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Description
The bayes prefix fits Bayesian regression models. It provides Bayesian support for many likelihood-

based estimation commands. The bayes prefix uses default or user-supplied priors for model parameters
and estimates parameters using MCMC by drawing simulation samples from the corresponding posterior

model. Also see [BAYES] bayesmh and [BAYES] bayesmh evaluators for fitting more general Bayesian

models.

Quick start
Bayesian linear regression of y on x, using default normal priors for the regression coefficients and an

inverse-gamma prior for the variance

bayes: regress y x

Same as above, but use a standard deviation of 10 instead of 100 for the default normal priors and shape

of 2 and scale of 1 instead of values of 0.01 for the default inverse-gamma prior

bayes, normalprior(10) igammaprior(2 1): regress y x

Same as above, but simulate four chains

bayes, normalprior(10) igammaprior(2 1) nchains(4): regress y x

Bayesian logistic regression of y on x1 and x2, showing model summary without performing estimation
bayes, dryrun: logit y x1 x2

Same as above, but estimate model parameters and use uniform priors for all regression coefficients

bayes, prior({y: x1 x2 _cons}, uniform(-10,10)): logit y x1 x2

Same as above, but use a shortcut notation to refer to all regression coefficients

bayes, prior({y:}, uniform(-10,10)): logit y x1 x2

Same as above, but report odds ratios and use uniform priors for the slopes and a normal prior for the

intercept

bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)) or: logit y x1 x2

Report odds ratios for the logit model on replay

bayes, or

Bayesian ordered logit regression of y on x1 and x2, saving simulation results to simdata.dta and using
a random-number seed for reproducibility

bayes, saving(simdata) rseed(123): ologit y x1 x2 x3
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Bayesian multinomial regression of y on x1 and x2, specifying 20,000 MCMC samples, setting length of

the burn-in period to 5,000, and requesting that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): mlogit y x1 x2

Bayesian Poisson regression of y on x1 and x2, putting regression slopes in separate blocks and showing
block summary

bayes, block({y:x1}) block({y:x2}) blocksummary: poisson y x1 x2

Bayesian multivariate regression of y1 and y2 on x1, x2, and x3, using Gibbs sampling and requesting
90% HPD credible interval instead of the default 95% equal-tailed credible interval

bayes, gibbs clevel(90) hpd: mvreg y1 y2 = x1 x2 x3

Same as above, but use mvreg’s option level() instead of bayes’s option clevel()
bayes, gibbs hpd: mvreg y1 y2 = x1 x2 x3, level(90)

Suppress estimates of the covariance matrix from the output

bayes, noshow(Sigma, matrix)

Bayesian Weibull regression of stset survival-time outcome on x1 and x2, specifying starting values
of 1 for {y:x1} and of 2 for {y:x2}

bayes, initial({y:x1} 1 {y:x2} 2): streg x1 x2, distribution(weibull)

Bayesian panel-data regression of y on x1 and x2 with random intercepts by id, after xtseting id as

the panel variable

xtset id
bayes: xtreg y x1 x2

Bayesian two-level linear regression of y on x1 and x2 with random intercepts by id
bayes: mixed y x1 x2 || id:

Menu
Statistics > Bayesian analysis > Regression models > estimation command
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Syntax
bayes [ , bayesopts ] : estimation command [ , estopts ]

estimation command is a likelihood-based estimation command, and estopts are command-specific es-

timation options; see [BAYES] Bayesian estimation for a list of supported commands, and see the

command-specific entries for the supported estimation options, estopts.

bayesopts Description

Priors
∗ gibbs specify Gibbs sampling; available only with regress, xtreg, or

mvreg for certain prior combinations
∗ normalprior(#) specify standard deviation of default normal priors for regression

coefficients and other real scalar parameters;
default is normalprior(100)

∗ igammaprior(# #) specify shape and scale of default inverse-gamma prior for
variances; default is igammaprior(0.01 0.01)

∗ iwishartprior(# [. . .]) specify degrees of freedom and, optionally, scale matrix of default
inverse-Wishart prior for unstructured random-effects covariance

+∗ sigma(#) specify a fixed scale 𝜎 with qreg; default is random 𝜎
parameter with inverse-gamma prior

prior(priorspec) prior for model parameters; this option may be repeated

dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain

mcmcsize(#) MCMC sample size; default is mcmcsize(10000)
burnin(#) burn-in period; default is burnin(2500)
thinning(#) thinning interval; default is thinning(1)
rseed(#) random-number seed

exclude(paramref ) specify model parameters to be excluded from the simulation results

restubs(restub1 restub2 . . .) specify stubs for random-effects parameters for all levels; allowed
only with multilevel models

Blocking
∗ blocksize(#) maximum block size; default is blocksize(50)

block(paramref [ , blockopts ]) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗ noblocking do not block parameters by default

Initialization

initial(initspec) specify initial values for model parameters with a single chain

init#(initspec) specify initial values for #th chain; requires nchains()
initall(initspec) specify initial values for all chains; requires nchains()
nomleinitial suppress the use of maximum likelihood estimates as starting values

initrandom specify random initial values

initsummary display initial values used for simulation
∗ noisily display output from the estimation command during initialization
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Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure

scale(#) initial multiplier for scale factor; default is scale(2.38)
covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)
hpd display HPD credible intervals instead of the default equal-tailed

credible intervals

eform option display coefficient table in exponentiated form

remargl compute log marginal-likelihood for random-effects models

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename[ , replace ]) save simulation results to filename.dta
nomodelsummary suppress model summary

nomesummary suppress multilevel-structure summary; allowed only with
multilevel models

chainsdetail display detailed simulation summary for each chain

[ no ]dots suppress dots or display dots every 100 iterations and iteration
numbers every 1,000 iterations; default is command-specific

dots(#[ , every(#) ]) display dots as simulation is performed

[ no ]show(paramref ) specify model parameters to be excluded from or included in
the output

showreffects[ (reref ) ] specify that all or a subset of random-effects parameters be included
in the output; allowed only with panel-data and multilevel
commands

melabel display estimation table using the same row labels as
estimation command; allowed only with multilevel commands

nogroup suppress table summarizing groups; allowed only with multilevel
models

notable suppress estimation table

noheader suppress output header

title(string) display string as title above the table of parameter estimates

display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values

corrlag(#) specify maximum autocorrelation lag; default varies

corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)
∗ Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
The full specification of iwishartprior() is iwishartprior(# [matname ] [ , relevel(levelvar) ]).
Options prior() and block() may be repeated.

priorspec and paramref are defined in [BAYES] bayesmh.

paramref may contain factor variables; see [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

� � �
Priors �

gibbs specifies that Gibbs sampling be used to simulate model parameters instead of the default adaptive
Metropolis–Hastings sampling. This option is allowed only with the regress, xtreg, and mvreg
estimation commands. It is available only with certain prior combinations such as normal prior for

regression coefficients and an inverse-gamma prior for the variance. Specifying the gibbs option is

equivalent to specifying block()’s gibbs suboption for all default blocks of parameters. If you use

the block() option to define your own blocks of parameters, the gibbs option will have no effect on

those blocks, and an MH algorithm will be used to update parameters in those blocks unless you also

specify block()’s gibbs suboption.

