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Description

bayesstats ic calculates and reports model-selection statistics, including the deviance information
criterion (DIC), log marginal-likelihood, and Bayes factors (BFs), using current Bayesian estimation
results. BFs can be displayed in the original metric or in the log metric. The command also provides
two different methods to approximate marginal likelihood.

Quick start
Information criteria for previously saved estimation results A and B with A used as the base model

by default
bayesstats ic A B

As above, but use B as the base model instead of A
bayesstats ic A B, basemodel(B)

Report BFs instead of the default log BFs
bayesstats ic A B, bayesfactor

Menu
Statistics > Bayesian analysis > Information criteria
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2 bayesstats ic — Bayesian information criteria and Bayes factors

Syntax
bayesstats ic

[
namelist

] [
, options

]
namelist is a name, a list of names, all, or *. A name may be ., meaning the current (active)

estimates. all and * mean the same thing.

options Description

Main

basemodel(name) specify a base or reference model; default is the first-listed model
bayesfactor report BFs instead of the default log BFs
diconly report only DIC

Advanced

marglmethod(method) specify marginal-likelihood approximation method; default is to use
Laplace–Metropolis approximation, lmetropolis; rarely used

method Description

lmetropolis Laplace–Metropolis approximation; the default
hmean harmonic-mean approximation

Options

� � �
Main �

basemodel(name) specifies the name of the model to be used as a base or reference model when
computing BFs. By default, the first-listed model is used as a base model.

bayesfactor specifies that BFs be reported instead of the default log BFs.

diconly specifies that only DIC be reported in the table and that the log marginal likelihood and Bayes
factors be omitted from the table. Options basemodel(), basefactor, and marglmethod() have
no effect when the diconly option is specified.

� � �
Advanced �

marglmethod(method) specifies a method for approximating the marginal likelihood. method is either
lmetropolis, the default, for Laplace–Metropolis approximation or hmean for harmonic-mean
approximation. This option is rarely used.

Remarks and examples stata.com

Remarks are presented under the following headings:

Bayesian information criteria
Bayes factors
Using bayesstats ic

http://stata.com
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Bayesian information criteria

Bayesian information criteria are used for selecting a model among a set of candidate models that
best fits the data. Likelihood-based inference is known to be prone to overfitting the data. Indeed, it
is often possible to increase the likelihood by simply including more parameters in a model. Bayesian
information criteria address this problem by applying a penalty proportional to the complexity of the
models to the likelihood.

Consider a finite set of Bayesian models M1, . . . , Mr, which we want to compare with a base
model Mb. All models Mjs are fit to the same dataset but may differ in their likelihood or prior
specification.

Three commonly used information criteria are Akaike information criterion (AIC), Bayesian infor-
mation criterion (BIC), and DIC. All three criteria are likelihood based and include a goodness-of-fit
term proportional to the negative likelihood of the model and a penalty term proportional to the
number of parameters in the model. Models with smaller values of these criteria are preferable.

The BIC, originally derived for the exponential family of distributions, is based on the assumption
that the model has a flat, noninformative prior. In frequentist statistics, BIC is widely used as a
variable-selection criterion, particularly in linear regression. In BIC, the penalty term is a product
of the number of parameters in the model and the log of the sample size. The penalty of BIC thus
increases not only with the number of parameters but also with the sample size. In the AIC, the penalty
term is two times the number of parameters and does not depend on the sample size. As a result, BIC
is more conservative than AIC and prefers simpler models. DIC is similar to AIC, but its penalty term
is based on a complexity term that measures the difference between the expected log likelihood and
the log likelihood at the posterior mean point. DIC is designed specifically for Bayesian estimation
that involves MCMC simulations.

The limitation of all three criteria is that they either ignore prior distributions or assume that prior
distributions are noninformative. They are thus not well suited for Bayesian sensitivity analysis, when
models with the same parameters but different priors are being compared.

The bayesstats ic command reports DIC. See [R] estat ic after the corresponding maximum
likelihood estimation command for values of AIC and BIC.

