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Description

bayes: var fits a Bayesian vector autoregressive (VAR) model—a multivariate time-series regression
of each dependent variable on lags of itself and on lags of all the other dependent variables. bayes: var
also fits a variant of Bayesian VAR models known as the Bayesian VARX model, which also includes
exogenous variables. The command supports four classes of priors, which are specific to VAR, including
the original and the conjugate Minnesota priors. See [BAYES] bayes and [TS] var for details.

Quick start
Bayesian VAR for three time series (K = 3) with default two lags (p = 2) and using the default

conjugate Minnesota prior
bayes: var y1 y2 y3

Same as above, but with three lags and exogenous variable x1 (m = 1)
bayes: var y1 y2 y3, lags(1/3) exog(x1)

Same as above, but with random seed for reproducibility and saving simulation results in dataset
bvarsim.dta

bayes, rseed(17) saving(bvarsim): var y1 y2 y3, lags(1/3) exog(x1)

Customize the default conjugate Minnesota prior by changing the self-variables tightness parameter
from 0.1 to 1, the lag decay from 1 to 0.5, and the exogenous-variables tightness parameter from
100 to 1

bayes, minnconjprior(selftight(1) lagdecay(0.5) exogtight(1)): ///
var y1 y2 y3, lags(1/3) exog(x1)

Report posterior summaries only for coefficients on lag 1 and lag 3 of variable y1 in the first equation
(y1), on lag 2 of variable y3 in the second equation (y2), and on exogenous variable x1 in the
third equation (y3)

. bayesstats summary {y1:L1.y1} {y1:L3.y1} {y2:L2.y3} {y3:x1}

Bayesian VAR for three time series with two lags using the original Minnesota prior with fixed AR
error covariance

bayes, minnfixedcovprior: var y1 y2 y3

Same as above, but changing some of the default original Minnesota prior settings: self-variables
tightness parameter from 0.1 to 0.5 and cross-variables tightness parameter from 0.5 to 0.1

bayes, minnfixedcovprior(selftight(0.5) crosstight(0.1)): var y1 y2 y3

Specify independent multivariate normal (MVN) prior for VAR coefficients and inverse-Wishart prior
for error covariance

bayes, minniwishprior: var y1 y2 y3
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Same as above, but specify a 3 × 1 zero mean vector for the MVN prior for self-variables first-lag
coefficients (other coefficients are also set to 0 automatically) and a 3× 3 identity scaling matrix
for the inverse-Wishart prior for error covariance

matrix b0 = J(3,1,0)
matrix Omega0 = diag(J(3,1,1))
bayes, minniwishprior(mean(b0) scale(Omega0)): var y1 y2 y3

Specify independent MVN prior for coefficients and multivariate Jeffreys prior for error covariance
bayes, minnjeffprior: var y1 y2 y3

Same as above, but change the default MVN prior mean vector to a 21 × 1 zero mean vector and
covariance matrix to a 21× 21 identity matrix for all 21 = 3× (2× 3 + 1) coefficients

matrix b0 = J(21,1,0)
matrix S0 = I(21)
bayes, minniwishprior(mean(b0) cov(S0)): var y1 y2 y3

Also see Quick start in [BAYES] bayes and Quick start in [TS] var.

Menu
Statistics > Multivariate time series > Bayesian models > Vector autoregression (VAR)

Syntax
bayes

[
, bayesopts

]
: var depvarlist

[
if
] [

in
] [

, options
]

options Description

Model

noconstant suppress constant term
lags(numlist) specify a list of lags for the VAR
exog(varlist) specify exogenous variables

level(#) set credible level; default is level(95)

You must tsset your data before using bayes: var; see [TS] tsset.
depvarlist and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bayes: var, level() is equivalent to bayes, clevel(): var.
For a detailed description of options, see Options in [TS] var.

bayesopts Description

Priors
∗minnconjprior

[
(conjopts)

]
conjugate Minnesota prior for VAR coefficients and error covariance;

the default
∗minnfixedcovprior

[
(fixcovopts)

]
original Minnesota prior with fixed error covariance

∗minniwishprior
[
(iwishopts)

]
Minnesota prior with inverse-Wishart prior for error covariance

∗minnjeffprior
[
(jeffopts)

]
Minnesota prior with multivariate Jeffreys prior for error covariance

dryrun show model summary without estimation
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Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking

blocksummary display block summary
Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Model parameters are K×p outcome-specific regression coefficients for lagged outcome (dependent) variables plus a
constant term unless noconstant is specified: {depvar k:Ldepvar 1 Ldepvar 2 . . . Ldepvar K cons}, where
Ldepvar k denotes a list of lags for dependent variable depvar k such as the default L1.depvar k L2.depvar k.
If exog(varlist) is specified, regression coefficients also include K×m outcome-specific coefficients for exogenous
variables: {depvar k:varlist}. Use the dryrun option to see the definitions of model parameters prior to estimation.

Only one of options minnconjprior(), minnfixedcovprior(), minniwishprior(), or minnjeffprior() may
be specified.

For a detailed description of bayesopts, see Options below.

conjopts Description

mean(. . .) mean vector for the MVN prior
phi(matname) covariance product matrix Φ0 for the MVN prior; default is diagonal

autoregressive-structure matrix
df(#) degrees of freedom for the inverse-Wishart prior; default is K + 2
scale(matname) scale matrix for the inverse-Wishart prior; default is proportional to

AR estimate of error covariance
minnopts Minnesota prior options

fixcovopts Description

mean(. . .) mean vector for the MVN prior
minnopts Minnesota prior options

iwishopts Description

mean(. . .) mean vector for the MVN prior
cov(matname) covariance matrix for the MVN prior; default is diagonal

autoregressive-structure matrix
df(#) degrees of freedom for the inverse-Wishart prior; default is K + 2
scale(matname) scale matrix for the inverse-Wishart prior; default is proportional to

AR estimate of error covariance
minnopts Minnesota prior options

jeffopts Description

mean(. . .) mean vector for the MVN prior
cov(matname) covariance matrix for the MVN prior; default is diagonal

autoregressive-structure matrix
minnopts Minnesota prior options

meanopts Description

mean(matname) mean vector for the MVN prior for all K(Kp+ 1 +m) coefficients; default
is to use 1s for K self-variables first-lag coefficients and 0s otherwise

mean(m1,. . .,mK) mean values for the MVN prior for K self-variables first-lag coefficients;
all other means are assumed to be zero

https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryselfvarcoef
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minnopts Description

selftight(#) self-variables tightness parameter for the Minnesota prior; default is
selftight(0.1)

crosstight(#) cross-variables tightness parameter for the Minnesota priors; default is
crosstight(0.5); not used with conjugate Minnesota prior

lagdecay(#) lag decay parameter for the Minnesota prior; default is lagdecay(1)

exogtight(#) exogenous-variables tightness parameter for the Minnesota prior; default is
exogtight(100)

arcov use separate AR models to estimate error covariance
varcov use VAR model to estimate error covariance

Options

noconstant, lags(numlist), and exog(varlist); see [TS] var.

� � �
Priors �

minnconjprior and minnconjprior(conjopts) specify that a conjugate Minnesota prior be used
for VAR coefficients and error covariance. minnconjprior is the default. The prior for VAR
coefficients is MVN with mean and covariance based on the original Minnesota prior. The prior for
the error covariance is an inverse-Wishart distribution. See Conjugate Minnesota prior for VAR
model with unknown error covariance in Methods and formulas.

conjopts are mean(meanspec), phi(matname), df(#), scale(matname), and minnopts.
meanspec is one of matnameK(Kp+1+m), or matnameK , or m1, . . . , mK .

mean(matname) specifies the mean vector (as a Stata matrix) of the MVN prior distribution
for all K(Kp + 1 + m) VAR coefficients. The default is to use ones for K self-variables
first-lag coefficients and zeros otherwise.

mean(m1,. . .,mK |matname) specifies K mean values or mean vector matname of length
K of prior means for the self-variables first-lag coefficients. The rest are set to zero.

phi(matname) specifies the covariance product matrix Φ0 (as a Stata matrix) of the MVN
prior distribution for the VAR coefficients. The default is the Minnesota factor covariance, a
diagonal matrix that accounts for the autoregressive structure of the VAR model; see Methods
and formulas.

df(#) specifies the degrees of freedom of the inverse-Wishart prior distribution for the error
covariance. The default is K + 2, and this is the minimum allowed value.

scale(matname) specifies the scale matrix of the inverse-Wishart prior distribution for the error
covariance. The default is proportional to the diagonal matrix of K AR variance estimates,
one for each VAR equation; see Methods and formulas.

minnfixedcovprior and minnfixedcovprior(fixcovopts) specify that the Minnesota prior with
a fixed AR (or VAR if option varcov is specified) covariance be used for VAR coefficients. This
is the original Minnesota prior for Bayesian VAR models. In this model formulation, the error
covariance is considered fixed, thus decreasing the number of parameters needed to be simulated
and speeding up computations. See Original Minnesota prior with known (fixed) error covariance
in Methods and formulas.

fixcovopts are mean(meanspec) and minnopts.

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
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minniwishprior and minniwishprior(iwishopts) specify that the MVN prior for VAR coefficients
and an inverse-Wishart prior for the error covariance be used. The priors for VAR coefficients and
error covariance are independent. The default MVN prior for coefficients uses the Minnesota prior
mean vector and covariance matrix. See MVN-inverse Wishart prior in Methods and formulas.

iwishopts are mean(meanspec), cov(matname), df(#), scale(matname), and minnopts.

cov(matname) specifies the covariance matrix Ω0 (as a Stata matrix) of the MVN prior
distribution for the VAR coefficients. The default is a diagonal matrix that accounts for the
autoregressive structure of the VAR model; see Methods and formulas.

df(#) specifies the degrees of freedom of the inverse-Wishart prior distribution for the error
covariance. The default is K + 2, and this is the minimum allowed value.

scale(matname) specifies the scale matrix of the inverse-Wishart prior distribution for the error
covariance. The default is proportional to the diagonal matrix of K AR variance estimates,
one for each VAR equation; see Methods and formulas.

minnjeffprior and minnjeffprior(jeffopts) specify that the MVN prior for VAR coefficients and
the Jeffreys prior for the error covariance be used. The priors for VAR coefficients and error
covariance are independent. The default MVN prior for coefficients uses the Minnesota prior mean
vector and covariance matrix. See Multivariate normal-diffuse (normal-Jeffreys) prior in Methods
and formulas.

jeffopts are mean(meanspec), cov(matname), and minnopts.

cov(matname) specifies the covariance matrix Ω0 (as a Stata matrix) of the MVN prior
distribution for the VAR coefficients. The default is a diagonal matrix that accounts for the
autoregressive structure of the VAR model; see Methods and formulas.

minnopts are selftight(#), crosstight(#), lagdecay(#), exogtight(#), arcov, and varcov.

selftight(#) specifies the self-variables tightness parameter, λ1, for the Minnesota prior. The
default is selftight(0.1). The smaller this value, the more concentrated the prior distribution
around the prior mean for self-variables lag coefficients. See Methods and formulas.

crosstight(#) specifies the cross-variables tightness parameter, λ2, for the Minnesota prior.
The default is crosstight(0.5). The smaller this value, the more concentrated the prior
distribution around the prior mean for cross-variables lag coefficients. crosstight() is not
used with the conjugate Minnesota prior. See Methods and formulas.

lagdecay(#) specifies the lag-decay parameter, λ3, for the Minnesota prior. This is a rate of
lag-decay correction to the prior standard deviation of all endogenous-variables lag coefficients.
See Methods and formulas.

exogtight(#) specifies the exogenous-variables tightness parameter, λ4, for the Minnesota prior.
This is a multiplicative factor to the prior standard deviation of exogenous-variables coefficients.
See Methods and formulas.

arcov, the default, specifies that the diagonal AR matrix estimate be used as an estimate of the
error covariance matrix. This AR matrix has, on the diagonal, the estimates of error variances
obtained from fitting a separate AR(p) model to each dependent variable. Only one of arcov
or varcov may be specified.

varcov specifies that the VAR matrix estimate be used as an estimate of the error covariance
matrix. The VAR matrix is an estimate of the error covariance obtained from fitting a VAR(p)
model to the dependent variables.

arcov and varcov are used with all Minnesota priors. For the original prior with a fixed error
covariance, these options specify which estimate will be used for the error covariance matrix.

https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryselftight
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For other priors, these options specify which estimate will be used for the prior scale matrix
of an inverse-Wishart prior for error covariance matrix.