With panel-data and multilevel linear models, Gibbs sampling is used by default for regression co-

efficients and variance components, and Metropolis–Hastings sampling is used for random effects.

For panel-data linear models, you can specify option gibbs to use Gibbs sampling also for random

effects.

normalprior(#) specifies the standard deviation of the default normal priors. The default is

normalprior(100). The normal priors are used for scalar parameters defined on the whole real

line; see Default priors for details.

igammaprior(# #) specifies the shape and scale parameters of the default inverse-gamma priors. The

default is igammaprior(0.01 0.01). The inverse-gamma priors are used for positive scalar parame-
ters such as a variance; see Default priors for details. Instead of a number #, you can specify a missing

value (.) to refer to the default value of 0.01.

iwishartprior(# [matname ] [ , relevel(levelvar) ]) specifies the degrees of freedom and, option-

ally, the scale matrixmatname of the default inverse-Wishart priors used for unstructured covariances

of random effects with multilevel models. The degrees of freedom # is a positive real scalar with the

default value of 𝑑+1, where 𝑑 is the number of random-effects terms at the level of hierarchy levelvar.
Instead of a number #, you can specify a missing value (.) to refer to the default value. Matrix name

matname is the name of a positive-definite Stata matrix with the default of 𝐼(𝑑), the identity matrix of
dimension 𝑑. If relevel(levelvar) is omitted, the specified parameters are used for inverse-Wishart

priors for all levels with unstructured random-effects covariances. Otherwise, they are used only for

the prior for the specified level levelvar. See Default priors for details.

sigma(#) specifies a fixed scale in a Bayesian quantile regression. The scale must be a positive number.

This option can be used when the scale is known. By default, the scale is considered a random

parameter with an inverse-gamma prior with shape and scale parameters of 0.01.

prior(priorspec) specifies a prior distribution for model parameters. This option may be repeated.

A prior may be specified for any of the model parameters, except the random-effects parameters in

multilevel models. Model parameters with the same prior specifications are placed in a separate

block. Model parameters that are not included in prior specifications are assigned default priors; see

Default priors for details. Model parameters may be scalars or matrices, but both types may not be

combined in one prior statement. If multiple scalar parameters are assigned a single univariate prior,

they are considered independent, and the specified prior is used for each parameter. You may assign

a multivariate prior of dimension d to d scalar parameters. Also see Referring to model parameters in

[BAYES] bayesmh.

https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesDefaultpriors
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesDefaultpriors
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https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh


bayes — Bayesian regression models using the bayes prefix 6

All prior() distributions are allowed, but they are not guaranteed to correspond to proper posterior

distributions for all likelihood models. You need to think carefully about the model you are building

and evaluate its convergence thoroughly; see Convergence of MCMC in [BAYES] bayesmh.

dryrun specifies to show the summary of the model that would be fit without actually fitting the model.

This option is recommended for checking specifications of the model before fitting the model. The

model summary reports the information about the likelihood model and about priors for all model

parameters.

� � �
Simulation �

nchains(#) specifies the number ofMarkov chains to simulate. Youmust specify at least two chains. By

default, only one chain is produced. Simulating multiple chains is useful for convergence diagnostics

and to improve precision of parameter estimates. Four chains are often recommended in the literature,

but you can specify more or less depending on your objective. The reported estimation results are

based on all chains. You can use bayesstats summary with option sepchains to see the results

for each chain. The reported acceptance rate, efficiencies, and log marginal-likelihood are averaged

over all chains. You can use option chainsdetail to see these simulation summaries for each chain.

Also see Convergence diagnostics using multiple chains in [BAYES] bayesmh and Gelman–Rubin

convergence diagnostic in [BAYES] bayesstats grubin.

mcmcsize(#) specifies the target MCMC sample size. The default MCMC sample size is

mcmcsize(10000). The total number of iterations for theMH algorithm equals the sum of the burn-in

iterations and theMCMC sample size in the absence of thinning. If thinning is present, the total number

ofMCMC iterations is computed as burnin()+(mcmcsize()−1)×thinning()+1. Computation

time of the MH algorithm is proportional to the total number of iterations. The MCMC sample size de-

termines the precision of posterior summaries, which may be different for different model parameters

and will depend on the efficiency of the Markov chain. With multiple chains, mcmcsize() applies to

each chain. Also see Burn-in period and MCMC sample size in [BAYES] bayesmh.

burnin(#) specifies the number of iterations for the burn-in period of MCMC. The values of parameters

simulated during burn-in are used for adaptation purposes only and are not used for estimation. The

default is burnin(2500). Typically, burn-in is chosen to be as long as or longer than the adaptation
period. The burn-in period may need to be larger for multilevel models because these models intro-

duce high-dimensional random-effects parameters and thus require longer adaptation periods. With

multiple chains, burnin() applies to each chain. Also see Burn-in period and MCMC sample size in

[BAYES] bayesmh and Convergence of MCMC in [BAYES] bayesmh.

thinning(#) specifies the thinning interval. Only simulated values from every (1 + 𝑘 × #)th iteration
for 𝑘 = 0, 1, 2, . . . are saved in the final MCMC sample; all other simulated values are discarded.

The default is thinning(1); that is, all simulation values are saved. Thinning greater than one

is typically used for decreasing the autocorrelation of the simulated MCMC sample. With multiple

chains, thinning() applies to each chain.

rseed(#) sets the random-number seed. This option can be used to reproduce results. With one

chain, rseed(#) is equivalent to typing set seed # prior to calling the bayes prefix; see [R] set

seed. With multiple chains, you should use rseed() for reproducibility; see Reproducing results in

[BAYES] bayesmh.

exclude(paramref ) specifies whichmodel parameters should be excluded from the finalMCMC sample.

These model parameters will not appear in the estimation table, and postestimation features for these

parameters and log marginal-likelihood will not be available. This option is useful for suppressing

nuisance model parameters. For example, if you have a factor predictor variable with many levels but

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesConvergenceofMCMC
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https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
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you are only interested in the variability of the coefficients associated with its levels, not their actual

values, then you may wish to exclude this factor variable from the simulation results. If you simply

want to omit some model parameters from the output, see the noshow() option. paramref can include

individual random-effects parameters.

restubs(restub1 restub2 . . .) specifies the stubs for the names of random-effects parameters. You must
specify stubs for all levels—one stub per level. This option overrides the default random-effects stubs.