Bayes factors

In Bayesian inference, BFs are preferred to model-selection criteria because, unlike BIC, AIC, and
DIC, they incorporate the information about model priors. Taking into account prior information is
essential for Bayesian sensitivity analysis, when models with the same parameters but different priors
are being compared.

The BF of two models is just the ratio of their marginal likelihoods calculated using the same
dataset. Unlike BIC, AIC, and DIC, BFs include all information about the specified Bayesian model.
Thus BFs are not applicable to models with improper priors, whereas BIC, AIC, and DIC are still
applicable because they ignore prior information. BFs, however, are often difficult to compute reliably
because of the difficulty in computing marginal likelihoods.

BFs also require that posterior distributions be completely specified, including the normalizing
constants. The latter is especially important in Bayesian estimation using MCMC simulations, when
the normalizing constants are often omitted from the specification of a posterior distribution. The
Bayesian estimation commands always simulate from a complete posterior distribution when you
select one of the supported Bayesian models, but you need to make sure to include all normalizing
constants with your posterior distribution when you are programming your own Bayesian model (see
[BAYES] bayesmh evaluators) and would like to use BFs during postestimation.

http://www.stata.com/manuals/restatic.pdf#restatic
http://www.stata.com/manuals/bayesbayesmhevaluators.pdf#bayesbayesmhevaluators
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Let BFjb, j = 1, . . . , r, be the BF of model Mj with respect to the base model Mb. All models Mj

are fit to the same dataset; otherwise, BFs are meaningless. The bayesstats ic command calculates
BFjb’s and reports them in log metric or in absolute metric when the bayesfactor option is specified.

Jeffreys (1961) proposes the following interpretation of the values of BFjb based on half-units of
the log metric:

log10(BFjb) BFjb Evidence against Mb

0 to 1/2 1 to 3.2 Bare mention
1/2 to 1 3.2 to 10 Substantial
1 to 2 10 to 100 Strong
>2 >100 Decisive

Kass and Raftery (1995) suggest using twice the natural logarithm of the BF to make it have the
same scale as the DIC and likelihood-ratio test statistic. They suggest the following interpretation
table:

2 loge(BFjb) BFjb Evidence against Mb

0 to 2 1 to 3 Bare mention
2 to 6 3 to 20 Positive
6 to 10 20 to 150 Strong
>10 >150 Very strong

Typically, the worst-fitting model is chosen as a base model. If the base model happens to be
better than the comparison model, the corresponding BF will be negative. In this case, you can apply
results above to the absolute value of the BF.

BFs compute relative probabilities of how well each model fits the data compared with the base
model. Being relative quantities, BFs cannot be used to measure goodness of fit of a particular model
unless one assumes that the base model fits the data well. Some researchers view this as a limitation
of BFs (Gelman et al. 2014). Kass and Raftery (1995), on the other hand, show that BFs can be
viewed as differences between predictive scores and thus can be used to measure success of different
models at predicting the data.

BFs have several advantages over the more traditional, frequentist testing methods. For example,
they do not have the limitation of the p-value approach to systematically reject the null hypothesis
in large samples. BFs are also suitable for comparing both nonnested and nested models. Also see
Comparing Bayesian models in [BAYES] intro for more information about Bayesian model comparison.

A key element in computing BFs is calculating the marginal likelihood. Except for some rare
cases, marginal likelihood does not have a closed form and needs to be approximated. A detailed
review of different approximation methods is given by Kass and Raftery (1995). The default method
implemented in bayesstats ic (and bayesmh) is the Laplace–Metropolis approximation (Lewis
and Raftery 1997). The harmonic-mean approximation of the marginal likelihood is also available via
the marglmethod(hmean) option, but we recommend that you use the default method. See Methods
and formulas in [BAYES] bayesmh for technical details.

http://www.stata.com/manuals/bayesintro.pdf#bayesintroRemarksandexamplesComparingBayesianmodels
http://www.stata.com/manuals/bayesintro.pdf#bayesintro
http://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhMethodsandformulas
http://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhMethodsandformulas
http://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
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Using bayesstats ic

Example 1

The bayesstats ic command provides several model-selection statistics that can be used to
compare models. To illustrate the use of bayesstats ic, we consider auto.dta. We model the
fuel-efficiency variable mpg using a normal distribution with fixed variance but unknown, random
mean. There is only one random parameter in this model—{mpg: cons}. We compare the models
with three different prior distributions to find the best one among them. We fit the three models using
bayesmh and save the corresponding estimation results as uniform1, uniform2, and normal.

