
bayespredict — Bayesian predictions

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
bayespredict computes Bayesian predictions using current estimation results produced by select

Bayesian estimation commands. The Bayesian predictions are saved in a separate Stata dataset. Bayesian

predictions include simulated outcomes, which are samples from the posterior predictive distribution of

the fitted Bayesian model, and their functions. You can also compute posterior summaries of simulated

outcomes and store them as new variables in the current dataset.

bayesreps generates a random subset of MCMC replicates of simulated outcomes from the entire

MCMC sample and stores them as new variables in the current dataset. This command is useful for

checking model fit.

bayespredict and bayesreps are available after bayesmh with built-in likelihood models,

bayesselect, bayes: var, and panel-data bayes: xtcmd estimation commands. Additionally,

bayespredict and bayesreps require that you first save MCMC results by using the saving() op-

tion either during estimation or on replay.

Quick start
Simulated outcomes

Predictions for the first outcome variable after fitting a two-equation Bayesian model using bayesmh

bayespredict {_ysim}, saving(prdata)

Same as above, but for the second outcome variable, replacing prdata.dta with new prediction results

bayespredict {_ysim2}, saving(prdata, replace)

Predictions for the first outcome variable and observations 2 through 5

bayespredict {_ysim1[2/5]}, saving(prdata, replace)

Test statistics for simulated outcomes

Maximums and minimums of simulated outcomes computed over observations for the first outcome

variable

bayespredict (rmax:@max({_ysim1})) (rmin:@min({_ysim1})), ///
saving(prdata, replace)

Maximums and minimums of residuals for the second outcome variable

bayespredict (rmax:@max({_resid2})) (rmin:@min({_resid2})), ///
saving(prdata, replace)

1

https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryposterior_predictive_distribution
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryMCMC_replicates
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh

bayespredict — Bayesian predictions 2

Posterior summaries of simulated outcomes

Posterior means for the two outcomes stored in new variables pmean1 and pmean2 in the current dataset

bayespredict pmean1 pmean2, mean

Same as above, but calculating posterior medians and storing them in new variables pmedian1 and

pmedian2 specified as a variable stub pmedian*
bayespredict pmedian*, median

95% credible intervals for the second outcome variable y2; the lower and upper bounds are stored in

cril2 and criu2, respectively
bayespredict cril2 criu2, cri outcome(y2)

Simulate and save MCMC replicates of simulated outcomes

Generate 10MCMC replicates for the first outcome in the model, and store them as new variables y1rep1,
. . . , y1rep10 in the current dataset

bayesreps y1rep*, nreps(10)

Same as above, but for the second outcome y2 and storing the results in new variables y2rep1, . . . ,
y2rep10

bayesreps y2rep*, nreps(10) outcome(y2)

Menu
Statistics > Bayesian analysis > Predictions

bayespredict — Bayesian predictions 3

Syntax
Syntax is presented under the following headings:

Compute predictions
Compute posterior summaries of simulated outcomes
Generate a subset of MCMC replicates of simulated outcomes

Compute predictions
Prediction of selected outcome variables and observations

bayespredict ysimspec [ysimspec ...] [if] [in], saving(filespec) [simopts]

Functions of simulated outcomes, expected values, and residuals

bayespredict (funcspec) [(funcspec) ...] [if] [in], saving(filespec) [simopts]

ysimspec is { ysim#} or { ysim#[numlist]}, where { ysim#} refers to all observations of the #th sim-
ulated outcome and { ysim#[numlist]} refers to the selected observations, numlist, of the #th sim-

ulated outcome. { ysim} is a synonym for { ysim1}. With large datasets, specification { ysim#}
may use a lot of time and memory and should be avoided. See Generating and saving simulated

outcomes.

funcspec is one of the following,

[label:]@func(arg1 [, arg2])
[label:]@userprog arg1 [arg2] [, extravars(varlist) passthruopts(string)]

where label is a valid Stata name; func is an official or user-defined Mata function that operates on

column vectors and returns a real scalar; userprog is a user-defined Stata program; and arg1 and

arg2 are one of { ysim[#]}, { resid[#]}, or { mu[#]}. { mu#} refers to expected values, and

{ resid#} refers to residuals for the #th outcome, where the latter is defined as the difference between
{ ysim#} and { mu#}. arg2 is primarily for use with user-defined Mata functions; see Defining test

statistics using Mata functions.

Compute posterior summaries of simulated outcomes
Posterior mean of simulated outcomes

bayespredict [type] newvarspec [if] [in], mean

[outcome(depvar) meanopts simopts]

Posterior median or posterior standard deviation of simulated outcomes

bayespredict [type] newvarspec [if] [in], median | std

[outcome(depvar) simopts]

Credible intervals for simulated outcomes

bayespredict [type] newvar𝑙 newvar𝑢 [if] [in], cri

[outcome(depvar) criopts simopts]

newvarspec is newvar for single-outcome models and newvarlist or stub* for multiple-outcome models.

https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictSyntaxbayespred
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictSyntaxpostsumm
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictSyntaxreplicates
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictSyntaxysimspec
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictOptionssavingopt
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictSyntaxsimopts
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictSyntaxfuncspec
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictOptionssavingopt
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictSyntaxsimopts
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesGeneratingandsavingsimulatedoutcomes
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesGeneratingandsavingsimulatedoutcomes
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesDefiningteststatisticsusingMatafunctions
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesDefiningteststatisticsusingMatafunctions
https://www.stata.com/manuals/d.pdf#dDatatypes
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictSyntaxnewvarspec
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictOptionsoutsim
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictSyntaxmeanopts
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictSyntaxsimopts
https://www.stata.com/manuals/d.pdf#dDatatypes
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictSyntaxnewvarspec
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictOptionsoutsim
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictSyntaxsimopts
https://www.stata.com/manuals/d.pdf#dDatatypes
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictOptionsoutsim
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictSyntaxcriopts
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictSyntaxsimopts
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists

bayespredict — Bayesian predictions 4

Generate a subset of MCMC replicates of simulated outcomes

bayesreps [type] newrepspec [if] [in], nreps(#) [outcome(depvar) simopts]

newrepspec is newvar with nreps(1) for a single replicate and stub* with nreps(#), where # is greater
than 1, for multiple replicates.

meanopts Description

Main

mcse(newvar) create newvar containing MCSEs

Advanced

batch(#) specify length of block for batch-means calculations; default is batch(0)
corrlag(#) specify maximum autocorrelation lag; default varies

corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

simopts Description

Simulation

rseed(#) random-number seed
∗ chains(all | numlist) specify which chains to use for computation; default is chains(all)

dots display dots every 100 iterations and iteration numbers every
1,000 iterations

dots(#[, every(#)]) display dots as simulation is performed

∗ Option chains() is relevant only when option nchains() is used during Bayesian estimation.

criopts Description

Main

clevel(#) set credible interval level; default is clevel(95)
hpd calculate HPD credible intervals instead of the default equal-tailed credible

intervals

Options
Options are presented under the following headings:

Options for predictions
Options for posterior summaries
Options for bayesreps

https://www.stata.com/manuals/d.pdf#dDatatypes
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictSyntaxnewrepspec
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictOptionsoutreps
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictSyntaxsimopts
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictOptionsOptionsforpredictions
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictOptionsOptionsforposteriorsummaries
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictOptionsOptionsforbayesreps

bayespredict — Bayesian predictions 5

Options for predictions

� � �
Main �

saving(filename[, replace]) saves the requested predictions such as simulated outcomes and residu-

als in filename.dta. It also saves auxiliary estimation results in filename.ster, which is accessible by
specifying estimates use filename. The replace option specifies to overwrite filename.dta and

filename.ster if they exist. saving() is required when computing predictions. The results are saved
only for the outcome variables, observations, and functions that are specified with bayespredict.
See Prediction dataset for details.

extravars(varlist) is for use with user-defined Stata programs. It specifies any variables in addition to

dependent and independent variables that you may need to calculate predictions. For example, such

variables are offset variables and exposure variables for count-data models.

passthruopts(string) is for use with user-defined Stata programs. It specifies a list of options you may
want to pass to your program when calculating predictions. For example, these options may contain

fixed values of model parameters and hyperparameters.

� � �
Simulation �

rseed(#) sets the random-number seed. This option can be used to reproduce results. With one

chain, rseed(#) is equivalent to typing set seed # prior to calling bayespredict; see [R] set

seed. With multiple chains, you should use rseed() for reproducibility; see Reproducing results

in [BAYES] bayesmh.

chains(all | numlist) specifies which chains from the MCMC sample to use for computation. The

default is chains(all) or to use all simulated chains. Using multiple chains, provided the chains

have converged, generally improves MCMC summary statistics. Option chains() is relevant only

when option nchains() is used during Bayesian estimation.

dots and dots(#) specify to display dots during simulation. With multiple chains, these options affect

all chains. dots(#) displays a dot every # iterations. If dots(. . ., every(#)) is specified, then an

iteration number is displayed every #th iteration instead of a dot. dots(, every(#)) is equivalent

to dots(1, every(#)). dots displays dots every 100 iterations and iteration numbers every 1,000

iterations; it is a synonym for dots(100, every(1000)).

Options for posterior summaries

� � �
Main �

mean calculates posterior means of a simulated outcome variable and stores them as a new variable in

the current dataset.

median calculates posterior medians of a simulated outcome variable and stores them as a new variable

in the current dataset.

std calculates posterior standard deviations of a simulated outcome variable and stores them as a new

variable in the current dataset.

mean, median, and std can compute results for all simulated outcome variables or for a specific one. To

compute results for all simulated outcome variables, you specify 𝑝 new variables, where 𝑝 is the number

of dependent variables. Alternatively, you can specify stub*, in which case these options will store the

https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/restimatessave.pdf#restimatessave
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesPredictiondataset
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rsetseed.pdf#rsetseed
https://www.stata.com/manuals/rsetseed.pdf#rsetseed
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesReproducingresults
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist

bayespredict — Bayesian predictions 6

results in variables stub1, stub2, . . . , stub𝑝. To compute the results for a specific simulated outcome

variable, you specify one new variable and, optionally, the outcome variable name in option outcome();
if you omit outcome(), the first outcome variable is assumed.

cri calculates credible intervals for a simulated outcome variable and stores the corresponding lower and
upper bounds in two new variables in the current dataset. For multiple-outcome models, it computes

the results for the outcome variable as specified in option outcome() or, by default, for the first

outcome variable.

outcome(depvar) is for use with multiple-outcome models when computing posterior summaries of

simulated outcomes. It specifies for which simulated outcome posterior summaries are to be calcu-

lated. outcome() should contain a name of the outcome (dependent) variable. The default is the first

outcome variable. outcome() may not be combined with the newvarlist or stub* specification.

mcse(newvar) is for use in a combination with option mean. It adds newvar of storage type type contain-
ingMCSEs for the posterior means of a simulated outcome variable. If multiple variables are specified

with bayespredict, newvar is used as a stub newvar*.

clevel(#) specifies the credible level, as a percentage, for equal-tailed and HPD credible intervals. The

default is clevel(95) or as set by [BAYES] set clevel. This option requires that cri also be specified.

hpd calculates the HPD credible intervals instead of the default equal-tailed credible intervals. This option

requires that cri also be specified.

