bayesmh evaluators — User-defined evaluators with bayesmh

Description Syntax Options Remarks and examples
Stored results Reference Also see
Description

bayesmh provides two options, evaluator () and 11levaluator (), that facilitate user-defined eval-
uators for fitting general Bayesian regression models. bayesmh, evaluator() accommodates log-
posterior evaluators. bayesmh, 1levaluator() accommodates log-likelihood evaluators, which are
combined with built-in prior distributions to form the desired posterior density. For a catalog of built-in
likelihood models and prior distributions, see [BAYES] bayesmbh.

Syntax

Single-equation models
User-defined log-posterior evaluator

bayesmh depvar [indepvars] [if | [in] [weight], evaluator (evalspec) [options]

User-defined log-likelihood evaluator
bayesmh depvar [indepvars] [lf] [in] [Weight] , Llevaluator (evalspec)

prior (priorspec) |options |

Multiple-equations models
User-detined log-posterior evaluator

bayesmh (egspecp) [ Cegspecp) [ ... ]| [if] [in] [weight], evaluator (evalspec)
[ options |

User-defined log-likelihood evaluator

bayesmh (egspecll) | Cegspecll) [ ... ]| [if] [in] [weight], prior (priorspec)

[ options |
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The syntax of egspecp is
varspec |, noconstant |
The syntax of egspecll for built-in likelihood models is
varspec, likelihood(modelspec) [noconstant |
The syntax of egspecll for user-defined log-likelihood evaluators is

varspec, 1levaluator (evalspec) [noconstant |

The syntax of varspec is one of the following:
for single outcome
[egname: |depvar [ indepvars |
for multiple outcomes with common regressors
depvars = [indepvars |
for multiple outcomes with outcome-specific regressors
([egnamel: |depvarl [indepvarsl]) (|egname2: |depvar2 [indepvars2]) [ ... ]
The syntax of evalspec is

progname , parameters (paramlist) [ extravars (varlist) passthruopts (string)

reparameters (reparamlist) predict |

progname is the name of a Stata program that you write to evaluate the log-posterior density or the
log-likelihood function (see User-defined evaluators). paramlist is a list of model parameters:
paramdef | paramdef | ... ]|

reparamlist is a list of random-effects model parameters:

reparamdef | reparamdef | . .. ]]

The syntax of paramdef is

{[eqname: |param [param | ...]] |, matrix]}

The parameter label egname and parameter names param are valid Stata names. Model parameters
are either scalars such as {var}, {mean}, and {shape:alpha} or matrices such as {Sigma, matrix}
and {Scale:V, matrix}. For scalar parameters, you can use {param=#2} in the above to specify an
initial value. For example, you can specify {var=1}, {mean=1.267}, or {shape:alpha=3}. You
can specify the multiple parameters with same equation as {eq:p1 p2 p3} or {eq: S1 S2, matrix}.
Also see Declaring model parameters in [BAYES] bayesmh.

The syntax of reparamdef is

{rename[levelspec] }

rename is a Stata name that starts with a capital letter, and levelspec describes the level specification;
see Random effects in [BAYES]| bayesmh.
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options Description
* evaluator (evalspec) specify log-posterior evaluator; may not be combined with
llevaluator() and prior ()
*1llevaluator (evalspec) specify log-likelihood evaluator; requires prior () and may not
be combined with evaluator ()
* prior (priorspec) specify prior for model parameters; required with log-likelihood
evaluator and may be repeated
likelihood (modelspec) specify distribution for the likelihood model; allowed within
an equation of a multiple-equations model only
noconstant suppress constant term; not allowed with ordered models
specified in 1ikelihood () with multiple-equations models
scalarlnden specify that the evaluator return a scalar log-density value
bayesmhopts any options of [BAYES] bayesmh except 1ikelihood () and
prior()

* Option evaluator () is required for log-posterior evaluators, and options 1levaluator () and prior () are required for
log-likelihood evaluators. With log-likelihood evaluators, prior () must be specified for all model parameters and may
be repeated.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

Only fweights are allowed; see [U] 11.1.6 weight.

Options

evaluator (evalspec) specifies the name and the attributes of the log-posterior evaluator; see User-
defined evaluators for details. This option may not be combined with 1levaluator() or
likelihood().

llevaluator (evalspec) specifies the name and the attributes of the log-likelihood evaluator; see
User-defined evaluators for details. This option may not be combined with evaluator() or
likelihood () and requires the prior () option.

prior (priorspec); see [BAYES] bayesmh.

likelihood (modelspec); see [BAYES| bayesmh. This option is allowed within an equation of a
multiple-equations model only.

noconstant; see [BAYES] bayesmh.

scalarlnden specifies that the evaluator return a scalar log-density value. Specifically, when this op-
tion is specified, likelihood evaluators must return the total log-likelihood value over the estimation
sample, and posterior evaluators must return the log-posterior value. Without this option, both like-
lihood and posterior evaluators are expected to return the observation-specific likelihood values; in
addition, posterior evaluators are expected to return a scalar log-prior value. bayesmh then automat-
ically combines the provided information to form the final log-posterior value. This option may not
be combined with likelihood ().

bayesmhopts specify any options of [BAYES]| bayesmh, except 1ikelihood () and prior ().
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Remarks and examples

Remarks are presented under the following headings:

User-defined evaluators

Simple linear regression model

Simple linear regression model with scalar evaluators
Logistic regression model

Multivariate normal regression model

Cox proportional hazards regression
Random-intercept linear regression model
Evaluators with predictions

Global macros

User-defined evaluators

If your likelihood model or prior distributions are particularly complex and cannot be represented by
one of the predefined sets of distributions or by substitutable expressions provided with bayesmh, you
can program these functions by writing your own evaluator program.

Evaluator programs can be used for programming the full posterior density by specifying the
evaluator() option or only the likelihood portion of your Bayesian model by specifying the
llevaluator () option. For likelihood evaluators, prior () option(s) must be specified for all model
parameters. Without the scalarlnden option, your program is expected to calculate and return indi-
vidual log-likelihood values, one for each observation in the estimation sample. The posterior evaluator
must also calculate and return the scalar log-prior value. When the scalarlnden option is specified,
your program is expected to calculate and return a total (overall) log-likelihood density value with like-
lihood evaluators and a log-posterior density value with posterior evaluators.

It is allowed for the return values to match the log density up to an additive constant, in which case,
however, some of the reported statistics such as DIC and log marginal-likelihood may not be applicable.

Your evaluator program progname must be a Stata program; see [U] 18 Programming Stata. The
program must follow one of the styles below.
Program for log-posterior evaluators:
program progname
args 1nfj lnprior xbl [xb2 ...] [ modelparams] [ reparamlist]
. computations ...
replace ‘lnfj’ = ... if $MH_touse
. computations ...

scalar ‘lnprior’ = ...
end

Program for log-likelihood evaluators:
program progname
args 1nfj xbl [xb2 ...] [modelparams] [ reparamlist]
. computations . ..

replace ‘lnfj’ = ... if $MH_touse
end

1nf j contains the name of a temporary variable to be filled in with observation-specific log-likelihood
values.

lnprior contains the name of a temporary scalar to be filled in with the log-prior value.
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xb# contains the name of a temporary variable where the linear predictor of the #th equation is stored.

modelparams is a list of names of scalars or matrices to contain the values of model parameters specified
in suboption parameters () of evaluator () or 1levaluator (). For matrix parameters, the specified
names will contain the names of temporary matrices where the current values are stored. For scalar
parameters, these are the names of temporary scalars containing current values. The order in which names
are listed should correspond to the order in which model parameters are specified in parameters ().

reparamlist is a list of names of temporary variables to contain the values of random-effects parameters
specified with option reparameters (). These are the random-effects parameters you may want to have
an easy access to in the evaluator program. The order of the names matches the order of the random-
effects parameters specified in reparameters().

