0
No. of models = 5,985

For CPMP >= .9 = 3,683
Priors: Mean model size = 10.974

Models: Uniform Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 40,000
Coef.: Zellner’s g Acceptance rate = 0.5590

g: Benchmark-beta-shrinkage(10)
sigma2: Noninformative Mean sigma2 = .000053

Sampling correlation = 0.3115

gdpgrowth Mean Std. dev. Group PIP

gdp60 -.0162014 .0031171 16 1
confucian .0571647 .0148002 9 .98813

lifeexp .0008541 .0003227 22 .95098
equipinv .1569886 .0662325 12 .93085

muslim .0098991 .0079137 24 .69912
subsahara -.0105384 .0087295 38 .68073

yrsopen .0072551 .007865 41 .51823
ruleoflaw .0072071 .0081836 35 .4953

protestants -.0060056 .0070656 30 .48492
mining .0191716 .0228082 23 .47828
ecoorg .0012255 .0014384 10 .47625

nequipinv .0271594 .0324673 25 .46795
prscenroll .0047258 .0098377 31 .24322

buddha .0030845 .0063681 6 .23272
latamerica -.0016883 .0041869 21 .21848

blmktpm -.0014396 .0033853 4 .18812
civllib -.0004035 .0010327 8 .17472

catholic -.0000176 .0032274 7 .14413
polrights -.0001868 .0006425 27 .12987

hindu -.0033699 .0118713 18 .11532
prexports -.0010904 .0037068 29 .1103

age -4.86e-06 .0000174 2 .10203
english -.000586 .0022521 11 .099375

wardummy -.0003553 .0013681 39 .099225
rfexdist -4.92e-06 .0000187 34 .09735
foreign .0004337 .0017529 14 .09035

labforce 7.55e-09 3.71e-08 20 .07665
abslat -5.66e-07 .0000433 1 .06855
ethnol .0003364 .0017694 13 .06445

spanish .0002713 .0016564 36 .060425
outwaror -.0001108 .0007231 26 .05725
workpop -.0002883 .0023882 40 .052925

popg .0066005 .0543594 28 .052025
stdbmp -5.66e-07 3.70e-06 37 .049025

brit -.0000933 .0007186 5 .046375
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area -9.87e-09 1.34e-07 3 .04465
jewish -.0003108 .0031789 19 .0432
french .0001371 .0009942 15 .04185

highenroll -.0008954 .0075328 17 .03785
publedupct .0009074 .0244793 32 .03205

revncoup -8.58e-06 .0009061 33 .03055

Always
_cons .0709041 .0237199 0 1

Note: Coefficient posterior means and std. dev. estimated from 5,985 models.

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

g 1184.255 343.643 5.20567 1128.086 700.552 2033.428
Shrinkage .9990924 .000239 3.5e-06 .9991143 .9985746 .9995085

The sampling correlation improves; it is 31% now compared with 11% earlier. In absolute terms, this

may still seem low but, given the size of the model space, 241, is probably acceptable. Achieving very

high sampling correlation, say, 90%, for this model may take a long time. The diagnostic plots for 𝑔 are

better too.

. bayesgraph diagnostics {g}
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We obtain results similar to those for a fixed 𝑔 in example 17. The estimated shrinkage posterior mean

of 0.999 matches closely the fixed value of 0.994. Thus, the chosen prior for 𝑔 does not seem to have

much of an effect on the results.
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Stored results
bmaregress stores the following in e():

Scalars

e(N) number of observations

e(p) number of predictors

e(p groups) number of groups of predictors

e(p always) number of always included predictors

e(k models) number of visited models

e(k models cpmp) number of highest PMPmodels accounting for at least 90% of CPMP

e(k models all) number of all available models

e(msize mean) posterior mean model size as displayed in the header

e(msize mean a) analytical posterior mean model size; not available with random 𝑔
e(msize mean f) frequency posterior mean model size; not available with model enumeration

e(msize mean prior) prior mean model size

e(mcmcsize) MCMC size with sampling

e(burnin) number of burn-in iterations with sampling

e(thinning) thinning interval with sampling

e(arate) acceptance rate with sampling

e(sampcorr) correlation between frequency and analytical PMP; not available with model enumera-

tion
e(sigma2) posterior mean of the error variance

e(g) value of 𝑔 when 𝑔 is a fixed constant

e(g init) initial 𝑔-value with sampling
e(shrinkage) shrinkage with fixed 𝑔
e(groupfv) 1 if groupfv is specified; 0 otherwise

e(clevel) credible interval level with random 𝑔
e(hpd) 1 if hpd is specified; 0 otherwise (random 𝑔)

Macros

e(cmd) bmaregress
e(cmdline) command as typed

e(title) first title appearing in header

e(title2) second title appearing in header

e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression

e(indepvars) names of predictors included in the models

e(alwaysvars) names of predictors that are always included

e(omitvars) names of predictors marked as omitted

e(sampling) sampling algorithm

e(sampling lab) label for sampling algorithm

e(heredity) heredity rule; only available in the presence of interactions

e(mprior) model prior option

e(mprior dist) name of model prior distribution

e(mprior lab) label for model prior distribution

e(gprior) 𝑔-prior option
e(gprior dist) name of 𝑔-prior distribution
e(gprior lab) label for 𝑔-prior distribution
e(minitial) model prior initial option

e(ginitial) 𝑔-prior initial option
e(modelfilename) name of the file with simulation results

e(rngstate) random-number state at the time of simulation

Matrices

e(b bma) posterior means

e(V bma) posterior variance–covariance matrix

e(b bma c) posterior means in estimation (recentered) metric

e(V bma c) posterior variance–covariance matrix in estimation (recentered) metric

e(pip) probabilities of inclusion
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e(group) group indices for predictors

e(mprior params) parameters of model prior distribution (if any)

e(gprior params) parameters of 𝑔-prior (if any)
e(modelinit) initial model state binary vector with sampling

Functions

e(sample) marks estimation sample

Methods and formulas
Methods and formulas are presented under the following headings:

Model assumptions and generic formulas
Priors on the model space
Priors for parameter g

Fixed g priors
Random g priors

Centering
Conditional posterior distribution of model parameters
Conditional posterior predictive distribution
MCMC algorithms

Fixed g parameter
Random g parameter

Inference
Posterior model probability
Posterior inclusion probability
Posterior distributions of regression coefficients
Posterior means and variances of model parameters

Model assumptions and generic formulas
Consider a regression model with 𝑝 predictors. Let ℳ𝐹 = {𝑀1, 𝑀2, . . . , 𝑀2𝑝} denote the full space

of models formed by considering all 2𝑝 possible subsets of 𝑝 variables, and let 𝐽𝐹 = {1, 2, . . . , 2𝑝}
denote the full set of the corresponding indices. Let model 𝑀𝑗 ∈ ℳ𝐹 include a distinct subset of the 𝑝
variables for each 𝑗 ∈ 𝐽𝐹, and let 𝑝𝑗 be the number of variables included in 𝑀𝑗; that is, the model size

|𝑀𝑗| = 𝑝𝑗.

Consider a sample of observations 𝑦𝑖’s and 𝑥𝑖𝑘’s on, respectively, outcome 𝑌 and 𝑝 predictors 𝑋1,

𝑋2, . . . , 𝑋𝑝, where 𝑖 = 1, 2, . . . , 𝑛 and 𝑘 = 1, 2, . . . , 𝑝. For each 𝑗 ∈ 𝐽𝐹, consider a linear regression

model 𝑀𝑗 using a subset of 𝑝𝑗 variables,

𝑦𝑖 = 𝛼 + x𝑖,𝑗β𝑗 + 𝜖𝑖,𝑗

where 𝛼 is an unknown intercept, β𝑗 is a 𝑝𝑗 × 1 vector of unknown (model-specific) regression coeffi-

cients, x𝑖,𝑗 is a 1 × 𝑝𝑗 vector of observed values on the variables included in the model, and error terms

𝜖𝑖,𝑗’s ∼ i.i.d. 𝑁(0, 𝜎2).
We can write the above using a matrix notation,

y = 𝛼1𝑛 + X𝑗β𝑗 + ε𝑗

where y = (𝑦1, 𝑦2, . . . , 𝑦𝑛)′ is an 𝑛 × 1 vector of outcome values, 1𝑛 is a 𝑛 × 1 vector of ones, X𝑗 is an

𝑛 × 𝑝𝑗 design matrix, and ε𝑗 = (𝜖1,𝑗, 𝜖2,𝑗, . . . , 𝜖𝑛,𝑗)′ is an 𝑛 × 1 vector of model-specific error terms.
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In a Bayesian linear regression, model parameters 𝛼, β𝑗, and 𝜎2 (or, equivalently, 𝜎) are assumed to
have prior distributions, which are conditional on model 𝑀𝑗. In a BMA framework, model 𝑀𝑗 or, more

precisely, its index is an unknown itself and thus assigned a prior distribution just like any other model

parameter. A model prior is a discrete prior, {𝑃(𝑀𝑗)}𝑗∈𝐽𝐹
, specified over model space ℳ𝐹.

The priors for a BMA linear regression are

𝑀𝑗 ∼ 𝑃(𝑀𝑗)
β𝑗|𝛼, 𝜎, 𝑀𝑗 ∼ 𝑁𝑝𝑗

{0, 𝜎2𝑔(X𝑗
′X𝑗)−1}

𝛼|𝜎, 𝑀𝑗 ∝ 1
𝜎|𝑀𝑗 ∝ 𝜎−1

where 𝑁𝑝𝑗
(⋅, ⋅) denotes a 𝑝𝑗-dimensional multivariate normal distribution and the choices for 𝑃(𝑀𝑗) are

described in Priors on the model space. The intercept 𝛼 and the error standard deviation 𝜎 are assumed

to have noninformative priors. The regression coefficients β𝑗 are assumed to follow a Zellner’s 𝑔-prior
(1986), where 𝑔 > 0 controls the shrinkage of coefficients toward 0, and the excluded coefficients are

assumed to have a prior point mass at 0; that is, they are assumed to be exact zeros. In the above and

throughout, we also implicitly condition on X𝑗.

The parameter 𝑔 in Zellner’s 𝑔-prior can be viewed as fixed or random. With a random 𝑔, a joint prior
𝑃(𝑔, 𝑀𝑗) = 𝑃(𝑔|𝑀𝑗)𝑃 (𝑀𝑗) is considered, where 𝑃(𝑔|𝑀𝑗) is a hyperprior (or the so-called 𝑔-prior)
assumed for 𝑔. The choices for a 𝑔-prior are discussed in Priors for parameter g.

With a random 𝑔, the priors for a BMA linear regression are

𝑀𝑗 ∼ 𝑃(𝑀𝑗)
𝑔 ∼ 𝑃(𝑔|𝑀𝑗)

β𝑗|𝛼, 𝜎, 𝑔, 𝑀𝑗 ∼ 𝑁𝑝𝑗
{0, 𝜎2𝑔(X𝑗

′X𝑗)−1}

𝛼|𝜎, 𝑔, 𝑀𝑗 ∝ 1
𝜎|𝑔, 𝑀𝑗 ∝ 𝜎−1

In Bayesian analysis, the inference about model parameters is based on their posterior distributions,

and the prediction of new data is based on the posterior predictive density. So the estimation of these

distributions is central to Bayesian estimation. In BMA, we are also interested in estimating PMPs and PIPs.

And, because we consider multiple models, we need to distinguish between the posterior distributions

conditional on a model and those over all models. In what follows, we give general definitions for these

distributions and probabilities and provide specific formulas in later sections.

The PMP for model 𝑀𝑗 is

𝑃(𝑀𝑗|y) =
𝑓(y|𝑀𝑗)𝑃 (𝑀𝑗)

∑𝑙∈𝐽𝐹
𝑓(y|𝑀𝑙)𝑃 (𝑀𝑙)

where 𝑓(y|𝑀𝑗) is the marginal likelihood of 𝑀𝑗.

The PIP for variable 𝑘 is

PIP(𝑋𝑘) = ∑
𝑗∈𝐽𝐹

𝐼(𝑋𝑘 ∈ 𝑀𝑗)𝑃 (𝑀𝑗|y)

where 𝐼(⋅) is the indicator function.
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The posterior distribution of β over all models is

𝑔(β|y) = ∑
𝑗∈𝐽𝐹

𝑔(β|y, 𝑀𝑗)𝑃 (𝑀𝑗|y)

where 𝑔(β|y, 𝑀𝑗) is the posterior distribution of β for a Bayesian linear regression model 𝑀𝑗. Posterior

distributions of 𝛼 and 𝜎2 can be defined in the same fashion.

Similarly, for a new observation (𝑦⋆, x⋆), the posterior predictive density over all models is

𝑓(𝑦⋆|y,X, x⋆) = ∑
𝑗∈𝐽𝐹

𝑓(𝑦⋆|y,X, x⋆
𝑗, 𝑀𝑗)𝑃 (𝑀𝑗|y)

where 𝑓(𝑦⋆|y,X, x⋆
𝑗, 𝑀𝑗) is the posterior predictive density for model 𝑀𝑗.

Priors on the model space
The BMA framework incorporates model uncertainty by specifying a prior on the model space. Each

model in the model space can be uniquely represented by a 𝑝-dimensional binary vector 𝛄 = {𝛾𝑘 ∶
𝑘 = 1, 2, . . . , 𝑝}, in which element 𝛾𝑘 equals 1 if and only if the 𝑘th predictor is included in the model.
Therefore, specifying a prior on the model space is equivalent to specifying a prior on the space of 𝑝-
dimensional binary vectors. The model size, denoted by 𝜔 = |𝑀|, refers to the number of predictors

included in the model. That is,

𝜔 =
𝑝

∑
𝑘=1

𝛾𝑘

bmaregress supports the following model priors in the mprior() option: betabinomial, the
default, meaning betabinomial 1 1; betabinomial # #; betabinomial #; uniform; binomial #;

binomial (where # = 0.5); and binomial . . . (with predictor-specific IPs). We define these priors

below.

Beta-binomial prior, option mprior(betabinomial . . .). This is the default prior, with shape pa-
rameters of 1. Consider a binomial prior defined below, where all predictors have a common probability

of inclusion 𝑝inc. Then specify a hierarchical prior for the parameter 𝑝inc as a beta distribution. Stata

provides two options to specify the hyperparameters for this beta prior.

A user can specify mprior(betabinomial #1 #2) with two hyperparameters 𝑎 = #1 and 𝑏 = #2,

which are the shape parameters of the beta distribution. In this case, the prior model probability is

𝑝(𝛄) = Γ(𝑎 + 𝑏)
Γ(𝑎)Γ(𝑏)

Γ(𝑎 + 𝜔)Γ(𝑏 + 𝑝 − 𝜔)
Γ(𝑎 + 𝑏 + 𝑝)

where Γ(⋅) is a gamma function.
Under this prior, the expected model size is

𝐸(𝜔) = 𝑎
𝑎 + 𝑏

𝑝
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A user can specify mprior(betabinomial #) with the prior expected model size 𝑤 = # instead,

where 0 < 𝑤 < 𝑝. The distribution for 𝑝inc is then Beta{1, (𝑝 − 𝑤)/𝑤}. In this case, 𝐸(𝜔) = 𝑤.
This alternative parameterization may be more convenient because it might be easier to think of a

prior value for the expected model size than for the shape parameters of the beta distribution.

Uniform prior, option mprior(uniform). It assigns an equal probability of 1/2𝑝 for each model

𝑀𝑗 in the model space.

Binomial prior, option mprior(binomial . . .). Let 𝑝inc,𝑘 be the prior probability of inclusion for

the 𝑘th predictor. Assume that the inclusion of each predictor is independent; then the binomial prior

specifies

𝑝(𝛄) =
𝑝

∏
𝑘=1

𝑝𝛾𝑘
inc,𝑘(1 − 𝑝inc,𝑘)1−𝛾𝑘

If all predictors have a common probability of inclusion 𝑝inc, the binomial prior becomes

𝑝(𝛄) = 𝑝𝜔
inc(1 − 𝑝inc)𝑝−𝜔

Adetailed discussion of different choices for a prior on the model space can be found in Ley and Steel

(2009).

Priors for parameter g
Parameter 𝑔 in a Zellner’s 𝑔-prior can be fixed or random with a given hyperprior. The fixed 𝑔 cases

supported by bmaregress in the gprior() option are bench (the default), uip, ric, sqrtn, fixed #,

and ebl. We define these cases below.

Fixed g priors

Benchmark prior, 𝑔 = max(𝑛, 𝑝2), option gprior(bench). This prior is the default. It was sug-
gested by Fernández, Ley, and Steel (2001a) and is a combination of the unit-information and risk-

inflation-criterion priors, defined below. The authors found it to perform well in a variety of cases with

respect to a model’s predictive performance.

Unit-information prior, 𝑔 = 𝑛, option gprior(uip). Introduced in Kass and Raftery (1995), the

unit-information prior specifies a prior with the variance proportional to the sample size. For this choice

of 𝑔, the log Bayes-factors behave asymptotically like the BIC. In this case, the BIC, given by the negative
log likelihood plus a penalty proportional to log(𝑛), corresponds to the negative log posterior.

Risk inflation criterion, 𝑔 = 𝑝2, option gprior(ric). Proposed by Foster and George (1994), the
risk inflation criterion is based on a minimax criterion for variable selection. Specifically, the criterion

proposed by the authors is the negative log likelihood plus a penalty proportional to 2 log(𝑝), and this

choice corresponds to 𝑔 = 𝑝2.

Square-root n prior, 𝑔 =
√

𝑛, option gprior(sqrtn). One of the fixed 𝑔 priors suggested by

Porwal and Raftery (2022b).

Empirical Bayes local, option gprior(ebl). The local empirical Bayes prior (Liang et al. 2008)

uses a different fixed 𝑔𝑗 for each model 𝑀𝑗. It is the maximum marginal-likelihood estimate constrained

to be nonnegative. For model 𝑀𝑗 with 𝑝𝑗 > 0, it is defined as
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̂𝑔EBL𝑗 = max(𝐹𝑗 − 1, 0)

where 𝐹𝑗 is the standard 𝐹 statistic for model 𝑀𝑗 defined as

𝐹𝑗 =
(𝑛 − 1 − 𝑝𝑗)𝑅2

𝑗,ols

𝑝𝑗(1 − 𝑅2
𝑗,ols)

𝑅2
𝑗,ols in the above is the 𝑅2 from the ordinary least-squares (OLS) linear regression corresponding to

model 𝑀𝑗.

̂𝑔EBL𝑗 maximizes the marginal likelihood (2). For the null model, with 𝑝𝑗 = 0, we set ̂𝑔EBL𝑗 = 1, by

convention.

Random g priors

The supported random 𝑔 priors in the gprior() option are betashrink #1 #2, betabench #, hyperg
#, hypergn #, zsiow, and robust. These are commonly referred to as 𝑔-priors.

Beta-shrinkage prior, option gprior(betashrink #1 #2). This is a general beta-shrinkage prior
that assumes a beta prior with shape parameters 𝑎 = #1 and 𝑏 = #2 for the shrinkage 𝛿 = 𝑔/(𝑔 + 1):

𝛿 ∼ Beta(𝑎, 𝑏)

This corresponds to the following prior on 𝑔:

𝑝(𝑔) = Γ(𝑎 + 𝑏)
Γ(𝑎)Γ(𝑏)

𝑔(𝑎−1)(1 + 𝑔)−(𝑎+𝑏)

Benchmark beta-shrinkage priors, option gprior(betabench #). The benchmark beta-shrinkage
prior is a special case of the beta-shrinkage prior as suggested by Ley and Steel (2012). This prior

considers the following beta prior on the shrinkage 𝛿 = 𝑔/(𝑔 + 1) with 𝑏 = #:

𝛿 ∼ Beta{𝑏 × max(𝑛, 𝑝2), 𝑏}, 𝑏 > 0

Hyper-g prior, option gprior(hyperg #). This prior is suggested by Liang et al. (2008). It is a

special case of a beta-shrinkage prior with the following beta prior on shrinkage 𝛿 with 𝑐 = #:

𝛿 ∼ Beta(1, 𝑐
2

− 1) , 2 < 𝑐 ≤ 4

Hyper-g/n prior, option gprior(hypergn #). This prior is suggested by Liang et al. (2008). It

considers the following prior on 𝑔 with 𝑐 = #:

𝑝(𝑔) = 𝑐 − 2
2𝑛

(1 + 𝑔
𝑛

)
− 𝑐

2 , 2 < 𝑐 ≤ 4

This is equivalent to specifying the prior Beta(1, 𝑐/2 − 1) on 𝑔/𝑔 + 𝑛.
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Zellner–Siow prior, option gprior(zsiow). This prior was introduced by Zellner and Siow (1980):

𝑔 ∼ Inverse-gamma(1
2

, 𝑛
2

)

Robust prior, option gprior(robust). The robust prior is a special case in a class of priors intro-
duced in Bayarri et al. (2012). It has the following analytical form:

𝑝(𝑔) ∼ (1 + 𝑔)−3/2, 𝑔 > 𝑛 + 1
𝑝𝑗 + 1

− 1

The prior is model specific because it depends on the model size 𝑝𝑗. This particular form of the robust

prior has some desired theoretical properties such as model-selection consistency, which states that the

posterior probability of a model that generated the data should go to one as sample size goes to infinity

(Bayarri et al. 2012, sec. 3.4).

The Zellner–Siow, benchmark beta-shrinkage, and hyper-𝑔/𝑛 priors are consistent in the sense de-

fined in Ley and Steel (2012), while the rest are not. If the data are generated by a single model from

the model space and we use a consistent hyperprior for 𝑔, then, as the sample size increases, all posterior
mass will tend to be allocated to the true model. It can be proven that hyperpriors that do not depend on

𝑛 cannot be consistent. More details about 𝑔-priors and their properties can be found in Ley and Steel

(2012).

Centering
Let’s continue with our BMA setup from Model assumptions and generic formulas.

ABMA linear regression always includes the intercept in all regressions 𝑀𝑗’s. BMA first recenters pre-

dictors to make them orthogonal to the intercept. The computation is then performed using the recentered

predictors, and the results are transformed back for final reporting.

The model parameters before and after centering are related by a linear transformation

(β
𝛼) = ( I𝑝 0

− 1
𝑛1

′
𝑛X 1) (β̃

̃𝛼)

where β̃ = β, ̃𝛼 are the model parameters associated with the recentered predictor values Z, and I𝑝 is

the identity matrix of dimension 𝑝. The only parameter affected by centering is the intercept.

Conditional posterior distribution of model parameters
See Model assumptions and generic formulas for a general BMAmodel setup.

In this section, we describe a posterior distribution of model parameters conditional on a model and

parameter 𝑔. This section is based on Steel (2020) and Fernández, Ley, and Steel (2001b).
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Consider model 𝑀𝑗, with 𝑗 ∈ 𝐽𝐹 (without loss of generality) and parameter 𝑔, fixed or random, of a
Zellner’s 𝑔-prior. If 𝑔 is fixed, it is independent of model parameters, and the conditioning on it in the

formulas below is unnecessary. Consider the following definitions:

θ̃𝑗 = (β𝑗
′, ̃𝛼)′

𝛿 = 𝑔
1 + 𝑔

(shrinkage factor)

β̂𝑗,ols = (Z𝑗
′Z𝑗)−1Z𝑗

′y

y = 1
𝑛
1′

𝑛y

TSSols = (y − y)′(y − y)

RSS𝑗,ols = (y − y − Z𝑗β̂𝑗,ols)
′(y − y − Z𝑗β̂𝑗,ols)

𝑅2
𝑗,ols = 1 − RSS𝑗,ols/TSSols

where β̂𝑗,ols, TSSols, RSS𝑗,ols and𝑅2
𝑗,ols are, respectively, a 𝑝𝑗×1 vector of regression coefficient estimates,

the total sum of squares, the residual sum of squares, and the 𝑅2 for the OLS regression of y on Z𝑗 with

the intercept ̃𝛼.
Define the scale factor:

𝑠2
𝑗,𝛿 = 𝛿RSS𝑗,ols + (1 − 𝛿)TSSols (1)

Conditional likelihood. The marginal distribution of y given 𝑔 and model 𝑀𝑗 has the following

analytical form,

𝑝(y|𝑔, 𝑀𝑗) ∝ TSSols (𝑔 + 1)
𝑛−𝑝𝑗−1

2 {1 + 𝑔(1 − 𝑅2
𝑗,ols)}

− 𝑛−1
2 (2)

where the proportionality constant is the same for all the models. If 𝑝𝑗 = 0, that is, the model includes

only the intercept, the marginal distribution is 𝑝(y|𝑔, 𝑀𝑗) ∝ TSSols.

Conditional posterior for model parameters. Given 𝑔 and model 𝑀𝑗, the posterior distribution of

(β𝑗, ̃𝛼) is a multivariate 𝑡-distribution with (𝑛 − 1) degrees of freedom, a (𝑝 + 1) × 1 location vector

µ𝑗, and a (𝑝 + 1) × (𝑝 + 1) scale matrix 𝑠2
𝑗,𝛿𝚺𝑗/(𝑛 − 1), where

µ𝑗 = (𝛿β̂j,ols
y

) (3)

and

𝚺𝑗 = {𝛿(Z𝑗
′Z𝑗)−1 0

0 1
𝑛

} (4)

The posterior distribution of 𝜎2 given 𝑔 and 𝑀𝑗 is inverse gamma with shape parameter (𝑛 − 1)/2
and scale parameter 𝑠2

𝑗,𝛿/2 defined in (1).
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Conditional posterior moments. The conditional posterior mean and variance of (β𝑗, ̃𝛼) are

𝐸{(β𝑗, ̃𝛼)|y, 𝑔, 𝑀𝑗} = µ𝑗

Var{(β𝑗, ̃𝛼)|y, 𝑔, 𝑀𝑗} =
𝑠2

𝑗,𝛿

𝑛 − 3
𝚺𝑗

where µ𝑗, 𝚺𝑗, and 𝑠2
𝑗,𝛿 are defined in (3), (4), and (1), respectively.

The conditional posterior mean of 𝜎2 is

𝐸(𝜎2|y, 𝑔, 𝑀𝑗) =
𝑠2

𝑗,𝛿

𝑛 − 3

Conditional posterior predictive distribution
Consider predicted values y∗ of size (𝑞 × 1) and new centered predictor values Z∗ of size (𝑞 × 𝑝).

Let 𝑞 × 𝑝𝑗 matrix Z
∗
𝑗 be the predictor values corresponding to the centered predictors included in model

𝑀𝑗. Under model 𝑀𝑗, the posterior predictive distribution is a multivariate 𝑡-distribution with (𝑛 − 1)
degrees of freedom, 𝑞 × 1 location parameter vector µ∗

𝑗, and 𝑞 × 𝑞 scale matrix 𝚺∗
𝑗, where

µ∗
𝑗 = y 1𝑞 + 𝛿Z∗

𝑗 β̂𝑗,ols (5)

𝚺∗
𝑗 =

𝑠2
𝑗,𝛿

𝑛 − 1
{I𝑞 + 1

𝑛
1𝑞1

′
𝑞 + 𝛿Z∗

𝑗(Z𝑗
′Z𝑗)−1(Z∗

𝑗)′} (6)

and 𝑠2
𝑗,𝛿 is defined in (1).

MCMC algorithms
When the number of predictors is small, 𝑝 ≤ 24, bmaregress uses model enumeration to visit all 2𝑝

models. In this case, the formulas provided in the previous sections can be computed exactly. However,

when 𝑝 is large, visiting all possible models is practically infeasible. In this case, MCMC methods are

used to approximate the large model space by sampling from it.

Fixed g parameter

A standard procedure used to explore a large model space is the MC3 algorithm (Madigan and York

1995). Recall from Priors on the model space that model 𝑀 can be represented by a binary inclusion

vector 𝛄. AMarkov chain {𝛄𝑡}𝑇
𝑡=1 is constructed on the model space with the following target distribu-

tion:

𝑝(𝛄|y) ∝ 𝑝(y|𝛄)𝑝(𝛄)

where 𝑝(y|𝛄) ≡ 𝑝(y|𝑀) is defined in (2) with 𝑀 = 𝑀𝑗, except we do not need to condition on 𝑔 here

because it is fixed.
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MC3 sampler for 𝛄.
1. Initialize model 𝛄(0).

2. Let model 𝛄(𝑡) = (𝛾𝑡
1, 𝛾𝑡

2, . . . , 𝛾𝑡
𝑝) be the current state of the chain at iteration 𝑡. Uniformly choose

coordinate 𝑖 of 𝛄(𝑡), and propose the new model:

𝛄∗ = (𝛾𝑡
1, . . . , 1 − 𝛾𝑡

𝑖 , . . . , 𝛾𝑡
𝑝)

3. Jump to the model 𝛄∗ with probability

𝛼(𝛄, 𝛄∗) = min{𝑝(𝛄∗|y)
𝑝(𝛄|y)

, 1}

or stay at 𝛄 if 𝛼(𝛄, 𝛄∗) = 1.

Random g parameter

In this case, both 𝑔 and 𝛄 are random, and we construct a Markov chain based on the following

conditional statements:

𝑝(𝛄|𝑔, y) ∝ 𝑝(y|𝑔, 𝛄)𝑝(𝛄)

𝑝(𝑔|𝛄, y) ∝ 𝑝(y|𝑔, 𝛄)𝑝(𝑔)

where 𝑝(y|𝑔, 𝛄) ≡ 𝑝(y|𝑔, 𝑀) is defined in (2) with 𝑀 = 𝑀𝑗.

For sampling the model 𝛄, the MC3 sampler described above is used. For sampling 𝑔, an adaptive

random-walk Metropolis sampler is used (Atchadé and Rosenthal 2005). This includes an MH step with

a lognormal proposal centered at the previous value. The variance of the lognormal proposal is tuned to

result in an optimal acceptance rate 𝛼opt = 0.44 (Gelman, Gilks, and Roberts 1997).

For 𝑎 and 𝐴, where 0 < 𝑎 < 𝐴, we consider the following truncation function:

ℎ𝑎,𝐴(𝑥) =
⎧{
⎨{⎩

𝑎 if 𝑥 ≤ 𝑎
𝑥 if 𝑎 < 𝑥 ≤ 𝐴
𝐴 if 𝑥 > 𝐴

Let LN(𝜇, 𝜎) be the lognormal distribution with mean 𝜇 and standard deviation 𝜎. Its density is

denoted by 𝑓LN(⋅; 𝜇, 𝜎).

Modified MC3 sampler for (𝑔, 𝛄).
This algorithm is based on Ley and Steel (2012).

Let {𝑔(𝑡), 𝛄(𝑡)} be the current state of the chain at iteration 𝑡, where 𝛄(𝑡) = (𝛾𝑡
1, 𝛾𝑡

2, . . . , 𝛾𝑡
𝑝). For each

𝑡, we set 𝜎(𝑡) = ℎ𝑎,𝐴(𝜌(𝑡)), where 𝜌(𝑡) is an adaptation parameter updated periodically during the burn-in

period.

1. Initialize {𝑔(0), 𝛄(0)} according to the initialization options minitial() and ginitial(), and let

𝑎 = 0.0001, 𝐴 = 10,000, and 𝜌(0) = 2.38.
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2. Sample 𝛄(𝑡+1).

2.1. Uniformly choose coordinate 𝑖 of 𝛄 and propose a new model:

𝛄∗ = (𝛾𝑡
1, . . . , 1 − 𝛾𝑡

𝑖 , . . . , 𝛾𝑡
𝑝)

2.2. Move to a new model, 𝛄(𝑡+1) = 𝛄∗, with probability

𝛼(𝛄(𝑡), 𝛄∗) = min{ 𝑝(𝛄∗|𝑔(𝑡), y)
𝑝(𝛄(𝑡)|𝑔(𝑡), y)

, 1}

Otherwise, stay at the current model 𝛄(𝑡+1) = 𝛄(𝑡).