See descriptions of other bayesopts in Options in [BAYES] bayes.

Remarks and examples stata.com

For a general introduction to Bayesian analysis, see [BAYES] Intro. For an introduction to VAR
models, see [TS] var intro. For a general introduction to Bayesian estimation using Gibbs sampling,
see [BAYES] bayesmh. For remarks and examples specific to the bayes prefix, see [BAYES] bayes.
For details about the estimation command, see [TS] var.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes.

Remarks are presented under the following headings:
Advantages of Bayesian VAR models
Introductory examples
US macroeconomic examples

Examples are presented under the following headings:
Default Bayesian VAR model
Bayesian VAR model with original Minnesota prior
MVN priors with unrestricted error covariances
Testing Bayesian VAR stability
Explaining the Minnesota prior
Choosing the number of lags of a VAR model
Bayesian VAR(4) model estimation
IRFs
Forecasting
One-step-ahead Bayesian predictions

Advantages of Bayesian VAR models

Since their introduction by Doan, Litterman, and Sims (1984), Bayesian VAR models have gained
popularity for several reasons. As Bayesian models in general, they benefit from a unified and
coherent approach of Bayesian inference; see [BAYES] Intro. Kadiyala and Karlsson (1997), Bańbura,
Giannone, and Reichlin (2008), and Dieppe, Legrand, and van Roye (2016) describe advantages of
Bayesian VARs. We summarize some below.

One of the major problems with traditional VAR models is overparameterization. The number of
regression parameters in a VAR model is quadratic to the number of response variables and proportional
to the number of lags. This leads to many parameters being estimated even for small models and
thus to loss of degrees of freedom when maximum likelihood estimation is used. Overparameterized
models also produce poor forecasts. The problem of overparameterization is exacerbated when VAR
models are applied to small datasets, which is common in many economic applications.

In the Bayesian framework, VAR model parameters are considered random and are controlled by
prior distributions. Prior selection, viewed as a limitation of Bayesian inference in the past, is now
a powerful tool for flexible analysis and not purely a source of subjective inference. For example, it
is easy to shrink higher-lag regression parameters through their priors and thus reduce the effective
number of lags. One such example prior is the Minnesota prior (Litterman 1980). The Minnesota prior
on regression coefficients and error covariance supports a wide range of models, from oversimplified
to overparameterized ones. The Bayesian out-of-sample prediction errors, which can be obtained by
simulation, provide a measure for choosing between oversimplified and overparameterized models
(Litterman 1984). In cases of small or low-quality data, stronger priors based on existing expert
knowledge can greatly enhance otherwise potentially unreliable VAR analysis.

https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesOptions
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VAR model specification requires choosing the number of lags. Within the Bayesian approach, we
can use Bayes factors to compare models using different lags and choose the best one. We can use
Bayes factors also for other decision-based inference such as selecting exogenous variables.

The availability of flexible priors, reliable lag-selection criteria, and efficient sampling algorithms
capable of producing precise Bayesian estimates makes Bayesian VAR inference a useful alternative
to the traditional VAR analysis.

Introductory examples

Example 1: Default Bayesian VAR model

Let’s revisit example 1 from [TS] var, which replicates a case from Lütkepohl (2005, 77–78).
The example models the relationships between the first differences of the natural log of investment,
dln inv, of income, dln inc, and of consumption, dln cons, registered at each quarter of the
years between 1960 and 1978 in West Germany.

. webuse lutkepohl2
(Quarterly SA West German macro data, Bil DM, from Lutkepohl 1993 Table E.1)

. tsset

Time variable: qtr, 1960q1 to 1982q4
Delta: 1 quarter

The original VAR in example 1 considers all observations before 1979, has two lags, and is fit
using the var command.

https://www.stata.com/manuals/tsvar.pdf#tsvarRemarksandexamplesex1
https://www.stata.com/manuals/tsvar.pdf#tsvar
https://www.stata.com/manuals/tsvar.pdf#tsvarRemarksandexamplesex1
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. var dln_inv dln_inc dln_consump if qtr<=tq(1978q4)

Vector autoregression

Sample: 1960q4 thru 1978q4 Number of obs = 73
Log likelihood = 606.307 AIC = -16.03581
FPE = 2.18e-11 HQIC = -15.77323
Det(Sigma_ml) = 1.23e-11 SBIC = -15.37691

Equation Parms RMSE R-sq chi2 P>chi2

dln_inv 7 .046148 0.1286 10.76961 0.0958
dln_inc 7 .011719 0.1142 9.410683 0.1518
dln_consump 7 .009445 0.2513 24.50031 0.0004

Coefficient Std. err. z P>|z| [95% conf. interval]

dln_inv
dln_inv

L1. -.3196318 .1192898 -2.68 0.007 -.5534355 -.0858282
L2. -.1605508 .118767 -1.35 0.176 -.39333 .0722283

dln_inc
L1. .1459851 .5188451 0.28 0.778 -.8709326 1.162903
L2. .1146009 .508295 0.23 0.822 -.881639 1.110841

dln_consump
L1. .9612288 .6316557 1.52 0.128 -.2767936 2.199251
L2. .9344001 .6324034 1.48 0.140 -.3050877 2.173888

_cons -.0167221 .0163796 -1.02 0.307 -.0488257 .0153814

dln_inc
dln_inv

L1. .0439309 .0302933 1.45 0.147 -.0154427 .1033046
L2. .0500302 .0301605 1.66 0.097 -.0090833 .1091437

dln_inc
L1. -.1527311 .131759 -1.16 0.246 -.4109741 .1055118
L2. .0191634 .1290799 0.15 0.882 -.2338285 .2721552

dln_consump
L1. .2884992 .1604069 1.80 0.072 -.0258926 .6028909
L2. -.0102 .1605968 -0.06 0.949 -.3249639 .3045639

_cons .0157672 .0041596 3.79 0.000 .0076146 .0239198

dln_consump
dln_inv

L1. -.002423 .0244142 -0.10 0.921 -.050274 .045428
L2. .0338806 .0243072 1.39 0.163 -.0137607 .0815219

dln_inc
L1. .2248134 .1061884 2.12 0.034 .0166879 .4329389
L2. .3549135 .1040292 3.41 0.001 .1510199 .558807

dln_consump
L1. -.2639695 .1292766 -2.04 0.041 -.517347 -.010592
L2. -.0222264 .1294296 -0.17 0.864 -.2759039 .231451

_cons .0129258 .0033523 3.86 0.000 .0063554 .0194962
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The output table reports summaries for 21 regression coefficients. But in VAR models, it is usually
more instructive to analyze how shocks on a dependent variable affect other dependent variables and
the variable itself over time. In this example, we focus on technical aspects of fitting Bayesian VAR
models and the immediate impact on regression coefficients and covariances. Later in example 8, we
demonstrate how to use more common impulse–response functions (IRFs) to interpret results.

Let us start by fitting the same VAR model using the bayes: var command with the default
model prior—conjugate Minnesota prior for regression coefficients and error covariance. In addition
to the bayes prefix, we specify the rseed() option for reproducibility and run three MCMC chains
to compute a Gelman–Rubin convergence diagnostic; see Convergence diagnostics using multiple
chains.

. bayes, rseed(17) nchains(3):
> var dln_inv dln_inc dln_consump if qtr<=tq(1978q4)
Chain 1

Burn-in ...
Simulation ...

Chain 2
Burn-in ...
Simulation ...

Chain 3
Burn-in ...
Simulation ...

Model summary

Likelihood:
dln_inv
dln_inc

dln_consump ~ mvnormal(3,xb_dln_inv,xb_dln_inc,xb_dln_consump,{Sigma,m})

Priors:
{dln_inv:L(1 2).dln_inv} (1)
{dln_inv:L(1 2).dln_inc} (1)

{dln_inv:L(1 2).dln_consump} (1)
{dln_inv:_cons} (1)

{dln_inc:L(1 2).dln_inv} (2)
{dln_inc:L(1 2).dln_inc} (2)

{dln_inc:L(1 2).dln_consump} (2)
{dln_inc:_cons} (2)

{dln_consump:L(1 2).dln_inv} (3)
{dln_consump:L(1 2).dln_inc} (3)

{dln_consump:L(1 2).dln_consump} (3)
{dln_consump:_cons} ~ varconjugate(3,2,1,_b0,{Sigma,m},_Phi0)

(3)
{Sigma,m} ~ iwishart(3,5,_Sigma0)

(1) Parameters are elements of the linear form xb_dln_inv.
(2) Parameters are elements of the linear form xb_dln_inc.
(3) Parameters are elements of the linear form xb_dln_consump.

Bayesian vector autoregression Number of chains = 3
Gibbs sampling Per MCMC chain:

Iterations = 12,500
Burn-in = 2,500
Sample size = 10,000

Sample: 1960q4 thru 1978q4 Number of obs = 73
Avg acceptance rate = 1
Avg efficiency: min = .9755

avg = .994
max = 1

Avg log marginal-likelihood = 483.43596 Max Gelman--Rubin Rc = 1

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesConvergencediagnosticsusingmultiplechains
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesConvergencediagnosticsusingmultiplechains
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Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

dln_inv
dln_inv

L1. .4808475 .103581 .000598 .480019 .2786408 .6837882
L2. .0068788 .0627703 .000362 .0069781 -.1167651 .1290908

dln_inc
L1. .1026098 .4103202 .002369 .1044135 -.7070827 .8989748
L2. .0320344 .2434573 .001406 .032674 -.4520181 .5169279

dln_consump
L1. -.0181305 .4774359 .002766 -.0166627 -.9574952 .9252084
L2. .0297566 .2885481 .001687 .0288948 -.5385765 .5989857

_cons .0063813 .0152462 .000088 .0063497 -.0235027 .0364822

dln_inc
dln_inv

L1. .0148781 .0245811 .000142 .0149684 -.033299 .0630655
L2. .001391 .0147206 .000086 .0013496 -.0272677 .0305663

dln_inc
L1. .5782111 .0966633 .000564 .5787724 .3873585 .7675225
L2. .0130696 .0576478 .000333 .0131284 -.0985297 .126328

dln_consump
L1. -.0315052 .1143589 .000664 -.0311991 -.2557682 .1961411
L2. -.0193878 .0681031 .000393 -.0194134 -.1543933 .1152181

_cons .0087345 .0036292 .000021 .0087388 .0016601 .0158279

dln_consump
dln_inv

L1. -.0183338 .0216079 .000125 -.0182276 -.0610608 .0238827
L2. .0086858 .0131225 .000076 .0087476 -.0172135 .0344555

dln_inc
L1. -.0283731 .0857885 .000498 -.0287275 -.1961209 .1409767
L2. .0344015 .0508225 .000297 .0344959 -.0658067 .1335025

dln_consump
L1. .5452017 .1011028 .000584 .5452941 .3461853 .7423402
L2. .0528311 .0603558 .00035 .0523857 -.0640511 .1727009

_cons .0078026 .0032046 .000019 .0077938 .0015249 .014078

Sigma_1_1 .0039149 .0006512 3.8e-06 .0038459 .002843 .0054003
Sigma_2_1 -.0000195 .0001079 6.2e-07 -.0000193 -.0002359 .0001924
Sigma_3_1 .0001329 .000097 5.6e-07 .0001291 -.0000493 .0003346
Sigma_2_2 .000219 .0000365 2.1e-07 .0002148 .0001587 .0003014
Sigma_3_2 .0000463 .0000232 1.3e-07 .0000451 4.14e-06 .000096
Sigma_3_3 .0001703 .0000282 1.6e-07 .0001673 .0001239 .0002344

Note: Default initial values are used for multiple chains.