When the scalarlnden option is specified, the program syntax for both posterior and likelihood
evaluators is
program progname
args 1lnden xbl [xb2 ...] [ modelparams] [ reparamlist]
. computations . ..

scalar ‘lnden’ = ...
end

1nden contains the name of a temporary scalar to be filled in with an overall log-posterior or log-
likelihood value.

Also see Global macros for a list of global macros available in the evaluator program.

After you write an evaluator program, you specify its name in the option evaluator () for log-
posterior evaluators,

. bayesmh ..., evaluator( progname, evalopts)

or option 1levaluator () for log-likelihood evaluators,

. bayesmh ..., llevaluator( progname, evalopts)

Evaluator options evalopts include parameters(), extravars(), passthruopts(), reparam-
eters(), and predict.

parameters (paramlist) specifies model parameters. Model parameters can be scalars or matrices.
Each parameter must be specified in curly braces {}. Multiple parameters with the same equation
names may be specified within one set of {3}.

For example,

parameters ({mu} {var:sig2} {S,matrix} {cov:Sigma, matrix} {prob:pl p2})

specifies a scalar parameter with name mu without an equation label, a scalar parameter with name
sig2 and label var, a matrix parameter with name S, a matrix parameter with name Sigma and
label cov, and two scalar parameters {prob:p1} and {prob:p2}.

extravars (varlist) specifies any variables in addition to dependent and independent variables that
you may need in your evaluator program. Examples of such variables are offset variables, exposure
variables for count-data models, and failure or censoring indicators for survival-time models. See
Cox proportional hazards regression for an example.

passthruopts (string) specifies a list of options you may want to pass to your evaluator program.
For example, these options may contain fixed values of model parameters and hyperparameters.
See Multivariate normal regression model for an example.
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reparameters (reparamlist) specifies random-effects model parameters. This option is useful when
you need to perform computations that require direct access to the random-effects parameters in the
evaluator. Otherwise, you may simply use the linear predictor xb#’s, which automatically include
the random effects.

For example,

reparameters ({U1[id]} {U2[id2>id11} {Ww[_nl})

specifies a random-effects parameter U1l with the group variable id, a random-effects parameter
U2 with the group variable id2 nested within the group id1, and a latent variable W.

predict specifies that the evaluator include the code to generate random samples for the outcome
from its likelihood model; see Prior and posterior predictive distributions in [BAYES] bayespredict.
If this option is not specified for the evaluator in your bayesmh command, calling bayespredict
afterward to obtain predictions for the corresponding outcome will result in an error. With multiple
outcomes and evaluators, option predict is evaluator specific: you may implement predictions for
only some of the outcomes. For examples, see Evaluators with predictions in [BAYES] bayespre-
dict and Evaluators with predictions.

bayesmh automatically creates parameters for regression coefficients: {depname:varname} for ev-
ery varname in indepvars, and a constant parameter {depname: _cons} unless noconstant is specified.
These parameters are used to form linear predictors used in the evaluator program. If you need to access
values of the parameters in the evaluator, you can use $MH_b; see the log-posterior evaluator in Cox pro-
portional hazards regression for an example. With multiple dependent variables, regression coefficients
are defined for each dependent variable.

Simple linear regression model

Suppose that we want to fit a Bayesian normal regression where we program the posterior distribution
ourselves. The normaljeffreys program below computes the log-posterior density for the normal
linear regression with flat priors for the coefficients and the Jeffreys prior for the variance parameter.

. program normaljeffreys

1. version 19.5 // (or version 19 if you do not have StataNow)
2. args 1lnfj lnprior xb var
3. /* compute log likelihood */
. tempname sd
4. scalar ‘sd’ = sqrt(‘var’)
5. quietly replace ‘Infj’ = lnnormalden($MH_y, ‘xb’,‘sd’) if $MH_touse
6. /* compute log prior */
7. scalar ‘lnprior’ = -2*%1ln(‘sd’)
8. end

The program accepts four parameters: the temporary variable name ‘1nfj’ to contain the observation-
specific log-likelihood values, the temporary name ‘Inprior’ of a scalar to contain the log-prior value,
the temporary name ‘xb’ of the variable that contains the linear predictor, and the temporary name ‘var’
of a scalar that contains the value of the variance parameter.

The first part of the program calculates the observation-specific log likelihood of the normal regres-
sion. The second part of the program calculates the log of prior distributions of the parameters. Because
the coefficients have flat prior distributions with densities of 1, their log is 0 and does not contribute to
the overall prior. The only contribution is from the Jeffreys prior In(1/0?) = —2In(o) for the variance
o2. As the final step, bayesmh automatically computes the value of the posterior density as the sum of
the total (overall) log likelihood and the log of the prior.
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The substantial portion of this program is the computation of the log likelihood. The global macro
$MH_y contains the name of the dependent variable, and $MH_touse contains a temporary marker vari-
able identifying observations to be used in the computations.

We used the built-in function 1lnnormalden() to compute observation-specific log likelihood. The
temporary variable ‘1nf j’ is created by bayesmh, and you need to replace only its values. (If you create a
temporary variable yourself for intermediate calculations, remember to create it of type double to ensure
the highest precision of the results.) It is also important to perform computations using only the relevant
subset of observations as identified by the marker variable stored in $MH_touse. This variable contains
the value of 1 for observations to be used in the computations and 0 for the remaining observations.
Missing values in used variables affect this variable, as do the qualifiers if and in of the bayesmh
command.

We can now specify the normal jeffreys evaluator in the evaluator () option of bayesmh. In ad-
dition to the regression coefficients, we have one extra parameter, the variance of the normal distribution,
which we must specify in the parameters () suboption of evaluator().

We use auto.dta to illustrate the command. We specify a simple regression of mpg on rescaled
weight.
. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. quietly replace weight = weight/100
. set seed 14
. bayesmh mpg weight, evaluator(normaljeffreys, parameters({var}))

Burn-in ...
note: invalid initial state.
Simulation ...

Model summary

Posterior:
mpg ~ normaljeffreys(xb_mpg,{var})

Bayesian regression MCMC iterations = 12,500
Random-walk Metropolis—-Hastings sampling Burn-in = 2,500
MCMC sample size = 10,000

Number of obs = 74

Acceptance rate = .1433

Efficiency: min = .06246

avg = .06669

Log marginal-likelihood =  -198.247 max = .07091

Equal-tailed
Mean  Std. dev. MCSE Median [95% cred. intervall

mpg
weight | -.6052218 .053604 .002075 -.6062666 -.7121237 -.4992178

_cons 39.56782  1.658124 .066344  39.54211  36.35645  42.89876

var 12.19046  2.008871 .075442 12.03002 8.831172 17.07787

The output of bayesmh with user-defined evaluators is the same as the output of bayesmh with built-in
distributions, except the title and the model summary. The generic title Bayesian regression is used
for all evaluators, but you can change it by specifying the title () option. The model summary provides
the name of the posterior evaluator.
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Following the command line, there is a note about invalid initial state. For program evaluators,
bayesmh initializes all parameters with zeros, except for positive parameters used in prior specifica-
tions, which are initialized with ones. This may not be sensible for all parameters, such as the variance
parameter in our example. We may consider using, for example, OLS estimates as initial values of the
parameters.

We now specify initial values in the initial () option.

. set seed 14

. bayesmh mpg weight, evaluator(normaljeffreys, parameters({var}))
> initial ({mpg:weight} -0.6 {mpg:_cons} 39 {var} 11.83)

Burn-in ...
Simulation ...