3. Sample 𝑔(𝑡+1).

3.1. Generate 𝑔∗ ∼ LN(𝑔(𝑡), 𝜎(𝑡)).
3.2. Move to the new value 𝑔(𝑡+1) = 𝑔∗ with probability

𝛼(𝑔(𝑡), 𝑔∗) = min{ 𝑝(𝑔∗|𝛄(𝑡+1), y)
𝑝(𝑔(𝑡)|𝛄(𝑡+1), y)

𝑓LN(𝑔(𝑡); 𝑔∗, 𝜎(𝑡))
𝑓LN(𝑔∗; 𝑔(𝑡), 𝜎(𝑡))

, 1}

Otherwise, stay at the current value 𝑔(𝑡+1) = 𝑔(𝑡).

3.3. After each period of a constant number of iterations, 200 by default, update 𝜌(𝑡) according to

the adaptation procedure explained in Adaptive MH algorithm in [BAYES] bayesmh, and update

𝜎(𝑡) = ℎ𝑎,𝐴(𝜌(𝑡)).

Inference
As we mentioned in Model assumptions and generic formulas, the BMA inference is focused on PMPs

and PIPs. We define these quantities below. We also provide the formulas for the posterior means and

standard deviations of model parameters reported by bmaregress. The formulas in this section depend
on formulas in Conditional posterior distribution of model parameters.

The computations depend on whether parameter 𝑔 is fixed or random. For a fixed 𝑔, the computations
also depend onwhether themodel spacewas fully explored by enumeration or samplingwas used. Below,

we provide a setup for each case, which will be used in subsequent subsections.

Fixed g, model enumeration. With model enumeration, analytical formulas are available for PMPs,

PIPs, and posterior distributions of model parameters. They depend on the fully enumerated BMAmodel

space ℳ𝐹 indexed by 𝐽𝐹 = {1, 2, . . . , 2𝑝}. In bmaregress, these computations are available by default
when 𝑝 ≤ 12 or when the enumeration option is specified. enumeration is not available with 𝑝 > 24.

Fixed g, sampling. Model enumeration may not feasible with many predictors, for example, 𝑝 > 24.

Sampling of the model space is used in this case instead of enumeration. So we have a subspace of

distinct models ℳ𝐽 visited by the Markov chain indexed by 𝐽 ⊂ 𝐽𝐹, and we have the Markov chain,

a sample of models, {𝑚𝑡}𝑇
𝑡=1. We can still compute various quantities analytically, but now they will

be conditional on the visited model space ℳ𝐽. Alternatively, we can compute these quantities from the

MCMC sample of models {𝑚𝑡}𝑇
𝑡=1 by using MCMC frequencies. You can use bmaregress’s sampling

option to request sampling. bmaregress uses it automatically whenever 𝑝 > 12. Some postestimation
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commands also support the frequency option to request that MCMC-based frequency estimates of PMP,

PIP, and other quantities are used instead of the analytical formulas. Other postestimation commands

provide both analytical and frequency computations automatically, whenever they are available.

Random g. With a random 𝑔, model enumeration is difficult (if not impossible), and sampling is

always used. In general, analytical formulas are not available, so all computations are based on an

MCMC sample. In this case, the sample also includes 𝑔, {𝑔𝑡, 𝑚𝑡}𝑇
𝑡=1, and represents a sample from the

joint posterior distribution of 𝑔 and 𝑀. bmaregress automatically uses sampling with random 𝑔, and it
is the only option in this case.

In what follows, we provide formulas for each of the above cases, except we consider a fixed 𝑔 as one
case, where a subset 𝐽 is either a full set 𝐽𝐹 or a subset of the full set.

Posterior model probability

The PMP of model 𝑀𝑗 is denoted by 𝑃(𝑀𝑗|y). There are two ways to compute PMP. The first way,

referred to as analytical PMP, is based on the analytical form of the marginal likelihood in (2). The second

way, referred to as MCMC frequency or simply frequency PMP, is based on the frequency of the models

visited by the Markov chain.

1. Fixed g.

The analytical PMP of a model 𝑀𝑗 is computed by the formula

𝑃𝑎(𝑀𝑗|y) =
𝑃(y|𝑀𝑗)𝑃 (𝑀𝑗)

∑𝑙∈𝐽 𝑃(y|𝑀𝑙)𝑃 (𝑀𝑙)
(7)

where 𝐽 = 𝐽𝐹 with model enumeration and 𝑃(y|𝑀𝑗) is defined in (2).
When an MCMC sample of models is available, the frequency PMP is computed as follows,

𝑃𝑓(𝑀𝑗|y) =
𝑇𝑗

𝑇
; 𝑇𝑗 =

𝑇
∑
𝑡=1

𝐼(𝑚𝑡 = 𝑀𝑗) (8)

where 𝐼(𝑚𝑡 = 𝑀𝑗) denotes the indicator function, which is 1 if 𝑚𝑡 = 𝑀𝑗 and 0 otherwise.

The bmaregress command computes results based on analytical PMPwhenever it is available. There-

fore, for a fixed 𝑔, the term PMP refers to analytical PMP, if not specified otherwise.

The comparison of the frequency PMP to the analytical PMP is used to assess convergence of MCMC.

The sampling correlation reported in the header of bmaregress is the correlation between the analytical

and frequency PMPs.

2. Random g.

In general, when 𝑔 is random, the formula for the analytical PMP is not available. In this case,

bmaregress uses the frequency PMP as defined in (8).

Because analytical PMP is not available, the sampling correlation in the random 𝑔 case is computed as
the correlation between the sequences {𝑃ℎ(𝑀𝑗|y)} and {𝑃𝑓(𝑀𝑗|y)}, where 𝑃ℎ(𝑀𝑗|y) is the harmonic-
mean estimator of 𝑃(𝑀𝑗|y) (Geweke 1989):

𝑃ℎ(𝑀𝑗|y) =
𝑃ℎ(y|𝑀𝑗)𝑃 (𝑀𝑗)

∑𝑙∈𝐽 𝑃ℎ(y|𝑀𝑙)𝑃 (𝑀𝑙)
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where

𝑃ℎ(y|𝑀𝑗) = { 1
𝑇𝑗

∑
𝑡∶ 𝑚𝑡=𝑀𝑗

𝑝−1(y|𝑔𝑡, 𝑚𝑡)}
−1

Posterior inclusion probability

Consider a predictor 𝑋𝑘 for 1 ≤ 𝑘 ≤ 𝑝. The PIP of 𝑋𝑘 is defined as the sum of posterior probabilities

of models that include 𝑋𝑘. Below, we consider fixed and random 𝑔 cases separately.

1. Fixed g.

For a model 𝑀𝑗, denote by 𝑋𝑘 ∈ 𝑀𝑗 that 𝑋𝑘 is included in 𝑀𝑗. Then, the analytical PIP of 𝑋𝑘 is

computed as

PIP𝑎
𝑘 = ∑

𝑗∈𝐽
𝐼(𝑋𝑘 ∈ 𝑀𝑗)𝑃𝑎(𝑀𝑗|y) (9)

where 𝐼(⋅) is the indicator function and 𝑃𝑎(𝑀𝑗|y) is defined in (7). With sampling, you can also compute

the frequency PIP based on the MCMC sample. It is computed by replacing 𝑃𝑎(𝑀𝑗|y) with 𝑃𝑓(𝑀𝑗|y),
defined by (8), in the above formula.

2. Random g.

For a random 𝑔, the PIP of 𝑋𝑘 is computed as follows,

PIP
𝑓
𝑘 = ∑

𝑗∈𝐽
𝐼(𝑋𝑘 ∈ 𝑀𝑗)𝑃𝑓(𝑀𝑗|y)

where 𝑃𝑓(𝑀𝑗|y) is defined by (8).

Posterior distributions of regression coefficients

Consider a predictor 𝑋𝑘 for 1 ≤ 𝑘 ≤ 𝑝. Let 𝛽𝑘 be the regression coefficient associated with predictor

𝑋𝑘. The posterior distribution of 𝛽𝑘 has a mixed structure, which consists of a continuous portion (a

mixture of location-scale 𝑡-distributions) and a discrete portion (point mass at 0). Also see Methods and

formulas of [BMA] bmagraph coefdensity.

1. Fixed g.

The analytical posterior distribution of 𝛽𝑘 is

𝑝(𝛽𝑘|y) = (1 − PIP𝑎
𝑘) δ0 + PIP𝑎

𝑘 f𝑘

where δ0 denotes the point mass at 0, and

f𝑘 = ∑
𝑗∈𝐽

𝐼(𝑋𝑘 ∈ 𝑀𝑗)𝑝(𝛽𝑘|𝑀𝑗, y)
𝑃𝑎(𝑀𝑗|y)

PIP𝑎
𝑘

(10)
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In the above, 𝑝(𝛽𝑘|𝑀𝑗, y) is a location-scale 𝑡-distribution with the model-specific location vector

and scale matrix as defined, respectively, in (3) and (4). 𝑃𝑎(𝑀𝑗|y) is defined in (7) and PIP𝑎
𝑘 is defined

in (9).

2. Random g.

There is no analytical formula for the posterior distribution of a regression coefficient. A kernel

density estimator is used to approximate f𝑘 in the above based on the sample of coefficients generated by

the bmacoefsample command. See Methods and formulas of [BMA] bmagraph coefdensity for details.

Posterior means and variances of model parameters

1. Fixed g.

Let θ̃𝑗 be a (𝑝𝑗 +1)×1 vector of regression coefficients with intercept ̃𝛼 for model 𝑀𝑗 in the centered

parameterization. Let θ̃ = (β′, ̃𝛼)′ be a (𝑝 + 1) × 1 parameter vector in the centered parameterization

and θ = (β′, 𝛼)′ be a (𝑝 + 1) × 1 parameter vector in the original, uncentered parameterization.

Then,

𝐸(θ̃𝑗|y, 𝑔, 𝑀𝑗) = µ𝑗

Var(θ̃𝑗|y, 𝑔, 𝑀𝑗) = 𝚺𝑗

where µ𝑗 and 𝚺𝑗 are defined in (3) and (4).

The analytical unconditional mean and variance for the centered parameter vector θ̃ are defined as

follows,

𝐸(θ̃|y) = ∑
𝑗∈𝐽

𝑃𝑎(𝑀𝑗|y)𝐸(θ̃𝑗|y, 𝑔, 𝑀𝑗) = ∑
𝑗∈𝐽

𝑃𝑎(𝑀𝑗|y)µ𝑗

Var(θ̃|y) = ∑
𝑗∈𝐽

𝑃𝑎(𝑀𝑗|y) (𝚺𝑗 + µ𝑗µ
′
𝑗) − 𝐸(θ̃|y)𝐸(θ̃|y)′

where 𝑃𝑎(𝑀𝑗|y) is defined in (7).
The analytical unconditional posterior mean and variance of θ are

𝐸(θ|y) = A𝐸(θ̃|y) (11)

Var(θ|y) = AVar(θ̃|y)A′ (12)

where 𝐴 = ( I𝑝 0

− 1
𝑛1

′
𝑛X 1

).

The analytical unconditional posterior mean of 𝜎2 is

𝐸(𝜎2|y) = ∑
𝑗∈𝐽

𝑃𝑎(𝑀𝑗|y)𝐸(𝜎2|y, 𝑔, 𝑀𝑗) = ∑
𝑗∈𝐽

𝑃𝑎(𝑀𝑗|y)
𝑠2

𝑗,𝛿

𝑛 − 3
(13)
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2. Random g.

Because the analytical form of 𝑝(𝛽𝑘|𝑀𝑗, y) is not available with a random 𝑔, bmaregress computes

Monte Carlo estimators of the posterior mean and variance of 𝛽𝑘’s.

The frequency estimate of the unconditional mean and variance for the centered parameter vector θ̃
are defined as follows:

𝐸(θ̃|y) = 1
𝑇

𝑇
∑
𝑡=1

𝐸(θ̃𝑡|y, 𝑔𝑡, 𝑚𝑡) = 1
𝑇

𝑇
∑
𝑡=1

µ𝑡

V̂ar(θ̃|y) = 1
𝑇

𝑇
∑
𝑡=1

(𝚺𝑡 + µ𝑡µ
′
𝑡) − 𝐸(θ̃|y)𝐸(θ̃|y)′

where µ𝑡 is defined in (3) and 𝚺𝑡 is defined in (4), in which index 𝑗 is replaced with the iteration 𝑡.
The frequency estimate of the unconditional posterior mean and variance of θ are

𝐸(θ|y) = A𝐸(θ̃|y)

V̂ar(θ|y) = A V̂ar(θ̃|y)A′

where 𝐴 = ( I𝑝 0

− 1
𝑛1

′
𝑛X 1

).

The unconditional posterior mean of 𝜎2 estimated based on the MCMC frequencies is

𝐸(𝜎2|y) = 1
𝑇

𝑇
∑
𝑡=1

𝐸 [{𝜎(𝑡)}2|y, 𝑔𝑡, 𝑚𝑡] = 1
𝑇

𝑇
∑
𝑡=1

𝑠2
𝑡,𝛿

𝑛 − 3
(14)

where 𝑠2
𝑡,𝛿 is defined by (1) in Conditional posterior distribution of model parameters but for model 𝑚𝑡

(with index 𝑗 replaced with iteration 𝑡).
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bmacoefsample — Posterior samples of regression coefficients

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Also see

Description
bmacoefsample simulates regression coefficients and other model parameters from their posterior

distributions after bmaregress.

Quick start
Simulate regression coefficients and other model parameters from their posterior distributions after

bmaregress, and use bayesstats summary to display posterior summaries for {y:}, all 12 regres-
sion coefficients, and the intercept, including their 90% highest posterior density (HPD) credible in-

tervals (CrIs)

bmaregress y x1-x12, saving(bmamodelmcmc)
bmacoefsample
bayesstats summary {y:}, clevel(90) hpd

Same as above, but specify a random-number seed and the size of the simulated dataset, and save the

simulated dataset in file bmacoefmcmc.dta
bmacoefsample, rseed(1234) mcmcsize(5000) saving(bmacoefmcmc)

Simulate results without saving first, but then later specify option saving() to save the previously sim-

ulated results in file bmacoefmcmc1.dta, and save a new set of results in bmacoefmcmc2.dta
bmacoefsample, rseed(1234)
bmacoefsample, saving(bmacoefmcmc1)
bmacoefsample, saving(bmacoefmcmc2)

Same as above, but save only one set of results, use option simulate to resimulate the results, and save

the new ones in bmacoefmcmc1, replacing already existing file
bmacoefsample, rseed(1234)
bmacoefsample, saving(bmacoefmcmc1, replace) simulate

Menu
Statistics > Bayesian model averaging > Posterior samples of coefficients
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Syntax
bmacoefsample [ , coefsimopts ]

coefsimopts Description

Simulation

mcmcsize(#) Markov chain Monte Carlo (MCMC) sample size; default is
mcmcsize(10000) or as specified with bmaregress

rseed(#) random-number seed

Reporting

saving(filename[ , replace ]) save simulation results to filename.dta
[ no ]dots suppress or display dots every 1,000 iterations and iteration

numbers every 5,000 iterations; default is dots
dots(#[ , every(#) ]) display dots as simulation is performed

simulate simulate new results instead of saving existing ones

simulate does not appear in the dialog box.

Options

� � �
Simulation �

mcmcsize(#) specifies the target MCMC sample size. The default is mcmcsize(10000) or as specified

in bmaregress’s mcmcsize() option.

rseed(#) sets the random-number seed. This option can be used to reproduce results. Option rseed(#)
is equivalent to typing set seed # prior to calling the bmacoefsample command; see [R] set seed.

� � �
Reporting �

saving(filename[ , replace ]) saves simulation results in filename.dta. The replace option speci-

fies to overwrite filename.dta if it exists. If the saving() option is not specified, bmacoefsample
saves simulation results in a temporary file for later access. This temporary file will be overwritten

every time bmacoefsample or bmaregress is run and will be erased if the current estimation re-

sults are cleared. The simulation dataset has the same structure as described in option saving() of

[BAYES] bayesmh. The simulation results include posterior samples of regression coefficients, the

intercept, and the error variance.

If you first run bmacoefsample without option saving(), you can rerun it with this option later

to save the current simulation results in a file without having to redo a potentially time-consuming

simulation. If, for some reason, you need to simulate a new sample in this case, you should specify

option simulate in addition to saving().

dots, nodots, dots(#), and dots(#, every(#)) specify to display or suppress dots during simula-

tion. dots, the default, displays dots every 1,000 iterations and iteration numbers every 5,000 itera-
tions; it is a synonym for dots(1000, every(5000)). dots(#) displays a dot every # iterations. If

dots(. . ., every(#)) is specified, then an iteration number is displayed every #th iteration instead

of a dot. dots(, every(#)) is equivalent to dots(1, every(#)).
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The following option is available with bmacoefsample but is not shown in the dialog box:

simulate is used with option saving() to simulate a new set of results and save them in a file instead

of saving the previously simulated results. This option is implied with bmacoefsample in all but one

case—when option saving() is used and simulation results from a previous run of bmacoefsample
have not been saved in a file already.

Remarks and examples
Bayesian model averaging (BMA) simulation consists of two steps: 1) simulation of a model space

and, optionally, 2) simulation of model parameters, which include regression coefficients, the intercept,

and the error variance. The first, main step is performed by bmaregress, during which a posterior

sample of models is obtained. In addition, a posterior sample of parameter 𝑔 of a Zellner’s 𝑔-prior, which
affects the simulation of the model space, is obtained. Because bmaregress reports only posterior means
and standard deviations of model parameters, which are available analytically, it does not automatically

simulate posterior samples of model parameters to save time. But these samples may be needed if we

want to obtain CrIs, functions of regression coefficients, or certain predictions.

The bmacoefsample command simulates model parameters of a BMA linear regression fit by

bmaregress from their posterior distributions. The simulated data include posterior samples of regres-

sion coefficients, the intercept, and the error variance. For convenience, the data also include the posterior

sample of the 𝑔 parameter simulated by bmaregress. To use bmacoefsample after bmaregress, you
must first save the BMAmodel simulation results by using the saving() option with bmaregress either

during estimation or on replay.

bmacoefsample differs from a standard Stata postestimation command—it is a hybrid between an es-

timation and a postestimation command. Unlike other Stata postestimation commands, bmacoefsample
actuallymodifies or, rather, augments the estimation results stored by bmaregress. But it is still a postes-
timation command because it can run only after bmaregress is run. You can think of it as a “replay

option” of the bmaregress command, which continues the simulation process started by bmaregress.
But it is more convenient as a standalone command.

In addition to storing results in e(), bmacoefsample has its own concept of “replay”. Because it

performs a potentially time-consuming simulation, it allows you to save your simulation results later, if

you did not do so the first time you ran the command. That is,

. bmaregress ..., saving(bmamodelmcmc)

. bmacoefsample

produces a simulation sample of model parameters but saves them temporarily. If you run

bmacoefsample or bmaregress again, these results will be lost. You can use bmacoefsample’s
saving() option to save the current model parameter simulation results permanently in a file:

. bmacoefsample, saving(mycoef)

Once the current results are permanently saved, the next run of bmacoefsample will automatically

produce a new sample. In fact, if you use any option with bmacoefsample other than saving(), it will
automatically trigger the generation of a new sample. You can also force the bmacoefsample command

to resample and save a new set of simulation results by specifying the simulate option together with

saving():

. bmacoefsample

. bmacoefsample, saving(mycoef) simulate
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For a fixed 𝑔, the samples generated by bmaregress and bmacoefsample are independent. For a

random 𝑔, these MCMC samples are dependent.

Inference based onMCMC simulations depends on the variation of theMCMC sample. Specifically, the

size of theMCMC sample, that is the number of draws from parameters’posterior distributions, affects the

precision of the parameter estimates. The larger the MCMC sample size, the more precise the estimates.

TheMCMC sample size is specified in the mcmcsize() option. The default is 10,000 or the value specified
in bmaregress’s mcmcsize() option.

bmacoefsample is a stochastic command, so you need to specify the rseed() option to reproduce

results.

After bmacoefsample, you can use the following standard Bayesian postestimation commands to

explore posterior summaries of model parameters: [BAYES] bayesstats summary, [BAYES] bayesstats

ess, [BAYES] bayesstats ppvalues, [BAYES] bayesgraph, and [BAYES] bayespredict. You can also use

the estimates command, except estimates table, estimates stats, and estimates selected;
see [BMA] BMApostestimation.

For examples of how to use this command, see, for instance, example 5, example 16, and example 19

of [BMA] bmaregress.

Stored results
In addition to the estimation results stored by bmaregress, bmacoefsample stores the following in

e():

Scalars

e(mcmcsize2) MCMC sample size

Macros

e(cmd2) bmacoefsample
e(filename) name of the file with simulation results

e(parnames) names of model parameters

e(postvars) variable names corresponding to model parameters in e(parnames)
e(scparams) scalar model parameters

e(pareqmap) model parameters in display order

e(rngstate2) random-number state at the time of simulation

Methods and formulas
Methods and formulas are presented under the following headings:

Enumerated model space
Simulated model space

Conditional on a model 𝑀 and parameter 𝑔, the posterior distribution of the error variance 𝜎2 is an

inverse-gamma distribution, and the posterior distribution of regression coefficients and the intercept is

a multivariate location-scale 𝑡-distribution; see Conditional posterior distribution of model parameters in
Methods and formulas of [BMA] bmaregress.

bmacoefsample simulates model parameters from their posterior distributions in two ways, which

depend on whether bmaregress enumerated or sampled the model space.
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Enumerated model space
When all models in the model space are visited by bmaregress, the posterior model distribution is

known, and PMPs can be computed exactly. Also, Zellner’s 𝑔 parameter is fixed with model enumeration.
In this case, bmacoefsample generates an independent sample of size 𝑇 for model parameters as follows.

For 𝑡 = 1, 2, . . . , 𝑇:
1. Draw a model 𝑀𝑡 from the model space according to the PMP distribution, which is described in

Posterior model probability in Methods and formulas of [BMA] bmaregress.

2. Draw model parameters according to

𝜎2
𝑡 |𝑔, 𝑀𝑡 ∼ InverseGamma(𝑛 − 1

2
,

𝑠2
𝑡,𝛿

2
)

θ𝑡,𝑝𝑡
|𝜎2

𝑡 , 𝑔, 𝑀𝑡 ∼ 𝑁𝑝𝑡+1(µ𝑡, 𝜎2
𝑡 𝚺𝑡)

where 𝑛 is the sample size and 𝑠2
𝑡,𝛿, µ𝑡, and 𝚺𝑡 are computed according to (1), (3), and (4) in Conditional

posterior distribution of model parameters in Methods and formulas of [BMA] bmaregress (with index

𝑗 substituted for 𝑡, that is, conditional on model 𝑀𝑡 instead of 𝑀𝑗). θ𝑡,𝑝𝑡
= (β′

𝑡,𝑝𝑡
, 𝛼)′ is a (𝑝𝑡 + 1) × 1

vector of the 𝑝𝑡 regression coefficients included in model 𝑀𝑡 and the intercept. Regression coefficients

that are not included in 𝑀𝑡 are assigned 0s. Then a (𝑝 + 1) × 1 vector θ𝑡 includes all 𝑝 regression

coefficients and the intercept from iteration 𝑡.
The result is a sample {θ𝑡, 𝜎2

𝑡 }𝑇
𝑡=1 from the BMA posterior distribution of model parameters.

Simulated model space
For a random 𝑔, the exact posterior model distribution is not available, and bmaregress provides an

MCMC sample (𝑚𝑡, 𝑔𝑡), for 𝑡 = 1, 2, . . . , 𝑇, from the BMA posterior distribution of models and parameter

𝑔. bmacoefsample command reuses this sample to simulate model parameters.

For each 𝑡, regression coefficients that are not included in 𝑚𝑡 are assigned 0s. The remaining 𝑝𝑡
regression coefficients and the intercept, θ𝑡,𝑝𝑡

, and variance 𝜎2
𝑡 are drawn according to

𝜎2
𝑡 |𝑔𝑡, 𝑚𝑡 ∼ InverseGamma(𝑛 − 1

2
,

𝑠2
𝑡,𝛿

2
)

θ𝑡,𝑝𝑡
|𝜎2

𝑡 , 𝑔𝑡, 𝑚𝑡 ∼ 𝑁𝑝𝑡+1(µ𝑡, 𝜎2
𝑡 𝚺𝑡)

where 𝑛 is the sample size and 𝑠2
𝑡,𝛿, µ𝑡, and 𝚺𝑡 are computed according to (1), (3), and (4) in Conditional

posterior distribution of model parameters in Methods and formulas of [BMA] bmaregress (with index

𝑗 substituted for 𝑡, that is, conditional on model 𝑚𝑡 instead of 𝑀𝑗).

Let θ𝑡 be a (𝑝+1)×1 vector that includes all 𝑝 regression coefficients and the intercept from iteration

𝑡. Then the result is a sample {θ𝑡, 𝜎2
𝑡 }𝑇

𝑡=1 from the BMA posterior distribution of model parameters.
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Also see
[BMA] bmaregress — Bayesian model averaging for linear regression

[BMA] BMApostestimation — Postestimation tools for Bayesian model averaging

[BMA] Glossary

[BAYES] Bayesian postestimation — Postestimation tools after Bayesian estimation



BMA postestimation — Postestimation tools for Bayesian model averaging

Description Remarks and examples Also see

Description
The following Bayesian model averaging (BMA) postestimation commands are available after

bmaregress:

Command Description

bmacoefsample posterior samples of regression coefficients

bmagraph graphical summaries

bmagraph pmp model-probability plots

bmagraph msize model-size distribution plots

bmagraph varmap variable-inclusion maps

bmagraph coefdensity coefficient posterior density plots

bmastats summaries for models and predictors

bmastats models posterior model and variable-inclusion summaries

bmastats msize model-size summary

bmastats pip posterior inclusion probabilities (PIPs) for predictors

bmastats jointness jointness measures for predictors

bmastats lps log predictive-score

bmapredict BMA predictions
∗ estimates cataloging estimation results

∗ estimates table, estimates stats, and estimates selected are not appropriate with bmaregress estimation re-
sults.

The following standard Bayesian postestimation commands are of particular interest after

bmaregress followed by bmacoefsample (see [BMA] bmacoefsample):

Command Description

bayesgraph graphical summaries and convergence diagnostics

bayesstats summary Bayesian summary statistics for model parameters and their functions

bayesstats ess effective sample sizes and related statistics

bayesstats ppvalues Bayesian predictive 𝑝-values
bayespredict Bayesian predictions

∗ estimates cataloging estimation results

∗ estimates table, estimates stats, and estimates selected are not appropriate with bmacoefsample estimation
results.
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Remarks and examples
BMA postestimation includes both BMA-specific postestimation tools and some of the standard

Bayesian postestimation tools. BMA-specific postestimation is focused on BMA convergence, model ex-

ploration, and the importance of predictors based on how frequently they are included in various models.

The standard Bayesian postestimation is used for exploring posterior samples of model parameters and

regression coefficients, in particular.

After you fit a BMAmodel by using the bmaregress command, the first step of a BMA postestimation

analysis, and any Bayesian analysis in general, is to check convergence. The bmagraph pmp command

provides a visual way to assess BMA convergence by plotting the analytical posterior model probability

(PMP) (or its estimate) versus the frequency PMP, estimated from a Markov chain Monte Carlo (MCMC)

model sample. If a model converged, the analytical and frequency PMP will be close. See [BMA] bma-

graph pmp and Convergence of BMA in Remarks and examples of [BMA] bmaregress for details. The

PMP graph is also useful to explore the models with high PMP.

Once BMA convergence is established, you can explore the BMA results in more detail. You can

use the bmastats models command to examine models with high PMP and models that include certain

predictors. The bmagraph pmp and bmagraph varmap commands are essentially graphical counterparts

of bmastats models. The latter produces a variable-inclusion map, a map that shows each model and
all predictors included in that model with color-coded bars that represent the signs of the corresponding

coefficients.

The model-size summaries as provided by bmastats msize are useful to measure the complexity

of the visited models—small-sized models tend to have a few strong predictors whereas larger-sized

models tend to have many weaker predictors. In addition to summaries, you can use the bmagraph
msize command to explore the entire model-size distribution.

The bmastats pip command reports PIPs for predictors. In the context of BMA, PIP is used to measure

the importance of one predictor relative to the others. And you can also examine the tendency of pairs of

predictors to be included together, separately, or independently by computing various jointness measures

using bmastats jointness.

The bmagraph coefdensity command can be used to plot posterior distributions of regression coef-

ficients. These distributions are available analytically for models with a fixed 𝑔. But to fully explore the
regression coefficients, you will often need to have an MCMC sample from their posterior distribution.

You can use the bmacoefsample command to generate this sample. In fact, some of the postestima-

tion commands require that a sample like this is available. (bmaregress does not generate this sample

automatically to save time, because it is not always needed in a BMA analysis.)

The bmastats lps command computes log predictive-scores, which can be used to compare good-

ness of fit and predictive performance of models; see [BMA] bmastats lps for details.

Finally, you can use bmapredict to obtain various predictions after a BMAmodel, both in and out of

sample; see [BMA] bmapredict.

Once an MCMC sample of regression coefficients or, more generally, model parameters is available,

you can use some of the standard Bayesian postestimation tools as described in [BAYES]Bayesian postes-

timation. For instance, you can use the bayesstats summary command to explore posterior summaries,
including credible intervals, for regression coefficients; see [BAYES] bayesstats summary. And you can

use the bayespredict command to obtain more complicated BMA predictions; see [BAYES] bayespre-

dict.
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You can use estimates store and estimates save (see [R] estimates) to store or save estimation

results after bmaregress and bmacoefsample. The estimates commands require that you first use the

saving() option with both BMA commands to save their MCMC simulation results. If you use one of the

estimates commands after bmaregress, you will store BMA estimation results and the MCMC model

simulation results. If you do this after bmacoefsample, in addition to the bmaregress estimation re-

sults, you will store additional estimation results from bmacoefsample and the MCMCmodel-parameter

simulation results.

Also see
[BMA] bmaregress — Bayesian model averaging for linear regression

[BMA] bmacoefsample — Posterior samples of regression coefficients

[BMA] Intro — Introduction to Bayesian model averaging

[BMA] Glossary

[BAYES] Bayesian postestimation — Postestimation tools after Bayesian estimation

[U] 20 Estimation and postestimation commands
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Description
The following graphical postestimation commands are available with bmagraph after bmaregress:

Command Description

bmagraph pmp model-probability plots

bmagraph msize model-size distribution plots

bmagraph varmap variable-inclusion maps

bmagraph coefdensity coefficient posterior density plots

Remarks and examples
See [BMA] BMApostestimation for a short introduction to Bayesian model averaging (BMA) postes-

timation.

The bmagraph pmp command is used for checking BMA convergence and for exploring models with

high posterior model probability; see [BMA] bmagraph pmp.

The bmagraph msize command plots the prior and posterior model-size distributions and is useful

for examining model complexity; see [BMA] bmagraph msize.

The bmagraph varmap command produces a variable-inclusion map, a map that shows each model

and all predictors included in that model with color-coded bars that represent the signs of the correspond-

ing coefficients. See [BMA] bmagraph varmap.

The bmagraph coefdensity command plots posterior distributions of regression coefficients; see

[BMA] bmagraph coefdensity.

Also see
[BMA] bmaregress — Bayesian model averaging for linear regression

[BMA] bmacoefsample — Posterior samples of regression coefficients

[BMA] BMApostestimation — Postestimation tools for Bayesian model averaging

[BMA] Intro — Introduction to Bayesian model averaging

[BMA] Glossary
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Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas Reference
Also see

Description
bmagraph coefdensity provides posterior density plots for regression coefficients after the

bmaregress command. This command is useful for exploratory analysis of regression coefficients. For

a given predictor, bmagraph coefdensity shows the posterior probability of that predictor not being

included in a model and, separately, the smooth density of its coefficient conditional on the predictor

being included.