See Likelihood model for details about the default names of random-effects parameters.

� � �
Blocking �

blocksize(#) specifies the maximum block size for the model parameters; default is blocksize(50).
This option does not apply to random-effects parameters. Each group of random-effects parameters

is placed in one block, regardless of the number of random-effects parameters in that group.

block( paramref [ , blockopts ]) specifies a group of model parameters for the blocked MH algorithm.

By default, model parameters, except the random-effects parameters, are sampled as independent

blocks of 50 parameters or of the size specified in option blocksize(). Regression coefficients

from different equations are placed in separate blocks. Auxiliary parameters such as variances and

correlations are sampled as individual separate blocks, whereas the cutpoint parameters of the ordinal-

outcome regressions are sampled as one separate block. With multilevel models, each group of

random-effects parameters is placed in a separate block, and the block() option is not allowed with

random-effects parameters. The block() option may be repeated to define multiple blocks. Differ-

ent types of model parameters, such as scalars and matrices, may not be specified in one block().
Parameters within one block are updated simultaneously, and each block of parameters is updated in

the order it is specified; the first specified block is updated first, the second is updated second, and so

on. See Improving efficiency of the MH algorithm—blocking of parameters in [BAYES] bayesmh.

blockopts include gibbs, split, scale(), covariance(), and adaptation().

gibbs specifies to use Gibbs sampling to update parameters in the block. This option is

allowed only for hyperparameters and only for specific combinations of prior and hyper-

prior distributions; see Gibbs sampling for some likelihood-prior and prior-hyperprior con-

figurations in [BAYES] bayesmh. For more information, see Gibbs and hybrid MH sam-

pling in [BAYES] bayesmh. gibbs may not be combined with scale(), covariance(), or
adaptation().

split specifies that all parameters in a block are treated as separate blocks. This may be useful for

levels of factor variables.

scale(#) specifies an initial multiplier for the scale factor corresponding to the specified block.

The initial scale factor is computed as #/√𝑛𝑝 for continuous parameters and as #/𝑛𝑝 for discrete

parameters, where 𝑛𝑝 is the number of parameters in the block. The default is scale(2.38). If
specified, this option overrides the respective setting from the scale() option specified with the

command. scale() may not be combined with gibbs.

covariance(matname) specifies a scale matrix matname to be used to compute an initial proposal

covariance matrix corresponding to the specified block. The initial proposal covariance is com-

puted as rho×Sigma, where rho is a scale factor and Sigma = matname. By default, Sigma is the

identity matrix. If specified, this option overrides the respective setting from the covariance()
option specified with the command. covariance() may not be combined with gibbs.
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adaptation(tarate()) and adaptation(tolerance()) specify block-specific TAR and accep-

tance tolerance. If specified, they override the respective settings from the adaptation() option

specified with the command. adaptation() may not be combined with gibbs.

blocksummary displays the summary of the specified blocks. This option is useful when block() is

specified.

noblocking requests that no default blocking is applied to model parameters. By default, model pa-

rameters are sampled as independent blocks of 50 parameters or of the size specified in option

blocksize(). For multilevel models, this option has no effect on random-effects parameters; block-
ing is always applied to them.

� � �
Initialization �

initial(initspec) specifies initial values for the model parameters to be used in the simulation. With

multiple chains, this option is equivalent to specifying option init1(). You can specify a parameter
name, its initial value, another parameter name, its initial value, and so on. For example, to initialize

a scalar parameter alpha to 0.5 and a 2x2 matrix Sigma to the identity matrix I(2), you can type

bayes, initial({alpha} 0.5 {Sigma,m} I(2)) : . . .

You can also specify a list of parameters using any of the specifications described in Referring to

model parameters in [BAYES] bayesmh. For example, to initialize all regression coefficients from

equations y1 and y2 to zero, you can type

bayes, initial({y1:} {y2:} 0) : . . .

The general specification of initspec is

paramref initval [ paramref initval [ . . . ] ]
where initval is a number, a Stata expression that evaluates to a number, or a Stata matrix for initial-

ization of matrix parameters.

Curly braces may be omitted for scalar parameters but must be specified for matrix parameters. Initial

values declared using this option override the default initial values or any initial values declared during

parameter specification in the likelihood() option. See Initial values for details.

init#(initspec) specifies initial values for the model parameters for the #th chain. This option requires

option nchains(). init1() overrides the default initial values for the first chain, init2() for the

second chain, and so on. You specify initial values in init#() just like you do in option initial().
See Initial values for details.

initall(initspec) specifies initial values for the model parameters for all chains. This option requires

option nchains(). You specify initial values in initall() just like you do in option initial().
You should avoid specifying fixed initial values in initall() because then all chains will use the

same initial values. initall() is useful to specify random initial values when you define your own

priors within prior()’s density() and logdensity() suboptions. See Initial values for details.

nomleinitial suppresses using maximum likelihood estimates (MLEs), or linear programming esti-

mates for bayes: qreg, as starting values for model parameters. With multiple chains, this option

and discussion below apply only to the first chain. By default, when no initial values are specified,

MLE values from estimation command are used as initial values. For multilevel commands,MLE esti-

mates are used only for regression coefficients. Random effects are assigned zero values, and random-

effects variances and covariances are initialized with ones and zeros, respectively. If nomleinitial
is specified and no initial values are provided, the command uses ones for positive scalar parameters,
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zeros for other scalar parameters, and identity matrices for matrix parameters. nomleinitial may

be useful for providing an alternative starting state when checking convergence ofMCMC. This option

cannot be combined with initrandom.

initrandom specifies that the model parameters be initialized randomly. Random initial values are gen-

erated from the prior distributions of the model parameters. If you want to use fixed initial values for

some of the parameters, you can specify them in the initial() option or during parameter declara-

tions in the likelihood() option. Random initial values are not available for parameters with flat,
jeffreys, density(), logdensity(), and jeffreys() priors; you must provide your own initial

values for such parameters. This option cannot be combined with nomleinitial. See Specifying
initial values in [BAYES] bayesmh for details.

initsummary specifies that the initial values used for simulation be displayed.

noisily specifies that the output from the estimation command be shown during initialization. The

estimation command is executed once to set up the model and calculate initial values for model pa-

rameters.

� � �
Adaptation �

adaptation(adaptopts) controls adaptation of the MCMC procedure. Adaptation takes place every pre-

specified number of MCMC iterations and consists of tuning the proposal scale factor and proposal

covariance for each block of model parameters. Adaptation is used to improve sampling efficiency.

