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Description
bayesselect implements Bayesian variable selection for linear regression. Bayesian variable se-

lection uses special priors, global–local shrinkage or spike-and-slab priors, for regression coefficients

to “select” variables. Unlike traditional variable-selection approaches, where each potential predictor is

either included or not, bayesselect considers all predictors, but their impact in the full regression is con-
trolled by the magnitudes of their random coefficients. bayesselect produces posterior summaries of

regression coefficients and other model parameters using efficient Gibbs sampling. All Bayesian postes-

timation features (see [BAYES] Bayesian postestimation), including Bayesian predictions, are available

after bayesselect.

Quick start
Bayesian variable selection for a linear regression with outcome y and potential predictors x1 through

x10 using the default horseshoe prior for regression coefficients

bayesselect y x1-x10

Same as above, but use the Bayesian lasso prior for regression coefficients and display coefficients with

inclusion values of 0.5 or above instead of the default of 0.1

bayesselect y x1-x10, blasso cutoff(0.5)

Variable selection using the Laplace spike-and-slab prior with scales of 0.1 and 10

bayesselect y x1-x10, sslaplace(0.1 10)

Variable selection using the normal spike-and-slab prior with default standard deviations of 0.01 and 1

and using the conjugate form of the prior

bayesselect y x1-x10, ssnormal conjugate

Show all 10 regression coefficients on replay

bayesselect, allcoef

Save current simulation results in external dataset sim1.dta
bayesselect, saving(sim1)

Menu
Statistics > Linear models and related > Bayesian regression > Variable selection for linear regression
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Syntax
bayesselect depvar indepvars [ if ] [ in ] [weight ] [ , options ]

options Description

Model

noconstant suppress constant term

Global–local shrinkage priors:

hshoe horseshoe prior with scale 1; the default

hshoe(#) horseshoe prior with scale #

blasso Bayesian lasso prior with scale 1

blasso(#) Bayesian lasso prior with scale #

Spike-and-slab priors:

ssnormal mixture of normal priors with standard deviations 0.01 and 1

ssnormal(#1 [ #2 ]) mixture of normal priors with standard deviations #1 and #2

sslaplace mixture of Laplace priors with scales 0.01 and 1

sslaplace(#1 [ #2 ]) mixture of Laplace priors with scales #1 and #2

betaprior(#1 [ #2 ]) beta prior with shapes #1 and #2 for hyperparameter 𝜃 of
spike-and-slab priors; default is betaprior(1 1);
requires ssnormal() or sslaplace()

conjugate use conjugate form of priors for regression coefficients

normalprior(#) specify standard deviation of default normal prior for constant
term; default is normalprior(100)

prior(priorspec) prior for some model parameters; this option may be repeated;
not allowed for regression coefficients and latent parameters

dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain

mcmcsize(#) MCMC sample size; default is mcmcsize(10000)
burnin(#) burn-in period; default is burnin(2500)
thinning(#) thinning interval; default is thinning(1)
rseed(#) random-number seed

Blocking

block(paramref [ , blockopts ]) specify a block of model parameters; this option may be repeated

blocksummary display block summary

Initialization

initial(initspec) specify initial values for model parameters with a single chain

init#(initspec) specify initial values for #th chain; requires nchains()
initall(initspec) specify initial values for all chains; requires nchains()
nomleinitial suppress the use of maximum likelihood estimates as starting values

initrandom specify random initial values

initsummary display initial values used for simulation

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/bayesbayesselect.pdf#bayesbayesselectSyntaxweight
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhSyntaxpriorspec
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhSyntaxparamref
https://www.stata.com/manuals/bayesbayesselect.pdf#bayesbayesselectOptionsblock_options
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhOptionsinitspec
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhOptionsinitspec
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhOptionsinitspec
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Reporting

clevel(#) set credible interval level; default is clevel(95)
hpd display HPD credible intervals instead of the default equal-tailed

credible intervals

cutoff(#) specify cutoff inclusion value; default is cutoff(.1)
allcoef display all coefficients; synonym for cutoff(0)
batch(#) specify length of block for batch-means calculations;

default is batch(0)
saving(filename[ , replace ]) save simulation results to filename.dta
nomodelsummary suppress model summary

chainsdetail display detailed simulation summary for each chain

[ no ]dots suppress dots or display dots every 100 iterations and iteration
numbers every 1,000 iterations; default is nodots

dots(#[ , every(#) ]) display dots as simulation is performed

notable suppress estimation table

noheader suppress output header

title(string) display string as title above the table of parameter estimates

display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values

corrlag(#) specify maximum autocorrelation lag; default varies

corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

indepvars and paramref may contain factor variables; see [U] 11.4.3 Factor variables.

indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

Only fweights are allowed; see [U] 11.1.6 weight.

Options noconstant and normalprior() may not be combined.

Options hshoe(), blasso(), ssnormal(), and sslaplace() may not be combined.

Options prior() and block() may be repeated.

priorspec and paramref are defined in [BAYES] bayesmh.

collect is allowed; see [U] 11.1.10 Prefix commands.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars} and error variance {sigma2}. For global–local
shrinkage models, additional parameters are global shrinkage {tau} and latent predictor-specific local shrinkages
{lambdas:indepvars}. For spike-and-slab models, additional parameters are latent predictor-specific Bernoulli inclu-
sion indicators {gammas:indepvars} with success probability hyperparameter {theta}.

Options

� � �
Model �

noconstant suppresses the constant term. This option may not be combined with option

normalprior().

hshoe and hshoe(#) specify a horseshoe prior with respective scales of 1 and # for regression coef-

ficients (excluding the intercept). hshoe is the default. The horseshoe prior belongs to the class

of global–local shrinkage priors. Only one of options hshoe(), blasso(), ssnormal(), and
sslaplace() may be specified. See Global–local shrinkage priors in Methods and formulas.

https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/bayesbayesselect.pdf#bayesbayesselectOptionsdisplay_options
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesOptionssearch_options
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhSyntaxpriorspec
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhSyntaxparamref
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/bayesbayesselect.pdf#bayesbayesselectMethodsandformulasgloballocalshrinkagepriors
https://www.stata.com/manuals/bayesbayesselect.pdf#bayesbayesselectMethodsandformulasgloballocalshrinkagepriors
https://www.stata.com/manuals/bayesbayesselect.pdf#bayesbayesselectMethodsandformulasspikeandslabpriors
https://www.stata.com/manuals/bayesbayesselect.pdf#bayesbayesselectMethodsandformulasgloballocalshrinkagepriors
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blasso and blasso(#) specify a Bayesian lasso prior with respective scales of 1 and # for regression

coefficients (excluding the intercept). The Bayesian lasso prior belongs to the class of global–local

shrinkage priors. Only one of options hshoe(), blasso(), ssnormal(), and sslaplace() may be

specified. See Global–local shrinkage priors in Methods and formulas.

ssnormal and ssnormal(#1 [ #2 ]) specify a spike-and-slab mixture of two normal priors with respec-

tive standard deviations of 0.01 and 1 and of #1 and #2 for regression coefficients (excluding the

intercept). Only one of options hshoe(), blasso(), ssnormal(), and sslaplace() may be spec-

ified. See Spike-and-slab priors in Methods and formulas.

sslaplace and sslaplace(#1 [ #2 ]) specify a spike-and-slab mixture of two Laplace priors with re-

spective scales of 0.01 and 1 and of #1 and #2 for regression coefficients (excluding the intercept).

Only one of options hshoe(), blasso(), ssnormal(), and sslaplace() may be specified. See

Spike-and-slab priors in Methods and formulas.

betaprior(#1 [ #2 ]) specifies a beta prior with shapes #1 and #2 for the hyperparameter 𝜃 of spike-

and-slab priors. The default is betaprior(1 1), which is equivalent to a uniform prior on [0, 1]. This
option requires one of option ssnormal() or sslaplace(). Option betaprior() can be used to

control the sparsity of the regression model.

If you want to explore the effects of different ssnormal(), sslaplace(), and betaprior() priors on

your results, it may be more convenient to specify only the first parameter value (and leave the second

parameter value at the default 1), because the shapes of these priors are mainly controlled by the relative

proportion between their two parameter values.

conjugate specifies a conjugate form of priors for regression coefficients. For global–local shrinkage

and normal spike-and-slab priors, it includes the error variance parameter as a factor in the prior

variances. For Laplace spike-and-slab priors, it includes the error standard deviation as a factor in the

prior scale parameters. By default, bayesselect uses nonconjugate priors.

normalprior(#) specifies the standard deviation of the default normal prior for the constant term, the

regression intercept. The default is normalprior(100). This option may not be combined with

option noconstant.

prior(priorspec) specifies a prior distribution for model parameters. For the syntax of priorspec, see

priorspec in [BAYES] bayesmh. This option may be repeated. A prior may be specified for any of

the model parameters, except the regression coefficients and latent parameters 𝜆’s and 𝛾’s, which use
specialized priors. Model parameters that are not included in prior specifications are assigned default

priors; see Methods and formulas. Model parameters with user-specified priors are not subjected to

default blocking, which may cause suboptimal sampling efficiency. The block structure of model

parameters can be inspected by using option blocksummary.

dryrun specifies to show the summary of the model that would be fit without actually fitting the model.

This option is recommended for checking specifications of the model before fitting the model. The

model summary reports the information about the likelihood model and about priors for all model

parameters.

� � �
Simulation �

nchains(), mcmcsize(), burnin(), thinning(), and rseed(); see Options in [BAYES] bayesmh.

� � �
Blocking �

block(paramref [ , blockopts ]) and blocksummary; see Options in [BAYES] bayesmh. blockopts in-

clude gibbs, split, scale(), covariance(), and adaptation().

https://www.stata.com/manuals/bayesbayesselect.pdf#bayesbayesselectMethodsandformulasgloballocalshrinkagepriors
https://www.stata.com/manuals/bayesbayesselect.pdf#bayesbayesselectMethodsandformulasspikeandslabpriors
https://www.stata.com/manuals/bayesbayesselect.pdf#bayesbayesselectMethodsandformulasspikeandslabpriors
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhSyntaxpriorspec
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayesselect.pdf#bayesbayesselectMethodsandformulas
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhOptions
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhSyntaxparamref
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhOptions
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhOptionsblockopts
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� � �
Initialization �

initial(), init#(), initall(), nomleinitial, initrandom, and initsummary; see Options in
[BAYES] bayesmh.

