
Intro — Introduction to Bayesian analysis

Description Remarks and examples References Also see

Description
This entry provides a software-free introduction to Bayesian analysis. See [BAYES] Bayesian com-

mands for an overview of the software for performing Bayesian analysis and for an overview example.

For Bayesian model averaging, which is Bayesian analysis that averages over multiple plausible mod-

els, see [BMA] Intro.

Remarks and examples
Remarks are presented under the following headings:

What is Bayesian analysis?
Bayesian versus frequentist analysis, or why Bayesian analysis?
How to do Bayesian analysis
Advantages and disadvantages of Bayesian analysis
Brief background and literature review
Bayesian statistics

Posterior distribution
Selecting priors
Point and interval estimation
Comparing Bayesian models
Posterior prediction

Bayesian computation
Markov chain Monte Carlo methods

Metropolis–Hastings algorithm
Adaptive random-walk Metropolis–Hastings
Blocking of parameters
Metropolis–Hastings with Gibbs updates
Convergence diagnostics of MCMC

Summary
Video examples

The first five sections provide a general introduction to Bayesian analysis. The remaining sections pro-

vide a more technical discussion of the concepts of Bayesian analysis.

What is Bayesian analysis?
Bayesian analysis is a statistical analysis that answers research questions about unknown parameters

of statistical models by using probability statements. Bayesian analysis rests on the assumption that all

model parameters are random quantities and thus can incorporate prior knowledge. This assumption is in

sharp contrast with the more traditional, also called frequentist, statistical inference where all parameters

are considered unknown but fixed quantities. Bayesian analysis follows a simple rule of probability, the

Bayes rule, which provides a formalism for combining prior information with evidence from the data

at hand. The Bayes rule is used to form the so called posterior distribution of model parameters. The

posterior distribution results from updating the prior knowledge about model parameters with evidence

from the observed data. Bayesian analysis uses the posterior distribution to form various summaries

for the model parameters including point estimates such as posterior means, medians, percentiles, and

interval estimates such as credible intervals. Moreover, all statistical tests about model parameters can

be expressed as probability statements based on the estimated posterior distribution.
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As a quick introduction to Bayesian analysis, we use an example, described in Hoff (2009, 3), of

estimating the prevalence of a rare infectious disease in a small city. A small random sample of 20

subjects from the city will be checked for infection. The parameter of interest 𝜃 ∈ [0, 1] is the fraction of
infected individuals in the city. Outcome 𝑦 records the number of infected individuals in the sample. A

reasonable sampling model for 𝑦 is a binomial model: 𝑦|𝜃 ∼ Binomial(20, 𝜃). Based on the studies from
other comparable cities, the infection rate ranged between 0.05 and 0.20, with an average prevalence of

0.10. To use this information, we must conduct Bayesian analysis. This information can be incorporated

into a Bayesian model with a prior distribution for 𝜃, which assigns a large probability between 0.05

and 0.20, with the expected value of 𝜃 close to 0.10. One potential prior that satisfies this condition

is a Beta(2, 20) prior with the expected value of 2/(2 + 20) = 0.09. So, let’s assume this prior for the

infection rate 𝜃, that is, 𝜃 ∼ Beta(2, 20). We sample individuals and observe none who have an infection,

that is, 𝑦 = 0. This value is not that uncommon for a small sample and a rare disease. For example, for

a true rate 𝜃 = 0.05, the probability of observing 0 infections in a sample of 20 individuals is about 36%

according to the binomial distribution. So, our Bayesian model can be defined as follows:

𝑦|𝜃 ∼ Binomial(20, 𝜃)
𝜃 ∼ Beta(2, 20)

For this Bayesian model, we can actually compute the posterior distribution of 𝜃|𝑦, which is 𝜃|𝑦 ∼
Beta(2 + 0, 20 + 20 − 0) = Beta(2, 40). The prior and posterior distributions of 𝜃 are depicted below.
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The posterior density (shown in red) is more peaked and shifted to the left compared with the prior

distribution (shown in blue). The posterior distribution combined the prior information about 𝜃 with the
information from the data, from which 𝑦 = 0 provided evidence for a low value of 𝜃 and shifted the prior
density to the left to form the posterior density. Based on this posterior distribution, the posterior mean

estimate of 𝜃 is 2/(2 + 40) = 0.048 and the posterior probability that, for example, 𝜃 < 0.10 is about

93%.

If we compute a standard frequentist estimate of a population proportion 𝜃 as a fraction of the infected
subjects in the sample, 𝑦 = 𝑦/𝑛, we will obtain 0 with the corresponding 95% confidence interval

(𝑦 − 1.96√𝑦 (1 − 𝑦)/𝑛, 𝑦 + 1.96√𝑦 (1 − 𝑦)/𝑛) reducing to 0 as well. It may be difficult to convince a
health policy maker that the prevalence of the disease in that city is indeed 0, given the small sample size

and the prior information available from comparable cities about a nonzero prevalence of this disease.
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We used a beta prior distribution in this example, but we could have chosen another prior distribution

that supports our prior knowledge. For the final analysis, it is important to consider a range of different

prior distributions and investigate the sensitivity of the results to the chosen priors.

For more details about this example, see Hoff (2009). Also see Beta-binomial model in

[BAYES] bayesmh for how to fit this model using bayesmh.

Rabe-Hesketh and Skrondal (2022, chap. 16) and Cameron and Trivedi (2022, chap. 28) provide

introductions to Bayesian analysis with Stata-specific examples.

Bayesian versus frequentist analysis, or why Bayesian analysis?
Why use Bayesian analysis? Perhaps a better question is when to use Bayesian analysis and when to

use frequentist analysis. The answer to this question mainly lies in your research problem. You should

choose an analysis that answers your specific research questions. For example, if you are interested

in estimating the probability that the parameter of interest belongs to some prespecified interval, you

will need the Bayesian framework, because this probability cannot be estimated within the frequentist

framework. If you are interested in a repeated-sampling inference about your parameter, the frequentist

framework provides that.

Bayesian and frequentist approaches have very different philosophies about what is considered fixed

and, therefore, have very different interpretations of the results. The Bayesian approach assumes that

the observed data sample is fixed and that model parameters are random. The posterior distribution of

parameters is estimated based on the observed data and the prior distribution of parameters and is used

for inference. The frequentist approach assumes that the observed data are a repeatable random sample

and that parameters are unknown but fixed and constant across the repeated samples. The inference is

based on the sampling distribution of the data or of the data characteristics (statistics). In other words,

Bayesian analysis answers questions based on the distribution of parameters conditional on the observed

sample, whereas frequentist analysis answers questions based on the distribution of statistics obtained

from repeated hypothetical samples, which would be generated by the same process that produced the

observed sample given that parameters are unknown but fixed. Frequentist analysis consequently re-

quires that the process that generated the observed data is repeatable. This assumption may not always

be feasible. For example, in meta-analysis, where the observed sample represents the collected studies

of interest, one may argue that the collection of studies is a one-time experiment.

Frequentist analysis is entirely data-driven and strongly depends on whether or not the data assump-

tions required by the model are met. On the other hand, Bayesian analysis provides a more robust es-

timation approach by using not only the data at hand but also some existing information or knowledge

about model parameters.

In frequentist statistics, estimators are used to approximate the true values of the unknown parame-

ters, whereas Bayesian statistics provides an entire distribution of the parameters. In our example of a

prevalence of an infectious disease from What is Bayesian analysis?, frequentist analysis produced one

point estimate for the prevalence, whereas Bayesian analysis estimated the entire posterior distribution

of the prevalence based on a given sample.

