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Description

bayesstats grubin calculates Gelman–Rubin convergence diagnostics for model parameters
and functions of model parameters using current Bayesian estimation results containing at least two
Markov chains.

Quick start
Gelman–Rubin convergence diagnostics for all model parameters after a Bayesian regression model

using four chains
bayes, nchains(4): regress y x1

bayesstats grubin

Same as above, but only for model parameters {y:x1} and {sigma2}

bayesstats grubin {y:x1} {sigma2}

Gelman–Rubin convergence diagnostics for functions of scalar model parameters
bayesstats grubin ({y:x1}-{y: cons}) (sd:sqrt({sigma2}))

Menu
Statistics > Bayesian analysis > Gelman–Rubin convergence diagnostics
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Syntax
Convergence statistics for all model parameters

bayesstats grubin
[
, options showreffects

[
(reref)

] ]
bayesstats grubin all

[
, options showreffects

[
(reref)

] ]
Convergence statistics for selected model parameters

bayesstats grubin paramspec
[
, options

]
Convergence statistics for functions of model parameters

bayesstats grubin exprspec
[
, options

]
Full syntax

bayesstats grubin spec
[

spec . . .
] [

, options
]

paramspec can be one of the following:

{eqname:param} refers to a parameter param with equation name eqname;

{eqname:} refers to all model parameters with equation name eqname;

{eqname:paramlist} refers to parameters with names in paramlist and with equation name eqname;
or

{param} refers to all parameters named param from all equations.

In the above, param can refer to a matrix name, in which case it will imply all elements of this
matrix. See Different ways of specifying model parameters in [BAYES] Bayesian postestimation
for examples.

exprspec is an optionally labeled expression of model parameters specified in parentheses:

(
[

exprlabel:
]
expr)

exprlabel is a valid Stata name, and expr is a scalar expression that may not contain matrix model
parameters. See Specifying functions of model parameters in [BAYES] Bayesian postestimation
for examples.

spec is one of paramspec or exprspec.

options Description

sort list parameters in descending order of their convergence statistics
skip(#) skip every # observations from the MCMC sample; default is skip(0)

nolegend suppress table legend
display options control spacing, line width, and base and empty cells

collect is allowed; see [U] 11.1.10 Prefix commands.

https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimationRemarksandexamplesbayesian_post_reref
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimationRemarksandexamplesbayesian_post_reref
https://www.stata.com/manuals/bayes.pdf#bayesbayesstatsgrubinSyntaxparamspec
https://www.stata.com/manuals/bayes.pdf#bayesbayesstatsgrubinSyntaxexprspec
https://www.stata.com/manuals/bayes.pdf#bayesbayesstatsgrubinSyntaxspec
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimationRemarksandexamplesDifferentwaysofspecifyingmodelparameters
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimation
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimationRemarksandexamplesSpecifyingfunctionsofmodelparameters
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimation
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
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Options

sort specifies that model parameters be listed in descending order of their Gelman–Rubin convergence
statistics. This option is useful for models with many parameters, such as multilevel models, to
more easily identify the set of parameters with large values of convergence statistics.

showreffects and showreffects(reref) are for use after multilevel models, and they specify that
the results for all or a list reref of random-effects parameters be provided in addition to other model
parameters. By default, all random-effects parameters are excluded from the results to conserve
computation time. If random-effects parameters are of interest in your study, you should use option
showreffects to check their convergence diagnostics.

skip(#) specifies that every # observations from the MCMC sample not be used for computation.
The default is skip(0) or to use all observations in the MCMC sample. Option skip() can be
used to subsample or thin the chain. skip(#) is equivalent to a thinning interval of #+1. For
example, if you specify skip(1), corresponding to the thinning interval of 2, the command will
skip every other observation in the sample and will use only observations 1, 3, 5, and so on in the
computation. If you specify skip(2), corresponding to the thinning interval of 3, the command
will skip every 2 observations in the sample and will use only observations 1, 4, 7, and so on in
the computation. skip() does not thin the chain in the sense of physically removing observations
from the sample, as is done by, for example, bayesmh’s thinning() option. It only discards
selected observations from the computation and leaves the original sample unmodified.

nolegend suppresses the display of the table legend, which identifies the rows of the table with the
expressions they represent.

display options: vsquish, noemptycells, baselevels, allbaselevels, nofvlabel,
fvwrap(#), fvwrapon(style), and nolstretch; see [R] Estimation options.