� � �
Simulation �

rseed(#) sets the random-number seed. This option can be used to reproduce results. With one

chain, rseed(#) is equivalent to typing set seed # prior to calling bayespredict; see [R] set

seed. With multiple chains, you should use rseed() for reproducibility; see Reproducing results

in [BAYES] bayesmh.

chains(all | numlist) specifies which chains from the MCMC sample to use for computation. The

default is chains(all) or to use all simulated chains. Using multiple chains, provided the chains

have converged, generally improves MCMC summary statistics. Option chains() is relevant only

when option nchains() is used during Bayesian estimation.

dots and dots(#) specify to display dots during simulation. With multiple chains, these options affect

all chains. dots(#) displays a dot every # iterations. If dots(. . ., every(#)) is specified, then an

iteration number is displayed every #th iteration instead of a dot. dots(, every(#)) is equivalent

to dots(1, every(#)). dots displays dots every 100 iterations and iteration numbers every 1,000

iterations; it is a synonym for dots(100, every(1000)).

� � �
Advanced �

The advanced options are available only in a combination with option mean.

batch(#) specifies the length of the block for calculating batch means and an MCSE using batch means.

The default is batch(0), which means no batch calculations. When batch() is not specified, the

MCSE is computed using effective sample sizes instead of batchmeans. batch()may not be combined
with corrlag() or corrtol().

corrlag(#) specifies the maximum autocorrelation lag used for calculating effective sample sizes. The

default is min{500, mcmcsize()/2}. The total autocorrelation is computed as the sum of all lag-𝑘
autocorrelation values for 𝑘 from 0 to either corrlag() or the index at which the autocorrelation

becomes less than corrtol() if the latter is less than corrlag(). Options corrlag() and batch()
may not be combined.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/bayessetclevel.pdf#bayessetclevel
https://www.stata.com/manuals/rsetseed.pdf#rsetseed
https://www.stata.com/manuals/rsetseed.pdf#rsetseed
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesReproducingresults
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist

bayespredict — Bayesian predictions 7

corrtol(#) specifies the autocorrelation tolerance used for calculating effective sample sizes. The

default is corrtol(0.01). For a given model parameter, if the absolute value of the lag-𝑘 autocorre-

lation is less than corrtol(), then all autocorrelation lags beyond the 𝑘th lag are discarded. Options
corrtol() and batch() may not be combined.

Options for bayesreps

� � �
Main �

nreps(#) specifies the number of MCMC replicates of simulated outcomes to be drawn at random from

the entire sample of MCMC replicates. # must be an integer between 1 and the MCMC sample size,

inclusively. The generated replicates are stored as new variables in the current dataset. For a single

replicate, nreps(1), you specify one new variable name. For multiple replicates, you specify a stub*,
in which case the replicates will be stored in variables stub1, stub2, . . ., stub𝑅, where 𝑅 is the number

of replicates specified in nreps().

outcome(depvar) is for use with multiple-outcomes models when generating MCMC replicates of sim-

ulated outcomes using bayesreps. It specifies for which simulated outcome MCMC replicates are

to be generated. The default is to use the first outcome variable. You can specify other outcome

(dependent) variable names in outcome().

� � �
Simulation �

rseed(#) sets the random-number seed. This option can be used to reproduce results. With one

chain, rseed(#) is equivalent to typing set seed # prior to calling bayespredict; see [R] set

seed. With multiple chains, you should use rseed() for reproducibility; see Reproducing results

in [BAYES] bayesmh.

chains(all | numlist) specifies which chains from the MCMC sample to use for computation. The

default is chains(all) or to use all simulated chains. Using multiple chains, provided the chains

have converged, generally improves MCMC summary statistics. Option chains() is relevant only

when option nchains() is used during Bayesian estimation.

dots and dots(#) specify to display dots during simulation. With multiple chains, these options affect

all chains. dots(#) displays a dot every # iterations. If dots(. . ., every(#)) is specified, then an

iteration number is displayed every #th iteration instead of a dot. dots(, every(#)) is equivalent

to dots(1, every(#)). dots displays dots every 100 iterations and iteration numbers every 1,000

iterations; it is a synonym for dots(100, every(1000)).

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rsetseed.pdf#rsetseed
https://www.stata.com/manuals/rsetseed.pdf#rsetseed
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesReproducingresults
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist

bayespredict — Bayesian predictions 8

Remarks and examples
Remarks are presented under the following headings:

Overview of Bayesian predictions
Prior and posterior predictive distributions
Simulated outcomes
Posterior predictive checking and replicated outcomes

Using bayespredict and bayesreps
Generating and saving simulated outcomes
Defining test statistics using Mata functions
User-defined Stata programs
Posterior summaries of simulated outcomes
Prediction dataset
Evaluators with predictions

Examples are presented under the following headings:

Bayesian predictions
Posterior predictive inference
Out-of-sample prediction
One-step-ahead Bayesian forecast after Bayesian VAR

Overview of Bayesian predictions
Bayesian analysis rests on the assumptions that model parameters are random quantities distributed

according to some prior beliefs and that the data, once observed, are fixed. The main goal of Bayesian

inference is to estimate the posterior distribution of model parameters, which combines the prior beliefs

with evidence from the observed data, and form inferences about these parameters. But what if we want

to estimate a future outcome value? This is one of the goals of Bayesian prediction.

Bayesian predictions are useful in a wide range of applications. They can be used as optimal predictors

in forecasting, optimal classifiers in classification problems, imputations for missing data, and more.

They are also important for checking model goodness of fit.

Bayesian prediction differs from frequentist prediction. Prediction, in a frequentist sense, is a deter-

ministic function of estimated model parameters. For example, in a linear regression, the linear predictor,

which is a linear combination of estimated regression coefficients and observed covariates, is used to pre-

dict values of continuous outcomes. Bayesian predictions, on the other hand, are functions of simulated

outcomes and are thus stochastic quantities. Simulated outcomes are new outcome values generated from

the so-called posterior predictive distribution, which we describe next.

Prior and posterior predictive distributions

Before the data y are observed, the distribution of y is

𝑝(y) = ∫ 𝑝(y,θ)𝑑θ = ∫ 𝑝(y|θ)𝑝(θ)𝑑θ (1)

where 𝑝(y|θ) is the likelihood of y given model parameters θ and 𝑝(θ) is the prior distribution for θ. 𝑝(y)
is the so-called prior predictive distribution, which is more commonly known as the marginal distribution

of y.

bayespredict — Bayesian predictions 9

Suppose that yobs are observed data and y = ynew are new, unobserved (future) data. The posterior

predictive distribution of ynew is

𝑝(ynew|yobs) = ∫ 𝑝(ynew|θ)𝑝(θ|yobs)𝑑θ (2)

where 𝑝(θ|yobs) is the posterior distribution of θ. You can think of a posterior predictive distribution (2)
as a prior predictive distribution (1) updated after observing the data yobs.

Simulated outcomes

Like the posterior distribution of model parameters, the predictive distribution 𝑝(ynew|yobs) usually
does not have a closed form and must be approximated. The goal of Bayesian prediction is to simulate

data from 𝑝(ynew|yobs). We will refer to these data as simulated outcomes, ysim.

Formula (2) provides a way of simulating new outcome values by using a two-step procedure. First,

model parameters θ⋆ are simulated from their posterior distribution 𝑝(θ|yobs). Then, the new outcome

values ysim are simulated from the likelihood model 𝑝(ysim|θ⋆) using the simulated model parameters

from step 1. These two steps are repeated for a prespecified number of MCMC iterations, 𝑇. The result is
an MCMC sample of simulated outcomes, (ysim,1, ysim,2, . . . , ysim,T). This sample is used to estimate the
posterior predictive distribution.

Thus, unlike classical prediction, which produces a single value for each observation, Bayesian pre-

diction produces a sample of 𝑇 simulated values for each observation. If you have 𝑛 observations in

the dataset, the result of a Bayesian prediction will be a 𝑇 × 𝑛 matrix (for each outcome or dependent

variable). Therefore, Bayesian predictions are often computed for a subset of observations or for vari-

ous summaries over observations such as means, quantiles, minimum and maximum values, and so on.

Sometimes, a smaller sample of 𝑅 << 𝑇 MCMC replicates of simulated outcomes is used to explore

the posterior distribution of simulated outcomes. In other cases, posterior summaries over the MCMC

replicates such as posterior means and medians of simulated outcomes may be of interest.

Posterior predictive checking and replicated outcomes

In addition to predicting future observations, Bayesian prediction is useful for model checking. Model

checking is accomplished by performing the so-called posterior predictive checks, which compare vari-

ous characteristics of the posterior predictive distribution with those observed in the data.

The concept of replicated data or replicated outcomes arises in the context of posterior predictive

checking for regression-type models. In a regression setting, the posterior predictive distribution also

depends on the covariate-data matrix 𝑋, 𝑝(ynew|yobs) = 𝑝(ynew|yobs, 𝑋). The data matrix 𝑋 may contain

the observed values that were used to fit the Bayesian model, 𝑋obs, or the new values, 𝑋new. Replicated

outcomes are outcomes simulated from the posterior predictive distribution, 𝑝(ynew|yobs, 𝑋obs), using the
observed covariate data. In other words, the replicated outcomes are the outcomes we would observe if

we repeated our experiment again. We will denote replicated outcomes as yrep.

Replicated outcomes are also known as in-sample predictions, whereas outcomes simulated using

new covariate data, 𝑋new, are known as out-of-sample predictions. In-sample predictions are useful for

diagnostic checks. Out-of-sample predictions can be used for forecasting and model validation. In the

latter case, the data are split into training and test subsamples: the training subsample is used to fit a

Bayesian model, and the test subsample is used to assess prediction accuracy of the fitted model.

https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesbpeq2
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesbpeq1
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesbpeq2

bayespredict — Bayesian predictions 10

Posterior predictive checking is performed by comparing the distribution (or certain aspects of it) of

the replicated data to that of the observed data. This can be done visually by examining histograms and

quantile plots. More formally, discrepancy measures such as a mean, minimum, and maximum statistics

computed for the replicated data and for the observed data can be compared using posterior predictive

𝑝-values; see [BAYES] bayesstats ppvalues for details.
It is important to realize the difference between MCMC diagnostic checks (Convergence of MCMC

in [BAYES] bayesmh) and posterior predictive checks. The former examines the properties of MCMC

sampling, whereas the latter inspects how well the specified Bayesian model describes the observed data.

But these two types of checks are related—an ill-fitting model lowers theMCMC sampling efficiency and

may even lead to nonconvergence of the MCMC algorithm.

For in-depth coverage of Bayesian predictions and posterior predictive inference, see Meng (1994),

West (1986), Tsui and Weerahandi (1989), Gelman, Meng, and Stern (1996), Gelman and Rubin (1992),

and Gelman et al. (2014), to name a few.

