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Description

This entry describes commands to perform Bayesian analysis. Bayesian analysis is a statistical
procedure that answers research questions by expressing uncertainty about unknown parameters using
probabilities. It is based on the fundamental assumption that not only the outcome of interest but
also all the unknown parameters in a statistical model are essentially random and are subject to prior
beliefs.

Estimation
Bayesian estimation Bayesian estimation commands
bayes Bayesian regression models using the bayes prefix
bayesmh Bayesian models using MH
bayesmh evaluators User-defined Bayesian models using MH

Convergence tests and graphical summaries
bayesgraph Graphical summaries
bayesstats grubin Gelman–Rubin convergence diagnostics

Postestimation statistics
bayesstats ess Effective sample sizes and related statistics
bayesstats summary Bayesian summary statistics
bayesstats ic Bayesian information criteria and Bayes factors
bayesirf Bayesian IRFs and more after VAR and DSGE models

Predictions
bayespredict Bayesian predictions
bayesstats ppvalues Bayesian predictive p-values
bayesfcast Bayesian forecasts after VAR models

Hypothesis testing
bayestest model Hypothesis testing using model posterior probabilities
bayestest interval Interval hypothesis testing

Remarks and examples stata.com

This entry describes commands to perform Bayesian analysis. See [BAYES] Intro for an introduction
to the topic of Bayesian analysis.

Bayesian estimation in Stata can be as easy as prefixing your estimation command with the bayes
prefix ([BAYES] bayes). For example, if your estimation command is a linear regression of y on x

. regress y x
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then Bayesian estimates for this model can be obtained by typing

. bayes: regress y x

See [BAYES] Bayesian estimation for a list of estimation commands that work with the bayes
prefix.

In addition to the bayes prefix, there is a general-purpose Bayesian estimation command—
the bayesmh command ([BAYES] bayesmh). bayesmh fits a variety of Bayesian models including
multiple-equation linear and nonlinear models and, like the bayes prefix, estimates parameters using
an adaptive MH Markov chain Monte Carlo (MCMC) method. You can choose from a variety of
supported Bayesian models by specifying the likelihood() and prior() options. Or you can
program your own Bayesian models by supplying a program evaluator for the posterior distributions
of model parameters in the evaluator() option; see [BAYES] bayesmh evaluators for details.

After estimation, you can use bayesgraph to check convergence of MCMC visually. If you
simulated multiple chains, you can use bayesstats grubin to compute Gelman–Rubin convergence
diagnostics. You can also use bayesstats ess to compute effective sample sizes and related statistics
for model parameters and functions of model parameters to assess the efficiency of the sampling
algorithm and autocorrelation in the obtained MCMC sample. Once convergence is established, you
can use bayesstats summary to obtain Bayesian summaries such as posterior means and standard
deviations of model parameters and functions of model parameters and bayesstats ic to compute
Bayesian information criteria and Bayes factors for models. You can use bayestest model to test
hypotheses by comparing posterior probabilities of models. You can also use bayestest interval
to test interval hypotheses about parameters and functions of parameters. You can use bayespredict
and bayesstats ppvalues for model diagnostics using posterior predictive checking. You can also
use bayespredict to predict future observations.

Below we provide an overview example demonstrating the Bayesian suite of commands. In this
entry, we mainly concentrate on the general command, bayesmh. For examples of using the simpler
bayes prefix, see example 11 and Remarks and examples in [BAYES] bayes. Also, for more examples
of bayesmh, see Remarks and examples in [BAYES] bayesmh.

Overview example

Consider an example from Kuehl (2000, 551) about the effects of exercise on oxygen uptake. The
research objective is to compare the impact of the two exercise programs—12 weeks of step aerobic
training and 12 weeks of outdoor running on flat terrain—on maximal oxygen uptake. Twelve healthy
men were randomly assigned to one of the two groups, the “aerobic” group or the “running” group.
Their changes in maximal ventilation (liters/minute) of oxygen for the 12-week period were recorded.

oxygen.dta contains 12 observations of changes in maximal ventilation of oxygen, recorded
in variable change, from two groups, recorded in variable group. Additionally, ages of subjects
are recorded in variable age, and an interaction between age and group is stored in variable
interaction.

https://www.stata.com/manuals/bayesbayesianestimation.pdf#bayesBayesianestimation
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. use https://www.stata-press.com/data/r18/oxygen
(Oxygen uptake data)

. describe

Contains data from https://www.stata-press.com/data/r18/oxygen.dta
Observations: 12 Oxygen uptake data

Variables: 4 20 Jan 2022 15:56
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

change float %9.0g Change in maximal oxygen uptake
(liters/minute)

group byte %8.0g grouplab Exercise group
age byte %8.0g Age (years)
ageXgr byte %9.0g Interaction between age and group

Sorted by:

Kuehl (2000) uses analysis of covariance to analyze these data. We use linear regression instead,

change = β0 + βgroupgroup+ βageage+ ε

where ε is a random error with zero mean and variance σ2. Also see Hoff (2009) for Bayesian
analysis of these data.

Examples are presented under the following headings:

Example 1: OLS
Example 2: Bayesian normal linear regression with noninformative prior
Example 3: Bayesian linear regression with informative prior
Example 4: Bayesian normal linear regression with multivariate prior
Example 5: Checking convergence
Example 6: Postestimation summaries
Example 7: Bayesian predictions
Example 8: Model comparison
Example 9: Hypothesis testing
Example 10: Erasing simulation datasets
Example 11: Bayesian linear regression using the bayes prefix

Example 1: OLS

Let’s fit OLS regression to our data first.