The simulation is performed using Gibbs sampling, which provides high sampling efficiency, 0.99
on average. The maximum Gelman–Rubin Rc statistic is a perfect 1, which suggests no convergence
issues. Because of this and to speed up computation, we will use only one chain in subsequent
examples.
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The model summary provides description of the model. We have an MVN likelihood for the
error terms. Regression coefficients are assigned a conjugate Minnesota prior, which is labeled as
varconjugate(3,2,1, b0,{Sigma,m}, Phi0) in the output. The arguments are the number of
dependent variables (3), number of lags (2), number of exogenous variables (0) plus a constant term
per equation (1), default prior mean vector ( b0), error covariance matrix parameter ({Sigma,m}),
and Minnesota factor covariance ( Phi0), which is a function of tightness parameters that control
the concentration of the prior around its mean. The conjugate Minnesota prior for the coefficients is
MVN with mean vector β0 and covariance Σ ⊗ Φ0, where β0 and Φ0 are defined in Methods and
formulas. We discuss the Minnesota prior in detail in example 5. If you are not familiar with this
prior, you may want to look at this example.

Error covariance {Sigma,m} is assigned an inverse-Wishart prior with default degrees of freedom
df = K + 2 = 5 and scale matrix Scale0= (df −K − 1) Sigma0= Sigma0, where Sigma0
is the diagonal AR covariance matrix, a diagonal matrix formed by error-variance estimates from
fitting a separate AR model to each dependent variable; see VAR model specification in Methods and
formulas.

The table of results contains three groups of regression parameters, one for each dependent
variable, just like the output from the var command. bayes: var additionally displays the estimates
of the error covariance {Sigma,m}. The output table reports standard Bayesian posterior summaries
([BAYES] bayesstats summary).

The prior mean vector b0 is 1 for the coefficients corresponding to the first own lags of
dependent variables, which we also refer to as self-variables first-lag coefficients, and 0 otherwise.
In the output table, these are labeled as {dln inv:L1.dln inv}, {dln inc:L1.dln inc}, and
{dln consump:L1.dln consump}. As such, the prior is centered around each variable being a
univariate random walk. The estimated posterior means for the coefficients reflect the strong prior
assumptions in the model. For example, the estimated posterior mean of {dln inv:L1.dln inv}
is 0.48 with a 95% CrI of [0.28, 0.68] compared with the estimates from the var command of −0.32
with a 95% CI of −0.55,−0.086, which are quite different. Similarly, the posterior mean estimate
for {dln inc:L1.dln inc} is 0.58 versus −0.15 and for {dln consump:L1.dln consump} is
0.55 versus −0.26. Continuing with the dln consump equation, we see that the posterior mean
estimates of cross-variable lag coefficients are small. The estimated posterior mean of the first lag
of income, {dln consump:L1.dln inc}, is −0.03, and its 95% CrI includes 0. From the var
results, {dln consump:L1.dln inc} is 0.22 and is statistically significantly different from 0 (with
p-value= 0.034).

All three self-variables first-lag coefficients have positive posterior estimates: means, medians,
and 95% CrIs. Posterior estimates of remaining coefficients are close to 0. The results suggest a
strong AR impact for each dependent variable and weak cross-correlations between the variables. The
{Sigma,m} estimates show that there is some residual correlation in the error terms unexplained
by the regression coefficients. The prior thus dominates the information about regression coefficients
available in the data. This can be partially explained by the relatively small sample size of only 73
observations given the number of estimated parameters.

The results from the VAR models rely on the stability assumption. Thus, it is important to test
this assumption, as we demonstrate in example 4. When the assumption is satisfied, as it is for these
data, you may consider specifying priors for regression coefficients that are centered around zero;
for instance, using these priors for our dataset produces results that are similar to those from var
(example 2).

https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryminnesota_factor_covariance
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossarytightness_parameter
https://www.stata.com/manuals/bayesbayesstatssummary.pdf#bayesbayesstatssummary
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryselfvarcoef
https://www.stata.com/manuals/tsglossary.pdf#tsGlossaryrandom_walk
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossarycrossvariable
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossarylag_coefficient
https://www.stata.com/manuals/tsglossary.pdf#tsGlossarystability
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Example 2: Bayesian VAR model with original Minnesota prior

In early work on Bayesian VAR (Doan, Litterman, and Sims 1984 and Litterman 1986), researchers
simplified the model prior by assuming a known, fixed-error covariance matrix. The covariance Σ

in the MVN likelihood is replaced by an estimate Σ̂. A typical choice for Σ̂ is a diagonal matrix
of variance estimates obtained by fitting a separate AR model to each dependent variable. The prior
covariance for regression coefficients is then obtained from Σ̂ as described in Original Minnesota
prior with known (fixed) error covariance in Methods and formulas. This prior specification is known
as the original Minnesota prior. Also see example 5.

To fit a model with the original Minnesota prior, we specify the minnfixedcovprior option with
bayes: var.

. bayes, minnfixedcovprior rseed(17):
> var dln_inv dln_inc dln_consump if qtr<=tq(1978q4)
Burn-in ...
Simulation ...

Model summary

Likelihood:
dln_inv
dln_inc

dln_consump ~ mvnormal(3,xb_dln_inv,xb_dln_inc,xb_dln_consump,_Sigma0)

Priors:
{dln_inv:L(1 2).dln_inv} (1)
{dln_inv:L(1 2).dln_inc} (1)

{dln_inv:L(1 2).dln_consump} (1)
{dln_inv:_cons} (1)

{dln_inc:L(1 2).dln_inv} (2)
{dln_inc:L(1 2).dln_inc} (2)

{dln_inc:L(1 2).dln_consump} (2)
{dln_inc:_cons} (2)

{dln_consump:L(1 2).dln_inv} (3)
{dln_consump:L(1 2).dln_inc} (3)

{dln_consump:L(1 2).dln_consump} (3)
{dln_consump:_cons} ~ minnesota(3,2,1,_b0,_Sigma0,.1,.5,1,100)

(3)

(1) Parameters are elements of the linear form xb_dln_inv.
(2) Parameters are elements of the linear form xb_dln_inc.
(3) Parameters are elements of the linear form xb_dln_consump.
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Bayesian vector autoregression MCMC iterations = 12,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Sample: 1960q4 thru 1978q4 Number of obs = 73

Acceptance rate = 1
Efficiency: min = .946

avg = .9957
Log marginal-likelihood = 478.02208 max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

dln_inv
dln_inv

L1. .4836549 .0751107 .000751 .4825203 .3359447 .6314641
L2. .0077444 .0458064 .000458 .0070614 -.0813891 .0984996

dln_inc
L1. .0370079 .1779866 .00178 .0381258 -.3085588 .3854122
L2. .0090371 .0963583 .000964 .0081537 -.1793915 .1992546

dln_consump
L1. -.0028656 .2124749 .002125 -.0027569 -.4232734 .410695
L2. .0094103 .1125252 .001125 .0087853 -.210387 .2303232

_cons .0081521 .0082618 .000082 .0080767 -.0079144 .0244083

dln_inc
dln_inv

L1. .0052036 .0117865 .000118 .0051966 -.0176583 .0288828
L2. .0003523 .0063033 .000061 .0003332 -.011977 .012503

dln_inc
L1. .5758156 .0761506 .000776 .5767133 .4271662 .7249808
L2. .0120131 .0457046 .000457 .0124684 -.0785969 .1006224

dln_consump
L1. -.0081978 .0543999 .000537 -.0080116 -.1156294 .0990992
L2. -.0057737 .0288414 .000288 -.0056489 -.0627868 .0500214

_cons .0082507 .0024756 .000025 .0082296 .0035138 .0131572

dln_consump
dln_inv

L1. -.0068309 .0099134 .000102 -.0067224 -.0262589 .0127061
L2. .002545 .0052876 .000053 .0025395 -.0079491 .0129162

dln_inc
L1. -.0091519 .0393528 .000394 -.0091127 -.0874506 .0692072
L2. .0101553 .0207397 .000207 .0101049 -.0305975 .0503957

dln_consump
L1. .5358264 .0760533 .000752 .5362025 .3870167 .6834547
L2. .0540704 .0459402 .000459 .0538069 -.0364033 .1445824

_cons .007971 .0022349 .000022 .0079594 .0036197 .0123659

Compared with the default conjugate Minnesota prior from example 1, the error covariance matrix
{Sigma,m} in the likelihood is replaced with a fixed matrix Sigma0, a diagonal AR covariance esti-
mate. The regression coefficients are assigned the minnesota(3,2,1, b0, Sigma0,.1,.5,1,100)
prior. Most of the prior arguments are as we described in example 1, except the covariance matrix
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is now formed by Sigma0 and tightness parameters (0.1, 0.5, 1, 100); see Original Minnesota prior
with known (fixed) error covariance. Specifically, the default for the self-variables tightness parameter
λ1 is 0.1 (option selftight()), the default for the cross-variables tightness parameter λ2 is 0.5
(option crosstight()), the default for the lag-decay parameter λ3 is 1 (option lagdecay()), and
the default for the exogenous-variables tightness parameter is 100 (option exogtight()).

Like the default conjugate Minnesota prior, the original Minnesota prior places the same strong
prior assumptions on regression coefficients: the prior mean vector b0 contains 1 for self-variables
first-lag coefficients and 0s for all other coefficients. The strength of the shrinkage toward the prior
mean b0 is controlled mainly by the tightness parameter λ1, which can be reset using the Minnesota
prior option selftight(). Coefficients of exogenous variables, including the constant terms, are
shrunk toward 0 but are given wide prior variance controlled by the tightness parameter λ4 and
specified in the exogtight() option.

As expected, the results assuming the original Minnesota prior are closer to those assuming the
default conjugate Minnesota prior than to those from the var command. In the absence of strong
information about model parameters in the data, the Minnesota prior may introduce a stronger time
dependence in the results. For example, the prior mean value for {dln inv:L1.dln inv} is 1 and
the posterior mean estimate is 0.48, whereas the estimate from the var command is −0.32. It is
completely acceptable to have a negative first-lag correlation in the change of investments at quarterly
level. The Minnesota prior, however, expects an increase in investments to be followed by another
increase in investment in the next time period. The question of whether this is a reasonable prior
expectation is an empirical question. It is thus important to understand the behavior of the default
Minnesota prior and use it carefully.

To relax the time-dependence assumption of the Minnesota prior, we can change the prior mean
b0 to be a zero vector and decrease the tightness of the prior by increasing the λ1 parameter from the

default of 0.1 to 1. The prior for the self-variables first-lag coefficients thus changes from N(1, 0.01)
to N(0, 1) and those for the cross-variables first-lag coefficients from N(0, 0.0025) to N(0, 0.25).

We change the defaults by specifying the respective suboptions within the minnfixedcovprior()
option. There are several ways to specify the prior mean values. We can provide a full 1×21 vector of
mean values. Or, if we want to change the default values only for self-variables first-lag coefficients,
we can specify a vector of lower dimension, 1× 3 in our example. The remaining coefficients will
be automatically set to zeros. Alternatively, for self-variables first-lag coefficients, we can list the
values directly in the mean() suboption, that is, mean(0,0,0). We use the second approach below
and specify a zero mean vector for self-variables first-lag coefficients.

https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossarytightness_parameter
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. matrix b0 = J(1,3,0)

. bayes, minnfixedcovprior(mean(b0) selftight(1)) rseed(17):
> var dln_inv dln_inc dln_consump if qtr<=tq(1978q4)
Burn-in ...
Simulation ...

Model summary

Likelihood:
dln_inv
dln_inc

dln_consump ~ mvnormal(3,xb_dln_inv,xb_dln_inc,xb_dln_consump,_Sigma0)

Priors:
{dln_inv:L(1 2).dln_inv} (1)
{dln_inv:L(1 2).dln_inc} (1)

{dln_inv:L(1 2).dln_consump} (1)
{dln_inv:_cons} (1)

{dln_inc:L(1 2).dln_inv} (2)
{dln_inc:L(1 2).dln_inc} (2)

{dln_inc:L(1 2).dln_consump} (2)
{dln_inc:_cons} (2)

{dln_consump:L(1 2).dln_inv} (3)
{dln_consump:L(1 2).dln_inc} (3)

{dln_consump:L(1 2).dln_consump} (3)
{dln_consump:_cons} ~ minnesota(3,2,1,b0,_Sigma0,1,.5,1,100) (3)

(1) Parameters are elements of the linear form xb_dln_inv.
(2) Parameters are elements of the linear form xb_dln_inc.
(3) Parameters are elements of the linear form xb_dln_consump.