Quick start
Plot the analytical posterior density of the coefficient for predictor x after a Bayesian model averaging

(BMA) regression model with a fixed 𝑔
bmagraph coefdensity {x}

Same as above, but plot the MCMC-sample posterior density instead of the analytical one;

bmacoefsample must be run first

bmaregress, saving(bmamodelmcmc)
bmacoefsample
bmagraph coefdensity {x}, mcmcsample

Plot posterior densities of coefficients for predictors x1 and x2, and customize the look of the vertical

probability-mass line at zero for the second graph

bmagraph coefdensity {x1 x2}, przeroline2opts(lcolor(green))

Same as above, but do not show the lines for probability mass at zero

bmagraph coefdensity {x1 x2}, noprzerolines

Customize the kernel function used and the line pattern for the graph for {x1}
bmagraph coefdensity {x1 x2}, dens1opts(kernel(gaussian) lpattern(dot))

Plot densities for all coefficients on one graph in two rows

bmagraph coefdensity _all, combine(rows(2))

Plot the MCMC-sample posterior density of the coefficient for predictor x after a BMA regression model

with a random 𝑔
bmaregress, saving(bmamodelmcmc2)
bmacoefsample
bmagraph coefdensity {x}

Equivalent to the above bmagraph coefdensity
bmagraph coefdensity {x}, mcmcsample
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Menu
Statistics > Bayesian model averaging > Coefficient densities

Syntax
Density plot for one coefficient

bmagraph coefdensity {coef} [ , singleopts ]

Density plot for multiple coefficients

bmagraph coefdensity coefspec [ , multiopts ]

Density plot for all coefficients

bmagraph coefdensity all [ , multiopts ]

coef is an unabbreviated name of the variable or a factor level used in the bmaregress model. coefspec

may be a regression coefficient {coef}, a list of coefficients {coef1}, {coef2}, etc., or, equivalently,
{coef1 coef2 . . .}. all refers to all regression coefficients.

singleopts Description

Main

analytic plot analytical posterior density; default for fixed 𝑔
mcmcsample plot MCMC-sample posterior density; only choice for random 𝑔
name(name, . . .) specify name of graph

saving(filename, . . .) save graph in file

[ no ]przeroline plot or hide vertical line for probability mass at zero

przerolineopt(line options) affect rendition of vertical line for probability mass at zero

Density options

densopts density plot options

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by(), name(), and saving()
documented in [G-3] twoway options
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multiopts Description

Main

analytic plot analytical posterior density; default for fixed 𝑔
mcmcsample plot MCMC-sample posterior density; only choice for random 𝑔
name(namespec, . . .) specify names of graphs

saving(filespec, . . .) save graphs in files

[ no ]przerolines plot or hide vertical lines for probability mass at zero

przerolineopts(line options) affect rendition of all vertical lines for probability mass at zero

przeroline#opts(line options) affect rendition of #th vertical line for probability mass at zero

combine[ (grcombineopts) ] display plots on one graph

Density options

dens#opts(densopts) density options for #th plot

densopts density options for all plots

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by(), name(), and saving()
documented in [G-3] twoway options

Options

� � �
Main �

analytic specifies that the density be computed analytically. This is the default for models with a fixed

𝑔 and is not available for models with a random 𝑔. This option may not be specified together with

option mcmcsample.

mcmcsample specifies that the density be estimated from aMarkov chainMonte Carlo (MCMC) sample of

coefficients. This option uses anMCMC sample generated by the bmacoefsample command and may

not be specified together with option analytic. This is the only choice for models with a random

𝑔; that is, option mcmcsample is implied with a random 𝑔. With a fixed 𝑔, if an MCMC sample is not

available, option mcmcsample is not allowed. You must use bmacoefsample to generate an MCMC

sample to produce coefficient density graphs based on sample estimates.

name(namespec[ , replace ]) specifies the name of the graph or multiple graphs. See

[G-3] name option for a single graph. If multiple graphs are produced, then the argument of

name() is either a list of names or stub, in which case graphs are named stub1, stub2, and so on.

With multiple graphs, if name() is not specified, name(Graph #, replace) is assumed; thus, the

produced graphs may be replaced by subsequent bmagraph commands.

The replace suboption causes existing graphs with the specified name or names to be replaced.

saving(filespec[ , replace ]) specifies the filename or filenames to use to save the graph or multiple

graphs to disk. See [G-3] saving option for a single graph. If multiple graphs are produced, then

the argument of saving() is either a list of filenames or stub, in which case graphs are saved with

filenames stub1, stub2, and so on.

The replace suboption specifies that the file (or files) may be replaced if it already exists.

przerolines and noprzerolines show or hide the vertical lines for probability mass at zero. By

default, the lines are shown.
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przerolineopts(line options) and przeroline#opts(line options) affect the rendition of the ver-

tical lines for probability mass at zero; see [G-3] line options. przerolineopts() controls the

look of all vertical lines but may be overridden for specific lines by using the respective options

przeroline#opts().

combine[ (grcombineopts) ] specifies the display of all plots of coefficients as subgraphs on one graph.
By default, a separate graph is produced for each plot when multiple coefficients are specified.

grcombineopts is any of the options documented in [G-2] graph combine.

� � �
Density options �

dens#opts(densopts) specifies density options for the #th density plot.

densopts specify options for the (kernel) density plot; see the options documented in [G-2] graph twoway

kdensity, except options horizontal and range(varname). When option analytic is assumed, the
density functions are known; thus, the kernel density estimation is not needed. In that case, densopts

include only n() and cline options, described in [G-2] graph twoway kdensity.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(), name(),
or saving(). These include, for instance, options for titling the graph (see [G-3] title options).

Remarks and examples
The bmaregress command computes and reports only the posterior means and standard deviations of

the regression coefficients. But we can use bmagraph coefdensity to plot the entire posterior densities

for the regression coefficients.

A posterior density for a regression coefficient in a BMA linear regression is a mixture of a discrete

and continuous components. A discrete component corresponds to the posterior probability of noninclu-

sion, the probability that the corresponding predictor is not included in a model after observing the data,

which is equivalent to the posterior probability that the coefficient is equal to zero. This component is

represented by a red vertical line with a probability mass at zero equal to one minus the posterior inclu-

sion probability (PIP). A continuous component corresponds to the continuous density conditional on the

predictor being included or, equivalently, on the coefficient not being equal to zero.

For a BMA linear regression with a fixed 𝑔, the posterior densities of regression coefficients are known
and can be plotted at any prespecified 𝑥-axis points; see Posterior distributions of regression coefficients
in Methods and formulas of [BMA] bmaregress. We refer to these densities as analytical posterior den-

sities. Alternatively, if an MCMC sample of regression coefficients, as produced by bmacoefsample, is
available, the posterior densities can be estimated from this sample by using kernel density estimation

(see [R] kdensity) when you specify the mcmcsample option. We refer to these posterior densities as

MCMC-sample posterior densities. With a random 𝑔, this is the only option because analytical posterior
densities are not available. That is, with a random 𝑔, you must run the bmacoefsample first before you

can run bmagraph coefdensity.
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Example 1: Posterior density plots for BMA linear regression using enumeration
Recall the performance dataset (Chatterjee and Hadi 2012, sec. 3.3) analyzed in example 1 of

[BMA] bmaregress, where the employees’ satisfaction with their supervisors, rating, is modeled by

six potential predictors.

We fit a BMA linear regression for the rating outcome using all six other variables as potential

predictors. By default, the model space is fully explored using enumeration.

. use https://www.stata-press.com/data/r19/performance
(Data on employee satisfaction with supervisor)
. bmaregress rating complaints-advance
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
Model enumeration Groups = 6

Always = 0
Priors: No. of models = 64

Models: Beta-binomial(1, 1) For CPMP >= .9 = 10
Cons.: Noninformative Mean model size = 1.699
Coef.: Zellner’s g

g: Benchmark, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 52.302

rating Mean Std. dev. Group PIP

complaints .7052859 .1224289 1 .99973
learning .0603014 .1285281 3 .25249
advance -.0167921 .073883 6 .13148

privileges -.0074174 .0488635 2 .10998
raises .0070789 .0670475 4 .10642

critical .0009713 .0437848 5 .098534

Always
_cons 14.8472 7.874219 0 1

Note: Coefficient posterior means and std. dev. estimated from 64 models.
Note: Default priors are used for models and parameter g.

For a fixed 𝑔, as in our example, the posterior distributions for the regression coefficients can be computed
analytically, so we can use bmagraph coefdensity directly after bmaregress.

Let’s look at the distributions of regression coefficients for complaints and learning. Similarly to
other Stata Bayesian commands, we use the curly-braces notation to refer to model parameters—here

the regression coefficients.
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Let us inspect the analytical marginal posterior density of the coefficient for complaints.

. bmagraph coefdensity {complaints}
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For coefficient {complaints} (or using its full name {rating:complaints}), the probability of non-
inclusion is very low, 0.0003, so the red line that represents it is not even visible on the graph. Thus, the

posterior density of {complaints} is essentially a continuous density, with a mean of roughly 0.7 and

with a slightly heavier left tail. Most of the mass of the distribution is between roughly 0.025 and 1.1,

away from 0.

Let’s plot the analytical marginal posterior density for the {learning} coefficient and request a cyan

color for the density line:

. bmagraph coefdensity {learning}, lcolor(cyan)
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The probability of a noninclusion for {learning} is about 0.75, so we see the red vertical line with

the horizontal reference line at roughly 0.75. The look of the vertical line can be controlled via the

przerolineopts() option. Conditional on the inclusion, the continuous density has its mass between

roughly −0.2 and 0.7, which includes 0.

The posterior means and standard deviations reported by bmaregress are computed with respect to

the above mixtures of distributions.



bmagraph coefdensity — Regression coefficient density plots after BMA regression 128

Instead of showing the density of each coefficient separately, we can plot the densities of all coeffi-

cients by specifying all and request they be plotted on the same graph using the combine() option.

. bmagraph coefdensity _all, combine(rows(2))
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The rows(2) suboption of combine() specifies that plots be organized in two rows.
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Example 2: Posterior density plots for BMA linear regression using sampling
We refit the same BMAmodel as in example 1 but now use the sampling option to request the MCMC

model composition (MC3) algorithm instead of the default model enumeration.

. bmaregress rating complaints-advance, sampling rseed(18)
Burn-in ...
Simulation ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
MC3 sampling Groups = 6

Always = 0
No. of models = 32

For CPMP >= .9 = 10
Priors: Mean model size = 1.699

Models: Beta-binomial(1, 1) Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 10,000
Coef.: Zellner’s g Acceptance rate = 0.2417

g: Benchmark, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 52.292

Sampling correlation = 0.9990

rating Mean Std. dev. Group PIP

complaints .705479 .1218881 1 1
learning .0601919 .1282869 3 .25234
advance -.0167514 .0737415 6 .13141

privileges -.0074265 .048844 2 .10996
raises .0069949 .0666406 4 .10629

critical .0009699 .0437742 5 .098526

Always
_cons 14.84478 7.871046 0 1

Note: Coefficient posterior means and std. dev. estimated from 32 models.
Note: Default priors are used for models and parameter g.

Although the MC3 sampling is used for the model-space exploration, we can still use bmagraph
coefdensity directly after bmaregress to plot the analytical posterior densities of regression coef-

ficients. This is because we are still assuming a fixed 𝑔 parameter in our model.

Let’s compare the analytical and MCMC-sample posterior densities. To obtain the sample estimates,

we must first simulate an MCMC sample from the posterior distribution of regression coefficients by

using bmacoefsample. To use bmacoefsample, we first need to save the simulation results produced

by bmaregress.

. bmaregress, saving(bmaex2, replace)
note: file bmaex2.dta not found; file saved.
. bmacoefsample, rseed(18)
Simulation (10000): ....5000....10000 done
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To request the density estimate based on the MCMC sample, we specify the mcmcsample option. We

plot the MCMC-sample posterior density estimate for the {learning} coefficient.

. bmagraph coefdensity {learning}, mcmcsample
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To more easily compare the plot above with the one in example 1, we rescale the 𝑥 axis to have the

same range.

. bmagraph coefdensity {learning}, mcmcsample xscale(range(-.5 1.5))
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The plot is similar to that in example 1.

The marginal density of the learning coefficient can also be estimated using the bayesgraph
kdensity command (see [BAYES] bayesgraph). This command, however, incorporates the mass at

zero and shows the distribution mixture as one smooth curve, which may not be of practical use in the

context of BMAmodels.
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. bayesgraph kdensity {learning}
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Notice how the density curve shrinks toward 0 given the relatively large probability mass (1 − PIP =
0.7477) at that point.

For comparison with the density plots in example 1, we will plot MCMC-sample densities for all

coefficients in our model. To demonstrate, we also use dens6opts(lcolor(cyan)) to specify a cyan

color for the density on the sixth plot corresponding to {rating:advance}.

. bmagraph coefdensity _all, mcmcsample combine(rows(2)) dens6opts(lcolor(cyan))
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If adequate exploration of the model space by bmaregress occurred and a sufficiently largeMCMC sam-

ple is generated by bmacoefsample, the analytical and MCMC-sample posterior densities are expected

to be similar. This is the case in our examples (after we adjust for the scales of the 𝑥 axes).
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With a random 𝑔, the analytical posterior densities are not available, and theMCMC sampling is needed

to approximate these distributions. In that case, the bmacoefsample commandmust be run first to obtain
posterior samples of regression coefficients, as we showed above. bmagraph coefdensity can then

be used to plot an MCMC-sample posterior density, except we do not need to specify the mcmcsample
option—it is implied with a random 𝑔.

Methods and formulas
Continuing with the notation in Methods and formulas of [BMA] bmaregress, we consider a predictor

𝑋𝑘 for 1 ≤ 𝑘 ≤ 𝑝. Let 𝛽𝑘 be the regression coefficient associated with predictor 𝑋𝑘.

The posterior distribution of 𝛽𝑘 has a mixed structure, which consists of a continuous portion (a

mixture of location-scale 𝑡-distributions) and a discrete portion (point mass at 0),

𝑝(𝛽𝑘|y) = (1 − PIP𝑘) δ0 + PIP𝑘 f𝑘

where δ0 denotes the point mass at 0 and f𝑘 is defined by (10) in Posterior distributions of regression

coefficients inMethods and formulas of [BMA] bmaregress for models with a fixed 𝑔 (option analytic).
When the mcmcsample option is assumed, either by default for models with a random 𝑔 or if specified

for models with a fixed 𝑔, f𝑘 is computed using the kdensity (see [R] kdensity) command based on the

coefficient sample generated by bmacoefsample.

The vertical line for the probability mass at 0 corresponds to 1 − PIP𝑘, where PIP𝑘 is the PIP of 𝑋𝑘
computed as

PIP𝑘 = ∑
𝑗∈𝐽

𝐼(𝑋𝑘 ∈ 𝑀𝑗)𝑃 (𝑀𝑗|y)

and 𝐽 indexes a subspace of the model space visited by bmaregress. Also see Posterior inclusion prob-
ability in Methods and formulas of [BMA] bmaregress.

In the above formula, for models with a fixed 𝑔 parameter, 𝑃(𝑀𝑗|y) is either 𝑃𝑎(𝑀𝑗|y) (option

analytic) or 𝑃𝑓(𝑀𝑗|y) (option mcmcsample). For models with a random 𝑔 parameter, 𝑃(𝑀𝑗|y) is

𝑃𝑓(𝑀𝑗|y). These quantities are defined, respectively, by (7) and (8) in Posterior model probability in

Methods and formulas of [BMA] bmaregress.

Reference
Chatterjee, S., and A. S. Hadi. 2012. Regression Analysis by Example. 5th ed. New York: Wiley.

Also see
[BMA] bmagraph — Graphical summary for models and predictors after BMA regression

[BMA] bmaregress — Bayesian model averaging for linear regression

[BMA] BMApostestimation — Postestimation tools for Bayesian model averaging

[BMA] Glossary
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Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas References
Also see

Description
bmagraph msize provides a graphical summary for the posterior and prior model-size distributions

after the bmaregress command.

Quick start
Plot posterior and prior model-size distributions after fitting a Bayesian model averaging (BMA) linear

regression

bmagraph msize

Same as above, but plot the posterior model-size distribution only

bmagraph msize, noprior

Menu
Statistics > Bayesian model averaging > Model-size distributions

Syntax
bmagraph msize [ , options ]

options Description

Main

constant include constant term in model-size computations; default is
no constant

noprior suppress prior model-size distribution shown by default

priorlineopts(cline options) affect rendition of prior line

anlineopts(cline options) affect rendition of analytical posterior line; ignored with random 𝑔
freqlineopts(cline options) affect rendition of frequency posterior line; ignored with model

enumeration

postlineopts(cline options) affect rendition of all posterior lines

Line options

cline options affect rendition of all plotted lines

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

133
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Options

� � �
Main �

constant specifies that the constant term be included in model-size computations. By default, the con-

stant term is not included.

noprior specifies that the prior model-size distribution not be shown on the plot. It is shown by default.

priorlineopts(cline options) affects the rendition of the prior line; see [G-3] cline options.

anlineopts(cline options) affects the rendition of the analytical posterior line; see

[G-3] cline options. This option is ignored for BMAmodels with a random 𝑔.
freqlineopts(cline options) affects the rendition of the frequency posterior line; see

[G-3] cline options. The frequency model-size distribution is plotted whenever sampling is

used. This option is ignored with model enumeration.

postlineopts(cline options) affects the rendition of the analytical and frequency posterior lines; see

[G-3] cline options.

� � �
Line options �

cline options affects the rendition of all plotted lines; see [G-3] cline options.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

Remarks and examples
See Remarks and examples in [BMA] bmastats msize for a general discussion of a BMAmodel size.

A model-size distribution is used to explore model complexity. The prior model-size distribution

describes our a priori assumption about model size. The posterior model-size distribution describes the

effect of the data on the BMA model. For this purpose, we compare the posterior and prior model-size

distributions. If the posterior is skewed to the left with respect to the prior, then the data favor smaller

models than assumed by the prior. If the posterior is skewed to the right, then the data favor larger models

than assumed by the prior.

For the prior model-size distribution, bmagraph msize always uses analytical computation. In the

case of sampling, it is conditional on the visited models. For the posterior model-size distribution, it plots

the analytical distribution for a fixed 𝑔 and the MCMC frequency-based or simply frequency distribution

for a random 𝑔 and whenever sampling is used.

Example 1: Model-size distributions for BMA models using enumeration
We consider the performance dataset (Chatterjee and Hadi 2012, sec. 3.3) analyzed in example 1 of

[BMA] bmastats msize. In that example, we explored only a few summaries of the model-size distribu-

tions. Here we describe the entire distributions.

The rating variable is regressed on all predictors from complaints to advance. By default, because
of the small number of predictors, six, the model space is explored fully by using enumeration.
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. use https://www.stata-press.com/data/r19/performance
(Data on employee satisfaction with supervisor)
. bmaregress rating complaints-advance
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
Model enumeration Groups = 6

Always = 0
Priors: No. of models = 64

Models: Beta-binomial(1, 1) For CPMP >= .9 = 10
Cons.: Noninformative Mean model size = 1.699
Coef.: Zellner’s g

g: Benchmark, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 52.302

rating Mean Std. dev. Group PIP

complaints .7052859 .1224289 1 .99973
learning .0603014 .1285281 3 .25249
advance -.0167921 .073883 6 .13148

privileges -.0074174 .0488635 2 .10998
raises .0070789 .0670475 4 .10642

critical .0009713 .0437848 5 .098534

Always
_cons 14.8472 7.874219 0 1

Note: Coefficient posterior means and std. dev. estimated from 64 models.
Note: Default priors are used for models and parameter g.

There is a total of 26 = 64 models in the fully explored model space. Let’s use bmagraph msize to draw

the posterior and prior model-size distributions.

. bmagraph msize
note: frequency posterior model-size distribution not available.
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The reported model size does not include the constant, so its range is between 0 and 6. You may include

the constant by specifying the constant option. By default, an uninformative uniform prior is assumed

for the model size. The posterior model-size distribution is skewed to the left. Its mode is 1, so the

posterior favors smaller models.
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A frequency-based posterior estimate of the model-size distribution is not available in this example

because there is no MCMC sample with model enumeration.

Example 2: Model-size distributions for BMA models using MCMC model composition
(MC3) sampling

Continuing with example 1, we fit the same BMA model, but this time we use the MC3 sampling

algorithm by specifying the sampling option. We also specify the rseed() option for reproducibility.

. bmaregress rating complaints-advance, sampling rseed(18)
Burn-in ...
Simulation ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
MC3 sampling Groups = 6

Always = 0
No. of models = 32

For CPMP >= .9 = 10
Priors: Mean model size = 1.699

Models: Beta-binomial(1, 1) Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 10,000
Coef.: Zellner’s g Acceptance rate = 0.2417

g: Benchmark, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 52.292

Sampling correlation = 0.9990

rating Mean Std. dev. Group PIP

complaints .705479 .1218881 1 1
learning .0601919 .1282869 3 .25234
advance -.0167514 .0737415 6 .13141

privileges -.0074265 .048844 2 .10996
raises .0069949 .0666406 4 .10629

critical .0009699 .0437742 5 .098526

Always
_cons 14.84478 7.871046 0 1

Note: Coefficient posterior means and std. dev. estimated from 32 models.
Note: Default priors are used for models and parameter g.

Instead of enumerating models (fully exploring the space), bmaregress explored only half the model

space. It visited 32 out of the total 64 models. We inspect the effect of this on the prior and posterior

model-size distributions.
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. bmagraph msize
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Although we used the same model prior as in example 1, the prior model-size distribution looks different.

This is because our explored model space now contains 32 models instead of all 64, and the prior model-

size distribution is conditional on the visited models.

The model of size 1, the one that includes complaints, has the highest posterior probability of about
0.56.

With a fixed 𝑔 when we fit a BMAmodel using MC3 sampling, in addition to the analytical model-size

distribution, the frequency posterior model-size distribution is available. Provided that the model-space

sampling converges, the analytical and frequency distributions should be close. In our example, the

analytical and frequency model-size distributions are nearly identical.



bmagraph msize — Model-size distribution plots after BMA regression 138

Example 3: Model-size distributions for BMA models with random g
Both example 1 and example 2 used a fixed 𝑔. Let’s explore the case of a random 𝑔. (An in-depth

coverage of the effects of the 𝑔-prior on model complexity can be found in, for example, Ley and Steel
[2012].)

To demonstrate, we will use a robust prior for 𝑔.
. bmaregress rating complaints-advance, gprior(robust) rseed(18)
Burn-in ...
Simulation ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
MC3 and adaptive MH sampling Groups = 6

Always = 0
No. of models = 34

For CPMP >= .9 = 12
Priors: Mean model size = 1.734

Models: Beta-binomial(1, 1) Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 10,000
Coef.: Zellner’s g Acceptance rate = 0.4232

g: Robust
sigma2: Noninformative Mean sigma2 = 53.095

Sampling correlation = 0.9994

rating Mean Std. dev. Group PIP

complaints .7000463 .1273543 1 .9998
learning .0594904 .1286095 3 .25
advance -.0192712 .0797935 6 .1503
raises .0079416 .0727859 4 .1201

privileges -.0072591 .0487009 2 .1069
critical .0014397 .0466476 5 .1067

Always
_cons 15.24911 7.988166 0 1

Note: Coefficient posterior means and std. dev. estimated from 34 models.
Note: Default prior is used for models.

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

g 152.668 1968.132 43.5265 33.81024 8.205076 610.6026
Shrinkage .9656427 .0276071 .001234 .9712728 .8913639 .9983649
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bmaregress now uses MC3 sampling for the models and adaptive Metropolis–Hastings sampling for 𝑔.
. bmagraph msize
note: analytical posterior model-size distribution not available.

0

.2

.4

.6

P
ro

ba
bi

lit
y

0 2 4 6
Model size

Frequency posterior
Prior

Model-size distributions

The analytical posterior model-size distribution is not available with a random 𝑔. The frequency posterior
model-size distribution is similar to that in example 2 for fixed 𝑔 = 36. Particularly, the null model was

not visited by the MC3 sampler, and models of size 1 and 2 have the highest posterior probabilities (both

above 0.2), but the mode of the posterior distribution here is 1.

Methods and formulas
See Methods and formulas in [BMA] bmastats msize.

References
Chatterjee, S., and A. S. Hadi. 2012. Regression Analysis by Example. 5th ed. New York: Wiley.

Ley, E., and M. F. J. Steel. 2012. Mixtures of 𝑔-priors for Bayesian model averaging with economic applications. Journal
of Econometrics 171: 251–266. https://doi.org/10.1016/j.jeconom.2012.06.009.

Also see
[BMA] bmastats msize — Model-size summary after BMA regression

[BMA] bmagraph — Graphical summary for models and predictors after BMA regression

[BMA] bmaregress — Bayesian model averaging for linear regression

[BMA] BMApostestimation — Postestimation tools for Bayesian model averaging

[BMA] Glossary

https://doi.org/10.1016/j.jeconom.2012.06.009
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Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas Reference
Also see

Description
bmagraph pmp provides graphical summary information for the models visited by the bmaregress

command, including their posterior model probabilities (PMPs) and cumulative PMPs (CPMPs). This com-

mand is useful for checking Markov chain Monte Carlo (MCMC) convergence of a Bayesian model av-

eraging (BMA) model.

Quick start
Plot PMPs for the default top 100 models with highest PMPs

bmagraph pmp

Same as above, but request CPMPs

bmagraph pmp, cumulative

Same as above, but suppress frequency PMPs, and show only the top 20 models with highest PMPs

bmagraph pmp, cumulative nofreqline top(20)

Menu
Statistics > Bayesian model averaging > Model-probability plots

140
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Syntax
bmagraph pmp [ , options ]

options Description

Main

top(#) show top # models with highest PMPs; default is top(100)
cumulative display CPMPs instead of PMPs for plotted models

pmpcutoff(#) do not show models with PMP less than #; default is # = 0

maxmodels(#) plot results for the first # models; default is maxmodels(1000)
anlineopts(cline options) affect rendition of analytical-PMP or harmonic-PMP line

[ no ]freqline show or suppress frequency-PMP line

freqlineopts(cline options) affect rendition of frequency-PMP line

Line options

cline options affect rendition of all plotted lines

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

all plot all models

all does not appear in the dialog box.

Options

� � �
Main �

top(#) specifies that the top # models with highest PMPs be shown. By default, the top 100 are shown.

The maximum number of models plotted is controlled by option maxmodels(). Use top() in com-

bination with maxmodels(), if you need to plot more than 1,000 models.

cumulative specifies that CPMPs be reported for the models instead of the default PMPs.

pmpcutoff(#) specifies that models with PMPs less than # should not be shown. The default is

pmpcutoff(0). This option is useful when there are many models with small PMPs.

maxmodels(#) specifies the maximum number of models to be plotted. The default is

maxmodels(1000). When this option is specified together with option top(#1), the number of plot-
ted models is the minimum between # and #1.

anlineopts(cline options) affects the rendition of the analytical-PMP line; see [G-3] cline options.

With a random 𝑔, this option affects the harmonic-PMP line, where the harmonic-mean estimator is

used to approximate the analytical PMPs.

freqline and nofreqline show or suppress the frequency-PMP line. By default, the frequency-PMP

line is shown when it is available. Frequency-PMP line is not available with model enumeration, so

nofreqline is implied and freqline is ignored, if specified, in that case.

freqlineopts(cline options) affects the rendition of the frequency-PMP line when it is available; see

[G-3] cline options. With model enumeration, this option is ignored if specified.
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� � �
Line options �

cline options affects the rendition of all plotted lines; see [G-3] cline options.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

The following option is available with bmagraph pmp but is not shown in the dialog box:

all specifies that all models, up to maxmodels(), be shown on the plot. This option may be useful when
the number of visited models is small. This option may not be specified together with top().

Remarks and examples
The bmagraph pmp command is used to visualize the posterior distribution of the explored model

space and to check for sampling convergence when the model space is explored using theMC3 algorithm.

The analytical andMCMC frequency-based or simply frequency posterior probability distributions should

be close when the model space is sufficiently explored.

When the model space is explored fully by using enumeration, the frequency posterior probabilities

coincide with the analytical ones, and there is no need to check for convergence. The frequency-PMP line

is not plotted in this case. With a random 𝑔, analytical-PMP line is not available and a harmonic-PMP line

is displayed instead. This line represents a harmonic-mean estimate of the analytical PMPs.

Example 1: Analytical and frequency PMPs
Recall the performance dataset (Chatterjee and Hadi 2012, sec. 3.3) analyzed in example 1 of

[BMA] bmaregress, where the employee satisfaction with their supervisors, rating, is modeled by six
potential predictors.

Let’s fit a BMA linear regression to these data using bmaregress and explore PMPs using bmagraph
pmp. With a few predictors, bmaregress explores a full space of all possible models. In this case, we

do not need to check for sampling convergence because no sampling is performed. But we can still use

bmagraph pmp to explore PMPs.

To demonstrate, let’s use sampling instead of the default model enumeration in our example by spec-

ifying the sampling option with bmaregress. We use the notable option to suppress the output table

because we are not interested in the regression coefficients but in the models explored by bmaregress.
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. use https://www.stata-press.com/data/r19/performance
(Data on employee satisfaction with supervisor)
. bmaregress rating complaints-advance, sampling rseed(18) notable
Burn-in ...
Simulation ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
MC3 sampling Groups = 6

Always = 0
No. of models = 32

For CPMP >= .9 = 10
Priors: Mean model size = 1.699

Models: Beta-binomial(1, 1) Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 10,000
Coef.: Zellner’s g Acceptance rate = 0.2417

g: Benchmark, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 52.292

Sampling correlation = 0.9990

We use bmagraph pmp to display both analytical and frequency PMPs of the 32 visited models.

. bmagraph pmp
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The two lines are nearly identical, which is a strong indication of convergence.
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Instead of PMPs, we can use the cumulative option to plot CPMPs:

. bmagraph pmp, cumulative
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The plot shows that the first 10 models account for about 90% of the total probability mass.

Example 2: Harmonic and frequency PMPs
The BMAmodel in example 1 assumed a fixed parameter 𝑔 that controls the shrinkage of regression

coefficients toward zero. We can instead specify a prior distribution, a hyperprior, for 𝑔. For instance,
we use a robust hyperprior below.

. bmaregress rating complaints-advance, gprior(robust) rseed(18) notable
Burn-in ...
Simulation ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
MC3 and adaptive MH sampling Groups = 6

Always = 0
No. of models = 34

For CPMP >= .9 = 12
Priors: Mean model size = 1.734

Models: Beta-binomial(1, 1) Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 10,000
Coef.: Zellner’s g Acceptance rate = 0.4232

g: Robust
sigma2: Noninformative Mean sigma2 = 53.095

Sampling correlation = 0.9994

With a random 𝑔, there is no analytical formula for computing PMPs. In this case, MCMC convergence

is evaluated by comparing the frequency PMP to the harmonic-mean approximation of the analytical PMP.

To demonstrate, let’s also use the top(20) option to plot the top 20 models with the highest PMPs.
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. bmagraph pmp, top(20)
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The above plot should be interpreted with extra caution because the assessment of the MCMC conver-

gence here is subject to the accuracy of the harmonic-mean approximation of the analytical PMP, in

addition to the inherent sampling variability. In our example, there is no concern for the accuracy of the

approximation or nonconvergence.

Methods and formulas
For methods and formulas of PMPs, see Posterior model probability in Methods and formulas of

[BMA] bmaregress.

The CPMP for a model 𝑗 is a cumulative sum of the first 𝑗th highest PMPs. The analytical CPMP is a

cumulative sum of analytical PMPs, and the frequency CPMP is a cumulative sum of frequency PMPs.

Reference
Chatterjee, S., and A. S. Hadi. 2012. Regression Analysis by Example. 5th ed. New York: Wiley.