Using bayespredict and bayesreps
bayespredict computes Bayesian predictions using current estimation results produced by the

bayesmh command with built-in likelihood models and saves them in a separate Stata dataset. Bayesian

predictions include simulated outcomes, which are samples from the posterior predictive distribution of

the fitted Bayesian model, and their functions. You can also compute posterior summaries of simulated

outcomes and store them as new variables in the current dataset.

To compute Bayesian predictions, you must specify the saving() option with bayespredict to save
the prediction results; see Generating and saving simulated outcomes. To compute posterior summaries,

youmust specify one ormore new variable names and the corresponding option such as mean for posterior
mean and std for posterior standard deviation; see Posterior summaries of simulated outcomes.

bayesreps generates a random subset of MCMC replicates of simulated outcomes from the entire

MCMC sample and stores them as new variables in the current dataset. This command is useful for

checking model fit. The number of replicates is specified in the nreps(#
reps

) option. With multiple

replicates, you must specify a variable stub* with bayesreps, and the command will generate new

variables stub1, stub2, . . ., stub#
reps

in the current dataset. For multiple-outcome models, the replicates

are produced for one outcome at a time. The first outcome is the default, but you can specify a different

outcome variable in the outcome() option.

Both bayespredict and bayesreps require that bayesmh’s MCMC simulation dataset be saved

prior to their execution. You can save MCMC simulation results by specifying the saving() option

with bayesmh during or after estimation; see Storing estimation results after Bayesian estimation in

[BAYES] Bayesian postestimation.

Both commands produce stochastic results. Use the rseed() option for reproducibility. Depending

on the number of observations, the specifiedMCMC sample size, and model complexity, the computations

may be time consuming. Options dots and dots() may be useful in this case to monitor the progress.

They display a dot for each simulation performed.

bayespredict and bayesreps can be used to make in-sample or out-of-sample predictions; see

Description in [R] predict for how to specify such predictions.

https://www.stata.com/manuals/bayesbayesstatsppvalues.pdf#bayesbayesstatsppvalues
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesConvergenceofMCMC
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryposterior_predictive_distribution
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesPredictiondataset
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesGeneratingandsavingsimulatedoutcomes
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesPosteriorsummariesofsimulatedoutcomes
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryMCMC_replicates
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimationRemarksandexamplesStoringestimationresultsafterBayesianestimation
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimation
https://www.stata.com/manuals/rpredict.pdf#rpredictDescription
https://www.stata.com/manuals/rpredict.pdf#rpredict

bayespredict — Bayesian predictions 11

Generating and saving simulated outcomes

Generating and saving simulated outcomes is the main usage of bayespredict, which requires the
saving() option when generating simulated outcomes. The simplest specification is

. bayespredict {_ysim1}, saving(filename)

which generates the simulated values for the first outcome variable and saves them in filename.dta. You
can also use { ysim} as a synonym for { ysim1}.

The above specification produces the prediction dataset filename.dta, which contains 𝑇 observations

and 𝑛 variables, where 𝑇 is the MCMC sample size used by bayesmh and 𝑛 is the number of observations

in the original dataset. That is, anMCMC sample of size 𝑇 is generated for each observation of the outcome

variable.

For example, if our dataset has 100 observations and we use an MCMC sample of size 10,000 during

simulation, bayespredict will produce the prediction dataset filename.dta with 10,000 observations

and 100 variables. This specification may not always be feasible, especially for large datasets, or even

necessary.

You would rarely need to simulate and store all observations for all outcome variables. More likely,

if you are performing model diagnostics, you may be interested only in several test statistics, which you

can simulate without storing the simulated outcomes; see Defining test statistics using Mata functions.

Or you may be interested only in posterior summaries of simulated outcomes; see Posterior summaries

of simulated outcomes. Or you may need to explore only a small random subset of MCMC replicates of

simulated outcomes, which you can obtain by using the bayesreps command. Or if you are interested

in forecasting, you may need to simulate values for only a few new data points.

For example, suppose we want to simulate outcome values for 10 new observations only, which are

stored in observations 101 through 110 in our original dataset. We can do this using

. bayespredict {_ysim1[101/110]}, saving(filename)

or, equivalently, using

. bayespredict {_ysim1} in 101/110, saving(filename)

The two specifications above are more efficient with respect to execution time and storage.

The full syntax of bayespredict for simulating all variables and all observations is

. bayespredict {_ysim1} {_ysim2} . . ., saving(filename)

where you specify { ysim#} for the #th outcome variable. The order of variables is determined by the

order in which they were specified with bayesmh.

If you need to predict multiple outcomes, it may be more efficient with regard to storage to simulate

them separately. Remember that the total number of variables in the prediction dataset may not exceed the

current c(maxvar) setting. Because bayespredict stores additional variables, the number of specified

outcome observations may not exceed floor((c(maxvar)-3)/2); see Prediction dataset.

By default, bayespredict computes out-of-sample predictions. This may sometimes lead to missing
predicted observations, for instance, when some of the covariates contain missing values. In the context

of bayespredict when simulating outcomes, residuals, and expected values, this implies that the pre-

diction dataset may contain variables containing all missing observations. Recall that the variables in the

prediction dataset correspond to the observations in the original dataset. In such cases, to reduce the size

https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesDefiningteststatisticsusingMatafunctions
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesPosteriorsummariesofsimulatedoutcomes
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesPosteriorsummariesofsimulatedoutcomes
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesPredictiondataset

bayespredict — Bayesian predictions 12

of the prediction dataset, you may consider restricting the prediction sample to the estimation sample,

if e(sample); or specifying a subset of observations using numlist, for example, ysim[numlist]; or
specifying the subset of interest by using if and in.

Defining test statistics using Mata functions

Instead of simulating all observations for your outcomes of interest, you may be interested in ob-

taining only some summary statistics such as sample means, medians, smallest and largest observations,

and standard deviations calculated over these observations. This is commonly used when performing

posterior predictive checks; see Posterior predictive inference.

Test statistics are scalar functions of observed (or simulated) outcome values. Let y be an outcome

variable in a dataset of size 𝑛 and let ysim = (𝑦sim
1 , 𝑦sim

2 , . . . , 𝑦sim
𝑛)𝑇 denote one simulated outcome sample

given as a column vector. A test statistic 𝑇 (ysim) summarizes the column vector ysim by a single number.

For example, the mean statistic is defined as

𝑇 (ysim) = 1
𝑛

(𝑦sim
1 + · · · + 𝑦sim

𝑛) = ysim

In bayespredict, test statistics can be defined using Mata functions or Stata programs. Here we

focus on the specifications using Mata functions; see User-defined Stata programs for Stata programs.

Note that if you need to compute a test quantity, 𝑇 (y,θ), that directly uses model parameters θ, you must
use Stata programs.

bayespredict supports Mata functions that return a scalar and accept one or two column vectors as

arguments. You can specify the following as the arguments to the Mata functions: simulated outcomes,

{ ysim#}; simulated residuals, { resid#}; and expected outcome values, { mu#}. { resid#} is de-

fined as the difference between { ysim#} and { mu#}. (Specifications { resid#} and { mu#} are

not available for ordinal models.) You can also use { ysim}, { resid}, and { mu} as synonyms for

{ ysim1}, { resid1}, and { mu1}, respectively. If you used if or in with bayespredict to restrict

the prediction sample or specified only a subset of observations, that is, { ysim[1/10]}, the column
vectors passed to Mata functions as arguments will contain only the available observations.

Suppose we want to produce an MCMC sample of means of the first simulated outcome. We can

specify

. bayespredict (@mean({_ysim1}), saving(. . .)

Similarly, we can produce an MCMC sample of means for the residuals of the first simulated outcome

. bayespredict (resmean: @mean({_resid1}), saving(. . .)

In the above, we also labeled our prediction as resmean. We can use this label to refer to this prediction

in other Bayesian postestimation commands such as bayesstats ppvalues and bayesstats summary.
If we do not specify our own labels, the default labels will be used for each prediction. The default label

is arg1 func, where arg1 is the first function argument and func is the name of the function. For instance,

in our first example, the default label ysim1 mean will be used.

You will typically specify only one argument with most official Mata functions. The support of two

arguments is provided primarily for calculating more complicated test statistics using user-defined Mata

functions. For example, let’s define a new Mata function that calculates the sum of squared Pearson

residuals assuming a Poisson model.

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesPosteriorpredictiveinference
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesUser-definedStataprograms
https://www.stata.com/manuals/bayesbayesstatsppvalues.pdf#bayesbayesstatsppvalues
https://www.stata.com/manuals/bayesbayesstatssummary.pdf#bayesbayesstatssummary

bayespredict — Bayesian predictions 13

We define aMata function, sumpresid(), that calculates the squared Pearson residuals as the squared
difference between the simulated outcome vector, ysim, and expected values, mu, divided by the variance,
which is also mu for a Poisson model. The result is the sum of these squared standardized differences.

mata:
real scalar sumpresid(real colvector ysim, real colvector mu) {

return (sum((ysim-mu):^2:/mu))
}

end

Then, we can call bayespredict with the following specification to compute the sum of squared

Pearson residuals for the first outcome in the model:

. bayespredict (@sumpresid({_ysim1}, {_mu1})), saving(. . .)

Mata functions can be used only with one outcome at a time. That is, specifications that re-

fer to two outcomes such as @myprog({ ysim1}, { ysim2}), @myprog({ ysim1}, { mu2}), or
@myprog({ ysim1}, { resid2}) are not allowed.

Mata functions are preferable to Stata programs because of speed, but Stata programs provide more

flexibility to compute complicated functions; see User-defined Stata programs below.

User-defined Stata programs

Mata functions (see Defining test statistics using Mata functions) are more efficient and faster in

computing simple test statistics and test quantities, but they have limitations. For example, you cannot

access model parameters within Mata functions. You can within Stata programs. Although executing

Stata programs may be much slower, they provide more flexibility for computing test quantities.

A Stata program must have the following format in order to be used by bayespredict:
program userprog

version 19.5 // (or version 19 if you do not have StataNow)
args res simvar1 [simvar2]
. . . computation . . .
scalar ‘res’ = . . .

end

The first argument, res, contains the name of a temporary scalar to store the final result. The second

argument, simvar1, and the third (optional) argument, simvar2, contain the names of temporary variables,

which store the simulation results for the quantities specified as program arguments arg1 and arg2 with

bayespredict:

. bayespredict ([label]: @userprog arg1 [arg2]), saving(. . .) . . .

arg1 and arg2 may be one of { ysim#}, { mu#}, or { resid#}, but they should refer to the same

outcome variable; that is, they must use the same #. label is the label for the computed prediction

result that can be used later to refer to this result within other Bayesian postestimation commands such

as bayesstats summary. If we do not specify our own label, the default label will be used for each

prediction. The default label is arg1 userprog, where arg1 is the first program argument and userprog

is the name of the program.

https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesUser-definedStataprograms
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesDefiningteststatisticsusingMatafunctions

bayespredict — Bayesian predictions 14

Recall the sumpresid() Mata function defined in the previous section. Below, we replicate the same

computation but now using the Stata program.

program sumpresidprog
version 19.5 // (or version 19 if you do not have StataNow)
args sum ysim mu
tempvar presid
generate double ‘presid’ = (‘ysim’-‘mu’)^2/‘mu’
summarize ‘presid’, meanonly
scalar ‘sum’ = r(sum)

end

We can then call bayespredict with the following specification,

. bayespredict (@sumpresidprog {_ysim1} {_mu1}), saving(. . .)

to compute this statistic for the first outcome. Because we did not specify our own label in the above,

the default label ysim1 sumpresidprog will be used.

