bayesstats ess — Effective sample sizes and related statistics

Description

bayesstats ess calculates effective sample sizes (ESS), correlation times, and efficiencies for model parameters and functions of model parameters using current Bayesian estimation results.

Quick start

Effective sample sizes for all model parameters after a Bayesian regression model
bayesstats ess

As above, but only for model parameters \{y:x1\} and \{var\}
bayesstats ess \{y:x1\} \{var\}

As above, but skip every 5 observations from the full MCMC sample
bayesstats ess \{y:x1\} \{var\}, skip(5)

Effective sample sizes for functions of scalar model parameters
bayesstats ess (\{y:x1\}-\{y:_cons\}) (sd:sqrt(\{var\}))

As above, and include \{y:x1\} and \{var\}
bayesstats ess \{y:x1\} \{var\} (\{y:x1\}-\{y:_cons\}) (sd:sqrt(\{var\}))

Menu

Statistics > Bayesian analysis > Effective sample sizes
Syntax

Syntax is presented under the following headings:

- Statistics for model parameters
- Statistics for predictions

Statistics for model parameters

Statistics for all model parameters

```
bayesstats ess [ , options showeffects[(reref)] ]
```

```
bayesstats ess _all [ , options showeffects[(reref)] ]
```

Statistics for selected model parameters

```
bayesstats ess paramspec [ , options ]
```

Statistics for expressions of model parameters

```
bayesstats ess exprs spec [ , options ]
```

Full syntax

```
bayesstats ess spec [ spec ... ] [ , options ]
```

paramspec can be one of the following:

- `{eqname:param}` refers to a parameter param with equation name eqname;
- `{eqname:}` refers to all model parameters with equation name eqname;
- `{eqname:paramlist}` refers to parameters with names in paramlist and with equation name eqname; or
- `{param}` refers to all parameters named param from all equations.

In the above, param can refer to a matrix name, in which case it will imply all elements of this matrix. See Different ways of specifying model parameters in [BAYES] Bayesian postestimation for examples.

exprspec is an optionally labeled expression of model parameters specified in parentheses:

```
(exprlabel: expr)
```

exprlabel is a valid Stata name, and expr is a scalar expression that may not contain matrix model parameters. See Specifying functions of model parameters in [BAYES] Bayesian postestimation for examples.

spec is one of paramspec or exprs spec.
Statistics for predictions

Statistics for simulated outcomes, residuals, and more

```
bayesstats ess yspec [yspec ...] using predfile [, options]
```

Statistics for expressions of simulated outcomes, residuals, and more

```
bayesstats ess (yexprspec) [(yexprspec) ...] using predfile [, options]
```

Statistics for Mata functions of simulated outcomes, residuals, and more

```
bayesstats ess (funcspec) [(funcspec) ...] using predfile [, options]
```

Full syntax

```
bayesstats ess predspec [predspec ...] using predfile [, options]
```

`predfile` is the name of the dataset created by `bayespredict` that contains prediction results.

`yspec` is `{ysimspec | residspec | muspec | label}`.

`ysimspec` is `_ysim#` or `_ysim#[_numlist]`, where `_ysim#` refers to all observations of the #th simulated outcome and `_ysim#[_numlist]` refers to the selected observations, `numlist`, of the #th simulated outcome. `_ysim` is a synonym for `_ysim1`.

`residspec` is `_resid#` or `_resid#[_numlist]`, where `_resid#` refers to all residuals of the #th simulated outcome and `_resid#[_numlist]` refers to the selected residuals, `numlist`, of the #th simulated outcome. `_resid` is a synonym for `_resid1`.

`muspec` is `_mu#` or `_mu#[_numlist]`, where `_mu#` refers to all expected values of the #th outcome and `_mu#[_numlist]` refers to the selected expected values, `numlist`, of the #th outcome. `_mu` is a synonym for `_mu1`.

`label` is the name of the function simulated using `bayespredict`.

With large datasets, specifications `{ysim#}, {resid#}, and {mu#} may use a lot of time and memory and should be avoided. See Generating and saving simulated outcomes in [BAYES] bayespredict.

`yexprspec` is `[explabel:] yexpr`, where `explabel` is a valid Stata name and `yexpr` is a scalar expression that may contain individual observations of simulated outcomes, `_ysim#[#]`; individual expected outcome values, `_mu#[#]`; individual simulated residuals, `_resid#[#]`; and other scalar predictions, `{label}`.

