
Glossary

a posteriori. In the context of Bayesian analysis, we use a posteriori to mean “after the sample is ob-

served”. For example, a posteriori information is any information obtained after the data sample is

observed. See posterior distribution, posterior.

a priori. In the context of Bayesian analysis, we use a priori to mean “before the sample is observed”.

For example, a priori information is any information obtained before the data sample is observed. In

a Bayesian model, a priori information about model parameters is specified by prior distributions.

acceptance rate. In the context of theMH algorithm, acceptance rate is the fraction of the proposed sam-

ples that is accepted. The optimal acceptance rate depends on the properties of the target distribution

and is not known in general. If the target distribution is normal, however, the optimal acceptance rate

is known to be 0.44 for univariate distributions and 0.234 for multivariate distributions.

adaptation. In the context of the MH algorithm, adaptation refers to the process of tuning or adapting

the proposal distribution to optimize the MCMC sampling. Typically, adaptation is performed period-

ically during the MCMC sampling. The bayesmh command performs adaptation every # of iterations

as specified in option adaptation(every(#)) for a maximum of adaptation(maxiter()) itera-

tions. In a continuous-adaptation regimes, the adaptation lasts during the entire process of the MCMC

sampling. See [BAYES] bayesmh.

adaptation period. Adaptation period includes all MH adaptive iterations. It equals the length of the

adaptation interval, as specified by adaptation(every()), times the maximum number of adapta-

tions, adaptation(maxiter()).

adaptive iteration. In the adaptive MH algorithm, adaptive iterations are iterations during which adap-

tation is performed.

Akaike information criterion, AIC. Akaike information criterion (AIC) is an information-based model-

selection criterion. It is given by the formula −2 × log likelihood + 2𝑘, where 𝑘 is the number of

parameters. AIC favors simpler models by penalizing for the number of model parameters. It does

not, however, account for the sample size. As a result, the AIC penalization diminishes as the sample

size increases, as does its ability to guard against overparameterization.

batch means. Batch means are means obtained from batches of sample values of equal size. Batch

means provide an alternative method for estimating MCMC standard errors (MCSE). The batch size is

usually chosen to minimize the correlation between different batches of means.

Bayes factor. Bayes factor is given by the ratio of the marginal likelihoods of two models, 𝑀1 and 𝑀2.

It is a widely used criterion for Bayesian model comparison. Bayes factor is used in calculating the

posterior odds ratio of model 𝑀1 versus 𝑀2,

𝑃(𝑀1|y)
𝑃 (𝑀2|y)

= 𝑃(y|𝑀1)
𝑃 (y|𝑀2)

𝑃 (𝑀1)
𝑃 (𝑀2)

where 𝑃(𝑀𝑖|y) is a posterior probability of model 𝑀𝑖, and 𝑃(𝑀𝑖) is a prior probability of model 𝑀𝑖.

When the two models are equally likely, that is, when 𝑃(𝑀1) = 𝑃(𝑀2), the Bayes factor equals the
posterior odds ratio of the two models.

Bayes’s theorem. The Bayes’s theorem is a formal method for relating conditional probability state-

ments. For two (random) events 𝑋 and 𝑌, the Bayes’s theorem states that

𝑃(𝑋|𝑌 ) ∝ 𝑃(𝑌 |𝑋)𝑃(𝑋)
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that is, the probability of 𝑋 conditional on 𝑌 is proportional to the probability of 𝑋 and the probability

of 𝑌 conditional on𝑋. In Bayesian analysis, the Bayes’s theorem is used for combining prior informa-

tion about model parameters and evidence from the observed data to form the posterior distribution.

Bayesian analysis. Bayesian analysis is a statistical methodology that considers model parameters to be

random quantities and estimates their posterior distribution by combining prior knowledge about param-

eters with the evidence from the observed data sample. Prior knowledge about parameters is described

by prior distributions and evidence from the observed data is incorporated through a likelihood model.

Using the Bayes’s theorem, the prior distribution and the likelihood model are combined to form the pos-

terior distribution of model parameters. The posterior distribution is then used for parameter inference,

hypothesis testing, and prediction.

Bayesian estimation. Bayesian estimation consists of fitting Bayesian models and estimating their pa-

rameters based on the resulting posterior distribution. Bayesian estimation in Stata can be done using

the convenient bayes prefix or the more general bayesmh command. See [BAYES] Bayesian estima-

tion for details.

Bayesian estimation results. Estimation results obtained after the bayes prefix or the bayesmh com-

mand.