Bayesian vector autoregression MCMC iterations = 12,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Sample: 1960q4 thru 1978q4 Number of obs = 73

Acceptance rate = 1
Efficiency: min = .946

avg = .9946
Log marginal-likelihood = 539.71278 max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

dln_inv
dln_inv

L1. -.2987647 .1218328 .001218 -.300605 -.5383571 -.0590116
L2. -.1415209 .1192125 .001192 -.1439763 -.3729553 .0926795

dln_inc
L1. .2014271 .5068694 .005069 .2036 -.7741228 1.196341
L2. .1683548 .4567907 .004512 .1662872 -.7269593 1.058442

dln_consump
L1. .8313647 .6128113 .006128 .8291778 -.3631793 2.037414
L2. .6988162 .554944 .005549 .6984739 -.3870548 1.810489

_cons -.0124058 .016376 .000161 -.0123152 -.0449067 .0197023
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dln_inc
dln_inv

L1. .0401237 .0307154 .000307 .0401054 -.0194542 .1018312
L2. .0397051 .0285189 .000276 .0396625 -.0158618 .0955686

dln_inc
L1. -.1359873 .1350215 .001376 -.133623 -.4004453 .1259119
L2. .0225672 .1266313 .001266 .0237303 -.2302853 .2689963

dln_consump
L1. .269855 .1601578 .001602 .2691198 -.0423728 .579863
L2. -.003682 .1444577 .001445 -.001067 -.2915697 .276431

_cons .0158543 .0041686 .000042 .0158808 .0075933 .0241443

dln_consump
dln_inv

L1. -.0046515 .0259292 .000267 -.0043679 -.055467 .0464489
L2. .0277595 .0239298 .000239 .0277642 -.0190999 .0748595

dln_inc
L1. .1971296 .1126233 .001126 .1963476 -.025344 .4199598
L2. .273373 .100819 .001008 .2730468 .076632 .4698413

dln_consump
L1. -.2200755 .1392633 .001393 -.2176729 -.4890732 .0503819
L2. .0383448 .1342118 .001342 .0392141 -.2271728 .2978496

_cons .0132401 .0036414 .000036 .0132355 .0062362 .0203544

Now the posterior mean estimates of regression coefficients are similar to the estimates from the
original var command. For example, the posterior mean estimate of {dln inv:L1.dln inv} is
about −0.30 compared with var’s estimate of −0.32.

The original Minnesota prior always assumes no correlation between cross-equation error terms.
The following two priors relax this assumption.

Example 3: MVN priors with unrestricted error covariances

What if we want to relax the assumption about the error covariance imposed by the original Minnesota
prior? We can use a MVN-inverse-Wishart prior (option minniwishprior) or MVN-Jeffreys prior
(option minnjeffprior). These priors use the same default MVN prior for the regression coefficients
as the original Minnesota prior, but they assume an unrestricted error covariance and use the respective
inverse-Wishart or Jeffreys prior for it.

Let’s start with an MVN-inverse-Wishart prior. Continuing with example 2, we change the default
prior means for the regression coefficients to be zeros by specifying zero values for the three self-
variables first-lag coefficients in the mean() option. This specification automatically assigns zero
prior means for all other coefficients. We also use the self-variables tightness parameter of 1 instead
of the default 0.1 to loosen the prior variance tightness.
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. bayes, minniwishprior(mean(0,0,0) selftight(1)) rseed(17):
> var dln_inv dln_inc dln_consump if qtr<=tq(1978q4)
Burn-in ...
Simulation ...

Model summary

Likelihood:
dln_inv
dln_inc

dln_consump ~ mvnormal(3,xb_dln_inv,xb_dln_inc,xb_dln_consump,{Sigma,m})

Priors:
{dln_inv:L(1 2).dln_inv} (1)
{dln_inv:L(1 2).dln_inc} (1)

{dln_inv:L(1 2).dln_consump} (1)
{dln_inv:_cons} (1)

{dln_inc:L(1 2).dln_inv} (2)
{dln_inc:L(1 2).dln_inc} (2)

{dln_inc:L(1 2).dln_consump} (2)
{dln_inc:_cons} (2)

{dln_consump:L(1 2).dln_inv} (3)
{dln_consump:L(1 2).dln_inc} (3)

{dln_consump:L(1 2).dln_consump} (3)
{dln_consump:_cons} ~ varmvnormal(3,2,1,(0,0,0),_Omega0) (3)

{Sigma,m} ~ iwishart(3,5,_Sigma0)

(1) Parameters are elements of the linear form xb_dln_inv.
(2) Parameters are elements of the linear form xb_dln_inc.
(3) Parameters are elements of the linear form xb_dln_consump.

Bayesian vector autoregression MCMC iterations = 12,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Sample: 1960q4 thru 1978q4 Number of obs = 73

Acceptance rate = 1
Efficiency: min = .8113

avg = .9438
Log marginal-likelihood = 527.12015 max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

dln_inv
dln_inv

L1. -.2510453 .1176975 .001153 -.2528143 -.4765424 -.0235274
L2. -.1063315 .116444 .001164 -.1059882 -.3344738 .1229004

dln_inc
L1. .2446635 .3498178 .003498 .2500731 -.4573745 .9259674
L2. .095764 .219266 .002193 .0971031 -.3381891 .5251107

dln_consump
L1. .3645458 .3744485 .003811 .3680423 -.3646316 1.108422
L2. .1400995 .2298 .002392 .1395888 -.310524 .5901507

_cons .0074369 .0119759 .000123 .0073878 -.0153556 .0307578
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dln_inc
dln_inv

L1. .046923 .0316428 .000316 .0469129 -.0145534 .1098345
L2. .0505845 .0310234 .000319 .0506224 -.0100996 .1122741

dln_inc
L1. -.1526888 .1310382 .00131 -.1527139 -.4111528 .106306
L2. -.0118679 .1209026 .001225 -.0130416 -.2506488 .2254785

dln_consump
L1. .2586053 .1552061 .001552 .259664 -.0444987 .5662822
L2. -.013651 .1354632 .001407 -.0124392 -.278631 .2532518

_cons .0170262 .0041118 .000043 .0170605 .0090405 .0250246

dln_consump
dln_inv

L1. .000902 .0253473 .000253 .0008 -.0484133 .0512205
L2. .0365412 .025467 .000261 .0366538 -.0138045 .0861043

dln_inc
L1. .2124569 .1058319 .001058 .2127713 .0019291 .421758
L2. .2993713 .0940064 .000973 .2987598 .1160611 .4852742

dln_consump
L1. -.2757223 .1279485 .001279 -.2756011 -.5238806 -.0256011
L2. -.0293205 .1199357 .001199 -.0295581 -.2669714 .2049208

_cons .0146112 .003401 .000035 .0145617 .0080611 .0213525

Sigma_1_1 .0021287 .0003691 3.9e-06 .0020854 .0015264 .0029714
Sigma_2_1 .0000718 .0000664 7.3e-07 .0000693 -.0000518 .0002108
Sigma_3_1 .0001215 .0000558 6.1e-07 .0001178 .0000212 .0002401
Sigma_2_2 .0001363 .0000239 2.6e-07 .0001338 .0000971 .0001908
Sigma_3_2 .0000601 .0000153 1.7e-07 .0000588 .0000341 .0000943
Sigma_3_3 .0000892 .0000155 1.7e-07 .0000875 .0000638 .0001243

In the model summary, the regression coefficients are assigned the varmvnormal() prior, in which
the prior covariance matrix Omega0 is a function of tightness parameters, the same as with the
original Minnesota prior.

The inverse-Wishart prior for the error covariance matrix is controlled by the degrees of freedom
and the scaling matrix. The default degrees of freedom df = K+2 = 3+2 = 5, and the default scale
is Scale0= (df−K − 1) Sigma0= Sigma0. The low degrees of freedom of the inverse-Wishart
prior constrain the {Sigma,m} matrix parameter to be close to the scaling matrix Sigma0.

The results are somewhat similar to those using the original Minnesota prior, but the error covariance
matrix is now being estimated. Some of the covariance estimates are bounded away from zero based
on their estimated CrIs, which suggests that the assumption of no correlation between the error terms
imposed by the original Minnesota prior may not be appropriate for these data. Note that these results
are closer to the results obtained from the var command.
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Instead of assuming an inverse-Wishart prior for the error covariance, we can use the multivariate
Jeffreys prior.

. bayes, minnjeffprior(mean(0,0,0) selftight(1)) rseed(17):
> var dln_inv dln_inc dln_consump if qtr<=tq(1978q4)
Burn-in ...
Simulation ...

Model summary

Likelihood:
dln_inv
dln_inc

dln_consump ~ mvnormal(3,xb_dln_inv,xb_dln_inc,xb_dln_consump,{Sigma,m})

Priors:
{dln_inv:L(1 2).dln_inv} (1)
{dln_inv:L(1 2).dln_inc} (1)

{dln_inv:L(1 2).dln_consump} (1)
{dln_inv:_cons} (1)

{dln_inc:L(1 2).dln_inv} (2)
{dln_inc:L(1 2).dln_inc} (2)

{dln_inc:L(1 2).dln_consump} (2)
{dln_inc:_cons} (2)

{dln_consump:L(1 2).dln_inv} (3)
{dln_consump:L(1 2).dln_inc} (3)

{dln_consump:L(1 2).dln_consump} (3)
{dln_consump:_cons} ~ varmvnormal(3,2,1,(0,0,0),_Omega0) (3)

{Sigma,m} ~ jeffreys(3)

(1) Parameters are elements of the linear form xb_dln_inv.
(2) Parameters are elements of the linear form xb_dln_inc.
(3) Parameters are elements of the linear form xb_dln_consump.

Bayesian vector autoregression MCMC iterations = 12,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Sample: 1960q4 thru 1978q4 Number of obs = 73

Acceptance rate = 1
Efficiency: min = .8186

avg = .9489
Log marginal-likelihood = 535.28175 max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

dln_inv
dln_inv

L1. -.2455836 .1221811 .001236 -.2462348 -.4869383 -.0050753
L2. -.1025647 .1181023 .001181 -.102274 -.3362211 .127451

dln_inc
L1. .2298239 .3566309 .003566 .2342159 -.4802715 .9178026
L2. .0920532 .2204407 .002259 .0922503 -.332021 .5241679

dln_consump
L1. .3544481 .3829504 .00383 .3546005 -.4036804 1.108751
L2. .1308923 .230888 .002307 .130488 -.3293822 .5811411

_cons .00804 .012356 .000125 .0080513 -.0161679 .0326142
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dln_inc
dln_inv

L1. .0467331 .0327457 .000331 .0468285 -.0167597 .1107341
L2. .0501114 .0318974 .000319 .050056 -.0133188 .1128243

dln_inc
L1. -.1506219 .1354065 .001354 -.1523624 -.4147838 .1141846
L2. -.0144403 .1264436 .001279 -.0141583 -.2584229 .2348877

dln_consump
L1. .2593289 .1596995 .001637 .2588021 -.0541279 .5715087
L2. -.0130386 .1386775 .001409 -.0140483 -.2836371 .2634825

_cons .0170224 .004309 .000044 .0170312 .0085191 .0255192

dln_consump
dln_inv

L1. .0011214 .026178 .000262 .0010064 -.0490433 .0534858
L2. .0364058 .0259021 .000259 .036759 -.0159044 .0879265

dln_inc
L1. .2110716 .1078844 .001117 .2120819 -.0014118 .4214028
L2. .2979752 .0981546 .000982 .2974221 .1032472 .4875104

dln_consump
L1. -.2786814 .1301325 .001329 -.2805229 -.5309565 -.0213882
L2. -.0292443 .1226758 .001257 -.0298197 -.270218 .2118989

_cons .014751 .0035158 .000036 .0147164 .0078041 .021617

Sigma_1_1 .0022852 .000416 4.4e-06 .0022362 .0016076 .0032668
Sigma_2_1 .000077 .0000744 8.1e-07 .0000744 -.0000643 .0002339
Sigma_3_1 .0001311 .0000621 6.8e-07 .0001268 .000018 .0002672
Sigma_2_2 .0001475 .0000269 3.0e-07 .0001445 .0001042 .0002088
Sigma_3_2 .0000659 .0000175 1.9e-07 .0000642 .0000367 .0001061
Sigma_3_3 .0000961 .0000177 1.9e-07 .0000941 .0000676 .0001365

The results are similar to the MVN-inverse-Wishart prior results. The change in the prior for the error
covariance did not change its estimates much, which again confirms that the data contribution to the
posterior model is weak.