Frequentist inference is based on the sampling distributions of estimators of parameters and provides

parameter point estimates and their standard errors as well as confidence intervals. The exact sam-

pling distributions are rarely known and are often approximated by a large-sample normal distribution.

Bayesian inference is based on the posterior distribution of the parameters and provides summaries of

this distribution including posterior means and their MCMC standard errors (MCSE) as well as credible

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesBeta-binomialmodel
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesintro.pdf#bayesIntroRemarksandexamplesWhatisBayesiananalysis?
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intervals. Although exact posterior distributions are known only in a number of cases, general posterior

distributions can be estimated via, for example, Markov chain Monte Carlo (MCMC) sampling without

any large-sample approximation.

Frequentist confidence intervals do not have straightforward probabilistic interpretations as do

Bayesian credible intervals. For example, the interpretation of a 95% confidence interval is that if we re-

peat the same experiment many times and compute confidence intervals for each experiment, then 95%

of those intervals will contain the true value of the parameter. For any given confidence interval, the

probability that the true value is in that interval is either zero or one, and we do not know which. We

may only infer that any given confidence interval provides a plausible range for the true value of the

parameter. A 95% Bayesian credible interval, on the other hand, provides a range for a parameter such

that the probability that the parameter lies in that range is 95%.

Frequentist hypothesis testing is based on a deterministic decision using a prespecified significance

level of whether to accept or reject the null hypothesis based on the observed data, assuming that the null

hypothesis is actually true. The decision is based on a 𝑝-value computed from the observed data. The

interpretation of the 𝑝-value is that if we repeat the same experiment and use the same testing procedure
many times, then given our null hypothesis is true, we will observe the result (test statistic) as extreme

or more extreme than the one observed in the sample (100× 𝑝-value)% of the times. The 𝑝-value cannot
be interpreted as a probability of the null hypothesis, which is a common misinterpretation. In fact, it

answers the question of how likely are our data given that the null hypothesis is true, and not how likely

is the null hypothesis given our data. The latter question can be answered by Bayesian hypothesis testing,

where we can compute the probability of any hypothesis of interest.

How to do Bayesian analysis
Bayesian analysis starts with the specification of a posterior model. The posterior model describes

the probability distribution of all model parameters conditional on the observed data and some prior

knowledge. The posterior distribution has two components: a likelihood, which includes information

about model parameters based on the observed data, and a prior, which includes prior information (before

observing the data) about model parameters. The likelihood and prior models are combined using the

Bayes rule to produce the posterior distribution:

Posterior ∝ Likelihood × Prior

If the posterior distribution can be derived in a closed form, we may proceed directly to the infer-

ence stage of Bayesian analysis. Unfortunately, except for some special models, the posterior distri-

bution is rarely available explicitly and needs to be estimated via simulations. MCMC sampling can be

used to simulate potentially very complex posterior models with an arbitrary level of precision. MCMC

methods for simulating Bayesian models are often demanding in terms of specifying an efficient sam-

pling algorithm and verifying the convergence of the algorithm to the desired posterior distribution. See

[BAYES] Bayesian estimation.

Inference is the next step of Bayesian analysis. If MCMC sampling is used for approximating the

posterior distribution, the convergence of MCMC must be established before proceeding to inference

(see, for example, [BAYES] bayesgraph and [BAYES] bayesstats grubin). Point and interval estimators

are either derived from the theoretical posterior distribution or estimated from a sample simulated from

the posterior distribution. Many Bayesian estimators, such as posterior mean and posterior standard

deviation, involve integration. If the integration cannot be performed analytically to obtain a closed-form

solution, sampling techniques such as Monte Carlo integration and MCMC and numerical integration are

commonly used. See [BAYES] Bayesian postestimation and [BAYES] bayesstats.

https://www.stata.com/manuals/bayesbayesianestimation.pdf#bayesBayesianestimation
https://www.stata.com/manuals/bayesbayesgraph.pdf#bayesbayesgraph
https://www.stata.com/manuals/bayesbayesstatsgrubin.pdf#bayesbayesstatsgrubin
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimation
https://www.stata.com/manuals/bayesbayesstats.pdf#bayesbayesstats


Intro — Introduction to Bayesian analysis 5

Another important step of Bayesian analysis is model checking, which is typically performed via pos-

terior predictive checking. The idea behind posterior predictive checking is the comparison of various

aspects of the distribution of the observed data with those of the replicated data. Replicated data are sim-

ulated from the posterior predictive distribution of the fitted Bayesian model under the same conditions

that generated the observed data, such as the same values of covariates, etc. The discrepancy between the

distributions of the observed and replicated data is measured by test quantities (functions of the data and

model parameters) and is quantified by so-called posterior predictive 𝑝-values. See [BAYES] bayesstats
ppvalues and [BAYES] bayespredict.

Bayesian hypothesis testing can take two forms, which we refer to as interval-hypothesis testing and

model-hypothesis testing. In an interval-hypothesis testing, the probability that a parameter or a set of

parameters belongs to a particular interval or intervals is computed. In model hypothesis testing, the

probability of a Bayesian model of interest given the observed data is computed. See [BAYES] bayestest.

Model comparison is another common step of Bayesian analysis. The Bayesian framework provides

a systematic and consistent approach to model comparison using the notion of posterior odds and related

to them Bayes factors. See [BAYES] bayesstats ic for details.

Finally, prediction of some future unobserved data may also be of interest in Bayesian analysis. The

prediction of a new data point is performed conditional on the observed data using the so-called poste-

rior predictive distribution, which involves integrating out all parameters from the model with respect

to their posterior distribution. Again, Monte Carlo integration is often the only feasible option for ob-

taining predictions. Prediction can also be helpful in estimating the goodness of fit of a model. See

[BAYES] bayespredict.

Advantages and disadvantages of Bayesian analysis
Bayesian analysis is a powerful analytical tool for statistical modeling, interpretation of results, and

prediction of data. It can be used when there are no standard frequentist methods available or the existing

frequentist methods fail. However, one should be aware of both the advantages and disadvantages of

Bayesian analysis before applying it to a specific problem.

The universality of the Bayesian approach is probably its main methodological advantage to the tra-

ditional frequentist approach. Bayesian inference is based on a single rule of probability, the Bayes

rule, which is applied to all parametric models. This makes the Bayesian approach universal and greatly

facilitates its application and interpretation. The frequentist approach, however, relies on a variety of

estimation methods designed for specific statistical problems and models. Often, inferential methods

designed for one class of problems cannot be applied to another class of models.

In Bayesian analysis, we can use previous information, either belief or experimental evidence, in a

data model to acquire more balanced results for a particular problem. For example, incorporating prior

information can mitigate the effect of a small sample size. Importantly, the use of the prior evidence is

achieved in a theoretically sound and principled way.

By using the knowledge of the entire posterior distribution of model parameters, Bayesian inference

is far more comprehensive and flexible than the traditional inference.

Bayesian inference is exact, in the sense that estimation and prediction are based on the posterior

distribution. The latter is either known analytically or can be estimated numerically with an arbitrary

precision. In contrast, many frequentist estimation procedures such as maximum likelihood rely on the

assumption of asymptotic normality for inference.

https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryposterior_predictive_pvalue
https://www.stata.com/manuals/bayesbayesstatsppvalues.pdf#bayesbayesstatsppvalues
https://www.stata.com/manuals/bayesbayesstatsppvalues.pdf#bayesbayesstatsppvalues
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredict
https://www.stata.com/manuals/bayesbayestest.pdf#bayesbayestest
https://www.stata.com/manuals/bayesbayesstatsic.pdf#bayesbayesstatsic
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredict
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Bayesian inference provides a straightforward and more intuitive interpretation of the results in terms

of probabilities. For example, credible intervals are interpreted as intervals to which parameters belong

with a certain probability, unlike the less straightforward repeated-sampling interpretation of the confi-

dence intervals.