Bayesian hypothesis testing. Bayesian hypothesis testing computes probabilities of hypotheses condi-

tional on the observed data. In contrast to the frequentist hypothesis testing, the Bayesian hypothesis

testing computes the actual probability of a hypothesis 𝐻 by using the Bayes’s theorem,

𝑃(𝐻|y) ∝ 𝑃(y|𝐻)𝑃(𝐻)

where y is the observed data, 𝑃(y|𝐻) is the marginal likelihood of y given 𝐻, and 𝑃(𝐻) is the prior
probability of 𝐻. Two different hypotheses, 𝐻1 and 𝐻2, can be compared by simply comparing

𝑃(𝐻1|y) to 𝑃(𝐻2|y).
Bayesian information criterion, BIC. The Bayesian information criterion (BIC), also known as Schwarz

criterion, is an information based criterion used for model selection in classical statistics. It is given

by the formula −2 × log likelihood + 𝑘 × ln𝑛, where 𝑘 is the number of parameters and 𝑛 is the

sample size. BIC favors simpler, in terms of complexity, models and it is more conservative than AIC.

Bayesian lasso prior. See global–local shrinkage prior.

Bayesian model checking. In Bayesian statistics, model checking refers to testing likelihood and prior

model adequacy in the context of a research problem and observed data. A simple sanity check may

include verifying that posterior inference produces results that are reasonable in the context of the

problem. More substantive checks may include analysis of the sensitivity of Bayesian inference to

changes in likelihood and prior distribution specifications. See posterior predictive checking.

Bayesian predictions. Bayesian predictions are samples from the posterior predictive distribution of

outcome variables and functions of these samples and, optionally, model parameters. Examples of

Bayesian predictions include replicated data, out-of-sample predictions, and test statistics of simulated

outcomes.

Bayesian variable selection. Bayesian variable selection uses special priors (global–local shrinkage

priors and spike-and-slab priors) for regression coefficients to regulate the effects of predictors on an

outcome of interest in a regression model. These priors and the information from the observed data

are used to shrink regression coefficients toward zero based on how well predictors explain the out-

come. Unlike some classical variable-selection methods that either include or exclude each predictor,
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Bayesian variable selection uses all predictors but downweights the effects of weak predictors. It

also produces coefficient estimates that account for variable-selection uncertainty. See Remarks and

examples of [BAYES] bayesselect.

blocking. In the context of the MH algorithm, blocking refers to the process of separating model pa-

rameters into different subsets or blocks to be sampled independently of each other. MH algorithm

generates proposals and applies the acceptance–rejection rule sequentially for each block. It is recom-

mended that correlated parameters are kept in one block. Separating less-correlated or independent

model parameters in different blocks may improve the mixing of the MH algorithm.

burn-in period. The burn-in period is the number of iterations it takes for an MCMC sequence to reach

stationarity.

central posterior interval. See equal-tailed credible interval.

conditional conjugacy. See semiconjugate prior.

conjugate prior. A prior distribution is conjugate for a family of likelihood distributions if the prior and

posterior distributions belong to the same family of distributions. For example, the gamma distribution

is a conjugate prior for the Poisson likelihood. Conjugacy may provide an efficient way of sampling

from posterior distributions and is used in Gibbs sampling.

continuous parameters. Continuous parameters are parameters with continuous prior distributions.

credible interval. In Bayesian analysis, the credible interval of a scalar model parameter is an inter-

val from the domain of the marginal posterior distribution of that parameter. Two types of credible

intervals are typically used in practice: equal-tailed credible intervals and HPD credible intervals.

credible level. The credible level is a probability level between 0% and 100% used for calculating

credible intervals in Bayesian analysis. For example, a 95% credible interval for a scalar parameter

is an interval the parameter belongs to with the probability of 95%.

cross-variable. A cross-variable is a Stata term to refer to the dependent variable used as a lagged

regressor in the VAR model in an outcome equation that is not its own. For instance, in a VAR model

with two dependent variables (y1 and y2) and two lags,

y1 = 𝑎11L.y1 + 𝑎12L2.y1 + 𝑎21L.y2 + 𝑎22L2.y2 + 𝑎0 + 𝑢1

y2 = 𝑏11L.y1 + 𝑏12L2.y1 + 𝑏21L.y2 + 𝑏22L2.y2 + 𝑏0 + 𝑢2

y2 is the cross-variable in the first outcome equation (y1), and y1 is the cross-variable in the second

outcome equation (y2). Note that y1 and y2 are self-variables in the first and second equations, respec-

tively. Cross-variables are always endogenous variables. We also often refer to the coefficients of cross-

variables as cross-variable first-lag coefficients (𝑎21 and 𝑏11), cross-variable second-lag coefficients (𝑎22
and 𝑏12), and so on. See [BAYES] bayes: var.

