bayestest interval — Interval hypothesis testing

Description

`bayestest interval` performs interval hypothesis tests for model parameters and functions of model parameters using current Bayesian estimation results. `bayestest interval` reports mean estimates, standard deviations, and MCMC standard errors of posterior probabilities associated with an interval hypothesis.

Quick start

Posterior probability of the hypothesis that $45 < \{y:_cons\} < 50$

```
bayestest interval \{y:_cons\}, lower(45) upper(50)
```

As above, but skip every 5 observations from the full MCMC sample

```
bayestest interval \{y:_cons\}, lower(45) upper(50) skip(5)
```

Posterior probability of a hypothesis about a function of model parameter \{y:x1\}

```
bayestest interval (OR:exp(\{y:x1\})), lower(1.1) upper(1.5)
```

Posterior probability of hypotheses $45 < \{y:_cons\} < 50$ and $0 < \{var\} < 10$ tested independently

```
bayestest interval (\{y:_cons\}, lower(45) upper(50)) ///
       (\{var\}, lower(0) upper(10))
```

As above, but tested jointly

```
bayestest interval ((\{y:_cons\}, lower(45) upper(50)) ///
       (\{var\}, lower(0) upper(10)), joint)
```

Posterior probability of the hypothesis $\{mean\} = 2$ for discrete parameter \{mean\}

```
bayestest interval (\{mean\}=2)
```

Posterior probability of the interval hypothesis $0 \leq \{mean\} \leq 4$

```
bayestest interval \{mean\}, lower(0, inclusive) upper(4, inclusive)
```

Posterior probability that the first observation of the first simulated outcome is positive (after `bayesmh`)

```
bayespredict \{_ysim\}, saving(predres)
bayestest interval \{_ysim[1]\} using predres, lower(0)
```

Posterior probability that the predicted test statistic `chi2stat` is less than 1

```
bayespredict (chi2stat: @chi2stat(\{_ysim\})), saving(predres)
bayestest interval {chi2stat} using predres, upper(1)
```
Syntax

Test one interval hypothesis about continuous or discrete parameter

```
bayestest interval exspec [using predfile] [, luspec options]
```

Test one point hypothesis about discrete parameter

```
bayestest interval exspec==# [using predfile] [, options]
```

Test multiple hypotheses separately

```
bayestest interval (testspec) [(testspec) ...] [using predfile] [, options]
```

Test multiple hypotheses jointly

```
bayestest interval (jointspec) [using predfile] [, options]
```

Full syntax

```
bayestest interval (spec) [(spec) ...] [using predfile] [, options]
```

`exspec` is optionally labeled expression of model parameters, `[prlabel:]expr`, where `prlabel` is a valid Stata name (or `prob#` by default), and `expr` is a scalar model parameter or scalar expression (parentheses are optional) containing scalar model parameters. The expression `expr` may not contain variable names.

`predfile` is the name of the dataset created by `bayespredict` that contains prediction results. When you specify using `predfile`, `expr` may contain individual observations of simulated outcomes `{_ysim#[#]}`, expected outcome values `{_mu#[#]}`, simulated residuals `{_resid#[#]}`, and their expressions as described in `Functions of simulated outcomes, expected values, and residuals` in Syntax of [BAYES] `bayespredict`. `expr` may also contain `{label}`, which is the name of the function simulated using [BAYES] `bayespredict`. See `Different ways of specifying predictions and their functions` in [BAYES] `Bayesian postestimation`. `expr` may not contain model parameters when using `predfile` is specified.

`testspec` is `exspec[, luspec]` or `exspec==#` for discrete parameters only.

`jointspec` is `[prlabel:](testspec) (testspec) ... , joint`. The labels (if any) of `testspec` are ignored.