Generally, our Stata program should use a proper “touse” variable, which marks the prediction sample

of bayespredict. Unlike Mata functions, the prediction results passed to Stata programs as arguments

will contain all observations. However, the observations outside the prediction sample will contain miss-

ing values. Nevertheless, it is good practice to always use the touse variable in the calculations.

program sumpresidprog
version 19.5 // (or version 19 if you do not have StataNow)
args sum ysim mu
local touse $BAYESPR_touse
tempvar presid
generate double ‘presid’ = (‘ysim’-‘mu’)^2/‘mu’ if ‘touse’
summarize ‘presid’ if ‘touse’, meanonly
scalar ‘sum’ = r(sum)

end

The global macro $BAYESPR touse contains a temporary name of a binary variable that marks the pre-

diction sample, which we now use in our calculations.

One flexibility of Stata programs is that we can access model parameters within them. In the above

programs, we used precomputed expected values, mu. We can compute these values manually by using

the simulated model parameters and observed variables.

program sumpresidprogmu
version 19.5 // (or version 19 if you do not have StataNow)
args sum ysim
local touse $BAYESPR_touse
local theta $BAYESPR_theta //<--New line
tempvar xb mu //<--New line
matrix score double ‘xb’ = ‘theta’ if ‘touse’ //<--New line
qui generate double ‘mu’ = invlogit(‘xb’) if ‘touse’ //<--New line
tempvar presid
generate double ‘presid’ = (‘ysim’-‘mu’)^2/‘mu’ if ‘touse’
summarize ‘presid’ if ‘touse’, meanonly
scalar ‘sum’ = r(sum)

end

To compute expected values, we need to compute the linear predictor. To compute the linear predictor, we

need coefficient estimates. The coefficient estimates are provided in a temporarymatrix (row vector) with

the name stored in the global macro $BAYESPR theta. The columns of this temporary matrix are labeled

https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesDefiningteststatisticsusingMatafunctions

bayespredict — Bayesian predictions 15

properly with the names of the corresponding predictors, so we can use matrix score (see [P] matrix

score) to easily compute the linear predictor. We then use the inverse-logit function to compute expected

values (probabilities) from the linear predictions. The rest of the program is the same as earlier.

We call the above program using the following bayespredict specification:

. bayespredict (@sumpresidprogmu {_ysim1}), saving(. . .)

See example 8.

For some programs, you may need to pass additional variables or contents of command options. You

can use extravars() and passthruopts() for that; see Options for predictions.

You can access the following global macros from the Stata programs used with bayespredict.

Global macros Description

$BAYESPR theta name of a temporary matrix (row vector) of scalar parameters;
stripes are properly named after the names of model parameters

$BAYESPR matrix mname name of a temporary matrix containing simulated matrix parameter
mname

$BAYESPR touse variable containing 1 for the observations to be used; 0 otherwise

$BAYESPR extravars varlist specified in extravars()
$BAYESPR passthruopts options specified in passthruopts()

Posterior summaries of simulated outcomes

In some applications, we may not need the actual simulated outcomes but rather their posterior sum-

maries such as posterior means, medians, and standard deviations. For this purpose, bayespredict
offers the mean, median, std, and cri options to compute posterior means, medians, standard devia-

tions, and credible intervals. When you specify these options, the prediction results are stored in the

specified new variables in the current dataset. You do not need to specify the saving() option in this

case because the high-dimensional simulation outcomes are not saved, only their posterior summaries.

With mean, median, and std, you can compute results for one outcome variable at a time or for all
outcome variables. In the first case, you specify a new variable name and the name of the outcome

(dependent) variable in the outcome() option. If you omit outcome(), the first outcome variable will
be used. To compute results for all outcome variables, you specify a new variable name for each outcome

or stub*, in which case the new variables will be named stub1, stub2, and so on.

When you compute posterior means, you can also specify the mcse(newvar) option to compute their

corresponding MCSEs. If posterior means are computed for multiple outcome variables, newvar is used

as stub* to store MCSEs for each outcome in newvar1, newvar2, and so on.

With cri, you specify two new variable names to contain the lower and upper credible bounds. You

can compute results only for one outcome variable at a time, which you specify in the outcome() option.
If you omit this option, the first outcome variable is assumed. You can specify the clevel() option to

change the default 95% credible level and the hpd option to calculate HPD credible intervals instead of

the default equal-tailed intervals.

All computed results are stochastic. You should specify the rseed() option for reproducibility. Also

see Syntax for other available simulation options, simopts.

https://www.stata.com/manuals/pmatrixscore.pdf#pmatrixscore
https://www.stata.com/manuals/pmatrixscore.pdf#pmatrixscore
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesbayespr_ex8
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictOptionsextravars
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictSyntax
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictSyntaxsimopts

bayespredict — Bayesian predictions 16

Prediction dataset

bayespredict saves prediction results in a dataset filename.dta as specified in the saving(file-
name) option. In addition, bayespredict stores auxiliary estimation results, described in Stored results,
in filename.ster. This file is used by other postestimation commands such as bayesstats summary
when summarizing the simulated prediction quantities.

The format of the filename.dta file is similar to the simulation dataset created by the bayesmh com-

mand. The first two variables are chain and index, which store the respective chain and MCMC

iteration identifiers. Following are the variables containing simulated values for the #1th outcome vari-

able and the #2th observation, ysim#1 #2, if any, and the corresponding expected outcome values,

mu#1 #2. For any function of simulated outcomes or residuals specified with bayespredict, there are
two variables in the dataset named label and obs label, where label is the specified function or program

label. Variable label contains the MCMC sample of values of the function. Variable obs label contains

the observed values of the function, which are computed by substituting the simulated outcome for the ob-

served outcome variable in the function specification. This variable is consumed by [BAYES] bayesstats

ppvalues. Finally, the frequency variable is the last variable in the prediction dataset. It always con-

tains one in the prediction dataset and is provided purely for the consistency with the simulation dataset,

where it records the frequency of duplicate sets of model parameters.

If bayespredict is specified with 𝑝 simulated outcomes, each with 𝑛 observations, and with 𝑘 func-

tions or programs, then the prediction dataset will contain 2𝑝𝑛 + 2𝑘 + 3 variables. The number of

observations in the prediction dataset is determined by the MCMC sample size, 𝑇, used by bayesmh.

After your analysis, if you no longer need the prediction dataset, remember to remove both file-

name.dta and filename.ster.

Evaluators with predictions

If you use bayesmh with an evaluator (see [BAYES] bayesmh evaluators), you may extend your

evaluator to also provide support for predictions. Below, we describe the general structure of an evaluator

with predictions.

To let bayesmh and bayespredict know that your evaluator provides predictions, you specify the

predict suboption within the evaluator() or llevaluator() option of bayesmh during estimation.

When bayespredict is run, it checks whether this suboption was specified for the corresponding eval-

uator and, if it was, sets the global macro $MH predict to 1. The evaluator is then expected to provide
the code for predictions within the corresponding $MH predict block, as we describe below. This code

block is executed only by bayespredict when the evaluator is called to compute predictions.

To support Bayesian predictions, you must generate random samples from the data distribution (like-

lihood) of the outcome and store them in specific temporary variables in your evaluator. The names

of these temporary variables are stored in the global macro $MH predict y1 for the first outcome, in

$MH predict y2 for the second outcome, and so on. In addition to the outcome samples, the evaluator

should compute the expected values for outcomes and store them in temporary variables provided in

global macros named $MH predict mu1, $MH predict mu2, and so on.

Your evaluator program prognamemust be a Stata program; see [U] 18 Programming Stata. The pro-

gram must follow one of the styles below; see User-defined evaluators in [BAYES] bayesmh evaluators

for definitions of evaluator-specific arguments.

https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictStoredresults
https://www.stata.com/manuals/bayesbayesstatsppvalues.pdf#bayesbayesstatsppvalues
https://www.stata.com/manuals/bayesbayesstatsppvalues.pdf#bayesbayesstatsppvalues
https://www.stata.com/manuals/bayesbayesmhevaluators.pdf#bayesbayesmhevaluators
https://www.stata.com/manuals/u18.pdf#u18ProgrammingStata
https://www.stata.com/manuals/bayesbayesmhevaluators.pdf#bayesbayesmhevaluatorsRemarksandexamplesUser-definedevaluators
https://www.stata.com/manuals/bayesbayesmhevaluators.pdf#bayesbayesmhevaluators

bayespredict — Bayesian predictions 17

Programs for log-posterior evaluators with predictions:

program progname
args lnfj lnprior xb1 [xb2 . . .] [modelparams] [reparamlist]
. . . computations . . .

if $MH predict {
. . . prediction computations . . .

replace MH predict mu1 = . . . if $MH touse
replace MH predict y1 = . . . if $MH touse
. . . same for y2 . . .
. . .

}
else {

. . . log-posterior computations . . .

replace ‘lnfj’ = . . . if $MH touse
scalar ‘lnprior’ = . . .

}
end

During estimation, you specify the predict suboption in the evaluator() option of bayesmh:

bayesmh . . ., evaluator(progname, . . . predict) . . .

Programs for log-likelihood evaluators with predictions:

program progname
args lnfj xb1 [xb2 . . .] [modelparams] [reparamlist]
. . . computations . . .

if $MH predict {
. . . prediction computations . . .

replace MH predict mu1 = . . . if $MH touse
replace MH predict y1 = . . . if $MH touse
. . . same for y2 . . .
. . .

}
else {

. . . log-likelihood computations . . .

replace ‘lnfj’ = . . . if $MH touse
}

end

During estimation, you specify the predict suboption in the llevaluator() option of bayesmh:

bayesmh . . ., llevaluator(progname, . . . predict) . . .

For examples of evaluators that support predictions, see Evaluators with predictions in

[BAYES] bayesmh evaluators.

https://www.stata.com/manuals/bayesbayesmhevaluators.pdf#bayesbayesmhevaluatorsRemarksandexamplesEvaluatorswithpredictions
https://www.stata.com/manuals/bayesbayesmhevaluators.pdf#bayesbayesmhevaluators

bayespredict — Bayesian predictions 18

Bayesian predictions
Consider the rare infectious disease example from Hoff (2009) that we analyzed in Beta-binomial

model of [BAYES] bayesmh. A small random sample of 20 subjects from a city is checked for infection,

and none is observed to be infected. The parameter of interest 𝜃, 𝜃 ∈ [0, 1], is the proportion of infected
individuals in the city. The outcome 𝑦 is the number of infected subjects in the sample of 20. The

sampling distribution for the outcome 𝑦 is thus assumed to be binomial, 𝑦|𝜃 ∼ binomial(20, 𝜃). Our

observed data contain one observation that is zero because we did not observe any infected subjects in

our sample. We can easily generate these data as follows:

. set obs 1
Number of observations (_N) was 0, now 1.
. generate byte y = 0

Following the examples in Beta-binomial model (except we are using a different random-number seed

here), we assume a beta(2, 20) prior for 𝜃 and use bayesmh to fit the resulting beta-binomial model.