cross-variable first-lag coefficients. Regression coefficients in a VAR model that correspond to first

lags ([U] 11.4.4 Time-series varlists) of cross-variables. See [BAYES] bayes: var.

cross-variable tightness parameter. A cross-variable tightness parameter is a parameter, 𝜆2, that con-

trols the tightness of the Minnesota prior distribution by controlling the prior variance for the cross-

variable coefficients. It is specified in the Minnesota prior option crosstight(). See Methods and

formulas of [BAYES] bayes: var for details.

cusum plot, CUSUM plot. The cusum (CUSUM) plot of an MCMC sample is a plot of cumulative sums

of the differences between sample values and their overall mean against the iteration number. Cusum

plots are useful graphical summaries for detecting early drifts in MCMC samples.
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deviance information criterion, DIC. The deviance information criterion (DIC) is an information based

criterion used for Bayesian model selection. It is an analog of AIC and is given by the formula 𝐷(𝜃)+
2× 𝑝𝐷, where 𝐷(𝜃) is the deviance at the sample mean and 𝑝𝐷 is the effective complexity, a quantity

equivalent to the number of parameters in the model. Models with smaller DIC are preferred.

diminishing adaptation. Diminishing adaptation of the adaptive algorithm is the type of adaptation in

which the amount of adaptation decreases with the size of the MCMC chain.

discrete parameters. Discrete parameters are parameters with discrete prior distributions.

effective sample size, ESS. Effective sample size (ESS) is theMCMC sample size 𝑇 adjusted for the auto-

correlation in the sample. It represents the number of independent observations in an MCMC sample.

ESS is used instead of 𝑇 in calculating MCSE. Small ESS relative to 𝑇 indicates high autocorrelation

and consequently poor mixing of the chain.

efficiency. In the context ofMCMC, efficiency is a term used for assessing the mixing quality of anMCMC

procedure. EfficientMCMC algorithms are able to explore posterior domains in less time (using fewer

iterations). Efficiency is typically quantified by the sample autocorrelation and effective sample size.

An MCMC procedure that generates samples with low autocorrelation and consequently high ESS is

more efficient.

endogenous variable. In the context of VAR, an endogenous variable is a dependent variable included in

the model as a regressor with a lag operator; see [U] 11.4.4 Time-series varlists. Also see endogenous

variable in [TS] Glossary for a general definition.

equal-tailed credible interval. An equal-tailed credible interval is a credible interval defined in such a

way that both tails of themarginal posterior distribution have the same probability. A{100×(1−𝛼)}%
equal-tailed credible interval is defined by the 𝛼/2th and {(1 − 𝛼)/2}th quantiles of the marginal

posterior distribution.

exogenous variable. In the context of VAR, an exogenous variable is an independent variable (regressor)

included in the model. Also see exogenous variable in [TS] Glossary for a general definition.

exogenous variable tightness parameter. An exogenous variable tightness parameter is a parameter,

𝜆4, that controls the tightness of the Minnesota prior distribution by controlling the prior variance for

the exogenous variable coefficients. It is specified in the Minnesota prior option exogtight(). See
Methods and formulas of [BAYES] bayes: var for details.

feasible initial value. An initial-value vector is feasible if it corresponds to a state with a positive pos-

terior probability.

fixed effects. See fixed-effects parameters.

fixed-effects parameters. In the Bayesian context, the term “fixed effects” or “fixed-effects parameters”

is a misnomer, because all model parameters are inherently random. We use this term in the context

of Bayesian multilevel models to refer to regression model parameters and to distinguish them from

the random-effects parameters. You can think of fixed-effects parameters as parameters modeling

population averaged or marginal relationship of the response and the variables of interest.

frequentist analysis. Frequentist analysis is a form of statistical analysis where model parameters are

considered to be unknown but fixed constants and the observed data are viewed as a repeatable random

sample. Inference is based on the sampling distribution of the data.

full conditionals. A full conditional is the probability distribution of a random variate conditioned on

all other random variates in a joint probability model. Full conditional distributions are used in Gibbs

sampling.
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full Gibbs sampling. See Gibbs sampling, Gibbs sampler.

Gelman–Rubin convergence diagnostic, Gelman–Rubin convergence statistic. Gelman–Rubin con-

vergence diagnostic assesses MCMC convergence by analyzing differences between multiple Markov

chains. The convergence is assessed by comparing the estimated between-chains and within-chain

variances for each model parameter. Large differences between these variances indicate nonconver-

gence. See [BAYES] bayesstats grubin.