Also see
[BMA] bmastats models — Model and variable-inclusion summaries after BMA regression

[BMA] bmagraph — Graphical summary for models and predictors after BMA regression

[BMA] bmaregress — Bayesian model averaging for linear regression

[BMA] BMApostestimation — Postestimation tools for Bayesian model averaging

[BMA] Glossary
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Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas Reference
Also see

Description
bmagraph varmap produces a variable-inclusion map after the bmaregress command for top mod-

els ranked by the highest posterior model probability (PMP), which include predictors with posterior

inclusion probability (PIP) above 0.01.

Quick start
Inclusion map for predictors included in the top 100 models ranked by highest PMP

bmagraph varmap

Inclusion map for predictors with PIP of at least 0.2 and for top 10 models

bmagraph varmap, top(10) pipcutoff(0.2)

Same as above, but force all model bars to have equal widths, instead of widths being proportional to the

model’s PMP

bmagraph varmap, top(10) pipcutoff(0.2) equalwidths

Menu
Statistics > Bayesian model averaging > Variable-inclusion map

146
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Syntax
bmagraph varmap [ , options ]

options Description

Main

top(#) show top # models with highest PMPs; default is top(100)
pipcutoff(#) do not show predictors with PIP less than #; default is # = 0.01

maxmodels(#) plot results for the first # models; default is maxmodels(1000)
equalwidths request that equal-width model bars are displayed; default is

widths proportional to PMP

pmpnormalized show normalized PMP

poscoefopts(rbaropts) control the look of bars for positive coefficients

negcoefopts(rbaropts) control the look of bars for negative coefficients

zerocoefopts(rbaropts) control the look of bars for zero (not-included) coefficients

Range bar options

rbaropts control the look of all bars

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

all plot all models

all does not appear in the dialog box.

Options

� � �
Main �

top(#) specifies that the top # models with the highest PMPs be shown. By default, the top 100 are

shown. The maximum number of models plotted is controlled by option maxmodels(). Use top()
in combination with maxmodels(), if you need to plot more than 1,000 models.

pipcutoff(#) specifies that predictors with PIPs less than # not be shown. The default is

pipcutoff(0.01). This option is useful when there are many predictors with small PIPs.

maxmodels(#) specifies the maximum number of models to be plotted. The default is

maxmodels(1000). When this option is specified together with option top(#1), the number of plot-
ted models is the minimum between # and #1.

equalwidths specifies that all plotted model bars have equal widths. By default, the bar widths are

proportional to PMPs. This option may not be specified together with pmpnormalized.

pmpnormalized specifies that the model bar widths correspond to the normalized PMPs of the plotted

models instead of PMPs. After normalization, the plotted range of cumulative PMPs (CPMP) will be

between 0 and 1. This option may not be specified together with option equalwidths.

poscoefopts(rbaropts), negcoefopts(rbaropts), and zerocoefopts(rbaropts) control the look of

bars for the positive, negative, and zero (not-included) coefficients, respectively. rbaropts are any op-

tions as defined in [G-3] barlook options, and barwidth(#), mwidth, and msize(markersizestyle)
as defined in [G-2] graph twoway rbar.
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� � �
Range bar options �

rbaropts control the look of all bars. rbaropts are any options as defined in [G-3] barlook options, and

barwidth(#), mwidth, and msize(markersizestyle) as defined in [G-2] graph twoway rbar.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

The following option is available with bmagraph varmap but is not shown in the dialog box:

all specifies that all models, up to maxmodels(), be shown on the graph. This option may be useful

when the number of visited models is small. This option may not be specified together with top().

Remarks and examples
In the context of BMA, a variable-inclusion map is a graphical representation of which variables or

predictors are included in individual regression models. The plotted models are ranked by the highest

PMP. Each predictor (with a PIP above 0.01) within a model is represented by a colored bar: blue if a

predictor is included in a model with a positive coefficient, red if a coefficient is negative, and gray if

a predictor is not included in the model. This map provides a graphical summary about the included

predictors and their probabilities of being included across models and the signs of their corresponding

regression coefficients. We can also evaluate the complexity of models from this map based on the

number of included predictors.

Example 1: Variable-inclusion map after BMA regression
Recall the performance dataset (Chatterjee and Hadi 2012, sec. 3.3) analyzed in example 1 of

[BMA] bmaregress, where the employees’ satisfaction with their supervisors, rating, is modeled by

six potential predictors.



bmagraph varmap — Variable-inclusion map after BMA regression 149

Let’s fit a linear BMA regression to these data by using bmaregress and plot a variable-inclusion map

by using bmagraph varmap.

. use https://www.stata-press.com/data/r19/performance
(Data on employee satisfaction with supervisor)
. bmaregress rating complaints-advance
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
Model enumeration Groups = 6

Always = 0
Priors: No. of models = 64

Models: Beta-binomial(1, 1) For CPMP >= .9 = 10
Cons.: Noninformative Mean model size = 1.699
Coef.: Zellner’s g

g: Benchmark, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 52.302

rating Mean Std. dev. Group PIP

complaints .7052859 .1224289 1 .99973
learning .0603014 .1285281 3 .25249
advance -.0167921 .073883 6 .13148

privileges -.0074174 .0488635 2 .10998
raises .0070789 .0670475 4 .10642

critical .0009713 .0437848 5 .098534

Always
_cons 14.8472 7.874219 0 1

Note: Coefficient posterior means and std. dev. estimated from 64 models.
Note: Default priors are used for models and parameter g.

From the output, the model space is fully explored through enumeration. There is a total of 26 = 64

models in the full model space. For a detailed interpretation of the above output, see example 1 of

[BMA] bmaregress.
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We use the bmagraph varmap command to construct a detailed variable-inclusion map for the fitted

BMAmodel.

. bmagraph varmap
Computing model probabilities ...

critical

raises

privile~s

advance

learning

complai~s

0 .2 .4 .6 .8 1
Cumulative posterior model probability

Positive
Negative
Not included

Coefficient

All 64 visited models shown. 

Variable-inclusion map

The plot displays all 64 models, which is less than the default 100. The models are ordered by their PMPs

(from highest to lowest), and their CPMPs are displayed on the 𝑥 axis. On the 𝑦 axis, all six predictors

are shown. Each pair of a model and a predictor is represented by a bar with a width that is proportional

to the model’s PMP. The bar is blue if a predictor is included in the model with a positive coefficient. It

is red if a predictor is included in the model with a negative coefficient. It is gray if a predictor is not

included in the model. In our example, because all models are included in the map, the plotted range of

the CPMP 𝑥 axis is between 0 and 1.

The first column corresponds to the model with the highest PMP of about 0.56 (the width of the bar),

which includes only one predictor, complaints. This is not surprising because, from the output of

bmaregress, predictor complaints has by far the highest PIP of 0.9997 of all predictors. We also see

this on the map—the entire row for complaints has blue bars across almost all models.

The next highest-ranking model includes both complaints and learning, the predictor with the

next highest PIP of 0.25. Also, it seems that the coefficients of these two predictors are always positive

(blue bars) whenever they are included in a model. In other words, the two predictors appear to have a

positive association with rating.

Example 2: Customizing the variable-inclusion map
The number of visited regression models can be large, and plotting all of them may become imprac-

tical. In such cases, we may use the top(#) option to show only the top # models with the highest

PMPs. For illustration purposes, we will use top(5) to replicate the variable-inclusion summary table in

example 1 of [BMA] bmastats models.
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. bmagraph varmap, top(5)
Computing model probabilities ...

critical

raises

privile~s

advance

learning

complai~s

0 .2 .4 .6 .8
Cumulative posterior model probability

Positive
Negative
Not included

Coefficient

Top 5 models shown out of 64 visited. 

Variable-inclusion map

Because we are showing only 5 out of 64 models, the maximum range for the CPMP of the plotted models

is less than 80%. The width of each model bar corresponds to the model’s PMP value. You may specify

the pmpnormalized option to rescale CPMP to span the range from 0 to 1.

As we mentioned earlier, variable complaints appears to be included in all models. However, the

models with small PMPs may be represented by bars with widths too small to show the fill color. For

those models, it may not be possible to determine from the map whether the predictor was included in

the model. In that case, we may request that all bar widths be equal instead of being proportional to PMPs

by specifying the equalwidths option.

. bmagraph varmap, equalwidths
Computing model probabilities ...

critical

raises

privile~s

advance

learning

complai~s

0 20 40 60
Model index

Positive
Negative
Not included

Coefficient

All 64 visited models shown. 

Variable-inclusion map

The model index (from 1 to 64) is now displayed on the 𝑥 axis instead of the CPMP. It turns out that

complaints is included only in the first 32 models with the highest PMPs with all 32 coefficients being

positive.
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For a BMAwith many predictors and models, it may become necessary to restrict the list of the plotted

predictors to those having PIP above a certain threshold to improve the readability of the graph. Below,

we use the pipcutoff() option to limit the plotted predictors to only those that have PIP above 0.16.

. bmagraph varmap, equalwidths pipcutoff(.16)
Computing model probabilities ...

learning

complai~s

0 20 40 60
Model index

Positive
Negative
Not included

Coefficient

All 64 visited models shown. 4 predictors with PIP less than .16 not shown.

Variable-inclusion map

Based on the PIP column of the bmaregress output in example 1, we expect four predictors (advance,
privileges, raises, and critical) to be excluded from the plot because their PIP < 0.16. bmagraph
varmap also produces a note following the command specification to inform you about the number of

predictors omitted from the plot.

Methods and formulas
Thewidths of the bars corresponding to eachmodel are proportional to PMPs, unless the equalwidths

option is specified. For methods and formulas of PMPs, see Posterior model probability in Methods and

formulas of [BMA] bmaregress.

The CPMP for a model 𝑗 is a cumulative sum of the first 𝑗th highest PMPs.

Reference
Chatterjee, S., and A. S. Hadi. 2012. Regression Analysis by Example. 5th ed. New York: Wiley.

Also see
[BMA] bmastats models — Model and variable-inclusion summaries after BMA regression

[BMA] bmagraph — Graphical summary for models and predictors after BMA regression

[BMA] bmaregress — Bayesian model averaging for linear regression

[BMA] BMApostestimation — Postestimation tools for Bayesian model averaging

[BMA] Glossary
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Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas Reference
Also see

Description
bmapredict computes Bayesian model averaging (BMA) predictions using current estimation results

produced by bmaregress. Certain predictions such as credible intervals (CrIs) require that you also run
bmacoefsample with the saving() option after bmaregress.

bmareps generates a random subset of Markov chain Monte Carlo (MCMC) replicates of simulated

outcomes from the entire MCMC sample and stores them as new variables in the current dataset. This

command is useful for checking model fit. bmareps requires that you first save the MCMC sample of

model parameters by using the saving() option with the bmacoefsample command.

Quick start
Compute and save posterior predictive means in a variable pmean1 after a BMA regression with a fixed 𝑔

bmaregress y x1-x12
bmapredict pmean1, mean

Compute and save posterior predictive means in a variable pmean2 after a BMA regression with a random

𝑔; requires that bmacoefsample be run after bmaregress
bmaregress y x1-x12, gprior(robust) saving(bmamodel1)
bmacoefsample, saving(bmacoef1)
bmapredict pmean2, mean

Compute 95% CrIs of simulated outcome, and save them in variables cri l and cri u; requires that
bmacoefsample be run after bmaregress with a fixed or random 𝑔

bmaregress y x1-x12, saving(bmamodel2)
bmacoefsample, saving(bmacoef2)
bmapredict cri_l cri_u, cri

Same as above, but simulate an entire predictive outcome dataset, and save it in bmaypred.dta
bmapredict, saving(bmaypred)

Equivalent to the above, but use bayespredict and save results in bayesypred.dta
bayespredict {_ysim}, saving(bayesypred)

Write your own program yfuncprog to compute a more complicated function of a simulated outcome,

and use bayespredict to simulate its posterior distribution

bayespredict (yfunc: @yfuncprog {_ysim}), saving(bayesyfuncpred)

Generate three replicates from the posterior predictive distribution, save them as predy1, predy2, and
predy3, and specify random-number seeds for reproducibility

bmaregress y x1-x12, saving(bmamodel3) rseed(123)
bmacoefsample, saving(bmacoef3) rseed(982)
bmareps predy*, nreps(3) rseed(23672)

153
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Generate log predictive-scores (always available and do not require bmacoefsample)
bmapredict lps, lps

Menu
Statistics > Bayesian model averaging > Predictions

Syntax
Syntax is presented under the following headings:

Compute analytical posterior predictive summaries (available only with fixed g)
Compute MCMC-sample posterior predictive summaries (available after bmacoefsample)
Compute predictions of simulated outcome (available after bmacoefsample)
Generate a subset of MCMC replicates of simulated outcome (available after bmacoefsample)
Compute log predictive-scores

Compute analytical posterior predictive summaries (available only with fixed g)

Analytical posterior mean

bmapredict [ type ] newvar [ if ] [ in ], mean [ analytic ]

Analytical posterior standard deviation

bmapredict [ type ] newvar [ if ] [ in ], std [ analytic ]

Analytical posterior predictive means and standard deviations are available after bmaregress only for

models with a fixed 𝑔, in which case the analytic option is implied.

Compute MCMC-sample posterior predictive summaries (available after bmacoef-
sample)

Posterior mean of simulated outcome

bmapredict [ type ] newvar [ if ] [ in ], mean [ mcmcsample meanopts simopts ]

Posterior median or posterior standard deviation of simulated outcome

bmapredict [ type ] newvar [ if ] [ in ], median | std [ mcmcsample simopts ]

Credible intervals of simulated outcome

bmapredict [ type ] newvar𝑙 newvar𝑢 [ if ] [ in ], cri [ mcmcsample criopts simopts ]

MCMC-sample posterior predictive summaries are available only after bmacoefsample with the

saving() option is used after bmaregress. For models with a random 𝑔, option mcmcsample is

implied for mean and std. This option is always implied for median and cri.
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Compute predictions of simulated outcome (available after bmacoefsample)

Simulate outcome and save in a file

bmapredict [ if ] [ in ], saving(filename[ , replace ]) [ simopts ]

Also see Syntax in [BAYES] bayespredict, particularly for predictions of functions of a simulated out-

come.

Predictions for a simulated outcome are available only after bmacoefsample with the saving() option

is used after bmaregress.

Generate a subset of MCMC replicates of simulated outcome (available after bma-
coefsample)

bmareps [ type ] newrepspec [ if ] [ in ], nreps(#) [ simopts ]

newrepspec is newvar with nreps(1) for a single replicate and stub* with nreps(#), where # is greater
than 1, for multiple replicates.

Replicates of a simulated outcome are available only after bmacoefsample with the saving() option

is used after bmaregress.

Compute log predictive-scores
bmapredict [ type ] newvar [ if ] [ in ], lps

simopts Description

Simulation

rseed(#) random-number seed

[ no ]dots suppress or display dots every 100 iterations and iteration
numbers every 1,000 iterations; default is dots

dots(#[ , every(#) ]) display dots as simulation is performed

meanopts Description

Main

mcse(newvar) create newvar containing Monte Carlo standard errors (MCSEs)

Advanced

batch(#) specify length of block for batch-means calculations; default is batch(0)
corrlag(#) specify maximum autocorrelation lag; default varies

corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

criopts Description

Main

clevel(#) set CrI level; default is clevel(95)
hpd calculate highest posterior density (HPD) CrIs instead of the default

equal-tailed CrIs
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Options
Options are presented under the following headings:

Options for analytical posterior predictive summaries
Options for MCMC-sample posterior predictive summaries
Options for predictions of simulated outcome
Options for bmareps
Option for log predictive-scores

Options for analytical posterior predictive summaries

� � �
Main �

mean with analytic calculates analytical posterior predictive means of an outcome and stores them as

a new variable in the current dataset. For models with fixed 𝑔, option analytic is implied.

std with analytic calculates analytical posterior predictive standard deviations of an outcome and

stores them as a new variable in the current dataset. For models with fixed 𝑔, option analytic is

implied.

analytic specifies to use analytical expressions to calculate posterior predictive means or standard

deviations. This option is implied for models with fixed 𝑔, and it is not available with random 𝑔.
Analytical computations are available directly after bmaregress.

Options for MCMC-sample posterior predictive summaries

� � �
Main �

mean with mcmcsample calculatesMCMC-sample posterior predictive means of a simulated outcome and

stores them as a new variable in the current dataset. For models with random 𝑔, option mcmcsample
is implied.

median calculates posterior medians of a simulated outcome and stores them as a new variable in the

current dataset. Option mcmcsample is always implied with median.

std with mcmcsample calculates MCMC-sample posterior predictive standard deviation of a simulated

outcome and stores them as a new variable in the current dataset. For models with random 𝑔, option
mcmcsample is implied.

cri calculates CrIs for a simulated outcome and stores the corresponding lower and upper bounds in two

new variables in the current dataset. Option mcmcsample is always implied with cri.

mcmcsample specifies to estimate posterior predictive means or standard deviations from the MCMC

sample of model parameters instead of using analytical expressions. This option is the only choice

for models with random 𝑔 and thus is implied with random 𝑔.
mcse(newvar) is for use in a combination with option mean. It adds newvar of storage type type con-

taining MCSEs for the posterior means of a simulated outcome.

clevel(#) specifies the credible level, as a percentage, for equal-tailed and HPD CrIs. The default is

clevel(95) or as set by [BAYES] set clevel. This option requires that cri also be specified.

hpd calculates the HPD CrIs instead of the default equal-tailed CrIs. This option requires that cri also be

specified.
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� � �
Simulation �

rseed(#) sets the random-number seed. This option can be used to reproduce results. rseed(#) is

equivalent to typing set seed # prior to calling bmapredict; see [R] set seed.

nodots, dots, dots(#), and dots(#, every(#)) specify to suppress or display dots during simula-

tion. nodots, the default, suppresses the display of dots. dots displays dots every 100 iterations and

iteration numbers every 1,000 iterations; it is a synonym for dots(100, every(1000)). dots(#)
displays a dot every # iterations. If dots(. . ., every(#)) is specified, then an iteration number is dis-
played every #th iteration instead of a dot. dots(, every(#)) is equivalent to dots(1, every(#)).

� � �
Advanced �

The advanced options are available only with option mean.

batch(#) specifies the length of the block for calculating batch means and an MCSE using batch means.

The default is batch(0), which means no batch calculations. When batch() is not specified, the

MCSE is computed using effective sample sizes instead of batchmeans. batch()may not be combined
with corrlag() or corrtol().

corrlag(#) specifies the maximum autocorrelation lag used for calculating effective sample sizes. The

default is min{500, mcmcsize()/2}. The total autocorrelation is computed as the sum of all lag-𝑘
autocorrelation values for 𝑘 from 0 to either corrlag() or the index at which the autocorrelation

becomes less than corrtol() if the latter is less than corrlag(). Options corrlag() and batch()
may not be combined.

corrtol(#) specifies the autocorrelation tolerance used for calculating effective sample sizes. The

default is corrtol(0.01). For a given model parameter, if the absolute value of the lag-𝑘 autocorre-

lation is less than corrtol(), then all autocorrelation lags beyond the 𝑘th lag are discarded. Options
corrtol() and batch() may not be combined.

Options for predictions of simulated outcome

� � �
Main �

saving(filename[ , replace ]) saves the simulated outcome in filename.dta. It also saves auxiliary

estimation results in filename.ster, which is accessible by specifying estimates use filename. The

replace option specifies to overwrite filename.dta and filename.ster if they exist.

� � �
Simulation �

rseed(#) sets the random-number seed. This option can be used to reproduce results. rseed(#) is

equivalent to typing set seed # prior to calling bmapredict; see [R] set seed.

nodots, dots, dots(#), and dots(#, every(#)) specify to suppress or display dots during simula-

tion. nodots, the default, suppresses the display of dots. dots displays dots every 100 iterations and

iteration numbers every 1,000 iterations; it is a synonym for dots(100, every(1000)). dots(#)
displays a dot every # iterations. If dots(. . ., every(#)) is specified, then an iteration number is dis-
played every #th iteration instead of a dot. dots(, every(#)) is equivalent to dots(1, every(#)).
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Options for bmareps

� � �
Main �

nreps(#) specifies the number of MCMC replicates of simulated outcome to be drawn at random from

the entire sample of MCMC replicates. # must be an integer between 1 and the MCMC sample size,

inclusively. The generated replicates are stored as new variables in the current dataset. For a single

replicate, nreps(1), you specify one new variable name. For multiple replicates, you specify a stub*,
in which case the replicates will be stored in variables stub1, stub2, . . ., stub𝑅, where 𝑅 is the number

of replicates specified in nreps().

� � �
Simulation �

rseed(#) sets the random-number seed. This option can be used to reproduce results. rseed(#) is

equivalent to typing set seed # prior to calling bmareps; see [R] set seed.

nodots, dots, dots(#), and dots(#, every(#)) specify to suppress or display dots during simula-

tion. nodots, the default, suppresses the display of dots. dots displays dots every 100 iterations and

iteration numbers every 1,000 iterations; it is a synonym for dots(100, every(1000)). dots(#)
displays a dot every # iterations. If dots(. . ., every(#)) is specified, then an iteration number is dis-
played every #th iteration instead of a dot. dots(, every(#)) is equivalent to dots(1, every(#)).

Option for log predictive-scores

� � �
Main �

lps calculates log predictive-scores and stores them as a new variable in the current dataset.

Remarks and examples
Bayesian predictions include a simulated outcome, which is a sample from the posterior predictive

distribution of the fitted Bayesian model, and their functions; see [BAYES] bayespredict for details. In

the context of BMA, this posterior predictive distribution also accounts for model uncertainty. Often of

interest are summaries of this distribution such as means, medians, standard deviations, and CrIs.

bmapredict simulates an outcome from its BMA posterior predictive distribution and, optionally,

saves it in a dataset specified in the saving() option. It also computes BMA posterior predictive sum-

maries and stores them as new variables in the current dataset when you specify one of options mean,
median, std, or cri.

For BMAmodels with a fixed 𝑔, you can compute posterior predictive means and standard deviations
analytically or, if an MCMC sample of model parameters is available, from the simulated MCMC predic-

tive sample. The analytical computations are always the default whenever they are available; that is, the

analytic option is implied with the mean and std options with a fixed 𝑔. For BMAmodels with a ran-

dom 𝑔, analytical computations are not available, and thus the MCMC-sample computations are the only

choice—the mcmcsample option is implied with a random 𝑔 with mean and std. For other summaries
such as posterior predictive medians and CrIs (options median and cri), only MCMC-sample estimates

are available regardless of whether parameter 𝑔 is fixed or random; that is, the mcmcsample option is

always implied.
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MCMC-sample computations require that you run the bmacoefsample command with the saving()
option following bmaregress to generate and save a posterior sample of model parameters, which will

be used to produce an MCMC sample of a simulated outcome from its posterior predictive distribution;

see Methods and formulas.

Once a posterior MCMC sample of model parameters is available (by running bmacoefsample), you
can also use bayespredict, one of the standard Bayesian postestimation commands, to obtain BMA

predictions. This command is useful, for instance, if you need to compute any functions of the simulated

outcome; see [BAYES] bayespredict. In fact, typing

. bmapredict, saving(bmaysim)

is equivalent to typing

. bayespredict {_ysim}, saving(bmaysim)

bmareps generates a random subset ofMCMC replicates of a simulated outcome from the entireMCMC

sample and stores them as new variables in the current dataset. This command is useful for checking

model fit. It is similar to the bayesreps command as described in [BAYES] bayespredict.

You can also use the lps option to generate log predictive-scores. This can also be done by using

bmastats lps, generate() and is provided with bmapredict for completeness; see [BMA] bmastats

lps.

bmapredict (as well as bmareps) is a stochastic command; use the rseed() option for reproducibil-

ity. Remember that to have a complete reproducibility, you will also need to specify the rseed() option

with bmacoefsample and bmaregress, which are also stochastic commands. If you do not need to

reproduce each individual step, a better approach is to set a random-number seed once at the beginning

of your analysis by using set seed (see [R] set seed).

Example 1: Prediction for BMA linear regression with fixed g
Consider theAmes housing dataset (De Cock 2011), ameshouses, also used in a Kaggle competition,

which describes residential houses sold in Ames, Iowa, between 2006 and 2010. It contains about 80

housing (and related) characteristics such as home size, amenities, and location. This dataset is often

used for building predictive models for home sale price, saleprice. We will use BMA to model home

sale price and evaluate its predictive performance. Here we will use just a few predictors to demonstrate

some of the bmapredict features.

We split the dataset into two subsamples in the ratio of 2 to 1. The first subsample will be used for

fitting the models and the second for testing. We use the log-transformed sale price, lsaleprice, as our
outcome variable. And we generate a new variable, age, to record the age of home in years at the time
of sale.

. use https://www.stata-press.com/data/r19/ameshouses
(Ames house data)
. splitsample, generate(sample) nsplit(2) split(2 1) rseed(18)
. generate double lsaleprice = log(saleprice)
. generate age = yrsold - yearbuilt + 1

We fit a BMA linear model for lsaleprice and use just a few of the available predictors for demon-

stration purposes. The type of sale, saletype, is included as a factor variable. The overall home quality
and condition are included as ordinal predictors. We use the default specifications for model and 𝑔 pri-

ors. The total number of predictors, 29, makes model enumeration impractical, so the MCMC model

composition (MC3) sampling is used instead. And we specify the rseed() option for reproducibility.
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. bmaregress lsaleprice i.saletype overallqual overallcond age
> paveddrive grlivarea totalbsmtsf garagearea garagecars
> bedroom kitchenabvgr kitchenqual bsmtqual exterqual extercond
> fullbath halfbath fireplaces wooddecksf lotarea
> if sample == 1, rseed(18)
Burn-in ...
Simulation ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 973
Linear regression No. of predictors = 27
MC3 sampling Groups = 27

Always = 0
No. of models = 454

For CPMP >= .9 = 85
Priors: Mean model size = 11.435

Models: Beta-binomial(1, 1) Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 10,000
Coef.: Zellner’s g Acceptance rate = 0.1410

g: Benchmark, g = 973 Shrinkage, g/(1+g) = 0.9990
sigma2: Noninformative Mean sigma2 = 0.027

Sampling correlation = 0.9690

lsaleprice Mean Std. dev. Group PIP

overallqual .084876 .0069513 9 1
overallcond .0624909 .0053748 10 1

age -.0031076 .0002871 11 1
grlivarea .0001866 .0000233 13 1

garagecars .091476 .0099425 16 1
fireplaces .0570484 .0100975 25 1
wooddecksf .0002054 .0000468 26 1

totalbsmtsf .0000683 .0000162 14 .99776
kitchenqual -.0276135 .0105654 19 .94116

lotarea 1.86e-06 8.67e-07 27 .89429
bedroomabvgr .0138705 .013693 17 .56959

saletype
New .0184764 .0285989 6 .34325

bsmtqual -.0047449 .0080652 20 .30144

saletype
CWD -.0148399 .0723153 1 .056743

paveddrive .0020311 .0098775 12 .056586
extercond .000576 .0029977 22 .051934
fullbath .0005671 .0040245 23 .034588

saletype
WD -.0004454 .0052115 8 .032251

kitchenabvgr -.0007089 .0061078 18 .022655

saletype
Oth .0021639 .0228432 7 .022015

halfbath .0001984 .002301 24 .021049
exterqual -.0001345 .0020265 21 .020406
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saletype
Con .0018756 .0258891 2 .017179

ConLI -.0011395 .0225588 4 .015548

garagearea 5.36e-08 6.54e-06 15 .014047

saletype
ConLD .0005622 .0100442 3 .013859

Always
_cons 10.74662 .0676172 0 1

Note: Coefficient posterior means and std. dev. estimated from 454 models.
Note: Default priors are used for models and parameter g.
Note: 1 predictor with PIP less than .01 not shown.

The bmaregress commands visited a total of 454 models with an average size of about 11. There are 11

predictors with posterior inclusion probability (PIP) greater than 0.5. Whether the home is new and the

height of the basement (bsmtqual) appear to impact the home prices, too, with respective PIPs of 0.34

and 0.3. The other predictors have PIPs below 10%.

Let’s use the bmapredict command to compute the posterior mean predictions for lsaleprice on

the test subsample, then compute the mean squared errors of these predictions.

. bmapredict pmean1 if sample == 2, mean
note: computing analytical posterior predictive means.
. generate double sqerr1 = (lsaleprice-pmean1)^2
(973 missing values generated)
. summarize sqerr1

Variable Obs Mean Std. dev. Min Max

sqerr1 487 .0177806 .0354926 1.24e-07 .5608268

The estimated mean squared error for the model is 0.018.

Parameter 𝑔 is fixed in our example, so bmapredict computed the analytical posterior predictive

mean. For comparison, we can compute one based on an MCMC sample. To do this, we first need to

simulate a posterior sample of model parameters by using bmacoefsample. To save time, we use a

smaller MCMC sample of 1,000.

. bmaregress, saving(hprices_bmareg1)
note: file hprices_bmareg1.dta saved.
. bmacoefsample, saving(hprices_sample1) rseed(18) mcmcsize(1000) nodots
Simulation ...
file hprices_sample1.dta saved.
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We then specify the mcmcsample option with bmapredict to compute the MCMC-sample posterior

predictive mean.

. bmapredict pmean1_s if sample == 2, mean mcmcsample rseed(18)
note: computing posterior predictive means using simulation.
Computing predictions ...
. summarize pmean1 pmean1_s

Variable Obs Mean Std. dev. Min Max

pmean1 487 12.03638 .3525371 11.10996 12.97869
pmean1_s 487 12.03606 .3524122 11.11674 12.98349

The two predicted means are very similar, as is expected provided the MCMC sample size is sufficiently

large and the MCMC converged.

Now that we have an MCMC sample of model parameters, we can, for example, generate predictive

CrIs for the test subsample and check their coverage.

. bmapredict cril1 criu1 if sample == 2, cri rseed(18)
note: computing credible intervals using simulation.
Computing predictions ...
. generate cover1 = lsaleprice < criu1 & lsaleprice > cril1 if sample == 2
(973 missing values generated)
. summarize cover1

Variable Obs Mean Std. dev. Min Max

cover1 487 .9774127 .1487364 0 1

The coverage of the simulated 95% equal-tailed predictive CrIs is 98%, slightly larger than expected.

Example 2: Prediction for BMA linear regression with random g
The usage of bmapredict after a BMA linear regression with random 𝑔 is slightly different. To il-

lustrate the prediction workflow, let’s fit the same BMA regression as in example 1 but use the random

hyperg(3) prior for parameter 𝑔 here.

. bmaregress lsaleprice i.saletype overallqual overallcond age
> paveddrive grlivarea totalbsmtsf garagearea garagecars
> bedroom kitchenabvgr kitchenqual bsmtqual exterqual extercond
> fullbath halfbath fireplaces wooddecksf lotarea
> if sample == 1, gprior(hyperg 3) rseed(18)
Burn-in ...
Simulation ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 973
Linear regression No. of predictors = 27
MC3 and adaptive MH sampling Groups = 27

Always = 0
No. of models = 678

For CPMP >= .9 = 319
Priors: Mean model size = 12.622

Models: Beta-binomial(1, 1) Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 10,000
Coef.: Zellner’s g Acceptance rate = 0.5261

g: Hyper-g(3)
sigma2: Noninformative Mean sigma2 = 0.027
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Sampling correlation = 0.8885

lsaleprice Mean Std. dev. Group PIP

overallqual .084121 .0070143 9 1
overallcond .0626002 .0054331 10 1

age -.0030242 .000306 11 1
grlivarea .0001802 .0000232 13 1

garagecars .0906061 .0105574 16 1
fireplaces .0576947 .0101318 25 1
wooddecksf .0002048 .000047 26 1

totalbsmtsf .0000691 .0000165 14 .9968
kitchenqual -.0278064 .0102489 19 .9515

lotarea 1.89e-06 8.37e-07 27 .9103
bedroomabvgr .0182072 .013439 17 .7243

bsmtqual -.0076919 .0091544 20 .4843

saletype
New .022116 .0305646 6 .4058

paveddrive .0069869 .0175817 12 .1869

saletype
CWD -.0424225 .1177667 1 .161

extercond .0011747 .0041903 22 .1077
garagearea 7.44e-07 .0000155 15 .0755

kitchenabvgr -.0024381 .0112473 18 .0752

saletype
ConLD .0036524 .0242701 3 .0719

fullbath .0010832 .0055586 23 .0715

saletype
ConLw .000148 .0221823 5 .0701

Con .0078374 .0522285 2 .0688
WD -.0002908 .0080338 8 .0687

halfbath .0005647 .0038594 24 .0544

saletype
ConLI -.0038273 .0413487 4 .0521

Oth .0039455 .0312492 7 .0437

exterqual -.0003791 .0032394 21 .0416

Always
_cons 10.75005 .0707137 0 1

Note: Coefficient posterior means and std. dev. estimated from 678 models.
Note: Default prior is used for models.