`funcspec` is `[label:] `func(arg1[, arg2])`, where `label` is a valid Stata name; `func` is an official or user-defined Mata function that operates on column vectors and returns a real scalar; and `arg1` and `arg2` are one of `{ysim[#]}, {resid[#]}, or `{mu[#]}. `arg2` is primarily for use with user-defined Mata functions; see Defining test statistics using Mata functions in [BAYES] bayespredict.

`predspec` is one of `yspec`, `(yexprspec)`, or `(funcspec). See Different ways of specifying predictions and their functions in [BAYES] Bayesian postestimation.`
options

Main

*chains(_all	numlist)	specify which chains to use for computation; default is *chains(_all)
*sepchains	compute results separately for each chain	
*skip(#)	skip every # observations from the MCMC sample; default is *skip(0)	
nolegend	suppress table legend	

display_options

control spacing, line width, and base and empty cells

Advanced

| *corrlag(#) | specify maximum autocorrelation lag; default varies |
| *corrtol(#) | specify autocorrelation tolerance; default is *corrtol(0.01) |

*Options *chains() and *sepchains are relevant only when option *nchains() is used with *bayesmh or the *bayes prefix.

Options

- **chains(_all | numlist)** specifies which chains from the MCMC sample to use for computation. The default is *chains(_all) or to use all simulated chains. Using multiple chains, provided the chains have converged, generally improves MCMC summary statistics. Option *chains() is relevant only when option *nchains() is specified with *bayesmh or the *bayes prefix.

- **sepchains** specifies that the results be computed separately for each chain. The default is to compute results using all chains as determined by option *chains(). Option *sepchains is relevant only when option *nchains() is specified with *bayesmh or the *bayes prefix.

- **showreffects** and **showreffects(reref)** are for use after multilevel models, and they specify that the results for all or a list *reref of random-effects parameters be provided in addition to other model parameters. By default, all random-effects parameters are excluded from the results to conserve computation time.

- **skip(#)** specifies that every # observations from the MCMC sample not be used for computation. The default is *skip(0) or to use all observations in the MCMC sample. Option *skip() can be used to subsample or thin the chain. *skip(#) is equivalent to a thinning interval of #+1. For example, if you specify *skip(1), corresponding to the thinning interval of 2, the command will skip every other observation in the sample and will use only observations 1, 3, 5, and so on in the computation. If you specify *skip(2), corresponding to the thinning interval of 3, the command will skip every 2 observations in the sample and will use only observations 1, 4, 7, and so on in the computation. *skip() does not thin the chain in the sense of physically removing observations from the sample, as is done by, for example, *bayesmh’s *thinning() option. It only discards selected observations from the computation and leaves the original sample unmodified.

- **nolegend** suppresses the display of the table legend, which identifies the rows of the table with the expressions they represent.

- **display_options**: *vsquish, *noemptycells, *baselevels, *allbaselevels, *nofvlabel, *fvwrap(#), *fvwrapon(style), and *nolstretch; see [R] Estimation options.

- **corrlag(#)** specifies the maximum autocorrelation lag used for calculating effective sample sizes. The default is min{500, mcmcsize()/2}. The total autocorrelation is computed as the sum of
all lag-\(k\) autocorrelation values for \(k\) from 0 to either \texttt{corrlag()} or the index at which the autocorrelation becomes less than \texttt{corrtol()} if the latter is less than \texttt{corrlag()}. \texttt{corrtol(#)} specifies the autocorrelation tolerance used for calculating effective sample sizes. The default is \texttt{corrtol(0.01)}. For a given model parameter, if the absolute value of the lag-\(k\) autocorrelation is less than \texttt{corrtol()}, then all autocorrelation lags beyond the \(k\)th lag are discarded.