`spec` is one of `testspec` or `jointspec`. `spec` may not contain model parameters when using `predfile` is specified.
lower(\#) [upper(.)] & \theta > \# \\
lower(\#, inclusive) [upper(.)] & \theta \geq \# \\
[lower(.)] upper(\#) & \theta < \# \\
[lower(.)] upper(\#, inclusive) & \theta \leq \# \\
lower(#_l) upper(#_u) & #_l < \theta < #_u \\
lower(#_l) upper(#_u, inclusive) & #_l < \theta \leq #_u \\
lower(#_l, inclusive) upper(#_u) & #_l \leq \theta < #_u \\
lower(#_l, inclusive) upper(#_u, inclusive) & #_l \leq \theta \leq #_u \\

lower(intspec) and upper(intspec) specify the lower- and upper-interval values, respectively.

\textit{intspec} is \# [, inclusive]

where \# is the interval value, and suboption inclusive specifies that this value should be included in the interval, meaning a closed interval. Closed intervals make sense only for discrete parameters.

\textit{intspec} may also contain a dot (.), meaning negative infinity for \textit{lower()} and positive infinity for \textit{upper()}. Either option \textit{lower(.)} or option \textit{upper(.)} must be specified.

\begin{tabular}{|l|l|}
\hline
\textbf{options} & \textbf{Description} \\
\hline
\hline
Main & \\
* chains(_all | numlist) & specify which chains to use for computation; default is \texttt{chains(_all)} \\
* sepsilon & compute results separately for each chain \\
skip(#) & skip every \# observations from the MCMC sample; default is \texttt{skip(0)} \\
nolegend & suppress table legend \\
\hline
Advanced & \\
corrlag(#) & specify maximum autocorrelation lag; default varies \\
corrtol(#) & specify autocorrelation tolerance; default is \texttt{corrtol(0.01)} \\
\hline
\end{tabular}

*Options \texttt{chains()} and \texttt{sepsilon} are relevant only when option \texttt{nchains()} is used with \texttt{bayesmh} or the \texttt{bayes} prefix.

Options

\texttt{chains(_all | numlist)} specifies which chains from the MCMC sample to use for computation. The default is \texttt{chains(_all)} or to use all simulated chains. Using multiple chains, provided the chains have converged, generally improves MCMC summary statistics. Option \texttt{chains()} is relevant only when option \texttt{nchains()} is specified with \texttt{bayesmh} or the \texttt{bayes} prefix.

\texttt{sepsilon} specifies that the results be computed separately for each chain. The default is to compute results using all chains as determined by option \texttt{chains()}. Option \texttt{sepsilon} is relevant only when option \texttt{nchains()} is specified with \texttt{bayesmh} or the \texttt{bayes} prefix.

\texttt{skip(#)} specifies that every \# observations from the MCMC sample not be used for computation. The default is \texttt{skip(0)} or to use all observations in the MCMC sample. Option \texttt{skip()} can be used to subsample or thin the chain. \texttt{skip(#)} is equivalent to a thinning interval of \#+1. For example, if you specify \texttt{skip(1)}, corresponding to the thinning interval of 2, the command will
skip every other observation in the sample and will use only observations 1, 3, 5, and so on in the computation. If you specify `skip(2)`, corresponding to the thinning interval of 3, the command will skip every 2 observations in the sample and will use only observations 1, 4, 7, and so on in the computation. `skip()` does not thin the chain in the sense of physically removing observations from the sample, as is done by, for example, `bayesmh`'s `thinning()` option. It only discards selected observations from the computation and leaves the original sample unmodified.

`nolegend` suppresses the display of the table legend, which identifies the rows of the table with the expressions they represent.

`corrlag(#)` specifies the maximum autocorrelation lag used for calculating effective sample sizes. The default is \(\min\{500, \text{mcmcsize()}/2\}\). The total autocorrelation is computed as the sum of all lag-\(k\) autocorrelation values for \(k\) from 0 to either `corrlag()` or the index at which the autocorrelation becomes less than `corrtol()` if the latter is less than `corrlag()`.

`corrtol(#)` specifies the autocorrelation tolerance used for calculating effective sample sizes. The default is `corrtol(0.01)`. For a given model parameter, if the absolute value of the lag-\(k\) autocorrelation is less than `corrtol()`, then all autocorrelation lags beyond the \(k\)th lag are discarded.