Example 4: Testing Bayesian VAR stability

A VAR model has meaningful interpretation in terms of IRFs and forecast-error variance decompo-
sitions only if the time-series process it represents is stable. The default Minnesota prior is based on
the assumption that each dependent variable follows a univariate random walk, which is an unstable
process. In the absence of strong information about model parameters in the data, the posterior is
shrunk more toward the prior, so it is possible that Bayesian posterior estimates may not satisfy the
stability assumption even when the frequentist estimates from the VAR model do. Thus, a stability
check for a Bayesian VAR is particularly important.

In a frequentist setting, VAR stability can be checked by inspecting the eigenvalues of the companion
matrix using the [TS] varstable command. In a Bayesian setting, the companion matrix and its
eigenvalues are random, so we must inspect their posterior distributions. The Bayesian command
for testing stationarity, bayesvarstable, reports posterior summaries for the eigenvalue moduli.
Stability is declared when all eigenvalues are within the unit circle with high probability.

https://www.stata.com/manuals/tsglossary.pdf#tsGlossarystability
https://www.stata.com/manuals/tsvarstable.pdf#tsvarstable
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Let us refit the Bayesian VAR model from example 1 using the default prior options. In addition,
we save simulation results in bvarsex1.dta, which is required by bayesvarstable. Because we
already discussed the estimation results, we rerun the command quietly.

. quietly bayes, rseed(17) saving(bvarex1):
> var dln_inv dln_inc dln_consump if qtr<=tq(1978q4)

Now we call bayesvarstable to check the stability condition.
. bayesvarstable

Eigenvalue stability condition Companion matrix size = 6
MCMC sample size = 10000

Eigenvalue Equal-tailed
modulus Mean Std. dev. MCSE Median [95% cred. interval]

1 .7204885 .0946585 .000947 .7185141 .5401149 .911899
2 .5959965 .1036993 .001037 .6005058 .3817847 .7834288
3 .4271097 .1243872 .001244 .4243446 .2125586 .6563634
4 .2109317 .0790968 .000791 .1972916 .0886465 .3853979
5 .1357284 .0561101 .000561 .1322702 .0390514 .254025
6 .075227 .0499245 .000499 .0688643 .0033007 .1854592

Pr(eigenvalues lie inside the unit circle) = 0.9975

The companion matrix is of dimension 6 (3 dependent variables times 2 lags), so the output table reports
posterior summaries for the moduli of 6 eigenvalues. The eigenvalues are displayed in decreasing
order of their moduli. The largest eigenvalue modulus has a posterior mean of 0.72 and is within
the unit circle. The command also reports the posterior probability that all eigenvalues lie in the unit
circle, 0.9975. The high value of this probability provides confidence that the stability condition is
satisfied.

US macroeconomic examples

In the next set of examples, we will use usmacro.dta, quarterly macroeconomic data extracted
from the Federal Reserve Economic Database that spans from 1954 to 2010.

. use https://www.stata-press.com/data/r18/usmacro
(Federal Reserve Economic Data - St. Louis Fed)

. describe

Contains data from https://www.stata-press.com/data/r18/usmacro.dta
Observations: 226 Federal Reserve Economic Data -

St. Louis Fed
Variables: 4 4 Dec 2022 12:39

Variable Storage Display Value
name type format label Variable label

fedfunds double %10.0g Federal funds rate
date int %tq Date (quarters)
inflation float %9.0g Annual rate of inflation
ogap float %9.0g GDP gap

Sorted by: date

. tsset

Time variable: date, 1954q3 to 2010q4
Delta: 1 quarter
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Observed are three dependent variables: fedfunds, for federal funds rate, inflation, for annual
rate of inflation, and ogap, for the GDP output gap, or the difference between actual and potential
GDP. The date variable registers the quarterly periods.

Example 5: Explaining the Minnesota prior

Consider the following simple VAR(2) model for usmacro.dta with dependent variables ogap
and inflation:

ogap = a11L.ogap + a12L2.ogap + a21L.inflation + a22L2.inflation + a0 + u1

inflation = b11L.ogap + b12L2.ogap + b21L.inflation + b22L2.inflation + b0 + u2

In the specification of the original Minnesota prior, (u1, u2) is assumed to follow a bivariate normal
distribution with 0 means and fixed error covariance Σ0 = diag(σ̂2

1 , σ̂
2
2), which we define later.

Consider the vector β of 8 endogenous regression coefficients aij’s and bij’s and 2 exogenous
constant terms a0 and b0. Specifically, we refer to a11, a12, b21, and b22 as endogenous-self-variables
lag coefficients (or simply self-variables coefficients); to a21, a22, b11, and b12 as endogenous-cross-
variables lag coefficients (or simply cross-variables coefficients); and to a0 and b0 as “exogenous-
variables” coefficients. We used quotes for a0 and b0 because, technically, these are constant terms
that do not correspond to any exogenous variables. But in what follows, we will treat them as such.
In the presence of exogenous variables, we would refer to their coefficients as exogenous-variables
coefficients. We also refer to a11 and b21 as self-variables first-lag coefficients, also know as first
own lag coefficients.

The original Minnesota prior for β is MVN with 10× 1 mean vector β0 and 10× 10 covariance
Ω0, where β0 and Ω0 are defined in Original Minnesota prior with known (fixed) error covariance.
β0 contains 1 for all self-variables first-lag coefficients and 0 for all the other coefficients. Ω0 is a
diagonal matrix in which diagonals are functions of error variance estimates from individual AR models
and tightness parameters. Because the covariance matrix Ω0 is diagonal, all regression coefficients
are assumed uncorrelated a priori.

In our example, the error variance estimates are the ordinary least-squares (OLS) residual variance
estimates σ̂2

1 and σ̂2
2 obtained from fitting separately the following two AR models,

ogap = c1L.ogap + c2L2.ogap + c3 + e1

inflation = d1L.inflation + d2L2.inflation + d3 + e2

where ei ∼ N(0, σ2
i ) for i = 1, 2.

The Minnesota prior has four control (tightness) parameters: λ1, λ2, λ3, and λ4, with default
values of 0.1, 0.5, 1, and 100. These parameters can be reset using the selftight(), crosstight(),
lagdecay(), and exogtight() Minnesota prior options, respectively.

Below, we show the default prior distributions for all coefficients. Let l denote the current lag.

Priors for endogenous-self-variables first-lag and second-lag coefficients are

a11, b21 ∼ N(1, 0.01)

a12, b22 ∼ N(0, 0.0025)

where λ21/l
2λ3 = λ21 = 0.01 for l = 1 and λ21/l

2λ3 = 0.0025 for l = 2.

https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossarytightness_parameter
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Priors for endogenous-cross-variables first-lag and second-lag coefficients are

a21 ∼ N(0, 0.0025
σ̂2
1

σ̂2
2

)

b11 ∼ N(0, 0.0025
σ̂2
2

σ̂2
1

)

a22 ∼ N(0, 0.000625
σ̂2
1

σ̂2
2

)

b12 ∼ N(0, 0.000625
σ̂2
2

σ̂2
1

)

where (λ21λ
2
2)/l2λ3 = λ21λ

2
2 = 0.0025 for l = 1 and (λ21λ

2
2)/l2λ3 = 0.000625 for l = 2.

Priors for exogenous constant terms are

a0 ∼ N(0, 100σ̂2
1)

b0 ∼ N(0, 100σ̂2
2)

where λ21λ
2
4 = 100.

The default prior variances for the coefficients of all endogenous variables are rather small. The
Minnesota prior essentially assumes that we have two independent time series each representing a
univariate random walk:

ogap = L1.ogap + ε1

inflation = L1.inflation + ε2

The prior variances shrink as the lag l increases as long as λ3 is positive. Also, cross-variables
variances shrink by a factor of λ22 from self-variables variances. All variances are proportional to λ21.
If we increase λ1 from 0.1, the default, to 1, all variances will increase by a factor of 100.

In the specification of the conjugate Minnesota prior, (u1, u2) is assumed to follow a bivariate
normal with 0 means and an unknown error covariance Σ.

The prior for β is conditional on Σ. The prior mean stays the same, but the prior covariance
matrix Ω0 is replaced by Σ⊗Φ0, where Φ0 has a structure similar to Ω0 but of dimension 5 instead
of 10,

Φ0 = diag
(

1

σ̂2
1

0.01,
1

σ̂2
2

0.01,
1

σ̂2
1

0.0025,
1

σ̂2
2

0.0025, 100

)
where λ21/l

2λ3 = λ21 = 0.01 for l = 1, λ21/l
2λ3 = 0.0025 for l = 2, and λ21λ

2
4 = 100.

In this case, the prior assumption on β implies that the multivariate process consists of two
dependent random walks.

Error covariance Σ is assigned an inverse-Wishart prior with default degrees of freedom K+2 = 4,
and the default scale matrix S0 is a diagonal matrix formed by the AR variance estimates. The effect
of this prior can be interpreted as a lack of contemporaneous correlation among the error terms.
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Example 6: Choosing the number of lags of a VAR model

Consider usmacro.dta. Let’s look at time series of the three dependent variables.

. use https://www.stata-press.com/data/r18/usmacro
(Federal Reserve Economic Data - St. Louis Fed)

. tsline inflation ogap fedfunds

-10

0

10

20

1950q1 1960q1 1970q1 1980q1 1990q1 2000q1 2010q1
Date (quarters)

Annual rate of inflation GDP gap
Federal funds rate

Time-series plots suggest a relationship between the three dependent variables that we would like to
explore using a Bayesian VAR model.

Our goal is to model the dynamics of the three time series using VAR. We will use the bayes: var
command to fit a Bayesian VAR model with the default conjugate Minnesota prior for the regression
coefficients and error covariance. We will use all observations before the 1st quarter of 2004 to fit
the model and leave out the later observations to test the forecasting ability of the model.

An important consideration in specifying the model is choosing the maximum number of lags.
An expert in the field may have an optimal choice based on theoretical or empirical knowledge, but
for us, it is not immediately clear whether we should use 2, 4, or more lags. In a classical setting,
one can use the varsoc command to choose the maximum lag. It is not uncommon for varsoc to
suggest too large of a lag length. For example, if we run varsoc on our data using up to 12 lags,
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. varsoc inflation ogap fedfunds, maxlag(12)

Lag-order selection criteria

Sample: 1958q3 thru 2010q4 Number of obs = 210

Lag LL LR df p FPE AIC HQIC SBIC

0 -1488.6 296.509 14.2057 14.225 14.2535
1 -723.715 1529.8 9 0.000 .221616 7.00681 7.08413 7.19807
2 -689.089 69.252 9 0.000 .173634 6.76275 6.89806 7.09746*
3 -673.171 31.836 9 0.000 .162585 6.69686 6.89017 7.17502
4 -661.806 22.729 9 0.007 .159006 6.67434 6.92564 7.29595
5 -639.015 45.583 9 0.000 .139492 6.543 6.85228 7.30805
6 -619.85 38.329 9 0.000 .126698 6.44619 6.81346* 7.35469
7 -615.967 7.7663 9 0.558 .133135 6.49492 6.92019 7.54687
8 -610.886 10.161 9 0.338 .138349 6.53225 7.0155 7.72765
9 -587.182 47.409 9 0.000 .120437 6.39221 6.93345 7.73105

10 -581.902 10.559 9 0.307 .124996 6.42764 7.02688 7.90993
11 -567.442 28.921* 9 0.001 .118912* 6.37564* 7.03286 8.00137
12 -565.064 4.7562 9 0.855 .126973 6.4387 7.15392 8.20789

* optimal lag
Endogenous: inflation ogap fedfunds
Exogenous: _cons

the AIC criterion suggests a maximum lag of 11. A VAR model with 11 lags for our data will have
102 coefficients, which is likely too many given the sample size of 190. The resulting imprecision in
the estimates would lead to wide forecast intervals.