Bayesian models satisfy the likelihood principle (Berger and Wolpert 1988) that the information in

a sample is fully represented by the likelihood function. This principle requires that if the likelihood

function of one model is proportional to the likelihood function of another model, then inferences from

the twomodels should give the same results. Some researchers argue that frequentist methods that depend

on the experimental design may violate the likelihood principle.

Finally, as we briefly mentioned earlier, the estimation precision in Bayesian analysis is not limited

by the sample size—Bayesian simulation methods may provide an arbitrary degree of precision.

Despite the conceptual and methodological advantages of the Bayesian approach, its application in

practice is still considered controversial sometimes. There are two main reasons for this—the presumed

subjectivity in specifying prior information and the computational challenges in implementing Bayesian

methods. Along with the objectivity that comes from the data, the Bayesian approach uses potentially

subjective prior distribution. That is, different individuals may specify different prior distributions. Pro-

ponents of frequentist statistics argue that for this reason, Bayesian methods lack objectivity and should

be avoided. Indeed, there are settings such as clinical trial cases when the researchers want to minimize

a potential bias coming from preexisting beliefs and achieve more objective conclusions. Even in such

cases, however, a balanced and reliable Bayesian approach is possible. The trend in using noninfor-

mative priors in Bayesian models is an attempt to address the issue of subjectivity. On the other hand,

some Bayesian proponents argue that the classical methods of statistical inference have built-in subjec-

tivity such as a choice for a sampling procedure, whereas the subjectivity is made explicit in Bayesian

analysis.

Building a reliable Bayesian model requires extensive experience from the researchers, which leads

to the second difficulty in Bayesian analysis—setting up a Bayesian model and performing analysis is a

demanding and involving task. This is true, however, to an extent for any statistical modeling procedure.

Lastly, one of the main disadvantages of Bayesian analysis is the computational cost. As a rule,

Bayesian analysis involves intractable integrals that can only be computed using intensive numerical

methods. Most of these methods such as MCMC are stochastic by nature and do not comply with the

natural expectation from a user of obtaining deterministic results. Using simulation methods does not

compromise the discussed advantages of Bayesian approach, but unquestionably adds to the complexity

of its application in practice.

For more discussion about advantages and disadvantages of Bayesian analysis, see, for example,

Thompson (2012), Bernardo and Smith (2000), and Berger and Wolpert (1988).
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Brief background and literature review
The principles of Bayesian analysis date back to the work of Thomas Bayes, who was a Presbyterian

minister in Tunbridge Wells and Pierre Laplace, a French mathematician, astronomer, and physicist in

the 18th century. Bayesian analysis started as a simple intuitive rule, named after Bayes, for updating

beliefs on account of some evidence. For the next 200 years, however, Bayes’s rule was just an obscure

idea. Along with the rapid development of the standard or frequentist statistics in 20th century, Bayesian

methodology was also developing, although with less attention and at a slower pace. One of the obstacles

for the progress of Bayesian ideas has been the lasting opinion among mainstream statisticians of it being

subjective. Another more-tangible problem for adopting Bayesian models in practice has been the lack

of adequate computational resources. Nowadays, Bayesian statistics is widely accepted by researchers

and practitioners as a valuable and feasible alternative.

Bayesian analysis proliferates in diverse areas including industry and government, but its application

in sciences and engineering is particularly visible. Bayesian statistical inference is used in econometrics

(Poirier [1995]; Chernozhukov and Hong [2003]; Kim, Shephard, and Chib [1998], Zellner [1997]);

education (Johnson 1997); epidemiology (Greenland 1998); engineering (Godsill and Rayner 1998);

genetics (Iversen, Parmigiani, and Berry 1999); social sciences (Pollard 1986); hydrology (Parent et al.

1998); quality management (Rios Insua 1990); atmospheric sciences (Berliner et al. 1999); and law

(DeGroot, Fienberg, and Kadane 1986), to name a few.

The subject of general statistics has been greatly influenced by the development of Bayesian ideas.

Bayesian methodologies are now present in biostatistics (Carlin and Louis [2009]; Berry and Stangl

[1996]); generalized linear models (Dey, Ghosh, and Mallick 2000); hierarchical modeling (Hobert

2000); statistical design (Chaloner and Verdinelli 1995); classification and discrimination (Neal [1996];

Neal [1999]); graphical models (Pearl 1998); nonparametric estimation (Müller and Vidakovic [1999];

Dey, Müller, and Sinha [1998]); survival analysis (Barlow, Clarotti, and Spizzichino 1993); sequen-

tial analysis (Carlin, Kadane, and Gelfand 1998); predictive inference (Aitchison and Dunsmore 1975);

spatial statistics (Wolpert and Ickstadt [1998]; Besag and Higdon [1999]); testing and model selection

(Kass and Raftery [1995]; Berger and Pericchi [1996]; Berger [2006]); and time series (Pole, West, and

Harrison [1994]; West and Harrison [1997]).

Recent advances in computing allowed practitioners to perform Bayesian analysis using simulations.

The simulation tools came from outside the statistics field—Metropolis et al. (1953) developed what is

now known as a random-walk Metropolis algorithm to solve problems in statistical physics. Another

landmark discovery was the Gibbs sampling algorithm (Geman and Geman 1984), initially used in im-

age processing, which showed that exact sampling from a complex and otherwise intractable probability

distribution is possible. These ideas were the seeds that led to the development of Markov chain Monte

Carlo (MCMC)—a class of iterative simulation methods proved to be indispensable tools for Bayesian

computations. Starting from the early 1990s,MCMC-based techniques slowly emerged in the mainstream

statistical practice. More powerful and specialized methods appeared, such as perfect sampling (Propp

and Wilson 1996), reversible-jump MCMC (Green 1995) for traversing variable dimension state spaces,

and particle systems (Gordon, Salmond, and Smith 1993). Consequent widespread application of MCMC

was imminent (Berger 2000) and influenced various specialized fields. For example, Gelman and Rubin

(1992) investigated MCMC for the purpose of exploring posterior distributions; Geweke (1999) surveyed

simulationmethods for Bayesian inference in econometrics; Kim, Shephard, and Chib (1998) usedMCMC

simulations to fit stochastic volatility models; Carlin, Kadane, and Gelfand (1998) implemented Monte

Carlo methods for identifying optimal strategies in clinical trials; Chib and Greenberg (1995) provided

Bayesian formulation of a number of important econometrics models; and Chernozhukov and Hong
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(2003) reviewed some econometrics models involving Laplace-type estimators from an MCMC perspec-

tive. For more comprehensive exposition ofMCMC, see, for example, Robert and Casella (2004); Tanner

(1996); Gamerman and Lopes (2006); Chen, Shao, and Ibrahim (2000); and Brooks et al. (2011).

Bayesian statistics

Posterior distribution

To formulate the principles of Bayesian statistics, we start with a simple case when one is concerned

with the interaction of two random variables,A andB. Let 𝑝(⋅) denote either a probability mass function
or a density, depending on whether the variables are discrete or continuous. The rule of conditional

probability,

𝑝(A|B) = 𝑝(A,B)
𝑝(B)

can be used to derive the so-called Bayes’s theorem:

𝑝(B|A) = 𝑝(A|B)𝑝(B)
𝑝(A)

(1)

This rule also holds in the more general case whenA andB are random vectors.