. regress change group age

Source SS df MS Number of obs = 12
F(2, 9) = 41.42

Model 647.874893 2 323.937446 Prob > F = 0.0000
Residual 70.388768 9 7.82097423 R-squared = 0.9020

Adj R-squared = 0.8802
Total 718.263661 11 65.2966964 Root MSE = 2.7966

change Coefficient Std. err. t P>|t| [95% conf. interval]

group 5.442621 1.796453 3.03 0.014 1.378763 9.506479
age 1.885892 .295335 6.39 0.000 1.217798 2.553986

_cons -46.4565 6.936531 -6.70 0.000 -62.14803 -30.76498

From the table, both group and age are significant predictors of the outcome in this model.
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For example, we reject the hypothesis of H0: βgroup = 0 at a 5% level based on the p-value of
0.014. The actual interpretation of the reported p-value is that if we repeat the same experiment and
use the same testing procedure many times, then given our null hypothesis of no effect of group, we
will observe the result (test statistic) as extreme or more extreme than the one observed in this sample
(t = 3.03) only 1.4% of the times. The p-value cannot be interpreted as a probability of the null
hypothesis, which is a common misinterpretation. In fact, it answers the question of how likely our
data are, given that the null hypothesis is true, and not how likely the null hypothesis is, given our
data. The latter question can be answered using Bayesian hypothesis testing, which we demonstrate
in example 9.

Confidence intervals are popular alternatives to p-values that eliminate some of the p-value
shortcomings. For example, the 95% confidence interval for the coefficient for group is [1.38, 9.51]
and does not contain the value of 0, so we consider group to be a significant predictor of change.
The interpretation of a 95% confidence interval is that if we repeat the same experiment many times
and compute confidence intervals for each experiment, then 95% of those intervals will contain the
true value of the parameter. Thus we cannot conclude that the true coefficient for group lies between
1.38 and 9.51 with a probability of 0.95—a common misinterpretation of a confidence interval. This
probability is either 0 or 1, and we do not know which for any particular confidence interval. All we
know is that [1.38, 9.51] is a plausible range for the true value of the coefficient for group. Intervals
that can actually be interpreted as probabilistic ranges for a parameter of interest may be constructed
within the Bayesian paradigm; see example 9.

Example 2: Bayesian normal linear regression with noninformative prior

In example 1, we stated that frequentist methods cannot provide probabilistic summaries for the
parameters of interest. This is because in frequentist statistics, parameters are viewed as unknown but
fixed quantities. The only random quantity in a frequentist model is an outcome of interest. Bayesian
statistics, on the other hand, in addition to the outcome of interest, also treats all model parameters as
random quantities. This is what sets Bayesian statistics apart from frequentist statistics and enables
one to make probability statements about the likely values of parameters and to assign probabilities
to hypotheses of interest.

Bayesian statistics focuses on the estimation of various aspects of the posterior distribution of a
parameter of interest, an initial or a prior distribution that has been updated with information about
a parameter contained in the observed data. A posterior distribution is thus described by the prior
distribution of a parameter and the likelihood function of the data given the parameter.

Let’s now fit a Bayesian linear regression to oxygen.dta. To fit a Bayesian parametric model,
we need to specify the likelihood function or the distribution of the data and prior distributions for all
model parameters. Our Bayesian linear model has four parameters: three regression coefficients and
the variance of the data. We assume a normal distribution for our outcome, change, and start with a
noninformative Jeffreys prior for the parameters. Under the Jeffreys prior, the joint prior distribution
of the coefficients and the variance is proportional to the inverse of the variance.

We can write our model as follows,

change ∼ N(Xβ, σ2)

(β, σ2) ∼ 1

σ2

where X is our design matrix, and β = (β0, βgroup, βage)
′, which is a vector of coefficients.
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We use the bayesmh command to fit our Bayesian model. Let’s consider the specification of the
model first.

bayesmh change group age, likelihood(normal({var})) ///
prior({change:}, flat) prior({var}, jeffreys)

The specification of the regression function in bayesmh is the same as in any other Stata regression
command—the name of the dependent variable follows the command, and the covariates of interest
are specified next. Likelihood or outcome distribution is specified in the likelihood() option, and
prior distributions are specified in the prior() options, which are repeated options.

All model parameters must be specified in curly braces, {}. bayesmh automatically creates
parameters associated with the regression function—regression coefficients—but it is your responsibility
to define the remaining model parameters. In our example, the only parameter we need to define is the
variance parameter, which we define as {var}. The three regression coefficients {change:group},
{change:age}, and {change: cons} are automatically created by bayesmh.

The last step is to specify the likelihood and the prior distributions. bayesmh provides several
different built-in distributions for the likelihood and priors. If a certain distribution is not available or
you have a particularly complicated Bayesian model, you may consider writing your own evaluator
for the posterior distribution; see [BAYES] bayesmh evaluators for details. In our example, we specify
distribution normal({var}) in option likelihood() to request the likelihood function of the normal
model with the variance parameter {var}. This specification together with the regression specification
defines the likelihood model for our outcome change. We assign the flat prior, a prior with a
density of 1, to all regression coefficients with prior({change:}, flat), where {change:} is
a shortcut for referring to all parameters with equation name change, our regression coefficients.
Finally, we specify prior jeffreys for the variance parameter {var} to request the density 1/σ2.

Let’s now run our command. bayesmh uses MCMC sampling, specifically, an adaptive random-walk
MH MCMC method, to estimate marginal posterior distributions of parameters. Because bayesmh is
using an MCMC method, which is stochastic, we must specify a random-number seed for reproducibility
of our results. For consistency and simplicity, we use the same random seed of 14 in all of our
examples throughout the manual.

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayesmhevaluators.pdf#bayesbayesmhevaluators
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. set seed 14

. bayesmh change group age, likelihood(normal({var}))
> prior({change:}, flat) prior({var}, jeffreys)
Burn-in ...
Simulation ...