Model summary

Posterior:
mpg ~ normaljeffreys(xb_mpg,{var})

Bayesian regression MCMC iterations = 12,500
Random-walk Metropolis—-Hastings sampling Burn-in = 2,500
MCMC sample size = 10,000

Number of obs = 74

Acceptance rate = .1668

Efficiency: min = .04114

avg = .04811

Log marginal-likelihood = -198.14302 max = .05938

Equal-tailed
Mean  Std. dev. MCSE Median [95% cred. interval]

mpg
weight | -.6025616 .0540995 .002667 -.6038729 -.7115221 -.5005915
_cons 39.50491 1.677906 .080156  39.45537 36.2433  43.14319

var 12.26586  2.117858 .086915  12.05298  8.827655  17.10703
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We can compare our results with results from bayesmh, which uses a built-in normal likelihood and
flat and Jeffreys priors. To match the results, we must use the same initial values, because bayesmh has
a different initialization logic for built-in distributions.

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))

> prior({mpg:}, flat) prior({var}, jeffreys)

> initial ({mpg:weight} -0.6 {mpg:_cons} 39 {var} 11.83)
Burn-in ...

Simulation ...

Model summary

Likelihood:
mpg ~ normal (xb_mpg,{var})
Priors:
{mpg:weight _cons} ~ 1 (flat) (1

{var} ~ jeffreys

(1) Parameters are elements of the linear form xb_mpg.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis—-Hastings sampling Burn-in = 2,500
MCMC sample size = 10,000

Number of obs = 74

Acceptance rate = .1668

Efficiency: min = .04114

avg = .04811

Log marginal-likelihood = -198.14302 max = .05938

Equal-tailed
Mean  Std. dev. MCSE Median [95% cred. interval]

mpg
weight | -.6025616 .0540995 .002667 -.6038729 -.7115221 -.5005915
_cons 39.50491 1.677906 .080166  39.45537 36.2433  43.14319

var 12.26586  2.117858 .086915  12.05298  8.827655  17.10703

If your Bayesian model uses prior distributions that are supported by bayesmh but the likelihood
model is not supported, you can write only the likelihood evaluator and use built-in prior distributions.
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For example, we can place the portion of the normal jeffreys program that computes the log like-
lihood in a separate program and call it normalreg,.

. program normalreg

version 19.5 // (or version 19 if you do not have StataNow)
args lnfj xb var

/* compute log likelihood */

tempname sd

scalar ‘sd’ = sqrt(‘var’)

quietly replace ‘Infj’ = lnnormalden($MH_y, ‘xb’,‘sd’) if $MH_touse

~N OO WN

end

We can now specify this program in the 11evaluator () option and use prior () options to specify
built-in flat priors for the coefficients and the Jeffreys prior for the variance.

. set seed 14

. bayesmh mpg weight, llevaluator(normalreg, parameters({varl}))
> prior({mpg:}, flat) prior({var}, jeffreys)

> initial ({mpg:weight} -0.6 {mpg:_cons} 39 {var} 11.83)
Burn-in ...

Simulation ...

Model summary

Likelihood:
mpg ~ normalreg(xb_mpg,{var})
Priors:
{mpg:weight _cons} ~ 1 (flat) 1

{var} ~ jeffreys

(1) Parameters are elements of the linear form xb_mpg.

Bayesian regression MCMC iterations = 12,500
Random-walk Metropolis—-Hastings sampling Burn-in = 2,500
MCMC sample size = 10,000

Number of obs = 74

Acceptance rate = .1668

Efficiency: min = .04114

avg = .04811

Log marginal-likelihood = -198.14302 max = .05938

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. intervall]

mpg
weight | -.6025616 .0540995 .002667 -.6038729 -.7115221 -.5005915
_cons 39.50491 1.677906 .080156  39.45537 36.2433  43.14319

var 12.265686  2.117858 .086915  12.05298  8.827655 17.10703

‘We obtain the same results as earlier.
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Simple linear regression model with scalar evaluators

Here we show a scalar version of the normal jeffreys program that computes the total log likelihood,
adds it to the log prior, and returns the final log posterior as a scalar value.

. program normaljeffreys2

4
5
6
> $MH_touse
7.
8

17. end

version 19.5 // (or version 19 if you do not have StataNow)
args lnp xb var

/* compute log likelihood */

tempname sd

scalar ‘sd’ = sqrt(‘var’)

tempvar 1nfj

quietly generate double ‘1lnfj’=lnnormalden($MH_y, ‘xb’,‘sd’) if

quietly summarize ‘lnfj’, meanonly
if r(N) < $MH_n {

scalar ‘lnp’ = .

exit
}
tempname 1nf
scalar ‘Inf’ = r(sum)
/* compute log prior */
tempname lnprior
scalar ‘lnprior’ = -2%1ln(‘sd’)
/* compute log posterior */
scalar ‘lnp’ = ‘lnf’ + ‘lnprior’

Here we created the temporary variable ‘1nfj’ ourselves to contain the observation-specific log-
likelihood values. And we used summarize to obtain the total value. After we compute the log-likelihood
value, we should verify that the number of nonmissing observation-specific contributions to the log like-
lihood equals $MH_n. If it does not, the log-posterior value (or log-likelihood value in a log-likelihood
evaluator) must be set to missing. ($MH_n contains the total number of observations in the sample iden-
tified by the $MH_touse variable.) Unlike in our previous example programs, here we compute the
log-posterior value ourselves.
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We refit the first model from the previous section but now using the normal jeffreys2 evaluator.
Because the evaluator now returns the scalar log posterior, we also need to add the scalarlnden option
to the bayesmh specification.

. set seed 14
. bayesmh mpg weight, evaluator(normaljeffreys2, parameters({var})) scalarlnden

Burn-in ...
note: invalid initial state.
Simulation ...

Model summary

Posterior:
mpg ~ normaljeffreys2(xb_mpg,{varl})

Bayesian regression MCMC iterations = 12,500
Random-walk Metropolis—-Hastings sampling Burn-in = 2,500
MCMC sample size = 10,000

Number of obs = 74

Acceptance rate = .1433

Efficiency: min = .06246

avg = .06669

Log marginal-likelihood =  -198.247 max = .07091

Equal-tailed
Mean  Std. dev. MCSE Median [95% cred. intervall

mpg
weight | -.6052218 .053604 .002075 -.6062666 -.7121237 -.4992178
_cons 39.56782 1.658124 .066344  39.54211  36.35645  42.89876

var 12.19046  2.008871 .075442 12.03002 8.831172 17.07787

For this simple linear regression model, the normaljeffreys and normaljeffreys2 evaluators
produce the same results.

Next we show a scalar version of the normalreg likelihood evaluator. The evaluator computes and
returns the total log likelihood over the estimation sample.

. program normalreg2

1. version 19.5 // (or version 19 if you do not have StataNow)
2. args lnf xb var
3. /* compute log likelihood */

tempname sd

4 scalar ‘sd’ = sqrt(‘var’)

5. tempvar 1nfj

6. quietly generate double ‘Infj’ = lnnormalden($MH_y, ‘xb’,‘sd’) if
> $MH_touse

7. quietly summarize ‘lnfj’, meanonly

8 if r(N) < $MH_n {

9. scalar ‘lnf’ = .
10. exit

11. }

12. scalar ‘lnf’ = r(sum)

13. end
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We refit the last model from the previous section but this time using the normalreg?2 likelihood
evaluator and also specifying the scalarlnden option.

. set seed 14

. bayesmh mpg weight, llevaluator(normalreg2, parameters({var})) scalarlnden
> prior({mpg:}, flat) prior({var}, jeffreys)

> initial ({mpg:weight} -0.6 {mpg:_cons} 39 {var} 11.83)

Burn-in ...

Simulation ...

Model summary

Likelihood:
mpg ~ normalreg2(xb_mpg,{varl})
Priors:
{mpg:weight _cons} ~ 1 (flat) (¢D)

{var} ~ jeffreys

(1) Parameters are elements of the linear form xb_mpg.