In a typical statistical problem, we have a data vector y, which is assumed to be a sample from a

probability model with an unknown parameter vector θ. We represent this model using the likelihood

function 𝐿(θ; y) = 𝑓(y;θ) = ∏𝑛
𝑖=1 𝑓(𝑦𝑖|θ), where 𝑓(𝑦𝑖|θ) denotes the probability density function of

𝑦𝑖 given θ. We want to infer some properties of θ based on the data y. In Bayesian statistics, model

parameters θ is a random vector. We assume that θ has a probability distribution 𝑝(θ) = 𝜋(θ), which is
referred to as a prior distribution. Because both y and θ are random, we can apply Bayes’s theorem (1)

to derive the posterior distribution of θ given data y,

𝑝(θ|y) = 𝑝(y|θ)𝑝(θ)
𝑝(y)

= 𝑓(y;θ)𝜋(θ)
𝑚(y)

(2)

where 𝑚(y) ≡ 𝑝(y), known as the marginal distribution of y, is defined by

𝑚(y) = ∫ 𝑓(y;θ)𝜋(θ)𝑑θ (3)

The marginal distribution 𝑚(y) in (3) does not depend on the parameter of interest θ, and we can,

therefore, reduce (2) to

𝑝(θ|y) ∝ 𝐿(θ; y)𝜋(θ) (4)

Equation (4) is fundamental in Bayesian analysis and states that the posterior distribution of model

parameters is proportional to their likelihood and prior probability distributions. We will often use (4) in

the computationally more-convenient log-scale form

ln{𝑝(θ|y)} = 𝑙(θ; y) + ln{𝜋(θ)} − 𝑐 (5)

where 𝑙(⋅; ⋅) denotes the log likelihood of the model. Depending on the analytical procedure involving
the log-posterior ln{𝑝(θ|y)}, the actual value of the constant 𝑐 = ln{𝑚(y)} may or may not be relevant.
For valid statistical analysis, however, we will always assume that 𝑐 is finite.

https://www.stata.com/manuals/bayesintro.pdf#bayesIntroRemarksandexampleseq1
https://www.stata.com/manuals/bayesintro.pdf#bayesIntroRemarksandexampleseq3
https://www.stata.com/manuals/bayesintro.pdf#bayesIntroRemarksandexampleseq2
https://www.stata.com/manuals/bayesintro.pdf#bayesIntroRemarksandexampleseq4
https://www.stata.com/manuals/bayesintro.pdf#bayesIntroRemarksandexampleseq4
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Selecting priors

In Bayesian analysis, we seek a balance between prior information in a form of expert knowledge or

belief and evidence from data at hand. Achieving the right balance is one of the difficulties in Bayesian

modeling and inference. In general, we should not allow the prior information to overwhelm the ev-

idence from the data, especially when we have a large data sample. A famous theoretical result, the

Bernstein–von Mises theorem, states that in large data samples, the posterior distribution is independent

of the prior distribution and, therefore, Bayesian and likelihood-based inferences should yield essentially

the same results. On the other hand, we need a strong enough prior to support weak evidence that usu-

ally comes from insufficient data. It is always good practice to perform sensitivity analysis to check the

dependence of the results on the choice of a prior.

The flexibility of choosing the prior freely is one of the main controversial issues associated with

Bayesian analysis and the reason why some practitioners view the latter as subjective. It is also the rea-

son why the Bayesian practice, especially in the early days, was dominated by noninformative priors.

Noninformative priors, also called flat or vague priors, assign equal probabilities to all possible states of

the parameter space with the aim of rectifying the subjectivity problem. One of the disadvantages of flat

priors is that they are often improper; that is, they do not specify a legitimate probability distribution.

For example, a uniform prior for a continuous parameter over an unbounded domain does not integrate

to a finite number. However, this is not necessarily a problem because the corresponding posterior dis-

tribution may still be proper. Although Bayesian inference based on improper priors is possible, this is

equivalent to discarding the terms log𝜋(θ) and 𝑐 in (5), which nullifies the benefit of Bayesian analysis
because it reduces the latter to an inference based only on the likelihood. This is why there is a strong

objection to the practice of noninformative priors. In recent years, an increasing number of researchers

have advocated the use of sound informative priors, for example, Thompson (2014). For example, using

informative priors is mandatory in areas such as genetics, where prior distributions have a physical basis

and reflect scientific knowledge.

Another convenient preference for priors is to use conjugate priors. Their choice is desirable from

technical and computational standpoints but may not necessarily provide a realistic representation of the

model parameters. Because of the limited arsenal of conjugate priors, an inclination to overuse them

severely limits the flexibility of Bayesian modeling.

Point and interval estimation

In Bayesian statistics, inference about parameters θ is based on the posterior distribution 𝑝(θ|y) and
various ways of summarizing this distribution. Point and interval estimates can be used to summarize

this distribution.

Commonly used point estimators are the posterior mean,

𝐸(θ|y) = ∫θ𝑝(θ|y)𝑑θ

and the posterior median, 𝑞0.5(θ), which is the 0.5 quantile of the posterior; that is,

𝑃{θ ≤ 𝑞0.5(θ|y)} = 0.5

Another point estimator is the posterior mode, which is the value of θ that maximizes 𝑝(θ|y).

https://www.stata.com/manuals/bayesintro.pdf#bayesIntroRemarksandexampleseq5
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryconjugate_prior
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Interval estimation is performed by constructing so-called credible intervals (CrIs). CrIs are special

cases of credible regions. Let 1−𝛼 ∈ (0, 1) be some predefined credible level. Then, an {(1−𝛼)×100}%
credible set R of 𝜃 is such that

Pr(𝜃 ∈ 𝑅|y) = ∫
𝑅

𝑝(𝜃|y)𝑑𝜃 = 1 − 𝛼

We consider two types of CrIs. The first one is based on quantiles. The second one is the highest

posterior density (HPD) interval.

An {(1−𝛼)×100}% quantile-based, or also known as an equal-tailed CrI, is defined as (𝑞𝛼/2, 𝑞1−𝛼/2),
where 𝑞𝑎 denotes the 𝑎th quantile of the posterior distribution. A commonly reported equal-tailed CrI is

(𝑞0.025, 𝑞0.975).
HPD interval is defined as an {(1 − 𝛼) × 100}% CrI of the shortest width. As its name implies,

this interval corresponds to the region of the posterior density with the highest concentration. For a

unimodal posterior distribution, HPD is unique, but for a multimodal distribution it may not be unique.

Computational approaches for calculating HPD are described in Chen and Shao (1999) and Eberly and

Casella (2003).

Comparing Bayesian models

Model comparison is another important aspect of Bayesian statistics. We are often interested in com-

paring two or more plausible models for our data.