� � �
Reporting �

clevel() and hpd; see Options in [BAYES] bayesmh.

cutoff(#) specifies a cutoff inclusion value for regression coefficients. The default is cutoff(.1).
Coefficients with inclusion values less than # are not shown in the coefficient table. The default is

an arbitrary choice that allows you to see more predictors. In practice, a cutoff of 0.5 is often used

to determine important predictors. The rationale behind the 0.5 cutoff is that it corresponds to the

mean of the default prior distributions used for parameters that control the shrinkage. In general, a

different cutoff may be considered whenever these default priors change; see Remarks and examples

for details.

allcoef specifies that all regression coefficients be displayed in the coefficient table. This option is a

synonym for cutoff(0).

batch(), saving(), nomodelsummary, chainsdetail, nodots, dots, dots(), notable, noheader,
and title(); see Options in [BAYES] bayesmh.

display options: vsquish, noemptycells, baselevels, allbaselevels, nofvlabel,
fvwrap(#), fvwrapon(style), and nolstretch; see [R] Estimation options.

� � �
Advanced �

search(), corrlag(), and corrtol(); see Options in [BAYES] bayesmh.

Remarks and examples
Remarks are presented under the following headings:

Introductory examples
Diabetes progression study

Regression analysis, which models an outcome as a function of potential predictors, is one of the most

popular methods in statistics. Variable selection can be viewed as a so-called sparse regression, in which

only a small subset of predictors is relevant to the outcome. Identifying a subset of relevant predictors is

important for multiple reasons. The first one is methodological. Variable selection provides a researcher

with meaningful predictors, which improves interpretability of a model and helps pose more relevant

causal hypotheses for a future study. Another benefit is inferential. Variable selection provides a more

stable analysis that, as a result, improves the prediction power of the model. Finally, variable selection

may also increase computational efficiency.

Consider a linear regression with outcome 𝑦 and potential predictors 𝑥1, 𝑥2, . . . , 𝑥𝑝,

𝑦 = 𝛽1𝑥1 + 𝛽2𝑥2 + · · · + 𝛽𝑝𝑥𝑝 + 𝛼 + 𝜖

with a normal error term 𝜖 ∼ 𝑁(0, 𝜎2) and error variance 𝜎2.

In a sparse linear regression, the majority of regression coefficients 𝛽𝑖’s from the data-generating

process are zeros. Identifying the nonzero coefficients is the primary problem of variable selection.

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhOptions
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhOptions
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayesselect.pdf#bayesbayesselectRemarksandexamples
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhOptions
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhOptions
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
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Let {𝑦𝑖, 𝑥1𝑖, 𝑥2𝑖, . . . , 𝑥𝑝𝑖}, 𝑖 = 1, 2, . . . , 𝑛, be a data sample. A standard approach to variable selec-

tion is a penalized least-squares method. It involves minimizing a quantity of the form

𝑙(𝛽1, . . . , 𝛽𝑝) =
𝑛

∑
𝑖=1

(𝑦𝑖 −
𝑝

∑
𝑗=1

𝛽𝑗𝑥𝑗𝑖)
2

+ 𝜆
𝑝

∑
𝑗=1

𝜙(𝛽𝑗)

where 𝜙(⋅) is a regularization function that penalizes deviation of regression coefficients from zero and

𝜆 is a penalty parameter. In lasso, Tibshirani (1996) uses 𝜙(𝛽𝑗) = |𝛽𝑗| (𝑙1-penalization), and the irrele-
vant predictors are identified by coefficient estimates 𝛽𝑗’s that are strictly zero. Common difficulties in

applying penalized least squares in practice are the choice of 𝜆 and obtaining valid standard errors for

coefficient estimates.

In what follows, we assume basic knowledge of Bayesian analysis; see [BAYES] Intro.

A Bayesian variable-selection model is one that treats all regression coefficients as random variables

with prior distributions designed to distinguish the importance of the corresponding predictor variables

with respect to the observed data. For example, some suitable priors include penalty parameters that di-

rectly control the a priori assumed sparsity of the model. What makes the Bayesian approach to variable

selection attractive is that it treats all regression and other model parameters, including penalty param-

eters, on an equal footing, as random quantities in one overall model, and controls them systematically

through their prior distributions.

The Bayesian approach to variable selection is general and includes existing penalization-based meth-

ods as special cases. For example, a Bayesian formulation of the penalized least squares corresponds

to finding the posterior mode for a model with independent regression coefficient priors of the form

𝜋(𝛽𝑖|𝜆) ∝ exp{−𝜆𝜙(𝛽𝑖)}. But the mode is only one aspect of the posterior distribution, and the poten-
tial for full exploration of the available posterior distribution of parameters is one of the main strengths

of Bayesian analysis.

Let’s consider some of the priors for regression coefficients used in Bayesian variable selection.

Regression coefficients are assumed to be continuous random parameters and are usually assigned

continuous prior distributions. Thus, the prior probability for 𝛽𝑗 to be zero is assumed to be zero,

Pr(𝛽𝑗 = 0) = 0. There are prior models that assign positive prior probabilities at zero, but because

of estimation difficulties, these are rarely considered in practice. Continuous prior distributions for co-

efficients imply continuous posterior distributions. We thus have that the posterior probability for 𝛽𝑗
to be zero is zero, 𝑃(𝛽𝑗 = 0|𝑦) = 0. In contrast to solutions of some penalized least-squares ap-

proaches, where a coefficient is either zero or not, that is, the corresponding predictor is either included

or not included, the inferential results of Bayesian variable selection provide degrees of inclusion for all

predictors. This is similar to Bayesian model averaging (BMA; see [BMA] Intro), where the posterior

probabilities of inclusion are reported and used to judge the importance of predictors.

There are two main classes of prior models for regression coefficients in Bayesian variable selection.

One includes the global–local shrinkage priors (Carvalho, Polson, and Scott 2009; Griffin and Brown

2010; and Polson and Scott 2011). The other one includes the spike-and-slab priors, also known as

two-group models (Johnstone and Silverman 2004; Efron 2008; and Castillo and van der Vaart 2012).

All the prior models under consideration introduce a set of latent (unobserved) parameters (𝜆’s in
global–local shrinkage priors and 𝛾𝑗’s in spike-and-slab priors), one for each coefficient 𝛽𝑗. Each latent

parameter takes values between zero and one and describes the degree of inclusion of the predictor 𝑥𝑗.

These latent parameters help interpret Bayesian variable-selection results. For example, with spike-and-

slab priors, the prior for each regression coefficient is a mixture of two distributions,

𝛽𝑗|𝛾𝑗 ∼ (1 − 𝛾𝑗)𝜙0(𝛽𝑗) + 𝛾𝑗𝜙1(𝛽𝑗)

https://www.stata.com/manuals/bayesintro.pdf#bayesIntro
https://www.stata.com/manuals/bmaintro.pdf#bmaIntro
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where 𝜙0(⋅) and 𝜙1(⋅) are two continuous distributions. Here 𝛾𝑗’s are random binary indicators and the

degree of inclusion of 𝑥𝑗 is measured by the marginal posterior probability 𝑃(𝛾𝑗 = 1|𝑦). We refer to

𝛾𝑗’s as inclusion probabilities. See Spike-and-slab priors in Methods and formulas.

With the global–local shrinkage priors, normal priors are assumed for regression coefficients, and

𝜆𝑗’s are used to define the prior variances of coefficients,

𝛽𝑗|𝜆𝑗, 𝜏2 ∼ 𝑁 (0,
𝜆𝑗𝜏2

1 − 𝜆𝑗
)

where (random) hyperparameter 𝜏 controls global shrinkage and random 𝜆𝑗’s control local shrinkage.

𝜆𝑗’s cannot be interpreted as probabilities similarly to 𝛾𝑗’s in spike-and-slab priors, but each 𝜆𝑗 still

controls the degree of inclusion of 𝑥𝑗 in the following sense. For values of 𝜆𝑗 close to zero, the prior

variance of 𝛽𝑗 is shrunk to zero, and 𝑥𝑗 is “excluded” or, more precisely, provides less contribution to

the regression. For values of 𝜆𝑗 close to one, the prior variance of 𝛽𝑗 gets closer to infinity so that the

coefficient is unconstrained and 𝑥𝑗 is “included” or rather provides more contribution to the regression

model. 𝜆𝑗’s are used to define what we call inclusion coefficients; see Global–local shrinkage priors in

Methods and formulas.

Interpretation of coefficient estimates is an important aspect of variable selection. Ideally, we want

inferential methods that recover the data-generating model consistently. In classical approaches, such

as penalized least squares, the estimates are predicated on the selected predictors to be included in the

model. Such approaches do not account for the selection uncertainty. In model averaging approaches,

such as BMA, the estimates are aggregated over many models, which can make interpretation difficult. In

Bayesian variable selection, the two steps, variable selection and coefficient estimation, go hand in hand

and are performed simultaneously, which inherently accounts for selection uncertainty during estimation.

If, for example, the posterior mean estimate ̂𝛾𝑗 of the inclusion indicator 𝛾𝑗 is close to zero, we can expect

the corresponding coefficient estimate ̂𝛽𝑗 to be close to zero as well. The Bayesian model accounts

for both possibilities, inclusion and exclusion of 𝑥𝑗 as a predictor, and this is reflected in the posterior

coefficient estimate ̂𝛽𝑗. We should not, however, judge the importance of 𝑥𝑗 based on how close ̂𝛽𝑗

is to zero. We should use estimates ̂𝛾𝑗’s (or 𝜆̂𝑗’s with global–local shrinkage priors) to interpret the

importance of predictors and estimates ̂𝛽𝑗’s to describe the effect sizes associated with predictors. Under

certain conditions, ̂𝛽𝑗’s are consistent estimates of the true effect sizes, and the data-generating model

can be recovered assuming all true predictors are included in the model. See Methods and formulas for

details.

Introductory examples
In the following series of examples, we will demonstrate how to use the bayesselect command

and interpret its output. We consider the simulated dataset bmaintro from Motivating examples in

[BMA] Intro.