Remarks and examples stata.com

Remarks are presented under the following headings:
Gelman–Rubin convergence diagnostic
Using bayesstats grubin

Gelman–Rubin convergence diagnostic

The Gelman–Rubin convergence diagnostic, Rc, assesses MCMC convergence by analyzing dif-
ferences between multiple Markov chains. The convergence is assessed by comparing the estimated
between-chains and within-chain variances for each model parameter. Large differences between these
variances indicate nonconvergence. See Gelman and Rubin (1992) and Brooks and Gelman (1998)
for details.

Large values of Rc indicate nonconvergence of MCMC. Literature suggests that the values of this
diagnostic should be less than 1.2 for all model parameters to declare MCMC convergence. In practice,
a more stringent convergence rule, Rc < 1.1, is often used.

Gelman–Rubin diagnostic relies on a Student’s t approximation of the marginal posterior distribution
of a model parameter. When this assumption is suspect, it is recommended to transform the parameter
such that its marginal posterior distribution is better approximated by a Student’s t distribution before
obtaining the diagnostic. For example, for the variance parameter, it is better to compute the diagnostic
for the log variance.

https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimationRemarksandexamplesbayesian_post_reref
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
http://stata.com
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Using bayesstats grubin

The bayesstats grubin command computes the Gelman–Rubin convergence diagnostic for each
model parameter using multiple MCMC samples or chains from a common posterior model. This
command requires at least two chains. Multiple chains can be obtained by using the nchains()
option with the bayesmh command ([BAYES] bayesmh) or with the bayes prefix ([BAYES] bayes).
When you simulate multiple chains to assess convergence, it is important to use overdispersed
initial values (Gelman and Rubin 1992, Brooks and Gelman 1998). See Specifying initial values in
[BAYES] bayesmh and Initial values in [BAYES] bayes for details.

When typed without arguments, the command displays results for all model parameters. Alterna-
tively, you can specify a subset of model parameters following the command name; see Different
ways of specifying model parameters in [BAYES] Bayesian postestimation. You can also obtain
results for scalar functions of model parameters; see Specifying functions of model parameters in
[BAYES] Bayesian postestimation. Also see example 2.

For multilevel models, similarly to other Bayesian postestimation commands, bayesstats grubin
does not report convergence statistics for the random-effects parameters by default. You can use the
showreffects option to see them for all random-effects parameters or the showreffects(reref) op-
tion for a subset reref of random-effects parameters of interest. See Multilevel models in [BAYES] bayes
for more information about MCMC convergence in multilevel models.

For models with many parameters such as multilevel models, you can use the sort option to list
model parameters in descending order of their convergence statistics Rc. The parameters with the
largest values of Rc will be listed first, making it easier to verify their convergence.

Example 1: Convergence diagnostics for all parameters

Recall our analysis of womenwage.dta using the bayes: regress command from example 1 in
[BAYES] bayes. We fit a linear regression model to the response variable wage with predictor age.
Here we use option nchains(3) to simulate three Markov chains to formally check convergence
of model parameters. To ensure reproducibility of multiple chains, we also specify the rseed(15)
option. Specifying set seed is not sufficient for reproducibility with multiple chains; see Reproducing
results in [BAYES] bayesmh for details.