Let’s assume that we have models 𝑀𝑗 parameterized by vectors θ𝑗, 𝑗 = 1, . . . , 𝑟. We may

have varying degree of belief in each of these models given by prior probabilities 𝑝(𝑀𝑗), such that

∑𝑟
𝑗=1 𝑝(𝑀𝑗) = 1. By applying Bayes’s theorem, we find the posterior model probabilities

𝑝(𝑀𝑗|y) =
𝑝(y|𝑀𝑗)𝑝(𝑀𝑗)

𝑝(y)

where 𝑝(y|𝑀𝑗) = 𝑚𝑗(𝑦) is the marginal likelihood of 𝑀𝑗 with respect to y. Because of the difficulty in

calculating 𝑝(y), it is a common practice to compare two models, say, 𝑀𝑗 and 𝑀𝑘, using the posterior

odds ratio

PO𝑗𝑘 =
𝑝(𝑀𝑗|y)
𝑝(𝑀𝑘|y)

=
𝑝(y|𝑀𝑗)𝑝(𝑀𝑗)
𝑝(y|𝑀𝑘)𝑝(𝑀𝑘)

If all models are equally plausible, that is, 𝑝(𝑀𝑗) = 1/𝑟, the posterior odds ratio reduces to the so-called
Bayes factors (BF) (Jeffreys 1935),

BF𝑗𝑘 =
𝑝(y|𝑀𝑗)
𝑝(y|𝑀𝑘)

=
𝑚𝑗(y)
𝑚𝑘(y)

which are simply ratios of marginal likelihoods.
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Jeffreys (1961) recommended an interpretation of BF𝑗𝑘 based on half-units of the log scale. The

following table provides some rules of thumb:

log10(BF𝑗𝑘) BF𝑗𝑘 Evidence against 𝑀𝑘

0 to 1/2 1 to 3.2 Bare mention

1/2 to 1 3.2 to 10 Substantial

1 to 2 10 to 100 Strong

>2 >100 Decisive

The Schwarz criterion BIC (Schwarz 1978) is an approximation of BF in case of arbitrary but proper

priors. Kass and Raftery (1995) and Berger (2006) provide a detailed exposition of Bayes factors, their

calculation, and their role in model building and testing.

Posterior prediction

Prediction is another essential part of statistical analysis. In Bayesian statistics, prediction is per-

formed using the posterior predictive distribution. The probability of observing some future data y∗

given the observed data y can be obtained by the marginalization of

𝑝(y∗|y) = ∫ 𝑝(y∗|y,θ)𝑝(θ|y)𝑑θ

which, assuming that y∗ is independent of y given θ, can be simplified to

𝑝(y∗|y) = ∫ 𝑝(y∗|θ)𝑝(θ|y)𝑑θ (6)

Equation (6) is called a posterior predictive distribution and is used for Bayesian prediction. See

[BAYES] bayespredict and [BAYES] bayesstats ppvalues.

Bayesian computation
An unavoidable difficulty in performing Bayesian analysis is the need to compute integrals such as

those expressing marginal distributions and posterior moments. The integrals involved in Bayesian in-

ference are of the form 𝐸{𝑔(θ)} = ∫ 𝑔(θ)𝑝(θ|y)𝑑θ for some function 𝑔(⋅) of the random vector θ. With

the exception of a few cases for which analytical integration is possible, the integration is performed via

simulations.

Given a sample from the posterior distribution, we can use Monte Carlo integration to approximate

the integrals. Let θ1, θ2, . . . , θ𝑇 be an independent sample from 𝑝(θ|y).
The original integral of interest 𝐸{𝑔(θ)} can be approximated by

̂𝑔 = 1
𝑇

𝑇
∑
𝑡=1

𝑔(θ𝑡)

Moreover, if 𝑔 is a scalar function, under some mild conditions, the central limit theorem holds

̂𝑔 ≈ 𝑁 [𝐸{𝑔(θ)}, 𝜎2/𝑇]

https://www.stata.com/manuals/bayesintro.pdf#bayesIntroRemarksandexampleseq6
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredict
https://www.stata.com/manuals/bayesbayesstatsppvalues.pdf#bayesbayesstatsppvalues


Intro — Introduction to Bayesian analysis 12

where 𝜎2 = Cov{𝑔(θ𝑖)} can be approximated by the sample variance ∑𝑇
𝑡=1{𝑔(θ𝑡) − ̂𝑔}2/𝑇. If the

sample is not independent, then ̂𝑔 still approximates 𝐸{𝑔(θ)} but the variance 𝜎2 is given by

𝜎2 = Var{𝑔(θ𝑡)} + 2
∞

∑
𝑘=1

Cov{𝑔(θ𝑡), 𝑔(θ𝑡+𝑘)} (7)

and needs to be approximated. Moreover, the conditions needed for the central limit theorem to hold

involve the convergence rate of the chain and can be difficult to check in practice (Tierney 1994).

TheMonte Carlo integration method solves the problem of Bayesian computation of computing a pos-

terior distribution by sampling from that posterior distribution. The latter has been an important problem

in computational statistics and a focus of intense research. Rejection sampling techniques serve as ba-

sic tools for generating samples from a general probability distribution (von Neumann 1951). They are

based on the idea that samples from the target distribution can be obtained from another, easy-to-sample

distribution according to some acceptance–rejection rule for the samples from this distribution. It was

soon recognized, however, that the acceptance–rejection methods did not scale well with the increase of

dimensions, a problem known as the “curse of dimensionality”, essentially reducing the acceptance prob-

ability to zero. An alternative solution was to use the Markov chains to generate sequences of correlated

sample points from the domain of the target distribution and keeping a reasonable rate of acceptance. It

was not long beforeMarkov chainMonte Carlo methods were accepted as effective tools for approximate

sampling from general posterior distributions (Tanner and Wong 1987).

Markov chain Monte Carlo methods
Every MCMCmethod is designed to generate values from a transition kernel such that the draws from

that kernel converge to a prespecified target distribution. It simulates a Markov chain with the target

distribution as the stationary or equilibrium distribution of the chain. By definition, a Markov chain is

any sequence of values or states from the domain of the target distribution, such that each value depends

on its immediate predecessor only. For a well-designed MCMC, the longer the chain, the closer the sam-

ples to the stationary distribution. MCMC methods differ substantially in their simulation efficiency and

computational complexity.

The Metropolis algorithm proposed in Metropolis and Ulam (1949) and Metropolis et al. (1953) ap-

pears to be the earliest version of MCMC. The algorithm generates a sequence of states, each obtained

from the previous one, according to a Gaussian proposal distribution centered at that state. Hastings

(1970) described a more-general version of the algorithm, now known as a Metropolis–Hastings (MH)

algorithm, which allows any distribution to be used as a proposal distribution. Below we review the

general MH algorithm and some of its special cases.

Metropolis–Hastings algorithm

Here we present theMH algorithm for sampling from a posterior distribution in a general formulation.

It requires the specification of a proposal probability distribution 𝑞(⋅) and a starting state θ0 within the

domain of the posterior, that is, 𝑝(θ0|y) > 0. The algorithm generates a Markov chain {θ𝑡}𝑇 −1
𝑡=0 such that

at each step 𝑡 1) a proposal state θ∗ is generated conditional on the current state, and 2) θ∗ is accepted or

rejected according to the suitably defined acceptance probability.

https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryproposal_distribution
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For 𝑡 = 1, . . . , 𝑇 − 1:

1. Generate a proposal state: θ∗ ∼ 𝑞(⋅|θ𝑡−1).
2. Calculate the acceptance probability 𝛼(θ∗|θ𝑡−1) = min{𝑟(θ∗|θ𝑡−1), 1}, where

𝑟(θ∗|θ𝑡−1) = 𝑝(θ∗|y)𝑞(θ𝑡−1|θ∗)
𝑝(θ𝑡−1|y)𝑞(θ∗|θ𝑡−1)

3. Draw 𝑢 ∼ Uniform(0, 1).
4. Set θ𝑡 = θ∗ if 𝑢 < 𝛼(θ∗|θ𝑡−1), and θ𝑡 = θ𝑡−1 otherwise.

We refer to the iteration steps 1 through 4 as an MH update. By design, any Markov chain simulated

using this MH algorithm is guaranteed to have 𝑝(θ|y) as its stationary distribution.
Two important criteria measuring the efficiency of MCMC are the acceptance rate of the chain and

the degree of autocorrelation in the generated sample. When the acceptance rate is close to 0, then

most of the proposals are rejected, which means that the chain failed to explore regions of appreciable

posterior probability. The other extreme is when the acceptance probability is close to 1, in which case

the chain stays in a small region and fails to explore the whole posterior domain. An efficient MCMC

has an acceptance rate that is neither too small nor too large and also has small autocorrelation. Gelman,

Gilks, and Roberts (1997) showed that in the case of a multivariate posterior and proposal distributions,

an acceptance rate of 0.234 is asymptotically optimal and, in the case of a univariate posterior, the optimal

value is 0.45.