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

g 425.3529 206.9134 6.15565 375.5357 179.5198 963.0143
Shrinkage .9971914 .0011648 .000033 .9973442 .9944604 .9989627
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The number of visited models is larger, 678 versus 454, as is the posterior mean model size, 13 versus

11.

Unlike for BMA models with fixed 𝑔, the mean and standard deviations cannot be computed ana-

lytically with random 𝑔. All posterior predictive summaries now need to be estimated from an MCMC

predictive sample of lsaleprice. As in example 1 for MCMC-sample mean and CrIs, we first need to

run bmacoefsample to obtain a posterior sample of model parameters.

. bmaregress, saving(hprices_bmareg2)
note: file hprices_bmareg2.dta saved.
. bmacoefsample, saving(hprices_sample2) rseed(18) mcmcsize(1000) nodots
Simulation ...
file hprices_sample2.dta saved.

We compute posterior mean predictions and the mean squared error for these predictions. Because

our BMAmodel uses random 𝑔, the mcmcsample option is automatically implied.

. bmapredict pmean2 if sample == 2, mean rseed(18)
note: computing posterior predictive means using simulation; option mcmcsample

implied.
Computing predictions ...
. generate double sqerr2 = (lsaleprice-pmean2)^2
(973 missing values generated)
. summarize sqerr2

Variable Obs Mean Std. dev. Min Max

sqerr2 487 .0180237 .0358707 7.16e-08 .5625565

The estimated mean squared error for this model is 0.018.

We can also compute 95% equal-tailed predictive CrIs and their coverage in this example.

. bmapredict cril2 criu2 if sample == 2, cri rseed(18)
note: computing credible intervals using simulation.
Computing predictions ...
. generate cover2 = lsaleprice < criu2 & lsaleprice > cril2 if sample == 2
(973 missing values generated)
. summarize cover2

Variable Obs Mean Std. dev. Min Max

cover2 487 .9794661 .1419635 0 1

The estimated coverage is 98%.

The predictive performances of the two models, with fixed and random 𝑔, are similar in terms of the
mean squared error and CrI coverage.

Example 3: Predictions by using bayespredict
After generating a sample of model parameters by using bmacoefsample, you can also use the more

advanced functionality of the bayespredict command to compute BMA predictions. For instance, let’s

generate a posterior sample of mean squared prediction errors, which are functions of a simulated out-

come. There is no automatic way to compute this statistic by using any of the available options of

bmapredict or bayespredict, so we need to write a program that computes it.
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. program psqerr2
1. args mse ysim
2. local touse $BAYESPR_touse
3. local y $BAYESPR_extravars
4. tempvar v
5. generate double ‘v’ = (‘y’-‘ysim’)^2 if ‘touse’
6. summarize ‘v’, meanonly
7. scalar ‘mse’ = r(mean)
8. end

The psqerr2 program has two arguments: mse to store the mean squared error value and ysim that

will contain the simulated outcome generated by bayespredict for each MCMC iteration. To compute

the squared errors, we will need the actual outcome values, labeled as y in the program, which will be

passed to the program as an extra variable. The program then uses the observed outcome values and the

simulated values to compute the squared errors, using the proper estimation sample ‘touse’. Finally, it
saves the mean of the squared errors in the scalar ‘mse’.

Next, we call bayespredict by using its syntax for user-defined programs; see [BAYES] bayespre-

dict. We provide the name of our program and the vector of simulations of the outcome, { ysim}. We

also provide the name of the observed outcome variable, lsaleprice, in the extravars() option. And

we save our simulated squared errors in the bmapred2 dataset for later use.

. bayespredict (sqerr2:@psqerr2 {_ysim}, extravars(lsaleprice)) if sample == 2,
> saving(bmapred2) rseed(18)
Computing predictions ...
file bmapred2.dta saved.
file bmapred2.ster saved.

We can use the bayesstats summary command (see [BAYES] bayesstats summary) to compute, for

instance, the posterior mean of the mean squared error estimates.

. bayesstats summary {sqerr2} using bmapred2
Posterior summary statistics MCMC sample size = 1,000

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

sqerr2 .0461 .0030704 .000097 .0460156 .0402083 .0525146

The posterior mean is about 0.046. It is, as expected, larger than the mean squared error calculated in

example 2, where we used the predicted mean outcome to compute the errors. In practice, there is no

reason to compute the mean squared error via simulation, as we showed in this example. We did this

purely to demonstrate a more advanced usage of bayespredict.

Methods and formulas
Methods and formulas are presented under the following headings:

BMA predictions for the linear model
Analytic predictive mean and standard deviation for fixed g
Simulating outcome from its posterior predictive distribution
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BMA predictions for the linear model
We consider predictions for a BMA linear model, which is fit by the bmaregress command. Consider

a (𝑝 + 1) × 1 vector of regression coefficients and the intercept in the original metric, θ = (β′, 𝛼)′ and

error variance 𝜎2.

Let X be a 𝑛 × 𝑝 matrix of predictor values used to fit the BMA model, X∗ be a 𝑞 × 𝑝 matrix of

new predictor values, y∗ be a vector of posterior predictions of size 𝑞, and X∗
1 = [X∗ 1𝑞], where 1𝑞 is a

𝑞 × 1 vector of ones. In some cases, certain statistics of y∗, such as mean and standard deviation, can

be computed directly; others require simulations from the predictive distribution. We consider these two

cases separately.

Analytic predictive mean and standard deviation for fixed g

With a fixed 𝑔, the posterior predictive mean and variance of y∗ can be computed analytically from

the posterior means of θ = (β′, 𝛼)′ and 𝜎2 and posterior variance of θ as follows,

𝐸(y∗|y,X,X∗
1) = X∗

1𝐸(θ|y)

Var(y∗|y,X,X∗
1) = 𝐸(𝜎2|y)I𝑞 + X∗

1 Var(θ|y)X∗
1

′

where 𝐸(θ|y), 𝐸(𝜎2|y), and Var(θ|y) are given, respectively, by (11), (13), and (12) in Methods and

formulas of [BMA] bmaregress.

The posterior mean 𝐸(y∗|y,X,X∗
1) is computed with options mean and analytic. The posterior

standard deviation of y∗ is the square root of the diagonal of Var(y∗|y,X,X∗
1). It is computed with

options std and analytic.

Simulating outcome from its posterior predictive distribution

The posterior predictive distribution of y∗ can be estimated via MCMC simulations. Suppose we have

a sample {β𝑡, 𝛼𝑡, 𝜎2
𝑡 }𝑇

𝑡=1 of regression coefficients, intercepts, and error variances from a BMA linear

model. Such posterior samples are generated by the bmacoefsample command (see [BMA] bmacoef-

sample). Here 𝑇 is the MCMC sample size as stored in e(mcmcsize2) by bmacoefsample.

For each 𝑡, an error vector ε∗
𝑡 and outcome y

∗
𝑡 are simulated according to

ε∗
𝑡 |β𝑡, 𝜎2

𝑡 ,X ∼ 𝑁𝑞(0, 𝜎2
𝑡 I𝑞)

y∗
𝑡 |X,X∗

1 = 𝛼𝑡 + X∗β𝑡 + ε∗
𝑡

The result is a predictive sample {y∗
𝑡}𝑇

𝑡=1, which is conditionally independent given X
∗ and X.

If you use bmapredict, saving(filename) on the same dataset used to fit the model, the simulated

outcome { ̃y}𝑇
𝑡=1 of size 𝑛 × 𝑇 will be saved in filename.dta with the observed data matrix X being

used in place of X∗ in the above. This is sometimes called a replication sample. Posterior summaries

corresponding to options mean mcmcsample, median, std mcmcsample, and cri are computed based

on the simulated outcome {ỹ}𝑇
𝑡=1 as described in Methods and formulas of [BAYES] bayespredict.

bmareps generates a subset of replicates {ỹ}𝑇reps

𝑡=1 , where 𝑇reps is determined by the nreps(#) option.
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For the computation of log predictive-scores (option lps), see Methods and formulas of [BMA] bmas-

tats lps.

Reference
De Cock, D. 2011. Ames, Iowa: Alternative to the Boston housing data as an end of semester regression project. Journal

of Statistics Education 19(3). https://doi.org/10.1080/10691898.2011.11889627.

Also see
[BMA] BMApostestimation — Postestimation tools for Bayesian model averaging

[BMA] bmaregress — Bayesian model averaging for linear regression

[BMA] bmacoefsample — Posterior samples of regression coefficients

[BMA] Glossary

[BAYES] bayespredict — Bayesian predictions

[U] 20 Estimation and postestimation commands

https://doi.org/10.1080/10691898.2011.11889627
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Description
The following bmastats subcommands are available after bmaregress:

Command Description

bmastats models posterior model and variable-inclusion summaries

bmastats msize model-size summary

bmastats pip posterior inclusion probabilities (PIPs) for predictors

bmastats jointness jointness measures for predictors

bmastats lps log predictive-score

Remarks and examples
See [BMA] BMApostestimation for a short introduction to Bayesian model averaging (BMA) postes-

timation.

The bmastats models command reports models with high posterior model probability and their

included predictors. You can also use it to explore cumulative posterior model probability. See

[BMA] bmastats models.

The bmastats msize command provides model-size summaries for the prior and posterior model

sizes; see [BMA] bmastats msize.

The bmastats pip command reports PIP for predictors. In the context of BMA, PIP is used to measure

the importance of one predictor relative to the others. You can use this command to report PIP for specific

predictors. See [BMA] bmastats pip.

The bmastats jointness command provides various jointness measures, which examine the ten-

dency of pairs of predictors to be included together, separately, or independently in the models; see

[BMA] bmastats jointness.

The bmastats lps command computes log predictive-scores, which can be used to compare model

goodness of fit and model predictive performance; see [BMA] bmastats lps.

Also see
[BMA] bmaregress — Bayesian model averaging for linear regression

[BMA] bmacoefsample — Posterior samples of regression coefficients

[BMA] BMApostestimation — Postestimation tools for Bayesian model averaging

[BMA] Intro — Introduction to Bayesian model averaging

[BMA] Glossary
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
bmastats jointness reports various jointness measures between pairs of predictors after the

bmaregress command. These jointness measures assess the degree of inclusion dependency between

two predictors across the models visited by bmaregress.

Quick start
Compute all available jointness measures for predictors x1 and x2

bmastats jointness x1 x2

Compute the default Doppelhofer–Weeks jointness measure for predictors x1 through x4
bmastats jointness x1-x4

Same as above, but compute Ley–Steel type 2 jointness measure

bmastats jointness x1-x4, lsteel2

Same as above, but compute modified Yule’s 𝑄 jointness measure

bmastats jointness x1-x4, yuleqm frequency

Compute all available jointness measures

bmastats jointness x1-x4, all

Menu
Statistics > Bayesian model averaging > Jointness measures

169
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Syntax
bmastats jointness varlist [ , jointopts frequency ]

jointopts Description

all all available jointness measures; default with two predictors

dweeks Doppelhofer–Weeks measure; default with more than two predictors

lsteel1 Ley–Steel type 1 measure

lsteel2 Ley–Steel type 2 measure

yuleq Yule’s 𝑄 measure

yuleqm modified Yule’s 𝑄 measure; available only with sampling and
requires option frequency

ls1 synonym for lsteel1
ls2 synonym for lsteel2
yq synonym for yuleq
yqm synonym for yuleqm

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

all computes and reports all available jointness measures. This is the default for two predictors. If more

than two predictors are specified, one table for each measure is reported.

dweeks computes and reports the Doppelhofer–Weeks measure. This is the default when more than two

predictors are specified. dw is a synonym for dweeks.

lsteel1 computes and reports the Ley–Steel type 1 measure. ls1 is a synonym for lsteel1.

lsteel2 computes and reports the Ley–Steel type 2 measure. ls2 is a synonym for lsteel2.

yuleq computes and reports Yule’s 𝑄 measure. yq is a synonym for yuleq.

yuleqm computes and reports the modified Yule’s 𝑄 measure. yqm is a synonym for yuleqm. This

measure is available only with sampling and requires that you also specify option frequency.

frequency specifies that frequency estimates of posterior model probabilities (PMPs) based on Markov

chain Monte Carlo be used in computations. These estimates are available only with sampling meth-

ods, when MCMC sample is available. That is, they are not available with model enumeration. With

a fixed 𝑔, analytical PMPs are used in computations by default. With a random 𝑔, analytical PMPs are

not available, and thus frequency PMPs are used (option frequency is implied).

Remarks and examples
Remarks are presented under the following headings:

Jointness as a measure of variable-inclusion dependence
Example: Jointness of growth determinants
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Jointness as a measure of variable-inclusion dependence
In Bayesian model averaging (BMA), marginal inferential measures such as posterior inclusions prob-

abilities (PIPs) describe the importance of a single predictor in explaining the outcome after accounting

for model uncertainty. However, joint inferential measures that explore the interrelations between pre-

dictors are often of interest too. For instance, we might want to know whether the importance of one

predictor is affected by the presence of another across all the models. BMA provides various jointness

measures to address this.

BMA defines jointness measures with respect to the joint posterior distribution of inclusion of predic-

tors over the model space. Specifically, bivariate jointness measures are used to describe the inclusion

patterns for pairs of predictors. That is, bivariate jointness assesses the tendency of two predictors to

be included together or exclusively across the model space. In what follows, we will imply “bivariate

jointness measures” when we say “jointness measures”.

In general, jointness means that the two predictors are complements; that is, they add additional ex-

planatory power for the outcome when included together. Thus, these predictors tend to be included

together in a model with high PIP. Disjointness means that the two predictors are substitutes; that is,

when one predictor is in a model, the inclusion of the other does not add any additional explanatory

power for the outcome. These predictors tend to be excluded whenever the other one is in a model.

BMA literature introduces various jointness measures. The working paper by Doppelhofer andWeeks

(2006) was the first to introduce a jointness measure in the context of BMA. Later, Doppelhofer and

Weeks (2009) introduced a modified version of the original measure, which we refer to as the Doppel-

hofer–Weeks measure, or DW.

DW is defined as the log of the cross-product ratio of binary indicators of predictor inclusion. It cor-

responds to the log of the ratio of posterior odds of including one predictor given the other is included to

that of including that predictor given the other is not included. DW takes values in the (−∞, ∞) inter-
val. A positive DW indicates jointness between two predictors, and a negative DW indicates disjointness.

DW is undefined whenever the PIP of either predictor is zero or one. The authors provide the following

thresholds to interpret this measure:

Table 1. Thresholds for the DW measure

DW Interpretation

(−∞, −2) Strong disjointness

[−2, −1) Significant disjointness

[−1, 1] Independent inclusion

(1, 2] Significant jointness

(2, ∞) Strong jointness

Ley and Steel (2007) introduce two other measures of jointness, the Ley–Steel type 1 measure (LS1)

and the Ley–Steel type 2measure (LS2). LS1 is defined as the ratio of the posterior probability of including

both predictors to that of including either one. LS2 is defined as the ratio of the posterior probability of

including both predictors to that of including either one, but not both. The latter corresponds to the

posterior odds ratio of the models that include both predictors to the models that include these predictors

individually. These measures take values on [0, 1] and [0, ∞), respectively. Unlike DW, LS1 and LS2 are

defined even when the PIP of one of the predictors equals zero or one. For both measures, low values
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are interpreted as evidence of disjointness between the two predictors, and high values as evidence of

jointness. The authors propose the following thresholds to interpret LS2 [LS1 can be determined based

on LS1 = LS2/(1 + LS2)]:

Table 2. Thresholds for the LS2 and LS1

LS2 LS1⋆ Interpretation

[0, 0.01) [0, 0.01) Decisive disjointness

[0.01, 0.03) [0.01, 0.03) Very strong disjointness

[0.03, 0.1) [0.03, 0.09) Strong disjointness

[0.1, 0.22) [0.09, 0.18) Favorable disjointness

[0.22, 3) [0.18, 0.75) Independent inclusion

[3, 10) [0.75, 0.91) Favorable jointness

[10, 30) [0.91, 0.97) Strong jointness

[30, 100) [0.97, 0.99) Very strong jointness

[100, ∞) [0.99, 1] Decisive jointness

⋆ rounded to 0.01 based on LS1 = LS2/(1 + LS2)

The Yule’s 𝑄 binary similarity measure (YQ; for example, Yule [1912]) is also used as one of the

jointness measures in BMA, where the inclusion of a predictor in a model is viewed as a binary event.

This measure then compares the number of pairs in agreement (both predictors included or excluded) with

the number of pairs in disagreement (only one of the predictors is included) relative to the total number

of pairs. It takes values on [−1, 1] and, as pointed out by Hofmarcher et al. (2018), can be viewed as a
mapping of DW from (−∞, ∞) to [−1, 1] with more interpretable bounds. PositiveYQ implies jointness,

negativeYQ implies disjointness, andYQ close to zeromeans there is no association between the inclusion

of the two predictors.

Like DW, YQ is undefined for predictors with PIPs equal to zero or one. To rectify this, in the case of

sampling, Hofmarcher et al. (2018) proposed a modified Yule’s 𝑄 measure (YQM), which can be viewed

as a zero-cells adjustment in a cross-tabulation of the two binary inclusion indicators that adds 0.5 to zero

cells (with a slight denominator adjustment). The rationale for this adjustment comes from assuming a

multinomial distribution for the four counts in the cross-tabulation and a conjugate Dirichlet prior for

the multinomial probabilities. An uninformative Jeffreys hyperprior is assumed for the parameters of the

Dirichlet prior, which leads to the equal-cell adjustments of 0.5 for each cell. The interpretation of YQM

is the same as for YQ.

There is no definitive recommendation in the literature for which measure should be preferred in prac-

tice. Hofmarcher et al. (2018) compare several theoretical properties of the five measures, and onlyYQM

satisfies all properties considered by the authors. Unlike LS1, LS2, andYQM, the DW andYQmeasures are

undefined for predictors with PIPs of zero or one, but Man (2018) finds that DW produces more diverse

results across various datasets, one of the desirable properties of patterns, compared with LS1 and LS2.

The latter tend to produce more similar results across different datasets often favoring disjointness. Man

(2018) concludes that jointness measures should be interpreted carefully in practice and that perhaps an

aggregation of information from different measures might be a better approach than choosing just one

measure.
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Example: Jointness of growth determinants
In this section, we demonstrate the use of bmastats jointness to compute several jointness mea-

sures for the economic growth data considered by Hofmarcher et al. (2018) and Ley and Steel (2007),

among others.

For a pair of predictors, bmastats jointness reports all available jointness measures. If more pre-

dictors are specified, the command reports theDWmeasure by default, but you can request other measures

by specifying the respective options or use the all option to report all measures. The YQM measure is

available only with sampling and only when the frequency option is also specified.

Example 1: Jointness of growth determinants
Consider the econgrowth dataset from example 17 of [BMA] bmaregress, where a country’s eco-

nomic growth is modeled using 41 potential predictors, but here, to save time, we use a smaller MCMC

size of 50,000.
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. use https://www.stata-press.com/data/r19/econgrowth
(Economic growth data)
. bmaregress gdpgrowth abslat-yrsopen, mprior(uniform) mcmcsize(50000) rseed(18)
Burn-in ...
Simulation ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 72
Linear regression No. of predictors = 41
MC3 sampling Groups = 41

Always = 0
No. of models = 6,394

For CPMP >= .9 = 1,100
Priors: Mean model size = 9.422

Models: Uniform Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 50,000
Coef.: Zellner’s g Acceptance rate = 0.1720

g: Benchmark, g = 1,681 Shrinkage, g/(1+g) = 0.9994
sigma2: Noninformative Mean sigma2 = .000055

Sampling correlation = 0.7884

gdpgrowth Mean Std. dev. Group PIP

gdp60 -.0162155 .0029558 16 .99968
confucian .0563032 .0125301 9 .9993

lifeexp .0008464 .0003022 22 .96505
equipinv .1647531 .0609101 12 .95748

subsahara -.0119874 .007829 38 .7794
muslim .0087687 .0070261 24 .68554

ruleoflaw .0087141 .0085463 35 .56117
ecoorg .0014106 .0015073 10 .51286

protestants -.0060471 .0070828 30 .48112
yrsopen .0069856 .0080953 41 .4714

nequipinv .0257697 .0321904 25 .43821
mining .0163398 .0221579 23 .40574

latamerica -.0013252 .0035112 21 .15603
prscenroll .0032339 .0084244 31 .15337

buddha .0015631 .0046289 6 .12457
blmktpm -.0009528 .0028545 4 .12028

catholic -.000449 .0026236 7 .092943
hindu -.001704 .0068042 18 .073258

civllib -.0001468 .0006411 8 .062838
rfexdist -2.53e-06 .0000139 34 .042526

prexports -.0004325 .0023676 29 .041549
polrights -.0000654 .0003753 27 .039649
wardummy -.0000986 .0007291 39 .026089
english -.0001632 .0012182 11 .025993

age -1.13e-06 8.39e-06 2 .024626
labforce 1.26e-09 1.29e-08 20 .023675
foreign .0001093 .0008783 14 .021918
spanish .0000587 .0007927 36 .016174
stdbmp -2.46e-07 2.48e-06 37 .015815
french .0000664 .0006795 15 .01551
ethnol .0000719 .0008001 13 .013968

Always
_cons .0700867 .0203619 0 1

Note: Coefficient posterior means and std. dev. estimated from 6,394 models.
Note: Default prior is used for parameter g.
Note: 10 predictors with PIP less than .01 not shown.
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Let’s compute all available jointness measures for a pair of predictors, say, political rights,

polrights, and civil liberties, civllib.

. bmastats jointness polrights civllib
Computing model probabilities ...
Variables: polrights civllib

Jointness

Doppelhofer--Weeks -2.994163
Ley--Steel type 1 .0013503
Ley--Steel type 2 .0013522

Yule’s Q -.9046195

Notes: Using analytical PMPs. See
thresholds.

All reported jointness measures suggest disjointness or substitutability between these two predictors.

Based on table 1, the DW value suggests strong disjointness (−2.99 < −2). Based on table 2, LS1 and

LS2 values suggest decisive disjointness (0.0014 < 0.01). The YQ value of −0.9 is close to −1, which

also suggests strong disjointness. The results suggest that the presence of one of polrights or civllib
in the model greatly reduces the probability of inclusion of the other predictor.

From bmaregress, the initial GDP (gdp60), the fraction Confucian (confucian), and the life ex-

pectancy (lifeexp) are among the influential predictors of the economic growth. Let’s examine their

pairwise jointness by computing their DW scores first.

. bmastats jointness gdp60 confucian lifeexp, dweeks
Computing model probabilities ...
Doppelhofer--Weeks jointness

gdp60 confucian lifeexp

gdp60 . . 7.073402
confucian . . 3.076793

lifeexp 7.073402 3.076793 .

Notes: Using analytical PMPs. See thresholds.
The measure is undefined in some cases.

Variables lifeexp and confucian exhibit strong jointness (DW = 3.08 > 2) and thus can be viewed as

complements. The same applies to predictors lifeexp and gdp60. But the measure is missing (unde-

fined) for gdp60 and confucian, which can happen as discussed in Jointness as a measure of variable-
inclusion dependence.

Let’s take a closer look at this pair of predictors:

. bmastats jointness confucian gdp60, dweeks
Computing model probabilities ...
Variables: confucian gdp60

Jointness

Doppelhofer--Weeks .

Notes: Using analytical PMPs. See
thresholds. Some measures are
undefined.
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. display as txt ”Prob. both excluded = ” as res r(p00)
Prob. both excluded = 0
. display as txt ”Prob. only gdp60 included = ” as res r(p01)
Prob. only gdp60 included = .00070228
. display as txt ”Prob. only confucian included = ” as res r(p10)
Prob. only confucian included = .00031608
. display as txt ”Prob. both included = ” as res r(p11)
Prob. both included = .99898164

For a pair of predictors, bmastats jointness stores the respective joint probabilities of inclusion in

r(p00), r(p01), r(p10), and r(p11); see Methods and formulas for details. We can see that there are

no models in which both predictors are excluded, r(p00) = 0, and there are very few models in which

gdp60 is included but confucian is not, and vice versa. These results are not surprising given that

gdp60’s PIP is almost 1. Given the high probability r(p11) = 0.999 for both predictors to be included

together, it might not be unreasonable to suspect jointness between these two predictors.

But let’s explore other measures. Because the LS measures tend to provide similar results, let’s look

at just one of them.

. bmastats jointness gdp60 confucian lifeexp, lsteel2
Computing model probabilities ...
Ley--Steel type 2 jointness

gdp60 confucian lifeexp

gdp60 . 980.9682 27.85594
confucian 980.9682 . 27.5357

lifeexp 27.85594 27.5357 .

Notes: Using analytical PMPs. See thresholds.

All three pairs of predictors exhibit strong jointness according to the LS2 measure.

Because of the similarity in the definitions of the DW and YQ measures, we would expect the latter

to be missing, too, for the confucian and gdp60 pair. We leave this for you to verify by specifying the

yuleq option with bmastats jointness.

Because sampling is used in this example, we can also compute the YQM measure. To do this, we

should also specify the frequency option to use frequency PMPs in the computation.

. bmastats jointness gdp60 confucian lifeexp, yuleqm frequency
Modified Yule’s Q jointness

gdp60 confucian lifeexp

gdp60 . -.9999963 .9843265
confucian -.9999963 . .5851771

lifeexp .9843265 .5851771 .

Notes: Using frequency PMPs. See thresholds.

All values are above 0.5, which suggests strong jointness for all pairs of predictors.
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It appears that gdp60, confucian, and lifeexp can be viewed as complements in describing the

economic growth, gdpgrowth, which is consistent with findings in Hofmarcher et al. (2018) and Ley

and Steel (2007).

Stored results
bmastats jointness stores the following in r() with two predictors:

Scalars

r(dw) Doppelhofer–Weeks measure

r(ls1) Ley–Steel type 1 measure

r(ls2) Ley–Steel type 2 measure

r(yq) Yule’s 𝑄 measure

r(yqm) modified Yule’s 𝑄 measure (when available)

r(p00) posterior probability of excluding both predictors

r(p01) posterior probability of including only the second predictor

r(p10) posterior probability of including only the first predictor

r(p11) posterior probability of including both predictors

Macros

r(varnames) names of specified variables

r(pmptype) analytical or frequency

bmastats jointness stores the following in r() with more than two predictors:

Macros

r(varnames) names of specified variables

r(pmptype) analytical or frequency

Matrices

r(dwmat) Doppelhofer–Weeks measures

r(ls1mat) Ley–Steel type 1 measures

r(ls2mat) Ley–Steel type 2 measures

r(yqmat) Yule’s 𝑄 measures

r(yqmmat) modified Yule’s 𝑄 measures (when available)
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Methods and formulas
Consider two predictors 𝑋𝑢 and 𝑋𝑣 of outcome y. Let 𝑈 denote the event that 𝑋𝑢 is included in a

model and 𝑉 denote the event that 𝑋𝑣 is included in a model. Let 𝑈𝑐 and 𝑉 𝑐 be the respective comple-

mentary events. Let 𝐽 be the full model space 𝐽𝐹 = {1, 2, . . . , 2𝑝} in the case of model enumeration

or the set of distinct models visited by the MCMC sampler in the case of sampling. The computation of

jointness measures involves the following posterior probabilities:

𝑃𝑈 = Pr(𝑈|y) = ∑
𝑗∈𝐽

𝐼(𝑋𝑢 ∈ 𝑀𝑗)𝑃𝑎(𝑀𝑗|y)

𝑃𝑉 = Pr(𝑉 |y) = ∑
𝑗∈𝐽

𝐼(𝑋𝑣 ∈ 𝑀𝑗)𝑃𝑎(𝑀𝑗|y)

𝑃𝑈𝑉 = Pr(𝑈, 𝑉 |y) = ∑
𝑗∈𝐽

𝐼(𝑋𝑢 ∈ 𝑀𝑗, 𝑋𝑣 ∈ 𝑀𝑗)𝑃𝑎(𝑀𝑗|y)

𝑃𝑈𝑐𝑉 = Pr(𝑈𝑐, 𝑉 |y) = ∑
𝑗∈𝐽

𝐼(𝑋𝑢 ∉ 𝑀𝑗, 𝑋𝑣 ∈ 𝑀𝑗)𝑃𝑎(𝑀𝑗|y)

𝑃𝑈𝑉 𝑐 = Pr(𝑈, 𝑉 𝑐|y) = ∑
𝑗∈𝐽

𝐼(𝑋𝑢 ∈ 𝑀𝑗, 𝑋𝑣 ∉ 𝑀𝑗)𝑃𝑎(𝑀𝑗|y)

𝑃𝑈𝑐𝑉 𝑐 = Pr(𝑈𝑐, 𝑉 𝑐|y) = ∑
𝑗∈𝐽

𝐼(𝑋𝑢 ∉ 𝑀𝑗, 𝑋𝑣 ∉ 𝑀𝑗)𝑃𝑎(𝑀𝑗|y)

where 𝐼(⋅) is the indicator function and 𝑃𝑎(𝑀𝑗|y) is the analytical PMP defined by (7) in Posterior model

probability in Methods and formulas of [BMA] bmaregress. For a random 𝑔 or with option frequency,
the above posterior probabilities are estimated from an MCMC posterior sample of models {𝑚𝑡}𝑇

𝑡=1:

̂𝑃𝑈 = 1
𝑇

𝑇
∑
𝑡=1

𝐼(𝑋𝑢 ∈ 𝑚𝑡)

̂𝑃𝑉 = 1
𝑇

𝑇
∑
𝑡=1

𝐼(𝑋𝑣 ∈ 𝑚𝑡)

̂𝑃𝑈𝑉 = 1
𝑇

𝑇
∑
𝑡=1

𝐼(𝑋𝑢 ∈ 𝑚𝑡, 𝑋𝑣 ∈ 𝑚𝑡)

̂𝑃𝑈𝑐𝑉 = 1
𝑇

𝑇
∑
𝑡=1

𝐼(𝑋𝑢 ∉ 𝑚𝑡, 𝑋𝑣 ∈ 𝑚𝑡)

̂𝑃𝑈𝑉 𝑐 = 1
𝑇

𝑇
∑
𝑡=1

𝐼(𝑋𝑢 ∈ 𝑚𝑡, 𝑋𝑣 ∉ 𝑚𝑡)

̂𝑃𝑈𝑐𝑉 𝑐 = 1
𝑇

𝑇
∑
𝑡=1

𝐼(𝑋𝑢 ∉ 𝑚𝑡, 𝑋𝑣 ∉ 𝑚𝑡)

Doppelhofer and Weeks (2009) proposed the following measure of jointness:

𝐽DW = log(𝑃𝑈𝑉𝑃𝑈𝑐𝑉 𝑐

𝑃𝑈𝑐𝑉𝑃𝑈𝑉 𝑐
) ∈ (−∞, ∞)
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Ley and Steel (2007) proposed the following measures of jointness:

𝐽LS1 = 𝑃𝑈𝑉
𝑃𝑈 + 𝑃𝑉 − 𝑃𝑈𝑉

∈ [0, 1]

𝐽LS2 = 𝑃𝑈𝑉
𝑃𝑈𝑉 𝑐 + 𝑃𝑈𝑐𝑉

∈ [0, ∞)

The YQ measure (Yule 1912) is

𝐽YQ = 𝑃𝑈𝑉𝑃𝑈𝑐𝑉 𝑐 − 𝑃𝑈𝑉 𝑐𝑃𝑈𝑐𝑉
𝑃𝑈𝑉𝑃𝑈𝑐𝑉 𝑐 + 𝑃𝑈𝑉 𝑐𝑃𝑈𝑐𝑉

∈ [−1, 1]

When sampling is used, the posterior probabilities in the above formulas are replacedwith their respec-

tive frequency-based estimates, such as ̂𝑃𝑈𝑉 and ̂𝑃𝑈𝑐𝑉. Also, when the frequency option is specified,

the YQM measure (Hofmarcher et al. 2018) is computed as

𝐽YQM = ( ̂𝑃𝑈𝑉 + 𝜉)( ̂𝑃𝑈𝑐𝑉 𝑐 + 𝜉) − ( ̂𝑃𝑈𝑉 𝑐 + 𝜉)( ̂𝑃𝑈𝑐𝑉 + 𝜉)
( ̂𝑃𝑈𝑉 + 𝜉)( ̂𝑃𝑈𝑐𝑉 𝑐 + 𝜉) + ( ̂𝑃𝑈𝑉 𝑐 + 𝜉)( ̂𝑃𝑈𝑐𝑉 + 𝜉) − 2𝜉2

∈ [−1, 1]

where 𝜉 = 1/(2𝑇 ).
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Description
bmastats lps computes and optionally stores in a new variable the log predictive-score (LPS) for ob-

servations after the bmaregress command. LPS is used to assess the predictive performance of Bayesian

model averaging (BMA) models.