Remarks and examples

Remarks are presented under the following headings:

- **Introduction**
- **Interval tests for continuous parameters**
- **Interval tests for discrete parameters**

Introduction

In this entry, we describe interval hypothesis testing, the goal of which is to estimate the probability that a model parameter lies in a certain interval. Interval hypothesis testing is inversely related to credible intervals. For example, if we have a 95% credible interval for \(\theta\) with endpoints \(U\) and \(L\), then the probability of a hypothesis \(H_0:\ \theta \in [U, L]\) is 0.95. For hypothesis testing using model posterior probabilities, see [BAYES] bayestest model.

In frequentist hypothesis testing, we often consider a point hypothesis such as \(H_0:\ \theta = \theta_0\) versus \(H_a:\ \theta \neq \theta_0\). In Bayesian hypothesis testing, the probability \(P(\theta = \theta_0)\) is 0 whenever \(\theta\) has a continuous posterior distribution. A point hypothesis is relevant only to parameters with discrete posterior distributions. For continuous parameters, all hypotheses should be formulated as intervals. One possibility is to consider an interval hypothesis \(H_0:\ \theta \in (\theta_0 - \epsilon, \theta_0 + \epsilon)\), where \(\epsilon\) is some small value.

Note that Bayesian hypothesis testing does not really need a distinction between the null and alternative hypotheses, in the sense that they are defined in a frequentist statistic. There is no need to “protect” the null hypothesis: if \(P(H_0:\ \theta \in (a, b)) = p\), then \(P(H_a:\ \theta \notin (a, b)) = 1 - p\). In what follows, when we refer to \(H_0\), we imply a hypothesis of interest \(H_0:\ \theta \in \Theta\), and when we refer to \(H_a\), we imply the complement hypothesis \(H_a:\ \theta \in \Theta^c\), where \(\Theta\) is a set of points from the domain of \(\theta\) and \(\Theta^c\) is its complement.

The `bayestest interval` command estimates the posterior probability of a null interval hypothesis \(H_0\) using the simulated posterior distributions of model parameters produced by Bayesian estimation. Essentially, `bayestest interval` reports posterior summaries for a dichotomous expression that represents \(H_0\).
For example, suppose we would like to test the following hypothesis: \(H_0: \theta \in (a, b) \). Then, bayestest interval \((\{\theta\}, \text{lower}(a) \text{ upper}(b))\) is equivalent to

\[
\text{bayesstats summary (} \{\theta\} > a \& \{\theta\} < b \)
\]

bayestest interval reports the estimated posterior mean probability for \(H_0 \), which is not a \(p \)-value—as reported by classical frequentist tests—used to decide whether to reject \(H_0 \) in favor of the alternative \(H_a \). The \(p \)-value interpretation is based on the dichotomous problem formulation of \(H_0 \) versus \(H_a \), assuming that one of these two alternatives is actually true. The answer in the Bayesian context is a probability statement about \(\theta \) that is free of any deterministic presumptions. For example, if you estimate \(P(H_0) \) to be 0.15, you cannot ask whether this value is significant or whether you can reject the null hypothesis. Bayesian interpretation of this probability is that if you draw \(\theta \) from the specified prior distribution and update your knowledge about \(\theta \) based on the observed data, then there is a 15% chance that \(\theta \) will belong to the interval \((a, b)\). So the conclusion of Bayesian hypothesis testing is not an acceptance or rejection of the null hypothesis but an explicit probability statement about the tested hypothesis.