A special case of MH employs a Metropolis update with 𝑞(⋅) being a symmetric distribution. Then,

the acceptance ratio reduces to a ratio of posterior probabilities,

𝑟(θ∗|θ𝑡−1) = 𝑝(θ∗|y)
𝑝(θ𝑡−1|y)

The symmetric Gaussian distribution is a common choice for a proposal distribution 𝑞(⋅), and this is the
one used in the original Metropolis algorithm.

Another important MCMC method that can be viewed as a special case of MH is Gibbs sampling

(Gelfand et al. 1990), where the updates are the full conditional distributions of each parameter given the

rest of the parameters. Gibbs updates are always accepted. If θ = (𝜃1, . . . , 𝜃𝑑) and, for 𝑗 = 1 . . . , 𝑑, 𝑞𝑗

is the conditional distribution of 𝜃𝑗 given the rest θ{−𝑗}, then the Gibbs algorithm is the following. For

𝑡 = 1, . . . , 𝑇 − 1 and for 𝑗 = 1, . . . , 𝑑: 𝜃𝑗
𝑡 ∼ 𝑞𝑗(⋅|θ

{−𝑗}
𝑡−1 ). This step is referred to as a Gibbs update.

All MCMC methods share some limitations and potential problems. First, any simulated chain is

influenced by its starting values, especially for short MCMC runs. It is required that the starting point

has a positive posterior probability, but even when this condition is satisfied, if we start somewhere

in a remote tail of the target distribution, it may take many iterations to reach a region of appreciable

probability. Second, because there is no obvious stopping criterion, it is not easy to decide for how long

to run the MCMC algorithm to achieve convergence to the target distribution. Third, the observations in

MCMC samples are strongly dependent and this must be taken into account in any subsequent statistical

inference. For example, the errors associated with the Monte Carlo integration should be calculated

according to (7), which accounts for autocorrelation.

https://www.stata.com/manuals/bayesintro.pdf#bayesIntroRemarksandexampleseq7
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Adaptive random-walk Metropolis–Hastings

The choice of a proposal distribution 𝑞(⋅) in the MH algorithm is crucial for the mixing properties

of the resulting Markov chain. The problem of determining an optimal proposal for a particular target

posterior distribution is difficult and is still being researched actively. All proposed solutions are based

on some form of an adaptation of the proposal distribution as the Markov chain progresses, which is

carefully designed to preserve the ergodicity of the chain, that is, its tendency to converge to the target

distribution. These methods are known as adaptive MCMC methods (Haario, Saksman, and Tamminen

[2001]; Giordani and Kohn [2010]; and Roberts and Rosenthal [2009]).

The majority of adaptive MCMC methods are random-walk MH algorithms with updates of the form:

θ∗ = θ𝑡−1 + 𝑍𝑡, where 𝑍𝑡 follows some symmetric distribution. Specifically, we consider a Gaussian

random-walk MH algorithm with 𝑍𝑡 ∼ 𝑁(0, 𝜌2Σ), where 𝜌 is a scalar controlling the scale of random

jumps for generating updates and Σ is a 𝑑-dimensional covariance matrix. One of the first important

results regarding adaptation is from Gelman, Gilks, and Roberts (1997), where the authors derive the

optimal scaling factor 𝜌 = 2.38/
√

𝑑 and note that the optimal Σ is the true covariance matrix of the

target distribution.

Haario, Saksman, and Tamminen (2001) proposes Σ to be estimated by the empirical covariance

matrix plus a small diagonal matrix 𝜖 × 𝐼𝑑 to prevent zero covariance matrices. Alternatively, Roberts

and Rosenthal (2009) proposed a mixture of the two covariance matrices,

Σ𝑡 = 𝛽Σ̂ + (1 − 𝛽)Σ0

for some fixed covariance matrix Σ0 and 𝛽 ∈ [0, 1].
Because the proposal distribution of an adaptive MH algorithm changes at each step, the ergodicity

of the chain is not necessarily preserved. However, under certain assumptions about the adaptation

procedure, the ergodicity does hold; see Roberts and Rosenthal (2007), Andrieu and Moulines (2006),

Atchadé and Rosenthal (2005), and Giordani and Kohn (2010) for details.

Blocking of parameters

In the original MH algorithm, the update steps of generating proposals and applying the acceptance–

rejection rule are performed for all model parameters simultaneously. For high-dimensional models, this

may result in a poor mixing—the Markov chain may stay in the tails of the posterior distribution for

long periods of time and traverse the posterior domain very slowly. Suboptimal mixing is manifested by

either very high or very low acceptance rates. Adaptive MH algorithms are also prone to this problem,

especially when model parameters have very different scales. An effective solution to this problem is

called blocking—model parameters are separated into two or more subsets or blocks andMH updates are

applied to each block separately in the order that the blocks are specified.

Let’s separate a vector of parameters into 𝐵 blocks: θ = {θ1, . . . ,θ𝐵}. The version of the Gaussian
random-walk MH algorithm with blocking is as follows.

Let 𝑇0 be the number of burn-in iterations, 𝑇 be the number of MCMC samples, and 𝜌2
𝑏Σ𝑏, 𝑏 =

1, . . . , 𝐵, be block-specific proposal covariance matrices. Let θ0 be the starting point within the do-

main of the posterior, that is, 𝑝(θ0|y) > 0.

1. At iteration 𝑡, let θ𝑡 = θ𝑡−1.

2. For a block of parameters θ𝑏
𝑡 :

2.1. Let θ∗ = θ𝑡. Generate a proposal for the 𝑏th block: θ𝑏
∗ = θ𝑏

𝑡−1 + 𝜖, where 𝜖 ∼ 𝑁(0, 𝜌2
𝑏Σ𝑏).
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2.2. Calculate the acceptance ratio,

𝑟(θ∗|θ𝑡) = 𝑝(θ∗|y)
𝑝(θ𝑡|y)

where 𝜃∗ = (θ1
𝑡 ,θ2

𝑡 , . . . ,θ𝑏−1
𝑡 ,θ𝑏

∗,θ𝑏+1
𝑡 , . . . ,θ𝐵

𝑡 ).
2.3. Draw 𝑢 ∼ Uniform(0, 1).
2.4. Let θ𝑏

𝑡 = θ𝑏
∗ if 𝑢 < min{𝑟(θ∗|θ𝑡), 1}.

3. Repeat step 2 for 𝑏 = 1, . . . , 𝐵.

4. Repeat steps 1 through 3 for 𝑡 = 1, . . . , 𝑇 + 𝑇0 − 1.

5. The final sequence is {θ𝑡}
𝑇 +𝑇0−1
𝑡=𝑇0

.

Blocking may not always improve efficiency. For example, separating all parameters in individual

blocks (the so-called one-at-a-time update regime) can lead to slow mixing when some parameters are

highly correlated. A Markov chain may explore the posterior domain very slowly if highly correlated

parameters are updated independently. There are no theoretical results about optimal blocking, so you

will need to use your judgment when determining the best set of blocks for your model. As a rule,

parameters that are expected to be highly correlated are specified in one block. This will generally

improve mixing of the chain unless the proposal correlation matrix does not capture the actual correlation

structure of the block. For example, if there are two parameters in the block that have very different scales,

adaptive MH algorithms that use the identity matrix for the initial proposal covariance may take a long

time to approximate the optimal proposal correlation matrix. The user should, therefore, consider not

only the probabilistic relationship between the parameters in the model, but also their scales to determine

an optimal set of blocks.