Remarks and examples

Remarks are presented under the following headings:

Effective sample size and MCMC sampling efficiency

Using bayesstats ess

Effective sample size and MCMC sampling efficiency

It is well known that for a random sample of \(T\) independent subjects, the standard error of the sample mean estimator is proportional to \(1/\sqrt{T}\). In Bayesian inference, it is of interest to estimate the standard error of the posterior mean estimator. The posterior mean of a parameter of interest is typically estimated as a sample mean from an MCMC sample obtained from the marginal posterior distribution of the parameter of interest. Observations from an MCMC sample are not independent and are usually positively correlated, which must be taken into account when computing the standard error. Thus the standard error of the posterior mean estimator is proportional to \(1/\sqrt{\text{ESS}}\), where \(\text{ESS}\) is the effective sample size for the parameter of interest. Typically, \(\text{ESS}\) is less than \(T\), the total number of observations in the MCMC sample. We can thus interpret the posterior mean estimate as a sample mean estimate from an independent sample of size \(\text{ESS}\). In other words, the effective sample size is an estimate of the number of independent observations that the MCMC chain represents. We say that MCMC samples with higher \(\text{ESS}\) are more efficient.

Effective sample size is directly related to the convergence properties of an MCMC sample—very low \(\text{ESS}\) relative to \(T\) suggests nonconvergence. In the extreme case of a perfectly correlated MCMC observation, \(\text{ESS}\) is 1. It is thus a standard practice to assess the quality of an MCMC sample by inspecting \(\text{ESS}\) values for all involved model parameters. Note, however, that high \(\text{ESS}\) values are not generally sufficient for declaring convergence of MCMC because pseudoconvergence, which may occur when MCMC does not explore the entire distribution, may also lead to high \(\text{ESS}\) values.

Using bayesstats ess

\texttt{bayesstats ess} reports effective sample sizes, correlation times, and efficiencies for model parameters and their functions using the current Bayesian estimation results. When typed without arguments, the command displays results for all model parameters. Alternatively, you can specify a subset of model parameters following the command name; see \texttt{Different ways of specifying model parameters} in \texttt{[BAYES] Bayesian postestimation}. You can also obtain results for scalar functions of model parameters; see \texttt{Specifying functions of model parameters} in \texttt{[BAYES] Bayesian postestimation}. You can obtain the summaries for prediction quantities when you specify the prediction dataset in the \texttt{using} specification; see \texttt{Different ways of specifying predictions and their functions} in \texttt{[BAYES] Bayesian postestimation} for how to specify prediction quantities within \texttt{bayesstats ess}.

Consider our analysis of `auto.dta` from example 4 in [BAYES] `bayesmh` using the mean-only normal model for `mpg` with a noninformative prior.

```
. use https://www.stata-press.com/data/r16/auto
(1978 Automobile Data)
. set seed 14
. bayesmh mpg, likelihood(normal({var}))
  > prior({mpg:_cons}, flat) prior({var}, jeffreys)
Burn-in ... Simulation ...
Model summary
```

Likelihood:
 `mpg ~ normal({mpg:_cons},{var})`

Priors:
 `{mpg:_cons} ~ 1 (flat)`
 `{var} ~ jeffreys`

<table>
<thead>
<tr>
<th>Bayesian normal regression</th>
<th>MCMC iterations = 12,500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random-walk Metropolis-Hastings sampling</td>
<td>Burn-in = 2,500</td>
</tr>
<tr>
<td></td>
<td>MCMC sample size = 10,000</td>
</tr>
<tr>
<td></td>
<td>Number of obs = 74</td>
</tr>
<tr>
<td></td>
<td>Acceptance rate = .2668</td>
</tr>
<tr>
<td></td>
<td>Efficiency: min = .09718</td>
</tr>
<tr>
<td></td>
<td>avg = .1021</td>
</tr>
<tr>
<td></td>
<td>max = .1071</td>
</tr>
</tbody>
</table>

Log marginal-likelihood = -234.645

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>MCSE</th>
<th>Median</th>
<th>95% Cred. Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mpg</code></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>var</code></td>
<td>34.76572</td>
<td>5.91534</td>
<td>.180754</td>
<td>34.18391</td>
<td>24.9129 to 47.61286</td>
</tr>
</tbody>
</table>
Example 1: Effective sample sizes for all parameters

To compute effective sample sizes and other related statistics for all model parameters, we type `bayesstats ess` without arguments after the `bayesmh` command.

```
  . bayesstats ess
  Efficiency summaries  MCMC sample size = 10,000
  Efficiency:  min = .09718
              avg = .1021
              max = .1071

  ESS  Corr. time  Efficiency
    mpg    _cons  971.82  10.29   0.0972
         var    1070.99  9.34   0.1071
```

The closer the ESS estimates are to the MCMC sample size, the better. Also, the lower the correlation times are and the higher the efficiencies are, the better. ESS estimates can be interpreted as follows. In a sample of 10,000 MCMC observations, we have only about 972 independent observations to obtain estimates for `{mpg:_cons}` and only about 1,071 independent observations to obtain estimates for `{var}`. Correlation times are the reciprocal of efficiencies. You can interpret them as an estimated lag after which autocorrelation in an MCMC sample is small. In our example, the estimated lag is roughly 10 for both parameters. In general, efficiencies above 10% are considered good for the MH algorithm. In our example, they are about 10% for both parameters.