Gibbs sampling, Gibbs sampler. Gibbs sampling is anMCMCmethod, according to which each random

variable from a joint probability model is sampled according to its full conditional distribution.

global–local shrinkage prior. A global–local shrinkage prior is one type of prior used for regression

coefficients in Bayesian variable selection. The prior for coefficient 𝛽𝑗 is normal with mean zero and

standard deviation 𝜏𝜆𝑗, where 𝜏 is a global shrinkage parameter and 𝜆𝑗 is a local shrinkage param-

eter. The priors used for 𝜏 and 𝜆𝑗’s depend on the type of the global–local shrinkage prior. For the

horseshoe prior, these parameters have half-Cauchy distributions. For the Bayesian lasso prior, 𝜆𝑗’s

have a Rayleigh distribution instead of half-Cauchy. See Global–local shrinkage priors in Methods

and formulas of [BAYES] bayesselect.

highest posterior density credible interval, HPD credible interval. The highest posterior density

(HPD) credible interval is a type of a credible interval with the highest marginal posterior density. An

HPD interval has the shortest width among all other credible intervals. For some multimodal marginal

distributions, HPD may not exists. See highest posterior density region, HPD region.

highest posterior density region, HPD region. The highest posterior density (HPD) region for model

parameters has the highest marginal posterior probability among all domain regions. Unlike an HPD

credible interval, an HPD region always exist.

horseshoe prior. See global–local shrinkage prior.

hybrid MH sampling, hybrid MH sampler. A hybrid MH sampler is an MCMC method in which some

blocks of parameters are updated using the MH algorithms and other blocks are updated using Gibbs

sampling.

hyperparameter. In Bayesian analysis, hyperparameter is a parameter of a prior distribution, in contrast

to a model parameter.

hyperprior. In Bayesian analysis, hyperprior is a prior distribution of hyperparameters. See hyperpa-

rameter.

improper prior. A prior is said to be improper if it does not integrate to a finite number. Uniform

distributions over unbounded intervals are improper. Improper priors may still yield proper posterior

distributions. When using improper priors, however, one has to make sure that the resulting posterior

distribution is proper for Bayesian inference to be invalid.

inclusion coefficients. Inclusion coefficients 𝛾𝑗’s describe the importance of predictors in Bayesian

variable selection. For global–local shrinkage priors, 𝛾𝑗 = (𝜆2
𝑗 /𝜆2

0)/(1 + 𝜆2
𝑗 /𝜆2

0), where 𝜆𝑗 is a local

shrinkage parameter associated with coefficient 𝛽𝑗 and 𝜆0 is a prespecified positive scale value. For

spike-and-slab priors, which are mixtures of two priors, 𝛾𝑗’s are the binary indicators. For these pri-

ors, the inclusion coefficients can be interpreted as inclusion probabilities. Predictors with inclusion

coefficients greater than 0.5 may be considered important predictors. See Remarks and examples and

Methods and formulas of [BAYES] bayesselect.

independent a posteriori. Parameters are considered independent a posteriori if their marginal posterior

distributions are independent; that is, their joint posterior distribution is the product of their individual

marginal posterior distributions.
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independent a priori. Parameters are considered independent a priori if their prior distributions are

independent; that is, their joint prior distribution is the product of their individual marginal prior

distributions.

informative prior. An informative prior is a prior distribution that has substantial influence on the

posterior distribution.

in-sample predictions. See replicated outcome.

interval hypothesis testing. Interval hypothesis testing performs interval hypothesis tests for model

parameters and functions of model parameters.

interval test. In Bayesian analysis, an interval test applied to a scalar model parameter calculates the

marginal posterior probability for the parameter to belong to the specified interval.

Jeffreys prior. The Jeffreys prior of a vector of model parameters θ is proportional to the square root

of the determinant of its Fisher information matrix 𝐼(θ). Jeffreys priors are locally uniform and, by

definition, agree with the likelihood function. Jeffreys priors are considered noninformative priors

that have minimal impact on the posterior distribution.

lag coefficient. In the context of time-series regression analysis, a lag coefficient is a regression co-

efficient that corresponds to a variable included in the regression model with a lag operator; see

[U] 11.4.4 Time-series varlists.

lag-decay parameter. A lag-decay parameter is a parameter, 𝜆3, that controls the tightness of the Min-

nesota prior distribution by controlling the prior variance as a function of a lag for all endogenous

variable coefficients. It is specified in the Minnesota prior option lagdecay(). See Methods and

formulas of [BAYES] bayes: var for details.

marginal distribution. In Bayesian context, a distribution of the data after integrating out parameters

from the joint distribution of the parameters and the data.

marginal likelihood. In the context of Bayesian model comparison, a marginalized over model param-

eters θ likelihood of data y for a given model 𝑀, 𝑃(y|𝑀) = 𝑚(y) = ∫ 𝑃(y|θ, 𝑀)𝑃(θ|𝑀)𝑑θ. Also
see Bayes factor.

marginal posterior distribution. In Bayesian context, a marginal posterior distribution is a distribution

resulting from integrating out all but one parameter from the joint posterior distribution.