. use https://www.stata-press.com/data/r19/bmaintro
(Simulated data for BMA example)

There are 10 potential predictors, x1 through x10, for the response variable y. By design, only x2 and

x10 are true predictors, and the rest of the variables are unrelated to y.

We will model y using x1 through x10 as predictors and apply four different priors for regression

coefficients. We will then compare the models.

https://www.stata.com/manuals/bayesbayesselect.pdf#bayesbayesselectMethodsandformulasspikeandslabpriors
https://www.stata.com/manuals/bayesbayesselect.pdf#bayesbayesselectMethodsandformulasgloballocalshrinkagepriors
https://www.stata.com/manuals/bayesbayesselect.pdf#bayesbayesselectMethodsandformulas
https://www.stata.com/manuals/bmaintro.pdf#bmaIntroRemarksandexamplesMotivatingexamples
https://www.stata.com/manuals/bmaintro.pdf#bmaIntro
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Example 1: Variable selection using the default horseshoe global–local shrinkage prior
We start by using the default prior for regression coefficients in bayesselect. It is the horseshoe

prior with the scale of 1, which also corresponds to the hshoe option. To specify a different scale value,

we can use the hshoe(#) option. This prior is one of the global–local shrinkage priors.

The syntax of bayesselect is similar to that of any other regression command in Stata, a dependent

variable, y, followed by a list of predictors, x1-x10 in this case. The only option we add is a random-

number seed for reproducibility.

. bayesselect y x1-x10, rseed(19)
Burn-in ...
Simulation ...
Model summary

Likelihood:
y ~ normal(xb_y,{sigma2})

Priors:
{y:x1 ... x10} ~ glshrinkage(1,{tau},{lambdas}) (1)

{y:_cons} ~ normal(0,10000) (1)
{sigma2} ~ jeffreys

Hyperprior:
{tau lambdas} ~ halfcauchy(0,1)

(1) Parameters are elements of the linear form xb_y.
Bayesian variable selection MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Global--local shrinkage coefficient prior: Number of obs = 200

Horseshoe(1) Acceptance rate = .8628
Efficiency: min = .1384

avg = .6807
Log marginal-likelihood = -296.17324 max = 1

Equal-tailed Inclusion
y Mean Std. dev. MCSE [95% cred. interval] coef.

x10 5.118244 .0870914 .0008709 4.950923 5.29129 1.00
x2 1.18836 .0717654 .0007421 1.048757 1.328171 0.95
x3 -.119698 .0842116 .0022636 -.2889022 .0135837 0.48
x9 .0456459 .0657175 .0013671 -.0584361 .1970286 0.34
x1 .0351392 .0595862 .0010334 -.0620478 .1757773 0.31
x4 -.022399 .0557828 .0007517 -.1531457 .080328 0.30
x5 .0124905 .0539176 .0006082 -.0931158 .1348377 0.29
x7 .0016312 .0543838 .0005438 -.1126321 .1209322 0.29
x8 -.0113579 .0546242 .00059 -.1352596 .0968524 0.28
x6 -.0053055 .050503 .000511 -.1189606 .0979294 0.28

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

y
_cons .603351 .0788468 .000809 .6033972 .4488462 .7566242

sigma2 1.16503 .1206306 .002689 1.160276 .9471227 1.41593
tau .1923435 .1571121 .008269 .1476418 .0305629 .6212223

https://www.stata.com/manuals/bayesbayesselect.pdf#bayesbayesselectMethodsandformulasgloballocalshrinkagepriors
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The output of bayesselect includes a model summary, a header, and two estimation tables. The first
one is a table of regression coefficient summaries. The second one is a standard Markov chain Monte

Carlo (MCMC) summary table for additional model parameters such as the constant term, {y: cons},
error variance {sigma2}, and hyperparameters, {tau} in this case.

The regression coefficient table is similar to the standard MCMC table (see [BAYES] bayesmh), but

instead of a column for the estimated medians, it includes a column for the estimated inclusion coef-

ficients. The inclusion coefficients are measures of predictor importance. By default, only predictors

with inclusion coefficients of 0.1 or above are reported, which is all predictors in our example. Only

two predictors, x10 and x2, have inclusion coefficients above 0.5. These are the true predictors of y by

design. The actual coefficient values for x10 and x2 used to simulate the data were 5 and 1.2, and the

error variance was 1. The estimated posterior means for the coefficients, 5.12 and 1.19, and the error

variance, 1.17, are very close to the true values.

The coefficient estimates for all predictors with inclusion coefficients less than 0.5, except x3, are
close to 0. Moreover, their respective credible intervals, including those for x3, contain zero. In this

simulation example, there is a clear distinction between important and unimportant predictors, which, of

course, may not be the case with real datasets. You should not be concerned because bayesselect does

not exclude any of the potential predictors from the regression model but simply controls their effect

according to their relevance in predicting the outcome.

As we mentioned in the introduction, bayesselect regulates the effects of predictors by specifying

a prior for regression coefficients that shrinks them toward zero based on how well the predictors explain

the outcome. The regression coefficients of weak predictors are shrunk more toward zero. The default

prior for coefficients is a horseshoe prior with the scale of 1, as we can see in the header. From the

model summary output, a horseshoe prior is a global–local shrinkage prior with hyperparameter {tau}
(global shrinkage) and latent parameters {lambdas:} (local shrinkage), one for each coefficient, all

distributed as half-Cauchy with location of 0 and scale of 1. A global–local shrinkage prior assumes a

normal prior for each regression coefficient with mean 0 and standard deviation controlled by {tau} and

the corresponding parameter in {lambdas:}. The smaller these parameters, the closer the coefficient is
to zero. See Global–local shrinkage priors in Methods and formulas for details.

Although the {lambdas:} parameters are not shown by bayesselect, they can be summarized by
using the bayesstats summary command (see [BAYES] bayesstats summary).

. bayesstats summary {lambdas:}
Posterior summary statistics MCMC sample size = 10,000

Equal-tailed
lambdas Mean Std. dev. MCSE Median [95% cred. interval]

x1 .9367181 1.866672 .031428 .5139979 .0308739 4.345145
x2 13.94609 27.81457 .688323 7.523173 1.452113 66.45129
x3 1.702801 4.462234 .059901 .9696198 .0564161 7.329253
x4 .9358786 2.41981 .037191 .4985472 .0132313 4.053352
x5 .8772942 2.198556 .034558 .4730888 .0149907 3.95497
x6 .8135167 1.794375 .034068 .4435154 .0135487 3.642703
x7 .8537399 1.768146 .032387 .4734345 .020679 3.825944
x8 .8606228 1.840859 .033986 .4585138 .0163238 4.008136
x9 1.009114 1.758922 .033081 .5741607 .024573 4.654922

x10 59.46404 118.0737 3.21056 31.47493 5.482909 285.2516

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayesselect.pdf#bayesbayesselectMethodsandformulasgloballocalshrinkagepriors
https://www.stata.com/manuals/bayesbayesstatssummary.pdf#bayesbayesstatssummary
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All {lambdas:} parameters are positive, and the magnitudes of those corresponding to the important

predictors x2 and x10 are much larger than the rest. The difference between magnitudes is a relative

measure; this is why the inclusion coefficients, with values between 0 and 1, are introduced as a more

convenient measure of predictor importance than the posterior mean estimates of {lambdas:}.

The inclusion coefficients reported by bayesselect in the last column of the coefficient table are

the posterior mean estimates of {lambdas:} after the latter are transformed to take values in the [0,1]

range. Specifically, from Methods and formulas, an inclusion coefficient for a predictor 𝑥𝑗 is defined

as 𝛾𝑗 = 1 − 𝜅𝑗 = 1 − 1/(1 + 𝜆2
𝑗 /𝜆2

0), where 𝜅𝑗 is known as a shrinkage coefficient and 𝜆0 is a scale

parameter specified with a global–local shrinkage prior. In our example, the scale of the horseshoe prior

is one, 𝜆0 = 1. For instance, we can estimate the inclusion coefficient for x2, 𝛾2, reported to be 0.95 by

bayesselect, as follows:

. bayesstats summary (gamma2: (1-1/(1+{lambdas:x2}^2)))
Posterior summary statistics MCMC sample size = 10,000

gamma2 : 1-1/(1+{lambdas:x2}^2)

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

gamma2 .9477335 .0891366 .003519 .9826383 .6783145 .9997736

In this example, we used 0.5 as an inclusion cutoff to determine which predictors are important. This

may be justified because themean of the default prior distribution used for the local shrinkage coefficients

𝜅𝑗’s, and consequently 𝛾𝑗’s, is 0.5. Specifically, the default HalfCauchy(0, 1) prior for 𝜆𝑗’s leads to the

default Beta(0.5, 0.5) prior for 𝜅𝑗’s, which has a mean of 0.5. In general, if we change the default prior,

we may consider a different inclusion cutoff value.

Example 2: Bayesian lasso global–local shrinkage prior
Bayesian lasso (Park andCasella 2008) is a Bayesian analog of the 𝑙1-penalized least-squares approach

to variable selection. It uses a global–local shrinkage prior for regression coefficients that assumes a

Rayleigh distribution for local shrinkage latent parameters 𝜆𝑗’s instead of a half-Cauchy distribution as

in example 1. This is also equivalent to using Laplace priors as marginal priors for regression coefficients

𝛽𝑗’s.

To request a Bayesian lasso with a scale of 1, we use the blasso option. The blasso(#) option

allows us to specify any other positive scale value.

https://www.stata.com/manuals/bayesbayesselect.pdf#bayesbayesselectMethodsandformulas
https://www.stata.com/manuals/bayesbayesselect.pdf#bayesbayesselectRemarksandexamplesex1a


bayesselect — Bayesian variable selection for linear regression 11

We refit our model from example 1 using Bayesian lasso.