. bayesmh y, likelihood(dbinomial({theta}, 20))
> prior({theta}, beta(2, 20)) saving(betabin_mcmc) rseed(16)
Burn-in ...
Simulation ...
Model summary

Likelihood:
y ~ binomial({theta},20)

Prior:
{theta} ~ beta(2,20)

Bayesian binomial model MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 1
Acceptance rate = .4627

Log marginal-likelihood = -1.1575104 Efficiency = .1446

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

theta .0476128 .0320509 .000843 .0406464 .0057875 .1251631

file betabin_mcmc.dta saved.

The posterior mean for {theta}, which is also the probability that a subject from a sample of 20 will be

infected, is estimated to be 0.0476. Thus, we would expect 20 × 0.0476 = 0.952 infected subjects in a

sample of 20.

Let’s explore various Bayesian predictions for this beta-binomial model. The relevant examples are

presented under the following headings:

Example 1: Predicting the number of infected subjects
Example 2: Summarizing prediction results
Example 3: Expressions of individual prediction results
Example 4: Visualizing prediction results
Example 5: Posterior summaries of simulated outcomes

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesBeta-binomialmodel
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesBeta-binomialmodel
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesBeta-binomialmodel
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesbayespr_ex1
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesbayespr_ex2
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesbayespr_ex3
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesbayespr_ex4
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesbayespr_ex5

bayespredict — Bayesian predictions 19

Example 1: Predicting the number of infected subjects
Let’s predict the number of infected subjects, our outcome, assuming the fitted beta-binomial model.

To do this in a Bayesian framework, we need to simulate the outcome from its posterior predictive dis-

tribution. We can use bayespredict to do this.

To use bayespredict, we must first save our MCMC simulation results from bayesmh in a dataset,

which we already did by specifying the saving(betabin mcmc) option with bayesmh. If you forget to
specify this option during estimation, you can always do it after by typing

. bayesmh, saving(betabin_mcmc)

We simulate the outcome by specifying { ysim} with bayespredict and save the simulated data in

betabin pred.dta; the saving() option is required with bayespredict when simulating Bayesian

predictions. Because the command uses simulation, we also specify the rseed() option for reproducibil-
ity.

. bayespredict {_ysim}, saving(betabin_pred) rseed(16)
Computing predictions ...
file betabin_pred.dta saved.
file betabin_pred.ster saved.

The computation may be time consuming, so the command displays Computing predictions ... to

inform you that the computation is in progress. You may also specify the dots or dots() option to see

the dots as simulations are performed.

In addition to saving prediction results in a Stata dataset, bayespredict also saves auxiliary estima-

tion results in the betabin pred.ster file. This file is used by other postestimation commands such

as bayesstats summary when summarizing the simulated prediction quantities. Remember to remove

this file in addition to your prediction dataset when you no longer need them.

The bayespredict command simulates 𝑇 outcome values for each specified outcome and for each

specified observation. 𝑇 is the MCMC sample size used by bayesmh. The outcome values are simulated
for each set of 𝑇 MCMC estimates of model parameters generated by bayesmh. Our bayespredict spec-
ification { ysim} is equivalent to { ysim1} and refers to all observations of the first outcome. In our

example, we have only one observation and one outcome, and the default MCMC sample size is 10,000.

Thus, betabin pred.dta contains one simulated variable, ysim1 1, and 10,000 observations, in ad-
dition to other auxiliary variables such as chain and iteration number identifiers; see Prediction dataset.

. describe using betabin_pred
Contains data
Observations: 10,000 27 Mar 2025 17:09

Variables: 5

Variable Storage Display Value
name type format label Variable label

_chain int %8.0g Chain identifier
_index long %12.0g Iteration number
_ysim1_1 double %10.0g Simulated y, obs #1
_mu1_1 double %10.0g Expected values for y, obs #1
_frequency long %12.0g Frequency weight

Sorted by:

https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesPredictiondataset

bayespredict — Bayesian predictions 20

In this dataset, ysim1 1 represents an MCMC sample of size 10,000 from the posterior predictive

distribution of 𝑦 for the first observation. If we had more observations, say, 100, the dataset would

have contained 100 variables, ysim1 1, ysim1 2, . . . , ysim1 100, one for each observation. In the
prediction dataset, the observations are MCMC replicates, and the variables are outcome values for each

observation and each outcome from the data that were used to fit the model.

Example 2: Summarizing prediction results
We can summarize our prediction results like any other Bayesian model parameter. For example, we

can calculate standard posterior summaries for { ysim} by using bayesstats summary.

. bayesstats summary {_ysim} using betabin_pred
Posterior summary statistics MCMC sample size = 10,000

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

_ysim1_1 .9526 1.145899 .020218 1 0 4

The calculated posterior predictive mean is 0.95, which agrees with our earlier computation of 20 ×
0.0476 = 0.952 using the posterior mean estimate of 𝜃, 0.0476. Under our Bayesian model, we should
expect to observe roughly 1 infected individual in a sample of 20, which is comparable with our observed

data with no infected subjects.

Generally, we should be careful when using { ysim} with Bayesian postestimation commands be-

cause it refers to all observations of the outcome variable. A better approach is to use a subset of obser-

vations, { ysim[numlist]}, such as { ysim[1/10]}. In our example, we have only one observation,

so this specification is equivalent to specifying only the first observation, { ysim[1]}.

Example 3: Expressions of individual prediction results
We can compute posterior summaries for the expressions involving the individual values,

{ ysim[#]}, where # refers to an observation. For instance, let’s calculate the probability of observing 0
infected subjects in our sample of 20. Recall that our only observation records the number of observed

infected subjects. We can estimate the probability that the outcome value is 0 as a proportion of 0 values

of our simulated outcome in a sample of 10,000 MCMC replicates. We can do this by specifying the

expression { ysim[1]}==0 in bayesstats summary.

. bayesstats summary (prob0:{_ysim[1]}==0) using betabin_pred
Posterior summary statistics MCMC sample size = 10,000

prob0 : _ysim1_1==0

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

prob0 .4479 .497303 .00708 0 0 1

The posterior predictive mean (probability) for observing 0 infected subjects in the sample of 20 is 0.45,

with a posterior predictive standard deviation of 0.5.

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist

bayespredict — Bayesian predictions 21

Example 4: Visualizing prediction results
We can use graphical tools such as the histogram to summarize the posterior predictive distribution.

. bayesgraph histogram {_ysim[1]} using betabin_pred, discrete addlabels

.4479

.3037

.1513

.06

.025
.0083 .0023 .0011 3.0e-04 1.0e-04

0

.1

.2

.3

.4

.5

0 2 4 6 8 10

Histogram of _ysim1_1

The mass of the posterior predictive distribution for the number of infected subjects is concentrated on

small numbers such as 0, 1, and 2 and thus agrees with what we observed in our sample.

Example 5: Posterior summaries of simulated outcomes
We can compute the posterior mean of the simulated outcome and save it in the current dataset as a

new variable.

. bayespredict pmean, mean rseed(16)
Computing predictions ...
. summarize pmean

Variable Obs Mean Std. dev. Min Max

pmean 1 .9526 . .9526 .9526

The sample mean of pmean is an estimate of the posterior predictive mean of the outcome 𝑦 and is the

same as the one we obtained earlier by using bayesstats summary. Notice that we obtained the exact
same values only because we used the same random-number seed, rseed(16), with bayespredict
when simulating the outcome { ysim} and the posterior mean pmean.

If you need only posterior summaries of simulated outcomes, the above approach is preferable because

it does not create a potentially large prediction dataset containing all MCMC replicates.

As the final step, we remove all the datasets created by bayesmh and bayespredict because we no

longer need them, but you may choose to keep yours.

. erase betabin_mcmc.dta

. erase betabin_pred.dta

. erase betabin_pred.ster

bayespredict — Bayesian predictions 22

Posterior predictive inference
To illustrate posterior predictive checking, we adapt an example described in Gelman et al. (2014,

sec. 6.3). The example analyzes the speed of light measurements from the experiment performed by

Newcomb (1891). Newcombmeasured the time (in nanoseconds) it takes for light to travel 7,442 meters.

splight.dta contains 66 independent measurements of the deviance of the travel time from 24,800

nanoseconds in variable timedev.
. use https://www.stata-press.com/data/r19/splight
(Newcomb’s speed of light measurements)
. describe
Contains data from https://www.stata-press.com/data/r19/splight.dta
Observations: 66 Newcomb’s speed of light

measurements
Variables: 1 22 Feb 2025 13:24

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

timedev byte %9.0g Deviation of travel time (ns)

Sorted by:

Let’s look at the distribution of the data.

. histogram timedev
(bin=8, start=-44, width=10.5)

0

.02

.04

.06

D
en

si
ty

-40 -20 0 20 40
Deviation of travel time (ns)

The data have several extreme observations in the left tail—the smallest observed timedev is −44,

which is more than 6 standard deviations smaller than the sample mean.

To demonstrate posterior predictive checking, Gelman et al. (2014) intentionally used a simplified

model for timedev, a normal model with unknown mean 𝜇 and variance 𝜎2, which may not be a good

fit given the presence of extreme observations. The authors chose a noninformative prior for the model

parameters, (𝜇, 𝜎2) ∼ 1/𝜎2, to achieve more objective analysis.

bayespredict — Bayesian predictions 23

We fit the described model using bayesmh as follows:

. bayesmh timedev, likelihood(normal({sig2}))
> prior({timedev:_cons}, flat) prior({sig2}, jeffreys)
> mcmcsize(1000) rseed(16) saving(splight_mcmc)
Burn-in ...
Simulation ...
Model summary

Likelihood:
timedev ~ normal({timedev:_cons},{sig2})

Priors:
{timedev:_cons} ~ 1 (flat)

{sig2} ~ jeffreys

Bayesian normal regression MCMC iterations = 3,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 1,000
Number of obs = 66
Acceptance rate = .2128
Efficiency: min = .104

avg = .1123
Log marginal-likelihood = -249.39408 max = .1207

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

timedev
_cons 26.40191 1.306144 .128102 26.42451 23.57925 28.71792

sig2 118.8588 21.83563 1.98746 115.8515 81.03243 163.9617

file splight_mcmc.dta saved.