From a Bayesian viewpoint, an optimal way to solve this problem is to use Bayesian model
comparison. First, we choose a reasonable set of possible lags, 1, . . . , pmax. Then, for each lag p,
we fit a Bayesian VAR(p) model. Finally, we compare the fitted models using their log-marginal
likelihoods. Except the number of lags, all other model specifications, including the choice of priors,
stay the same.

In this example, we consider six possible VAR models with lags ranging from 1 to 6. We specify
two options with bayes: var: rseed(17), for reproducibility, and saving() to save the simulation
results. The latter is required by estimates store to store Bayesian model estimation results. We
run the models quietly to suppress lengthy estimation output.

. quietly bayes, rseed(17) saving(bvarsim,replace):
> var inflation ogap fedfunds if date < tq(2004q1), lags(1/1)

. estimates store bvar1

. quietly bayes, rseed(17) saving(bvarsim,replace):
> var inflation ogap fedfunds if date < tq(2004q1), lags(1/2)

. estimates store bvar2

. quietly bayes, rseed(17) saving(bvarsim,replace):
> var inflation ogap fedfunds if date < tq(2004q1), lags(1/3)

. estimates store bvar3

. quietly bayes, rseed(17) saving(bvarsim,replace):
> var inflation ogap fedfunds if date < tq(2004q1), lags(1/4)

. estimates store bvar4

. quietly bayes, rseed(17) saving(bvarsim,replace):
> var inflation ogap fedfunds if date < tq(2004q1), lags(1/5)

. estimates store bvar5

. quietly bayes, rseed(17) saving(bvarsim,replace):
> var inflation ogap fedfunds if date < tq(2004q1), lags(1/6)

. estimates store bvar6
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We compare the models using the bayestest model command. All six models are assumed
equally probable a priori, as can be seen from the second column of the output table. The third
column shows posterior model probabilities; the model with the highest probability is the best.

. bayestest model bvar1 bvar2 bvar3 bvar4 bvar5 bvar6

Bayesian model tests

log(ML) P(M) P(M|y)

bvar1 -690.7037 0.1667 0.0000
bvar2 -680.1811 0.1667 0.0000
bvar3 -674.5212 0.1667 0.0065
bvar4 -670.3258 0.1667 0.4313
bvar5 -670.7045 0.1667 0.2953
bvar6 -670.8059 0.1667 0.2669

Note: Marginal likelihood (ML) is computed using
Laplace--Metropolis approximation.

The model with four lags has the highest posterior probability, 0.43, and thus four is our choice for
the number of lags. Incidentally or not, four lags corresponds to a period of one year.

Example 7: Bayesian VAR(4) model estimation

Continuing with example 6, we proceed with Bayesian estimation of the chosen VAR(4) model. We
rerun the model but this time showing the MCMC summary and output tables. The model summary
is suppressed for brevity, but as we mentioned in example 6, we use the default conjugate Minnesota
prior.

https://www.stata.com/manuals/bayesbayestestmodel.pdf#bayesbayestestmodel
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. bayes, nomodelsummary rseed(17):
> var inflation ogap fedfunds if date < tq(2004q1), lags(1/4)
Burn-in ...
Simulation ...

Bayesian vector autoregression MCMC iterations = 12,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Sample: 1956q3 thru 2003q4 Number of obs = 190

Acceptance rate = 1
Efficiency: min = .9322

avg = .993
Log marginal-likelihood = -670.32584 max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

inflation
inflation

L1. 1.107465 .0422849 .000423 1.106848 1.02544 1.192476
L2. -.064825 .0417594 .000418 -.064536 -.1470882 .0176208
L3. -.0358872 .0290815 .000291 -.0359867 -.092745 .0210088
L4. -.0397985 .0215853 .000216 -.0397207 -.0821996 .002274

ogap
L1. .0646785 .0294384 .000305 .0644936 .0070243 .1229662
L2. .0071294 .0267595 .000268 .0072498 -.0444994 .058461
L3. -.002015 .0187035 .000192 -.0021291 -.038934 .0346847
L4. -.0088532 .0142951 .000141 -.0089083 -.0366927 .0193774

fedfunds
L1. .0770026 .027543 .000275 .076643 .0237776 .1315991
L2. -.0351476 .0243814 .000244 -.0351349 -.0831241 .0124089
L3. -.0151671 .0173423 .000173 -.0154901 -.0487873 .0193082
L4. -.0190271 .0134133 .000134 -.0191324 -.0456025 .0072003

_cons .1225433 .0832813 .000833 .1225758 -.0433392 .2853939

ogap
inflation

L1. -.068909 .0627925 .000628 -.0683572 -.1934463 .0524915
L2. .0073091 .0617798 .000609 .0066414 -.1153963 .1276874
L3. .0098226 .0437754 .000438 .0105327 -.0773841 .0942487
L4. .0146217 .0325626 .000326 .0147658 -.0498018 .0778098

ogap
L1. 1.030706 .0443351 .000436 1.030381 .9445329 1.117702
L2. -.0533506 .0405626 .000406 -.0536868 -.1331328 .0269409
L3. -.0463432 .028635 .000286 -.0468054 -.1021503 .0103083
L4. -.0243524 .0215736 .000216 -.0246339 -.0671305 .0178628

fedfunds
L1. -.0080148 .0410321 .000404 -.0079538 -.0897528 .0726622
L2. -.0513393 .0362004 .000362 -.0514847 -.1208578 .0196766
L3. .0096443 .0264572 .000265 .0092495 -.0416928 .0618986
L4. .0028706 .0200856 .000201 .002678 -.0362012 .0424353

_cons .3851112 .1261445 .001261 .3836084 .1334414 .6333448
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fedfunds
inflation

L1. .0568126 .0719825 .00072 .0563617 -.0829406 .2008528
L2. .0568927 .0706982 .000699 .0569514 -.0811303 .1967728
L3. -.0026048 .0495878 .000474 -.0023296 -.1001453 .09392
L4. -.0159998 .0369476 .000375 -.0163655 -.0877556 .0563861

ogap
L1. .1873653 .0495204 .000498 .1873384 .0899816 .2850046
L2. -.0544593 .045749 .000465 -.055174 -.1438389 .035413
L3. -.0485134 .0324919 .000335 -.048869 -.1120501 .0148947
L4. -.0327431 .0245286 .000245 -.0324051 -.0807114 .0156984

fedfunds
L1. .9623752 .0472236 .000472 .9622282 .8696618 1.054146
L2. -.0728725 .0414158 .000414 -.0731102 -.1538312 .0082934
L3. .0146377 .0293537 .000294 .0143481 -.0419335 .072309
L4. .0018861 .0228329 .000228 .0021041 -.0430797 .0462406

_cons .1931161 .1433129 .001433 .1950842 -.0912408 .4717853

Sigma_1_1 .2873009 .0293728 .000297 .2853721 .2349716 .3493519
Sigma_2_1 .0281781 .0315254 .000315 .0276486 -.0345647 .0912571
Sigma_3_1 .1480748 .0372496 .000372 .1468518 .0777631 .2251876
Sigma_2_2 .6575456 .0671182 .000684 .6530136 .5395734 .8029292
Sigma_3_2 .2398338 .0559347 .000559 .238127 .1357633 .3561841
Sigma_3_3 .8371554 .0857785 .000858 .8298623 .6868505 1.024522

The Gibbs sampling used to simulate the posterior distribution has high efficiency of 99% on average
and the perfect acceptance rate of 1. There is no indication of convergence problems.

There are 39 regression coefficients in the model, which would be difficult to interpret directly.
The posterior estimates for the error covariance matrix {Sigma,m} suggest a positive correlation
between fedfunds and inflation and fedfunds and ogdp; see the estimates for {Sigma 3 1}
and {Sigma 3 2}.

Because we did not use the saving() option with bayes: var, the simulation results are saved
in a temporary dataset. If you plan to use one of the postestimation commands such as bayesirf
or bayesfcast, you need to save the simulation results to a permanent dataset. We can do this by
using the saving() option on replay.

. bayes, saving(bvarex2)
note: file bvarex2.dta saved.
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Before continuing with postestimation analysis, let’s check the stability condition of the model
using the bayesvarstable command.

. bayesvarstable

Eigenvalue stability condition Companion matrix size = 12
MCMC sample size = 10000

Eigenvalue Equal-tailed
modulus Mean Std. dev. MCSE Median [95% cred. interval]

1 .9473457 .0199198 .000199 .9481282 .9057116 .9838371
2 .9417123 .0257058 .000257 .9453142 .877582 .9811621
3 .8184194 .0716288 .000716 .8274233 .6763741 .9322606
4 .5930213 .0930861 .000931 .5836551 .4256008 .7733104
5 .4859573 .0896516 .000897 .4866775 .330644 .6554575
6 .3659255 .0417669 .000418 .3635287 .291461 .459251
7 .3499339 .0365851 .000366 .3496959 .2767796 .4214287
8 .3155561 .0383687 .000384 .3173136 .2348504 .3856269
9 .3014183 .0396995 .000397 .3038818 .2177103 .3736035

10 .2670156 .0479518 .00048 .2717858 .1582521 .3475958
11 .2361436 .0556598 .000557 .2414199 .1135724 .329785
12 .1887299 .0805818 .000806 .2036124 .0151749 .3102756

Pr(eigenvalues lie inside the unit circle) = 0.9977

The command reports that the companion matrix of our model is of size 12 (three response variables
times four lags) and thus reports posterior summaries for the moduli of 12 eigenvalues. The posterior
probability that all eigenvalues lie in the unit circle is estimated to be essentially 1, so the stability
condition is satisfied.

The main postestimation tools for interpreting VAR models are IRFs and forecasting, which we
illustrate in the following examples.

Example 8: IRFs

IRFs are commonly used to summarize a VAR model. IRFs measure the effect of a shock in one
variable, also called an impulse variable, on a given response variable. The effect of the shock on the
response variable is traced out over a predefined number of future steps. We compute a number of
IRF statistics associated with our model using the bayesirf command, whose syntax is similar to the
frequentist irf command. For computational details, see Methods and formulas of [BAYES] bayesirf
create.

The bayesirf create command computes IRF results and stores them in a dataset with a special
structure and with the .irf extension. One .irf dataset may contain several sets of IRF results.

Continuing with example 7, let’s compute the effect of shocks for up to 15 years (60 quarter
periods) into the future. We name the set of results birf1 and save them in birfex2.irf.

. bayesirf create birf1, step(60) set(birfex2)
(file birfex2.irf created)
(file birfex2.irf now active)
(file birfex2.irf updated)

It is easier to visualize the effect of a shock in one response variable on all other response variables
and itself by using the bayesirf graph command. The command draws the posterior mean estimates
of IRF coefficients along with 95% CrIs. Let’s inspect the effect of shock on fedfunds. Shocks of
interests are specified using the impulse() option.

https://www.stata.com/manuals/bayesbayesirf.pdf#bayesbayesirf
https://www.stata.com/manuals/bayesbayesirfcreate.pdf#bayesbayesirfcreateMethodsandformulas
https://www.stata.com/manuals/bayesbayesirfcreate.pdf#bayesbayesirfcreate
https://www.stata.com/manuals/bayesbayesirfcreate.pdf#bayesbayesirfcreate
https://www.stata.com/manuals/bayesbayesirfgraph.pdf#bayesbayesirfgraph
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. bayesirf graph irf, impulse(fedfunds)
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Graphs by irfname, impulse variable, and response variable

IRFs are obtained by setting the error vector in the likelihood model to (0,0,1) (1 for fedfunds and
0 otherwise) at step 0 and propagating this unit vector in time according to the VAR equations. For
example, the response of inflation (second graph) starts from 0 at step 0, slightly increases during
the first year, then slowly decreases during the next 4 years, and finally converges to a small positive
value at the end of our 15-year period. According to the third graph, after a monetary shock from
the Federal Reserve, the output gap decreases during the first two years, then slowly increases for
the following eight years, and finally stabilizes at a small positive value. Notably, the shock effect
on all response variables reach equilibrium after about 12 years.