Interval tests for continuous parameters

Let’s continue our analysis of auto.dta from example 4 in [BAYES] bayesmh using the mean-only normal model for \(mpg \) with a noninformative prior.

\[. use https://www.stata-press.com/data/r16/auto \]
\[. set seed 14 \]
\[. bayesmh mpg, likelihood(normal({var})) > prior({mpg:_cons}, flat) prior({var}, jeffreys) \]

Burn-in ...
Simulation ...
Model summary

Likelihood:
\(mpg \sim \text{normal}(\{mpg:_\text{cons}\}, \{\text{var}\}) \)

Priors:
\{mpg:_\text{cons}\} \sim 1 (\text{flat})
\{\text{var}\} \sim \text{jeffreys}

Bayesian normal regression
Random-walk Metropolis-Hastings sampling

MCMC iterations = 12,500
Burn-in = 2,500
MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2668
Efficiency: min = .09718
avg = .1021
max = .1071

Log marginal-likelihood = -234.645

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>MCSE</th>
<th>Median</th>
<th>[95% Cred. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mpg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>var</td>
<td>34.76572</td>
<td>5.91534</td>
<td>.180754</td>
<td>34.18391</td>
<td>24.9129 - 47.61286</td>
</tr>
</tbody>
</table>
Example 1: Interval hypothesis and credible intervals

In the introduction, we commented on the inverse relationship that exists between interval hypothesis tests and credible intervals. Let’s verify this using bayestest interval. We are interested in a hypothesis $H_0: \{\text{mpg:}_\text{cons}\} \in (19.992, 22.619)$, where the specified numbers are the endpoints of the credible interval for $\{\text{mpg:}_\text{cons}\}$ from the bayesmh output. To compute the posterior probability for this hypothesis, we specify the parameter following the command line and specify interval endpoints in lower() and upper().

```
.bayestest interval {mpg:}_cons, lower(19.992) upper(22.619)
```

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>MCSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>prob1</td>
<td>.9496</td>
<td>0.21878</td>
<td>.0053652</td>
</tr>
</tbody>
</table>

The estimated posterior probability is close to 0.95, as we expected, because we used the endpoints of the 95% credible intervals for $\{\text{mpg:}_\text{cons}\}$.

By default, bayestest interval labels probabilities as prob# (prob1 in our example). You can specify your own label as long as you enclose the parameter in parentheses:

```
.bayestest interval (mean:{mpg:}_cons), lower(19.992) upper(22.619)
```

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>MCSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>.9496</td>
<td>0.21878</td>
<td>.0053652</td>
</tr>
</tbody>
</table>

Example 2: Testing multiple hypotheses separately

Continuing example 1, we can verify that the probability associated with the credible interval for $\{\text{var}\}$ is also close to 0.95.

We can specify multiple hypotheses with bayestest interval, but we must enclose them in parentheses.

```
.bayestest interval ({mpg:}_cons), lower(19.992) upper(22.619))
> ({var}, lower(24.913) upper(47.613))
```

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>MCSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>prob1</td>
<td>.9496</td>
<td>0.21878</td>
<td>.0053652</td>
</tr>
<tr>
<td>prob2</td>
<td>.9502</td>
<td>0.21754</td>
<td>.0053011</td>
</tr>
</tbody>
</table>

The estimated posterior probability prob2 is also close to 0.95.
Example 3: Testing multiple hypotheses jointly

We can perform joint tests of multiple hypotheses by enclosing hypothesis to be tested jointly in parentheses and by specifying suboption `joint`. Notice that each individual hypothesis must also be enclosed in parentheses.

```
. bayestest interval (({mpg:_cons}, lower(19.992) upper(22.619))
  > ({var}, lower(24.913) upper(47.613)), joint)
```

Interval tests MCMC sample size = 10,000
prob1 : 19.992 < {mpg:_cons} < 22.619,
 24.913 < {var} < 47.613

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>MCSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>prob1</td>
<td>.9034</td>
<td>0.29543</td>
<td>.0076789</td>
</tr>
</tbody>
</table>

The joint posterior probability of both `{mpg:_cons}` and `{var}` belonging to their respective intervals is 0.9 with a posterior variance of 0.3 and MCSE of 0.008.