Markov chain. Markov chain is a random process that generates sequences of random vectors (or states)

and satisfies the Markov property: the next state depends only on the current state and not on any of

the previous states. MCMC is the most common methodology for simulating Markov chains.

matrix model parameter. A matrix model parameter is any model parameter that is a matrix. Matrix

elements, however, are viewed as scalar model parameters.

Matrix model parameters are defined and referred to within the bayesmh command as {param,
matrix} or {eqname:param, matrix} with the equation name eqname. For example, {Sigma,
matrix} and {Scale:Omega, matrix} are matrix model parameters. Individual matrix elements

cannot be referred to within the bayesmh command, but they can be referred within postestima-

tion commands accepting parameters. For example, to refer to the individual elements of the de-

fined above, say, 2 × 2 matrices, use {Sigma 1 1}, {Sigma 2 1}, {Sigma 1 2}, {Sigma 2 2}
and {Scale:Omega 1 1}, {Scale:Omega 2 1}, {Scale:Omega 1 2}, {Scale:Omega 2 2}, re-
spectively. See [BAYES] bayesmh.

matrix parameter. See matrix model parameter.
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MCMC, Markov chain Monte Carlo. MCMC is a class of simulation-based methods for generating

samples from probability distributions. Any MCMC algorithm simulates a Markov chain with a target

distribution as its stationary or equilibrium distribution. The precision of MCMC algorithms increases

with the number of iterations. The lack of a stopping rule and convergence rule, however, makes it

difficult to determine for how long to runMCMC. The time needed to converge to the target distribution

within a prespecified error is referred to as mixing time. Better MCMC algorithms have faster mixing

times. Some of the popular MCMC algorithms are random-walk Metropolis, Metropolis–Hastings,

and Gibbs sampling.

MCMC replicates. An MCMC sample of simulated outcomes.

MCMC sample. An MCMC sample is obtained from MCMC sampling. An MCMC sample approximates

a target distribution and is used for summarizing this distribution.

MCMC sample size. MCMC sample size is the size of the MCMC sample. It is specified in bayesmh’s
option mcmcsize(); see [BAYES] bayesmh.

MCMC sampling, MCMC sampler. MCMC sampling is an MCMC algorithm that generates samples

from a target probability distribution.

MCMC standard error, MCSE MCSE is the standard error of the posterior mean estimate. It is defined

as the standard deviation divided by the square root of ESS. MCSEs are analogs of standard errors in

frequentist statistics and measure the accuracy of the simulated MCMC sample.

Metropolis–Hastings (MH) sampling, MH sampler. AMetropolis–Hastings (MH) sampler is anMCMC

method for simulating probability distributions. According to this method, at each step of the Markov

chain, a new proposal state is generated from the current state according to a prespecified proposal

distribution. Based on the current and new state, an acceptance probability is calculated and then used

to accept or reject the proposed state. Important characteristics of MH sampling is the acceptance rate

and mixing time. The MH algorithm is very general and can be applied to an arbitrary target distribu-

tion. However, its efficiency is limited, in terms of mixing time, and decreases as the dimension of

the target distribution increases. Gibbs sampling, when available, can provide much more efficient

sampling than MH sampling.

Minnesota prior. In Bayesian VAR models, Minnesota priors are used as priors for regression coeffi-

cients. A Minnesota prior is a multivariate normal distribution with a special mean vector and co-

variance matrix. The mean vector contains all zeroes except the values corresponding to self-variable

first-lag coefficients, which are set to 1. The covariance matrix can be fixed or can be a product

of a fixed matrix and a matrix model parameter as in the case of a conjugate Minnesota prior. The

Minnesota prior assumes that, a priori, each univariate time series in the model is a random walk.