Alternatively, we could have listed all parameters manually:

```
  . bayesstats ess {mpg:_cons} {var}
  (output omitted)
```

Example 2: Effective sample sizes for functions of model parameters

Similarly to other Bayesian postestimation commands, `bayesstats ess` accepts expressions to compute results for functions of model parameters. For example, we can use expression `(sd:sqrt({var}))` with a label, `sd`, to compute effective sample sizes for the standard deviation of `mpg` in addition to the variance.

```
  . bayesstats ess (sd:sqrt({var})) {var}
  Efficiency summaries  MCMC sample size = 10,000
  Efficiency:  min = .1071
              avg = .1082
              max = .1094

  sd : sqrt({var})
      ESS  Corr. time  Efficiency
      sd    1093.85  9.14   0.1094
      var    1070.99  9.34   0.1071
```

ESS and efficiency are higher for the standard deviation than for the variance, which means that we need slightly more iterations to estimate `{var}` with the same precision as `sd`.
If we wanted, we could have suppressed the sd legend in the output above by specifying the nolegend option.

Stored results

bayesstats ess stores the following in r():

Scalars
- r(mcmcsize) MCMC sample size used in the computation
- r(skip) number of MCMC observations to skip in the computation; every r(skip) observations are skipped
- r(corrlag) maximum autocorrelation lag
- r(corrtol) autocorrelation tolerance
- r(nchains) number of chains used in the computation

Macros
- r(names) names of model parameters and expressions
- r(expr#) #th expression
- r(exprnames) expression labels
- r(chains) chains used in the computation, if chains() is specified

Matrices
- r(ess) matrix with effective sample sizes, correlation times, and efficiencies for parameters in r(names)
- r(ess_chain#) matrix ess for chain #, if sepchains is specified

Methods and formulas

Let θ be a scalar model parameter and $\{\theta_t\}_{t=1}^T$ be an MCMC sample of size T drawn from the marginal posterior distribution of θ. The effective sample size of the MCMC sample of θ is given by

$$\text{ESS} = \frac{T}{1 + 2 \sum_{k=1}^{\text{max}_\text{lags}} \rho_k}$$

where ρ_k is the lag-k autocorrelation of the MCMC sample, and max_lags is the maximum number less than or equal to ρ_{lag} such that for all $k = 1, \ldots, \text{max}_\text{lags}$, $|\rho_k| > \rho_{\text{tol}}$, where ρ_{lag} and ρ_{tol} are specified in options corrlag() and corrtol() with the respective default values of 500 and 0.01.

The lag-k autocorrelation is $\rho_k = \gamma_k / \gamma_0$, where

$$\gamma_k = \frac{1}{T} \sum_{t=1}^{T-k} (\theta_t - \hat{\theta})(\theta_{t+k} - \hat{\theta})$$

is the empirical autocovariance of lag k, and γ_0 simplifies to the sample variance. $\hat{\theta}$ is the posterior mean estimator.

Correlation time is defined as T/ESS, and efficiency is defined as the reciprocal of the correlation time, ESS/T. Because ESS is between 0 and T, inclusively, the efficiency is always between 0 and 1.

In the presence of multiple chains, the overall ESS is computed as the sum of the individual ESS statistics calculated using each chain independently. Correlation times and efficiencies are then computed using the overall ESS and the total MCMC sample size, $M \times T$, where M is the number of chains.
Also see

[BAYES] bayes — Bayesian regression models using the bayes prefix
[BAYES] bayesmh — Bayesian models using Metropolis–Hastings algorithm
[BAYES] Bayesian estimation — Bayesian estimation commands
[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix
[BAYES] bayesstats summary — Bayesian summary statistics