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Description
bayesvarstable checks the eigenvalue stability condition after fitting Bayesian vector autoregres-

sion (VAR) by using bayes: var.

Quick start
Checking eigenvalue stability condition after bayes: var

bayesvarstable

Same as above, but compute 80% highest posterior density (HPD) credible intervals instead of 95% equal-

tailed credible intervals

bayesvarstable, hpd clevel(80)

Menu
Statistics > Multivariate time series > Bayesian models > Check stability condition of VAR estimates

Syntax
bayesvarstable [ , options ]

options Description

estimates(estname) use previously stored results estname; default is to use active
results

clevel(#) set credible interval level; default is clevel(95)
hpd save HPD credible intervals instead of the default equal-tailed

credible intervals

mcmcsaving(filename[ , replace ]) save simulation results to filename.dta

collect is allowed; see [U] 11.1.10 Prefix commands.

Options
estimates(estname) requests that bayesvarstable use the previously obtained set of bayes: var

estimates stored as estname. By default, bayesvarstable uses the active estimation results. See

[R] estimates for information on manipulating estimation results.

clevel(#) specifies the credible level, as a percentage, for equal-tailed and HPD credible intervals. The

default is clevel(95) or as set by [BAYES] set clevel.

hpd displays the HPD credible intervals instead of the default equal-tailed credible intervals.
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mcmcsaving(filename[ , replace ]) saves simulation results in filename.dta. The replace option

specifies to overwrite filename.dta if it exists. If the mcmcsaving() option is not specified, simula-

tion results are not saved.

The saved dataset has the following structure. Variable chain records chain identifiers. Variable

index records iteration numbers. bayesvarstable saves only states (sets of values) that are dif-

ferent from one iteration to another and the frequency of each state in variable frequency. As

such, index may not necessarily contain consecutive integers. Remember to use frequency as

a frequency weight if you need to obtain any summaries of this dataset. Values for modulus of each

eigenvalue are saved in a separate variable in the dataset.

Remarks and examples
Stability is an important condition for VAR model interpretation; see Remarks and examples of

[TS] varstable. If the stability condition of a VAR model is not met, its impulse–response functions

(IRFs) and forecast-error variance decompositions do not reach equilibrium and thus do not have clear

interpretation.

Lütkepohl (2005) and Hamilton (1994) show that if the modulus of each eigenvalue of the companion

matrixA is strictly less than one, the estimated VAR is stable (see Methods and formulas for the definition

of the matrix A). In a Bayesian setting, we are concerned with the posterior distribution of A and its

eigenvalues.

Following are two examples illustrating stable and unstable VAR models.

Example 1: Stable VAR model
We revisit example 1 from [TS] varstable. It uses lutkepohl2.dta ofWest Germanymicroeconomic

quarterly data for the years between 1960 and 1978. The example studies the relationships between

investment, dln inv, income, dln inc, and consumption, dln consump.

. use https://www.stata-press.com/data/r19/lutkepohl2

. tsset

Using the bayes: var command, we fit a Bayesian VAR model with two lags on the dependent vari-

ables dln inv, dln inc, and dln consump. Considered are observations between the second quarter
of 1961 and the fourth quarter of 1978. We use the default conjugate Minnesota prior for regression

coefficients and error covariance matrix.

. bayes, rseed(17) nomodelsummary:
> var dln_inv dln_inc dln_consump if qtr>=tq(1961q2) & qtr<=tq(1978q4)
Burn-in ...
Simulation ...
Bayesian vector autoregression MCMC iterations = 12,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Sample: 1961q2 thru 1978q4 Number of obs = 71

Acceptance rate = 1
Efficiency: min = .9556

avg = .9962
Log marginal-likelihood = 467.75286 max = 1

https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
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Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

dln_inv
dln_inv

L1. .4749526 .1046821 .001071 .4762824 .2706787 .6790291
L2. .0062935 .063174 .000632 .0058376 -.1181113 .129959

dln_inc
L1. .1150521 .4145854 .004146 .1155755 -.7122031 .9358321
L2. .0096558 .2461088 .002464 .0129206 -.4780951 .490937

dln_consump
L1. -.0693822 .4910385 .004828 -.0712677 -1.016477 .9050535
L2. .0182113 .2919327 .002919 .0169657 -.5563898 .6010627