Provided defaults are based on theoretical results and may not be sufficient for all applications. See

Adaptation of the MH algorithm in [BAYES] bayesmh for details about adaptation and its parameters.

adaptopts are any of the following options:

every(#) specifies that adaptation be attempted every #th iteration. The default is every(100).
To determine the adaptation interval, you need to consider the maximum block size specified in

your model. The update of a block with 𝑘 model parameters requires the estimation of a 𝑘 × 𝑘
covariance matrix. If the adaptation interval is not sufficient for estimating the 𝑘(𝑘 + 1)/2
elements of this matrix, the adaptation may be insufficient.

maxiter(#) specifies the maximum number of adaptive iterations. Adaptation includes tun-

ing of the proposal covariance and of the scale factor for each block of model parameters.

Once the TAR is achieved within the specified tolerance, the adaptation stops. However, no

more than # adaptation steps will be performed. The default is variable and is computed as

max{25, floor(burnin()/adaptation(every()))}.
maxiter() is usually chosen to be no greater than (mcmcsize() + burnin())/
adaptation(every()).

miniter(#) specifies the minimum number of adaptive iterations to be performed regardless of

whether the TAR has been achieved. The default is miniter(5). If the specified miniter()
is greater than maxiter(), then miniter() is reset to maxiter(). Thus, if you specify

maxiter(0), then no adaptation will be performed.

alpha(#) specifies a parameter controlling the adaptation of theAR. alpha() should be in [0, 1].
The default is alpha(0.75).

beta(#) specifies a parameter controlling the adaptation of the proposal covariance matrix.

beta() must be in [0,1]. The closer beta() is to zero, the less adaptive the proposal covari-

ance. When beta() is zero, the same proposal covariance will be used in all MCMC iterations.

The default is beta(0.8).

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesSpecifyinginitialvalues
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesSpecifyinginitialvalues
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesAdaptationoftheMHalgorithm
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
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gamma(#) specifies a parameter controlling the adaptation rate of the proposal covariance matrix.

gamma() must be in [0,1]. The larger the value of gamma(), the less adaptive the proposal
covariance. The default is gamma(0).

tarate(#) specifies the TAR for all blocks of model parameters; this is rarely used. tarate()
must be in (0,1). The default AR is 0.234 for blocks containing continuous multiple parame-

ters, 0.44 for blocks with one continuous parameter, and 1/n maxlev for blocks with discrete

parameters, where n maxlev is the maximum number of levels for a discrete parameter in the

block.

tolerance(#) specifies the tolerance criterion for adaptation based on the TAR. tolerance()
should be in (0,1). Adaptation stops whenever the absolute difference between the current AR

and TAR is less than tolerance(). The default is tolerance(0.01).

scale(#) specifies an initial multiplier for the scale factor for all blocks. The initial scale factor is

computed as #/√𝑛𝑝 for continuous parameters and #/𝑛𝑝 for discrete parameters, where 𝑛𝑝 is the

number of parameters in the block. The default is scale(2.38).

covariance(cov) specifies a scale matrix cov to be used to compute an initial proposal covariance

matrix. The initial proposal covariance is computed as 𝜌 × Σ, where 𝜌 is a scale factor and Σ =
matname. By default, Σ is the identity matrix. Partial specification ofΣ is also allowed. The rows and

columns of cov should be named after some or all model parameters. According to some theoretical

results, the optimal proposal covariance is the posterior covariance matrix of model parameters, which

is usually unknown. This option does not apply to the blocks containing random-effects parameters.

� � �
Reporting �

clevel(#) specifies the credible level, as a percentage, for equal-tailed and HPD credible intervals. The

default is clevel(95) or as set by [BAYES] set clevel.

hpd displays the HPD credible intervals instead of the default equal-tailed credible intervals.

eform option causes the coefficient table to be displayed in exponentiated form; see [R] eform option.

The estimation command determines which eform option is allowed (eform(string) and eform are

always allowed).

remargl specifies to compute the log marginal-likelihood for panel-data and multilevel models. It is not

reported by default for these models. Bayesian panel-data and multilevel models contain many pa-

rameters because, in addition to regression coefficients and variance components, they also estimate

individual random effects. The computation of the log marginal-likelihood involves the inverse of

the determinant of the sample covariance matrix of all parameters and loses its accuracy as the num-

ber of parameters grows. For high-dimensional models such as multilevel models, the computation

of the log marginal-likelihood can be time consuming, and its accuracy may become unacceptably

low. Because it is difficult to access the levels of accuracy of the computation for all panel-data and

multilevel models, the log marginal-likelihood is not reported by default. For models containing a

small number of random effects, you can use the remargl option to compute and display the log

marginal-likelihood.

batch(#) specifies the length of the block for calculating batch means and an MCSE using batch means.

The default is batch(0), which means no batch calculations. When batch() is not specified, the

MCSE is computed using effective sample sizes instead of batchmeans. batch()may not be combined
with corrlag() or corrtol().

https://www.stata.com/manuals/bayessetclevel.pdf#bayessetclevel
https://www.stata.com/manuals/reform_option.pdf#reform_option
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saving(filename[ , replace ]) saves simulation results in filename.dta. The replace option speci-

fies to overwrite filename.dta if it exists. If the saving() option is not specified, the bayes prefix

saves simulation results in a temporary file for later access by postestimation commands. This tem-

porary file will be overridden every time the bayes prefix is run and will also be erased if the current

estimation results are cleared. saving() may be specified during estimation or on replay.

The saved dataset has the following structure. Variable chain records chain identifiers. Variable

index records iteration numbers. The bayes prefix saves only states (sets of parameter values) that

are different from one iteration to another and the frequency of each state in variable frequency.
(Some states may be repeated for discrete parameters.) As such, index may not necessarily contain

consecutive integers. Remember to use frequency as a frequency weight if you need to obtain any

summaries of this dataset. Values for each parameter are saved in a separate variable in the dataset.

Variables containing values of parameters without equation names are named as eq0 p#, following
the order in which parameters are declared in the bayes prefix. Variables containing values of pa-

rameters with equation names are named as eq# p#, again following the order in which parameters
are defined. Parameters with the same equation names will have the same variable prefix eq#. For
example,

. bayes, saving(mcmc): . . .

will create a dataset, mcmc.dta, with variable names eq1 p1 for {y:x1}, eq1 p2 for {y: cons},
and eq0 p1 for {var}. Also see macros e(parnames) and e(varnames) for the correspondence

between parameter names and variable names.

