Description

bayes: tobit fits a Bayesian tobit regression to a censored continuous outcome; see [BAYES] bayes and [R] tobit for details.

Quick start

Bayesian tobit regression of \(y \) on \(x_1 \) and \(x_2 \), using a lower censoring limit of 17 and using default normal priors for regression coefficients and default inverse-gamma prior for the variance

\[
\text{bayes: tobit } y \ x_1 \ x_2, \ ll(17)
\]

Use a standard deviation of 10 instead of 100 for the default normal priors

\[
\text{bayes, normalprior(10): tobit } y \ x_1 \ x_2, \ ll(17)
\]

Use a shape of 1 and a scale of 2 instead of values of 0.01 for the default inverse-gamma prior

\[
\text{bayes, igammaprior(1 2): tobit } y \ x_1 \ x_2, \ ll(17)
\]

Use uniform priors for the slopes and a normal prior for the intercept

\[
\text{bayes, prior({y: x1 x2}, uniform(-10,10)) /// \ prior({y: cons}, normal(0,10)): tobit } y \ x_1 \ x_2, \ ll(17)
\]

Save simulation results to simdata.dta, and use a random-number seed for reproducibility

\[
\text{bayes, saving(simdata) rseed(123): tobit } y \ x_1 \ x_2, \ ll(17)
\]

Specify 20,000 MCMC samples, set length of the burn-in period to 5,000, and request that a dot be displayed every 500 simulations

\[
\text{bayes, mcmcsize(20000) burnin(5000) dots(500): tobit } y \ x_1 \ x_2, \ ll(17)
\]

In the above, request that the 90% HPD credible interval be displayed instead of the default 95% equal-tailed credible interval

\[
\text{bayes, clevel(90) hpd}
\]

Also see Quick start in [BAYES] bayes and Quick start in [R] tobit.

Menu

Statistics > Linear models and related > Bayesian regression > Tobit regression
Syntax

\[
\text{bayes}[\ , \ \text{bayesopts}]: \ \text{tobit} \ \text{depvar} \ [\ \text{indepvars}] \ [\ if] \ [\ in] \ [\ weight] \ [\ , \ \text{options}] \\
\]

options Description

Model

- `noconstant` suppress constant term
- `ll(varname | #)` left-censoring variable or limit
- `ul(varname | #)` right-censoring variable or limit
- `offset(varname)` include `varname` in model with coefficient constrained to 1

Reporting

- `display_options` control spacing, line width, and base and empty cells
- `level(#)` set credible level; default is `level(95)`

`indepvars` may contain factor variables; see [U] 11.4.3 Factor variables.
`depvar` and `indepvars` may contain time-series operators; see [U] 11.4.4 Time-series varlists.
`fweights` are allowed; see [U] 11.1.6 weight.
`bayes: tobit, level()` is equivalent to `bayes, clevel(): tobit`.
For a detailed description of `options`, see Options in [R] `tobit`.

bayesopts Description

Priors

- `*normalprior(#)` specify standard deviation of default normal priors for regression coefficients; default is `normalprior(100)`
- `*igammaprior(# #)` specify shape and scale of default inverse-gamma prior for variance; default is `igammaprior(0.01 0.01)`
- `prior(priorspec)` prior for model parameters; this option may be repeated
- `dryrun` show model summary without estimation

Simulation

- `nchains(#)` number of chains; default is to simulate one chain
- `mcmcsize(#)` MCMC sample size; default is `mcmcsize(10000)`
- `burnin(#)` burn-in period; default is `burnin(2500)`
- `thinning(#)` thinning interval; default is `thinning(1)`
- `rseed(#)` random-number seed
- `exclude(paramref)` specify model parameters to be excluded from the simulation results

Blocking

- `*blocksize(#)` maximum block size; default is `blocksize(50)`
- `block(paramref[, blockopts])` specify a block of model parameters; this option may be repeated
- `blocksummary` display block summary
- `*noblocking` do not block parameters by default
Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()
nomleinitial suppress the use of maximum likelihood estimates as starting values
initall(initspec) specify initial values for all chains; requires nchains()
initrandom specify random initial values
initsummary display initial values used for simulation
*noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)
covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)
hpd display HPD credible intervals instead of the default equal-tailed credible intervals

eform[(string)] report exponentiated coefficients and, optionally, label as string
batch(#) specify length of block for batch-means calculations; default is batch(0)
saving(filename[, replace]) save simulation results to filename.dta
nomodelsummary suppress model summary
chainsummary display detailed simulation summary for each chain
[no]dots suppress dots or display dots every 100 iterations and iteration numbers every 1,000 iterations; default is nodots
dots(#[, every(#)]) display dots as simulation is performed
[no]show(paramref) specify model parameters to be excluded from or included in the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display_options control spacing, line width, and base and empty cells

Advanced

search(search_options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
Model parameters are regression coefficients \{depvar:indepvars\} and variance \{sigma2\}. Use the dryrun option to see the definitions of model parameters prior to estimation.
For a detailed description of bayesopts, see Options in [BAYES] bayes.
Remarks and examples

For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation command, see [R] tobit.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes.

Stored results

See Stored results in [BAYES] bayes.

Methods and formulas

See Methods and formulas in [BAYES] bayesmh.

Also see

[BAYES] bayes — Bayesian regression models using the bayes prefix
[R] tobit — Tobit regression
[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix
[BAYES] Bayesian estimation — Bayesian estimation commands
[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis
[BAYES] Intro — Introduction to Bayesian analysis
[BAYES] Glossary