_cons .0067839 .0153897 .000154 .0067986 -.0233363 .0367596

dln_inc
dln_inv

L1. .0152113 .0248328 .000248 .0154024 -.0341219 .0635173
L2. .000957 .0149204 .000147 .0010833 -.0285813 .0306545

dln_inc
L1. .600281 .0981275 .000981 .5997577 .4077653 .7928394
L2. .011757 .0577031 .000577 .0123101 -.1009659 .1245041

dln_consump
L1. -.0331359 .1151265 .001151 -.0318916 -.2594495 .1939938
L2. -.0266197 .0694851 .000695 -.0263958 -.1637059 .1123704

_cons .0084678 .0036265 .000037 .0084371 .0013034 .0155666

dln_consump
dln_inv

L1. -.0183312 .0220482 .00022 -.0182937 -.062597 .0243933
L2. .0092806 .0135179 .000135 .0094044 -.0171007 .036166

dln_inc
L1. -.0365965 .0875614 .000876 -.0368425 -.2086565 .1364804
L2. .0345945 .0520216 .000514 .0339648 -.0668323 .136918

dln_consump
L1. .5444814 .1030406 .001027 .5432019 .3416401 .7489821
L2. .0555939 .0617942 .000618 .055126 -.063175 .1763757

_cons .0078414 .0032597 .000033 .0078245 .001402 .0141132

Sigma_1_1 .003945 .0006693 6.4e-06 .0038783 .0028446 .0054382
Sigma_2_1 -.0000314 .0001118 1.1e-06 -.0000291 -.0002548 .0001897
Sigma_3_1 .000138 .0001007 1.0e-06 .0001355 -.0000512 .0003478
Sigma_2_2 .0002195 .0000373 3.7e-07 .0002158 .0001579 .0003039
Sigma_3_2 .0000502 .0000238 2.4e-07 .000049 6.46e-06 .0001007
Sigma_3_3 .0001743 .0000294 2.9e-07 .0001714 .0001261 .0002408

For explanation of the output of bayes: var, see Remarks and examples of [BAYES] bayes: var.

https://www.stata.com/manuals/bayesbayesvar.pdf#bayesbayesvarRemarksandexamples
https://www.stata.com/manuals/bayesbayesvar.pdf#bayesbayesvar
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To use the bayesvarstable command, we need to save simulation results computed by bayes: var
in a permanent dataset.

. bayes, saving(bvarex1)
note: file bvarex1.dta saved.

Now we are ready to check the stability condition for the above Bayesian model.

. bayesvarstable
Eigenvalue stability condition Companion matrix size = 6

MCMC sample size = 10000

Eigenvalue Equal-tailed
modulus Mean Std. dev. MCSE Median [95% cred. interval]

1 .7295294 .0952871 .000953 .7272906 .547312 .9209245
2 .6039037 .1045099 .001045 .6094994 .3810883 .7904044
3 .428933 .1272649 .001273 .4239249 .2113325 .6645651
4 .2126552 .0780213 .00078 .1997342 .0900884 .3846134
5 .1378018 .0565196 .000565 .1349177 .0385605 .2577174
6 .0759403 .05052 .000505 .0700686 .0035577 .1847619

Pr(eigenvalues lie inside the unit circle) = 0.9966

The VAR model has a companion matrix of size 6 (3 response variables times 2 lags). The

bayesvarstable command thus reports posterior summaries for the moduli of 6 eigenvalues. The

maximum one has a posterior mean of 0.73, less than 1. In addition to posterior means, we also see

posterior standard deviations, MCMC standard errors, medians, and credible intervals.

The bayesvarstable command estimates the probability of unit circle inclusion for all eigenvalues

to be 0.9966, or essentially 1. The stability condition is thus satisfied.