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayes
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryoverdispersed_initial_value
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryoverdispersed_initial_value
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesSpecifyinginitialvalues
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesInitialvalues
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayes
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimationRemarksandexamplesDifferentwaysofspecifyingmodelparameters
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimationRemarksandexamplesDifferentwaysofspecifyingmodelparameters
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimation
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimationRemarksandexamplesSpecifyingfunctionsofmodelparameters
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimation
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesmultilevelconv
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayes
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesex1
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayes
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesReproducingresults
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesReproducingresults
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
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. use https://www.stata-press.com/data/r18/womenwage
(Wages of women)

. bayes, nchains(3) rseed(15): regress wage age
Chain 1

Burn-in ...
Simulation ...

Chain 2
Burn-in ...
Simulation ...

Chain 3
Burn-in ...
Simulation ...

Model summary

Likelihood:
wage ~ regress(xb_wage,{sigma2})

Priors:
{wage:age _cons} ~ normal(0,10000) (1)

{sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_wage.

Bayesian linear regression Number of chains = 3
Random-walk Metropolis--Hastings sampling Per MCMC chain:

Iterations = 12,500
Burn-in = 2,500
Sample size = 10,000

Number of obs = 488
Avg acceptance rate = .3673
Avg efficiency: min = .1409

avg = .1735
max = .2294

Avg log marginal-likelihood = -1810.1557 Max Gelman--Rubin Rc = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

wage
age .4003528 .0599411 .000922 .4002037 .2804134 .5188627

_cons 5.999502 1.769855 .026358 6.025288 2.571305 9.517341

sigma2 90.80977 5.822896 .070195 90.49567 79.92114 102.7621

Note: Default priors are used for model parameters.
Note: Default initial values are used for multiple chains.

Compared with example 1 in [BAYES] bayes, the precision of the posterior means almost doubled with
more chains, judging by the MCMC standard errors. For example, the MCSE estimate for {sigma2}
drops from 0.12 to 0.07.

In the presence of multiple chains, the bayes prefix automatically reports in the header the
maximum value of the Gelman–Rubin convergence statistics across all parameters. In practice, we
want to see this value be close to 1; if it is less than 1.1, the chains are considered to have converged.
This convergence rule is satisfied in our example.

https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesex1
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayes
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To compute the Gelman–Rubin statistics for all model parameters, we type bayesstats grubin
without arguments after the bayes prefix.

. bayesstats grubin

Gelman--Rubin convergence diagnostic

Number of chains = 3
MCMC size, per chain = 10,000
Max Gelman--Rubin Rc = 1.000323

Rc

wage
age 1.000062

_cons 1.000323

sigma2 1.000253

Convergence rule: Rc < 1.1

Just like the bayes prefix, the bayesstats grubin command reports in the header the maximum
value of Rc across all parameters. This is particularly useful as a quick convergence check for models
with many parameters: if the maximum Rc is less than 1.2 or 1.1, then this convergence rule is
satisfied by all parameters. In our example, the maximum Rc is 1.0003 and is less than 1.1, so the
convergence criterion is met for all parameters.

The table reports the Rc estimates for each model parameter. As we already determined based
on the maximum Rc, the convergence diagnostics for all model parameters are less than 1.1. This
suggests that all chains have converged.

Example 2: Convergence diagnostics for functions of parameters

Continuing with example 1, we can compute the Gelman–Rubin statistics for functions of parameters.
Let’s compute the convergence diagnostic for the log-transformed variance parameter {sigma2}.

. bayesstats grubin (lnsigma2: ln({sigma2}))

Gelman--Rubin convergence diagnostic

Number of chains = 3
MCMC size, per chain = 10,000
Max Gelman--Rubin Rc = 1.000268

lnsigma2 : ln({sigma2})

Rc

lnsigma2 1.000268

Convergence rule: Rc < 1.1

Again, the convergence diagnostic for the log-transformed variance is less than 1.1 indicating no
convergence problems with the transformed parameter. This also suggests that {sigma2} does not
have convergence problems.