Minnesota factor covariance. In Bayesian VAR models with a conjugate Minnesota prior, the factor

covariance matrix is used to form the covariance of the multivariate normal prior for regression co-

efficients. The latter is defined as the Kronecker product of the unknown covariance matrix of error

terms with the Minnesota factor covariance.

mixing of Markov chain. Mixing refers to the rate at which a Markov chain traverses the parameter

space. It is a property of the Markov chain that is different from convergence. Poor mixing indicates

a slow rate at which the chain explores the stationary distribution and will require more iterations to

provide inference at a given precision. Poor (slow) mixing is typically a result of high correlation

between model parameters or of weakly-defined model specifications.

model hypothesis testing. Model hypothesis testing tests hypotheses about models by computing model

posterior probabilities.
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model parameter. A model parameter refers to any (random) parameter in a Bayesian model. Model

parameters can be scalars or matrices. Examples of model parameters as defined in bayesmh are

{mu}, {scale:s}, {Sigma,matrix}, and {Scale:Omega,matrix}. See [BAYES] bayesmh and,

specifically, Declaring model parameters and Referring to model parameters in that entry. Also see

Different ways of specifying model parameters in [BAYES] Bayesian postestimation.

model posterior probability. Model posterior probability is probability of a model 𝑀 computed condi-

tional on the observed data y,

𝑃(𝑀|y) = 𝑃(𝑀)𝑃(y|𝑀) = 𝑃(𝑀)𝑚(y)

where 𝑃(𝑀) is the prior probability of a model 𝑀 and 𝑚(y) is the marginal likelihood under model
𝑀.

noninformative prior. A noninformative prior is a prior with negligible influence on the posterior dis-

tribution. See, for example, Jeffreys prior.

objective prior. See noninformative prior.

one-at-a-time MCMC sampling. A one-at-a-time MCMC sample is an MCMC sampling procedure in

which random variables are sampled individually, one at a time. For example, in Gibbs sampling,

individual variates are sampled one at a time, conditionally on the most recent values of the rest of

the variates.

out-of-sample predictions. Predictions of future observations; see simulated outcome.

overdispersed initial value. An overdispersed initial value is obtained from a distribution that is overdis-

persed or has larger variability relative to the truemarginal posterior distribution. Overdispersed initial

values are used with multiple Markov chains for diagnosingMCMC convergence. Also see Specifying

initial values in [BAYES] bayesmh.

posterior distribution, posterior. A posterior distribution is a probability distribution of model param-

eters conditional on observed data. The posterior distribution is determined by the likelihood of the

parameters and their prior distribution. For a parameter vector θ and data y, the posterior distribution

is given by

𝑃(θ|y) = 𝑃(θ)𝑃 (y|θ)
𝑃 (y)

where 𝑃(θ) is the prior distribution, 𝑃(y|θ) is the model likelihood, and 𝑃(y) is the marginal distri-
bution for y. Bayesian inference is based on a posterior distribution.

posterior independence. See independent a posteriori.

posterior interval. See credible interval.

posterior odds. Posterior odds for θ1 compared with θ2 is the ratio of posterior density evaluated at θ1
and θ2 under a given model,

𝑝(θ1|y)
𝑝(θ2|y)

= 𝑝(θ1)
𝑝(θ2)

𝑝(y|θ1)
𝑝(y|θ2)

In other words, posterior odds are prior odds times the likelihood ratio.

posterior predictive checking. Posterior predictive checking is a methodology for assessing goodness

of fit of a Bayesian model using replicated data simulated from the posterior predictive distribution

of the model. For example, graphical diagnostics of the replicated residuals may be used to check the

distributional assumptions of the model error terms. Amore formal and systematic approach uses test

quantities and test statistics to measure discrepancies between replicated data and observed data. Test
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statistics such as a mean, minimum, and maximum can be used to compare different aspects of the

observed data distribution with those of the replicated-data distribution. Posterior predictive 𝑝-values,
also called Bayesian 𝑝-values, computed for test quantities and test statistics are used to quantify the
discrepancy between the observed and replicated data. Also see Bayesian model checking.

posterior predictive distribution. Posterior predictive distribution is a distribution of unobserved (fu-

ture) data conditional on observed data. Posterior predictive distribution is derived by marginalizing

the likelihood function with respect to the posterior distribution of model parameters.

posterior predictive p-value. Posterior predictive 𝑝-value, also called a Bayesian 𝑝-value, is the prob-
ability that a test quantity (or statistic) computed for the replicated data is greater or equal to the test

quantity computed for the observed data. Posterior predictive 𝑝-values are used in posterior predictive
checking. 𝑝-values less than 0.05 or greater than 0.95 typically indicate model misfit (Gelman et al.
2014).

predictive distribution. See prior predictive distribution and posterior predictive distribution.

predictive inference. In Bayesian statistics, predictive inference is inference about unobserved (future)

data conditionally on past data and prior knowledge of model parameters. Predictive inference is

based on prior predictive or posterior predictive distribution of model parameters.