Example 4: Full syntax

We can specify multiple separate hypotheses and hypotheses tested jointly in one call to `bayestest interval`.

```
. bayestest interval (({mpg:_cons}, lower(19.992) upper(22.619))
  > ({{var}, lower(24.913) upper(47.613))}, joint)
  > ({{mpg:_cons}, lower(21)})
  > ({{var}, upper(40)})
```

Interval tests MCMC sample size = 10,000
prob1 : 19.992 < {mpg:_cons} < 22.619,
 24.913 < {var} < 47.613
prob2 : {mpg:_cons} > 21
prob3 : {var} < 40

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>MCSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>prob1</td>
<td>.9034</td>
<td>0.29543</td>
<td>.0076789</td>
</tr>
<tr>
<td>prob2</td>
<td>.6505</td>
<td>0.47684</td>
<td>.015786</td>
</tr>
<tr>
<td>prob3</td>
<td>.8136</td>
<td>0.38945</td>
<td>.0110613</td>
</tr>
</tbody>
</table>

In addition to the joint hypothesis from the previous example, we specified two new separate interval hypotheses for testing `{mpg:_cons} > 21` and for testing `{var} < 40`. The estimated posterior probabilities for these hypotheses are 0.65 and 0.81, respectively.
Example 5: Point hypothesis for continuous parameters

As we discussed in Introduction above, point hypothesis for continuous parameters do not make sense, because the corresponding probability is 0:

```
. bayestest interval ({mpg:_cons}==21)
Interval tests MCMC sample size = 10,000
  prob1 : {mpg:_cons}==21
```

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>MCSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>prob1</td>
<td>0.00</td>
<td>0.00000</td>
<td>0</td>
</tr>
</tbody>
</table>

We can consider a small window around the value of interest and test an interval hypothesis instead:

```
. bayestest interval ({mpg:_cons}, lower(20.5) upper(21.5))
Interval tests MCMC sample size = 10,000
  prob1 : 20.5 < {mpg:_cons} < 21.5
```

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>MCSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>prob1</td>
<td>.4932</td>
<td>.49998</td>
<td>.0138391</td>
</tr>
</tbody>
</table>

The probability that {mpg:_cons} is between 20.5 and 21.5 is about 50%.

Note that the probability of a continuous parameter belonging to a closed interval or semiclosed interval is the same as that for the open interval. Below we use suboption inclusive within lower() and upper() to request the closed interval.

```
. bayestest interval ({mpg:_cons}, lower(20.5,inclusive) upper(21.5,inclusive))
Interval tests MCMC sample size = 10,000
  prob1 : 20.5 <= {mpg:_cons} <= 21.5
```

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>MCSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>prob1</td>
<td>.4932</td>
<td>.49998</td>
<td>.0138391</td>
</tr>
</tbody>
</table>

We obtain the same results as above for the corresponding open interval.

Example 6: Functions of parameters

We can test functions of model parameters. For example, let’s compute the probability that the posterior standard deviation is greater than 6.

```
. bayestest interval (sd: sqrt({var}), lower(6))
Interval tests MCMC sample size = 10,000
  sd : sqrt({var}) > 6
```

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>MCSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>sd</td>
<td>.3793</td>
<td>.48524</td>
<td>.0143883</td>
</tr>
</tbody>
</table>

The estimated probability is 0.38.
Interval tests for discrete parameters

In this section, we demonstrate how to perform hypothesis testing for a discrete parameter.

First, we simulate data from the Poisson distribution with a mean of 2.

```stata
. clear
. set seed 12345
. set obs 20
  number of observations (_N) was 0, now 20
. generate double y = rpoisson(2)
```

We fit a Bayesian Poisson model to the data and specify a discrete prior for the mean $P(\mu = k) = 0.25$ for $k = 1, 2, 3, 4$.

```stata
. set seed 14
. bayesmh y, likelihood(dpoisson({mu}))
  > prior({mu}, index(0.25,0.25,0.25,0.25)) initial({mu} 2)
  Burn-in ...
  Simulation ...
  Model summary
```

Likelihood:
\[y \sim \text{poisson}({\mu}) \]

Prior:
\[{\mu} \sim \text{index}(0.25,0.25,0.25,0.25) \]