Model summary

Likelihood:
change ~ normal(xb_change,{var})

Priors:
{change:group age _cons} ~ 1 (flat) (1)

{var} ~ jeffreys

(1) Parameters are elements of the linear form xb_change.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 12
Acceptance rate = .1371
Efficiency: min = .02687

avg = .03765
Log marginal-likelihood = -24.703776 max = .05724

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

change
group 5.429677 2.007889 .083928 5.533821 1.157584 9.249262

age 1.8873 .3514983 .019534 1.887856 1.184714 2.567883
_cons -46.49866 8.32077 .450432 -46.8483 -62.48236 -30.22105

var 10.27946 5.541467 .338079 9.023905 3.980325 25.43771

First, bayesmh provides a summary for the specified model. It is particularly useful for complicated
models with many parameters and hyperparameters. In fact, we recommend that you first specify
the dryrun option, which provides only the summary of the model without estimation, to verify the
specification of your model and then proceed with estimation. You can then use the nomodelsummary
option during estimation to suppress the model summary, which may be rather long.

Next, bayesmh provides a header with various model summaries on the right-hand side. It reports
the total number of MCMC iterations, 12,500, including the default 2,500 burn-in iterations, which
are discarded from the analysis MCMC sample, and the number of iterations retained in the MCMC
sample, or MCMC sample size, which is 10,000 by default. These default values should be viewed
as initial estimates and further adjusted for the problem at hand to ensure convergence of the MCMC;
see example 5.

An acceptance rate and a summary of the parameter-specific efficiencies are also part of the output
header. An acceptance rate specifies the proportion of proposed parameter values that was accepted
by the algorithm. An acceptance rate of 0.14 in our example means that 14% out of 10,000 proposal
parameter values were accepted by the algorithm. For the MH algorithm, this number rarely exceeds
50% and is typically below 30%. A low acceptance rate (for example, below 10%) may indicate
convergence problems. In our example, the acceptance rate is a bit low, so we may need to investigate
this further. In general, MH tends to have lower efficiencies compared with other MCMC methods.
For example, efficiencies of 10% and higher are considered good. Efficiencies below 1% may be a
source of concern. The efficiencies are somewhat low in our example, so we may consider tuning
our MCMC sampler; see Improving efficiency of the MH algorithm—blocking of parameters.

https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryhyperparameter
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryefficiency
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesImprovingefficiencyoftheMHalgorithm---blockingofparameters
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Finally, bayesmh reports a table with a summary of the results. The Mean column reports the
estimates of posterior means, which are means of the marginal posterior distributions of the parameters.
The posterior mean estimates are pretty close to the OLS estimates obtained in example 1. This is
expected, provided MCMC converged, because we used a noninformative prior. That is, we did not
provide any additional information about parameters beyond that contained in the data.

The next column reports estimates of posterior standard deviations, which are standard deviations
of the marginal posterior distribution. These values describe the variability in the posterior distribution
of the parameter and are comparable to our OLS standard errors.

The precision of the posterior mean estimates is described by their Monte Carlo standard errors.
These numbers should be small, relative to the scales of the parameters. Increasing the MCMC sample
size should decrease these numbers.

The Median column provides estimates of the median of the posterior distribution and can be used
to assess the symmetries of the posterior distribution. At a quick glance, the estimates of posterior
means and medians are pretty close for the regression coefficients, so we suspect that their posterior
distributions may be symmetric.

The last two columns provide credible intervals for the parameters. Unlike confidence intervals,
as discussed in example 1, these intervals have a straightforward probabilistic interpretation. For
example, the probability that the coefficient for group is between 1.16 and 9.25 is about 0.95. The
lower bound of the interval is greater than 0, so we conclude that there is an effect of the exercise
program on the change in oxygen uptake. We can also use Bayesian hypothesis testing to test effects
of parameters; see example 9.

Before any interpretation of the results, however, it is important to verify the convergence of
MCMC; see example 5.

See example 11 for how to fit Bayesian linear regression more easily using the bayes prefix.

Example 3: Bayesian linear regression with informative prior

In example 2, we considered a noninformative prior for the model parameters. The strength (as
well as the weakness) of Bayesian modeling is specifying an informative prior distribution, which
may improve results. The strength is that if we have reliable prior knowledge about the distribution
of a parameter, incorporating this in our model will improve results and potentially make certain
analysis that would not be possible to perform in the frequentist domain feasible. The weakness is
that a strong incorrect prior may lead to results that are not supported by the observed data. As with
any modeling task, Bayesian or frequentist, a substantive research of the process generating the data
and its parameters will be necessary for you to find appropriate models.

Let’s consider an informative conjugate prior distribution for our normal regression model.

(β|σ2) ∼ i.i.d. N(0, σ2)

σ2 ∼ InvGamma(2.5, 2.5)

Here, for simplicity, all coefficients are assumed to be independently and identically distributed as
normal with zero mean and variance σ2, and the variance parameter is distributed according to the
above inverse gamma distribution. In practice, a better prior would be to allow each parameter to
have a different variance, at least for parameters with different scales.

Let’s fit this model using bayesmh. Following the model above, we specify the normal(0,{var})
prior for the coefficients and the igamma(2.5,2.5) prior for the variance.

https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryconjugate_prior
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. set seed 14

. bayesmh change group age, likelihood(normal({var}))
> prior({change:}, normal(0, {var}))
> prior({var}, igamma(2.5, 2.5))
Burn-in ...
Simulation ...