Bayesian regression MCMC iterations = 12,500
Random-walk Metropolis—-Hastings sampling Burn-in = 2,500
MCMC sample size = 10,000

Number of obs = 74

Acceptance rate = .1668

Efficiency: min = .04114

avg = .04811

Log marginal-likelihood = -198.14302 max = .05938

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. intervall]

mpg
weight | -.6025616 .0540995 .002667 -.6038729 -.7115221 -.5005915
_cons 39.50491 1.677906 .080166  39.45537 36.2433  43.14319

var 12.26586  2.117858 .086915  12.05298  8.827655 17.10703

Logistic regression model

Some models, such as logistic regression, do not have additional parameters except regression coeffi-
cients. Here we show how to write an evaluator program for fitting a Bayesian logistic regression model.

We start by creating a program for computing the log likelihood.
. program logitll
1.

version 19.5 // (or version 19 if you do not have StataNow)
2. args 1lnfj xb
3. quietly replace ‘lnfj’ = 1ln(invlogit( ‘xb’))
> if $MH_y == 1 & $MH_touse
4. quietly replace ‘Infj’ = 1ln(invlogit(-‘xb’))
> if $MH_y == 0 & $MH_touse

5. end

The structure of our log-likelihood evaluator is similar to the one described in Simple linear regression
model, except we have no extra parameters.


https://www.stata.com/manuals/bayesbayesmhevaluators.pdf#bayesbayesmhevaluatorsRemarksandexamplesSimplelinearregressionmodel
https://www.stata.com/manuals/bayesbayesmhevaluators.pdf#bayesbayesmhevaluatorsRemarksandexamplesSimplelinearregressionmodel
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We continue with auto.dta and regress foreign on mpg. For simplicity, we assume a flat prior for
the coefficients and use bayesmh, 1levaluator () to fit this model.
. use https://www.stata-press.com/data/r19/auto, clear
(1978 automobile data)
. set seed 14
. bayesmh foreign mpg, llevaluator(logitll) prior({foreign:}, flat)

Burn-in ...
Simulation ...

Model summary

Likelihood:
foreign ~ logitll(xb_foreign)
Prior:
{foreign:mpg _cons} ~ 1 (flat) (D

(1) Parameters are elements of the linear form xb_foreign.

Bayesian regression MCMC iterations = 12,500
Random-walk Metropolis—Hastings sampling Burn-in = 2,500
MCMC sample size = 10,000

Number of obs = 74

Acceptance rate = .2216

Efficiency: min = .09293

avg = .09989

Log marginal-likelihood = -41.626029 max = .1068

Equal-tailed
foreign Mean  Std. dev. MCSE Median [95%, cred. intervall

mpg .16716 .0545771 .00167 .1644019 .0669937 .2790017
_cons | -4.560636 1.261675 .041387 -4.503921 -7.10785 -2.207665
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The results from the evaluator version match the results from bayesmh with a built-in logistic model.

. set seed 14

. bayesmh foreign mpg, likelihood(logit) prior({foreign:}, flat)
> initial ({foreign:} 0)

Burn-in ...
Simulation ...

Model summary

Likelihood:
foreign ~ logit(xb_foreign)
Prior:
{foreign:mpg _cons} ~ 1 (flat) 1

(1) Parameters are elements of the linear form xb_foreign.

Bayesian logistic regression MCMC iterations = 12,500

Random-walk Metropolis—Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000

Number of obs = 74

Acceptance rate = .2216

Efficiency: min = .09293

avg = .09989

Log marginal-likelihood = -41.626029 max = .1068
Equal-tailed

foreign Mean  Std. dev. MCSE Median [95, cred. intervall

mpg .16716  .0545771 .00167  .1644019  .0669937  .2790017

_cons | -4.560636 1.261675  .041387 -4.503921 -7.10785 -2.207665
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Because we assumed a flat prior with the density of 1, the log prior is 0, so the log-posterior evaluator
for this model is the same as the log-likelihood evaluator.

. program logitposter

1. version 19.5 // (or version 19 if you do not have StataNow)
2. args 1lnfj lnprior xb
3. quietly replace ‘lnfj’ = 1ln(invlogit( ‘xb’))
> if $MH_y == 1 & $MH_touse
4. quietly replace ‘lnfj’ = 1ln(invlogit(-‘xb’))
> if $MH_y == 0 & $MH_touse
5. scalar ‘lnprior’ = 0
6. end
. set seed 14

. bayesmh foreign mpg, evaluator(logitposter)

Burn-in ...
Simulation ...

Model summary

Posterior:
foreign ~ logitposter(xb_foreign)

Bayesian regression MCMC iterations = 12,500
Random-walk Metropolis—-Hastings sampling Burn-in = 2,500
MCMC sample size = 10,000
Number of obs = 74

Acceptance rate = .2216

Efficiency: min = .09293
avg = .09989
Log marginal-likelihood = -41.626029 max = .1068

Equal-tailed
foreign Mean  Std. dev. MCSE Median [95} cred. intervall

mpg .16716 .0545771 .00167 .1644019 .0669937 .2790017
_cons | -4.560636 1.261675 .041387 -4.503921 -7.10785 -2.207665

Multivariate normal regression model

Here we demonstrate how to write an evaluator program for a multivariate response. We consider a
bivariate normal regression, and we again start with a log-likelihood evaluator. In this example, we also
use Mata to speed up our computations.

. program mvnregll

1. version 19.5 // (or version 19 if you do not have StataNow)
2. args 1lnfj xbl xb2
3. tempvar diffl diff2 touseid
4. quietly generate double ‘diffil’ = $MH_yl - ‘xbl’ if $MH_touse
5. quietly generate double ‘diff2’ = $MH_y2 - ‘xb2’ if $MH_touse
6. local d $MH_yn
7. local n $MH_n
8. quietly generate ‘touseid’ = $MH_touse * _n
9. mata: st_store(st_data(.,"‘touseid’"), "‘lnfj’", ///
> mvnll_mata(‘d’,‘n’,"‘diff1’","‘diff2°"))

[y
o

. end
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. mata:

mata (type emd to exit) ——
real vector mvnll_mata(real scalar d, n, string scalar sdiffil, sdiff2)

> {

> real vector 1nfj, vcross

> real matrix Diff, Sigma

>

> Sigma = st_matrix(st_global("MH_m1"))

> st_view(Diff=.,., (sdiffl,sdiff2),st_global ("MH_touse"))
>

> /* compute log likelihood */

> vcross = cross(Diff’,invsym(Sigma)) :*Diff

> Infj = -0.5%(d*1n(2*pi())+1n(det(Sigma))) :- 0.5*rowsum(vcross)
>

> return(1lnfj)

>}

: end

The mvnregll program has three arguments: a scalar to store the log-likelihood values and two tem-
porary variables containing linear predictors corresponding to each of the two dependent variables. It
creates deviations ‘diff1’ and ‘diff2’ and passes them, along with other parameters, to the Mata
function mvnll_mata() to compute the bivariate normal log-likelihood value.

The extra parameter in this model is a covariance matrix of a bivariate response. In Simple linear
regression model, we specified an extra parameter, variance, which was a scalar, as an additional argu-
ment of the evaluator. This is not allowed with matrix parameters. They should be accessed via globals
$MH_m1, $MH_m2, and so on for each matrix model parameter in the order they are specified in option
parameters (). In our example, we have only one matrix, and we access it via $MH_m1. $MH_m1 contains
the temporary name of a matrix containing the current value of the covariance matrix parameter.

To demonstrate, we again use auto.dta. We rescale the variables to be used in our example to
stabilize the results.

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)

. replace weight = weight/100
variable weight was int now float
(74 real changes made)

. replace length = length/10
variable length was int now float
(74 real changes made)


https://www.stata.com/manuals/bayesbayesmhevaluators.pdf#bayesbayesmhevaluatorsRemarksandexamplesSimplelinearregressionmodel
https://www.stata.com/manuals/bayesbayesmhevaluators.pdf#bayesbayesmhevaluatorsRemarksandexamplesSimplelinearregressionmodel

bayesmh evaluators — User-defined evaluators with bayesmh 18

We fit a bivariate normal regression of mpg and weight on length. We specify the extra covariance
parameter as a matrix model parameter, {Sigma,m}, in suboption parameters() of 1levaluator().
We specify flat priors for the coefficients and an inverse-Wishart prior for the covariance matrix.