<table>
<thead>
<tr>
<th>Bayesian Poisson model</th>
<th>MCMC iterations = 12,500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random-walk Metropolis-Hastings sampling</td>
<td>Burn-in = 2,500</td>
</tr>
<tr>
<td></td>
<td>MCMC sample size = 10,000</td>
</tr>
<tr>
<td></td>
<td>Number of obs = 20</td>
</tr>
<tr>
<td></td>
<td>Acceptance rate = .2552</td>
</tr>
<tr>
<td></td>
<td>Efficiency = .4428</td>
</tr>
</tbody>
</table>

Log marginal-likelihood = -31.58903

<table>
<thead>
<tr>
<th>Mean</th>
<th>Std. Dev.</th>
<th>MCSE</th>
<th>Median</th>
<th>Equal-tailed [95% Cred. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu</td>
<td>2.0014</td>
<td>.1039188</td>
<td>.001562</td>
<td>2</td>
</tr>
</tbody>
</table>
Example 7: Point hypotheses for discrete parameters

We can compute probabilities for each of the four discrete values of \(\mu \).

\[
\begin{align*}
&. \text{bayestest interval \{(\mu)==1\} \{(\mu)==2\} \{(\mu)==3\} \{(\mu)==4\}} \\
\text{Interval tests} & \quad \text{MCMC sample size} = 10,000 \\
\text{prob1} & : \{(\mu)==1\} \\
\text{prob2} & : \{(\mu)==2\} \\
\text{prob3} & : \{(\mu)==3\} \\
\text{prob4} & : \{(\mu)==4\}
\end{align*}
\]

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>MCSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>prob1</td>
<td>.0047</td>
<td>0.06840</td>
<td>.0013918</td>
</tr>
<tr>
<td>prob2</td>
<td>.9892</td>
<td>0.10337</td>
<td>.0027909</td>
</tr>
<tr>
<td>prob3</td>
<td>.0061</td>
<td>0.07787</td>
<td>.0017691</td>
</tr>
<tr>
<td>prob4</td>
<td>0</td>
<td>0.00000</td>
<td>0</td>
</tr>
</tbody>
</table>

The posterior probability that \(\mu \) equals 2 is 0.99.

Example 8: Interval hypotheses for discrete parameters

As we can with continuous parameters, we can test interval hypotheses for discrete parameters. For example, we can compute the probability of whether \(\mu \) is between 2 and 4.

\[
. \text{bayestest interval \{\mu\}, lower(2) upper(4)} \\
\text{Interval tests} & \quad \text{MCMC sample size} = 10,000 \\
\text{prob1} & : 2 < \{\mu\} < 4
\]

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>MCSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>prob1</td>
<td>.0061</td>
<td>0.07787</td>
<td>.0017691</td>
</tr>
</tbody>
</table>

The estimated probability is very small.

Note that unlike hypotheses for continuous parameters, hypotheses including open intervals and closed or semiclosed intervals for discrete parameters may have different probabilities.

\[
. \text{bayestest interval \{\mu\}, lower(2, inclusive) upper(4, inclusive)} \\
\text{Interval tests} & \quad \text{MCMC sample size} = 10,000 \\
\text{prob1} & : 2 \leq \{\mu\} \leq 4
\]

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>MCSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>prob1</td>
<td>.9953</td>
<td>0.06840</td>
<td>.0013918</td>
</tr>
</tbody>
</table>

The estimated posterior probability that \(\mu \) is between 2 and 4, inclusively, is drastically different compared with the results for the corresponding open interval.
Stored results

`bayestest interval` stores the following in `r()`:

Scalars
- `r(mcmcsize)` MCMC sample size used in the computation
- `r(skip)` number of MCMC observations to skip in the computation; every `r(skip)` observations are skipped
- `r(corrlag)` maximum autocorrelation lag
- `r(corrtol)` autocorrelation tolerance
- `r(nchains)` number of chains used in the computation

Macros
- `r(names)` names of probability expressions
- `r(expr_#)` #th probability expression
- `r(chains)` chains used in the computation, if `chains()` is specified

Matrices
- `r(summary)` test results for parameters in `r(names)`
- `r(summary_chain#)` matrix `summary` for chain #, if `sepchains` is specified

Methods and formulas

Let θ be a model parameter and $\{\theta_t\}_{t=1}^T$ be an MCMC sample of size T drawn from the marginal posterior distribution of θ. It is often of interest to test how likely it is that θ belongs to a particular range of values. Note that testing a point null hypothesis such as $H_0: \theta = \theta_0$ is usually of no interest for parameters with continuous posterior distributions, because the posterior probability $P(H_0)$ is 0.