We can examine IRF coefficients in more detail by listing them in a table using bayesirf table.
For example, let’s inspect how the output gap is responding to a shock in federal funds in the first
two years. This particular choice is made using the response(), impulse(), and step() options.

. bayesirf table irf, response(ogap) impulse(fedfunds) step(7)

Results from birf1

(1) (1) (1)
Step irf Lower Upper

0 0 0 0
1 -.008015 -.089753 .072662
2 -.072428 -.205354 .059264
3 -.128667 -.296316 .039592
4 -.174391 -.361456 .009988
5 -.208873 -.409928 -.009742
6 -.232076 -.444489 -.021792
7 -.245563 -.466458 -.028681

Posterior means reported.
95% equal-tailed credible lower and upper bounds reported.
(1) irfname = birf1, impulse = fedfunds, and response = ogap.

https://www.stata.com/manuals/bayesbayesirftable.pdf#bayesbayesirftable
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The bayesirf table command reports posterior mean estimates (first column), lower 95% credible
limits (second column), and upper 95% credible limits (third column). We see that a 1% increase in
fedfunds leads to about a 0.01 units decrease in ogap after 1 quarter and to 0.25 units decrease in
ogap after 8 quarters (2 years). That is, in the short term, an increase in federal spending increases
the gap between real and potential GDP.

The regular IRF functions do not account for the fact that the shocks in different impulse variables
are generally not independent. For example, in our case, shocks in federal funds and inflation are likely
dependent. A better representation of the dynamics between variables is provided by the so-called
orthogonalized IRFs (OIRFs), referred to as oirf in bayesirf commands. The latter depends on the
preset causal ordering of the impulse variables, as specified using the order() option. The default
order is the order in which the variables are listed in the bayes: var command specification.

For example, let’s examine the following causal order: inflation → fedfunds → ogap. In
other words, let’s assume that fedfunds has no immediate effect on inflation and that ogap has
no immediate effect on inflation and fedfunds.

. bayesirf create birf2, step(60) set(birfex2) order(inflation fedfunds ogap)
(file birfex2.irf now active)
(file birfex2.irf updated)

The new IRF statistics are saved as birf2 in birfex2.irf.

We can now summarize oirf statistics of ogap response to impulse in the third equation, referred
to as fedfunds, corresponding to the new order we have specified.

. bayesirf table oirf, irf(birf2) response(ogap) impulse(fedfunds) step(7)

Results from birf2

(1) (1) (1)
Step oirf Lower Upper

0 .257325 .148406 .370283
1 .258308 .128963 .395361
2 .195725 .041816 .35614
3 .123306 -.047116 .30244
4 .050238 -.130222 .241047
5 -.014137 -.201699 .186256
6 -.067159 -.261451 .13775
7 -.109004 -.309117 .103761

Posterior means reported.
95% equal-tailed credible lower and upper bounds reported.
(1) irfname = birf2, impulse = fedfunds, and response = ogap.

We observe notable differences between oirf and irf estimates reported above. A shock in the
fedfunds equation now starts at 0.26 at step 0 and initially has little effect on closing the positive
output gap, but after 4 steps (about a year), ogap becomes negative. As in the case with irf values,
we see that a shock in federal funds has a negative effect on the output gap in a short term. OIRFs
have the benefit of accounting for the correlation between inflation and fedfunds.

The interpretation of OIRFs very much depends on the causal order of response variables. Choosing
an order can be difficult when there is no obvious choice based on expert knowledge. Next, for easier
comparison, we show how to use bayesirf graph to plot the OIRFs from both birf1 and birf2,
which differ only in the response variable ordering.
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. bayesirf graph oirf, impulse(fedfunds)
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The first row shows OIRFs for the original order, inflation → ogap → fedfunds, and the second
row shows results for the new order, inflation → fedfunds → ogap. As we remarked above,
there are differences between the OIRF results corresponding to different orderings.
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Another way to follow the dynamics in ogap is to inspect the cumulative OIRF, coirf. Cumulative
IRF statistics accumulate the shock effects over time. The following graph compares the cumulative
OIRFs of birf1 and birf2 to a shock in fedfunds.

. bayesirf graph coirf, impulse(fedfunds)
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All two shock effects reach equilibrium after about 10 years. In the long term, a monetary shock
reduces inflation and decreases the output gap.

Another set of IRFs that are useful for interpreting VAR models is the forecast error variance
decompositions, or FEVDs. FEVDs measure the contribution, in terms of variability, of impulse
variables to the forecast error in response variables. FEVDs, similar to OIRFs, depend on the causal
ordering of the response variables.
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For illustration, let’s inspect the FEVDs of the response variable fedfunds for the birf2 results
corresponding to the inflation → fedfunds → ogap order. First, we show FEVD graphs.

. bayesirf graph fevd, irf(birf2) response(fedfunds)
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In the long term, half the forecast error of fedfunds is contributed by fedfunds itself, whereas
inflation and ogap contribute by a quarter each.
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A table of FEVD estimates gives us more details.

. bayesirf table fevd, irf(birf2) response(fedfunds) step(7)

Results from birf2

(1) (1) (1)
Step fevd Lower Upper

0 0 0 0
1 .095083 .027875 .180163
2 .102093 .029869 .192633
3 .114495 .034531 .216095
4 .128495 .038329 .242878
5 .142093 .041094 .268065
6 .155334 .043475 .293326
7 .16808 .045986 .318506

(2) (2) (2)
Step fevd Lower Upper

0 0 0 0
1 .904917 .819837 .972125
2 .885277 .794215 .957829
3 .852453 .751346 .936377
4 .818721 .702946 .917391
5 .789353 .659076 .902321
6 .763024 .619474 .890185
7 .739026 .582641 .879954

(3) (3) (3)
Step fevd Lower Upper

0 0 0 0
1 0 0 0
2 .01263 .002624 .027988
3 .033052 .00823 .069683
4 .052784 .013287 .111021
5 .068554 .016546 .144177
6 .081642 .018741 .174098
7 .092895 .020159 .199897

Posterior means reported.
95% equal-tailed credible lower and upper bounds reported.
(1) irfname = birf2, impulse = inflation, and response = fedfunds.
(2) irfname = birf2, impulse = fedfunds, and response = fedfunds.
(3) irfname = birf2, impulse = ogap, and response = fedfunds.

The command output contains three tables, one for each impulse. At step 1, which corresponds to
one-step-ahead predictions, FEVD posterior mean estimates are about 0.095 for inflation, 0.905
for fedfunds, and 0 for ogap due to the imposed order. The sum of FEVDs across impulses is 1.
Most of the forecast error in fedfunds is because of the variability in fedfunds itself. At step 8,
however, FEVD estimates become 0.18 for inflation, 0.72 for fedfunds, and 0.10 for ogap. The
predominant effect of its own variability in FEVD estimates is an indirect effect of the Minnesota prior
that shrinks self-variables first-lag coefficients to 1 and all others to 0.
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Example 9: Forecasting

Bayesian dynamic forecasting is a special case of Bayesian predictions that uses posterior predictive
distributions conditional on time to predict a response variable at multiple steps into the future; see
Methods and formulas of [BAYES] bayesfcast compute.

bayesfcast compute is the Bayesian counterpart of the [TS] fcast compute command, which is
used for Bayesian forecasting after the bayes: var command.

Let’s compute dynamic forecasts starting with the first quarter of 2004 until the end of the observed
time frame, or 28 quarter periods ahead.

. bayesfcast compute b_, step(28) dynamic(tq(2004q1))

By default, bayesfcast compute computes and saves in the current dataset the posterior mean
estimates of the predicted response variables along with the 95% credible intervals. The new variables
are prefixed with b .

It would be interesting to compare the Bayesian forecast results with the frequentist ones obtained
by fcast compute after fitting the var command on the same model.

. quietly var inflation ogap fedfunds if date < tq(2004q1), lags(1/4)

. fcast compute f_, step(28) dynamic(tq(2004q1))

We can use the bayesfcast graph command to plot the observed and forecasted values along
with their 95% CIs for the frequentist and 95% CrIs for the Bayesian results. Frequentist results are
on the left, and Bayesian results are on the right.

. bayesfcast graph f_inflation b_inflation f_ogap b_ogap f_fedfunds b_fedfunds,
> observed byopts(rows(3) title("Frequentist (left) vs. Bayesian (right)"))
> legend(label(1 "95% CI and CrI bounds"))
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In the forecast period before 2008, the Bayesian forecasts seem to fit the observed response variables
slightly better. The 95% CrIs include the observed values most of the time, except for ogap at the
second half of 2008 during the great recession. We should not expect a VAR model to forecast extreme
events such as recessions.

https://www.stata.com/manuals/bayesbayesfcastcompute.pdf#bayesbayesfcastcomputeMethodsandformulas
https://www.stata.com/manuals/bayesbayesfcastcompute.pdf#bayesbayesfcastcompute
https://www.stata.com/manuals/tsfcastcompute.pdf#tsfcastcompute
https://www.stata.com/manuals/bayesbayesfcastgraph.pdf#bayesbayesfcastgraph
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Example 10: One-step-ahead Bayesian predictions

One-step-ahead Bayesian predictions are a special case of Bayesian forecasts, where current
observed responses are used to make predictions for the next time period. In contrast to dynamic
predictions, one-step-ahead predictions can be computed using the general postestimation command
for Bayesian predictions, bayespredict.

For illustration, let’s compute predicted posterior means for the three responses starting with
the first quarter of 2004 and save the results as new variables pr1 inflation, pr1 ogap, and
pr1 fedfunds.

. bayespredict pr1_inflation pr1_ogap pr1_fedfunds if date>=tq(2004q1), mean

Computing predictions ...

Because these are one-step-ahead predictions, we expect them to be fairly close to the observed
responses, much more so than dynamic forecasts with multiple prediction steps ahead. To verify that,
let’s look at the prediction errors computed as the difference between the observed and predicted
responses and plot them as time series.

. generate err1_inflation = inflation - pr1_inflation
(198 missing values generated)

. generate err1_ogap = ogap - pr1_ogap
(198 missing values generated)

. generate err1_fedfunds = fedfunds - pr1_fedfunds
(198 missing values generated)

. tsline err1_inflation err1_ogap err1_fedfunds if date>=tq(2004q1), yline(0)
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Recall that the measurement units in this example are percentage growth rates for inflation and
federal funds and percentage deviation from trend for the output gap. We see that one-step-ahead
predictions perform well right before the beginning of the great recession in 2008, within a margin
of 1 unit; that is, prediction errors are within 1 percentage point of realized values. After that,
all three errors become negative for a period of time, which means they commit overprediction,
but then stabilize again at the end of 2009. The predictions for inflation are particularly off,
overpredicting before the second quarter of 2009 and underpredicting after that until the end of 2009.
A logical conclusion is that our model, fit on the data before the great recession, cannot capture the
macroeconomic disruption of 2008 and 2009.