Model summary

Likelihood:
change ~ normal(xb_change,{var})

Priors:
{change:group age _cons} ~ normal(0,{var}) (1)

{var} ~ igamma(2.5,2.5)

(1) Parameters are elements of the linear form xb_change.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 12
Acceptance rate = .1984
Efficiency: min = .03732

avg = .04997
Log marginal-likelihood = -49.744054 max = .06264

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

change
group 6.510807 2.812828 .129931 6.50829 .9605561 12.23164

age .2710499 .2167863 .009413 .2657002 -.1556194 .7173697
_cons -6.838302 4.780343 .191005 -6.683556 -16.53356 2.495631

var 28.83438 10.53573 .545382 26.81462 14.75695 54.1965

The results from this model are substantially different from the results we obtained in example 2.
Considering that we used this simple prior for demonstration purposes only and did not use any
external information about model parameters based on prior studies, we would be reluctant to trust
the results from this model.

Example 4: Bayesian normal linear regression with multivariate prior

Continuing with informative priors, we will consider Zellner’s g-prior (Zellner 1986), which is
one of the more commonly used priors for the regression coefficients in a normal linear regression.
Hoff (2009) provides more details about this example, and he includes the interaction between age and
group as in example 8. Here we concentrate on demonstrating how to fit our model using bayesmh.

The mathematical formulation of the priors is the following,

(β|σ2) ∼ MVN(0, gσ2(X ′X)−1)

σ2 ∼ InvGamma(ν0/2, ν0σ2
0/2)

where g reflects prior sample size, ν0 is the prior degrees of freedom for the inverse gamma distribution,
and σ2

0 is the prior variance for the inverse gamma distribution. This prior incorporates dependencies
between coefficients. We use values of the parameters similar to those in Hoff (2009): g = 12, ν0 = 1,
and σ2

0 = 8.
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bayesmh provides the zellnersg0() prior to accommodate the above prior. The first argument is
the dimension of the distribution, which is 3 in our example, the second argument is the prior degrees
of freedom, which is 12 in our example, and the last argument is the variance parameter, which is
{var} in our example. The mean is assumed to be a zero vector of the corresponding dimension.
(You can use zellnersg() if you want to specify a nonzero mean vector; see [BAYES] bayesmh.)

. set seed 14

. bayesmh change group age, likelihood(normal({var}))
> prior({change:}, zellnersg0(3,12,{var}))
> prior({var}, igamma(0.5, 4))
Burn-in ...
Simulation ...

Model summary

Likelihood:
change ~ normal(xb_change,{var})

Priors:
{change:group age _cons} ~ zellnersg(3,12,0,{var}) (1)

{var} ~ igamma(0.5,4)

(1) Parameters are elements of the linear form xb_change.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 12
Acceptance rate = .06169
Efficiency: min = .0165

avg = .02018
Log marginal-likelihood = -35.356501 max = .02159

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

change
group 4.988881 2.260571 .153837 4.919351 .7793098 9.775568

age 1.713159 .3545698 .024216 1.695671 1.053206 2.458556
_cons -42.31891 8.239571 .565879 -41.45385 -59.30145 -27.83421

var 12.29575 6.570879 .511475 10.3609 5.636195 30.93576

These results are more in agreement with results from example 2 than with results of example 3, but
our acceptance rate and efficiencies are low and require further investigation.

Technical note
We can reproduce what zellnersg0() does above manually. First, we must compute (X ′X)−1.

We can use Stata’s matrix functions to do that.
. matrix accum xTx = group age
(obs=12)

. matrix S = invsym(xTx)

We now specify the desired multivariate normal prior for the coefficients, mvnor-
mal0(3,12*{var}*S). The first argument of mvnormal0() specifies the dimension of the distribution,
and the second argument specifies the variance–covariance matrix. A mean of zero is assumed for
all dimensions. One interesting feature of this specification is that the variance–covariance matrix is
specified as a function of {var}.

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
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. set seed 14

. bayesmh change group age, likelihood(normal({var}))
> prior({change:}, mvnormal0(3,12*{var}*S))
> prior({var}, igamma(0.5, 4))
Burn-in ...
Simulation ...

Model summary

Likelihood:
change ~ normal(xb_change,{var})

Priors:
{change:group age _cons} ~ mvnormal(3,0,0,0,12*{var}*S) (1)

{var} ~ igamma(0.5,4)

(1) Parameters are elements of the linear form xb_change.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 12
Acceptance rate = .06169
Efficiency: min = .0165

avg = .02018
Log marginal-likelihood = -35.356501 max = .02159

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

change
group 4.988881 2.260571 .153837 4.919351 .7793098 9.775568

age 1.713159 .3545698 .024216 1.695671 1.053206 2.458556
_cons -42.31891 8.239571 .565879 -41.45385 -59.30145 -27.83421

var 12.29575 6.570879 .511475 10.3609 5.636195 30.93576

Example 5: Checking convergence

We can use the bayesgraph command to visually check convergence of MCMC of parameter
estimates. bayesgraph provides a variety of graphs. For several commonly used visual diagnostics
displayed in a compact form, use bayesgraph diagnostics.

https://www.stata.com/manuals/bayesbayesgraph.pdf#bayesbayesgraph
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For example, we can look at graphical diagnostics for the coefficient for group.

. bayesgraph diagnostics {change:group}
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The displayed diagnostics include a trace plot, an autocorrelation plot, a histogram, and a kernel
density estimate overlaid with densities estimated using the first and the second halves of the MCMC
sample. Both the trace plot and the autocorrelation plot demonstrate high autocorrelation. The shape
of the histogram is not unimodal. We definitely have some convergence issues in this example.

Similarly, we can look at diagnostics for other model parameters. To see all graphs at once, type

bayesgraph diagnostics _all

Other useful summaries are effective sample sizes and statistics related to them. These can be
obtained by using the bayesstats ess command.

https://www.stata.com/manuals/bayesbayesstatsess.pdf#bayesbayesstatsess
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. bayesstats ess

Efficiency summaries MCMC sample size = 10,000
Efficiency: min = .0165

avg = .02018
max = .02159

ESS Corr. time Efficiency

change
group 215.93 46.31 0.0216

age 214.39 46.64 0.0214
_cons 212.01 47.17 0.0212

var 165.04 60.59 0.0165

The closer ESS estimates are to the MCMC sample size, the less correlated the MCMC sample is, and
the more precise our estimates of parameters are. Do not expect to see values close to the MCMC
sample size with the MH algorithm, but values below 1% of the MCMC sample size are certainly red
flags. In our example, ESS for {var} is somewhat low, so we may need to look into improving its
sampling efficiency. For example, blocking on {var} should improve the efficiency for the variance;
see Improving efficiency of the MH algorithm—blocking of parameters. It is usually a good idea to
sample regression coefficients and the variance in two separate blocks.