In addition, the bayes prefix saves variable loglikelihood to contain values of the log likelihood

from each iteration and variable logposterior to contain values of the log posterior from each

iteration.

nomodelsummary suppresses the detailed summary of the specified model. The model summary is re-

ported by default.

nomesummary suppresses the summary about the multilevel structure of the model. This summary is

reported by default for multilevel commands.

chainsdetail specifies that acceptance rates, efficiencies, and log marginal-likelihoods be reported

separately for each chain. By default, the header reports these statistics averaged over all chains. This

option requires option nchains().

nodots, dots, and dots(#) specify to suppress or display dots during simulation. With multiple chains,

these options affect all chains. dots(#) displays a dot every # iterations. During the adaptation pe-

riod, a symbol a is displayed instead of a dot. If dots(. . ., every(#)) is specified, then an iteration

number is displayed every #th iteration instead of a dot or a. dots(, every(#)) is equivalent to

dots(1, every(#)). dots displays dots every 100 iterations and iteration numbers every 1,000

iterations; it is a synonym for dots(100, every(1000)). dots is the default with multilevel com-

mands, and nodots is the default with other commands.

show(paramref ) or noshow(paramref ) specifies a list of model parameters to be included in the output
or excluded from the output, respectively. By default, all model parameters (except random-effects

parameters with multilevel models) are displayed. Do not confuse noshow()with exclude(), which
excludes the specified parameters from the MCMC sample. When the noshow() option is specified,

for computational efficiency,MCMC summaries of the specified parameters are not computed or stored

in e(). paramref can include individual random-effects parameters.

https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhSyntaxparamref
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhSyntaxparamref
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showreffects and showreffects(reref ) are used with panel-data andmultilevel commands and spec-
ify that all or a list reref of random-effects parameters be included in the output in addition to other

model parameters. By default, all random-effects parameters are excluded from the output as if you

have specified the noshow() option. This option computes, displays, and stores in e() MCMC sum-

maries for the random-effects parameters.

melabel specifies that the bayes prefix use the same row labels as estimation command in the esti-

mation table. This option is allowed only with multilevel commands. It is useful to match the esti-

mation table output of bayes: mecmd with that of mecmd. This option implies nomesummary and

nomodelsummary.

nogroup suppresses the display of group summary information (number of groups, average group size,

minimum, and maximum) from the output header. This option is for use with multilevel commands.

notable suppresses the estimation table from the output. By default, a summary table is displayed con-

taining all model parameters except those listed in the exclude() and noshow() options. Regression
model parameters are grouped by equation names. The table includes six columns and reports the fol-

lowing statistics using the MCMC simulation results: posterior mean, posterior standard deviation,

MCMC standard error or MCSE, posterior median, and credible intervals.

noheader suppresses the output header either at estimation or upon replay.

title(string) specifies an optional title for the command that is displayed above the table of the param-

eter estimates. The default title is specific to the specified likelihood model.

display options: vsquish, noemptycells, baselevels, allbaselevels, nofvlabel,
fvwrap(#), fvwrapon(style), and nolstretch; see [R] Estimation options.

� � �
Advanced �

search(search options) searches for feasible initial values. search options are on, repeat(#), and
off.

search(on) is equivalent to search(repeat(500)). This is the default.

search(repeat(k)), k > 0, specifies the number of random attempts to be made to find a feasible

initial-value vector, or initial state. The default is repeat(500). An initial-value vector is feasible
if it corresponds to a state with positive posterior probability. If feasible initial values are not

found after k attempts, an error will be issued. repeat(0) (rarely used) specifies that no random

attempts be made to find a feasible starting point. In this case, if the specified initial vector does

not correspond to a feasible state, an error will be issued.

search(off) prevents the command from searching for feasible initial values. We do not recommend

specifying this option.

corrlag(#) specifies the maximum autocorrelation lag used for calculating effective sample sizes. The

default is min{500, mcmcsize()/2}. The total autocorrelation is computed as the sum of all lag-𝑘
autocorrelation values for 𝑘 from 0 to either corrlag() or the index at which the autocorrelation

becomes less than corrtol() if the latter is less than corrlag(). Options corrlag() and batch()
may not be combined.

https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimationRemarksandexamplesbayesian_post_reref
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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corrtol(#) specifies the autocorrelation tolerance used for calculating effective sample sizes. The

default is corrtol(0.01). For a given model parameter, if the absolute value of the lag-𝑘 autocorre-

lation is less than corrtol(), then all autocorrelation lags beyond the 𝑘th lag are discarded. Options
corrtol() and batch() may not be combined.

Remarks and examples
Remarks and examples are presented under the following headings:

Using the bayes prefix
Likelihood model
Default priors
Initial values
Command-specific options

Introductory example
Linear regression: A case of informative default priors
Logistic regression with perfect predictors
Multinomial logistic regression
Generalized linear model
Truncated Poisson regression
Zero-inflated negative binomial model
Parametric survival model
Heckman selection model
Multilevel models

Two-level models
Crossed-effects model
Blocked-diagonal covariance structures

Panel-data models
Time-series and DSGE models
Video examples

For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduc-

tion to Bayesian estimation using adaptive MH and Gibbs algorithms, see [BAYES] bayesmh. See

[BAYES] Bayesian estimation for a list of supported estimation commands. For a quick overview exam-

ple of all Bayesian commands, see Overview example in [BAYES] Bayesian commands.

Using the bayes prefix
The bayes prefix provides Bayesian estimation for many likelihood-based regressionmodels. Simply

prefix your estimation command with bayes to get Bayesian estimates—bayes: estimation command;

see [BAYES] Bayesian estimation for a list of supported commands. Also see [BAYES] bayesmh for

other Bayesian models.

Similarly to the bayesmh command, the bayes prefix sets up a Bayesian posterior model, usesMCMC

to simulate parameters of this model, and summarizes and reports results. The process of specifying a

Bayesian model is similar to that described in Setting up a posterior model in [BAYES] bayesmh, except

the likelihood model is now determined by the specified estimation command and default priors are

used for model parameters. The bayes prefix and the bayesmh command share the samemethodology of
MCMC simulation and the same summarization and reporting of simulation results; see [BAYES] bayesmh

for details. In the following sections, we provide information specific to the bayes prefix.

https://www.stata.com/manuals/bayesintro.pdf#bayesIntro
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayesianestimation.pdf#bayesBayesianestimation
https://www.stata.com/manuals/bayesbayesiancommands.pdf#bayesBayesiancommandsRemarksandexamplesOverviewexample
https://www.stata.com/manuals/bayesbayesiancommands.pdf#bayesBayesiancommands
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesSyntaxestcommand
https://www.stata.com/manuals/bayesbayesianestimation.pdf#bayesBayesianestimation
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesSettingupaposteriormodel
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesSyntaxestcommand
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
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Likelihood model

With the bayes prefix, the likelihood component of the Bayesian model is determined by the pre-

fixed estimation command, and all posterior model parameters are defined by the likelihood model. For

example, the parameters of the model

. bayes: streg age smoking, distribution(lognormal)

are the regression coefficients and auxiliary parameters you see when you fit

. streg age smoking, distribution(lognormal)

All estimation commands have regression coefficients as their model parameters. Some commands

have additional parameters such as variances and correlation coefficients.