We may specify the HPD credible intervals instead of the default equal-tailed ones and change the

level of the intervals. This, however, would not change the estimated probability of inclusion and the

overall conclusion.

. bayesvarstable, hpd clevel(80)
Eigenvalue stability condition Companion matrix size = 6

MCMC sample size = 10000

Eigenvalue HPD
modulus Mean Std. dev. MCSE Median [80% cred. interval]

1 .7295294 .0952871 .000953 .7272906 .6066106 .8490679
2 .6039037 .1045099 .001045 .6094994 .4782224 .7449145
3 .428933 .1272649 .001273 .4239249 .2656266 .6001815
4 .2126552 .0780213 .00078 .1997342 .1065876 .3036596
5 .1378018 .0565196 .000565 .1349177 .0623463 .2060198
6 .0759403 .05052 .000505 .0700686 .0000169 .1200219

Pr(eigenvalues lie inside the unit circle) = 0.9966
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As we mentioned above, a stable VAR model has IRFs that reach equilibrium in the long run. Let’s

verify this. We compute IRFs for 60 quarters (15 years) ahead and save them as birf estimates in

birfex1.irf.

. bayesirf create birf, step(60) set(birfex1)
(file birfex1.irf created)
(file birfex1.irf now active)
(file birfex1.irf updated)

See Remarks and examples for details about [BAYES] bayesirf create. We check the long-term be-

havior of the cumulative orthogonalized IRFs using the bayesirf graph command.

. bayesirf graph coirf
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In particular, we look at the cumulative shock effects of impulse variables on themselves (the graphs

on the diagonal). It is clear that all shocks reach long-term equilibrium after about 2 years (all graphs

converge to horizontal asymptotes). These are the types of graphs we expect to see from a stable VAR

model.

Example 2: Unstable VAR model
In this example, we show how the specification of a strong prior may violate the stability condition

of a VAR model.

We consider the same VAR model as in the previous example, but now we reduce the number of

lags from 2 to 1 and strengthen the default Minnesota prior. In particular, we change the selftight()
suboption of minnconjprior() from its default value of 0.1 to 0.001. This option determines the prior

variance of regression coefficients; see self-variables tightness parameter. Avalue of 0.001will shrink the

regression coefficients to their prior mean values, which are 1 for self-variables first-lag coefficients and

https://www.stata.com/manuals/bayesbayesirfcreate.pdf#bayesbayesirfcreateRemarksandexamples
https://www.stata.com/manuals/bayesbayesirfcreate.pdf#bayesbayesirfcreate
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryselftight
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0 otherwise. The shrinkage is thus toward a random-walk behavior, which is known to be unstable. Given

the modest sample size of 90 observations, we expect the prior to dominate the information available in

the data.

. bayes, minnconjprior(selftight(0.001)) rseed(17) saving(bvarex2) nomodelsummary:
> var dln_inv dln_inc dln_consump, lags(1)
Burn-in ...
Simulation ...
Bayesian vector autoregression MCMC iterations = 12,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Sample: 1960q3 thru 1982q4 Number of obs = 90

Acceptance rate = 1
Efficiency: min = .9779

avg = .9988
Log marginal-likelihood = 590.1324 max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