. set seed 14

. bayesmh mpg weight = length, llevaluator(mvnregll, parameters({Sigma,m}))
> prior ({mpg:} {weight:}, flat)

> prior({Sigma,m}, iwishart(2,12,I(2)))

> mcmesize (1000)

Burn-in ...

Simulation ...

Model summary

Likelihood:
mpg weight ~ mvnregll(xb_mpg,xb_weight,{Sigma,m})
Priors:
{mpg:length _cons} ~ 1 (flat) 1)
{weight:length _cons} ~ 1 (flat) (2)

{Sigma,m} ~ iwishart(2,12,I(2))

(1) Parameters are elements of the linear form xb_mpg.
(2) Parameters are elements of the linear form xb_weight.

Bayesian regression MCMC iterations = 3,500
Random-walk Metropolis—-Hastings sampling Burn-in = 2,500
MCMC sample size = 1,000

Number of obs = 74

Acceptance rate = .1728

Efficiency: min = .02882

avg = .05012

Log marginal-likelihood = -415.01504 max = .1275

Equal-tailed

Mean Std. dev. MCSE Median [95% cred. intervall
mpg
length -2.040162 .2009062 .037423 -2.045437 -2.369287 -1.676332
_cons 59.6706 3.816341 .705609 59.63619 52.54652 65.84583
weight
length 3.31773 .1461644 .026319 3.316183 3.008416 3.598753

_cons | -32.19877 2.79005 .484962  -32.4154 -37.72904 -26.09976

Sigma_1_1 11.49666 1.682975 .149035 11.3523 8.691888 14.92026
Sigma_2_1 -2.33596 1.046729 .153957 -2.238129 -4.414118 -.6414916
Sigma_2_2 5.830413 .9051206 .121931 5.630011 4.383648 8.000739

To reduce computation time, we used a smaller MCMC sample size of 1,000 in our example. In your anal-
ysis, you should always verify whether a smaller MCMC sample size results in precise-enough estimates
before using it for final results.
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We can check our results against bayesmh using the built-in multivariate normal regression after
adjusting the initial values.

. set seed 14

. bayesmh mpg weight = length, likelihood(mvnormal({Sigma,m}))
> prior({mpg:} {weight:}, flat)

> prior({Sigma,m}, iwishart(2,12,I(2)))

> mcmesize (1000)

> initial ({mpg:} {weight:} 0)

Burn-in ...

Simulation ...

Model summary

Likelihood:
mpg weight ~ mvnormal(2,xb_mpg,xb_weight,{Sigma,m})
Priors:
{mpg:length _cons} ~ 1 (flat) (1)
{weight:length _cons} ~ 1 (flat) (2)

{Sigma,m} ~ iwishart(2,12,I(2))

(1) Parameters are elements of the linear form xb_mpg.
(2) Parameters are elements of the linear form xb_weight.

Bayesian multivariate normal regression MCMC iterations = 3,500
Random-walk Metropolis—Hastings sampling Burn-in = 2,500
MCMC sample size = 1,000

Number of obs = 74

Acceptance rate = .1728

Efficiency: min = .02882

avg = .05012

Log marginal-likelihood = -415.01504 max = .1275

Equal-tailed

Mean Std. dev. MCSE Median [95% cred. intervall
mpg
length -2.040162 .2009062 .037423 -2.045437 -2.369287 -1.676332
_cons 59.6706 3.816341 .705609 59.63619 52.54652 65.84583
weight
length 3.31773 .1461644 .026319 3.316183 3.008416 3.598753

_cons | -32.19877 2.79005 .484962  -32.4154 -37.72904 -26.09976

Sigma_1_1 11.49666 1.682975 .149035 11.3523 8.691888 14.92026
Sigma_2_1 -2.33596 1.046729 .163957 -2.238129 -4.414118 -.6414916
Sigma_2_2 5.830413 .9051206 .121931  5.630011  4.383648 8.000739

We obtain the same results.
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Similarly, we can define the log-posterior evaluator. We already have the log-likelihood evaluator,
which we can reuse in our log-posterior evaluator. The only additional portion is to compute the log of
the inverse-Wishart prior density for the covariance parameter.

. program mvniWishart

1. version 19.5 // (or version 19 if you do not have StataNow)

2. args 1lnfj lnprior xbl xb2

3. tempvar diffl diff2 touseid

4. quietly generate double ‘diff1’ = $MH_yl - ‘xbl’ if $MH_touse

5. quietly generate double ‘diff2’ = $MH_y2 - ‘xb2’ if $MH_touse

6. local d $MH_yn

7. local n $MH_n

8. quietly generate ‘touseid’ = $MH_touse * _n

9. mata: st_store(st_data(.,"‘touseid’"), "‘lnfj’", ///
> mvnll_mata(‘d’,‘n’,"‘diff1’","‘diff2’"))

10. mata: st_numscalar("‘lnprior’", priorWish_mata())

11. end
. mata:

mata (type emd to exit) ——
real scalar priorWish_mata()

> {

> real matrix Sigma

> /* compute log of inverse-Wishart prior for Sigma */
> Sigma = st_matrix(st_global("MH_m1"))

> return(lniwishartden(12,I(2),Sigma))

>}

: end
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The results of the log-posterior evaluator match our earlier results.

. set seed 14

. bayesmh mpg weight = length, evaluator(mvniWishart, parameters({Sigma,m}))
> mcmesize (1000)

Burn-in ...
Simulation ...

Model summary

Posterior:
mpg weight ~ mvniWishart(xb_mpg,xb_weight,{Sigma,m})

Bayesian regression MCMC iterations = 3,500
Random-walk Metropolis—-Hastings sampling Burn-in = 2,500
MCMC sample size = 1,000

Number of obs = 74

Acceptance rate = .1728

Efficiency: min = .02882

avg = .05012

Log marginal-likelihood = -415.01504 max = .1275

Equal-tailed

Mean Std. dev. MCSE Median [95% cred. intervall
mpg
length -2.040162 .2009062 .037423 -2.045437 -2.369287 -1.676332
_cons 59.6706 3.816341 .705609 59.63619 52.54652 65.84583
weight
length 3.31773 .1461644 .026319 3.316183 3.008416 3.598753

_cons | -32.19877 2.79005 .484962  -32.4154 -37.72904 -26.09976

Sigma_1_1 11.49666 1.682975 .149035 11.3523 8.691888  14.92026
Sigma_2_1 -2.33596 1.046729 .153957 -2.238129 -4.414118 -.6414916
Sigma_2_2 5.830413 .9051206 .121931 5.630011  4.383648 8.000739
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Sometimes, it may be useful to be able to pass options to our evaluators. For example, we used the
identity I (2) matrix as a scale matrix of the inverse-Wishart distribution. Suppose that we want to check
the sensitivity of our results to other choices of the scale matrix. We can pass the name of a matrix we
want to use in an option. In our example, we use the vmatrix () option to pass the name of the scale
matrix. We later specify this option within suboption passthruopts() of the evaluator() option.
The options passed this way are stored in the $MH_passthruopts global macro.