Correlation times may be viewed as estimates of autocorrelation lags in the MCMC samples. For
example, correlation times of the coefficients range between 46 and 47, and the correlation time for
the variance parameter is higher, 61. Consequently, the efficiency for the variance is lower than for
the regression coefficients. More investigation of the MCMC for {var} is needed.

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesImprovingefficiencyoftheMHalgorithm---blockingofparameters
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Indeed, the MCMC for the variance has very poor mixing and very high autocorrelation.

. bayesgraph diagnostics {var}
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One remedy is to update the variance parameter separately from the regression coefficients by
putting the variance parameter in a separate block; see Improving efficiency of the MH algorithm—
blocking of parameters for details about this procedure. In bayesmh, this can be done by specifying
the block() option.

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesImprovingefficiencyoftheMHalgorithm---blockingofparameters
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesImprovingefficiencyoftheMHalgorithm---blockingofparameters
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. set seed 14

. bayesmh change group age, likelihood(normal({var}))
> prior({change:}, zellnersg0(3,12,{var}))
> prior({var}, igamma(0.5, 4)) block({var})
> saving(agegroup_simdata)
Burn-in ...
Simulation ...

Model summary

Likelihood:
change ~ normal(xb_change,{var})

Priors:
{change:group age _cons} ~ zellnersg(3,12,0,{var}) (1)

{var} ~ igamma(0.5,4)

(1) Parameters are elements of the linear form xb_change.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 12
Acceptance rate = .3232
Efficiency: min = .06694

avg = .1056
Log marginal-likelihood = -35.460606 max = .1443

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

change
group 5.080653 2.110911 .080507 5.039834 .8564619 9.399672

age 1.748516 .3347172 .008875 1.753897 1.128348 2.400989
_cons -43.12425 7.865979 .207051 -43.2883 -58.64107 -27.79122

var 12.09916 5.971454 .230798 10.67555 5.375774 27.32451

file agegroup_simdata.dta saved.

. estimates store agegroup

Our acceptance rate and efficiencies are now higher.

In this example, we also used estimates store agegroup to store current estimation results as
agegroup for future use. To use estimates store after bayesmh, we had to specify the saving()
option with bayesmh to save the bayesmh simulation results to a permanent Stata dataset; see Storing
estimation results after Bayesian estimation.

https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimationRemarksandexamplesStoringestimationresultsafterBayesianestimation
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimationRemarksandexamplesStoringestimationresultsafterBayesianestimation
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The MCMC chains are now mixing much better. We may consider increasing the default MCMC
sample size to achieve even lower autocorrelation.

. bayesgraph diagnostics {change:group} {var}

-5

0

5

10

15

0 2000 4000 6000 8000 10000

Iteration number

Trace

0

.05

.1

.15

.2

.25

-5 0 5 10 15

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0

.05

.1

.15

.2

.25

-5 0 5 10 15

All

1-half

2-half

Density

change:group

0

20

40

60

80

0 2000 4000 6000 8000 10000

Iteration number

Trace

0

.02

.04

.06

.08

.1

0 20 40 60

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0

.05

.1

0 20 40 60 80

All

1-half

2-half

Density

var



16 Bayesian commands — Introduction to commands for Bayesian analysis

Multiple chains are often used to diagnose the convergence of MCMC; see Convergence diagnostics
using multiple chains in [BAYES] bayesmh and [BAYES] bayesstats grubin. Also see Convergence of
MCMC in [BAYES] bayesmh for more information.

Example 6: Postestimation summaries

We can use the bayesstats summary command to compute postestimation summaries for model
parameters and functions of model parameters. For example, we can compute an estimate of the
standardized coefficient for change, which is β̂group×σx/σy , where σx and σy are sample standard
deviations of group and change, respectively.

We use summarize (see [R] summarize) to compute sample standard deviations and store them
in respective scalars.

. summarize group

Variable Obs Mean Std. dev. Min Max

group 12 .5 .522233 0 1

. scalar sd_x = r(sd)

. summarize change

Variable Obs Mean Std. dev. Min Max

change 12 2.469167 8.080637 -10.74 17.05

. scalar sd_y = r(sd)

The standardized coefficient is an expression of the model parameter {change:group}, so we
specify it in parentheses.

. bayesstats summary (group_std:{change:group}*sd_x/sd_y)

Posterior summary statistics MCMC sample size = 10,000

group_std : {change:group}*sd_x/sd_y

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

group_std .3283509 .1364233 .005203 .3257128 .0553512 .6074792

The posterior mean estimate of the standardized group coefficient is 0.33 with a 95% credible interval
of [0.055, 0.61].

Example 7: Bayesian predictions

Bayesian predictions are useful for checking model fit and for predicting future observations.

We can use the bayespredict command to generate replication samples for the outcome variable
change and save them in a new dataset, change pred.dta. Samples are drawn from the posterior
predictive distribution of change. We specify { ysim} with bayespredict to simulate the outcome
values and use a random-number seed for reproducibility.

. bayespredict {_ysim}, saving(change_pred) rseed(16)

Computing predictions ...

file change_pred.dta saved.
file change_pred.ster saved.