predictive outcome. Predictive outcome ̃𝑦 is a value or a set of values simulated from a posterior predic-

tive distribution 𝑝( ̃𝑦|𝑦) of a Bayesianmodel (Gelman et al. 2014). In contrast with replicated outcome,
predictive outcomes may use the values of independent variables that are different from those used to

fit the model. Also see simulated outcome.

prior distribution, prior. In Bayesian statistics, prior distributions are probability distributions of model

parameters formed based on some a priori knowledge about parameters. Prior distributions are inde-

pendent of the observed data.

prior independence. See independent a priori.

prior odds. Prior odds for θ1 compared with θ2 is the ratio of prior density evaluated at θ1 and θ2 under

a given model, 𝑝(θ1)/𝑝(θ2). Also see posterior odds.
prior predictive distribution. Prior predictive distribution is a distribution of unobserved (future) data

derived by marginalizing the likelihood function with respect to the prior distribution of model pa-

rameters. Also see marginal distribution.

prior tightness. A prior tightness is controlled by a tightness parameter, which is typically a multiplier

for the prior variance. The smaller the value of this parameter, the smaller the prior variance, and the

“tighter” (more highly concentrated) the prior around the prior mean. See [BAYES] bayes: var.

probability of unit circle inclusion. In the context of Bayesian VAR, this is a posterior probability that

all moduli of eigenvalues of a companion matrix lie within the unit circle. The higher this probability,

the more likely the stability condition is met for the considered Bayesian VAR model.

proposal distribution. In the context of theMH algorithm, a proposal distribution is used for defining the

transition steps of the Markov chain. In the standard random-walk Metropolis algorithm, the proposal

distribution is a multivariate normal distribution with zero mean and adaptable covariance matrix.

pseudoconvergence. A Markov chain may appear to converge when in fact it did not. We refer to this

phenomenon as pseudoconvergence. Pseudoconvergence is typically caused by multimodality of the

stationary distribution, in which case the chain may fail to traverse the weakly connected regions of

the distribution space. A common way to detect pseudoconvergence is to run multiple chains using

different starting values and to verify that all of the chain converge to the same target distribution.
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random effects. See random-effects parameters.

random-effects linear form. A linear form representing a random-effects variable that can be used in

substitutable expressions.

random-effects parameters. In the context of Bayesian multilevel models, random-effects parameters

are parameters associated with a random-effects variable. Random-effects parameters are assumed

to be conditionally independent across levels of the random-effects variable given all other model

parameters. Often, random-effects parameters are assumed to be normally distributed with a zero

mean and an unknown variance–covariance matrix.

random-effects variable. A variable identifying the group structure for the random effects at a specific

level of hierarchy.

reference prior. See noninformative prior.

replicated data. Replicated data, yrep, are data that could be observed if the experiment that pro-

duced the observed data, yobs, were replicated using the same model and the same values of inde-

pendent variables that generated yobs. See Gelman et al. (2014, 145), [BAYES] bayespredict, and

[BAYES] bayesstats ppvalues.

replicated outcome. Replicated outcome is a special case of a simulated outcome that is generated using

the same values of independent variables as those used to fit the model. Also see replicated data.

scalarmodel parameter. A scalar model parameter is any model parameter that is a scalar. For example,

{mean} and {hape:alpha} are scalar parameters, as declared by the bayesmh command. Elements

of matrix model parameters are viewed as scalar model parameters. For example, for a 2 × 2 ma-

trix parameter {Sigma,matrix}, individual elements {Sigma 1 1}, {Sigma 2 1}, {Sigma 1 2},
and {Sigma 2 2} are scalar parameters. If a matrix parameter contains a label, the label should be

included in the specification of individual elements as well. See [BAYES] bayesmh.

scalar parameter. See scalar model parameter.

self-variable. A self-variable is a Stata term to refer to the dependent variable used as a lagged regressor

in the VAR model in its own outcome equation. For instance, in a VAR model with two dependent

variables (y1 and y2) and two lags,

y1 = 𝑎11L.y1 + 𝑎12L2.y1 + 𝑎21L.y2 + 𝑎22L2.y2 + 𝑎0 + 𝑢1

y2 = 𝑏11L.y1 + 𝑏12L2.y1 + 𝑏21L.y2 + 𝑏22L2.y2 + 𝑏0 + 𝑢2

y1 is the self-variable in the first outcome equation (y1), and y2 is the self-variable in the second

outcome equation (y2). Note that y2 and y1 are cross-variables in the first and second equations,

respectively. Self-variables are always endogenous variables. We also often refer to the coefficients of

self-variables as self-variable first-lag coefficients (𝑎11 and 𝑏21), self-variable second-lag coefficients