. bayesselect y x1-x10, blasso rseed(19)
Burn-in ...
Simulation ...
Model summary

Likelihood:
y ~ normal(xb_y,{sigma2})

Priors:
{y:x1 ... x10} ~ glshrinkage(1,{tau},{lambdas}) (1)

{y:_cons} ~ normal(0,10000) (1)
{sigma2} ~ jeffreys

Hyperpriors:
{tau} ~ halfcauchy(0,1)

{lambdas} ~ rayleigh(1)

(1) Parameters are elements of the linear form xb_y.
Bayesian variable selection MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Global--local shrinkage coefficient prior: Number of obs = 200

Bayesian lasso(1) Acceptance rate = .8597
Efficiency: min = .8911

avg = .9731
Log marginal-likelihood = -333.53826 max = 1

Equal-tailed Inclusion
y Mean Std. dev. MCSE [95% cred. interval] coef.

x10 5.120569 .0875861 .0008759 4.950711 5.294459 0.87
x2 1.182651 .0719754 .0007198 1.039568 1.323594 0.65
x3 -.1771405 .0797991 .0008454 -.3355561 -.0213421 0.41
x9 .0891755 .0795337 .0008133 -.0649558 .2444695 0.39
x5 .0327607 .0761729 .0007617 -.1131709 .1846671 0.38
x4 -.041633 .0765783 .0007789 -.1936397 .1045709 0.38
x1 .0689381 .0753258 .0007865 -.0752699 .2188716 0.38
x8 -.0323204 .0770683 .0007707 -.184323 .1217865 0.37
x6 -.0132317 .0749707 .0007497 -.1599103 .1358485 0.37
x7 .0081383 .0804661 .0008047 -.1498234 .1664523 0.37

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

y
_cons .6178375 .0801636 .000812 .6184826 .4568188 .7739675

sigma2 1.176275 .120801 .002555 1.171413 .9596697 1.436654
tau .7903534 .2686312 .005125 .7395585 .4237649 1.447437

The posterior summary results are very similar to those using the horseshoe prior. Because a different

prior is assumed for local shrinkage parameters {lambdas:}, the estimates for the global shrinkage

{tau} are different.

The inclusion coefficients are between 0.37 and 0.87 and are less spread out than those for the horse-

shoe prior. And the inclusion coefficients for x10 and x2, 0.87 and 0.65, are somewhat smaller than those
for the horseshoe prior. The Bayesian lasso thus tends to apply less shrinkage to the coefficients, result-

https://www.stata.com/manuals/bayesbayesselect.pdf#bayesbayesselectRemarksandexamplesex1a
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ing in less distinction between important and unimportant predictors. For example, the posterior mean

estimate for the x3 coefficient is −0.18, and the 95% credible interval does not include 0, in contrast to

the estimates for the horseshoe prior.

For comparison, let’s also inspect the {lambdas:} parameters.

. bayesstats summary {lambdas:}
Posterior summary statistics MCMC sample size = 10,000

Equal-tailed
lambdas Mean Std. dev. MCSE Median [95% cred. interval]

x1 .8657674 .586799 .006028 .7458889 .086964 2.244439
x2 1.531099 .5632616 .006642 1.45914 .630293 2.831665
x3 .9452156 .5800462 .005875 .8353631 .1587102 2.356409
x4 .8677547 .5924273 .005924 .7515854 .088186 2.271446
x5 .8766478 .6006823 .006007 .7546303 .0899792 2.31136
x6 .8613335 .5913605 .005992 .7469369 .0868421 2.275777
x7 .8540772 .5932745 .005933 .7341128 .0844432 2.282867
x8 .8639806 .5946548 .006198 .741773 .0877804 2.308843
x9 .8930035 .586916 .005793 .7759418 .1063435 2.287071

x10 2.786343 .6363102 .010189 2.749506 1.645258 4.121829

The posterior mean estimates are between 0.85 and 2.79. The differences between magnitudes of

{lambdas:x2} and {lambdas:x10} and the less important predictors are much smaller than with the

horseshoe prior, which confirms the smaller shrinkage effect of Bayesian lasso. From the point of view of

classical model selection, we can say that Bayesian lasso prefersmore complexmodels than the horseshoe

prior.
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Example 3: Normal spike-and-slab prior
In the next two examples, we demonstrate the other important class of priors for variable selection,

the spike-and-slab priors. We first show a normal spike-and-slab prior. The regression coefficient priors

in this case are mixtures of two normal distributions.

We fit the same regression model as in the previous examples, but now we use the ssnormal option,

which specifies a normal spike-and-slab prior with the default values of 0.01 and 1 for the two standard

deviation parameters. We can specify different values for standard deviations by using the ssnormal(#1
#2) option.

. bayesselect y x1-x10, ssnormal rseed(19)
Burn-in ...
Simulation ...
Model summary

Likelihood:
y ~ normal(xb_y,{sigma2})

Priors:
{y:x1 ... x10} ~ mixnormal0(1,.01,1,{gammas}) (1)

{y:_cons} ~ normal(0,10000) (1)
{sigma2} ~ jeffreys

Hyperpriors:
{gammas} ~ bernoulli({theta})
{theta} ~ beta(1,1)

(1) Parameters are elements of the linear form xb_y.
Bayesian variable selection MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Spike-and-slab coefficient prior: Number of obs = 200

Normal mixture: N(0,.01) and N(0,1) Acceptance rate = .8638
Beta(1,1) for {theta} Efficiency: min = .02048

avg = .5557
Log marginal-likelihood = -313.24428 max = 1

Equal-tailed Inclusion
y Mean Std. dev. MCSE [95% cred. interval] prob.

x2 1.184036 .0715031 .000715 1.044366 1.324463 1.00
x10 5.100833 .0883483 .0008835 4.928953 5.27378 1.00
x3 -.0798283 .1059473 .0074037 -.3104386 .0203455 0.44
x8 .0038787 .0393615 .0005284 -.1223508 .0550395 0.18
x7 .0098883 .0309695 .0003097 -.0516427 .0802481 0.12
x9 .0140702 .0430647 .0012918 -.0194029 .1649108 0.12
x1 .002177 .0365315 .0008101 -.0292478 .1265267 0.11

Note: 3 coefficients with inclusion values less than .1 not shown.

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

y
_cons .6209303 .0791626 .000792 .6216375 .4674763 .7745341

sigma2 1.171751 .1201083 .002683 1.161649 .9620094 1.429011
theta .3491553 .1607552 .004354 .3323494 .0880766 .6986263

https://www.stata.com/manuals/bayesbayesselect.pdf#bayesbayesselectMethodsandformulasspikeandslabpriors
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Compared with the global–local shrinkage priors from the previous two examples, the estimated co-

efficients of unimportant predictors are closer to zero with this normal spike-and-slab prior. Three re-

gression coefficients are not reported because their inclusion values are below the default cutoff of 0.1.

The spike-and-slab priors introduce latent parameters {gammas:}. These are random binary indica-

tors for the mixture distributions; see Spike-and-slab priors in Methods and formulas for details. From

the model summary output, {gammas:} are distributed as Bernoulli with hyperparameter (success prob-

ability) {theta}. And {theta} is assumed to have a beta distribution with shape parameters of 1s,

which is equivalent to a uniform distribution on [0,1]. We can specify other shape values by using the

betaprior(#1 #2) option.

The inclusion values reported in the table are the posterior means of {gammas:} and thus can be

interpreted as mixing probabilities between the spike and slab portions of the coefficient priors. In our

case, the posterior mean estimates for {gammas:x2} and {gammas:x10} are perfect ones and so are their
inclusion probabilities. This means that for x2 and x10 the model always chooses the slab, flat, portion

of the priors.

{theta} is the probability parameter of the Bernoulli hyperpriors for {gammas:}. Its posterior mean
estimate, 0.35 in our case, can be interpreted as an indication of the overall sparsity of the model and can

be used for comparing one spike-and-slab model with another.

In the default output, several predictors are not reported because their inclusion probabilities are below

0.1. We can use the allcoef option to see the summary for all coefficients. To avoid repetition, we also

suppress the model summary and the header.

. bayesselect, allcoef nomodelsummary noheader

Equal-tailed Inclusion
y Mean Std. dev. MCSE [95% cred. interval] prob.

x2 1.184036 .0715031 .000715 1.044366 1.324463 1.00
x10 5.100833 .0883483 .0008835 4.928953 5.27378 1.00
x3 -.0798283 .1059473 .0074037 -.3104386 .0203455 0.44
x8 .0038787 .0393615 .0005284 -.1223508 .0550395 0.18
x7 .0098883 .0309695 .0003097 -.0516427 .0802481 0.12
x9 .0140702 .0430647 .0012918 -.0194029 .1649108 0.12
x1 .002177 .0365315 .0008101 -.0292478 .1265267 0.11
x5 .0071316 .0263058 .0003278 -.0224294 .0780056 0.08
x6 -.0008068 .0235381 .0002354 -.0421222 .0292265 0.07
x4 -.00223 .0252274 .0003786 -.0614174 .0240777 0.06

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

y
_cons .6209303 .0791626 .000792 .6216375 .4674763 .7745341

sigma2 1.171751 .1201083 .002683 1.161649 .9620094 1.429011
theta .3491553 .1607552 .004354 .3323494 .0880766 .6986263

After x10 and x2, the predictor with the next highest inclusion probability of 0.44 is x3.

https://www.stata.com/manuals/bayesbayesselect.pdf#bayesbayesselectMethodsandformulasspikeandslabpriors
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Similarly to {lambdas:} of global–local shrinkage priors, {gammas:} are not reported by bayes-
select, but we can use bayesstats summary to inspect these mixing probability parameters.

. bayesstats summary {gammas:}
Posterior summary statistics MCMC sample size = 10,000

Equal-tailed
gammas Mean Std. dev. MCSE Median [95% cred. interval]

x1 .1115 .314766 .008982 0 0 1
x2 1 0 0 1 1 1
x3 .4366 .495989 .040969 0 0 1
x4 .0634 .2436932 .00592 0 0 1
x5 .0832 .2761981 .006551 0 0 1
x6 .0702 .2554966 .006326 0 0 1
x7 .1247 .330395 .007687 0 0 1
x8 .1752 .3801571 .008953 0 0 1
x9 .1167 .3210785 .011932 0 0 1

x10 1 0 0 1 1 1

Because {gammas:} are binary indicators, the medians and the endpoints of credible intervals are

always 0 or 1. The medians indicate which of the two values dominate in the MCMC sample. Given

perfect inclusion of x2 and x10, {gammas:x2} and {gammas:x10} have a constant value of one in the

entire MCMC sample. This gives us high confidence in the importance of predictors x2 and x10.
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Example 4: Laplace spike-and-slab prior
The second type of a spike-and-slab prior uses a mixture of Laplace distributions. That is, the spike

and slab portions of the coefficient priors are Laplace distributions instead of normal distributions as in

the previous example.