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesConvergencediagnosticsusingmultiplechains
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesConvergencediagnosticsusingmultiplechains
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayesstatsgrubin.pdf#bayesbayesstatsgrubin
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesConvergenceofMCMC
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesConvergenceofMCMC
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayesstatssummary.pdf#bayesbayesstatssummary
https://www.stata.com/manuals/rsummarize.pdf#rsummarize
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredict
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryposterior_predictive_distribution
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryposterior_predictive_distribution
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change pred.dta contains an MCMC sample of predicted values for each of the 12 observations.
We can use bayesstats summary to calculate posterior summaries for the predicted observations
by specifying using with the prediction dataset.

. bayesstats summary {_ysim} using change_pred

Posterior summary statistics MCMC sample size = 10,000

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

_ysim1_1 -2.954378 3.763301 .060963 -2.930854 -10.39297 4.528522
_ysim1_2 -4.610688 3.771203 .059014 -4.660554 -11.9289 2.948378
_ysim1_3 -4.620784 3.758543 .057517 -4.645584 -12.03851 2.917013
_ysim1_4 .6417156 3.756645 .063162 .6019013 -6.83463 8.330498
_ysim1_5 4.069868 3.972042 .072874 4.065139 -3.780329 12.06363
_ysim1_6 -8.120147 3.832453 .061674 -8.096888 -15.54334 -.3579446
_ysim1_7 16.18539 4.076738 .072385 16.2033 8.105208 24.23569
_ysim1_8 2.156433 3.921 .072344 2.135557 -5.528265 10.00732
_ysim1_9 9.14268 3.780417 .071241 9.154486 1.571643 16.59816

_ysim1_10 10.91948 3.776916 .068083 10.92263 3.445305 18.59981
_ysim1_11 .3919052 3.969695 .079798 .344616 -7.389234 8.386358
_ysim1_12 3.902787 3.809399 .077872 3.884087 -3.530938 11.49579

The first column contains posterior means, MCMC estimates of the expected outcome observations
with respect to the posterior predictive distribution. Both posterior means and medians can be used
as Bayesian predictors.

One way to assess goodness of fit of the model is by comparing replicated outcome samples
with the observed outcome sample. The discrepancy between these two can be measured using the
so-called posterior predictive p-values. We can use the bayesstats ppvalues command to compute
these p-values. The posterior predictive p-values are typically computed for functions of the data or
test statistics. Here, as a quick demonstration, we will compute them for each individual observation.

https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryreplicated_outcome
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryposterior_predictive_pvalue
https://www.stata.com/manuals/bayesbayesstatsppvalues.pdf#bayesbayesstatsppvalues
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. bayesstats ppvalues {_ysim} using change_pred

Posterior predictive summary MCMC sample size = 10,000

T Mean Std. dev. E(T_obs) P(T>=T_obs)

_ysim1_1 -2.954378 3.763301 -.87 .2786
_ysim1_2 -4.610688 3.771203 -10.74 .9512
_ysim1_3 -4.620784 3.758543 -3.27 .3479
_ysim1_4 .6417156 3.756645 -1.97 .773
_ysim1_5 4.069868 3.972042 7.5 .1819
_ysim1_6 -8.120147 3.832453 -7.25 .4034
_ysim1_7 16.18539 4.076738 17.05 .4124
_ysim1_8 2.156433 3.921 4.96 .2198
_ysim1_9 9.14268 3.780417 10.4 .3644

_ysim1_10 10.91948 3.776916 11.05 .4858
_ysim1_11 .3919052 3.969695 .26 .5106
_ysim1_12 3.902787 3.809399 2.51 .6498

Note: P(T>=T_obs) close to 0 or 1 indicates lack of fit.

All estimated posterior predictive p-values are between 0.05 and 0.95 (except for ysim1 2) and thus
indicate adequate fit for the individual observations. However, more stringent model checking typically
requires that various test quantities be computed using the entire replicated sample to inspect the
distribution of replicated outcome values to assess the overall fit of the model. See [BAYES] bayesstats
ppvalues for examples.

We can also use bayespredict to generate out-of-sample predictions. For illustration, let’s add
two new observations to the dataset: one for age 26 and group Aerobic (group=1) and another for
age 26 and group Running (group=0).

. set obs 14
Number of observations (_N) was 12, now 14.

. replace group = 1 in 13
(1 real change made)

. replace group = 0 in 14
(1 real change made)

. replace age = 26 in 13/14
(2 real changes made)

We want to predict the outcome change for the new observations. Possible Bayesian predictors
are the posterior means of the simulated outcome observations. These can be calculated using the
mean option and saved in a new variable, say, pname.

https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossarymodel_checking
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossarytest_quantity
https://www.stata.com/manuals/bayesbayesstatsppvalues.pdf#bayesbayesstatsppvalues
https://www.stata.com/manuals/bayesbayesstatsppvalues.pdf#bayesbayesstatsppvalues
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredict
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. bayespredict pmean, mean rseed(16)

Computing predictions ...

. list change age group pmean

change age group pmean

1. -.87 23 Running -2.914124
2. -10.74 22 Running -4.613421
3. -3.27 22 Running -4.701283
4. -1.97 25 Running .545417
5. 7.5 27 Running 4.060798

6. -7.25 20 Running -8.111091
7. 17.05 31 Aerobic 16.15393
8. 4.96 23 Aerobic 2.183771
9. 10.4 27 Aerobic 9.155602

10. 11.05 28 Aerobic 10.87576

11. .26 22 Aerobic .4234267
12. 2.51 24 Aerobic 3.937901
13. . 26 Aerobic 7.380203
14. . 26 Running 2.405744

The predicted estimates for the out-of-sample observations 13 and 14 are 7.4 and 2.4 for the change
in maximal oxygen uptake (liters/minute) for a 26-year old in the aerobic and running groups,
respectively.

See [BAYES] bayespredict for more examples.