Finally, for those of you interested in comparing Bayesian and classical one-step-ahead predictions,
we show the computation for the latter.
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. quietly var inflation ogap fedfunds if date < tq(2004q1), lags(1/4)

. predict pr2_inflation, equation(inflation)
(option xb assumed; fitted values)
(8 missing values generated)

. predict pr2_ogap, equation(ogap)
(option xb assumed; fitted values)
(8 missing values generated)

. predict pr2_fedfunds, equation(fedfunds)
(option xb assumed; fitted values)
(8 missing values generated)

. generate err2_inflation = inflation - pr2_inflation
(8 missing values generated)

. generate err2_ogap = ogap - pr2_ogap
(8 missing values generated)

. generate err2_fedfunds = fedfunds - pr2_fedfunds
(8 missing values generated)

. tsline err2_inflation err2_ogap err2_fedfunds if date>=tq(2004q1), yline(0)
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Bayesian and classical one-step-ahead predictions are similar, both failing to follow the dynamics of
2008–2009. However, Bayesian predictions for federal funds appear to be more precise.
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Stored results
See Stored results in [BAYES] bayes. In addition, bayes: var stores the following in e():
Scalars

e(tmin) first time period in sample
e(tmax) maximum time
e(mlag) highest lag in VAR
e(selftight) self-variables tightness parameter in Minnesota priors
e(crosstight) cross-variables tightness parameter in Minnesota priors (not with conjugate Minnesota

prior)
e(lagdecay) lag-decay parameter in Minnesota priors
e(exogtight) exogenous-variables tightness parameter in Minnesota priors
e(dfcov) degrees of freedom of inverse-Wishart prior

Macros
e(cmdname) var
e(prefix) bayes
e(command) var command specification
e(varprior) prior model for VAR coefficients and error covariance
e(endog) names of endogenous variables
e(exog) names of exogenous variables, and their lags, if specified
e(exogvars) names of exogenous variables, if specified
e(lags) lags in model
e(exlags) lags of exogenous variables in model, if specified
e(timevar) time variable specified in tsset
e(tsfmt) format for the current time variable

Matrices
e(exlagsm) matrix mapping lags to exogenous variables (with exog())
e(phi) covariance product matrix Φ0 for conjugate Minnesota prior
e(arcov) AR covariance matrix (with arcov)
e(varcov) VAR covariance matrix (with varcov)
e(mvnmean) mean vector of MVN prior
e(mvncov) covariance matrix of MVN prior (with mvniwishprior() or mvnjeffprior())
e(scalecov) scale matrix of inverse-Wishart prior

Methods and formulas
Methods and formulas are presented under the following headings:

VAR model specification
Original Minnesota prior with known (fixed) error covariance
Conjugate Minnesota prior for VAR model with unknown error covariance
MVN-inverse Wishart prior
MVN-diffuse (normal-Jeffreys) prior

VAR model specification

Let yt be a K × 1 vector of endogenous (dependent) variables at time t for t = 1, . . . , T and xt
be a m× 1 vector of exogenous regressors including the constant terms.

A p-order VAR model, VAR(p), can be defined according to Lütkepohl (2005) as

yt = A1yt−1 + · · ·+ Apyt−p + Cxt + ut, ut ∼ N(0,Σ)

where p is the number of lags;

Al = (alij) are K×K matrices of unknown endogenous-variables lag coefficients (l = 1, . . . , p);

C = (cis) is a K ×m matrix of exogenous-variables coefficients; and

ut is a K × 1 vector of error terms with a K ×K covariance matrix Σ.

https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesStoredresults
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayes
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A VAR(p) model can be written in a more compact form as

Y = XB + U

where

Y =

 y′1
...

y′T

, X =

 y′0 y′−1 . . . y′1−p x′1
...

y′T−1 y′T−2 . . . y′T−p x′T

, B =


A′1

...
A′p
C′

, U =

 u′1
...

u′T


Y is a T × k matrix, X is a T × (Kp + m) matrix, B is a (Kp + m) × K matrix of all

coefficients, and U is a T ×K matrix.

The OLS estimates of B and Σ are

B̂ = (X′X)−1X′Y

Σ̂OLS = Û′Û/(T −Kp−m− 1), Û = Y −XB̂ (1)

Vectorizing the above matrix equation, we obtain

y = X?β + u

where y = vec(Y) is KT × 1 vector, X? = IK ⊗X is a KT ×K(Kp + m) matrix (⊗ is the
Kronecker product and IK is a K ×K identity matrix), β = vec(B) is a K(Kp+m)× 1 vector
of all coefficients, and u = vec(U) is a KT × 1 error vector with a KT ×KT covariance matrix
Σ? = Σ⊗ IT .

An essential component of every Bayesian VAR model is specifying a suitable prior for the vector
of coefficients β. In what follows, we will describe several commonly used priors, all based on a
so-called Minnesota prior. But before we continue, let’s define components that are used by all of
these priors.

Consider a univariate AR(p) model for each outcome k = 1, . . . ,K,

yk,t = a1yk,t−1 + · · ·+ apyk,t−p + a0 + ek,t (2)

where ek,t ∼ N(0, σ2
k). All priors considered below use the OLS estimate, σ̂2

k, of σ2
k. Some of the

priors also use a diagonal covariance estimate formed by K error-variance estimates from separate
AR(p) models: Σ̂diag = diag(σ̂2

1 , . . . , σ̂
2
K).

Original Minnesota prior with known (fixed) error covariance

The original Bayesian VAR model with a Minnesota prior (Litterman 1980, 1986) assumes that the
covariance matrix of the error vectors ut is known, Σ = Σ0; that is,

u ∼ N(0,Σ0 ⊗ IT )
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The original formulation (suboption arcov in minnopts) used a diagonal matrix with the estimated
error variances from K separate AR models (2) on the diagonal as a covariance estimate, Σ0 =

Σ̂diag = diag(σ̂2
1 , . . . , σ̂

2
K). Litterman thus proposed to estimate the VAR model equation by equation,

rather than as a system of equations, to reduce the computational burden, which at the time was a
serious problem. Another formulation (suboption varcov in minnopts) used the OLS estimate of the
covariance matrix from the VAR model, Σ0 = Σ̂OLS, defined in (1).

This prior is implemented by the minnfixedcovprior option of bayes: var, but it is not the
default prior. The default prior is the conjugate Minnesota prior (option minnconjprior) described in
the next section, which uses a less restrictive prior covariance. But we describe the original Minnesota
prior first because the conjugate Minnesota prior is its extension.

The Minnesota prior for coefficient vector β is an MVN prior,

β ∼ N(β0,Ω0)

where a KT × 1 vector β0 and a KT ×KT matrix Ω0 are defined in a way that accounts for the
special time-series structure of the VAR(p) model, which we describe next.

The regression vector β is formed by the endogenous-variables lag coefficients alij (l = 1, . . . , p
and i, j = 1, . . . ,K) and exogenous-variables coefficients cis (i = 1, . . . ,K and s = 1, . . . ,m). The
Minnesota priors assumes that expected values for all coefficients are zero, except for the self-variables
first-lag coefficients; that is,

E(alij) = δ1lδij and E(cis) = 0

where δij = 1 if i = j and 0 otherwise, so the prior mean vector β0 is a K(Kp+ m)× 1 vector
of 0s and 1s, with 1s corresponding to the self-variables first-lag coefficients.

The original Minnesota prior assumes that there is no correlation between the coefficients of β.
The Minnesota covariance Ω0 is thus a diagonal matrix, its diagonal formed by the prior variances
σ2
al
ij

for the endogenous-variables lag coefficients and σ2
cis for the exogenous-variables coefficients.

The prior variances are based on the OLS estimates of error variances, σ̂2
k’s, and are defined below.

For endogenous-self-variables lag coefficients, the prior variances are

σ2
al
ii

=

(
λ1
lλ3

)2

For endogenous-cross-variables lag coefficients (i 6= j), the prior variances are

σ2
al
ij

=

(
σ̂2
i

σ̂2
j

)(
λ1λ2
lλ3

)2

For exogenous-variables coefficients, the prior variances are

σ2
cis = σ̂2

i (λ1λ4)2

In the above formulas, λ1 controls the tightness of the prior variance for self-variables lag coefficients
and can be specified in the selftight() suboption of the Minnesota prior options, minnopts;
λ2 controls the cross-variables lag coefficients spread and can be specified in the crosstight()
suboption; λ3 controls the lag attenuation and can be specified in the lagdecay() suboption (the
higher the lag, the tighter the prior variances); and λ4 controls the prior variance of the exogenous-
variables coefficients and can be specified in the exogtight() option. Default values for these control
parameters are λ1 = 0.1, λ2 = 0.5, λ3 = 1, and λ4 = 100.

https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryselfvarcoef
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryselfvarcoef
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The prior mean β0 and diagonal covariance matrix Ω0 described above define the original Minnesota
prior, which is available by specifying the minnfixedcovprior option with bayes: var. You can
customize this prior by specifying the minnfixedcovprior(fixcovopts) option.

In the model-summary output of bayes: var, we refer to the defaults Σ0 and β0 as Sigma0
and b0, respectively. Ω0 is viewed as a function of Sigma0 and prior control parameters λ’s.

Conjugate Minnesota prior for VAR model with unknown error covariance

Another framework of Bayesian VAR models assumes that error vectors ut have an unknown
covariance matrix Σ. In this case, u ∼ N(0,Σ⊗ IT ).

Karlsson (2013) proposed a prior for β with the prior covariance having a similar form to the
covariance matrix Σ. Specifically, the author defined the prior covariance as a product of Σ and
another covariance matrix, Φ0, which we refer to as a Minnesota factor covariance,

β ∼ N(β0,Σ⊗Φ0)

The prior mean vector β0 is the same as in the original Minnesota prior, and Φ0 is a fixed
(Kp+m)× (Kp+m) covariance matrix as defined below.

Φ0 = diag
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is set to be a diagonal matrix similar to the Minnesota

covariance Ω0 but of a lower dimension (Kp + m) × (Kp + m) compared with KT ×KT . The
elements of Φ0 are defined below for l = 1, . . . , p, j = 1 . . . ,K, and s = 1, . . . ,m.

For endogenous-variables lag coefficients,
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And for exogenous-variables coefficients,

σ2
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In the above formulas, λ1, λ3, and λ4 have the same interpretation as in the original Minnesota prior.
In this formulation, λ2 is not used because there is no distinction between the self- and cross-variables.

The covariance parameter Σ has an inverse-Wishart prior with a scale matrix S0 and degrees of
freedom α0:

Σ ∼ InvWishart(α0,S0)

You can specify α0 in the df() suboption and S0 in the scale() suboption of the minncon-
jprior() option. The default values are α0 = K + 2, the minimum possible value such that the
mean exists, and S0 = (α0 −K − 1)Σ0, where Σ0 is as it is defined for the original Minnesota
prior. With these default values, the prior mean of Σ is Σ0.

The conjugate Minnesota prior is the default prior for bayes: var, and it corresponds to the
minnconjprior option, which is implied by default. You can customize this prior by specifying the
minnconjprior(conjopts) option.

In the model-summary output of bayes: var, we refer to the defaults Φ0 as Phi0, β0 as b0,
and S0 as Scale0. With degrees of freedom K + 2 (default), S0 is displayed as Sigma0.
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MVN-inverse Wishart prior

You can also specify an MVN-inverse Wishart prior for the VAR coefficients and error covariance.
This prior also assumes an unknown error covariance Σ, u ∼ N(0,Σ⊗ IT ).

The regression vector β has an MVN prior

β ∼ N(β̃, Ω̃)

with a fixed mean vector β̃ and a covariance matrix Ω̃, which can be specified independently.

The covariance parameter Σ has an inverse-Wishart prior with a scale matrix S0 and degrees of
freedom α0,

Σ ∼ InvWishart(α0,S0)

You can specify this prior by using the minniwishprior(iwishopts) option. You can specify β̃

using the mean() suboption and Ω̃ using the cov() suboption. Default values for β̃ and Ω̃ are the
prior mean and covariance, β0 and Ω0, of the original Minnesota prior.

You can specify α0 using the df() suboption and S0 using the scale() suboption. The default
values are α0 = K + 2, the minimum possible value such that the mean exists, and S0 =
(α0 −K − 1)Σ0.

In the model-summary output of bayes: var, we refer to the defaults β0 as b0, Ω0 as Omega0,
and S0 as Scale0. With degrees of freedom K + 2 (default), S0 is displayed as Sigma0.

MVN-diffuse (normal-Jeffreys) prior

Instead of an inverse-Wishart prior for the covariance matrix, as in the previous section, one may
consider a diffused (multivariate Jeffreys) prior. As before, u ∼ N(0,Σ⊗ IT ).

The prior for β is still the MVN prior, as defined in MVN-inverse Wishart prior,

β ∼ N(β̃, Ω̃)

with a mean vector β̃ and a covariance matrix Ω̃. But the covariance matrix Σ has a multivariate
Jeffreys prior,

π(Σ) ∝ |Σ|
K+1

2

You can specify the minnjeffprior(jeffopts) option for this prior. You can specify β̃ using the
mean() suboption and Ω̃ using the cov() suboption. As with MVN-inverse Wishart prior, the default
values for β̃ and Ω̃ are the prior mean and covariance, β0 and Ω0, of the original Minnesota prior.

In the model-summary output of bayes: var, we refer to the defaults β0 and Ω0 as b0 and
Omega0, respectively.

Also see Methods and formulas in [BAYES] bayesmh.

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhMethodsandformulas
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
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