Quick start
Compute and summarize LPS for all observations

bmastats lps

Same as above, but use a known variance to compute and report the entropy

bmastats lps, sigma2(0.1)

Compute LPS for the first 12 observations, and store them in newvar
bmastats lps in 1/12, generate(newvar)

Compute LPS for previously stored bma1 and bma2 estimation results, and store respective LPS in variables
newvar1 and newvar2

bmastats lps bma1 bma2, generate(newvar*)

Display multiple estimation results compactly in one table

bmastats lps bma1 bma2, compact

After fitting bmaregress using a training sample, sample == 1, compute LPS for out-of-sample obser-

vations—test sample sample == 2—to compare out-of-sample predictive performance of two BMA

models with estimation results stored in bma1 and bma2
bmastats lps bma1 bma2 if sample == 2

Menu
Statistics > Bayesian model averaging > Log predictive-score

180
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Syntax
Summarize LPS for current estimation results

bmastats lps [ if ] [ in ] [ , sigma2(#) generate(newvar[ , double ]) ]

Summarize LPS for multiple estimation results

bmastats lps namelist [ if ] [ in ] [ , sigma2(# [ # [ . . . ] ])

generate(newvarspec[ , double ]) compact ]

namelist includes names of previously stored estimation results after bmaregress. The current (active)
results are the default.

newvarspec is a newvar for a single estimation result or newvarlist or stub* for multiple estimation

results.

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

sigma2(# [ # [ . . . ] ]) specifies the variance to be used to compute the entropy. With out-of-sample

observations, the posterior mean estimate of the error variance from bmaregress is used. With mul-

tiple estimation results, you can specify just one variance value to be used for all estimation results

or specific values for each result. A missing value (.) in place of a # means that the default variance

estimate is to be used for the corresponding estimation result. This option is useful to compute the

entropy more precisely when the variance is known, such as during simulation studies.

generate(newvarspec[ , double ]) specifies the name (or names) of new variables to store the LPS

values. A new variable name is specified with one estimation result. A list of new variable names or

stub* is specified with multiple estimation results.

double specifies that the new variables be stored as double. If the double suboption is not specified,

the variables are stored using the current type as set by set type (see [D] generate), which is

float by default.

compact specifies that multiple estimation results be displayed in a compact form. By default, a separate

header and table are displayed for each estimation result. If option compact is specified, the results

are displayed in one table with a common header. If the variances differ across multiple estimation

results, the variance and entropy are not reported in the header. This option requires at least two

estimation results.

Remarks and examples
To evaluate the predictive performance of a model, one needs a measure that summarizes the quality

of predictions (Piironen and Vehtari 2017). Good (1952) suggests that such a measure be defined based

on the posterior predictive distribution. The LPS is defined as the negative of the log of the posterior

predictive density evaluated at an observation. The LPS for out-of-sample observations can be used to

evaluate the predictive performance of models. Fernández, Ley, and Steel (2001b) were among the first

to use the LPS to evaluate the predictive performance of BMA. And Ley and Steel (2012) compared a

variety of 𝑔-priors for the linear BMA using the LPS.
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As pointed out in Fernández, Ley, and Steel (2001a), the LPS is related to the Kullback–Leibler

divergence between the actual sampling density and the out-of-sample predictive density. In theory,

the expected LPS is bounded from below by the entropy of the sampling density, but in practice, this

may not always hold because the entropy itself is being estimated. The closer the expected value is

to the entropy, the more accurate the prediction. For the normal linear model, the entropy is given by

0.5{ log(2𝜋𝜎2) + 1}, where 𝜎2 is the error variance.

bmastats lps reports the mean, minimum, and maximum of LPS for each specified estimation result.

By default, the command reports the LPS summaries computed using the current dataset that includes in-

sample observations, which were used during estimation and are identified by e(sample) == 1, for the
current or active estimation results. These summaries are useful when comparing multiple models. By

themselves, their values are not directly interpretable, unless the entropy is known or can be estimated

reliably. In this case, the closer the mean LPS is to the entropy, the better the model fit. For instance, if

you are using bmastats lps with a simulated dataset, you can specify the known error variance in the

sigma2() option, and the corresponding entropy value will be reported. You can compare this value with
the mean LPS to check model fit. When bmastats lps is used with only out-of-sample observations,

observations not used to fit the model for which e(sample) == 0, the command uses the posterior mean
estimate of the error variance from the fitted bmaregress model to estimate and report the entropy. You

can then compare the out-of-sample mean LPS with the estimated entropy to check the out-of-sample

model fit, assuming that the entropy estimate is a reliable estimate of the entropy of the true model. The

entropy estimate is not reported when bmastats lps is used with in-sample observations.

You can use the generate() option to store observation-specific LPS values in a new variable. This

is equivalent to using bmapredict, lps; see [BMA] bmapredict. With multiple estimation results, you

must specify the same number of new variable names or one variable stub in generate().

With multiple estimation results, bmastats lps displays a separate table for each result. You can use

the compact option to display the results in one table, which is more convenient for comparison.

Below, we demonstrate a more common usage of bmastats lps for comparing out-of-sample pre-

dictive performance of multiple BMAmodels.
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Example 1: Prediction of systolic blood pressure
Consider the chd dataset from Hastie, Tibshirani, and Friedman (2009), which is a subset of the

coronary heart disease dataset used in Rossouw et al. (1983). It contains information about potential

heart disease factors such as age, adiposity, sbp (systolic blood pressure), tobacco (consumption

of), ldl (low density liboprotein), and others.

. use https://www.stata-press.com/data/r19/chd
(Coronary risk factor data from rural communities)
. describe
Contains data from https://www.stata-press.com/data/r19/chd.dta
Observations: 462 Coronary risk factor data from

rural communities
Variables: 10 7 Mar 2025 09:19

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

sbp int %8.0g Systolic blood pressure
tobacco float %6.2f Yearly tobacco use (kg)
ldl float %6.2f Low-density lipoprotein (LDL)
adiposity float %6.2f Body adiposity index
famhist byte %9.0g noyes Family history of ischaemic heart

disease
typea byte %8.0g Type A personality score
obesity float %6.2f Obesity (body mass index)
alcohol float %7.2f Alcohol use (grams/day)
age byte %8.0g Age (years)
chd byte %8.0g noyes Diagnosed with CHD

Sorted by:

We wish to use BMA to build a prediction model for systolic blood pressure using all other available

factors, tobacco through age, as predictors. We consider the log-transformed sbp variable, lsbp, to
make its distribution closer to normal. We also split the sample into five groups to have training and test

subsamples to evaluate the predictive performance of a model. Because the sample is split randomly, we

specify a random-number seed with splitsample for reproducibility.

. splitsample, generate(sample) nsplit(5) rseed(100)

. generate double lsbp = log(sbp)

Wewill use the first four subsamples as our training data to fit a model. And we will check the model’s

performance using the fifth, test, subsample. To demonstrate, we fit the bmaregress command using

the default settings.
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. bmaregress lsbp tobacco-age if sample != 5
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 370
Linear regression No. of predictors = 8
Model enumeration Groups = 8

Always = 0
Priors: No. of models = 256

Models: Beta-binomial(1, 1) For CPMP >= .9 = 7
Cons.: Noninformative Mean model size = 2.132
Coef.: Zellner’s g

g: Benchmark, g = 370 Shrinkage, g/(1+g) = 0.9973
sigma2: Noninformative Mean sigma2 = 0.015

lsbp Mean Std. dev. Group PIP

age .0020223 .0008055 8 .93569
adiposity .0042121 .0016916 3 .92348

obesity .0004441 .001573 6 .10111
typea -.0000344 .0002133 5 .047293

alcohol 9.80e-06 .0000733 7 .03971
tobacco -.0000101 .0002961 1 .028973

ldl -9.92e-06 .0005911 2 .02786
famhist .0000648 .0022977 4 .027833

Always
_cons 4.71339 .0366564 0 1

Note: Coefficient posterior means and std. dev. estimated from 256 models.
Note: Default priors are used for models and parameter g.

With a small number of predictors, the model space is explored fully by model enumeration. The default

fixed benchmark 𝑔-prior is used, which results in a negligible shrinkage factor of almost 1. The posterior
mean size of the models is 2.1, and all potential predictors have PIPs greater than 2%.

We use the bmastats lps command to evaluate the prediction performance of the fit model on the

test sample by using the condition if sample == 5.

. bmastats lps if sample == 5
Log predictive-score (LPS)
Number of observations = 92
Posterior mean sigma2 = .015329
Entropy = -.670055

Mean Minimum Maximum

LPS -.5183101 -1.169732 4.861686

Note: Using analytical PMPs.

The command reports the number of predicted observations, the estimated entropy, and the variance

estimate used to compute the entropy in the header. The output table reports the mean, minimum, and

maximum LPS values.

The mean LPS of −0.52 is, as expected, greater than the entropy estimate, −0.67. The closer it is to

the entropy, the better the predictive performance. The actual LPS values cannot be interpreted, but we

can use them to compare the predictive performances among several BMAmodels.
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Based on their PIPs above 90%, age and adiposity appear to be the more important predictors of

the elevated blood pressure (at least based on our training sample). We may ask what would be the

performance of the model using only these two predictors?

To fit just one model of interest using bmaregress, we can specify all predictors of interest as one

always-included group as follows. (In this case, the results from bmaregress will be similar to those

from regress; see [R] regress.)

. bmaregress lsbp (age adiposity, always) if sample != 5
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 370
Linear regression No. of predictors = 2
Model enumeration Groups = 0

Always = 2
Priors: No. of models = 1

Models: Beta-binomial(1, 1) For CPMP >= .9 = 1
Cons.: Noninformative Mean model size = 2.000
Coef.: Zellner’s g

g: Benchmark, g = 370 Shrinkage, g/(1+g) = 0.9973
sigma2: Noninformative Mean sigma2 = 0.015

lsbp Mean Std. dev. Group PIP

Always
age .002073 .0005608 0 1

adiposity .0044281 .0010493 0 1
_cons 4.715601 .0236217 0 1

Note: Coefficient posterior means and std. dev. estimated from 1 model.
Note: Default priors are used for models and parameter g.

bmaregress visits only one model: regress lsbp age adiposity. In this case, the prior model prob-
ability has no effect on the BMA results, and bmaregress is equivalent to fitting a Bayesian linear model

with Zellner’s 𝑔-prior on regression coefficients with 𝑔 = 370 and Jeffreys prior for the error variance

parameter; see [BAYES] bayes: regress or [BAYES] bayesmh.

Let’s calculate the mean LPS score for this model on the test sample.

. bmastats lps if sample == 5
Log predictive-score (LPS)
Number of observations = 92
Posterior mean sigma2 = .015277
Entropy = -.67177

Mean Minimum Maximum

LPS -.5173158 -1.171843 4.890529

Note: Using analytical PMPs.

The mean LPS score of −0.52 is about the same as that of the full BMA regression, which suggests a

similar predictive performance for the two models.
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We can also investigate the impact of a particular factor on the prediction performance of our BMA

model. For instance, in the first model, the tobacco usage term had a PIP of about 3%. Wemay investigate

further whether the tobacco usage indeed has a relatively low impact on systolic blood pressure. To do

this, we can fit BMA to all predictors except tobacco and compare its predictive performance to the full

model.

. bmaregress lsbp ldl-age if sample != 5
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 370
Linear regression No. of predictors = 7
Model enumeration Groups = 7

Always = 0
Priors: No. of models = 128

Models: Beta-binomial(1, 1) For CPMP >= .9 = 6
Cons.: Noninformative Mean model size = 2.150
Coef.: Zellner’s g

g: Benchmark, g = 370 Shrinkage, g/(1+g) = 0.9973
sigma2: Noninformative Mean sigma2 = 0.015

lsbp Mean Std. dev. Group PIP

age .0020391 .0007811 7 .94501
adiposity .0041866 .0016762 2 .92399

obesity .0004608 .0015953 5 .10886
typea -.0000412 .0002329 4 .056801

alcohol .0000118 .0000802 6 .04785
ldl -.0000121 .0006497 1 .033757

famhist .0000758 .0025216 3 .03369

Always
_cons 4.713174 .0370391 0 1

Note: Coefficient posterior means and std. dev. estimated from 128 models.
Note: Default priors are used for models and parameter g.
. bmastats lps if sample == 5
Log predictive-score (LPS)
Number of observations = 92
Posterior mean sigma2 = .015323
Entropy = -.670276

Mean Minimum Maximum

LPS -.5186576 -1.169858 4.855259

Note: Using analytical PMPs.

The mean LPS score of −0.52 is again close to that of the full model. This suggests that excluding the

tobacco predictor does not diminish the predictive performance of the model. It does not appear to be

a strong predictor in this dataset.
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To more easily compare the LPS from the above models, we could have stored the estimation results

from eachmodel first and then specified these results with bmastats lps. To store the estimation results,

we must use the saving() option with bmaregress. For instance,

. quietly bmaregress lsbp tobacco-age if sample != 5, saving(bma1)

. estimates store bma1

. quietly bmaregress lsbp (age adiposity, always) if sample != 5, saving(bma2)

. estimates store bma2

. quietly bmaregress lsbp ldl-age if sample != 5

. bmastats lps bma1 bma2 . if sample == 5, compact
Log predictive-score (LPS)
Number of observations = 92

LPS Mean Minimum Maximum

bma1 -.5183101 -1.169732 4.861686
bma2 -.5173158 -1.171843 4.890529

Active -.5186576 -1.169858 4.855259

Notes: Using analytical PMPs.
Result Active has the smallest mean LPS.

We also specified the compact option to display the results in one table with a common header. Because

the variance estimates differ between the estimation results, the variance and entropy are not shown in the

header. (You can see them if you do not specify compact.) If the variances were the same, the variance
and the entropy would have been displayed.

Remember to remove the generated datasets if they are no longer needed.

. erase bma1.dta

. erase bma2.dta

In addition to the regression-function specification, in BMA, it is also important to evaluate the effect

of different prior specifications on the results. Depending on how much information there is in the data

about the data-generating process, different prior specifications may lead to different conclusions. We

explore this in example 2.

Example 2: Comparing different g-priors using cross-validation
For some data, the performance of linear BMA may depend strongly on the choice of the prior for

regression coefficients (Fernández, Ley, and Steel 2001a). The classical Zellner’s 𝑔-prior is commonly
used in BMA for regression coefficients. The 𝑔 parameter of this prior can be fixed or random. For a

random 𝑔, a hyperprior for 𝑔 must be specified. With a variety of prior choices available for 𝑔, the BMA

specification can be challenging. As an objective criterion for choosing a prior, we can use a model’s

predictive performance on the data not used for fitting the model. In this example, we show how we can

use cross-validation of log predictive-score to compare different choices of priors.

Let’s continue with the analysis of the chd dataset from example 1. Here we will compare five dif-

ferent priors for 𝑔: two fixed and three random. The two fixed priors are the default benchmark, bench,
and empirical Bayes local, ebl. The former uses a constant 𝑔-value for all models, whereas the latter
uses a model-specific 𝑔. The three random priors are the benchmark beta-shrinkage, betabench(1);
hyper-𝑔/𝑛, hypergn(3); and robust, robust; see Priors for parameter g in Methods and formulas of

[BMA] bmaregress for details.
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In example 1, we randomly split our sample into five subsamples. For cross-validation, we will treat

each of five subsamples as a test sample and fit each of five models to the remaining four subsamples,

which will give us 25 results. For each model 𝑖 and test sample 𝑗, we will save the mean LPS in a 5-by-5

matrix.

To avoid manually fitting 25 models, we will automate this task by writing a simple program later.

But first, let’s go over one step of this automation manually. We will use a robust prior for 𝑔 and, as in

example 1, withhold the fifth sample for testing.

We use the gprior(robust) option to specify the robust 𝑔-prior and, because this is a random prior,

use the rseed() option for reproducibility.

. bmaregress lsbp tobacco-age if sample != 5, gprior(robust) rseed(18)
Burn-in ...
Simulation ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 370
Linear regression No. of predictors = 8
MC3 and adaptive MH sampling Groups = 8

Always = 0
No. of models = 78

For CPMP >= .9 = 9
Priors: Mean model size = 2.366

Models: Beta-binomial(1, 1) Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 10,000
Coef.: Zellner’s g Acceptance rate = 0.3419

g: Robust
sigma2: Noninformative Mean sigma2 = 0.015

Sampling correlation = 0.9974

lsbp Mean Std. dev. Group PIP

age .0020676 .0007043 8 .9688
adiposity .0041715 .0015489 3 .9442

obesity .0004562 .0015458 6 .1378
typea -.0000531 .0002624 5 .0739

ldl -.0000286 .0009378 2 .0716
alcohol .0000163 .0000937 7 .0665
famhist .0001123 .0032103 4 .0555
tobacco -.000021 .0003703 1 .0474

Always
_cons 4.713145 .0364241 0 1

Note: Coefficient posterior means and std. dev. estimated from 78 models.
Note: Default prior is used for models.

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

g 325.2053 671.8658 18.0907 185.5779 82.95733 1396
Shrinkage .9945226 .0029212 .000183 .9946403 .9880892 .9992842

The results are somewhat similar to those from the first model in example 1, except 𝑔 is now random and

Markov chain Monte Carlo (MCMC) sampling is used to estimate its posterior distribution.
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. bmastats lps if sample == 5
Log predictive-score (LPS)
Number of observations = 92
Posterior mean sigma2 = .015309
Entropy = -.670731

Mean Minimum Maximum

LPS -.5191868 -1.170108 4.839892

Note: Using frequency PMPs.
. return list
scalars:

r(N) = 92
r(sigma2) = .0153086079526961

r(entropy) = -.6707314655467329
macros:

r(pmptype) : ”frequency”
matrices:

r(summary) : 1 x 3
. matrix list r(summary)
r(summary)[1,3]

Mean Minimum Maximum
LPS -.51918683 -1.1701082 4.839892
. display el(r(summary),1,1)
-.51918683

After running bmastats lps, we use return list to display the stored results. The LPS summary is

stored in the r(summary) matrix. We can access its first element, the mean LPS, by using the el() Stata

matrix function.

Let’s now automate the above in a program.

. program bma_cv
1. args matlps i gprior extraopts
2. forvalues j = 1/5 {
3. bmaregress lsbp tobacco-age if sample != ‘j’, ///

> gprior(‘gprior’) ‘extraopts’
4. bmastats lps if sample == ‘j’
5. matrix ‘matlps’[‘i’,‘j’] = el(r(summary),1,1)
6. }
7. end

The bma cv program takes four arguments: a matrix name matlps to store the mean LPS values, the ma-

trix row index i, the prior specification gprior, and any additional options extraopts for bmaregress,
such as rseed() for the random 𝑔-priors. We then perform cross-validation by looping over the five sub-

samples and withholding each one of them for testing. For each prior 𝑖, we save the mean LPS for each

cross-validation sample 𝑗 in row ‘i’ and column ‘j’ of the specified matrix ‘matlps’.
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We create a 5-by-5 matrix lpscvmat to store the mean LPS values and call the bma cv program

for each prior specification. Because the last three priors are random and thus use MCMC sampling to

estimate the results, the program may take a few moments longer to run compared with the one for the

fixed priors.

. matrix lpscvmat = J(5, 5, .)

. quietly bma_cv lpscvmat 1 ”bench”

. quietly bma_cv lpscvmat 2 ”ebl”

. quietly bma_cv lpscvmat 3 ”betabench 1” ”rseed(18)”

. quietly bma_cv lpscvmat 4 ”hypergn 3” ”rseed(18)”

. quietly bma_cv lpscvmat 5 ”robust” ”rseed(18)”

. matrix rownames lpscvmat = ”bench” ”ebl” ”betabench 1” ”hypergn 3” ”robust”

. matrix colnames lpscvmat = ”CV1” ”CV2” ”CV3” ”CV4” ”CV5”

. matlist lpscvmat
CV1 CV2 CV3 CV4 CV5

bench -.5771455 -.6311993 -.6583148 -.7233847 -.5183101
ebl -.5778856 -.6339036 -.6623052 -.7182023 -.5224309

betabench 1 -.5774324 -.6320177 -.6591742 -.7232513 -.5199717
hypergn 3 -.5774459 -.6322509 -.6600753 -.7212745 -.5203261

robust -.5758851 -.6344241 -.6594026 -.7210064 -.5191868

Smaller mean LPS scores indicate better predictive performance. All mean LPSs are rather similar,

which suggests a similar predictive performance for the models with considered priors (assuming a sim-

ilar variability between LPSs).

We can use a Mata matrix function, colmin(), to compute the smallest mean LPS value among all

models for each cross-validated sample.

. mata: colmin(st_matrix(”lpscvmat”))
1 2 3 4

1 -.5778855962 -.6344241355 -.6623052219 -.723384674

5

1 -.5224308762

The second model, ebl, has the lowest mean LPS for the majority of models.
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Let’s fit a model using the ebl 𝑔-prior to the entire dataset.
. bmaregress lsbp tobacco-age, gprior(ebl)
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 462
Linear regression No. of predictors = 8
Model enumeration Groups = 8

Always = 0
Priors: No. of models = 256

Models: Beta-binomial(1, 1) For CPMP >= .9 = 46
Cons.: Noninformative Mean model size = 3.516
Coef.: Zellner’s g

g: Empirical Bayes (local) Shrinkage, g/(1+g) = 0.9660
sigma2: Noninformative Mean sigma2 = 0.016

lsbp Mean Std. dev. Group PIP

age .0026375 .0006026 8 .99981
adiposity .0024261 .0016807 3 .7727

alcohol .0003029 .0003148 7 .58378
obesity .0014017 .0021937 6 .40683
tobacco .0001807 .0007427 1 .2009

typea -.0000758 .0003079 5 .19862
famhist -.0005746 .0052701 4 .17773

ldl -8.63e-06 .0013313 2 .17572

Always
_cons 4.706904 .0433882 0 1

Note: Coefficient posterior means and std. dev. estimated from 256 models.
Note: Default prior is used for models.

Using the full dataset and the ebl prior, age is still a highly important predictor with a PIP of close to 1.

The PIP of 0.77 for adiposity is now smaller, but the PIPs of 0.58 and 0.41 for alcohol and obesity,
respectively, are now noticeably higher. The other predictors have slightly higher PIPs too, but they are

still somewhat weak predictors relative to the other four.

If we run models using the other considered priors, we will find that our conclusions about the relative

importance of predictors are almost the same. Of course, the PIP estimates themselves will be different

because different priors impose different levels of shrinkage for the coefficients.

Beware that the results will also change if you use a different random-number seed. But for stable

datasets and models, changing the random-number seed should not affect the conclusions.
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Stored results
bmastats lps stores the following in r() with one estimation result:

Scalars

r(N) number of observations

r(sigma2) variance used to compute entropy

r(entropy) entropy estimate

Macros

r(name) name of the estimation result (if any specified)

r(pmptype) analytical or frequency

Matrices

r(summary) summary matrix with mean, minimum, and maximum LPS

bmastats lps stores the following in r() for each #th estimation result:

Scalars

r(N#) number of observations

r(sigma2 #) variance used to compute entropy

r(entropy#) entropy estimate

Macros

r(name#) name of the #th estimation result

r(pmptype#) analytical or frequency

Matrices

r(summary#) summary matrix with mean, minimum, and maximum LPS

bmastats lps, compact stores the following in r() with multiple estimation results:

Macros

r(names) names of estimation results

r(pmptypes) type of PMP for each model: analytical or frequency

Matrices

r(N) numbers of observations

r(sigma2) variances used to compute entropy

r(entropy) entropy estimates

r(summary) summary matrix with mean, minimum, and maximum LPS for all estimation results
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Methods and formulas
Let 𝑦∗ be a new observation of the outcome and x∗ be a 𝑝-vector of new values for the predictors, and

let z∗ = x∗ −x, where x′ = 1′X/𝑛 is a 𝑝 ×1 vector of predictor means. Let y be an 𝑛-vector of observed
outcome values. LPS for 𝑦∗ is defined as

LPS𝑦∗ = − log{𝑓(𝑦∗|y, z∗)}

For a BMA linear model with a Zellner’s 𝑔-prior for the regression coefficients and fixed 𝑔, 𝑓(𝑦∗|y, z∗)
is a 2𝑝 mixture of 𝑡 distributions. In this case, LPS can be calculated exactly, if we enumerate the entire
model space (Fernández, Ley, and Steel 2001a),

LPS𝑦∗ = − log{
2𝑝

∑
𝑗=1

𝑃𝑎(𝑀𝑗|y)𝑓(𝑦∗|𝑀𝑗, y, z∗
𝑗)}

where 𝑃𝑎(𝑀𝑗|y)’s are the analytical PMPs defined by (7) in Posterior model probability in Methods and

formulas of [BMA] bmaregress and 𝑓(𝑦∗|𝑀𝑗, y, z∗
𝑗) is the conditional posterior predictive distribution,

which is a 𝑡-distribution with (𝑛 − 1) degrees of freedom and location and scale given by (5) and (6) in

Conditional posterior predictive distribution in Methods and formulas of [BMA] bmaregresswith 𝑞 = 1.

With fixed 𝑔 and when model sampling is used, such as when bmaregress’s sampling option is

specified, the above formula is computed with respect to the set 𝐽 ⊂ {1, 2, . . . , 2𝑝} of distinct models

visited by the MCMC sampler.

With random 𝑔, we have an MCMC sample {𝑔𝑡, 𝑚𝑡} of size 𝑇 from the joint 𝑔 and model posterior

distribution. Then, 𝑓(𝑦∗|y, z∗) in the definition of LPS is replaced with the following frequency-based

MCMC estimator,

̂𝑓(𝑦∗|y, z∗) = 1
𝑇

𝑇
∑
𝑡=1

𝑓(𝑦∗|𝑔𝑡, 𝑚𝑡, y, z∗)

where 𝑓(𝑦∗|𝑔𝑡, 𝑚𝑡, y, z∗) is the density of the location-scale 𝑡 distribution with the respective mean and
scale given by (5) and (6) in Conditional posterior predictive distribution in Methods and formulas of

[BMA] bmaregress with 𝑞 = 1 and 𝑗 substituted for 𝑡. The bmastats lps command thus computes the

following frequency-based LPS estimator:

L̂PS𝑦∗ = − log{ ̂𝑓(𝑦∗|y, z∗)}

Fernández, Ley, and Steel (2001b) and Ley and Steel (2012) suggest exploring the summary statistics

of LPS such as the mean, minimum, and maximum to evaluate the quality of the predictions.

The entropy of a continuous distribution with density 𝑓(𝑥) is defined to be −𝐸[ log{𝑓(𝑥)}]. For a
normal distribution with mean 𝜇 and variance 𝜎2, the entropy is

1
2

{1 + log(2𝜋𝜎2)}

bmastats lps reports the estimated entropy with 𝜎2 in the above replaced by the estimated posterior

mean variance as described by (13) and (14) in Posterior inclusion probability in Methods and formulas

of [BMA] bmaregress.



bmastats lps — Log predictive-score after BMA regression 194

References
Fernández, C., E. Ley, andM. F. J. Steel. 2001a. Benchmark priors for Bayesian model averaging. Journal of Econometrics

100: 381–427. https://doi.org/10.1016/S0304-4076(00)00076-2.

———. 2001b. Model uncertainty in cross-country growth regressions. Journal of Applied Econometrics 16: 563–576.

https://doi.org/10.1002/jae.623.

Good, I. J. 1952. Rational decisions. Journal of the Royal Statistical Society, B ser., 14: 107–114. https://doi.org/10.1111/

j.2517-6161.1952.tb00104.x.

Hastie, T. J., R. J. Tibshirani, and J. H. Friedman. 2009. The Elements of Statistical Learning: Data Mining, Inference, and

Prediction. 2nd ed. New York: Springer. https://doi.org/10.1007/978-0-387-84858-7.

Ley, E., and M. F. J. Steel. 2012. Mixtures of 𝑔-priors for Bayesian model averaging with economic applications. Journal
of Econometrics 171: 251–266. https://doi.org/10.1016/j.jeconom.2012.06.009.

Piironen, J., and A. Vehtari. 2017. Comparison of Bayesian predictive methods for model selection. Statistics and Com-

puting 27: 711–735. https://doi.org/10.1007/s11222-016-9649-y.

Rossouw, J. J., J. E. du Plessis, J. P. Benadé, A. J. S. Jordaan, P. C. J. Kotzé, J. P. Jooste, and P. L. Ferreira. 1983.

Coronary risk factor screening in three rural communities. The CORIS baseline study. South African Medical Journal

64: 430–436. https://doi.org/10.10520/AJA20785135_9894.

Also see
[BMA] bmastats — Summary for models and predictors after BMA regression

[BMA] bmaregress — Bayesian model averaging for linear regression

[BMA] BMApostestimation — Postestimation tools for Bayesian model averaging

[BMA] Glossary

https://doi.org/10.1016/S0304-4076(00)00076-2
https://doi.org/10.1002/jae.623
https://doi.org/10.1111/j.2517-6161.1952.tb00104.x
https://doi.org/10.1111/j.2517-6161.1952.tb00104.x
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1016/j.jeconom.2012.06.009
https://doi.org/10.1007/s11222-016-9649-y
https://doi.org/10.10520/AJA20785135_9894


bmastats models — Model and variable-inclusion summaries after BMA regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
bmastats models provides summary information for the models visited by the bmaregress com-

mand, including their posterior model probabilities (PMPs), cumulative PMPs (CPMPs), ranks by PMP, and

more. The variable-inclusion patterns for these models are also reported.