Finally, we drop the two new observations we added and erase the prediction dataset and the
auxiliary estimation file created by bayespredict.

. drop in 13/14
(2 observations deleted)

. erase change_pred.dta

. erase change_pred.ster

Example 8: Model comparison

As we can with frequentist analysis, we can use various information criteria to compare different
models. There is great flexibility in which model can be compared: you can compare models with
different distributions for the outcome, you can compare models with different priors, you can
compare models with different forms for the regression function, and more. The only requirement is
that the same data are used to fit the models. Comparisons using Bayes factors additionally require
that parameters be sampled from the complete posterior distribution, which includes the normalizing
constant.

Let’s compare our reduced model with the full model including an interaction term. We again use
a multivariate Zellner’s g-prior for the coefficients and an inverse gamma prior for the variance. We
use the same values as in example 4 for prior parameters. (We use the interaction variable in this
example for notational simplicity. We could have used the factor-variable notation c.age#i.group
to include this interaction directly in our model; see [U] 11.4.3 Factor variables.)

https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredict
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
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. set seed 14

. bayesmh change group age ageXgr, likelihood(normal({var}))
> prior({change:}, zellnersg0(4,12,{var}))
> prior({var}, igamma(0.5, 4)) block({var})
> saving(full_simdata)
Burn-in ...
Simulation ...

Model summary

Likelihood:
change ~ normal(xb_change,{var})

Priors:
{change:group age ageXgr _cons} ~ zellnersg(4,12,0,{var}) (1)

{var} ~ igamma(0.5,4)

(1) Parameters are elements of the linear form xb_change.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 12
Acceptance rate = .3113
Efficiency: min = .0562

avg = .06425
Log marginal-likelihood = -36.738363 max = .08478

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

change
group 11.94079 16.74992 .706542 12.13983 -22.31056 45.11963

age 1.939266 .5802772 .023359 1.938756 .7998007 3.091072
ageXgr -.2838718 .6985226 .028732 -.285647 -1.671354 1.159183
_cons -47.57742 13.4779 .55275 -47.44761 -74.64672 -20.78989

var 11.72886 5.08428 .174612 10.68098 5.302265 24.89543

file full_simdata.dta saved.

. estimates store full

We can use the bayesstats ic command to compare the models. We list the names of the
corresponding estimation results following the command name.

. bayesstats ic full agegroup

Bayesian information criteria

DIC log(ML) log(BF)

full 65.03326 -36.73836 .
agegroup 63.5884 -35.46061 1.277756

Note: Marginal likelihood (ML) is computed
using Laplace--Metropolis approximation.

The smaller that DIC is and the larger that log(ML) is, the better. The model without interaction,
agegroup, is preferred according to these statistics. The log Bayes-factor for the agegroup model
relative to the full model is 1.28. Kass and Raftery (1995) provide a table of values for Bayes
factors; see, for example, Bayes factors in [BAYES] bayesstats ic. According to their scale, because
2 × 1.28 = 2.56 is greater than 2 (slightly), there is some mild evidence that model agegroup is
better than model full.

https://www.stata.com/manuals/bayesbayesstatsic.pdf#bayesbayesstatsic
https://www.stata.com/manuals/bayesbayesstatsic.pdf#bayesbayesstatsicRemarksandexamplesBayesfactors
https://www.stata.com/manuals/bayesbayesstatsic.pdf#bayesbayesstatsic
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Example 9: Hypothesis testing

Continuing with example 8, we can compute the actual probability associated with each of the
models. We can use the bayestest model command to do this.

Similar to bayesstats ic, this command requires the names of estimation results corresponding
to the models of interest.

. bayestest model full agegroup

Bayesian model tests

log(ML) P(M) P(M|y)

full -36.7384 0.5000 0.2179
agegroup -35.4606 0.5000 0.7821

Note: Marginal likelihood (ML) is computed using
Laplace--Metropolis approximation.

Under the assumption that both models are equally probable a priori, the model without interaction,
agegroup, has the probability of 0.78, whereas the full model has the probability of only 0.22.
Despite the drastic disparity in the probabilities, according to the results from example 8, model
agegroup is only slightly preferable to model full. To have stronger evidence against full, we
would expect to see higher probabilities (above 0.9) for agegroup.

We may be interested in testing an interval hypothesis about the parameter of interest. For example,
for a model without interaction, let’s compute the probability that the coefficient for group is between
4 and 8. We use estimates restore (see [R] estimates store) to load the results of the agegroup
model back into memory.

. estimates restore agegroup
(results agegroup are active now)

. bayestest interval {change:group}, lower(4) upper(8)

Interval tests MCMC sample size = 10,000

prob1 : 4 < {change:group} < 8

Mean Std. dev. MCSE

prob1 .6159 0.48641 .0155788

The estimated probability or, technically, its posterior mean estimate is 0.62 with a standard deviation
of 0.49 and Monte Carlo standard errors of 0.016.

Example 10: Erasing simulation datasets

After you are done with your analysis, remember to erase any simulation datasets that you created
using bayesmh and no longer need. If you want to save your estimation results to disk for future
reference, use estimates save; see [R] estimates save.

We are done with our analysis, and we do not need the datasets for future reference, so we remove
both simulation files we created using bayesmh.

. erase agegroup_simdata.dta

. erase full_simdata.dta

https://www.stata.com/manuals/bayesbayestestmodel.pdf#bayesbayestestmodel
https://www.stata.com/manuals/restimatesstore.pdf#restimatesstore
https://www.stata.com/manuals/restimatessave.pdf#restimatessave
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Example 11: Bayesian linear regression using the bayes prefix

Recall our OLS regression from example 1. There is a more convenient way to obtain Bayesian
estimates for this regression than using the bayesmh command as in previous examples. Because
regress is one of the estimation commands that supports the bayes prefix ([BAYES] Bayesian
estimation), we can simply type

. set seed 14

. bayes: regress change group age
Burn-in ...
Simulation ...