The bayes prefix typically uses the likelihood parameterization and the naming convention of the

estimation command to define model parameters, but there are exceptions. For example, the truncreg
command uses the standard deviation parameter {sigma} to parameterize the likelihood, whereas

bayes: truncreg uses the variance parameter {sigma2}.

Most model parameters are scalar parameters supported on the whole real line such as regression

coefficients, log-transformed positive parameters, and atanh-transformed correlation coefficients. For

example, positive scalar parameters are the variance parameters in bayes: regress, bayes: tobit,
and bayes: truncreg, and matrix parameters are the covariance matrix {Sigma, matrix} in

bayes: mvreg and covariances of random effects in multilevel commands such as bayes: meglm.

The names of model parameters are provided in the model summary displayed by the bayes prefix.

Knowing these names is useful when specifying the prior distributions, although the bayes prefix does

provide default priors; see Default priors. You can use the dryrun option with the bayes prefix to see

the names of model parameters prior to the estimation. In general, the names of regression coefficients

are formed as {depvar:indepvar}, where depvar is the name of the specified dependent variable and

indepvar is the name of an independent variable. There are exceptions such as bayes: streg, for which
depvar is replaced with t. Variance parameters are named {sigma2}, log-standard-deviation param-

eters are named {lnsigma}, atanh-transformed correlation parameters are named {athrho}, and the

covariance matrix of bayes: mvreg is named {Sigma, matrix} (or {Sigma, m} for short).

For panel-data andmultilevel models such as bayes: xtreg and bayes: meglm, in addition to regres-
sion coefficients and variance components, the bayes prefix also estimates random-effects parameters.

This is different from the corresponding frequentist commands, such as xtreg and meglm, in which

random effects are integrated out and thus are not among the final model parameters. (They can be pre-

dicted after estimation.) As such, the bayes prefix has its own naming convention for model parameters

of multilevel commands. Before moving on to Bayesian analysis of multilevel models, you should be

familiar with the syntax of the multilevel commands; see, for example, Syntax in [ME] meglm.

For panel-data models, the regression coefficients are labeled as usual, {depvar:indepvar}. Random-
effects parameters are labeled as {U[panelvar]} (or simply {U}), where panelvar is the panel variable.

For multinomial logistic models, each outcome can have its own random effect, so the random effects are

labeled as {U1[panelvar]}, {U2[panelvar]}, etc. (or simply {U1}, {U2}, etc.), for each outcome level
except the baseline outcome. See command-specific entries for the naming convention of additional

parameters such as cutpoints with ordinal models. Also see Different ways of specifying model param-

eters for how to refer to individual random effects during postestimation. For examples, see Panel-data

models.

https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesDefaultpriors
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryrandom_effects_parameters
https://www.stata.com/manuals/memeglm.pdf#memeglmSyntax
https://www.stata.com/manuals/memeglm.pdf#memeglm
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimationRemarksandexamplesbayesian_post_reref
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https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesPanel-datamodels
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For multilevel models, the regression coefficients are labeled as usual, {depvar:indepvar}. Random-
effects parameters are labeled as outlined in tables 1 and 2. You can change the default names by specify-

ing the restubs() option. The common syntax of {rename} is {restub#}, where restub is a capital letter,
U for the level specified first, or a sequence of capital letters that is unique to each random-effects level,

and # refers to the group of random effects at that level: 0 for random intercepts, 1 for random coefficients

associated with the variable specified first in the random-effects equation, 2 for random coefficients as-

sociated with the variable specified second, and so on. The full syntax of {rename}, {fullrename}, is
{restub#[levelvar]}, where levelvar is the variable identifying the level of hierarchy and is often omitted
from the specification for brevity. Random effects at the observation level or crossed effects, specified

as all: R.varname with multilevel commands, are labeled as {U0}, {V0}, {W0}, and so on. Random
effects at nesting levels, or nested effects, are labeled using a sequence of capital letters starting with the

letter corresponding to the top level. For example, the multilevel model

. bayes: melogit y x1 x2 || id1: x1 x2 || id2: x1 || id3:

will have random-effects parameters {U0}, {U1}, and {U2} to represent, respectively, random intercepts,

random coefficients for x1, and random coefficients for x2 at the id1 level; parameters {UU0} and {UU1}
for random intercepts and random coefficients for x1 at the id2 level; and random intercepts {UUU0} at

the id3 level. See Multilevel models for more examples. Also see Different ways of specifying model

parameters for how to refer to individual random effects during postestimation.

Table 1. Random effects at nesting levels of hierarchy (nested effects)

Hierarchy Random effects {rename}
lev1 Random intercepts {U0}

Random coefficients {U1}, {U2}, etc.
lev1>lev2 Random intercepts {UU0}

Random coefficients {UU1}, {UU2}, etc.
lev1>lev2>lev3 Random intercepts {UUU0}

Random coefficients {UUU1}, {UUU2}, etc.
. . .

Table 2. Random effects at the observation level, all (crossed effects)

Hierarchy Random effects {rename}
lev1 Random intercepts {U0}
lev2 Random intercepts {V0}
lev3 Random intercepts {W0}
. . .

Variance components for independent random effects are labeled as {rename:sigma2}. In the

above example, there are six variance components: {U0:sigma2}, {U1:sigma2}, {U2:sigma2},
{UU0:sigma2}, {UU1:sigma2}, and {UUU0:sigma2}.

Covariance matrices of correlated random effects are labeled as {restub:Sigma,matrix} (or

{restub:Sigma,m} for short), where restub is the letter stub corresponding to the level at which ran-

dom effects are defined. For example, if we specify an unstructured covariance for the random effects at

the id1 and id2 levels (with cov(un) short for covariance(unstructured))

. bayes: melogit y x1 x2 || id1: x1 x2, cov(un) || id2: x1, cov(un) || id3:

https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplestable1
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplestable2
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we will have two covariance matrix parameters, a 3 × 3 covariance {U:Sigma,m} at the id1 level and

a 2× 2 covariance {UU:Sigma,m} at the id2 level, and the variance component {UUU0:sigma2} at the

id3 level.