dln_inv
dln_inv

L1. .9999075 .0015466 .000015 .9999005 .9968787 1.002993

dln_inc
L1. -.0001024 .0057483 .000056 -.0000905 -.0113532 .0112184

dln_consump
L1. .0000347 .0062553 .000063 .0000484 -.0122773 .0124097

_cons -.0000218 .0050112 .00005 -4.42e-06 -.009838 .0097902

dln_inc
dln_inv

L1. 5.87e-06 .0003621 3.6e-06 6.24e-06 -.0006947 .000714

dln_inc
L1. .9999134 .0013413 .000013 .9999053 .9973009 1.002532

dln_consump
L1. -.0000275 .0014526 .000015 -.0000321 -.0028922 .0028222

_cons -.0001133 .0011346 .000011 -.0001213 -.002378 .0021637

dln_consump
dln_inv

L1. -7.21e-06 .0003546 3.5e-06 -8.11e-06 -.0007066 .0006912

dln_inc
L1. -.0000405 .001341 .000014 -.0000284 -.0027065 .002576

dln_consump
L1. .9998961 .0014424 .000014 .9999152 .9970457 1.002728

_cons -.000031 .0011446 .000011 -.0000338 -.0022769 .0022331

https://www.stata.com/manuals/tsglossary.pdf#tsGlossaryrandom_walk
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Sigma_1_1 .004672 .0006967 7.0e-06 .0046044 .0034928 .00625
Sigma_2_1 -.0000808 .0001147 1.1e-06 -.0000799 -.0003115 .0001442
Sigma_3_1 .0002439 .0001158 1.2e-06 .00024 .0000266 .0004826
Sigma_2_2 .0002519 .0000382 3.8e-07 .0002482 .0001879 .000336
Sigma_3_2 .000067 .0000275 2.8e-07 .0000655 .0000169 .0001243
Sigma_3_3 .0002483 .0000366 3.7e-07 .0002447 .0001869 .0003288

file bvarex2.dta saved.

The posterior mean estimates of regression coefficients are very close to their prior mean values.

We use bayesvarstable to check the stability condition.

. bayesvarstable
Eigenvalue stability condition Companion matrix size = 3

MCMC sample size = 10000

Eigenvalue Equal-tailed
modulus Mean Std. dev. MCSE Median [95% cred. interval]

1 1.001409 .0012333 .000012 1.001324 .999263 1.004065
2 .9998958 .0011205 .000011 .9998891 .997711 1.002059
3 .9984138 .0012513 .000013 .998492 .9957189 1.000603

Pr(eigenvalues lie inside the unit circle) = 0.1194

The reported probability that all three eigenvalues lie in the unit circle is only about 12% and is clearly

insufficient to claim the stability of the estimates.

We can also look at IRFs for visual confirmation of the instability of the model. We compute IRFs for

60 quarters ahead and save them as birf estimates in birfex2.irf.

. bayesirf create birf, step(60) set(birfex2)
(file birfex2.irf created)
(file birfex2.irf now active)
(file birfex2.irf updated)
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Then we plot the cumulative orthogonalized IRFs using bayesirf graph.

. bayesirf graph coirf
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It is clear that the shocks of impulses on themselves (the graphs on the diagonal) do not reach equilibrium

and continue to increase beyond the 60-quarter period. This is a typical behavior of an unstable VAR

model.

This particular instability problem arises because the used prior strongly favors an unstable, random-

walk model, and there is not enough information in the data to outweigh this prior. For instance, if we

specified zero prior means for all coefficients, we would not run into this problem. What constitutes

a strong prior depends on the sample size and the amount of information contained in the data about

model parameters. The conclusion in this example may not hold for other VAR models and datasets.

We thus recommend checking the stability condition after fitting any VARmodel before proceeding with

postestimation analysis.

Stored results
bayesvarstable stores the following in r():

Scalars

r(prob incl) probability of unit circle inclusion of all eigenvalues

r(mcmcsize) MCMC sample size

r(compsize) companion matrix size

Matrices

r(summary) matrix with posterior summary statistics for eigenvalues
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Methods and formulas
Consider a companion matrix A defined in Methods and formulas of [TS] varstable. In a Bayesian

setting,A is a randommatrix with a posterior distribution that depends on the prior distribution of regres-

sion coefficients and error covariance matrix. The Bayesian computations use the MCMC sample created

by the bayes: var command that contains draws from the posterior distribution of the regression coef-

ficients/matrices and error covariance.

For each draw, the eigenvalue moduli of the companion matrix A∗ that corresponds to that draw are

computed and saved in an MCMC sample. Finally, the resulting MCMC samples of eigenvalue moduli are

summarized, and standard Bayesian statistics such as posterior mean, medians, and credible intervals are

reported.

The posterior probability of the unit circle inclusion is estimated as the proportion of MCMC observa-

tions for which all eigenvalues of A∗’s are strictly within the unit circle.
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