We request this prior by using the sslaplace option. The sslaplace prior uses the default values of

0.01 and 1 for the two scale parameters, but we can specify different values by using the sslaplace(#1
#2) option.

. bayesselect y x1-x10, sslaplace rseed(19)
Burn-in ...
Simulation ...
Model summary

Likelihood:
y ~ normal(xb_y,{sigma2})

Priors:
{y:x1 ... x10} ~ mixlaplace(1,.01,1,{gammas}) (1)

{y:_cons} ~ normal(0,10000) (1)
{sigma2} ~ jeffreys

Hyperpriors:
{gammas} ~ bernoulli({theta})
{theta} ~ beta(1,1)

(1) Parameters are elements of the linear form xb_y.
Bayesian variable selection MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Spike-and-slab coefficient prior: Number of obs = 200

Laplace mixture: L(0,.01) and L(0,1) Acceptance rate = .8635
Beta(1,1) for {theta} Efficiency: min = .04937

avg = .6597
Log marginal-likelihood = -294.02003 max = .9705

Equal-tailed Inclusion
y Mean Std. dev. MCSE [95% cred. interval] prob.

x2 1.185791 .0715964 .000731 1.045868 1.324387 1.00
x10 5.122913 .0860102 .0008731 4.951631 5.291972 1.00
x3 -.0595752 .091769 .00413 -.2895237 .0187028 0.31

Note: 7 coefficients with inclusion values less than .1 not shown.

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

y
_cons .6148945 .0800458 .0008 .6153598 .4574479 .7699493

sigma2 1.166491 .1200866 .002618 1.158892 .9575422 1.42881
theta .3087888 .1438559 .002711 .2943327 .0776807 .6266575

The coefficient estimates of the important predictors are similar to those of the normal-mixture prior

model from example 3. But now 7 (compared with 3 before) predictors have inclusion probabilities

below 0.1. And the posterior mean estimate for {theta}, 0.31, is lower, which suggests that the Laplace-

https://www.stata.com/manuals/bayesbayesselect.pdf#bayesbayesselectMethodsandformulasspikeandslabpriors
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mixture model is sparser. Indeed, if we inspect all inclusion probabilities (see below), we will see that

all, except the top 3, are between 0.05 and 0.07, whereas those for the normal-mixture prior are between

0.06 and 0.18.

. bayesselect, allcoef nomodelsummary noheader

Equal-tailed Inclusion
y Mean Std. dev. MCSE [95% cred. interval] prob.

x2 1.185791 .0715964 .000731 1.045868 1.324387 1.00
x10 5.122913 .0860102 .0008731 4.951631 5.291972 1.00
x3 -.0595752 .091769 .00413 -.2895237 .0187028 0.31
x9 .0096531 .0341256 .0006481 -.0250025 .120656 0.07
x1 .004208 .0274389 .0004817 -.0302802 .0810768 0.06
x8 .000295 .0245224 .0002962 -.0489182 .0391258 0.05
x7 .0020103 .0226965 .000227 -.036048 .0436753 0.05
x4 -.0029021 .0239831 .0003345 -.0534428 .0300279 0.05
x5 .0033791 .0227582 .0002686 -.0284755 .0500044 0.05
x6 -.0008044 .0206703 .0002005 -.0374593 .0346636 0.05

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

y
_cons .6148945 .0800458 .0008 .6153598 .4574479 .7699493

sigma2 1.166491 .1200866 .002618 1.158892 .9575422 1.42881
theta .3087888 .1438559 .002711 .2943327 .0776807 .6266575

The fact that we obtain very similar results with different priors from examples 1, 2, and 3 and from

this example suggests that our results are not sensitive to the choice of priors and we can be confident in

our conclusions about the importance of predictors x2 and x10.

Example 5: Sparsity control
In spike-and-slab models, we can control model sparsity through the prior of the hyperparameter

{theta}. The default prior for {theta} is Beta(1, 1), which is equivalent to the uniform distribution on

[0,1]. That is, by default, we have no preference for the degree of sparsity of the regression model. By

providing an informative prior for {theta}, we can make models sparser or denser.

For example, by specifying a Beta(1, 9) prior for {theta}, we favor sparser models. The mean

of Beta(1, 9) is 0.1 and so is the prior mean of {theta}. In other words, a priori, we expect only

one important predictor of y out of the potential 10. In the process of Bayesian variable selection, this

expectation is weighted by the evidence from the data to provide its posterior estimate.

https://www.stata.com/manuals/bayesbayesselect.pdf#bayesbayesselectRemarksandexamplesex1a
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Continuing with the Laplace model from example 4, let’s use this beta prior for theta. We specify

the allcoef option to see all regression coefficients.

. bayesselect y x1-x10, sslaplace betaprior(1 9) allcoef rseed(19)
Burn-in ...
Simulation ...
Model summary

Likelihood:
y ~ normal(xb_y,{sigma2})

Priors:
{y:x1 ... x10} ~ mixlaplace(1,.01,1,{gammas}) (1)

{y:_cons} ~ normal(0,10000) (1)
{sigma2} ~ jeffreys

Hyperpriors:
{gammas} ~ bernoulli({theta})
{theta} ~ beta(1,9)

(1) Parameters are elements of the linear form xb_y.
Bayesian variable selection MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Spike-and-slab coefficient prior: Number of obs = 200

Laplace mixture: L(0,.01) and L(0,1) Acceptance rate = .8649
Beta(1,9) for {theta} Efficiency: min = .04154

avg = .6557
Log marginal-likelihood = -322.15504 max = 1

Equal-tailed Inclusion
y Mean Std. dev. MCSE [95% cred. interval] prob.

x2 1.185836 .0723118 .0007478 1.043249 1.326291 1.00
x10 5.123372 .0877025 .000877 4.952162 5.298158 1.00
x3 -.0431981 .0814627 .003997 -.2766626 .0189029 0.22
x9 .0073567 .0292032 .0005792 -.0246281 .0894012 0.05
x1 .0026981 .0231029 .0003779 -.0283663 .0443341 0.03
x7 .0021759 .0184902 .0001913 -.0288422 .0379245 0.02
x5 .0028945 .0178557 .0001985 -.0262179 .0387407 0.02
x8 .001304 .0186369 .0002192 -.0293738 .0339263 0.02
x6 -.0011907 .0171051 .0001862 -.0334828 .0286884 0.02
x4 -.0014873 .0180464 .0002251 -.0350797 .0278281 0.02

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

y
_cons .6151788 .0789083 .00078 .6159789 .4614939 .7671695

sigma2 1.169404 .1199563 .002649 1.161906 .9594109 1.428383
theta .1704879 .088016 .001268 .1572679 .0376195 .3730968

The resulting posterior mean estimate for {theta} is now 0.17, down from 0.31 for the Laplace

spike-and-slab model with the default beta prior. x10 and x2 remain to be the two important predictors,

but the rest of the predictors (ignoring x3) now have lower inclusion probabilities, all between 0.02 and

0.05. The separation between important and unimportant predictors is more prominent.

https://www.stata.com/manuals/bayesbayesselect.pdf#bayesbayesselectRemarksandexamplesex1d
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Let’s see what happens when we use a denser model. A Beta(9, 1) prior for {theta} sets the prior

mean to 0.9, which means we expect to have 9 important predictors in the model.

. bayesselect y x1-x10, sslaplace betaprior(9 1) allcoef rseed(19)
Burn-in ...
Simulation ...
Model summary

Likelihood:
y ~ normal(xb_y,{sigma2})

Priors:
{y:x1 ... x10} ~ mixlaplace(1,.01,1,{gammas}) (1)

{y:_cons} ~ normal(0,10000) (1)
{sigma2} ~ jeffreys

Hyperpriors:
{gammas} ~ bernoulli({theta})
{theta} ~ beta(9,1)

(1) Parameters are elements of the linear form xb_y.
Bayesian variable selection MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Spike-and-slab coefficient prior: Number of obs = 200

Laplace mixture: L(0,.01) and L(0,1) Acceptance rate = .8647
Beta(9,1) for {theta} Efficiency: min = .09248

avg = .6329
Log marginal-likelihood = -316.37911 max = 1

Equal-tailed Inclusion
y Mean Std. dev. MCSE [95% cred. interval] prob.

x2 1.18411 .0718673 .0007187 1.042284 1.326711 1.00
x10 5.123829 .0874442 .0008744 4.951699 5.295111 1.00
x3 -.1261931 .104562 .0034383 -.3224889 .0132646 0.69
x9 .0296768 .0610811 .001271 -.0312488 .2024558 0.30
x1 .0176132 .0493214 .0009162 -.0364677 .166006 0.24
x8 -.0051904 .041614 .0005622 -.1283518 .0606106 0.20
x5 .0082778 .0398273 .0004957 -.0596965 .124567 0.20
x4 -.0090804 .0403741 .0005142 -.1345912 .0475379 0.20
x7 .0032438 .0378493 .0003976 -.082511 .101217 0.20
x6 -.0024044 .0344595 .0003446 -.0901232 .068009 0.18

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

y
_cons .6153574 .0787261 .000787 .6161907 .4579815 .7685391

sigma2 1.164687 .1207741 .002705 1.157213 .9461043 1.424447
theta .6610358 .124062 .002632 .6642454 .411753 .8930941

The posterior mean of {theta} is now estimated to be 0.66, much higher than 0.31 from the model

with the default beta prior. Moreover, the inclusion probability for x3 increases to 0.69. Inclusion prob-

abilities for all other predictors also increase. If we apply the 0.5 threshold of importance, we now have



bayesselect — Bayesian variable selection for linear regression 20

3 important predictors in the model, x10, x2, and x3. However, as we commented in example 1, with a
prior mean of 0.9 for {theta}, we may consider a higher inclusion cutoff value than 0.5 to determine

importance of predictors.