The described prior is modeled in bayesmh by specifying the flat prior for {timedev: cons}, the mean
parameter of the normal model, and the Jeffreys prior for variance {sig2}. We requested a small MCMC

sample of only 1,000. We also specified the saving() option to save MCMC estimates of model param-

eters, which is required to use bayespredict or bayesreps.

bayesmh reports a 95% equal-tailed credible interval of [23.6, 28.7] for {timedev: cons}. The true
deviance of the travel time of light is known to be 33.0 nanoseconds and is outside the reported credible

interval. Clearly, our model does not produce an accurate estimate for the speed of light. The question

is, Can we detect the misfit without the knowledge of the true value? We explore the answers to this

question in the following examples:

Example 6: Goodness of fit using MCMC replicates of simulated outcomes
Example 7: Test statistics as scalar functions of simulated outcomes
Example 8: Test quantities via user-defined Stata programs
Example 9: Working with a prediction dataset

https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesbayespr_ex6
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesbayespr_ex7
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesbayespr_ex8
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesbayespr_ex9

bayespredict — Bayesian predictions 24

Example 6: Goodness of fit using MCMC replicates of simulated outcomes
One way of checking goodness of fit is to compare the observed sample with the replication samples

drawn from the posterior predictive distribution. Any systematic discrepancy between replicated and

observed data will indicate misfit.

Let’s start with visual inspection of the replicated data. We can use the bayesreps command to

generate 20 MCMC replicates for the outcome timedev. Each replicate has 66 observations and is saved
as a new variable in the dataset. We specify tdrep* as a variable stub for the replicate names.

. bayesreps tdrep*, nreps(20) rseed(16)
Computing predictions ...
. summarize

Variable Obs Mean Std. dev. Min Max

timedev 66 26.21212 10.74532 -44 40
tdrep1 66 26.10487 11.25766 -3.237112 56.03574
tdrep2 66 23.29179 11.30281 -12.58518 47.92589
tdrep3 66 26.21224 14.93573 -4.078057 61.37516
tdrep4 66 27.28245 11.60644 -2.502777 59.27184

tdrep5 66 27.74366 8.093924 5.70912 44.75622
tdrep6 66 26.15271 13.0279 -1.115488 53.42056
tdrep7 66 26.57665 10.11741 5.395408 46.71115
tdrep8 66 27.9395 12.06432 -4.903924 48.62425
tdrep9 66 25.54143 11.15095 1.560754 51.17381

tdrep10 66 28.11942 11.39326 1.364192 57.17214
tdrep11 66 24.18664 9.37403 7.49153 52.94038
tdrep12 66 25.87535 8.766691 10.5051 44.38683
tdrep13 66 27.49002 9.937486 4.89093 52.40339
tdrep14 66 26.17611 12.34034 -4.824428 51.16257

tdrep15 66 28.35187 10.58047 1.968471 50.73883
tdrep16 66 27.00237 11.44632 .7238955 52.77098
tdrep17 66 28.38859 11.1474 6.04494 63.34375
tdrep18 66 24.16652 9.289006 -.0226819 44.17939
tdrep19 66 24.9675 9.931602 6.675714 45.19432

tdrep20 66 27.69125 10.94969 1.289953 57.45961

The summary table shows that, compared with the observed data, the replicates have similar means and

standard deviations but not the minimum and maximum values.

bayespredict — Bayesian predictions 25

We can explore the entire distribution of a replicate. For example, we can produce the histogram for

the first replicate and compare it with the earlier histogram of the observed data.

. histogram tdrep1
(bin=8, start=-3.237112, width=7.409106)

0

.01

.02

.03

.04

.05

D
en

si
ty

0 10 20 30 40 50
Replicate 1 for timedev

The histograms look quite different. The replicate sample does not have the extreme negative values

observed in the data.

With a few lines of code, we can produce histograms for all replicates and combine them on one graph.

. local histlist

. forvalues i = 1/20 {
2. quietly hist tdrep‘i’, name(hist‘i’) nodraw
3. local histlist ‘histlist’ hist‘i’
4. }

. graph combine ‘histlist’

0

.01

.02

.03

.04

.05

D
en

si
ty

0 10 20 30 40 50
Replicate 1 for timedev

0

.01

.02

.03

.04

D
en

si
ty

-10 0 10 20 30 40
Replicate 2 for timedev

0

.01

.02

.03

D
en

si
ty

0 20 40 60
Replicate 3 for timedev

0

.01

.02

.03

.04

D
en

si
ty

0 20 40 60
Replicate 4 for timedev

0

.01

.02

.03

.04

.05

D
en

si
ty

0 10 20 30 40
Replicate 5 for timedev

0

.01

.02

.03

D
en

si
ty

0 10 20 30 40 50
Replicate 6 for timedev

0

.01

.02

.03

.04

D
en

si
ty

0 10 20 30 40
Replicate 7 for timedev

0

.01

.02

.03

.04

D
en

si
ty

0 20 40
Replicate 8 for timedev

0

.01

.02

.03

.04

.05

D
en

si
ty

0 10 20 30 40 50
Replicate 9 for timedev

0

.01

.02

.03

.04

D
en

si
ty

0 20 40 60
Replicate 10 for timedev

0

.01

.02

.03

.04

.05

D
en

si
ty

10 20 30 40 50
Replicate 11 for timedev

0

.02

.04

.06

D
en

si
ty

10 20 30 40
Replicate 12 for timedev

0

.01

.02

.03

.04

D
en

si
ty

0 10 20 30 40 50
Replicate 13 for timedev

0

.01

.02

.03

.04

D
en

si
ty

0 20 40 60
Replicate 14 for timedev

0

.01

.02

.03

.04

.05

D
en

si
ty

0 10 20 30 40 50
Replicate 15 for timedev

0

.01

.02

.03

.04

D
en

si
ty

0 10 20 30 40 50
Replicate 16 for timedev

0

.01

.02

.03

D
en

si
ty

0 20 40 60
Replicate 17 for timedev

0

.02

.04

.06

D
en

si
ty

0 10 20 30 40
Replicate 18 for timedev

0

.01

.02

.03

.04

D
en

si
ty

10 20 30 40 50
Replicate 19 for timedev

0

.01

.02

.03

.04

D
en

si
ty

0 20 40 60
Replicate 20 for timedev

bayespredict — Bayesian predictions 26

The histograms of all replicates look different from the observed data. The range for the replicated

samples is about 0 to 50 with only a few negative values, which are smaller in magnitude than the

negative values observed in the original data.

Example 7: Test statistics as scalar functions of simulated outcomes
Gelman et al. (2014) suggest to use the smallest observation to measure the discrepancy between the

observed and replicated data. That is, to compare the smallest values in the replicated samples with

Newcomb’s smallest observation of −44.

In addition to simulating outcome values, as we demonstrated in example 1, we can use

bayespredict to compute functions of simulated values that summarize the observations in a single

statistic such as the minimum statistic. A function can be any Mata function that takes a column vector

as an argument and returns a scalar. The result from bayespredict in this case is an MCMC sample of

function values stored in the prediction dataset as a new variable.

Let’s use bayespredict to produce anMCMC sample of the smallest observations (minimums) of the

replicated data. Because we are not interested in individual observations, we can request that only the

smallest observation be simulated and stored by using the function specification @min({ ysim}) with

bayespredict.

. bayespredict (minsl:@min({_ysim})), saving(splight_pred) rseed(16)
Computing predictions ...
file splight_pred.dta saved.
file splight_pred.ster saved.

Per our specification, the command creates a new dataset, splight pred.dta, that stores minimum
statistics of the replicated data in the variable minsl. The prediction dataset has 1,000 observations,

because 1,000 is the size of the MCMC sample simulated by bayesmh.

We can now use {minsl} within other Bayesian postestimation commands such as bayesgraph
and bayesstats summary provided we supply the prediction dataset with the using specification. For

example, let’s draw the histogram of {minsl} using bayesgraph histogram.

. bayesgraph histogram {minsl} using splight_pred

0

.02

.04

.06

.08

-20 -10 0 10 20

Histogram of minsl

https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesbayespr_ex1

bayespredict — Bayesian predictions 27

The histogram provides the estimate of the posterior predictive distribution for the minimum statistic.

The range of the histogram does not cover the observed minimum value of −44.

We can compare the posterior predictive distribution of the minimum statistic with the observed

minimum value more formally by computing the posterior predictive 𝑝-value by using bayesstats
ppvalues.

. bayesstats ppvalues {minsl} using splight_pred
Posterior predictive summary MCMC sample size = 1,000

T Mean Std. dev. E(T_obs) P(T>=T_obs)

minsl .8017725 5.590955 -44 1

Note: P(T>=T_obs) close to 0 or 1 indicates lack of fit.

The output table shows the posterior mean and standard deviation of {minsl}, the observed minimum
value, −44, and the estimated posterior predictive 𝑝-value. The last is the probability that the replicated
smallest value be greater or equal to the observed one. For a well-fitting model, the posterior predictive

𝑝-value should, ideally, be close to 0.5, although values between 0.05 and 0.95 are often considered

acceptable in the literature (Gelman et al. 2014 , 150). In our example, its estimate is essentially 1, which

indicates a strong misfit of the specified normal model. Therefore, if modeling of the tails of the outcome

distribution is important, we should reconsider the normal likelihood model and find a better alternative.

Example 8: Test quantities via user-defined Stata programs
It is not sufficient to assess goodness of fit by examining just one test statistic. Different test statistics

capture different aspects of the data. Which statistic to use depends on the research problem and the

data characteristics you wish to account for. Generally, as pointed out by Gelman et al. (2014), for

noninformative priors, sufficient statistics such as a sample mean and variance may not be good choices

for checking model fit because they are typically modeled directly by the parameters of the likelihood

function.

We demonstrated that our model does not model the minimum statistic well. Let’s consider another

aspect of timedev: symmetry with respect to the mean 𝜇.
Following Gelman et al. (2014), we define the following test quantity to measure asymmetry,

𝑇 (timedev, 𝜇) = |timedev(61) − 𝜇| − |timedev(6) − 𝜇|

where timedev(𝑎) defines the 𝑎th ordered value of timedev and (timedev(6), timedev(61)) represents
about 90% of the distribution of timedev.

https://www.stata.com/manuals/bayesbayesstatsppvalues.pdf#bayesbayesstatsppvalues
https://www.stata.com/manuals/bayesbayesstatsppvalues.pdf#bayesbayesstatsppvalues
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossarysufficient_statistic
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossarytest_quantity

bayespredict — Bayesian predictions 28

There is no predefined computation for the above statistic, so we need to write our own. For statistics

that depend only on simulated outcome values, expected values, and residuals, we can write our own

Mata functions or Stata programs. Mata functions are generally faster. For statistics that directly use

model parameters, writing a Stata program is our only choice. Because the calculation of 𝑇 (timedev, 𝜇)
involves a model parameter, 𝜇, we must write a Stata program to calculate this statistic. Let’s call our

program symstatprog.

program symstatprog
version 19.5 // (or version 19 if you do not have StataNow)
args symout ysim
tempname mu
scalar ‘mu’ = $BAYESPR_theta[1,1]
sort ‘ysim’
scalar ‘symout’ = abs(‘ysim’[61]-‘mu’)-abs(‘ysim’[6]-‘mu’)

end

The program has two input arguments, symout and ysim. The local macro symout contains the name of

a temporary scalar for storing the final result. The local macro ysim contains the name of a temporary

variable that stores the simulated outcome values of timedev. The global macro $BAYESPR theta
contains the name of a temporary matrix (row vector) that stores the current values of simulated model

parameters, which are 𝜇 and 𝜎2 in our example. The parameters are stored in the same order they are

displayed by bayesmh. Thus, in our example, the first element of this matrix corresponds to the mean, 𝜇.
We use the earlier definition to compute the asymmetry test quantity and store it in the scalar ‘symout’.