First, for comparison purposes, let’s obtain the maximum likelihood estimate (MLE) of the mean
of mpg, which is simply the sample mean in our example:

. use http://www.stata-press.com/data/r15/auto
(1978 Automobile Data)

. summarize mpg

Variable Obs Mean Std. Dev. Min Max

mpg 74 21.2973 5.785503 12 41

The sample mean of mpg is roughly 21.3.

Next, we use bayesmh to fit our first model of interest. We fix the variance of the normal distribution
to 30, which is close to the estimated variance of mpg of 5.792 = 33.52.

. set seed 14

. bayesmh mpg, likelihood(normal(30))
> prior({mpg:_cons}, uniform(-10, 10))
> initial({mpg:_cons} 2) saving(uniform1_simdata)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},30)

Prior:
{mpg:_cons} ~ uniform(-10,10)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .4102

Log marginal likelihood = -397.42978 Efficiency = .08018

Equal-tailed
mpg Mean Std. Dev. MCSE Median [95% Cred. Interval]

_cons 9.965511 .0342812 .001211 9.975729 9.871825 9.998796

file uniform1_simdata.dta saved

. estimates store uniform1

In the first model, we deliberately chose a prior for {mpg: cons}, uniform(-10,10), that
does not include the value of the sample mean. We thus expect this model to fit poorly. Because of
the restricted domain of the specified uniform prior, we also needed to specify an initial value for
{mpg: cons} for MCMC to start from a point of positive posterior probability.
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We also specified the saving() option to save the MCMC simulation dataset so that we could use
estimates store to store our estimation results for future use. See Storing estimation results after
Bayesian estimation in [BAYES] bayesian postestimation for details.

. set seed 14

. bayesmh mpg, likelihood(normal(30))
> prior({mpg:_cons}, uniform(10, 30))
> initial({mpg:_cons} 20) saving(uniform2_simdata)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},30)

Prior:
{mpg:_cons} ~ uniform(10,30)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .4272

Log marginal likelihood = -237.08583 Efficiency = .2414

Equal-tailed
mpg Mean Std. Dev. MCSE Median [95% Cred. Interval]

_cons 21.31085 .6447073 .013123 21.31485 20.06381 22.57936

file uniform2_simdata.dta saved

. estimates store uniform2

In the second model, we used a uniform prior that included the value of the sample mean in its
domain.

http://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesbayesianpostestimationRemarksandexamplesStoringestimationresultsafterBayesianestimation
http://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesbayesianpostestimationRemarksandexamplesStoringestimationresultsafterBayesianestimation
http://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesbayesianpostestimation
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. set seed 14

. bayesmh mpg, likelihood(normal(30))
> prior({mpg:_cons}, normal(30)) saving(normal_simdata)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},30)

Prior:
{mpg:_cons} ~ normal(30)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .4295

Log marginal likelihood = -244.16624 Efficiency = .2319

Equal-tailed
mpg Mean Std. Dev. MCSE Median [95% Cred. Interval]

_cons 21.01901 .6461194 .013417 21.01596 19.76637 22.3019

file normal_simdata.dta saved

. estimates store normal

In the third model, we used a normal prior with a variance fixed at 30. Note that we did not
need to specify an initial value for {mpg: cons} in this model, because the domain of the normal
distribution is the whole real line.

Both the uniform2 and normal models yield estimates close to the MLE of 21.3. According to
their credible intervals, the domain of the posterior distribution of {mpg: cons} is concentrated
around MLE. For example, the 95% credible interval for the uniform2 model is [20.06, 22.60].

Now, let’s use bayesstats ic to compare the three models. We list all the models following the
command name and use the normal model as a reference model.