For Gaussian multilevel models such as bayes: mixed, the error variance component is labeled as

{e.depvar:sigma2}.

Also see command-specific entries for the naming convention of additional parameters such as cut-

points with ordinal models or overdispersion parameters with negative binomial models.

Default priors

For convenience, the bayes prefix provides default priors for model parameters. The priors are chosen
to be general across models and are fairly uninformative for a typical combination of a likelihood model

and dataset. However, the default priors may not always be appropriate. You should always inspect their

soundness and, if needed, override the prior specification for some or all model parameters using the

prior() option.

All scalar parameters supported on the whole real line, such as regression coefficients and log-

transformed positive parameters, are assigned a normal distribution with zero mean and variance 𝜎2
prior,

𝑁(0, 𝜎2
prior), where 𝜎prior is given by the normalprior() option. The default value for 𝜎prior is 100,

and thus the default priors for these parameters are 𝑁(0, 10000). These priors are fairly uninformative
for parameters of moderate size but may become informative for large-scale parameters. See the Linear

regression: A case of informative default priors example below.

All positive scalar parameters, such as the variance parameters in bayes: regress and

bayes: tobit, are assigned an inverse-gamma prior with shape parameter 𝛼 and scale parameter 𝛽,
InvGamma(𝛼, 𝛽). The default values for 𝛼 and 𝛽 are 0.01, and thus the default prior for these parame-

ters is InvGamma(0.01, 0.01).
All cutpoint parameters of ordinal-outcome models, such as bayes: ologit and bayes: oprobit

are assigned flat priors, improper uniform priors with a constant density of 1, equivalent to specifying

the flat prior option. The reason for this choice is that the cutpoint parameters are sensitive to the range

of the outcome variables, which is usually unknown a priori.

For panel-data models except bayes: xtpoisson and bayes: xtnbreg, the random effects are

assigned normal priors with zero mean and variance {var U}, and {var U} is assigned an inverse-

gamma prior InvGamma(0.01, 0.01). For a Poisson model, the random effects are assigned an

exponential gamma prior with a hyperprior parameter {alpha} having an inverse-gamma prior

InvGamma(0.01, 0.01). For a negative binomial model, the random effects are assigned a beta prior

with hyperparameters {r} and {s}, which are assigned a Pareto-type prior as described in Methods and

formulas of [BAYES] bayes: xtnbreg.

For multilevel models with independent and identity random-effects covariance structures, vari-

ances of random effects are assigned inverse-gamma priors, InvGamma(0.01, 0.01). For unstructured
random-effects covariances, covariance matrix parameters are assigned fairly uninformative inverse-

Wishart priors, InvWishart(𝑑 + 1, 𝐼(𝑑)), where 𝑑 is the dimension of the random-effects covariance

matrix and 𝐼(𝑑) is the identity matrix of dimension 𝑑. Setting the degrees-of-freedom parameter of the

inverse-Wishart prior to 𝑑 + 1 is equivalent to specifying uniform on (−1, 1) distributions for the indi-
vidual correlation parameters.
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https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesLinearregressionAcaseofinformativedefaultpriors
https://www.stata.com/manuals/bayesbayesxtnbreg.pdf#bayesbayesxtnbregMethodsandformulas
https://www.stata.com/manuals/bayesbayesxtnbreg.pdf#bayesbayesxtnbregMethodsandformulas
https://www.stata.com/manuals/bayesbayesxtnbreg.pdf#bayesbayesxtnbreg
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The model summary displayed by the bayes prefix describes the chosen default priors, which you can
see prior to estimation if you specify bayes’s dryrun option. You can use the prior() option repeatedly
to override the default prior specifications for some or all model parameters.

Initial values

By default, the bayes prefix uses the ML estimates from the prefixed estimation command as initial

values for all scalar model parameters.

For example, the specification

. bayes: logit y x

will use the ML estimates from

. logit y x

as default initial values for the regression coefficients.

You can override the default initial values by using the initial() option; see Specifying initial

values in [BAYES] bayesmh.

If the nomleinitial option is specified, instead of using the estimates from the prefixed command,

all scalar model parameters are initialized with zeros, except for the variance parameters, which are

initialized with ones.

The covariance matrix parameter {Sigma, matrix} of bayes: mvreg is always initialized with the

identity matrix.

For panel-data and multilevel models, regression coefficients are initialized using the ML estimates

from the corresponding model without random effects, variances of random effects are initialized with

ones, covariances of random effects are initialized with zeros, and random effects themselves are initial-

ized with zeros.

With multiple chains, the following default initialization takes place. The first chain is initialized as

described above. The subsequent chains use random initial values. In general, random initial values

are generated from the prior distributions. For some improper priors such as flat and jeffreys, to
avoid extremely large values, random initial values are sampled from a normal distribution with the

mean centered at the initial values of the first chain and with standard deviations proportional to the

magnitudes of the respective initial estimates.

See Specifying initial values in [BAYES] bayesmh for more information about default initial values

and for how to specify your own.

Command-specific options

Not all command-specific options, that is, options specified with the estimation command, are appli-

cable within the Bayesian framework. One example is the group of maximum-likelihood optimization

options such as technique() and gradient. For a list of supported options, refer to the entry specific
to each command; see [BAYES] Bayesian estimation for a list of commands.

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesSpecifyinginitialvalues
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesSpecifyinginitialvalues
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesSpecifyinginitialvalues
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayesianestimation.pdf#bayesBayesianestimation
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Some of the command-specific reporting options, such as eform option and display options, can be

specified either with estimation command or with the bayes prefix. For example, to obtain estimates of

odds ratios instead of coefficients after the logit model, you can specify the or option with the command

. bayes: logit y x, or

or with the bayes prefix

. bayes, or: logit y x

You can also specify this option on replay with the bayes prefix

. bayes: logit y x

. bayes, or

Introductory example
We start with a simple linear regression model applied to womenwage.dta, which contains income

data for a sample of working women.

. use https://www.stata-press.com/data/r19/womenwage
(Wages of women)

Suppose we want to regress women’s yearly income, represented by the wage variable, on their age,

represented by the age variable. We can fit this model using the regress command.