In our examples, we used the default initial values provided by bayes: with multiple chains; see
Initial values in [BAYES] bayes. To fully explore MCMC convergence, particularly when a posterior
distribution is suspected to have multiple modes, you should use overdispersed initial values. See

https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesInitialvalues
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayes
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryoverdispersed_initial_value
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Multiple chains using overdispersed initial values in [BAYES] bayesmh for an example of how to
specify overdispersed initial values.

Of course, it is important to explore convergence visually as well; see Convergence diagnostics
using multiple chains in [BAYES] bayesmh.

Stored results
bayesstats grubin stores the following in r():
Scalars

r(mcmcsize) MCMC sample size of each chain
r(nchains) number of MCMC chains
r(Rc max) maximum convergence diagnostic

Matrices
r(Rc) convergence diagnostics Rc
r(t df) degrees of freedom of a t distribution
r(B) between-chains variances
r(W) within-chain variances
r(V) total variances

Methods and formulas
Suppose we have M chains of length T . For a model parameter θ, let {θjt}Tt=1 be the jth

simulated chain drawn from the marginal posterior distribution of θ, j = 1, . . . ,M . Let θ̂j and ŝ2j
be the respective sample posterior mean and variance of the mth chain, and let the overall sample
posterior mean be θ̂ = (1/M)

∑M
j=1 θ̂j . The between-chains and within-chain variances are given by

B =
T

M − 1

M∑
j=1

(θ̂j − θ̂)2

W =
1

M

M∑
j=1

ŝ2j

When the chains are strongly stationary, that is, all chains draw samples from the target posterior
distribution, the weighted average of W and B

σ̂2 =
T − 1

T
W +

1

T
B

is an unbiased estimator of the marginal posterior variance of θ.

Gelman and Rubin (1992) approximate the target distribution of θ by a Student’s t distribution

with mean θ̂ and scale
√
V̂ , where

V̂ =
T − 1

T
W +

M + 1

MT
B

They define the so-called “scale” reduction factor as the ratio of V̂ and σ2 = Var(θ). They further
estimate σ2 by W and use the ratio of V̂ and W as an estimator of the scale reduction factor,
known as the potential scale reduction factor. If the M chains have converged to the target posterior
distribution, then the potential scale reduction factor should be close to 1.

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesMultiplechainsusingoverdispersedinitialvalues
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesConvergencediagnosticsusingmultiplechains
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesConvergencediagnosticsusingmultiplechains
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
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Brooks and Gelman (1998) propose the corrected estimator of the potential scale reduction factor,
Rc, that accounts for sampling variability:

Rc =

√
d̂+ 3

d̂+ 1

V̂

W

where d̂ is the estimated degrees of freedom of the approximating Student’s t distribution for θ

d̂ =
2V̂ 2

V̂ar(V̂ )

and

V̂ar(V̂ ) =

(
T − 1

T

)2
1

M
V̂ar(ŝ2j ) +

(
M + 1

MT

)2
2

M − 1
B2

+ 2
(M + 1)(T − 1)

M2T

{
Ĉov(ŝ2j , θ̂

2
j )− 2θ̂ Ĉov(ŝ2j , θ̂j)

}
V̂ar(ŝ2j ) is the sample variance of ŝ2j ’s, j = 1, . . . ,M . Ĉov(ŝ2j , θ̂

2
j ) and Ĉov(ŝ2j , θ̂j) are the sample

covariances of ŝ2j ’s and θ̂2j ’s and ŝ2j ’s and θ̂j’s, respectively.

Brooks and Gelman (1998) suggested to use the criterion Rc < 1.2 for all model parameters
to declare MCMC convergence. In practice, a more stringent convergence criterion, Rc < 1.1, is
often used. If a convergence criterion is not met, longer chains or other means for improving the
convergence are needed.
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[BAYES] bayes — Bayesian regression models using the bayes prefix

[BAYES] bayesmh — Bayesian models using Metropolis–Hastings algorithm

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] bayesstats summary — Bayesian summary statistics
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