We now call bayespredict to use the symstatprog program to compute the asymmetry test quantity

for each set of simulated model parameters and label the prediction results as symstat. We replace our

previously generated prediction dataset, splight pred.dta, with these new prediction results.

. bayespredict (symstat:@symstatprog {_ysim}), saving(splight_pred, replace)
> rseed(16)
Computing predictions ...
file splight_pred.dta saved.
file splight_pred.ster saved.

We can use bayesstats ppvalues to test the goodness of fit for 𝑇 (timedev, 𝜇).
. bayesstats ppvalues {symstat} using splight_pred
Posterior predictive summary MCMC sample size = 1,000

T Mean Std. dev. E(T_obs) P(T>=T_obs)

symstat .0953002 3.476211 3.196186 .235

Note: P(T>=T_obs) close to 0 or 1 indicates lack of fit.

The posterior predictive 𝑝-value is estimated to be 0.235 and does not suggest model misfit with respect
to 𝑇 (timedev, 𝜇).

bayespredict — Bayesian predictions 29

Example 9: Working with a prediction dataset
Sometimes, wemay need to access the prediction results. For example, Gelman et al. (2014) provide a

visual representation of the posterior predictive 𝑝-value by plotting the observed values of the asymmetry
test quantity, 𝑇 (timedev, 𝜇), versus the replicated values, 𝑇 (timedevrep, 𝜇). We can reproduce this

graph as follows.

We start by loading the prediction dataset that contains our prediction results.

. use splight_pred, clear

. describe
Contains data from splight_pred.dta
Observations: 1,000

Variables: 5 27 Mar 2025 17:10

Variable Storage Display Value
name type format label Variable label

_chain int %8.0g Chain identifier
_index long %12.0g Iteration number
symstat double %10.0g symstatprog {_ysim1}
_obs_symstat double %10.0g Observed symstatprog {_ysim1}
_frequency long %12.0g Frequency weight

Sorted by:

Similarly to the MCMC simulation dataset, variables chain and index record chain and index identi-

fiers. Variable symstat contains the values for 𝑇 (timedevrep, 𝜇), and variable obs symstat contains

the values for 𝑇 (timedev, 𝜇). For consistency with the simulation dataset, the prediction dataset also

contains the frequency variable, but it is always one in the prediction dataset.

To visualize the posterior predictive 𝑝-value, we draw the scatterplot of symstat versus

obs symstat overlaid with the diagonal line for obs symstat as the reference line.

. scatter symstat _obs_symstat || line _obs_symstat _obs_symstat,
> xtitle(”timedev”) ytitle(”timedev-rep”) legend(off)

-10

-5

0

5

10

tim
ed

ev
-r

ep

-5 0 5 10
timedev

The estimated posterior predictive 𝑝-value is the proportion of points above the diagonal line.

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhOptionssimulation_dataset

bayespredict — Bayesian predictions 30

In conclusion, although the normal model describes well the symmetry of the observedmeasurements,

it fails to capture some of the smaller observations. It is possible that the experimental procedure was

susceptible to aberrant measurements and a different model is needed to reflect this.

Out-of-sample prediction
This section illustrates how bayespredict can be used as a classifier for binary outcomes.

Example 10: Out-of-sample classification using predictive posterior means
We consider titanic800.dta, which contains the information of 800 passengers, whowere on board

the ocean liner Titanic when it sank. The dataset is a subset from a larger dataset published by Dawson

(1995).

. use https://www.stata-press.com/data/r19/titanic800, clear
(Titanic passenger survival (Extract))
. describe
Contains data from https://www.stata-press.com/data/r19/titanic800.dta
Observations: 800 Titanic passenger survival

(Extract)
Variables: 4 22 Feb 2025 13:24

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

class byte %9.0g class Class
adult byte %9.0g age Adult
male byte %9.0g sex Male
survived byte %9.0g survived Survived

Sorted by:

The binary variable survived records whether a passenger survived (survived = 1) or not

(survived = 0). Passenger characteristics include the cabin type and class membership, class (first,

second, third, or crew); the sex, male; and whether the passenger was an adult or a child, adult.

For illustration, we consider a simple logistic regression of survived on the categorical predictor

class and binary predictors male and adult.

First, we randomly split the data into training and test subsamples. We use splitsample ([D] split-

sample) to generate a variable, sample, that assigns 50% of the data to the training subsample

(sample = 1) and the other 50% to the test subsample (sample = 2).

. splitsample, generate(sample) rseed(12345)

Second, we fit a Bayesian logistic regression using the training subsample of 400 passengers. We

apply a Cauchy(0, 1) prior distribution for the coefficients. As a prerequisite for computing Bayesian

predictions, we save the MCMC sample in titanic mcmc.dta.

https://www.stata.com/manuals/dsplitsample.pdf#dsplitsample
https://www.stata.com/manuals/dsplitsample.pdf#dsplitsample

bayespredict — Bayesian predictions 31

. bayesmh survived i.male i.adult ib1.class if sample==1, likelihood(logit)
> prior({survived:}, cauchy(0, 1)) saving(titanic_mcmc) rseed(16)
Burn-in ...
Simulation ...
Model summary

Likelihood:
survived ~ logit(xb_survived)

Prior:
{survived:1.male 1.adult i.class _cons} ~ cauchy(0,1) (1)

(1) Parameters are elements of the linear form xb_survived.
Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 400
Acceptance rate = .2054
Efficiency: min = .02887

avg = .04189
Log marginal-likelihood = -211.35694 max = .05692

Equal-tailed
survived Mean Std. dev. MCSE Median [95% cred. interval]

male
male -2.490095 .3330118 .019599 -2.498318 -3.13982 -1.844389

adult
adult -.5916052 .4910491 .024348 -.5666577 -1.551435 .3630116

class
crew -.6376593 .389797 .01675 -.6224151 -1.435266 .118966

second -.5605325 .4214846 .017667 -.5507987 -1.423903 .2334895
third -1.103689 .4064315 .021184 -1.106785 -1.923915 -.3518597

_cons 2.386679 .6342651 .034439 2.384843 1.188944 3.692627

file titanic_mcmc.dta saved.

All coefficients are negative, whichmeans they are associated with lower survival probabilities compared

with their respective baselines. For instance, adults were less likely to survive than children, and crew

members and second- and third-class passengers were less likely to survive than the first-class passengers.

The male passengers on board Titanic were especially unfortunate—the posterior mean estimate for the

coefficient on male is −2.5 with a 95% credible interval of [−3.1, −1.8].
Let’s now compute out-of-sample predictions for the test subsample of the other 400 passengers. We

use bayespredict with the mean option to calculate the posterior means of the simulated outcome for

these passengers and store them as a new variable, pmean, in the current dataset.

. bayespredict pmean if sample==2, mean dots(100, every(1000)) rseed(16)
Computing predictions 100001000.........2000.........3000.........
> 4000.........5000.........6000.........7000.........8000.........9000.........
> 10000 done

bayespredict — Bayesian predictions 32

The posterior means estimate the survival probabilities of the passengers and are, in fact, the optimal

predictors with respect to themean squared error (MSE). Let’s computeMSE for pmean to assess prediction
accuracy of the model.

. generate err2 = (survived-pmean)^2
(400 missing values generated)
. summarize err2 if sample==2

Variable Obs Mean Std. dev. Min Max

err2 400 .1740713 .2328064 .0187416 .741321

Our model achieves an MSE of 0.17, but this number is difficult to interpret on its own, without any

reference models.

Let’s compute the prediction accuracy of our model or how well our model predicted the outcome

in the test subsample. We generate a new variable, survived logit, to contain the binary outcome

predicted from our Bayesian logistic model. We assign the predicted outcome to be 1 if pmean is greater

than 0.5, and 0 otherwise. We then estimate the prediction accuracy as the proportion of matches between

the observed survived and the predicted survived logit in the test subsample.

. generate survived_logit = (pmean>0.5)

. generate pacc = (survived==survived_logit)

. summarize pacc if sample==2
Variable Obs Mean Std. dev. Min Max

pacc 400 .76 .427618 0 1

The prediction accuracy of our simple logistic model is about 0.76, which is not that high. Thus, a better

prediction model should be considered for these data.

One-step-ahead Bayesian forecast after Bayesian VAR
After fitting Bayesian VAR models using the bayes: var command, you can use bayespredict to

compute Bayesian forecasts; see example 10 in [BAYES] bayes: var.

Stored results
bayespredict stores the following in an estimation file, filename.ster, where filename is specified

in the saving(filename) option.

Scalars

e(N) number of observations

e(nchains) number ofMCMC chains

e(mcmcsize) MCMC sample size

Macros

e(cmd) bayespredict
e(est cmd) bayesmh
e(cmdline) command as typed

e(est cmdline) estimation command as typed

e(predfile) file containing prediction results

e(mcmcfile) file containing simulation results

e(predynames) names of simulated outcome observations, ysim# #

e(predfnames) names of specified functions and programs

https://www.stata.com/manuals/bayesbayesvar.pdf#bayesbayesvarRemarksandexamplesex10
https://www.stata.com/manuals/bayesbayesvar.pdf#bayesbayesvar
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions

bayespredict — Bayesian predictions 33

e(predrngstate#) random-number state for #th chain for prediction

e(rngstate) random-number state for simulation (only with single chain)

e(rngstate#) random-number state for #th chain for simulation (only with nchains())

Methods and formulas
Methods and formulas are presented under the following headings:

Posterior predictive distribution
MCMC sampling from posterior predictive distribution
Residuals and expected values

Posterior predictive distribution
Recall from Overview of Bayesian predictions that the posterior predictive distribution of new data

ynew given observed data yobs is

𝑝(ynew|yobs) = ∫ 𝑝(ynew,θ|yobs)𝑑θ

= ∫ 𝑝(ynew|yobs,θ)𝑝(θ|yobs)𝑑θ

= ∫ 𝑝(ynew|θ)𝑝(θ|yobs)𝑑θ

(3)

where we used the assumption of independence between ynew and yobs given θ to arrive at the final

expression.

Simulated outcomes, ysim, are the outcome values simulated from the posterior predictive distribution

(3).

In a regression setting, posterior predictive distribution (3) also depends on the covariate data,

𝑝(ynew|yobs, 𝑋new) = ∫ 𝑝(ynew|θ, 𝑋new)𝑝(θ|yobs, 𝑋obs)𝑑θ (4)

where 𝑋new is the data matrix containing new covariate values and 𝑋obs is the data matrix containing

observed covariate values used to fit the model.