. program mvniWishartV

1. version 19.5 // (or version 19 if you do not have StataNow)
2. args 1lnfj lnprior xbl xb2
3. tempvar diffl diff2 touseid
4. quietly generate double ‘diff1’ = $MH_yl - ‘xbl’ if $MH_touse
5. quietly generate double ‘diff2’ = $MH_y2 - ‘xb2’ if $MH_touse
6. local d $MH_yn
7. local n $MH_n
8. quietly generate ‘touseid’ = $MH_touse * _n
9. mata: st_store(st_data(.,"‘touseid’"), "‘lnfj’", ///
> mvnll_mata(‘d’, ‘n’,"‘diff1’","‘diff2’"))
10. local O , $MH_passthruopts
11. syntax, vmatrix(string)
12. mata: st_numscalar("‘lnprior’", priorWishV_mata("‘vmatrix’"))
13. end
. mata:

mata (type emd to exit) ——
real scalar priorWishV_mata(vmat)

> {

> real matrix Sigma

> /* compute log of inverse-Wishart prior for Sigma */
> Sigma = st_matrix(st_global("MH_mi"))

> return(Iniwishartden(12, st_matrix(vmat), Sigma))
>}

: end
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We now define the scale matrix V (as the identity matrix to match our previous results) and specify
vmatrix (V) in suboption passthruopts() of evaluator ().

. set seed 14
. matrix V = I(2)

. bayesmh mpg weight = length,

> evaluator (mvniWishartV, parameters({Sigma,m}) passthruopts(vmatrix(V)))
> mcmesize (1000)

Burn-in ...

Simulation ...

Model summary

Posterior:
mpg weight ~ mvniWishartV(xb_mpg,xb_weight,{Sigma,m})

Bayesian regression MCMC iterations = 3,500
Random-walk Metropolis—-Hastings sampling Burn-in = 2,500
MCMC sample size = 1,000

Number of obs = 74

Acceptance rate = .1728

Efficiency: min = .02882

avg = .05012

Log marginal-likelihood = -415.01504 max = .1275

Equal-tailed

Mean Std. dev. MCSE Median [95% cred. intervall
mpg
length -2.040162 .2009062 .037423 -2.045437 -2.369287 -1.676332
_cons 59.6706 3.816341 .705609 59.63619 52.54652 65.84583
weight
length 3.31773 .1461644 .026319 3.316183 3.008416 3.598753

_cons | -32.19877 2.79005 .484962  -32.4154 -37.72904 -26.09976

Sigma_1_1 11.49666 1.682975 .149035 11.3523 8.691888 14.92026
Sigma_2_1 -2.33596 1.046729 .153957 -2.238129 -4.414118 -.6414916
Sigma_2_2 5.830413 .9051206 .121931 5.630011 4.383648 8.000739

The results are the same as before.
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Cox proportional hazards regression

Some evaluators may require additional variables, apart from the dependent and independent vari-
ables, for computation. For example, in a Cox proportional hazards model, such a variable is a failure or
censoring indicator. The coxphll program below computes the partial log likelihood for the Cox pro-
portional hazards regression. The failure indicator will be passed to the evaluator as an extra variable in
suboption extravars () of option 11levaluator () or option evaluator () and can be accessed from
the global macro $MH_extravars.

. program coxphll
1. version 19.5 // (or version 19 if you do not have StataNow)

2. args 1lnfj xb
3. tempvar negt
4. quietly generate double ‘negt’ = -$MH_y1l
5. local d "$MH_extravars"
6. sort $MH_touse ‘negt’ ‘d’
7. tempvar B A sumd last L
8. local byby "by $MH_touse ‘negt’ ‘d’"
9. quietly {
10. gen double ‘B’ = sum(exp(‘xb’)) if $MH_touse
11. ‘byby’: gen double ‘A’ = cond(_n==_N, sum(‘xb’), .)
> if ‘d’==1 & $MH_touse
12. ‘byby’: gen ‘sumd’ = cond(_n==_N, sum(‘d’), .) if $MH_touse
13. ‘byby’: gen byte ‘last’ = (_n==_N & ‘d’ == 1) if $MH_touse
14. gen double ‘L’ = ‘A’ - ‘sumd’*1n(‘B’) if ‘last’ & $MH_touse
15. replace ‘lnfj’ = 0 if $MH_touse
16. replace ‘lnfj’ = ‘L’ if ‘last’ & $MH_touse
17. }
18. end

We demonstrate the command using the survival-time cancer dataset. The survival-time variable is
studytime and the failure indicator is died. The regressor of interest in this model is age. We use a
fairly noninformative normal prior with a 0 mean and a variance of 100 for the regression coefficient of
age. (The constant in the Cox proportional hazards model is not likelihood identifiable, so we omit it
from this model with a noninformative prior.)
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. use https://www.stata-press.com/data/r19/cancer, clear
(Patient survival in drug trial)

. gsort -studytime died
. set seed 14

. bayesmh studytime age, llevaluator(coxphll, extravars(died))
> prior({studytime:}, normal(0,100))
> noconstant mcmcsize(1000)

Burn-in ...
Simulation ...

Model summary

Likelihood:
studytime ~ coxphll(xb_studytime)
Prior:
{studytime:age} ~ normal(0,100) (¢D)

(1) Parameter is an element of the linear form xb_studytime.

Bayesian regression MCMC iterations = 3,500

Random-walk Metropolis—Hastings sampling Burn-in = 2,500

MCMC sample size = 1,000

Number of obs = 48

Acceptance rate = .4066

Log marginal-likelihood = -103.04797 Efficiency = .3568
Equal-tailed

studytime Mean  Std. dev. MCSE Median [95, cred. intervall

age .076705 .0330669 .001751 .077936 .0099328  .1454275

We specified the failure indicator died in suboption extravars() of 1levaluator (). We again used
a smaller value for the MCMC sample size only to reduce computation time.

For the log-posterior evaluator, we add the log of the normal prior of the age coefficient to the log-
likelihood value to obtain the final log-posterior value. We did not need to specify the loop in the log-prior
computation in this example, but we did this to be general, in case more than one regressor is included
in the model.

. program coxphnormal

1. version 19.5 // (or version 19 if you do not have StataNow)
2. args lnfj lnprior xb

3. /* compute log likelihood */

4. quietly coxphll ‘Infj’ ‘xb’

5. /* compute log priors of regression coefficients */

6. scalar ‘lnprior’ = 0

7. forvalues i = 1/$MH_bn {

8. scalar ‘lnprior’ = ‘lnprior’ + lnnormalden($MH_b[1,‘i’], 10)
9. X
10. end
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As expected, we obtain the same results as previously.

. set seed 14

. bayesmh studytime age, evaluator(coxphnormal, extravars(died))
> noconstant mcmcsize(1000)

Burn-in ...
Simulation ...

Model summary

Posterior:
studytime ~ coxphnormal (xb_studytime)

Bayesian regression MCMC iterations = 3,500
Random-walk Metropolis—-Hastings sampling Burn-in = 2,500
MCMC sample size = 1,000
Number of obs = 48
Acceptance rate = . 4066
Log marginal-likelihood = -103.04797 Efficiency = .3568

Equal-tailed
studytime Mean  Std. dev. MCSE Median [95% cred. intervall

age .076705 .0330669 .001751 .077936 .0099328 .1454275

Random-intercept linear regression model

In the next few examples, we demonstrate the use of evaluators for fitting random-intercept models.
We first reuse the likelihood evaluator normalreg, defined in Simple linear regression model.