The model with the default beta prior provides a better fit than both models with informative priors

for {theta}, in terms of the log-marginal likelihood, −294 versus −322 and −316. Specifying strong

sparsity information a priori thus should be carefully justified.

Diabetes progression study
In the following examples, we use the diabetes dataset from Efron et al. (2004). The dataset is from a

study on disease progression of 442 diabetes patients. At the beginning of the study, age, sex, body mass
index (bmi), and blood pressure (bp) are collected for each patient, along with six measurements of their
blood serum (serum1 through serum6). The response variable diabetes quantifies disease progression

one year after the baseline variables are obtained.

Here is a short description of the dataset.

. use https://www.stata-press.com/data/r19/diabetes
(2004 Diabetes progression data)
. describe
Contains data from https://www.stata-press.com/data/r19/diabetes.dta
Observations: 442 2004 Diabetes progression data

Variables: 11 14 Aug 2024 11:39
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

diabetes float %9.0g Progression of diabetes after one
year (std.)

age float %9.0g Age (std.)
sex float %9.0g Sex (std.)
bmi float %9.0g Body mass index (std.)
bp float %9.0g Blood pressure (std.)
serum1 float %9.0g Blood serum measurement 1 (std.)
serum2 float %9.0g Blood serum measurement 2 (std.)
serum3 float %9.0g Blood serum measurement 3 (std.)
serum4 float %9.0g Blood serum measurement 4 (std.)
serum5 float %9.0g Blood serum measurement 5 (std.)
serum6 float %9.0g Blood serum measurement 6 (std.)

Sorted by:

The variables in the original dataset were standardized to have sample means of zero and sam-

ple standard deviations of one. This ensures optimal performance for all variable-selection models in

bayesselect.

To compare the predictive performance of different variable-selectionmodels later, we split the sample

into subsamples for training and testing.

. splitsample, generate(sample) split(1 1) rseed(19)

The newly generated variable sample records the subsample.

https://www.stata.com/manuals/bayesbayesselect.pdf#bayesbayesselectRemarksandexamplesex1a
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Example 6: Performing variable selection for the diabetes study
We fit the default variable-selection model of bayesselect. It uses a horseshoe global–local shrink-

age prior with the scale of one for regression coefficients. We use the training subsample to fit the model

and specify a random-number seed for reproducibility. And we will use the testing subsample to compute

predictions for later comparison of model performances.

. bayesselect diabetes age sex bmi bp serum1-serum6 if sample == 1, rseed(19)
Burn-in ...
Simulation ...
Model summary

Likelihood:
diabetes ~ normal(xb_diabetes,{sigma2})

Priors:
{diabetes:age ... serum6} ~ glshrinkage(1,{tau},{lambdas}) (1)

{diabetes:_cons} ~ normal(0,10000) (1)
{sigma2} ~ jeffreys

Hyperprior:
{tau lambdas} ~ halfcauchy(0,1)

(1) Parameters are elements of the linear form xb_diabetes.
Bayesian variable selection MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Global--local shrinkage coefficient prior: Number of obs = 221

Horseshoe(1) Acceptance rate = .8587
Efficiency: min = .2055

avg = .3858
Log marginal-likelihood = -228.01981 max = .8596

Equal-tailed Inclusion
diabetes Mean Std. dev. MCSE [95% cred. interval] coef.

bmi .3251239 .0605027 .0007609 .2074427 .4405296 0.74
serum5 .3190135 .0774733 .0012965 .1741643 .480524 0.73

bp .1820939 .0583262 .0009469 .0646499 .2973787 0.59
serum3 -.1483656 .0902192 .001974 -.3278771 .0116305 0.53
serum1 -.0673476 .1158495 .0025556 -.3630464 .1077651 0.38

sex -.06953 .0536515 .0011804 -.1792851 .0170811 0.37
serum2 -.0025097 .0930945 .0016917 -.171356 .2276703 0.31
serum4 -.0045453 .0771996 .0011999 -.1771875 .1556561 0.31

age -.0331836 .0446677 .0008272 -.132988 .0410595 0.28
serum6 -.0098386 .0401496 .0004331 -.0970883 .0706108 0.25

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

diabetes
_cons -.008172 .0461672 .000469 -.0081996 -.0985132 .0822581

sigma2 .4639809 .0454678 .001003 .4613123 .3833852 .5611066
tau .1984424 .1206534 .00484 .1679971 .0532921 .5104429
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Four predictors have inclusion coefficients greater than 0.5: bmi, serum5, bp, and serum3. This is
in agreement with lasso regression results from Efron et al. (2004), who report these same predictors in

the same order of importance to be the top predictors of diabetes.

To generate predictions, we save the MCMC simulation sample. We also store the estimation results

as model1.

. bayesselect, saving(model1sim)
note: file model1sim.dta saved.
. estimates store model1

We compute the predictive posterior means for the testing subsample using bayespredict. We store

the predictions in the new pmean1 variable. Using the predicted means, we compute the squared pre-

diction error over the testing subsample and save it in the sqerr1 variable. We then drop the pmean1
variable.

. bayespredict double pmean1 if sample == 2, mean
Computing predictions ...
. generate double sqerr1 = (diabetes-pmean1)^2
(221 missing values generated)
. drop pmean1
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We fit a Bayesian lasso model and store its estimation results in model2. This is the other global–local
shrinkage model available in bayesselect. We also specify the cutoff inclusion value of 0.5 to focus

on our top predictors of interest.

. bayesselect diabetes age sex bmi bp serum1-serum6 if sample == 1, blasso
> cutoff(0.5) rseed(19)
Burn-in ...
Simulation ...
Model summary

Likelihood:
diabetes ~ normal(xb_diabetes,{sigma2})

Priors:
{diabetes:age ... serum6} ~ glshrinkage(1,{tau},{lambdas}) (1)

{diabetes:_cons} ~ normal(0,10000) (1)
{sigma2} ~ jeffreys

Hyperpriors:
{tau} ~ halfcauchy(0,1)

{lambdas} ~ rayleigh(1)

(1) Parameters are elements of the linear form xb_diabetes.
Bayesian variable selection MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Global--local shrinkage coefficient prior: Number of obs = 221

Bayesian lasso(1) Acceptance rate = .8588
Efficiency: min = .6102

avg = .7203
Log marginal-likelihood = -240.89592 max = .8076

Equal-tailed Inclusion
diabetes Mean Std. dev. MCSE [95% cred. interval] coef.

bmi .3168865 .0591047 .0006577 .200824 .4324047 0.68
serum5 .3153706 .079797 .0009319 .163874 .4748501 0.68

bp .194158 .0557217 .0006521 .0846107 .3028491 0.60
serum3 -.1598567 .0932792 .0011941 -.3477528 .0145296 0.56

Note: 6 coefficients with inclusion values less than .5 not shown.

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

diabetes
_cons -.0077397 .0465436 .000471 -.0073796 -.0997193 .0832937

sigma2 .4639159 .0445557 .000939 .4620219 .3849446 .5569725
tau .1773416 .0743409 .001842 .1610344 .0831944 .3620409

. bayesselect, saving(model2sim)
note: file model2sim.dta saved.
. estimates store model2

Again, the top fourmost important predictors are bmi, serum5, bp, and serum3. Overall, the estimates
of regression coefficients and other model parameters are very close to those of the default horseshoe

model. Although the inclusion coefficient for serum3 is 0.56, its 95% credible interval includes 0. This

is another indicator of lesser importance of serum3 in comparison with the top three predictors.
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We use the testing subsample to compute and store in the sqerr2 variable the squared prediction error
for the fitted Bayesian lasso model.

. bayespredict double pmean2 if sample == 2, mean
Computing predictions ...
. generate double sqerr2 = (diabetes-pmean2)^2
(221 missing values generated)
. drop pmean2

We fit a Laplace spike-and-slab model and store its estimation results in model3.

. bayesselect diabetes age sex bmi bp serum1-serum6 if sample == 1, sslaplace
> cutoff(0.5) rseed(19)
Burn-in ...
Simulation ...
Model summary

Likelihood:
diabetes ~ normal(xb_diabetes,{sigma2})

Priors:
{diabetes:age ... serum6} ~ mixlaplace(1,.01,1,{gammas}) (1)

{diabetes:_cons} ~ normal(0,10000) (1)
{sigma2} ~ jeffreys

Hyperpriors:
{gammas} ~ bernoulli({theta})
{theta} ~ beta(1,1)

(1) Parameters are elements of the linear form xb_diabetes.
Bayesian variable selection MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Spike-and-slab coefficient prior: Number of obs = 221

Laplace mixture: L(0,.01) and L(0,1) Acceptance rate = .862
Beta(1,1) for {theta} Efficiency: min = .3024

avg = .6477
Log marginal-likelihood = -231.1353 max = 1

Equal-tailed Inclusion
diabetes Mean Std. dev. MCSE [95% cred. interval] prob.

bmi .3191587 .0625475 .0006255 .1975578 .4430021 1.00
serum5 .3708366 .1214061 .0015167 .1270256 .6200841 0.99

bp .204166 .0650311 .0011827 .049531 .324994 0.97

Note: 7 coefficients with inclusion values less than .5 not shown.

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

diabetes
_cons -.0064705 .0491249 .000491 -.0060638 -.1036942 .0883607

sigma2 .5160015 .0668118 .001711 .5077463 .4113021 .6680642
theta .4484548 .1693087 .003635 .4377134 .1480547 .7985162

. bayesselect, saving(model3sim)
note: file model3sim.dta saved.
. estimates store model3
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The inclusion probability of serum3 is lower than 0.5, so it is not listed in the regression coefficient ta-
ble. On the other hand, the inclusion probabilities of bmi, serum5, and bp are very high, above 0.97. The
estimate of the serum5 coefficient is also somewhat higher than those from the global–local shrinkage

models. We observe a stronger separation between predictors than in the previous two models.

We again use the testing subsample to compute the squared prediction error for this model and store

it in the sqerr3 variable.

. bayespredict double pmean3 if sample == 2, mean
Computing predictions ...
. generate double sqerr3 = (diabetes-pmean3)^2
(221 missing values generated)
. drop pmean3
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We fit a normal spike-and-slab model and store its estimation results in model4.