Quick start
Show summary statistics for the top five visited models with the highest PMPs

bmastats models

Same as above, but report CPMPs and suppress the variable-inclusion table

bmastats models, cumulative novartable

List models with CPMPs up to 0.9

bmastats models, cumulative(0.9)

Same as above, but suppress all table output for brevity, and report only the header with the number of

models

bmastats models, cumulative(0.9) notable

List the top 10 models with the highest PMPs

bmastats models, top(10)

List models ranked from 10 to 15 by PMP and the median probability model (MPM)

bmastats models, ranks(10/15) mpm

Show summary statistics for models that include the two predictors x1 and x2
bmastats models, include(x1 x2)

Same as above, but display only the header with the number of reported models

bmastats models, include(x1 x2) notable

Menu
Statistics > Bayesian model averaging > Model and variable-inclusion summaries

195
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Syntax
bmastats models [ , modelopts varinclopts options ]

modelopts Description

Main

top(#) show top # models with highest PMPs; default is top(5)
ranks(numlist) show models ranked by highest PMPs with ranks in numlist

hpm show highest probability model (HPM) with the highest posterior probability

mpm show MPM having predictors with posterior inclusion probability (PIP) ≥ 0.5

include(varlist) show models that include varlist

cumulative display CPMPs instead of PMPs for the specified models

cumulative(#) display models such that the last model has CPMP of at least #
(if no other options specified)

pmpcutoff(#) do not show models with PMP less than #; default is # = 0

format(% fmt) use numerical format % fmt for PMP and CPMP values

[ no ]pmptable display or suppress model-summary table; default is pmptable

all show all models

varlist may contain factor variables; see [U] 11.4.3 Factor variables.

all does not appear in the dialog box.

varinclopts Description

Main

pipcutoff(#) do not show predictors with PIP less than #; default is pipcutoff(.01)
display(x) indicate included predictors with an x; the default
display(u) same as display(x), except predictors not included

indicated with a u
sort(none) order of predictors as originally specified; the default

sort(names) order by the names of the variables

nolegend suppress table legend

nofvlabel display factor-variable level values rather than value labels

nolstretch do not stretch the width of the table to accommodate long
variable names

[ no ]vartable display or suppress the variable-inclusion table; default varies

options Description

Main

maxmodels(#) display results for the first # models; default is maxmodels(50)
frequency use frequency PMP estimates for model ranking; default is

analytical PMPs (if available)

[ no ]table display or suppress all tables; default varies

table and notable do not appear in the dialog box.

collect is allowed; see [U] 11.1.10 Prefix commands.
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Options

� � �
Main �

top(#) specifies that the top # models with highest PMPs be shown. By default, the top five are shown.

top(#) is equivalent to ranks(1/#).

ranks(numlist) specifies that models with ranks in numlist be included. Models are ranked by highest

PMPs.

hpm specifies that the model with the highest PMP be shown. It is known as the HPM.

mpm specifies that theMPM be shown. MPM is the model in which all predictors have PIPs greater or equal

to 0.5. The MPM may not always exist.

include(varlist) specifies that models that include all of varlist be shown. varlist may contain factor

variables; see [U] 11.4.3 Factor variables.

Options top(), ranks(), hpm, mpm, and include(), when specified together, provide results for all

models that meet any of the specified criteria, that is, for the union of the models.

cumulative and cumulative(#) specify that CPMPs be reported for the models instead of the de-

fault PMPs. In the absence of other options that identify models such as ranks() or include(),
cumulative(#) displays all models for which CPMPs are less than or equal to #. If there is no model

with CPMP exactly equal to #, the model with the next highest CPMP is reported as the last model.

If cumulative(#) is specified with other options, the results are reported for the intersection of the

models provided by cumulative() and models provided by other options, regardless of whether the

specified CPMP cutoff value is reached.

pmpcutoff(#) specifies that models with PMP less than # not be shown. The default is pmpcutoff(0).
This option is useful when there are many models with small PMPs.

format(% fmt) specifies how numeric PMP and CPMP values are to be formatted. The default is

format(%9.0g).

pmptable and nopmptable specify whether to display the model-summary table. The default is

pmptable, which displays the table for the first 50 models. You can change the maximum number of

displayed models by specifying the maxmodels() option.

pipcutoff(#) specifies that predictors with PIPs less than # not be shown in the variable-inclusion table.

The default is pipcutoff(0.01). This option is useful when there are many predictors with small

PIPs.

display(displayspec) specifies what to display in the variable-inclusion table. The default is

display(x).

Blank cells in the table indicate that the corresponding variable or predictor was not included in the

model.

For some predictors without estimated coefficients, a code that indicates the reason for omission is

reported in the table.

Empty levels of factors and interactions are coded with the letter e.

Base levels of factors and interactions are coded with the letter b.

Variables omitted because of collinearity are coded with the letter o.

display(x) displays an x in the table when the variable or predictor has been included in the dis-

played model.
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display(u) is the same as display(x), except that when a variable or predictor was not included
in the model, u (for unavailable) is displayed instead of a blank cell.

sort(sortspec) specifies that the rows of the variable-inclusion table be ordered by specification given

by sortspec.

sort(none) specifies that the rows of the table be ordered by the order the predictors were specified

in the model specification. This is the default.

sort(names) orders rows alphabetically by the variable names of the predictors. For factor variables,
main effects and nonfactor variables are displayed first in alphabetical order. Then, all two-way

interactions are displayed in alphabetical order, then, all three-way interactions, and so on.

nolegend specifies that the legend at the bottom of the variable-inclusion table not be displayed. By

default, it is shown.

nofvlabel displays factor-variable level numerical values rather than attached value labels. This option

overrides the fvlabel setting. See [R] set showbaselevels.

nolstretch specifies that the width of the variable-inclusion table not be automatically widened to

accommodate long variable names. When nolstretch is specified, names are abbreviated to make

the table width no more than 79 characters. The default, lstretch, is to automatically widen the

table up to the width of the Results window. To change the default, use set lstretch off.

vartable and novartable specify whether to display the variable-inclusion table. By default, the table

is displayed when the number of the reported models does not exceed 12. You can specify vartable
to display models beyond 12. The maximum number of models that will be displayed is 50, but you

can change this by specifying the maxmodels() option.

maxmodels(#) specifies the maximum number of models to be displayed in model-summary and

variable-inclusion tables. The default is to display the first 50 models.

frequency specifies that frequency estimates of PMPs based on a Markov chain Monte Carlo (MCMC)

sample be used for model ranking when sampling is used by bmaregress. By default, analytical PMPs

are used whenever they are available. Option frequency is not relevant with model enumeration,

because frequency PMPs are not available. This option, however, is implied in the case of a random

𝑔 parameter of Zellner’s 𝑔-prior for regression coefficients, because analytical PMPs are not available

in that case. See example 2 for details.

The following options are available with bmastats models but are not shown in the dialog box:

all specifies that all models, up to maxmodels(), be displayed. This option may be useful when the

number of visited models is small.

table and notable display or suppress both the model-summary table and the variance-inclusion table.

table implies pmptable and vartable. And notable implies nopmptable and novartable.

Remarks and examples
In the Bayesian model averaging (BMA) framework, inference includes exploring PMPs. Models with

high PMPs and the predictors they include are often of interest. Clarke (2003), among others, comments

that BMA puts the most weight on the model closest to the data-generating model whether the latter is in

the explored model space or not. Thus, the models with the highest PMPs, HPMs, are often of interest.
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Another model of potential interest is theMPM (Barbieri and Berger 2004). This model can be viewed

as a model that includes only influential predictors, that is, predictors that are more likely than not to be

included in the model. Such predictors have PIPs of at least 0.5. The MPM may not always exist.

By default, bmastats models reports the top five models with the highest PMPs and the predictors

included in each of these models. You can use the top() option to display more top models and ranks()
to display models with specific ranks. You can use options hpm and mpm to display the respective HPM

and MPM. And you can use the include(varlist) option to display models that contain the specified

predictors in varlist and their respective PMP rankings. When you combine all of these options, the union

of the models is displayed.

The command reports PMPs by default, but you can specify the cumulative option to report CPMPs

instead. The cumulative(#) option is useful if you wish to see the models with CPMPs up to #. This

option (as well as the include() option), however, may report many models, especially for high #

values. You may want to combine it with the notable option to see only the number of models to be

reported first. You can also use the pmpcutoff(#) option to limit the models to those with PMPs of at

least #.

bmastats models reports two tables for the models: one with the PMPs and the other one with

variable-inclusion patterns. The variable-inclusion table can be rather lengthy depending on the num-

ber of included predictors. By default, only predictors with PIPs above 0.01 are displayed, but you can

change this with the pipcutoff() option. Also, this table is suppressed when the number of reported

models exceeds 12. You can use the vartable option to display more models. The maximum number

of reported models for both tables is 50, but you can change this by specifying maxmodels().

See example 1 for various uses of bmastats models’s options.

bmastats models reports analytical and frequency PMPs, whenever they are available. Analytical

PMPs are computed using analytical formulas. They are reported only with a fixed 𝑔 because analytical

formulas are not available with a random 𝑔. Frequency PMPs are computed from an MCMC sample of

models, which is available only when sampling is used by bmaregress. That is, they are not available
with model enumeration. Analytical PMPs are used for model ranking whenever they are available. See

example 2.

Example 1: Tour of the bmastats models command
Recall the performance dataset (Chatterjee and Hadi 2012, sec. 3.3) analyzed in example 1 of

[BMA] bmaregress, where the employee satisfaction with their supervisors, rating, is modeled by six
potential predictors.

Let’s fit a linear BMA regression to these data using bmaregress and explore variousmodel summaries
by using bmastats models.



bmastats models — Model and variable-inclusion summaries after BMA regression 200

. use https://www.stata-press.com/data/r19/performance
(Data on employee satisfaction with supervisor)
. bmaregress rating complaints-advance
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
Model enumeration Groups = 6

Always = 0
Priors: No. of models = 64

Models: Beta-binomial(1, 1) For CPMP >= .9 = 10
Cons.: Noninformative Mean model size = 1.699
Coef.: Zellner’s g

g: Benchmark, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 52.302

rating Mean Std. dev. Group PIP

complaints .7052859 .1224289 1 .99973
learning .0603014 .1285281 3 .25249
advance -.0167921 .073883 6 .13148

privileges -.0074174 .0488635 2 .10998
raises .0070789 .0670475 4 .10642

critical .0009713 .0437848 5 .098534

Always
_cons 14.8472 7.874219 0 1

Note: Coefficient posterior means and std. dev. estimated from 64 models.
Note: Default priors are used for models and parameter g.
. bmastats models
Computing model probabilities ...
Model summary Number of models:

Visited = 64
Reported = 5

Analytical PMP Model size

Rank
1 .5556 1
2 .1169 2
3 .04072 2
4 .03932 2
5 .03804 2

Variable-inclusion summary

Rank Rank Rank Rank Rank
1 2 3 4 5

complaints x x x x x
learning x

raises x
privileges x

advance x

Legend:
x - estimated
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By default, bmastats models reports the top five models ranked by PMPs and their respective variable-

inclusion summary. We see that the top model, also known as HPM, has a PMP of 0.56 and includes only

one predictor, complaints. This is not surprising because, from the output of bmaregress, predictor
complaints has by far the highest PIP, 0.9997, of all predictors. The next highest-ranking model, with

a PMP of 0.12, includes both complaints and learning, the predictor with the next highest PIP, 0.25.
The rest of the predictors have similar probabilities, which are less than 0.15.

We can display more than five top models by specifying the top() option. Here, to demonstrate, we

list only the top six models to keep the output short.

. bmastats models, top(6)
Computing model probabilities ...
Model summary Number of models:

Visited = 64
Reported = 6

Analytical PMP Model size

Rank
1 .5556 1
2 .1169 2
3 .04072 2
4 .03932 2
5 .03804 2
6 .03654 2

Variable-inclusion summary

Rank Rank Rank Rank Rank Rank
1 2 3 4 5 6

complaints x x x x x x
learning x

raises x
privileges x

advance x
critical x

Legend:
x - estimated
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The above is equivalent to ranks(1/6), or you can specify any list of ranks if desired.

. bmastats models, ranks(1/6)
Computing model probabilities ...
Model summary Number of models:

Visited = 64
Reported = 6

Analytical PMP Model size

Rank
1 .5556 1
2 .1169 2
3 .04072 2
4 .03932 2
5 .03804 2
6 .03654 2

Variable-inclusion summary

Rank Rank Rank Rank Rank Rank
1 2 3 4 5 6

complaints x x x x x x
learning x

raises x
privileges x

advance x
critical x

Legend:
x - estimated

We can also use options hpm and mpm to display the respective HPM and MPM.

. bmastats models, hpm mpm
Computing model probabilities ...
Model summary Number of models:

Visited = 64
Reported = 1

Analytical PMP Model size

Rank
(HPM) 1 .5556 1

Note: HPM and MPM are the same model.
Variable-inclusion summary

(HPM)
1

complaints x

Legend:
x - estimated

In our example, HPM and MPM are the same.
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Instead of PMPs, we can use the cumulative option to display CPMPs.

. bmastats models, cumulative
Computing model probabilities ...
Model summary Number of models:

Visited = 64
Reported = 5

Analytical CPMP Model size

Rank
1 .5556 1
2 .6724 2
3 .7132 2
4 .7525 2
5 .7905 2

Variable-inclusion summary

Rank Rank Rank Rank Rank
1 2 3 4 5

complaints x x x x x
learning x

raises x
privileges x

advance x

Legend:
x - estimated
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You might also want to see the models that contribute to a specific, typically larger, CPMP value. For

instance, let’s use 0.9 for the CPMP cutoff here.

. bmastats models, cumulative(0.9)
Computing model probabilities ...
Model summary Number of models:

Visited = 64
Reported = 10

Analytical CPMP Model size

Rank
1 .5556 1
2 .6724 2
3 .7132 2
4 .7525 2
5 .7905 2
6 .8271 2
7 .8598 3
8 .8796 3
9 .8942 3

10 .9086 3

Variable-inclusion summary

Rank Rank Rank Rank Rank Rank
1 2 3 4 5 6

complaints x x x x x x
learning x

raises x
privileges x

advance x
critical x

Legend:
x - estimated

Rank Rank Rank Rank
7 8 9 10

complaints x x x x
learning x x x x

raises x
privileges x

advance x
critical x

Legend:
x - estimated

There are 10 models that contribute to the CPMP of at least 0.9. This is the same number as reported

in the bmaregress header output under For CPMP >= 0.9. This number is useful to determine whether
there are only a few high-probability models that are consistent with your data or there are many different

models that are plausible.

Beware that cumulative() may report many models, especially for high CPMP values. In that case,

to keep the table output manageable, bmastats models will display only the first 50 regardless of the

specified CPMPvalue. But you can use the maxmodels() option to displaymore. Youmight also consider
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using the notable option to suppress the table output altogether, if you just want to see the number

of models corresponding to a specific CPMP value. We demonstrate this later in combination with the

include() option, which also may lead to many models being displayed.

In fact, for brevity, the variance-inclusion table is suppressed when the number of reported models

exceeds 12, as we see in the output.

. bmastats models, cumulative(0.95)
Computing model probabilities ...
Model summary Number of models:

Visited = 64
Reported = 16

Analytical CPMP Model size

Rank
1 .5556 1
2 .6724 2
3 .7132 2
4 .7525 2
5 .7905 2
6 .8271 2
7 .8598 3
8 .8796 3
9 .8942 3

10 .9086 3
11 .9172 4
12 .9255 4
13 .9333 4
14 .9396 3
15 .9452 3
16 .9503 3

Note: Use option vartable to display variable-inclusion table for more than
12 models.
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But you can specify the vartable option to see those models.

. bmastats models, cumulative(0.95) vartable
Computing model probabilities ...
Model summary Number of models:

Visited = 64
Reported = 16

Analytical CPMP Model size

Rank
1 .5556 1
2 .6724 2
3 .7132 2
4 .7525 2
5 .7905 2
6 .8271 2
7 .8598 3
8 .8796 3
9 .8942 3

10 .9086 3
11 .9172 4
12 .9255 4
13 .9333 4
14 .9396 3
15 .9452 3
16 .9503 3

Variable-inclusion summary

Rank Rank Rank Rank Rank Rank
1 2 3 4 5 6

complaints x x x x x x
learning x

raises x
privileges x

advance x
critical x

Legend:
x - estimated

Rank Rank Rank Rank Rank Rank
7 8 9 10 11 12

complaints x x x x x x
learning x x x x x x

raises x x
privileges x x

advance x x x
critical x

Legend:
x - estimated
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Rank Rank Rank Rank
13 14 15 16

complaints x x x x
learning x

raises x x x
privileges x

advance x x
critical x x

Legend:
x - estimated

We can explore the models that contain specific predictors by using the include() option. We use

the complaints variable. We also specify the notable option to see only the number of models to be

reported first.

. bmastats models, include(complaints) notable
Computing model probabilities ...
Model summary Number of models:

Visited = 64
Reported = 32

There are 32 different models that include complaints. We probably do not want to display all 32

models, because many of them will have a low probability. We can use the pmpcutoff() option to

display only models with higher probabilities.
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. bmastats models, include(complaints) pmpcutoff(0.01)
Computing model probabilities ...
Model summary Number of models:

Visited = 64
Reported = 10

Analytical PMP Model size

Rank
1 .5556 1
2 .1169 2
3 .04072 2
4 .03932 2
5 .03804 2
6 .03654 2
7 .03272 3
8 .01985 3
9 .01459 3

10 .01441 3

Note: 22 models with PMP less than .01 not shown.
Variable-inclusion summary

Rank Rank Rank Rank Rank Rank
1 2 3 4 5 6

complaints x x x x x x
learning x

raises x
privileges x

advance x
critical x

Legend:
x - estimated

Rank Rank Rank Rank
7 8 9 10

complaints x x x x
learning x x x x

raises x
privileges x

advance x
critical x

Legend:
x - estimated

We could further explore a few higher-probability models in more detail by specifying their ranks in

the ranks() option and looking at their variable-inclusion summary. The top two models above are the

same ones we already explored earlier: the one containing complaints and the other one containing

complaints and learning.
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Example 2: Analytical and frequency PMPs
In this example, we explore the analytical and frequency PMPs as reported by bmastats models.

Let’s revisit example 1, where model enumeration was used for estimation. In what follows, we will

use the novartable option with bmastats models to focus only on the reported PMPs.

. bmaregress rating complaints-advance
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
Model enumeration Groups = 6

Always = 0
Priors: No. of models = 64

Models: Beta-binomial(1, 1) For CPMP >= .9 = 10
Cons.: Noninformative Mean model size = 1.699
Coef.: Zellner’s g

g: Benchmark, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 52.302

rating Mean Std. dev. Group PIP

complaints .7052859 .1224289 1 .99973
learning .0603014 .1285281 3 .25249
advance -.0167921 .073883 6 .13148

privileges -.0074174 .0488635 2 .10998
raises .0070789 .0670475 4 .10642

critical .0009713 .0437848 5 .098534

Always
_cons 14.8472 7.874219 0 1

Note: Coefficient posterior means and std. dev. estimated from 64 models.
Note: Default priors are used for models and parameter g.
. bmastats models, novartable
Computing model probabilities ...
Model summary Number of models:

Visited = 64
Reported = 5

Analytical PMP Model size

Rank
1 .5556 1
2 .1169 2
3 .04072 2
4 .03932 2
5 .03804 2

With a small number of predictors, bmaregress explores a full space of all possible models, so no

sampling is performed. In this case, bmastats models reports only analytical PMPs.

With many predictors, a full model enumeration may not be feasible, and thus a sampling algorithm

is used to explore the model space. To demonstrate, let’s use sampling instead of the default model

enumeration in our example by specifying the sampling option with bmaregress.
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. bmaregress rating complaints-advance, sampling rseed(18)
Burn-in ...
Simulation ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
MC3 sampling Groups = 6

Always = 0
No. of models = 32

For CPMP >= .9 = 10
Priors: Mean model size = 1.699

Models: Beta-binomial(1, 1) Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 10,000
Coef.: Zellner’s g Acceptance rate = 0.2417

g: Benchmark, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 52.292

Sampling correlation = 0.9990

rating Mean Std. dev. Group PIP

complaints .705479 .1218881 1 1
learning .0601919 .1282869 3 .25234
advance -.0167514 .0737415 6 .13141

privileges -.0074265 .048844 2 .10996
raises .0069949 .0666406 4 .10629

critical .0009699 .0437742 5 .098526

Always
_cons 14.84478 7.871046 0 1

Note: Coefficient posterior means and std. dev. estimated from 32 models.
Note: Default priors are used for models and parameter g.
. bmastats models, novartable
Computing model probabilities ...
Model summary Number of models:

Visited = 32
Reported = 5

Analytical PMP Frequency PMP Model size

Rank
1 .5557 .5167 1
2 .1169 .1248 2
3 .04073 .0427 2
4 .03933 .0392 2
5 .03805 .0492 2

Note: Using analytical PMP for model ranking.

Analytical and frequency PMPs are available in this case, and bmastats models reports both. The ana-

lytical and frequency estimates are similar, which should be the case for a convergedmodel. bmaregress
reported a sampling correlation of 0.9990, which is a strong indication of convergence. When both types

of PMP estimates are available, bmastats models always uses analytical PMPs for model ranking, but

you can use the frequency option to rank models by frequency PMPs.

Both BMAmodels above assumed a fixed parameter 𝑔 that controls the shrinkage of coefficients toward
zero. We can instead specify a prior distribution, a hyperprior, for 𝑔. For instance, we use a robust

hyperprior below.
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. bmaregress rating complaints-advance, gprior(robust) rseed(18)
Burn-in ...
Simulation ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
MC3 and adaptive MH sampling Groups = 6

Always = 0
No. of models = 34

For CPMP >= .9 = 12
Priors: Mean model size = 1.734

Models: Beta-binomial(1, 1) Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 10,000
Coef.: Zellner’s g Acceptance rate = 0.4232

g: Robust
sigma2: Noninformative Mean sigma2 = 53.095

Sampling correlation = 0.9994

rating Mean Std. dev. Group PIP

complaints .7000463 .1273543 1 .9998
learning .0594904 .1286095 3 .25
advance -.0192712 .0797935 6 .1503
raises .0079416 .0727859 4 .1201

privileges -.0072591 .0487009 2 .1069
critical .0014397 .0466476 5 .1067

Always
_cons 15.24911 7.988166 0 1

Note: Coefficient posterior means and std. dev. estimated from 34 models.
Note: Default prior is used for models.

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

g 152.668 1968.132 43.5265 33.81024 8.205076 610.6026
Shrinkage .9656427 .0276071 .001234 .9712728 .8913639 .9983649

. bmastats model, novartable
Computing model probabilities ...
Model summary Number of models:

Visited = 34
Reported = 5

Frequency PMP Model size

Rank
1 .5708 1
2 .102 2
3 .0403 2
4 .04 2
5 .0305 2
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Only frequency PMPs are reported in this case because analytical formulas for PMPs are not available for

a random 𝑔.

Stored results
bmastats models stores the following in r():

Scalars

r(k models) number of models

r(k models rpt) number of reported models

Macros

r(pmptype) analytical or frequency

Matrices

r(summary) model summary matrix

r(rank) model ranks

r(varinclmat) variable-inclusion matrix

Methods and formulas
For methods and formulas of PMPs and PIPs, see Posterior model probability and Posterior inclusion

probability in Methods and formulas of [BMA] bmaregress.

The CPMP for a model 𝑗 is a cumulative sum of the first 𝑗th highest PMPs. The analytical CPMP is a

cumulative sum of analytical PMPs, and frequency CPMP is a cumulative sum of frequency PMPs.

The HPM is the model with the highest PMP.

The MPM is the model with predictors that have PIPs greater than or equal to 0.5 (Barbieri and Berger

2004). That is, if 𝑋1, 𝑋2, . . . , 𝑋𝑝 are predictors used with bmaregress, then 𝑋𝑘 is in the MPM if and

only if PIP(𝑋𝑘) ≥ 0.5. If there are no such predictors, then MPM does not exist.

References
Barbieri, M. M., and J. O. Berger. 2004. Optimal predictive model selection. Annals of Statistics 32: 870–897. https:
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Description Quick start Menu Syntax
Option Remarks and examples Stored results Methods and formulas
References Also see

Description
bmastats msize provides amodel-size summary after the bmaregress command. bmastats msize

is useful to assess the overall complexity of the models in Bayesian model averaging (BMA) weighted

by their prior and posterior model probabilities. By comparing the overall posterior model sizes with the

prior model sizes, we can also assess the impact of the data on the BMA analysis.

Quick start
Display prior and posterior model-size summary

bmastats msize

Include a constant term in the model-size computations

bmastats msize, constant

Menu
Statistics > Bayesian model averaging > Model-size summary

Syntax
bmastats msize [ , constant ]

collect is allowed; see [U] 11.1.10 Prefix commands.

Option

� � �
Main �

constant specifies that the constant term be included in model-size computations. By default, the con-

stant term is not included.

Remarks and examples
Model size is the number of predictors included in amodel. The constant term is typically not included

in the model size. In BMA, there are multiple models, so we have a distribution of the model sizes. The

model prior determines the prior model-size distribution. After you observe the data, the model prior is

updated to form the posterior model-size distribution.

You can use the model-size distribution summaries to explore the complexity of the fitted BMAmodel.

For instance, when the posterior median model size is small relative to the total number of regression

terms, this means there are only a few strong predictors of the outcome. Conversely, when it is large,

there are many weak potential predictors. And by comparing the posterior model size with the prior one,

we can assess how the data affect our prior knowledge.

213
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The prior model-size distribution can be computed analytically based on the known formula, with a

caveat that in cases when the model space is not explored fully, this analytical distribution is conditional

on the visited models.

The posterior model-size distribution is available analytically only with fixed 𝑔 and is thus not pro-

vided with random 𝑔.
Whenever a posterior Markov chain Monte Carlo (MCMC) model sample is available, such as with

random 𝑔 or when bmaregress’s sampling option is used, the posterior model-size distribution can be

estimated from the sample by using sampling frequencies. See Methods and formulas for details.

bmastats msize reports prior and posterior model-size summaries, including mean and median

model sizes. For prior model-size summary, it always provides the analytical estimates. For posterior

model-size summary, it provides the analytical estimates with fixed 𝑔 and the frequency estimates with

random 𝑔. With fixed 𝑔 and MC3 sampling, the command provides both types of estimates. By default,

the constant is not included in the model-size computations, but you can specify the constant option to

include it.

Example 1: Model-size analysis after BMA regression using enumeration
Consider the performance dataset (Chatterjee and Hadi 2012, sec. 3.3) analyzed in example 1 of

[BMA] bmaregress. The employees’ satisfaction with their supervisors, rating, is modeled by six po-
tential predictors. The total of 30 observations represent 30 different departments in the surveyed orga-

nization.
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We fit a linear BMA regression using the bmaregress command.

. use https://www.stata-press.com/data/r19/performance
(Data on employee satisfaction with supervisor)
. bmaregress rating complaints-advance
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
Model enumeration Groups = 6

Always = 0
Priors: No. of models = 64

Models: Beta-binomial(1, 1) For CPMP >= .9 = 10
Cons.: Noninformative Mean model size = 1.699
Coef.: Zellner’s g

g: Benchmark, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 52.302

rating Mean Std. dev. Group PIP

complaints .7052859 .1224289 1 .99973
learning .0603014 .1285281 3 .25249
advance -.0167921 .073883 6 .13148

privileges -.0074174 .0488635 2 .10998
raises .0070789 .0670475 4 .10642

critical .0009713 .0437848 5 .098534

Always
_cons 14.8472 7.874219 0 1

Note: Coefficient posterior means and std. dev. estimated from 64 models.
Note: Default priors are used for models and parameter g.

From the output, the model space is fully explored through enumeration. There is a total of 26 = 64

models in the full model space.

Let’s use bmastats msize to compute the model-size summary.

. bmastats msize
Model-size summary
Number of models = 64
Model size:

Minimum = 0
Maximum = 6

Mean Median

Prior
Analytical 3.0000 3

Posterior
Analytical 1.6986 1

Note: Frequency summaries not available.

The reported model size does not include the constant, so its range is between 0 and 6. The prior mean

and median model sizes are both 3. The posterior mean and median model sizes are, respectively, 1.699

and 1. (The posterior mean model size is the same as the one reported by bmaregress.)
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The default model prior distribution assumes a uniform prior on the model size. The prior mean model

size, 3, is larger than the posterior one, 1.699. The posterior favors smaller models.

For the prior model-size summary, bmastats msize always reports analytical estimates. With model

enumeration, it reports analytical estimates for the posterior model-size summary too. Frequency-based

posterior estimates are not available here because there is no MCMC sample for the models—the models

were enumerated.

Example 2: Model-size analysis after BMA regression using MC3 sampling
We fit the same BMAmodel as in example 1, but this time we use the MC3 sampling algorithm.

. bmaregress rating complaints-advance, sampling rseed(18)
Burn-in ...
Simulation ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
MC3 sampling Groups = 6

Always = 0
No. of models = 32

For CPMP >= .9 = 10
Priors: Mean model size = 1.699

Models: Beta-binomial(1, 1) Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 10,000
Coef.: Zellner’s g Acceptance rate = 0.2417

g: Benchmark, g = 36 Shrinkage, g/(1+g) = 0.9730
sigma2: Noninformative Mean sigma2 = 52.292

Sampling correlation = 0.9990

rating Mean Std. dev. Group PIP

complaints .705479 .1218881 1 1
learning .0601919 .1282869 3 .25234
advance -.0167514 .0737415 6 .13141

privileges -.0074265 .048844 2 .10996
raises .0069949 .0666406 4 .10629

critical .0009699 .0437742 5 .098526

Always
_cons 14.84478 7.871046 0 1

Note: Coefficient posterior means and std. dev. estimated from 32 models.
Note: Default priors are used for models and parameter g.

Instead of enumerating models, bmaregress generates a sample from the posterior model distribution

that includes 32 different models.
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. bmastats msize
Model-size summary
Number of models = 32
Model size:

Minimum = 1
Maximum = 6

Mean Median

Prior
Analytical 4.3333 5

Posterior
Analytical 1.6985 1
Frequency 1.7791 1

Here the minimum model size is 1, compared with 0 in example 1. This means that the null model,

having a low posterior probability, was not visited by the MC3 sampler.

Although we used the same model prior as in example 1, the prior model-size estimates are different.

This is because our explored model space now contains 32 models instead of all 64, and the prior model-

size estimates are now conditional on the visited models.

With fixed 𝑔 and when we fit a BMAmodel using MC3 sampling, in addition to analytical model-size

estimates, the frequency estimates are also available. Provided that the model-space sampling converges,

the analytical and frequency estimates should be close. In our example, the analytical and frequency

model-size estimates, 1.7 and 1.8, are close.
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We can also explore the effect of the 𝑔 parameter on the complexity of our BMA model. Let us, for

example, fix 𝑔 to 1, which is much lower than the default value of 36 used above.

. bmaregress rating complaints-advance, gprior(fixed 1) sampling rseed(18)
Burn-in ...
Simulation ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
MC3 sampling Groups = 6

Always = 0
No. of models = 63

For CPMP >= .9 = 29
Priors: Mean model size = 3.731

Models: Beta-binomial(1, 1) Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 10,000
Coef.: Zellner’s g Acceptance rate = 0.5678

g: g = 1 Shrinkage, g/(1+g) = 0.5000
sigma2: Noninformative Mean sigma2 = 103.952

Sampling correlation = 0.9957

rating Mean Std. dev. Group PIP

complaints .3188165 .158556 1 .94416
learning .0944454 .1508832 3 .61347
advance -.0520093 .137935 6 .55788
raises .030129 .1654381 4 .5473

privileges -.0163312 .1027766 2 .53808
critical .0062495 .1066877 5 .52978

Always
_cons 38.76265 10.36275 0 1

Note: Coefficient posterior means and std. dev. estimated from 63 models.
Note: Default prior is used for models.
. bmastats msize
Model-size summary
Number of models = 63
Model size:

Minimum = 0
Maximum = 6

Mean Median

Prior
Analytical 3.0488 3

Posterior
Analytical 3.7307 4
Frequency 3.6529 4

The posterior mean model size has increased to 3.73, and the posterior median model size has increased

to 4. With 𝑔 = 1, BMA appears to favor larger models.
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Example 3: Model-size analysis after BMA regression with random 𝑔

Both example 1 and example 2 used a fixed 𝑔. Let’s explore the case of a random 𝑔. (An in-depth

coverage of the effects of the 𝑔-prior on model complexity can be found in, for example, Ley and Steel
[2012].)