We consider pig.dta and fit a linear regression of weight on week with a random intercept at the
levels of the id variable, which we include as {U[id]} in our regression specification; see Random
effects in [BAYES] bayesmh. To fit this model with bayesmh using the evaluator version, we specify
the 11evaluator () option and pass the error variance parameter {var} using the parameters () sub-
option. We choose to drop the constant term from the regression equation and assign a normal prior
centered at parameter {weight:_cons} for the random effects {U[id]}. This will improve sampling
efficiency. To further improve sampling efficiency, in the presence of random effects, bayesmh auto-
matically blocks random-effects parameters by applying the block ({U[id]}, reffects) option. To
complete the model specification, we also add priors for the error variance {var} and the variance of
random intercept {var_U}. In addition, the init () and rseed () options are used for reproducibility.


https://www.stata.com/manuals/bayesbayesmhevaluators.pdf#bayesbayesmhevaluatorsRemarksandexamplesSimplelinearregressionmodel
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesRandomeffects
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesRandomeffects
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
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. use https://www.stata-press.com/data/r19/pig
(Longitudinal analysis of pig weights)

bayesmh weight week U[id], noconstant

> llevaluator(normalreg, parameters({var}))

> prior ({U[id]}, normal({weight:_cons}, {var_U}))

> prior ({weight:}, normal(0, 10000))

> prior({var_U}, igamma(0.01, 0.01)) block({var_U})
> prior({var}, igamma(0.01, 0.01)) block({var})

> init({weight:} 0 {var} 1) rseed(19)

Burn-in 2500 aaaaaaaaalOOOaaaaaaaaa200Oaaaaa done

Simulation 10000 ......... 1000......... 2000......... 3000......... 4000......... 5
> 000......... 6000......... 7000......... 8000......... 9000......... 10000 done

Model summary

Likelihood:
weight ~ normalreg(xb_weight,{var})
Priors:
{weight:week} ~ normal(0,10000) 1)

{U[id]} ~ normal ({weight:_cons},{var_U}) (1
{var} ~ igamma(0.01,0.01)
{weight:_cons} ~ normal(0,10000)
Hyperprior:
{var_U} ~ igamma(0.01,0.01)

(1) Parameters are elements of the linear form xb_weight.

Bayesian regression MCMC iterations = 12,500
Random-walk Metropolis—Hastings sampling Burn-in = 2,500
MCMC sample size = 10,000

Number of obs = 432

Acceptance rate = .3181

Efficiency: min = .01933

avg = .08653

Log marginal-likelihood max = L1747

Equal-tailed
Mean  Std. dev. MCSE Median [95% cred. intervall

weight
week 6.210361 .0357788 .002573  6.210529 6.13508  6.283522
_cons 19.35363 .6087435 .031972 19.34191 18.26791  20.58926

var 4.426645 .3247232 .007768  4.409389  3.835124  5.102071
var_U 15.92844  3.801803 .111729 15.3975  10.11643  24.55804

Because bayesmh automatically includes the random-effects parameters in the linear predictor (the
program argument xb), we did not need to modify the normalreg evaluator to accommodate random
effects. Some evaluators may need direct access to random effects. Below, for demonstration, we provide
an equivalent evaluator, normalre, that is an extended version of normalreg, where we manually build
the linear form of the regression model by using the model parameters, including the random effects.

We assume that the model has one predictor. The name of the predictor variable is available in the
MH_x1 global macro. There is only one regression coefficient, {mpg:weight}, and its value is avail-
able in the $MH_b matrix. To access the random intercepts within our program, we include {U} in
the reparameters() suboption of the 1levaluator () option of bayesmh. The list of arguments in
normalre thus includes a local macro U with the name of a temporary variable, ‘U’, containing the
current values of the random intercept across the observations.
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The linear form, which we compute and store in a temporary variable ‘xb2’, matches the provided
temporary variable ‘xb’.

. program normalre

1.

DO WN

~

9. end

version 19.5 // (or version 19 if you do not have StataNow)
args 1Infj xb var U

tempvar xb2

tempname mb sd

scalar ‘sd’ = sqrt(‘var’)

/* retrieve regression coefficients for covariates */

matrix ‘mb’ = $MH_b

/* compute linear form */

quietly generate double ‘xb2’ = $MH_x1*‘=‘mb’[1,1]’ + ‘U’ if $MH_touse
/* compute log-likelihood */

quietly replace ‘lnfj’ = lnnormalden($MH_y, ‘xb2’,‘sd’) if $MH_touse

The only change in the bayesmh specification for the new evaluator is the inclusion of the
reparameters ({U}) suboption.

bayesmh weight week U[id], noconstant

> llevaluator(normalre, parameters({var}) reparameters({U}))
> prior({U[id]}, normal({weight:_cons}, {var_U}))

> prior ({weight:}, normal(0, 10000))

> prior({var_U}, igamma(0.01, 0.01)) block({var_U})

> prior({var}, igamma(0.01, 0.01)) block({var})

> init({weight:} 0 {var} 1) rseed(19)

Burn-in 2500 aaaaaaaaalOOOaaaaaaaaa200Oaaaaa done

Simulation 10000 ......... 1000......... 2000......... 3000......... 4000......... 5

> 000......... 6000......... 7000......... 8000......... 9000......... 10000 done

Model summary

Likelihood:
weight ~ normalre(xb_weight,{var},{U[id]})
Priors:
{weight:week} ~ normal(0,10000) (1)

{U[id]} ~ normal({weight:_cons},{var_U}) 1)
{var} ~ igamma(0.01,0.01)

{weight:_cons} ~ normal(0,10000)
Hyperprior:
{var_U} ~ igamma(0.01,0.01)

(1) Parameters are elements of the linear form xb_weight.
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Bayesian regression MCMC iterations = 12,500
Random-walk Metropolis—-Hastings sampling Burn-in 2,500
MCMC sample size = 10,000
Number of obs = 432
Acceptance rate .3181
Efficiency: min = .01933
avg = .08653
Log marginal-likelihood max = L1747
Equal-tailed
Mean  Std. dev. MCSE Median [957, cred. intervall
weight
week 6.210361 .0357788 .002573  6.210529 6.13508  6.283522
_cons 19.35363 .6087435 .031972 19.34191  18.26791  20.58926
var 4.426645 .3247232 .007768  4.409389 3.835124 5.102071
var_U 15.92844  3.801803 .111729 15.3975 10.11643  24.55804

As expected, the estimation results produced by bayesmh using the two equivalent evaluators are the
same.

Evaluators with predictions

If you want to fit a model with bayesmh using an evaluator and then compute predictions by using
bayespredict (see [BAYES] bayespredict), your evaluator should also be able to generate samples from
the outcome distribution of your likelihood model.

To implement on-demand predictions, your evaluator needs to check the global macro $MH_predict,
which will be set by bayespredict during its run time. If it is set to 1, then the evaluator needs to
generate an outcome sample and store the generated values in the temporary variables $MH_predict_y1
for the first outcome, in $MH_predict_y2 for the second outcome, and so on.

Below, we add support for predictions to the normalreg log-likelihood evaluator from Simple linear
regression model. The log-posterior evaluators can be extended similarly. In this case, we have only one
outcome variable, $MH_y1. If $MH_predict is set to 1, we need to generate a random sample from the
data distribution conditional on the current set of model parameters, which is a normal distribution with
the provided mean ‘xb’ and variance ‘var’, and store the sample in $MH_predict_y1. In addition, we
need to store the expected value for the outcome in $MH_predict_mul. For a normal distribution, the
expected outcome is given by the linear form ‘xb’.


https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredict
https://www.stata.com/manuals/bayesbayesmhevaluators.pdf#bayesbayesmhevaluatorsRemarksandexamplesSimplelinearregressionmodel
https://www.stata.com/manuals/bayesbayesmhevaluators.pdf#bayesbayesmhevaluatorsRemarksandexamplesSimplelinearregressionmodel
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When $MH_predict is set, we do not need to compute and return the log-likelihood values because
the evaluator is used purely for prediction in that case.

. program normalpr

1. version 19.5 // (or version 19 if you do not have StataNow)

2. args 1lnfj xb var

3. tempname sd

4. scalar ‘sd’ = sqrt(‘var’)

5. if $MH_predict {

6. quietly replace $MH_predict_mul = ‘xb’ if $MH_touse

7. quietly replace $MH_predict_yl = rnormal(‘xb’,‘sd’) if $MH_touse

8. }

9. else {

10. quietly replace ‘Infj’ = lnnormalden($MH_y, ‘xb’,‘sd’) if $M
> H_touse

11. 3

12. end

Working with the pig.dta dataset of the previous section, we use our normalpr evaluator to fit a
simple linear regression of weight on week. To indicate that the evaluator implements predictions, we
specify the predict suboption within the 11evaluator () option. We also add the saving () option to
the specification to save the simulation results in a permanent dataset, because this is required to compute
predictions later.