Metropolis–Hastings with Gibbs updates

The original Gibbs sampler updates each model parameter one at a time according to its full condi-

tional distribution. We have already noted that Gibbs is a special case of the MH algorithm. Some of

the advantages of Gibbs sampling include its high efficiency, because all proposals are automatically

accepted, and that it does not require any additional tuning for proposal distributions in MH algorithms.

Unfortunately, for most posterior distributions in practice, the full conditionals are either not available or

are very difficult to sample from. It may be the case, however, that for some model parameters or groups

of parameters, the full conditionals are available and are easy to generate samples from. This is done in

a hybrid MH algorithm, which implements Gibbs updates for only some blocks of parameters. A hybrid

MH algorithm combines Gaussian random-walk updates with Gibbs updates to improve the mixing of

the chain.

The MH algorithm with blocking allows different samplers to be used for updating different blocks.

If there is a group of model parameters with a conjugate prior (or semiconjugate prior), we can place

this group of parameters in a separate block and use Gibbs sampling for it. This can greatly improve the

overall sampling efficiency of the algorithm.

For example, suppose that the data are normally distributed with a known mean 𝜇 and that we specify

an inverse-gamma prior for 𝜎2 with shape 𝛼 and scale 𝛽, which are some fixed constants.

𝑦 ∼ 𝑁(𝜇, 𝜎2), 𝜎2 ∼ InvGamma(𝛼, 𝛽)
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The full conditional distribution for 𝜎2 in this case is also an inverse-gamma distribution, but with

different shape and scale parameters,

𝜎2 ∼ InvGamma{ ̃𝛼 = 𝛼 + 𝑛
2

, ̃𝛽 = 𝛽 + 1
2

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝜇)2}

where 𝑛 is the data sample size. So, an inverse-gamma prior for the variance is a conjugate prior in this

model. We can thus place 𝜎2 in a separate block and set up a Gibbs sampling for it using the above full

conditional distribution.

See Methods and formulas in [BAYES] bayesmh for details.

Convergence diagnostics of MCMC

Checking convergence of MCMC is an essential step in any MCMC simulation. Bayesian inference

based on anMCMC sample is valid only if the Markov chain has converged and the sample is drawn from

the desired posterior distribution. It is important that we verify the convergence for all model parameters

and not only for a subset of parameters of interest. One difficulty with assessing convergence of MCMC

is that there is no single conclusive convergence criterion. The diagnostic usually involves checking

for several necessary (but not necessarily sufficient) conditions for convergence. In general, the more

aspects of the MCMC sample you inspect, the more reliable your results are.

The most extensive review of the methods for assessing convergence is Cowles and Carlin (1996).

Other discussions about monitoring convergence can be found in Gelman et al. (2014) and Brooks et al.

(2011).

There are at least two general approaches for detecting convergence issues. The first one is to inspect

the mixing and time trends within the chains of individual parameters. The second one is to examine

the mixing and time trends of multiple chains for each parameter. The lack of convergence in a Markov

chain can be especially difficult to detect in a case of pseudoconvergence, which often occurs with mul-

timodal posterior distributions. Pseudoconvergence occurs when the chain appears to have converged

but it actually explored only a portion of the domain of a posterior distribution. To check for pseudocon-

vergence, Gelman and Rubin (1992) recommend running multiple chains from different starting states

and comparing them; see [BAYES] bayesstats grubin.

Trace plots are the most accessible convergence diagnostics and are easy to inspect visually. The trace

plot of a parameter plots the simulated values for this parameter versus the iteration number. The trace

plot of a well-mixing parameter should traverse the posterior domain rapidly and should have nearly

constant mean and variance. See [BAYES] bayesgraph for details.

In the next figure, we show examples of trace plots for four parameters: var1, var2, var3, and var4.
The first two parameters, var1 and var2, have well-mixing chains, and the other two have poorly mixing
chains. The chain for the parameter var1 has a moderate acceptance rate, about 35%, and efficiency

between 10% and 20%. This is a typical result for a Gaussian random-walk MH algorithm that has

achieved convergence. The trace plot of var2 in the top right panel shows almost perfect mixing—this

is a typical example of Gibbs sampling with an acceptance rate close to 1 and efficiency above 95%.

Although both chains traverse their marginal posterior domains, the right one does it more rapidly. On

the downside, more efficient MCMC algorithms such as Gibbs sampling are usually associated with a

higher computational cost.

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhMethodsandformulas
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayesstatsgrubin.pdf#bayesbayesstatsgrubin
https://www.stata.com/manuals/bayesbayesgraph.pdf#bayesbayesgraph
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The bottom two trace plots illustrate cases of bad mixing and a lack of convergence. On the left, the chain

for var3 exhibits high acceptance rate but poor coverage of the posterior domain manifested by random

drifting in isolated regions. This chain was produced by a Gaussian random-walk MH algorithm with a

proposal distribution with a very small variance. On the right, the chain for the parameter var4 has a

very low acceptance rate, below 3%, because the used proposal distribution had a very large variance. In

both cases, the chains do not converge; the simulation results do not represent the posterior distribution

and should thus be discarded.

As we stated before, samples simulated using MCMC methods are correlated. The smaller the cor-

relation, the more efficient the sampling process. Most of the MH algorithms typically generate highly

correlated draws, whereas the Gibbs algorithm typically generates less-correlated draws. Belowwe show

autocorrelation plots for the same four parameters using the same MCMC samples. The autocorrelation

of var1, the one that comes from a well-mixing MH chain, becomes negligible fairly quickly, after about

10 lags. On the other hand, the autocorrelation of var2 simulated using Gibbs sampling is essentially

negligible for all positive lags. In the case of a poor mixing because of a small proposal variance (param-

eter var3), we observe very high positive correlation for at least 100 lags. The autocorrelation of var4
is high but is lower than that of var3.
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Yu and Mykland (1998) proposed a graphical procedure for assessing the convergence of individual

parameters based on cumulative sums, also known as a cusum plot. By definition, any cusum plot starts

at 0 and ends at 0. Cusum plots are useful for detecting drifts in the chain. For a chain without trend,

the cusum plot should cross the 𝑥 axis. For example, early drifts may indicate dependence on starting

values. If we detect an early drift, we should discard an initial part of the chain and run it longer. Below,

we show the trace plot of a poorly mixing parameter tau and its corresponding cusum plot on the right.

There is an apparent positive drift for approximately the first half of the chain followed by the drift in the

negative direction. As a result, the cusum plot has a distinctive mountain-like shape and never crosses

the 𝑥 axis.
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Cusum plots can be also used for assessing how fast the chain is mixing. The slower the mixing of

the chain, the smoother the cusum plots. Conversely, the faster the mixing of the chain, the more jagged

the cusum plots. Below, we demonstrate the cusum plots for the four variables considered previously.

We can clearly see the contrast between the jagged lines of the fast mixing parameters var1 and var2
and the very smooth cusum line of the poorly mixing parameter var3.
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Besides graphical convergence diagnostics, there are some formal convergence tests (Geweke [1992];

Gelman and Rubin [1992]; Heidelberger and Welch [1983]; Raftery and Lewis [1992]; Zellner and

Min [1995]). See Convergence diagnostics using multiple chains in [BAYES] bayesmh and see

[BAYES] bayesstats grubin for more details.