(𝑎12 and 𝑏22), and so on. See [BAYES] bayes: var.

self-variable first-lag coefficients. Self-variable first-lag coefficients are regression coefficients in

a VAR model that correspond to first lags ([U] 11.4.4 Time-series varlists) of self-variables. See

[BAYES] bayes: var.

self-variable tightness parameter. A self-variable tightness parameter is a parameter, 𝜆1, that controls

the tightness of the Minnesota prior distribution by controlling the prior variance for the self-variable

coefficients. It is specified in the Minnesota prior option selftight(). See Methods and formulas

of [BAYES] bayes: var for details.
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semiconjugate prior. A prior distribution is semiconjugate for a family of likelihood distributions if

the prior and (full) conditional posterior distributions belong to the same family of distributions. For

semiconjugacy to hold, parameters must typically be independent a priori; that is, their joint prior

distribution must be the product of the individual marginal prior distributions. For example, the nor-

mal prior distribution for a mean parameter of a normal data distribution with an unknown variance

(which is assumed to be independent of the mean a priori) is a semiconjugate prior. Semiconjugacy

may provide an efficient way of sampling from posterior distributions and is used in Gibbs sampling.

simulated outcome. In Bayesian predictive inference, simulated outcomes are samples from the pos-

terior predictive distribution. In the context of bayespredict, we define a simulated outcome as a

𝑇 ×𝑛 matrix of new outcome values simulated from the posterior predictive distribution, 𝑝(ỹ|y), for a
particular outcome variable y, where 𝑇 is the MCMC sample size and 𝑛 is the number of observations.

spike-and-slab prior. A spike-and-slab prior is one type of prior used for regression coefficients in

Bayesian variable selection. The prior for coefficient 𝛽𝑗 is a mixture of two normal distributions with

different standard deviations or a mixture of two Laplace distributions with different scales. The mix-

ing components 𝛾𝑗’s are independent Bernoulli random variables with probability of success 𝜃, where
𝜃 has a beta prior distribution. See Spike-and-slab priors in Methods and formulas of [BAYES] bayess-

elect.

stationary distribution. Stationary distribution of a stochastic process is a joint distribution that does not

change over time. In the context ofMCMC, stationary distribution is the target probability distribution

to which the Markov chain converges. When MCMC is used for simulating a Bayesian model, the

stationary distribution is the target joint posterior distribution of model parameters.

subjective prior. See informative prior.

subsampling the chain. See thinning.

sufficient statistic. Sufficient statistic for a parameter of a parametric likelihood model is any function

of the sample that contains all the information about the model parameter.

test quantity. In Bayesian predictive inference, test quantity is any function of a simulated outcome, ysim,

and model parameters θ. It is estimated by sampling from the joint posterior distribution 𝑝(ysim,θ).
A test quantity that depends only on ysim is called a test statistic. Test quantities are used in posterior

predictive checking to assess model fit.

test statistic. A special case of a test quantity that depends only on the data.

thinning. Thinning is a way of reducing autocorrelation in the MCMC sample by subsampling the MCMC

chain every prespecified number of iterations determined by the thinning interval. For example, the

thinning interval of 1 corresponds to using the entire MCMC sample; the thinning interval of 2 corre-

sponds to using every other sample value; and the thinning interval of 3 corresponds to using values

from iterations 1, 4, 7, 10, and so on. Thinning should be applied with caution when used to reduce

autocorrelation because it may not always be the most appropriate way of improving the precision of

estimates.

tightness. See prior tightness.

tightness parameter. A tightness parameter is a parameter, typically a multiplier for the prior variance,

that controls the tightness of the prior. The smaller the value of this parameter, the smaller the prior

variance, and the “tighter” (more highly concentrated) the prior around the prior mean. See self-

variable tightness parameter, cross-variable tightness parameter, lad-decay parameter, and exogenous

variable tightness parameter. Also see Methods and formula in [BAYES] bayes: var.

vague prior. See noninformative prior.
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valid initial state. See feasible initial value.

vanishing adaptation. See diminishing adaptation.

VAR, vector autoregression. See VAR in [TS] Glossary.

variable selection. See Bayesian variable selection.

Zellner’s g-prior. Zellner’s 𝑔-prior is a form of a weakly informative prior for the regression coefficients

in a linear model. It accounts for the correlation between the predictor variables and controls the impact

of the prior of the regression coefficients on the posterior with parameter 𝑔. For example, 𝑔 = 1 means

that prior weight is 50% and 𝑔 → ∞ means diffuse prior.
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