To perform an open-interval test of the form

\[H_0: \theta \in (a, b) \text{ versus } H_a: \theta \notin (a, b) \]

we estimate the posterior probability of H_0 from the given MCMC sample. The `bayestest interval` command calculates the probability $P(H_0)$ based on the simulated marginal posterior distribution of θ. The estimate is given by the frequency of inclusion of θ_ts in the test interval

\[\hat{P}(H_0) = \frac{1}{T} \sum_{t=1}^{T} 1\{\theta_t \in (a, b)\} \] \hspace{1cm} (1)

where $1\{A\}$ is an indicator function and equals 1 if A is true and 0 otherwise.

When a model parameter θ is discrete, the following closed- and semiclosed-interval tests may be of interest in addition to open-interval tests:

\[H_0: \theta = a \text{ versus } H_a: \theta \neq a \]
\[H_0: \theta \in [a, b] \text{ versus } H_a: \theta \notin [a, b] \]
\[H_0: \theta \in [a, b) \text{ versus } H_a: \theta \notin [a, b) \]
\[H_0: \theta \in (a, b] \text{ versus } H_a: \theta \notin (a, b] \]
The corresponding probabilities are calculated as follows:

\[
\hat{P}(H_0) = \frac{1}{T} \sum_{t=1}^{T} 1_{\{\theta_t = a\}}
\]

\[
\hat{P}(H_0) = \frac{1}{T} \sum_{t=1}^{T} 1_{\{\theta_t \in [a,b]\}}
\]

\[
\hat{P}(H_0) = \frac{1}{T} \sum_{t=1}^{T} 1_{\{\theta_t \in [a,b)\}}
\]

\[
\hat{P}(H_0) = \frac{1}{T} \sum_{t=1}^{T} 1_{\{\theta_t \in (a,b]\}}
\]

The probability of an alternative hypothesis is always given by \(P(H_a) = 1 - P(H_0)\).

The formulas above can be modified to accommodate joint hypotheses tests by multiplying the indicator functions of the individual hypothesis statements. For example, for a joint hypothesis \(H_0: \theta_1 > a, \theta_2 < b\), we would replace the indicator function with \(1_{\{\theta_1 > a\}} \times 1_{\{\theta_2 < b\}}\) in (1), where \(\{\theta_{1t}\}_{t=1}^{T}\) and \(\{\theta_{2t}\}_{t=1}^{T}\) are the corresponding MCMC samples for \(\theta_1\) and \(\theta_2\).

With multiple chains, the \texttt{bayestest interval} command performs computation using all simulated chains or those specified in the \texttt{chains()} option. The calculations are the same as for \texttt{bayesstats summary} in the presence of multiple chains; see \textit{Methods and formulas} in \texttt{[BAYES] bayesstats summary}.

Reference

Also see

\texttt{[BAYES] bayes} — Bayesian regression models using the \texttt{bayes} prefix
\texttt{[BAYES] bayesmh} — Bayesian models using Metropolis–Hastings algorithm
\texttt{[BAYES] Bayesian estimation} — Bayesian estimation commands
\texttt{[BAYES] Bayesian postestimation} — Postestimation tools for bayesmh and the \texttt{bayes} prefix
\texttt{[BAYES] bayespredict} — Bayesian predictions
\texttt{[BAYES] bayesstats summary} — Bayesian summary statistics
\texttt{[BAYES] bayestest model} — Hypothesis testing using model posterior probabilities