To demonstrate, we will use a robust prior for 𝑔.
. bmaregress rating complaints-advance, gprior(robust) rseed(18)
Burn-in ...
Simulation ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 30
Linear regression No. of predictors = 6
MC3 and adaptive MH sampling Groups = 6

Always = 0
No. of models = 34

For CPMP >= .9 = 12
Priors: Mean model size = 1.734

Models: Beta-binomial(1, 1) Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 10,000
Coef.: Zellner’s g Acceptance rate = 0.4232

g: Robust
sigma2: Noninformative Mean sigma2 = 53.095

Sampling correlation = 0.9994

rating Mean Std. dev. Group PIP

complaints .7000463 .1273543 1 .9998
learning .0594904 .1286095 3 .25
advance -.0192712 .0797935 6 .1503
raises .0079416 .0727859 4 .1201

privileges -.0072591 .0487009 2 .1069
critical .0014397 .0466476 5 .1067

Always
_cons 15.24911 7.988166 0 1

Note: Coefficient posterior means and std. dev. estimated from 34 models.
Note: Default prior is used for models.

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

g 152.668 1968.132 43.5265 33.81024 8.205076 610.6026
Shrinkage .9656427 .0276071 .001234 .9712728 .8913639 .9983649
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bmaregress now uses MC3 sampling for the models and an adaptive Metropolis–Hastings sampling for

𝑔.
. bmastats msize
Model-size summary
Number of models = 34
Model size:

Minimum = 1
Maximum = 6

Mean Median

Prior
Analytical 4.1786 4

Posterior
Frequency 1.7338 1

Note: Analytical summaries not available.

Analytical posterior estimates are not available with random 𝑔. The frequency posterior estimates are

similar to those in example 2 for fixed 𝑔 = 36.

Stored results
bmastats msize stores the following in r():

Scalars

r(k models) number of models

r(msize mean prior) prior mean model size

r(msize mean a) analytical posterior mean model size (not available with random 𝑔)
r(msize mean f) frequency posterior mean model size (not available with model enumeration)

r(constant) 1 if constant is specified; 0 otherwise

Matrices

r(modelsize) model-size summary

Methods and formulas
Consider a BMA regression model for an outcome vector y with 𝑝 predictors. Let ℳ𝐹 =

{𝑀1, 𝑀2, . . . , 𝑀2𝑝} denote the full space of models formed by considering all 2𝑝 possible subsets of 𝑝
variables, and let 𝐽𝐹 = {1, 2, . . . , 2𝑝} denote the full set of the corresponding indices. Let |𝑀| denote
the model size of a regression model 𝑀 from ℳ𝐹; that is, |𝑀| equals the number of predictors included
in model 𝑀.

The prior distribution of |𝑀| is a discrete distribution on the set {0, 1, . . . , 𝑝} such that

Pr(|𝑀| = 𝑠) =
2𝑝

∑
𝑗=1

𝐼(|𝑀𝑗| = 𝑠)𝑃 (𝑀𝑗)

where 𝐼(⋅) is an indicator function, 𝑀𝑗’s are all possible enumerated models from ℳ𝐹, and 𝑃(𝑀𝑗)’s
are the prior model probabilities.



bmastats msize — Model-size summary after BMA regression 221

Similarly, the posterior distribution of |𝑀| is defined as

Pr(|𝑀| = 𝑠|y) =
2𝑝

∑
𝑗=1

𝐼(|𝑀𝑗| = 𝑠)𝑃𝑎(𝑀𝑗|y)

where 𝑃𝑎(𝑀𝑗|y)’s are the analytical posterior model probabilities defined by (7) in Posterior model

probability in Methods and formulas of [BMA] bmaregress.

When the model space is fully explored through enumeration, the analytical prior mean model size is

𝐸(|𝑀|) =
2𝑝

∑
𝑗=1

|𝑀𝑗|𝑃 (𝑀𝑗)

and the analytical posterior mean model size is

𝐸(|𝑀| | y) =
2𝑝

∑
𝑗=1

|𝑀𝑗|𝑃𝑎(𝑀𝑗|y)

When model sampling is used instead of model enumeration, the analytical prior mean model size is

estimated conditionally on the subspace of the visited models indexed by 𝐽 ⊂ 𝐽𝐹:

𝐸(|𝑀|) =
∑𝑗∈𝐽 |𝑀𝑗|𝑃 (𝑀𝑗)

∑𝑗∈𝐽 𝑃(𝑀𝑗)

With fixed 𝑔 and when model sampling is used, such as when bmaregress’s sampling option is

specified, the analytical posterior mean model size is estimated as

𝐸𝑎(|𝑀| | y) =
∑𝑗∈𝐽 |𝑀𝑗|𝑃𝑎(𝑀𝑗|y)

∑𝑗∈𝐽 𝑃𝑎(𝑀𝑗|y)

With random 𝑔, analytical formulas for posterior model probabilities and posterior model-size prob-
abilities are not available.

When a posterior MCMC sample of models, {𝑚𝑡}𝑇
𝑡=1, is available, such as with random 𝑔 or when

bmaregress’s sampling option is used, the frequency estimate of the posterior mean model size is

computed as follows:

𝐸𝑓(|𝑀| | y) = 1
𝑇

𝑇
∑
𝑡=1

|𝑚𝑡|
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bmastats pip — Posterior inclusion probabilities for predictors after BMA regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Also see

Description
bmastats pip reports posterior inclusion probabilities (PIPs) and grouping information for predictors

specified with the bmaregress command.

Quick start
Show predictors with PIP above 0.01, ordered by highest to lowest PIP

bmastats pip

Same as above, but report predictors in their input order in bmaregress
bmastats pip, inputorder

Show PIP for predictors x1 and x2
bmastats pip x1 x2

Show predictors with PIP above 0.5

bmastats pip, cutoff(0.5)

Show PIP for all predictors

bmastats pip, all

Menu
Statistics > Bayesian model averaging > Posterior inclusion probabilities

222
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Syntax
bmastats pip [ varlist ] [ , options ]

options Description

Main

inputorder display results in a variable input order; default is descending
order of PIP

cutoff(#) suppress predictors with PIP less than #; default is # = 0.01

display options control spacing, line width, and base and empty cells

all show PIP for all predictors

[ no ]table display or suppress table output

varlist may contain factor variables; see [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.

all, table, and notable do not appear in the dialog box.

Options

� � �
Main �

inputorder specifies that the results be displayed in the same order the predictors are specified in varlist

or, if varlist is not specified, with bmaregress. By default, the results are displayed in the descending
order of PIP of predictors.

cutoff(#) specifies that predictors with PIP less than # not be shown. The default is cutoff(0.01).
This option is useful when there are many predictors with small PIPs.

display options: vsquish, noemptycells, baselevels, allbaselevels, nofvlabel,
fvwrap(#), fvwrapon(style), and nolstretch; see [R] Estimation options.

The following options are available with bmastats pip but are not shown in the dialog box:

all shows PIPs and grouping information for all predictors or for all predictors in varlist if specified with

bmastats pip. all is equivalent to cutoff(0).

table and notable display or suppress the table output. The table is shown by default. This option

is useful with many predictors when you wish to see only the number of reported predictors in the

header.

Remarks and examples
PIPs are used in Bayesian model averaging (BMA) inference to investigate the importance of various

predictors in explaining the outcome. A PIP is the probability that a predictor is included in a regression

model, given the observed data and prior inclusion probability. High PIP values indicate strong (more

important) predictors, and low PIP values indicate weak predictors.

bmaregress reports PIPs as part of its output. bmastats pip provides the same PIP and grouping

information but displays it more concisely—without the posterior coefficient summaries. bmastats
pip also allows you to investigate PIPs of specific predictors more easily.

Let’s see an example.
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We will use the auto dataset to fit a BMA linear regression of car prices on various car characteristics

such as mileage, weight, and whether a car is foreign or domestic. And we will use bmastats pip to

explore PIPs.

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. order make price foreign rep78
. describe
Contains data from https://www.stata-press.com/data/r19/auto.dta
Observations: 74 1978 automobile data

Variables: 12 13 Apr 2024 17:45
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

make str18 %-18s Make and model
price int %8.0gc Price
foreign byte %8.0g origin Car origin
rep78 int %8.0g Repair record 1978
mpg int %8.0g Mileage (mpg)
headroom float %6.1f Headroom (in.)
trunk int %8.0g Trunk space (cu. ft.)
weight int %8.0gc Weight (lbs.)
length int %8.0g Length (in.)
turn int %8.0g Turn circle (ft.)
displacement int %8.0g Displacement (cu. in.)
gear_ratio float %6.2f Gear ratio

Sorted by: foreign
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. bmaregress price i.foreign##i.rep78 mpg-gear_ratio, rseed(18)
Burn-in ...
Simulation ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 69
Linear regression No. of predictors = 16
MC3 sampling Groups = 16
Heredity: Strong Always = 0

No. of models = 105
For CPMP >= .9 = 14

Priors: Mean model size = 2.625
Models: Beta-binomial(1, 1) Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 10,000
Coef.: Zellner’s g Acceptance rate = 0.2686

g: Benchmark, g = 256 Shrinkage, g/(1+g) = 0.9961
sigma2: Noninformative Mean sigma2 = 4.239e+06

Sampling correlation = 0.9962

price Mean Std. dev. Group PIP

foreign
Foreign 3597.21 733.8864 1 .99846

weight 3.504294 2.315263 12 .78147
length -33.74574 49.96541 13 .35377

displacement 6.896085 11.95028 15 .27357
headroom -32.06511 153.7326 10 .0575

turn -6.257741 40.06633 14 .037379
gear_ratio -40.80854 290.5467 16 .031843

rep78
5 12.02161 138.5304 5 .020152

trunk -.3727775 12.85491 11 .018163

rep78
4 -4.524674 82.48986 4 .015373
3 1.565563 67.56235 3 .013669
2 -1.818892 97.07111 2 .013639

Always
_cons -115.0626 5192.111 0 1

Note: Coefficient posterior means and std. dev. estimated from 105 models.
Note: Default priors are used for models and parameter g.
Note: 4 predictors with PIP less than .01 not shown.
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Let’s start with the default specification:

. bmastats pip
Posterior inclusion probability (PIP)
No. of obs = 69
No. of predictors = 16

Groups = 16
Always = 0

Reported = 12
No. of models = 105
Mean model size = 2.625

PIP Group

foreign
Foreign .99846 1

weight .78147 12
length .35377 13

displacement .27357 15
headroom .0575 10

turn .037379 14
gear_ratio .031843 16

rep78
5 .020152 5

trunk .018163 11

rep78
4 .015373 4
3 .013669 3
2 .013639 2

Always
_cons 1 0

Note: Using analytical PMPs.
Note: 4 predictors with PIP less than

.01 not shown.

As we already mentioned, by default, bmastats pip reports the same PIP and grouping information as

bmaregress.
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By default, the results are displayed in the decreasing order of PIP. We can use the inputorder option

to display the results in the order in which the predictors were specified with bmaregress. The command
also suppresses results for predictors with PIP less than 0.01. If desired, we can use the all option to

display the results for all predictors.

. bmastats pip, inputorder all
Posterior inclusion probability (PIP)
No. of obs = 69
No. of predictors = 16

Groups = 16
Always = 0

Reported = 16
No. of models = 105
Mean model size = 2.625

PIP Group

foreign
Foreign .99846 1

rep78
2 .013639 2
3 .013669 3
4 .015373 4
5 .020152 5

foreign#rep78
Foreign#1 (empty)
Foreign#2 (empty)
Foreign#3 0 6
Foreign#4 .0002665 7
Foreign#5 0 8

mpg .0094456 9
headroom .0575 10

trunk .018163 11
weight .78147 12
length .35377 13

turn .037379 14
displacement .27357 15

gear_ratio .031843 16

Always
_cons 1 0

Note: Using analytical PMPs.
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We can identify a set of more influential predictors by specifying a higher PIP cutoff:

. bmastats pip, cutoff(0.5)
Posterior inclusion probability (PIP)
No. of obs = 69
No. of predictors = 16

Groups = 16
Always = 0

Reported = 2
No. of models = 105
Mean model size = 2.625

PIP Group

foreign
Foreign .99846 1

weight .78147 12

Always
_cons 1 0

Note: Using analytical PMPs.
Note: 14 predictors with PIP less than

.5 not shown.

And we can investigate PIPs for specific predictors:

. bmastats pip i.rep78
Posterior inclusion probability (PIP)
No. of obs = 69
No. of predictors = 16

Groups = 16
Always = 0

Reported = 4
No. of models = 105
Mean model size = 2.625

PIP Group

rep78
5 .020152 5
4 .015373 4
3 .013669 3
2 .013639 2

Always
_cons 1 0

Note: Using analytical PMPs.
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Stored results
bmastats pip stores the following in r():

Scalars

r(N) number of observations

r(p) number of predictors

r(p groups) number of groups of predictors

r(p always) number of predictors always in the model

r(p rpt) number of reported predictors

r(k models) number of models

r(msize mean) posterior mean model size

Macros

r(varnames) specified variables

r(pmptype) analytical or frequency

Matrices

r(summary) PIP and group summary

Methods and formulas
For definitions of PIPs, see Posterior inclusion probability in Methods and formulas of

[BMA] bmaregress.

Also see
[BMA] bmagraph varmap — Variable-inclusion map after BMA regression

[BMA] bmastats — Summary for models and predictors after BMA regression

[BMA] bmaregress — Bayesian model averaging for linear regression

[BMA] BMApostestimation — Postestimation tools for Bayesian model averaging

[BMA] Glossary
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See [BAYES] Glossary for definitions standard to Bayesian analysis.

always predictor. Predictor that is always included in a model, that is, included in every model in the

model space. In bmaregress, it is specified with the command within the always group of variables:

. bmaregress (varlist, always) ...

analytical mean model size. See mean model size.

analytical model-size distribution. See model-size distribution.

analytical PIP. See posterior inclusion probability.

analytical PMP. See posterior model probability (PMP).

Bayesian model averaging (BMA). A special case of model averaging, where the weights correspond

to posterior model probabilities. BMA considers a space of plausible models and views a model as a

discrete random variable over this space. It uses the Bayes theorem to estimate the posterior model

probability based on the model prior and observed data. The posterior distribution of model parame-

ters is then estimated by an average over the posterior distributions conditional on a model weighted

by the corresponding posterior model probability.

Bayesian model averaging (BMA) regression. BMA applied to regression analysis, where each model

from the model space corresponds to a unique set of predictors. Model uncertainty in the context of

Bayesian model averaging regression amounts to the uncertainty of the inclusion of predictors in a

model. See [BMA] bmaregress.

bivariate inclusion probability. See joint inclusion probability.

bivariate jointness. See jointness.

BMA. See Bayesian model averaging (BMA).

coefficient sample. See model parameter sample.

complements. See jointness.

CPMP. See cumulative posterior model probability (CPMP).

cumulative posterior model probability (CPMP). The running sum of the highest to lowest PMP of

models. See [BMA] bmastats models.

disjointness. A tendency of the two predictors to be included in a model exclusively; that is, if one is

included, the other is not. Such predictors are known as substitutes, which means that each of them

carries the same amount of information about the outcome. There are several measures proposed to

estimate disjointness, see [BMA] bmastats jointness. Also see jointness.

entropy. The negative of the mean of the log density. For a normal distribution with mean 𝜇 and variance

𝜎2, it is defined as {1+ log(2𝜋𝜎2)}/2. It is used for comparison with the mean log predictive-score
(LPS) when checking model fit using out-of-sample observations. When the variance is known (see

bmastats lps’s sigma2() option), the comparison can also be made for in-sample observations.

The closer the mean LPS to the entropy, the better the model fit. See [BMA] bmastats lps.

enumeration. See model enumeration.

explored model space. See visited model space.

230
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fixed g, fixed-g case. A case when a fixed value is used for the 𝑔 parameter of a Zellner’s 𝑔-prior. This is
the case when one of the following is specified in the gprior() option of bmaregress: bench (the

default), uip, ric, sqrtn, fixed, or ebl. Also see random 𝑔.

frequency mean model size. See mean model size.

frequency model-size distribution. See model-size distribution.

frequency PIP. See posterior inclusion probability (PIP).

frequency PMP. See posterior model probability (PMP).

fully explored model space. See model enumeration.

full model space. An entire model space as defined for a Bayesian model averaging model.

g-prior, g-hyperprior. A prior for the 𝑔 parameter; see random g and fixed g.

grouped predictors. See in–out group.

highest probability model (HPM). Model with the highest posterior model probability. Clarke (2003),

among others, states that the HPM is the model closest to the data-generating model whether the latter

is in the explored model space or not. See [BMA] bmastats models.

HPM. See highest probability model (HPM).

hyperprior. A distribution for a parameter of a prior distribution. In the context of a Bayesian model

averaging regression, this is a prior distribution for the 𝑔 parameter; see 𝑔-prior.
important predictor. See predictor.

in–out group. A group of predictors that is included in or excluded from a model together during esti-

mation. In bmaregress, it is specified with the command in parentheses:

. bmaregress (varlist) ...

in–out predictor, in–out variable. A predictor (variable) that is included in or excluded from a model

during estimation. Also see always predictor and [BMA] bmaregress.

in–out term. An in–out predictor (varname) or an in–out group of predictors (varlist); see

[BMA] bmaregress.

inclusion map. See variable-inclusion map.

inclusion probability. In the context of a Bayesian model averaging regression, a probability over the

considered model space that a predictor is included in a regression model. This is known as a marginal

inclusion probability. Also see joint inclusion probability and posterior inclusion probability (PIP).

influential predictor. See predictor.

joint inclusion probability. In the context of a Bayesian model averaging regression, a joint proba-

bility of inclusion of multiple predictors in a model. This probability is defined over the considered

model space. For example, for a pair of predictors 𝑋1 and 𝑋2 and a model 𝑀, a bivariate inclusion

probability is defined as 𝑃(𝑋1 ∈ 𝑀, 𝑋2 ∈ 𝑀). If the inclusion of 𝑋1 is independent of 𝑋2, then

the bivariate joint probability is simply the product of the corresponding marginal inclusion proba-

bilities, 𝑃(𝑋1 ∈ 𝑀, 𝑋2 ∈ 𝑀) = 𝑃(𝑋1 ∈ 𝑀)𝑃(𝑋2 ∈ 𝑀). Similarly, one can define a joint

noninclusion probability as 𝑃(𝑋1 ∉ 𝑀, 𝑋2 ∉ 𝑀). The other two joint probabilities of interest

are 𝑃(𝑋1 ∈ 𝑀, 𝑋2 ∉ 𝑀) and 𝑃(𝑋1 ∉ 𝑀, 𝑋2 ∈ 𝑀). You can view these four probabilities as
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probabilities corresponding to the cross-tabulation of two random binary indicators 𝐼(𝑋1 ∈ 𝑀) and
𝐼(𝑋2 ∈ 𝑀), where 𝐼(⋅) is an indicator function. The joint probabilities are used to define various

jointness measures. See [BMA] bmastats jointness.

joint inference. In the context of Bayesian model averaging, joint inference considers joint inclusion

probabilities and, more specifically, various jointness measures. Also see marginal inference.

joint noninclusion probability. See joint inclusion probability.

jointness. A tendency of the two predictors to be included in a model together; that is, if one is included,

the other is included too. Such predictors are known as complements, which means that, when in-

cluded together, they provide additional information about the outcome. There are several measures

proposed to estimate jointness; see [BMA] bmastats jointness. Also see disjointness.

jointness measures. Jointness measures assess the degree of inclusion dependency between predictors

across the considered model space. They are typically defined for a pair of predictors and are based on

the joint inclusion probabilities. See jointness and disjointness. Also see [BMA] bmastats jointness.

log predictive-score (LPS). The negative of the log of the posterior predictive density evaluated at an

observation. It is often used to evaluate the model’s predictive performance. The smaller the LPS, the

better the predictive performance. Also see entropy and [BMA] bmastats lps.

LPS. See log predictive-score (LPS).

marginal inference. In the context of Bayesian model averaging, marginal inference explores individual

characteristics of predictors such as posterior inclusion probability. Also see joint inference.

MC3. See Markov chain Monte Carlo model composition (MC3) algorithm.

Markov chain Monte Carlo model composition (MC3) algorithm, MC3 sampling. MC3 (Madi-

gan and York 1995) is a stochastic algorithm used in Bayesian model averaging to sample models

from their posterior distribution over the model space. It explores discrete model spaces formed

by subsets of potential predictors by changing one variable, or group of variables, at a time. See

[BMA] bmaregress.

MCMC model sample. See model sample.

MCMC model parameter sample. See model parameter sample.

mean model size. The mean of the model-size distribution. In the Bayesian model averaging context,

there are prior and posterior mean model sizes. The prior mean model size is the mean of the prior

model-size distribution. The posterior mean model size is the mean of the posterior model-size distri-

bution. Posterior mean model size can be computed by using analytical or frequency posterior model

probability, in which case it is referred to as, respectively, the analytical or frequency posterior mean

model size. The prior mean model size is always computed analytically, but in cases when the model

space is not explored fully, it is conditional on the visited models. It is often compared with the poste-

rior mean model size to evaluate the impact of the data on the prior assumption about the model size.

See [BMA] bmastats msize.

median probability model (MPM). The MPM is a model that includes only influential predictors, pre-

dictors with posterior inclusion probability of 0.5 or above. See [BMA] bmastats models.

model averaging. In statistics, model averaging is an inferential technique that estimates a quantity

of interest by a weighted average of individual model estimates over a space of candidate models.

The weights are chosen according to various criteria with the aim of achieving certain asymptotic

properties or improving prediction performance. Also see Bayesian model averaging (BMA).
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model distribution. In the Bayesian model averaging context, a model is viewed as a random quantity

and thus has a distribution. This distribution is defined by model probabilities. There are prior and

posterior model distributions. A prior model distribution is a (discrete) distribution defined over the

model space and assumed for a model before observing the data. A posterior model distribution is a

distribution of the model after observing the data given the assumed prior model distribution.

A prior model distribution represents an assumption about a model before observing the data. Com-

mon choices include a uniform prior on the model size and a uniform prior on the model space. The

former assigns an equal probability to a model of any size. The latter assigns the same probability

1/|ℳ| to each model 𝑀, where |ℳ| is the total number of models in the model space ℳ.

A posterior model distribution reflects the effect of the observed data on the prior assumption. The

estimation of a posterior model distribution is at the heart of Bayesian model averaging.

model enumeration. A full enumeration of the model space. In the regression framework with 𝑝 pre-

dictors, model enumeration considers all 2𝑝 models formed by including or excluding each of the

𝑝 predictors. Enumeration is feasible only with a moderate number of predictors. In bmaregress,
model enumeration is available only when 𝑝 ≤ 24. If 𝑝 ≤ 12, bmaregress uses model enumeration

automatically. For 12 < 𝑝 ≤ 24, you can use the enumeration option to performmodel enumeration.

Also see model sampling.

model parameter sample. A Markov chain Monte Carlo sample from the posterior distribution of a

model parameter. In a Bayesian model averaging regression, model parameters are the regression

coefficients, the intercept, and the error variance. The posterior samples for these parameters are

generated by the bmacoefsample command; see [BMA] bmacoefsample.

model posterior. See posterior model distribution.

model prior. See prior model distribution.

model probability. In the context of Bayesian model averaging, a model 𝑀 is viewed as a discrete

random variable defined on a model space ℳ with a probability 0 ≤ 𝑃(𝑀) ≤ 1, such that

∑𝑀∗∈ℳ 𝑃(𝑀∗) = 1. Model probabilities 𝑃(𝑀)’s define a model distribution. Prior model prob-
abilities 𝑃(𝑀)’s define a prior model distribution. Posterior model probabilities 𝑃(𝑀|y)’s, model
probabilities given the observed outcome y, define a posterior model distribution; also see posterior

model probability (PMP).

model sample. A Markov chain Monte Carlo sample from a posterior model distribution, estimated by

the MC3 algorithm. Also see posterior model probability (PMP).

model sampling. Simulation of a Markov chain Monte Carlo model sample. See [BMA] bmaregress.

model size. The number of predictors in the model, typically ignoring the constant term. For a model

𝑀, the model size is commonly denoted as |𝑀|. See [BMA] bmastats msize and [BMA] bmagraph

msize.

model space. A set of models considered for model averaging. In a regression setting, the model space

includes 2𝑝 distinct models, which correspond to all possible combinations of inclusions and exclu-

sions of 𝑝 predictors. In the presence of always predictors 𝑝𝑎, the model space contains 2
𝑝−𝑝𝑎 models.

In the presence of groups of predictors, an entire group is considered as one predictor in the defini-

tion of the model space. Depending on the context, the model space can sometimes imply the visited

model space.
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model uncertainty. Model uncertainty can be defined in many ways. In a regression setting, model

uncertainty is uncertainty associated with the inclusion of predictors in a regression model. With 𝑝
predictors, there are 2𝑝 possible models. In this case, model uncertainty is defined with respect to

these 2𝑝 models.

model-size distribution. In the Bayesian model averaging context, a model is viewed as a random

quantity. Its model size is random too and thus has a distribution. There are prior and posterior

model-size distributions. The prior model-size distribution represents an assumption about the model

size before observing the data. The posterior model-size distribution reflects the effect of the observed

data on this prior assumption. It is useful to explore these distributions to evaluate the presumed and

observed complexity of a Bayesian model averaging model.

The posterior model-size distribution can be computed by using the analytical or frequency posterior

model probability, in which case it is referred to as, respectively, the analytical or frequency posterior

model-size distribution. The prior model-size distribution is always computed analytically, but when

the model space is not explored fully, it is conditional on the visited models. A beta-binomial distri-

bution with shape parameters of one is commonly used as a noninformative prior for the model size.

This is the default used by bmaregress. See [BMA] bmagraph msize and [BMA] bmastats msize.

modified MC3. A Markov chain Monte Carlo sampling algorithm used by bmaregress in the case of

a random 𝑔. It uses the MC3 algorithm to sample from the model space and an adaptive Metropo-

lis–Hastings algorithm to sample the 𝑔 parameter. See Methods and formulas of [BMA] bmaregress.

MPM. See median probability model (MPM).

noninclusion probability. The complementary probability of the inclusion probability.

PIP. See posterior inclusion probability (PIP).

PMP. See posterior model probability (PMP).

posterior coefficient sample. See model parameter sample.

posterior distribution. In a Bayesian model averaging regression, there is a posterior distribution of

models and parameter 𝑔, which is estimated or simulated by bmaregress. There is also a posterior

distribution of model parameters, which is simulated by bmacoefsample after bmaregress and de-

fined as a mixture of the conditional posterior distributions given a model weighted by the posterior

model probability.

posterior inclusion probability (PIP). PIP is the probability that a predictor is included in a model

computed over the model space given the observed data and a prior model probability. PIP is used

as a measure of the predictor’s importance. Often, predictors with PIP of 0.5 or above are considered

important predictors. Analytical and frequency PIPs are computed based on the respective analytical

or frequency posterior model probabilities. See [BMA] bmaregress and [BMA] bmastats pip.

posterior mean model size. See mean model size.

posterior model distribution. See model distribution.

posterior model parameter sample. See model parameter sample.

posterior model probability (PMP). PMP is a model probability after observing the data with respect

to the considered model space and given the assumed prior model probability. Consider a model 𝑀
from a model space ℳ and an observed outcome y. Let 𝑃(𝑀) be a prior model probability, 𝑓(y|𝑀)
be the density of y given 𝑀, and 𝑓(y) be the marginal density of y. Then, using the Bayes formula,



Glossary 235

PMP is defined as

𝑃(𝑀|y) = 𝑓(y|𝑀)𝑃(𝑀)
𝑓(y)

Analytical PMP is computed by using the analytical expressions, which are available only with a fixed

𝑔. Frequency PMP is computed from a Markov chain Monte Carlo model sample, which is available

with a random 𝑔 or with a fixed 𝑔 when bmaregress’s sampling option is specified or implied. See

[BMA] bmastats models and [BMA] bmagraph pmp.

posterior model sample. See model sample.

posterior model-size distribution. See model-size distribution.

posterior noninclusion probability, 1 - PIP. The complementary probability of the posterior inclusion

probability. This is the probability mass at zero in a mixture posterior distribution of a regression

coefficient. See [BMA] bmagraph coefdensity.

predictor, predictor variable. A variable used to predict an outcome or included in a model for the

outcome. In the Stata context, this can be an existing variable in the dataset, or it can be a virtual

variable, as described in [U] 11.4.3 Factor variables, corresponding to a level of a factor variable

or to an interaction term. In a regression context, predictor refers to any term in the specification of

a regression function. A predictor with a high posterior inclusion probability (PIP), typically 0.5 or

above, is considered an important predictor. A predictor with a lower PIP, typically less than 0.5, is

considered a weak predictor. By default, bmaregress does not report predictors with PIP less than

0.01.

predictor-inclusion map. See variable-inclusion map.

prior mean model size. See mean model size.

prior model distribution. See model distribution.

prior model probability. See model probability.

prior model-size distribution. See model-size distribution.

random g, random-g case. A case when a random value is used for the 𝑔 parameter of a Zellner’s 𝑔-
prior. This is the case when 𝑔 is assumed to follow a distribution, hyperprior, and one of the following

hyperpriors is specified in the gprior() option of bmaregress: betashrink, betabench, hyperg,
hypergn, zsiow, or robust. Also see fixed g.

regression, Bayesian model averaging. See Bayesian model averaging (BMA) regression.

regression coefficient sample. See model parameter sample.

sampling correlation. A correlation between the analytical posterior model probability (PMP) and the

frequency PMP. bmaregress reports it in the header when Markov chain Monte Carlo sampling is

used. The sampling correlation is used to assess Markov chain Monte Carlo convergence. The closer

it is to unity, the better. With a random 𝑔, when the analytical PMP is not available, the sampling

correlation is computed as a correlation between the harmonic-mean estimator of the analytical PMP

and the frequency PMP. See Convergence of BMA in Remarks and examples of [BMA] bmaregress.

shrinkage, shrinkage factor, shrinkage parameter. Shrinkage is defined as 𝑔/(𝑔 + 1), where 𝑔 is the

parameter of a Zellner’s 𝑔-prior. The smaller this value, the more the coefficients are shrunk toward
zero.

strong predictor. See predictor.

substitutes. See disjointness.
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variable-inclusion summary, predictor-inclusion summary. A summary of the inclusion or exclusion

of a predictor in a model. bmastats models provides this information in a tabular format with a

column for each model and with a row for each predictor. Predictors that are included in the model are

marked with an x in the corresponding row. For brevity, predictors with posterior inclusion probability
less than 0.01 are not displayed. Also see variable-inclusion map for the graphical representation. See

[BMA] bmastats models.

variable-inclusion map. A bar graph that plots models and their cumulative posterior model probability

on the 𝑥 axis and the predictors on the 𝑦 axis. The bars of this graph represent coefficients. The

signs of the coefficients are distinguished by color. For instance, bmagraph varmap uses blue for

positive coefficients, red for negative coefficients, and gray for zero coefficients of predictors that

were not included in a model. Also see variable-inclusion summary for the tabular representation.

See [BMA] bmagraph varmap.

visited model space, visited models. A subset of models from a model space considered or “visited” by

a Markov chain Monte Carlo sampling algorithm. With model enumeration, the visited model space

is the same as the full model space.

weak predictor. See predictor.

Zellner’s 𝑔-prior. A prior assumed for regression coefficients in a Bayesian model averaging regres-

sion. The 𝑔 parameter controls the shrinkage of the coefficients toward zero. It can be fixed or

random. Large 𝑔-values mean less shrinkage. In general, the larger the values of 𝑔, the more similar
the Bayesian model averaging results are to the standard regression results. See [BMA] bmaregress.
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Subject and author index

See the combined subject index and the combined author index in the Stata Index.
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