. bayesstats ic uniform1 uniform2 normal, basemodel(normal)

Bayesian information criteria

DIC log(ML) log(BF)

uniform1 785.8891 -397.4298 -153.2635
uniform2 471.1909 -237.0858 7.080404

normal 471.3905 -244.1662 .

Note: Marginal likelihood (ML) is computed
using Laplace-Metropolis approximation.

The uniform1 model performs worse than the other two models according to the log marginal-
likelihood, log(ML), and DIC—the DIC value is much larger, and the log(ML) value is much smaller
for the uniform1 model. The other two models have only slightly different values for DIC and
log(ML), according to which the uniform2 model is preferable.

Although the uniform2 and normal models have different prior distributions, they have almost
identical posterior domain, that is, the range of values of {mpg: cons} where the posterior is strictly
positive. As such, they will have the same values for AIC and BIC, and we will not be able to
discriminate between the two models based on these information criteria.
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The most decisive factor between the uniform2 and normal models is the BF. The value of log
BF, log(BF), is 7.08, which provides very strong evidence in favor of the uniform2 model.

We thus conclude that uniform2 is the best model among the three considered models. This may
be explained by the fact that the specified uniform(10,30) prior is in more agreement with the
likelihood of the data than the specified normal(0,30) prior.

After your analysis, remember to erase the saved simulation datasets you no longer need. For
example, we erase all of them by typing

. erase uniform1_simdata.dta

. erase uniform2_simdata.dta

. erase normal_simdata.dta

Stored results
bayesstats ic stores the following in r():

Scalars
r(bayesfactor) 1 if bayesfactor is specified, 0 otherwise

Macros
r(names) names of estimation results used
r(basemodel) name of the base or reference model
r(marglmethod) method for approximating marginal likelihood: lmetropolis or hmean

Matrices
r(ic) matrix reporting DIC, log(ML), and log(BF) or BF if bayesfactor is used

Methods and formulas
DIC was introduced by Spiegelhalter et al. (2002) for Bayesian model selection using MCMC

simulations. DIC is based on the deviance statistics

D(θ) = −2 { logf(y; θ)− logf∗(y; θ∗)}

where f(· ; ·) is the likelihood function of the model and f∗(y; θ∗) is the likelihood of the full
model that fits data perfectly. Because f∗(y; θ∗) is constant across models fit to the same data, it
is ignored in the actual calculation of DIC. Given an MCMC sample {θt}Tt=1, the expected deviance
can be estimated by the sample average D(θ) = 1/T

∑T
t=1 D(θt). Similarly to AIC and BIC, DIC

is a sum of two components: the goodness-of-fit term D(θ) and the model complexity term pD:
DIC = D(θ) + pD. The complexity is defined as the difference between the expected deviance and
the deviance at the sample posterior mean: pD = D(θ)−D(θ). We thus have

DIC = D(θ) + 2pD

Models with smaller values of DIC are preferred to models with larger values of DIC.

BFs were introduced by Jeffreys (1961). The BF of two models, M1 and M2, is given by

BF12 =
P (y|M1)

P (y|M2)
=

m1(y)

m2(y)
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where m1(·) and m2(·) are the corresponding marginal likelihoods associated with models M1 and
M2. (See Methods and formulas in [BAYES] bayesmh for details about computing marginal likelihood.)
BFs are defined only for proper marginal densities. Comparing models with improper priors is allowed
as long as the resulting marginal densities are proper. The methodological importance of BFs comes
from the fact that the so-called posterior odds is a product of prior odds and BF:

P (M1|y)
P (M2|y)

=
P (M1)

P (M2)
× BF12

Therefore, if we assume that M1 and M2 are equally probable a priori, the posterior odds will be
equal to the BF. We thus prefer model M1 if BF12 > 1 and model M2 otherwise. In practice, because
of the higher numerical stability, we often calculate BFs in the (natural) log metric and compare its
value against 0.

logBF12 = logm1(y)− logm2(y)
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Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[BAYES] bayesmh — Bayesian models using Metropolis–Hastings algorithm

[BAYES] bayesian estimation — Bayesian estimation commands

[BAYES] bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] bayestest model — Hypothesis testing using model posterior probabilities

[R] estimates — Save and manipulate estimation results
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