. bayesmh weight week, llevaluator(normalpr, parameters({var}) predict)

> prior ({weight:}, normal(0, 10000))

> prior({var}, igamma(0.01, 0.01)) block({var})

> init({weight:} O {var} 1) rseed(19) saving(bayesmhsim)
Burn-in ...

Simulation ...

Model summary

Likelihood:
weight ~ normalpr(xb_weight,{varl})
Priors:
{weight:week _cons} ~ normal(0,10000) (D)

{var} ~ igamma(0.01,0.01)

(1) Parameters are elements of the linear form xb_weight.

Bayesian regression MCMC iterations = 12,500
Random-walk Metropolis—Hastings sampling Burn-in = 2,500
MCMC sample size = 10,000

Number of obs = 432

Acceptance rate = .3321

Efficiency: min = .1201

avg = .1622

Log marginal-likelihood = -1270.8744 max = .2348

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. intervall]

weight
week 6.213014  .0841125 .002317  6.214818  6.040679  6.380262
_cons 19.34526 4672249 .013482  19.33243  18.44014  20.29782

var 19.41488  1.388441 .028654  19.38093  16.80829  22.42214

file bayesmhsim.dta saved.
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We can now use the bayespredict command to compute predicted posterior means for the outcome
weight. The predicted values are stored in a new variable, prweight. For a quick comparison of the
observed and predicted outcomes, we use their means and standard deviations. (We also drop the newly
generated variable and erase the simulation file to clean up.)

. bayespredict prweight if e(sample), mean
Computing predictions ...

. summarize prweight weight if e(sample)

Variable ‘ Obs Mean Std. dev. Min Max
prweight 432 50.41117 16.05947 25.44927 75.33538
weight 432 50.40509 16.64113 20 88

. drop prweight

. rm bayesmhsim.dta
The estimated mean of prweight, 50.41, is close to that of weight, but its standard deviation, 16.06,
is slightly less than that of weight, 16.64.

We can also use the normalpr evaluator with random-effects models. For example, we can refit the
random-intercept model from Random-intercept linear regression model.

bayesmh weight week U[id], noconstant

> llevaluator (normalpr, parameters({var}) predict)

> prior({U[id]}, normal({weight:_cons}, {var_U}))

> prior ({weight:}, normal(0, 10000))

> prior ({var_U}, igamma(0.01, 0.01)) block({var_U})

> prior({var}, igamma(0.01, 0.01)) block({var})

> init({weight:} 0 {var} 1) rseed(19) saving(bayesmhsim)
Burn-in 2500 aaaaaaaaalOOOaaaaaaaaa200Oaaaaa done

Simulation 10000 ......... 1000......... 2000......... 3000......... 4000......... 5

> 000......... 6000......... 7000......... 8000......... 9000......... 10000 done

Model summary

Likelihood:
weight ~ normalpr(xb_weight,{varl})
Priors:
{weight:week} ~ normal(0,10000) 1)

{U[id]} ~ normal ({weight:_cons},{var_U}) 1)
{var} ~ igamma(0.01,0.01)
{weight:_cons} ~ normal(0,10000)
Hyperprior:
{var_U} ~ igamma(0.01,0.01)

(1) Parameters are elements of the linear form xb_weight.


https://www.stata.com/manuals/bayesbayesmhevaluators.pdf#bayesbayesmhevaluatorsRemarksandexamplesRandom-interceptlinearregressionmodel
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Bayesian regression MCMC iterations = 12,500
Random-walk Metropolis—-Hastings sampling Burn-in = 2,500
MCMC sample size = 10,000
Number of obs = 432
Acceptance rate .3181
Efficiency: min = .01933
avg = .08653
Log marginal-likelihood max = L1747
Equal-tailed
Mean  Std. dev. MCSE Median [957, cred. intervall
weight
week 6.210361 .0357788 .002573  6.210529 6.13508  6.283522
_cons 19.35363 .6087435 .031972 19.34191  18.26791  20.58926
var 4.426645 .3247232 .007768  4.409389 3.835124 5.102071
var_U 15.92844  3.801803 .111729 15.3975 10.11643  24.55804

file bayesmhsim.dta saved.

The estimation results match the results from the earlier random-intercept model.

. bayespredict prweight if e(sample), mean
Computing predictions ...

. summarize prweight weight if e(sample)

Variable ‘ Obs Mean Std. dev. Min Max
prweight 432 50.40606 16.49598 18.3743 84.36924
weight 432 50.40509 16.64113 20 88

. drop prweight

. rm bayesmhsim.dta

Again, the observed and predicted outcome generally agree, but the predicted one has slightly less
variability, as indicated by the estimated standard deviations.
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Global macros

Global macros

Description

$MH_n

$MH_yn
$MH_touse

$MH_w
$MH_extravars
$MH_passthruopts

One outcome
$MH_y1
$MH_x1
$MH_x2

$MH_xn
$MH_xDb
Multiple outcomes
$MH_y1
$MH_y2

$MH_y1x1
$MH_y1x2

$MH_y1lxn
$MH_y1xb
$MH_y2x1
$MH_y2x2

$MH_y2xn
$MH_y2xb

number of observations

number of dependent variables

variable containing 1 for the observations to be used; 0 otherwise
variable containing weight associated with the observations
varlist specified in extravars ()

options specified in passthruopts ()

name of the dependent variable
name of the first independent variable
name of the second independent variable

number of independent variables
name of a temporary variable containing the linear combination

name of the first dependent variable
name of the second dependent variable

name of the first independent variable modeling y1
name of the second independent variable modeling y1

number of independent variables modeling y1
name of a temporary variable containing the linear combination modeling y1
name of the first independent variable modeling y2

name of the second independent variable modeling y2

number of independent variables modeling y2
name of a temporary variable containing the linear combination modeling y2

Scalar and matrix parameters

$MH_Db

$MH_bn
$MH_p

$MH_pn
$MH_m1
$MH_m2

$MH_mn

name of a temporary vector of coefficients;
stripes are properly named after the name of the coefficients

number of coefficients

name of a temporary vector of additional scalar model parameters, if any;
stripes are properly named

number of additional scalar model parameters

name of a temporary matrix of the first matrix parameter, if any

name of a temporary matrix of the second matrix parameter, if any

number of matrix model parameters
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Global macros, cont.

Description, cont.

Random effects
$MH_RE_tempvars

$MH_RE#
$MH_RE#_name

$MH_RE#_levelspec

Prediction
$MH_predict

$MH_predict_y1
$MH_predict_y2

$MH_predict_mul
$MH_predict_mu?2

names of temporary variables containing values for random-effects
parameters specified in option reparameters ()

name of temporary variable for the #th random-effects parameter

name of random-effects parameter corresponding to $MH_RE#

level specification of random-effects parameter $MH_RE#_name

prediction flag set to 1 by bayespredict during its run time if suboption
predict was specified with an evaluator; 0 otherwise

name of temporary variable containing predictions for y1

name of temporary variable containing predictions for y2

name of temporary variable containing expected value of y1
name of temporary variable containing expected value of y2
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Stored results

In addition to the results stored by bayesmh, bayesmh, evaluator() and bayesmh,
llevaluator() store the following in e():

Macros
e(evaluator) name of evaluator program (one equation)
e(evaluator#) name of evaluator program for the #th equation
e(evalparams) evaluator parameters (one equation)
e(evalparams#) evaluator parameters for the #th equation
e(evalreparams) evaluator random-effects parameters (one equation)
e(evalreparams#) evaluator random-effects parameters for the #th equation
e(extravars) extra variables (one equation)
e(extravars#) extra variables for the #th equation
e(passthruopts) pass-through options (one equation)

e(passthruopts#)  pass-through options for the #th equation
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