The concept of replicated outcomes or replicated data, yrep, arises in a regression setting when the

data matrix used to generate new outcome values is the same as the observed data matrix used to fit the

Bayesian model. That is,

𝑝(yrep|yobs, 𝑋obs) = ∫ 𝑝(yrep|θ, 𝑋obs)𝑝(θ|yobs, 𝑋obs)𝑑θ (5)

In a regression setting, we use a general definition for the simulated outcome, ysim, as one generated

either from (4) or (5).

Test quantities and test statistics are commonly used to check goodness of fit of a Bayesian model.

A test quantity, 𝑇𝑞(yrep,θ), is a scalar function of replicated data yrep and model parameters θ. A test

statistic, 𝑇𝑠(yrep), is a scalar function that depends only on the replicated data yrep. If the model fits the
data well, 𝑇𝑞(yrep,θ) should be close to 𝑇𝑞(yobs,θ), and, similarly, 𝑇𝑠(yrep) should be close to 𝑇𝑠(yobs).

https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesOverviewofBayesianpredictions
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictMethodsandformulasbpeq3
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictMethodsandformulasbpeq3
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictMethodsandformulasbpeq4
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictMethodsandformulasbpeq5

bayespredict — Bayesian predictions 34

MCMC sampling from posterior predictive distribution
Like the posterior distribution of model parameters, posterior predictive distributions (3), (4), and (5)

usually do not have closed forms and must be approximated. In what follows, we will concentrate on

the more general posterior predictive distribution 𝑝(ynew|yobs, 𝑋new), but the same principles apply to the
other distributions by removing conditioning on covariate data in case of (3) and by replacing 𝑋new with

𝑋obs in case of (5).

The goal of Bayesian prediction is to simulate data from 𝑝(ynew|yobs, 𝑋new). Formula (4) underlies
the following two-step iterative process for obtaining simulated outcomes from 𝑝(ynew|yobs, 𝑋new).

1. Draw a realization of model parameters, θ⋆, from their posterior distribution, 𝑝(θ|yobs, 𝑋obs).
2. Generate ysim from 𝑝(ynew|θ⋆, 𝑋new), the data distribution (likelihood) conditional on the param-

eters obtained in step 1.

Steps 1 and 2 are repeated to produce an MCMC sample of simulated outcomes, (ysim,1, ysim,2, . . . ,
ysim,T), where 𝑇 is the MCMC sample size. We can use this sample to estimate the posterior predictive

distribution.

For step 1, bayespredict uses the MCMC sample of model parameters as produced by the bayesmh
command. The main computation of bayespredict is the simulation of the outcome values from the

respective likelihood model for each set of simulated model parameters from the MCMC sample. For

an outcome variable with 𝑛 observations, the result of a Bayesian prediction is a dataset containing 𝑇
observations and 𝑛 columns.

A function of simulated values is computed as follows: {𝑓(ysim,1), 𝑓(ysim,2), . . . , 𝑓(ysim,T)}, where
𝑓(⋅) is a function that operates on a column vector and returns a scalar. The resulting prediction dataset
will contain a variable with 𝑇 observations.

For a test statistic 𝑇𝑠(yrep), the following simulated sample is produced:
{𝑇𝑠(yrep,1), 𝑇𝑠(yrep,2), . . . , 𝑇𝑠(yrep,T)}. For a well-fittingmodel, the distribution of this sample should

be concentrated around 𝑇𝑠(yobs).
For a test quantity 𝑇𝑞(yrep,θ), the following simulated sample is produced:

{𝑇𝑞(yrep,1,θ1), 𝑇𝑞(yrep,2,θ2), . . . , 𝑇𝑞(yrep,T,θ𝑇)}. For a well-fitting model, the distribution of this

sample should be close to the distribution of {𝑇𝑞(yobs,θ1), 𝑇𝑞(yobs,θ2), . . . , 𝑇𝑞(yobs,θ𝑇)}.

Residuals and expected values
Consider simulated outcome values ysim𝑖 for an observation 𝑖 = 1, 2, . . . , 𝑛, where ysim𝑖 =

(𝑦sim,1
𝑖 , 𝑦sim,2

𝑖 , . . . , 𝑦sim,T
𝑖)𝑇. Let µ̂𝑖 = (̂𝜇1

𝑖 , ̂𝜇2
𝑖 , . . . , ̂𝜇T

𝑖)𝑇, where ̂𝜇𝑡
𝑖 = 𝐸(𝑦𝑖|x𝑖,θ

𝑡) is the estimated

expected value of 𝑦𝑖 given covariate vector x𝑖 and simulated parameters θ𝑡, 𝑡 = 1, 2, . . . , 𝑇. Let

rsim𝑖 = (𝑟sim,1
𝑖 , 𝑟sim,2

𝑖 , . . . , 𝑟sim,T
𝑖)𝑇 be simulated residuals for an observation 𝑖.

https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictMethodsandformulasbpeq3
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictMethodsandformulasbpeq4
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictMethodsandformulasbpeq5
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictMethodsandformulasbpeq3
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictMethodsandformulasbpeq5
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictMethodsandformulasbpeq4

bayespredict — Bayesian predictions 35

Simulated residuals are then defined as

rsim𝑖 = ysim𝑖 − µ̂𝑖

Within bayespredict, you refer to ysim𝑖 as { ysim 𝑖}, rsim𝑖 as { resid 𝑖}, and µ̂𝑖 as { mu 𝑖}. You
can also use { ysim}, { resid}, and { mu} to refer to all observations at once. Withmultiple outcomes,

the above specifications correspond to the first outcome variable. For the #th outcome variable, use

{ ysim# 𝑖}, { resid# 𝑖}, { mu# 𝑖}, { ysim#}, { resid#}, and { mu#}, respectively.

Below are the definitions of ̂𝜇𝑡
𝑖 for the likelihood models supported by bayesmh.

1. Normal regression: ̂𝜇𝑡
𝑖 = x𝑖β

𝑡.

2. t-regression: ̂𝜇𝑡
𝑖 = x𝑖β

𝑡.

3. Lognormal regression: ̂𝜇𝑡
𝑖 = exp(x𝑖β

𝑡).
4. Exponential regression: ̂𝜇𝑡

𝑖 = exp(x𝑖β
𝑡).

5. Probit regression: ̂𝜇𝑡
𝑖 = Φ(x𝑖β

𝑡).
6. Logistic regression: ̂𝜇𝑡

𝑖 = invlogit(x𝑖β
𝑡).

7. Binomial regression: ̂𝜇𝑡
𝑖 = 𝑛trials × invlogit(x𝑖β

𝑡), where 𝑛trials is the number of trials in binomial

regression.

8. Ordered probit regression: { resid} and { mu} not supported.

9. Ordered logistic regression: { resid} and { mu} not supported.

10. Poisson regression: ̂𝜇𝑡
𝑖 = exp(x𝑖β

𝑡).
Next are the definitions of ̂𝜇𝑡

𝑖 for the distribution models dexponential(beta), dbernoulli(p),
dbinomial(𝑛trials,p), and dpoisson(mu).

11. Exponential distribution: ̂𝜇𝑡
𝑖 = 𝛽𝑡.

12. Bernoulli distribution: ̂𝜇𝑡
𝑖 = 𝑝𝑡.

13. Binomial distribution: ̂𝜇𝑡
𝑖 = 𝑛trials𝑝𝑡.

14. Poisson distribution: ̂𝜇𝑡
𝑖 = 𝜇𝑡.

Typically, the expected values for the distribution models will be constant over observations unless

the distribution parameters vary over the observations.

Raw residuals, rsim𝑖 , may not always be the most appropriate for diagnostic purposes. For example,

Pearson residuals are better suited for discrete outcomemodels such as binomial and Poisson regressions.

References
Dawson, R. J. M. 1995. The “Unusual Episode” data revisited. Journal of Statistics Education 3(3): 1–9. https://doi.org/

10.1080/10691898.1995.11910499.

Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. 2014. Bayesian Data Analysis. 3rd ed.

Boca Raton, FL: Chapman and Hall/CRC.

Gelman, A., X.-L. Meng, and H. S. Stern. 1996. Posterior predictive assessment of model fitness via realized discrepan-

cies. Statistica Sanica 6: 733–760.

Gelman, A., and D. B. Rubin. 1992. Inference from iterative simulation using multiple sequences. Statistical Science 7:

457–472. https://doi.org/10.1214/ss/1177011136.

https://doi.org/10.1080/10691898.1995.11910499
https://doi.org/10.1080/10691898.1995.11910499
https://doi.org/10.1214/ss/1177011136

bayespredict — Bayesian predictions 36

Hoff, P. D. 2009.AFirst Course in Bayesian Statistical Methods. NewYork: Springer. https://doi.org/10.1007/978-0-387-

92407-6.

Meng, X.-L. 1994.Multiple-imputation inferences with uncongenial sources of input (with discussion). Statistical Science

9: 538–573. https://doi.org/10.1214/ss/1177010269.

Newcomb, S. 1891. Measures of the velocity of light made under the direction of the Secretary of the Navy during the

years 1880–1882.Astronomical Papers 2: 107–229.

Tsui, K.-W., and S. Weerahandi. 1989. Generalized 𝑝-values in significance testing of hypotheses in the presence of

nuisance parameters. Journal of the American Statistical Association 84: 602–607. https://doi.org/10.2307/2289949.

West, M. 1986. Bayesian model monitoring. Journal of the Royal Statistical Society, B ser., 48: 70–78. https://doi.org/10.

1111/j.2517-6161.1986.tb01391.x.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[BAYES] bayesmh — Bayesian models using Metropolis–Hastings algorithm

[BAYES] bayesselect — Bayesian variable selection for linear regression

[BAYES] bayesgraph — Graphical summaries and convergence diagnostics

[BAYES] Bayesian postestimation — Postestimation tools after Bayesian estimation

[BAYES] bayesstats ess — Effective sample sizes and related statistics

[BAYES] bayesstats ppvalues — Bayesian predictive p-values and other predictive summaries

[BAYES] bayesstats summary — Bayesian summary statistics

[BAYES] bayestest interval — Interval hypothesis testing

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://doi.org/10.1007/978-0-387-92407-6
https://doi.org/10.1007/978-0-387-92407-6
https://doi.org/10.1214/ss/1177010269
https://doi.org/10.2307/2289949
https://doi.org/10.1111/j.2517-6161.1986.tb01391.x
https://doi.org/10.1111/j.2517-6161.1986.tb01391.x
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayes
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayesselect.pdf#bayesbayesselect
https://www.stata.com/manuals/bayesbayesgraph.pdf#bayesbayesgraph
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimation
https://www.stata.com/manuals/bayesbayesstatsess.pdf#bayesbayesstatsess
https://www.stata.com/manuals/bayesbayesstatsppvalues.pdf#bayesbayesstatsppvalues
https://www.stata.com/manuals/bayesbayesstatssummary.pdf#bayesbayesstatssummary
https://www.stata.com/manuals/bayesbayestestinterval.pdf#bayesbayestestinterval
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