Model summary

Likelihood:
change ~ regress(xb_change,{sigma2})

Priors:
{change:group age _cons} ~ normal(0,10000) (1)

{sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_change.

Bayesian linear regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 12
Acceptance rate = .283
Efficiency: min = .02715

avg = .05779
Log marginal-likelihood = -45.562124 max = .0692

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

change
group 5.425311 2.111038 .080252 5.368975 1.104434 9.425197

age 1.885651 .3255098 .012472 1.887263 1.244666 2.517292
_cons -46.47537 7.632058 .295505 -46.73244 -60.39245 -30.5054

sigma2 10.28431 7.614468 .462105 8.412747 3.595971 31.47161

Note: Default priors are used for model parameters.

With the bayes prefix command, the likelihood is determined automatically by the specified estimation
command—regress in our example. The bayes prefix also provides the default prior specifications
for model parameters, displaying this information as a note at the bottom of the output table; see
Default priors in [BAYES] bayes. Model summary provides details about the used default priors. For
linear regression, the regression coefficients are assigned independent normal priors with zero mean
and variance of 10,000, and the variance is assigned an inverse-gamma prior with the same shape
and scale parameters of 0.01.

The default priors are provided for convenience and are chosen to be fairly uninformative for
models with moderately scaled parameters. However, they are not guaranteed to be uninformative for
all models and datasets; see Linear regression: A case of informative default priors in [BAYES] bayes.
You should choose priors carefully based on your research and model of interest.

https://www.stata.com/manuals/bayesbayesianestimation.pdf#bayesBayesianestimation
https://www.stata.com/manuals/bayesbayesianestimation.pdf#bayesBayesianestimation
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesDefaultpriors
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayes
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesLinearregressionAcaseofinformativedefaultpriors
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayes
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As with bayesmh, the default MCMC method is an adaptive MH, but we can specify the gibbs
option to request Gibbs sampling.

. set seed 14

. bayes, gibbs: regress change group age
Burn-in ...
Simulation ...

Model summary

Likelihood:
change ~ normal(xb_change,{sigma2})

Priors:
{change:group age _cons} ~ normal(0,10000) (1)

{sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_change.

Bayesian linear regression MCMC iterations = 12,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 12
Acceptance rate = 1
Efficiency: min = .556

avg = .889
Log marginal-likelihood = -45.83666 max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

change
group 5.452439 2.062795 .020628 5.460372 1.360104 9.512987

age 1.875606 .330127 .003301 1.877129 1.228647 2.543129
_cons -46.21334 7.746862 .077469 -46.18291 -61.82541 -31.09702

sigma2 9.929756 5.899176 .079113 8.426173 3.731261 24.76194

Note: Default priors are used for model parameters.

As expected, we obtain higher efficiency when using the Gibbs sampling. However, the gibbs option
is available only with bayes: regress and bayes: mvreg and only for certain prior distributions.
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We can easily change the default priors by specifying the prior() option, as with bayesmh. For
example, we can reproduce bayesmh’s results from example 4 but with the bayes prefix.

. set seed 14

. bayes, prior({change:}, zellnersg0(3,12,{sigma2}))
> prior({sigma2}, igamma(0.5, 4)): regress change group age
Burn-in ...
Simulation ...

Model summary

Likelihood:
change ~ regress(xb_change,{sigma2})

Priors:
{change:group age _cons} ~ zellnersg(3,12,0,{sigma2}) (1)

{sigma2} ~ igamma(0.5,4)

(1) Parameters are elements of the linear form xb_change.

Bayesian linear regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 12
Acceptance rate = .2838
Efficiency: min = .06423

avg = .07951
Log marginal-likelihood = -35.448029 max = .09277

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

change
group 4.944955 2.184113 .086181 5.052278 .7065487 9.35098

age 1.747984 .3390581 .011132 1.747477 1.045677 2.416091
_cons -43.09605 7.904334 .263186 -43.01961 -58.57942 -27.11278

sigma2 12.17932 5.87997 .220888 10.72651 5.511202 28.1211

The results are similar to those from example 4 using bayesmh but not identical. By default,
bayes: regress automatically splits the regression coefficients and the variance into two separate
blocks, whereas bayesmh treats all parameters as one block; see Improving efficiency of the MH
algorithm—blocking of parameters in [BAYES] bayesmh for details about blocking.

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesImprovingefficiencyoftheMHalgorithm---blockingofparameters
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesImprovingefficiencyoftheMHalgorithm---blockingofparameters
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
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To match the results exactly, you can either specify the block({var}) option with bayesmh in
example 4 or specify the noblocking option to request no default blocking with the bayes prefix.

. set seed 14

. bayes, prior({change:}, zellnersg0(3,12,{sigma2}))
> prior({sigma2}, igamma(0.5, 4)) noblocking: regress change group age
Burn-in ...
Simulation ...

Model summary

Likelihood:
change ~ regress(xb_change,{sigma2})

Priors:
{change:group age _cons} ~ zellnersg(3,12,0,{sigma2}) (1)

{sigma2} ~ igamma(0.5,4)

(1) Parameters are elements of the linear form xb_change.

Bayesian linear regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 12
Acceptance rate = .06169
Efficiency: min = .0165

avg = .02018
Log marginal-likelihood = -35.356501 max = .02159

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

change
group 4.988881 2.260571 .153837 4.919351 .7793098 9.775568

age 1.713159 .3545698 .024216 1.695671 1.053206 2.458556
_cons -42.31891 8.239571 .565879 -41.45385 -59.30145 -27.83421

sigma2 12.29575 6.570879 .511475 10.3609 5.636195 30.93576

See [BAYES] bayes for more details.
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