. bayesselect diabetes age sex bmi bp serum1-serum6 if sample == 1, ssnormal
> cutoff(0.5) rseed(19)
Burn-in ...
Simulation ...
Model summary

Likelihood:
diabetes ~ normal(xb_diabetes,{sigma2})

Priors:
{diabetes:age ... serum6} ~ mixnormal0(1,.01,1,{gammas}) (1)

{diabetes:_cons} ~ normal(0,10000) (1)
{sigma2} ~ jeffreys

Hyperpriors:
{gammas} ~ bernoulli({theta})
{theta} ~ beta(1,1)

(1) Parameters are elements of the linear form xb_diabetes.
Bayesian variable selection MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Spike-and-slab coefficient prior: Number of obs = 221

Normal mixture: N(0,.01) and N(0,1) Acceptance rate = .8552
Beta(1,1) for {theta} Efficiency: min = .01052

avg = .3413
Log marginal-likelihood = -228.80453 max = 1

Equal-tailed Inclusion
diabetes Mean Std. dev. MCSE [95% cred. interval] prob.

bmi .315811 .0642621 .0006426 .1883758 .4417061 1.00
bp .1892194 .0872727 .008507 .0027252 .3294809 0.88

serum5 .3448803 .1735588 .0150721 .0055886 .6334824 0.88

Note: 7 coefficients with inclusion values less than .5 not shown.

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

diabetes
_cons -.0047216 .0499829 .0005 -.0048385 -.1040443 .0929065

sigma2 .5448409 .0914339 .004062 .5290122 .4161136 .7791847
theta .3732414 .1600284 .006682 .3623792 .0998876 .7070753

. bayesselect, saving(model4sim)
note: file model4sim.dta saved.
. estimates store model4

The posterior estimates are similar to those of the Laplace model. The bp and serum5 predictors have

somewhat lower inclusion probabilities of 0.88. The posterior mean estimate of {theta} is also lower,

0.37 versus 0.45, which indicates that the normal model is slightly more sparse than the Laplace model.
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We store the squared prediction error for this model in the sqerr4 variable.

. bayespredict double pmean4 if sample == 2, mean
Computing predictions ...
. generate double sqerr4 = (diabetes-pmean4)^2
(221 missing values generated)
. drop pmean4

The results from all fourmodels aremore or less consistent, whichmakes it difficult to choose between

them. We need to use a more formal model-selection criterion to make a decision.

Example 7: Model comparison using goodness of fit
The standard statistic for assessing goodness of fit of Bayesian models is the marginal likelihood. We

can use the bayestest model command (see [BAYES] bayestest model) to compare the goodness of fit

of the previous four variable-selection models. The command uses estimated marginal likelihoods and

prior model probabilities to compute and report posterior model probabilities. By default, all four models

are assumed equally likely a priori.

. bayestest model model1 model2 model3 model4
Bayesian model tests

log(ML) P(M) P(M|y)

model1 -228.0198 0.2500 0.6664
model2 -240.8959 0.2500 0.0000
model3 -231.1353 0.2500 0.0296
model4 -228.8045 0.2500 0.3040

Note: Marginal likelihood (ML) is computed using
Laplace--Metropolis approximation.

The horseshoe model, model1, has the highest marginal likelihood, −228, and thus the highest pos-

terior probability, 0.67. This model comparison, however, is based only on the training data goodness of

fit and may not reflect the actual predictive performance of the models.

https://www.stata.com/manuals/bayesbayestestmodel.pdf#bayesbayestestmodel
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Example 8: Model comparison using predictive performance
Here, for comparison, we also fit a BMA regression by using bmaregress (see [BMA] bmaregress)

with default settings.

. bmaregress diabetes age sex bmi bp serum1-serum6 if sample == 1
Enumerating models ...
Computing model probabilities ...
Bayesian model averaging No. of obs = 221
Linear regression No. of predictors = 10
Model enumeration Groups = 10

Always = 0
Priors: No. of models = 1,024

Models: Beta-binomial(1, 1) For CPMP >= .9 = 49
Cons.: Noninformative Mean model size = 4.878
Coef.: Zellner’s g

g: Benchmark, g = 221 Shrinkage, g/(1+g) = 0.9955
sigma2: Noninformative Mean sigma2 = 0.464

diabetes Mean Std. dev. Group PIP

bmi .3383962 .0623547 3 1
serum5 .3312051 .0893712 9 .99817

bp .1567729 .0748241 4 .89364
serum3 -.1128554 .1054237 7 .63432
serum1 -.083198 .1591955 5 .3693

sex -.0377099 .0603943 2 .34986
serum2 .0254135 .1165365 6 .22639
serum4 -.0092812 .0594432 8 .16416

age -.0099652 .0313711 1 .15038
serum6 -.0030427 .0192269 10 .091849

Always
_cons -.0082592 .0459976 0 1

Note: Coefficient posterior means and std. dev. estimated from 1,024 models.
Note: Default priors are used for models and parameter g.

BMA also identifies bmi, serum5, and bp as the top three predictors.

We compute the squared prediction error for BMA and store it in the sqerrbma variable.

. bmapredict double pbmamean if sample == 2, mean
note: computing analytical posterior predictive means.
. generate double sqerrbma = (diabetes-pbmamean)^2
(221 missing values generated)
. drop pbmamean

To compare the predictive performance of the five models, we summarize the squared errors of their

predicted posterior means.

. summarize sqerr1 sqerr2 sqerr3 sqerr4 sqerrbma
Variable Obs Mean Std. dev. Min Max

sqerr1 221 .5454139 .6604434 .0001013 3.788343
sqerr2 221 .5458172 .6655874 .0000799 3.735547
sqerr3 221 .5471472 .6654343 6.97e-06 3.828219
sqerr4 221 .5559538 .6602583 .0000311 3.620555

sqerrbma 221 .5458022 .650325 .0002141 3.846061

https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregress


bayesselect — Bayesian variable selection for linear regression 29

The horseshoe model has the lowest mean squared error of 0.545 (variable sqerr1), followed by BMA

(variable sqerrbma) and Bayesian lasso (variable sqerr2). Overall, the differences between the models
are rather small. In this example, it appears that both the goodness-of-fit and out-of-sample prediction

criteria slightly favor the horseshoe model.

Now that we are finished with our analysis, we delete the simulation datasets and extra variables we

have created.

. rm model1sim.dta

. rm model2sim.dta

. rm model3sim.dta

. rm model4sim.dta

. drop sqerr1 sqerr2 sqerr3 sqerr4 sqerrbma sample

Stored results
See Stored results in [BAYES] bayesmh, except the e(exclude) result, which is not applicable to

bayesselect.

In addition, bayesselect stores the following in e():

Scalars

e(ssprior scale1) first scale parameter of spike-and-slab prior

e(ssprior scale2) second scale parameter of spike-and-slab prior

e(ssprior sd1) first standard deviation parameter of spike-and-slab prior

e(ssprior sd2) second standard deviation parameter of spike-and-slab prior

e(betaprior shape1) first shape parameter of beta prior for spike-and-slab hyperparameter

e(betaprior shape2) second shape parameter of beta prior for spike-and-slab hyperparameter

e(priorsigma) standard deviation of normal prior for the intercept

e(glprior scale) scale for global–local shrinkage prior

e(conjugate) 1 if conjugate is specified, 0 otherwise

e(cutoff) cutoff inclusion value

Macros

e(glprior) type of global–local shrinkage prior

e(ssprior) type of spike-and-slab prior

Matrices

e(inclusion) MCMC inclusion values

e(summary) MCMC summary matrix for model parameters other than regression coefficients

Methods and formulas
Methods and formulas are presented under the following headings:

Global–local shrinkage priors
Spike-and-slab priors

We consider a linear regression of a continuous response 𝑦 with 𝑝 potential predictors 𝑥1, 𝑥2, . . . , 𝑥𝑝.

Specifically,

𝑦𝑖 = x′
𝑖β + 𝛼 + 𝜖𝑖

where for an observation 𝑖 = 1, 2, . . . , 𝑛, 𝑦𝑖 is the observed response value, x𝑖 = (𝑥1𝑖, 𝑥2𝑖, . . . , 𝑥𝑝𝑖)′ is

the observed vector of predictors, β = (𝛽1, 𝛽2, . . . , 𝛽𝑝)′ is a vector of unknown regression coefficients,

𝛼 is an unknown intercept, 𝜖𝑖 ∼ 𝑁(0, 𝜎2) are i.i.d. errors, and 𝜎2 is the error variance.

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhStoredresults
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
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The importance of different predictors in modeling 𝑦 may vary. Variable selection identifies more

important predictors of 𝑦 for more efficient estimation and better prediction performance.

In contrast to model-selection methodologies that rely on inclusion or exclusion of predictors,

Bayesian variable selection considers all potential predictors simultaneously and provides a variety of

prior distributions for the vector of coefficients β to account for the importance of predictors.

The bayesselect command supports two main classes of priors for regression coefficients β:
global–local shrinkage priors and spike-and-slab priors.

The default prior for the intercept 𝛼 is normal,

𝛼 ∼ 𝑁(0, 𝜎2
0)

where the prior standard deviation 𝜎0 is controlled by the normalprior() option. The default value for

𝜎0 is 100, the same as the one used by [BAYES] bayes: regress and other Bayes prefix commands. This

is typically a fairly uninformative prior for 𝛼.
The default prior for 𝜎2 is the Jeffreys prior,

𝜎2 ∼ 1/𝜎2

which can be changed by using the prior() option.

Global–local shrinkage priors
Global–local shrinkage priors are normal distributions that come in two forms: the nonconjugate

form,

𝛽𝑗|𝜆2
𝑗 , 𝜏2, 𝜎2 ∼ 𝑁(0, 𝜆2

𝑗 𝜏2) (1)
or the conjugate form,

𝛽𝑗|𝜆2
𝑗 , 𝜏2, 𝜎2 ∼ 𝑁(0, 𝜆2

𝑗 𝜏2𝜎2) (2)
where 𝜏 is a global scale parameter and 𝜆𝑗’s are independent local scale parameters with prior distribu-

tions,

𝜏 ∼ 𝜓(𝜏)
𝜆𝑗 ∼ 𝜙(𝜆𝑗)

For the purpose of shrinkage, prior distribution 𝜓(⋅) should have a substantial mass near zero, and

𝜙(⋅) should have heavy tails (Polson and Scott 2011). The ability of global–local shrinkage priors to

discriminate a signal from a noise is due to the combination of the global shrinkage 𝜏 and heavy-tailed
local shrinkages 𝜆𝑗’s.