Summary
Bayesian analysis is a statistical procedure that answers research questions by expressing uncertainty

about unknown parameters using probabilities. Bayesian inference is based on the posterior distribu-

tion of model parameters conditional on the observed data. The posterior distribution is composed of

a likelihood distribution of the data and the prior distribution of the model parameters. The likelihood

model is specified in the same way it is specified with any standard likelihood-based analysis. The prior

distribution is constructed based on the prior (before observing the data) scientific knowledge and results

from previous studies. Sensitivity analysis is typically performed to evaluate the influence of different

competing priors on the results.

Many posterior distributions do not have a closed form and must be simulated using MCMC methods

such as MH methods or the Gibbs method or sometimes their combination. The convergence of MCMC

must be verified before any inference can be made.

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesConvergencediagnosticsusingmultiplechains
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayesstatsgrubin.pdf#bayesbayesstatsgrubin
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Marginal posterior distributions of the parameters are used for inference. These are summarized using

point estimators such as posterior mean and median and interval estimators such as equal-tailed credible

intervals and highest posterior density intervals. Credible intervals have an intuitive interpretation as

fixed ranges to which a parameter is known to belong with a prespecified probability. Hypothesis testing

provides a way to assign an actual probability to any hypothesis of interest. A number of criteria are

available for comparing models of interest. Predictions and model checking are also available based on

the posterior predictive distribution.

Bayesian analysis provides many advantages over the standard frequentist analysis, such as an ability

to incorporate prior information in the analysis, higher robustness to sparse data, more-comprehensive

inference based on the knowledge of the entire posterior distribution, and more intuitive and direct inter-

pretations of results by using probability statements about parameters.

Video examples
Introduction to Bayesian statistics, part 1: The basic concepts

Introduction to Bayesian statistics, part 2: MCMC and the Metropolis–Hastings algorithm� �
Thomas Bayes (1701(?)–1761) was a Presbyterian minister with an interest in calculus, geome-

try, and probability theory. He was born in Hertfordshire, England. The son of a Nonconformist

minister, Bayes was banned from English universities and so studied at Edinburgh University be-

fore becoming a clergyman himself. Only two works are attributed to Bayes during his lifetime,

both published anonymously. He was admitted to the Royal Society in 1742 and never published

thereafter.

The paper that gives us “Bayes’s Theorem” was published posthumously by Richard Price. The

theorem has become an important concept for frequentist and Bayesian statisticians alike. However,

the paper indicates that Bayes considered the theorem as relatively unimportant. His main interest

appears to have been that probabilities were not fixed but instead followed some distribution. The

notion, now foundational to Bayesian statistics, was largely ignored at the time.

Whether Bayes’s theorem is appropriately named is the subject of much debate. Price acknowledged

that he had written the paper based on information he found in Bayes’s notebook, yet he never said

how much he added beyond the introduction. Some scholars have also questioned whether Bayes’s

notes represent original work or are the result of correspondence with other mathematicians of the

time.� �

https://youtu.be/0F0QoMCSKJ4
https://youtu.be/OTO1DygELpY
https://www.stata.com/giftshop/bookmarks/series8/bayes/
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� �
Andrey Markov (1856–1922) was a Russian mathematician who made many contributions to math-

ematics and statistics. He was born in Ryazan, Russia. In primary school, he was known as a poor

student in all areas except mathematics. Markov attended St. Petersburg University, where he stud-

ied under Pafnuty Chebyshev and later joined the physicomathematical faculty. He was a member

of the Russian Academy of the Sciences.

Markov’s first interest was in calculus. He did not start his work in probability theory until 1883

whenChebyshev left the university andMarkov took over his teaching duties. Alarge and influential

body of work followed, including applications of the weak law of large numbers and what are now

known as Markov processes and Markov chains. His work on processes and chains would later

influence the development of a variety of disciplines such as biology, chemistry, economics, physics,

and statistics.

Known in the Russian press as the “militant academician” for his frequent written protests about

the czarist government’s interference in academic affairs, Markov spent much of his adult life at

odds with Russian authorities. In 1908, he resigned from his teaching position in response to a

government requirement that professors report on students’ efforts to organize protests in the wake

of the student riots earlier that year. He did not resume his university teaching duties until 1917,

after the Russian Revolution. His trouble with Russian authorities also extended to the Russian

Orthodox Church. In 1912, he was excommunicated at his own request in protest over the Church’s

excommunication of Leo Tolstoy.� �� �
Bruno de Finetti (1906–1985) was born in Innsbruck, Austria. He received a degree in applied

mathematics from the Polytechnic University of Milan. One of his first publications was in the field

of genetics, in which he introduced what is now called the de Finetti diagram. Upon graduation, he

began working for the Italian Central Statistical Institute and later moved to Trieste to work as an

actuary. He became a professor at the University of Trieste in 1947 and later became a professor of

the theory of probability at the University of Rome ”La Sapienza”, a post he held for 15 years.

De Finetti made many contributions to the fields of probability and statistics. His text Theory of

Probability helped lay the foundation for Bayesian theory. He also wrote papers on sequences of

exchangeable random variables and processes with independent increments. In a paper published in

1955, de Finetti used an extension of the Lorenz–Gini concentration function to prove the Radon–

Nikodym theorem. This extension has been employed in Bayesian statistics as a measure of robust-

ness. His publications also include work on nonparametric estimation of a cumulative distribution

function and group decision making, among other topics. For his many contributions, he was named

a fellow of the Royal Statistical Society and the Institute of Mathematical Statistics.� �

https://www.stata.com/giftshop/bookmarks/series8/markov/
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� �
David Harold Blackwell (1919–2010) was a world-renowned statistician and mathematician. At

age 16, he began attending the University of Illinois, where he obtained a master’s degree in math-

ematics and then a PhD in statistics at age 22. Shortly after, he joined Princeton University as a

visiting fellow, becoming the university’s first African-American faculty member and paving the

way for future generations.

Blackwell is best known for developing the Rao–Blackwell theorem, used in statistics, and the

Blackwell renewal theorem, used in engineering. In regard to Markov decision processes, he in-

troduced the concepts of Blackwell optimality and positive and negative dynamic programs. His

contributions also include pioneering texts, such as Basic Statistics, one of the first texts on Bayesian

statistics, andTheory ofGames and Statistical Decisions, which he coauthoredwithM.A.Girschick.

Additionally, in 1949, he coauthored a paper that helped lay the groundwork for Bayesian sequential

analysis. He published over 80 papers in many fields, including game theory, probability theory,

and mathematical statistics.

Blackwell’s contributions are also reflected in the honors bestowed upon him and in his leadership

roles in prominent organizations. In 1976, he was elected an honorary fellow of the Royal Statistical

Society, and in 1979, he won the John vonNeumannTheory Prize. He also held 12 honorary degrees

and was the firstAfrican-American man elected to the NationalAcademy of Sciences. Additionally,

he served as vice president of theAmerican StatisticalAssociation,AmericanMathematical Society,

and the International Statistical Institute.� �� �
Alanna Connors (1956–2013) was a Hong Kong-born American astronomer and statistician. She

earned a bachelor’s degree in physics at MIT and a PhD in astronomy and physics at the University

of Maryland, College Park. She worked at the Compton Gamma Ray Observatory, the Space Sci-

ence Center at the University of New Hampshire, and at Wellesley College. She was a founding

member of the California-Harvard Aerostatistics Collaboration, which brought together scientists

and statisticians to exchange ideas and methods.

Her research pioneered the application of Bayesian methods to solve astrophysical problems. In

astronomy, she introduced a detection method for X-ray transients and worked on methods for de-

tecting gamma ray bursts. Her work demonstrated the practicality and usefulness of Bayesian meth-

ods in astrostatistics. She was also a coinvestigator on one of NASA’s earliest projects on building

Python software for astronomers.� �
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