Carvalho, Polson, and Scott (2009) introduced a shrinkage coefficient 𝜅𝑗 = (1+𝜆2
𝑗 /𝜆2

0)−1, where 𝜆0
is a scale constant (to be defined later), and Cadonna, Frühwirth-Schnatter, and Knaus (2020) proposed

to use them to determine variable inclusion: the 𝑗th variable is considered to be included if 𝜅𝑗 < 0.5.

This notion of inclusion is used only for reporting and interpretation. The Bayesian variable selection

accounts for all potential predictors and does not discard any of them during estimation.

For the global–local shrinkage prior models, we define a more convenient statistic, what we call an

inclusion coefficient, 𝛾𝑗 = 1−𝜅𝑗, to be used as a criterion for variable inclusion. Because 𝛾𝑗’s are random

parameters, bayesselect computes their posterior means and reports those coefficients for which the

means are above a given threshold, 0.1 by default. We can use the cutoff(#) option to change the

default value.

https://www.stata.com/manuals/bayesbayesregress.pdf#bayesbayesregress
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Prior (2) is a standard conjugate prior for coefficients in a Bayesian linear regression. However, some

researchers (Moran, Ročková, and George 2019) argue that using (2) leads to underestimation of error

variance 𝜎2 and give preference to prior (1), which is the default in bayesselect. You can specify

prior (2) by using the conjugate option.

The default prior for the hyperparameter 𝜏 is

𝜏 ∼ HalfCauchy(0, 1)

You can use the prior() option to specify a different prior for 𝜏.
There are two common choices for the prior distribution 𝜙(⋅).

1. The horseshoe prior (Carvalho, Polson, and Scott 2009) is a special form of a global–local

shrinkage prior with

𝜆𝑗 ∼ HalfCauchy(0, 𝜆0)

where 𝜆0 is a scale parameter. HalfCauchy(0, 𝜆0) distribution has heavier tails than the normal
distribution and is simply a truncated Cauchy distribution. By default, 𝜆0 = 1, but you can

change this by using the hshoe(#) option.

It can be shown that the prior distribution for the shrinkage coefficient 𝜅𝑗 = (1 + 𝜆2
𝑗 /𝜆2

0)−1 is

Beta(0.5, 0.5), which resembles a horseshoe and thus gives the prior its name.
2. The Bayesian lasso (Park and Casella 2008) is another special case of a global–local shrinkage

prior with

𝜆𝑗 ∼ Rayleigh(𝜆0)

which is equivalent to

𝜆2
𝑗 ∼ Exponential(2𝜆2

0)

where 𝜆0 is a scale parameter. The default is 𝜆0 = 1, which can be changed by using the

blasso(#) option.

It can be shown that in the nonconjugate case 1, the marginal prior distribution of 𝛽𝑗 is Laplace(𝜆0𝜏)
and that in the conjugate case 2, the marginal prior distribution of 𝛽𝑗 is Laplace(𝜆0𝜏𝜎). The marginal
prior log-density of 𝛽𝑗 is thus proportional to −|𝛽𝑗|, which is precisely the 𝑙1-penalty term in standard

lasso.

Spike-and-slab priors
The original version of this prior was proposed by Mitchell and Beauchamp (1988),

𝛽𝑗|𝛾𝑗 ∼ (1 − 𝛾𝑗)𝛿0(𝛽𝑗) + 𝛾𝑗𝜙1(𝛽𝑗) (3)

where 𝛾𝑗’s are independent binary indicators, 𝛿0(⋅) is the delta function (with a mass concentrated only
at zero), and 𝜙1(⋅) is a continuous density. 𝛿0(⋅) is the spike and 𝜙1(⋅) is the slab component of the

prior. Difficulties in implementing an efficient sampling for this prior led to the development of various

alternatives.

Following the terminology of global–local shrinkage models, we call 𝛾𝑗 an inclusion coefficient and

𝜅𝑗 = 1−𝛾𝑗 a shrinkage coefficient. Unlike global–local shrinkagemodels, inclusion coefficients 𝛾𝑗’s can

be interpreted as actual inclusion probabilities. The bayesselect command computes their posterior

means and reports those coefficients for which the posterior mean is above a given threshold, 0.1 by

default. You can use the cutoff(#) option to change this value.

https://www.stata.com/manuals/bayesbayesselect.pdf#bayesbayesselectMethodsandformulaslinmod2
https://www.stata.com/manuals/bayesbayesselect.pdf#bayesbayesselectMethodsandformulaslinmod1
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The variable-selection effect of the spike-and-slab priors is sensitive to the distribution of the pre-

dictors. It is recommended that predictors 𝑥1 through 𝑥𝑝 be centered before estimation such that

𝑛𝑥𝑗 = ∑𝑛
𝑖=1 𝑥𝑗𝑖 = 0, for 𝑗 = 1, 2, . . . , 𝑝. If predictors are distributed away from zero, spike-and-

slab priors may not be effective in distinguishing between important and unimportant predictors. In this

regard, the normal-mixture spike-and-slab priors are more robust than the Laplace-mixture spike-and-

slab priors. There is no threshold for |𝑥𝑗| beyond which we should not use spike-and-slab priors—the

diminishing effect of the priors is gradual. Ishwaran and Rao (2005) derive consistency properties of

spike-and-slab priors under the orthogonality of the design matrix assumption, X′X = 𝑛In, which im-

plies that 𝑥2
𝑗 ≤ 1, for 𝑗 = 1, 2, . . . , 𝑝. There is also the so-called vanishing effect of the priors as the

sample increases, where the data dominate the specified prior information, which is a general problem in

Bayesian analysis. To counteract the vanishing effect of spike-and-slab priors, Ishwaran and Rao (2005)

recommend centering the outcome 𝑦 and rescaling it by a factor of
√

𝑛.
Below, we describe two variations of the spike-and-slab priors.

1. George and McCulloch (1993) proposed an alternative to (3), which is more tractable compu-

tationally, using normal distributions in place of the original 𝛿0(⋅) and 𝜙1(⋅) densities:

𝛽𝑗|𝛾𝑗 ∼ (1 − 𝛾𝑗)𝜙0(𝛽𝑗) + 𝛾𝑗𝜙1(𝛽𝑗)

The 𝜙(⋅) distributions are normal with the default forms of

𝜙0(⋅)∶ 𝑁(0, 𝜏2
0 ); 𝜙1(⋅)∶ 𝑁(0, 𝜏2

1 )

where 0 < 𝜏2
0 ≪ 𝜏2

1 .

Alternatively, when the conjugate option is specified, bayesselect uses the conjugate forms

𝜙0(⋅)∶ 𝑁(0, 𝜎2𝜏2
0 ); 𝜙1(⋅)∶ 𝑁(0, 𝜎2𝜏2

1 )

The defaults for the standard deviations are 𝜏0 = 0.01 and 𝜏1 = 1. These can be changed by

using the ssnormal(#1 #2) option.

2. The spike-and-slab lasso model (Ročková and George 2018) uses a mixture of Laplace distri-

butions:

𝛽𝑗|𝛾𝑗 ∼ (1 − 𝛾𝑗)𝜙0(𝛽𝑗) + 𝛾𝑗𝜙1(𝛽𝑗)

The 𝜙(⋅) distributions are Laplace with the default forms of

𝜙0(⋅)∶ Laplace(𝜆0); 𝜙1(⋅)∶ Laplace(𝜆1)

where 𝜆0 and 𝜆1 are the scale parameters.

When the conjugate option is specified, bayesselect uses the conjugate forms,

𝜙0(⋅)∶ Laplace(𝜎𝜆0); 𝜙1(⋅)∶ Laplace(𝜎𝜆1)

We use the scale-form representation of the Laplace distribution:

𝜙(𝛽|𝜆) = 𝜆
2

𝑒−|𝛽|/𝜆

The defaults for the scale parameters are 𝜆0 = 0.01 and 𝜆1 = 1. These can be changed by

using the sslaplace(#1 #2) option.

https://www.stata.com/manuals/bayesbayesselect.pdf#bayesbayesselectMethodsandformulasspikeslabeq
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Conditions that guarantee variable-selection consistency are considered in Narisetty and He (2014),

Narisetty (2022), and Ishwaran and Rao (2005). Specifically, conditions for strong selection consis-

tency require that 𝜏2
0 = 𝑜(𝑛−1) and 𝜏2

1 = 𝑂(1 + 𝑝𝑐𝑛−1), for 𝑐 > 2 and 𝜃 = 𝑂(𝑝−1), where 𝜃 is the

hyperparameter of the prior.

The Gibbs sampling for the spike-and-slab lasso model implemented in bayesselect is based on a

hierarchical representation of the Laplace distribution detailed in Andrews and Mallows (1974) and Park

and Casella (2008).

In both spike-and-slab models, the binary indicators 𝛾𝑗’s have independent Bernoulli prior distribu-

tions,

𝛾𝑗 ∼ Bernoulli(𝜃)

with a beta distribution with shapes 𝑎 and 𝑏 for the hyperparameter 𝜃,

𝜃 ∼ Beta(𝑎, 𝑏)

The prior on 𝜃 controls the sparsity of the regression model.
The defaults for the shape parameters of the beta prior are 𝑎 = 1 and 𝑏 = 1, which corresponds to a

uniform on [0,1] prior distribution for 𝜃. You can change these default values by using the betaprior(#1
#2) option. Or you can use the prior() option to specify a different prior for 𝜃.

bayesselect uses efficient Gibbs sampling for regression coefficients β, intercept 𝛼, latent param-
eters 𝜆𝑗’s and 𝛾𝑗’s, and hyperparameter 𝜃. An adaptive Metropolis–Hastings sampling is used for 𝜎2 by

default; see Methods and formulas of [BAYES] bayesmh.
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