. regress wage age
Source SS df MS Number of obs = 488

F(1, 486) = 43.53
Model 3939.49247 1 3939.49247 Prob > F = 0.0000

Residual 43984.4891 486 90.503064 R-squared = 0.0822
Adj R-squared = 0.0803

Total 47923.9816 487 98.406533 Root MSE = 9.5133

wage Coefficient Std. err. t P>|t| [95% conf. interval]

age .399348 .0605289 6.60 0.000 .2804173 .5182787
_cons 6.033077 1.791497 3.37 0.001 2.513041 9.553112

Example 1: Bayesian simple linear regression
We can fit a corresponding Bayesian regression model by simply adding bayes: in front of the

regress command. Because the bayes prefix is simulation based, we set a random-number seed to

get reproducible results.

https://www.stata.com/manuals/reform_option.pdf#reform_option
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. set seed 15

. bayes: regress wage age
Burn-in ...
Simulation ...
Model summary

Likelihood:
wage ~ regress(xb_wage,{sigma2})

Priors:
{wage:age _cons} ~ normal(0,10000) (1)

{sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_wage.
Bayesian linear regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 488
Acceptance rate = .3739
Efficiency: min = .1411

avg = .1766
Log marginal-likelihood = -1810.1432 max = .2271

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

wage
age .4008591 .0595579 .001586 .4005088 .2798807 .5183574

_cons 5.969069 1.737247 .043218 5.997571 2.60753 9.396475

sigma2 90.76252 5.891887 .123626 90.43802 79.71145 102.8558

Note: Default priors are used for model parameters.

The Bayesian model has two regression coefficient parameters, {wage:age} and {wage: cons}, and
a positive scalar parameter, {sigma2}, representing the variance of the error term. The model sum-

mary shows the default priors used for the model parameters: normal(0, 10000) for the regression

coefficients and igamma(0.01, 0.01) for the variance parameter. The default priors are provided for

convenience and should be used with caution. These priors are fairly uninformative in this example, but

this may not always be the case; see the example in Linear regression: A case of informative default

priors.

The first two columns of the bayes prefix’s estimation table report the posterior means and standard

deviations of the model parameters. We observe that for the regression coefficients {wage:age} and

{wage: cons}, the posterior means and standard deviations are very similar to the least-square esti-

mates and their standard errors as reported by the regress command. The posterior mean estimate for

{sigma2}, 90.76, is close to the residual mean squared estimate, 90.50, listed in the ANOVA table of the

regress command. The estimation table of the bayes prefix also reports Monte Carlo standard errors

(MCSEs), medians, and equal-tailed credible intervals.

The Bayesian estimates are stochastic in nature and, by default, are based on an MCMC sample of

size 10,000. It is important to verify that the MCMC simulation has converged; otherwise, the Bayesian

estimates cannot be trusted. The simulation efficiencies reported in the header of the estimation table

can serve as useful initial indicators of convergence problems. The minimum efficiency in our example

is about 0.14, and the average efficiency is about 0.17. These numbers are typical for the MH sampling

https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesLinearregressionAcaseofinformativedefaultpriors
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesLinearregressionAcaseofinformativedefaultpriors
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algorithm used by bayes and do not indicate convergence problems; see example 1 in [BAYES] bayesstats
grubin for convergence diagnostics using multiple chains for this example. Also see Convergence of

MCMC in [BAYES] bayesmh for details about convergence diagnostics.

Example 2: Predictions
There are several postestimation commands available after the bayes prefix; see [BAYES] Bayesian

postestimation. Among them is the bayesstats summary command, which we can use to compute

simple predictions. Suppose that we want to predict the expected wage of a 40-year-old woman condi-

tional on the above fitted posterior model. Based on our model, this expected wage corresponds to the

linear combination {wage ∶ cons} + {wage ∶ age} × 40. We name this expression wage40 and supply

it to the bayesstats summary command.

. bayesstats summary (wage40: {wage:_cons} + {wage:age}*40)
Posterior summary statistics MCMC sample size = 10,000

wage40 : {wage:_cons} + {wage:age}*40

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

wage40 22.00343 .81679 .024045 21.99231 20.39435 23.6718

The posterior mean estimate for the expected wage is about 22 with a 95% credible interval between

20.39 and 23.67.

https://www.stata.com/manuals/bayesbayesstatsgrubin.pdf#bayesbayesstatsgrubinRemarksandexamplesex1
https://www.stata.com/manuals/bayesbayesstatsgrubin.pdf#bayesbayesstatsgrubin
https://www.stata.com/manuals/bayesbayesstatsgrubin.pdf#bayesbayesstatsgrubin
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesConvergenceofMCMC
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesConvergenceofMCMC
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimation
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimation
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Example 3: Gibbs sampling
The bayes prefix uses adaptive MH as its default sampling algorithm. However, in the special case

of linear regression, a more efficient Gibbs sampling is available. We can request Gibbs sampling by

specifying the gibbs option.

. set seed 15

. bayes, gibbs: regress wage age
Burn-in ...
Simulation ...
Model summary

Likelihood:
wage ~ normal(xb_wage,{sigma2})

Priors:
{wage:age _cons} ~ normal(0,10000) (1)

{sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_wage.
Bayesian linear regression MCMC iterations = 12,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 488
Acceptance rate = 1
Efficiency: min = 1

avg = 1
Log marginal-likelihood = -1810.087 max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

wage
age .3999669 .0611328 .000611 .4005838 .2787908 .518693

_cons 6.012074 1.804246 .018042 6.000808 2.488816 9.549921

sigma2 90.84221 5.939535 .059395 90.54834 79.8132 103.0164

Note: Default priors are used for model parameters.

The posterior summary results obtained by Gibbs sampling and MH sampling are very close except

for theMCSEs. The Gibbs sampler reports substantially lowerMCSEs than the default sampler because of

its higher efficiency. In fact, in this example, the Gibbs sampler achieves the highest possible efficiency

of 1.
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Linear regression: A case of informative default priors
Our example in Introductory example used the default priors, which were fairly uninformative for

those data and that model. This may not always be true. Consider a linear regression model using the

familiar auto.dta. Let us regress the response variable price on the covariate length and factor

variable foreign.
. use https://www.stata-press.com/data/r19/auto, clear
(1978 automobile data)
. regress price length i.foreign

Source SS df MS Number of obs = 74
F(2, 71) = 16.35

Model 200288930 2 100144465 Prob > F = 0.0000
Residual 434776467 71 6123612.21 R-squared = 0.3154

Adj R-squared = 0.2961
Total 635065396 73 8699525.97 Root MSE = 2474.6

price Coefficient Std. err. t P>|t| [95% conf. interval]

length 90.21239 15.83368 5.70 0.000 58.64092 121.7839

foreign
Foreign 2801.143 766.117 3.66 0.000 1273.549 4328.737

_cons -11621.35 3124.436 -3.72 0.000 -17851.3 -5391.401

Example 4: Default priors
We first fit a Bayesian regression model using the bayes prefix with default priors. Because the range

of the outcome variable price is at least an order of magnitude larger than the range of the predictor

variables length and foreign, we anticipate that some of the model parameters may have large scale,
and longer adaptation may be necessary for the MCMC algorithm to reach optimal sampling for these

parameters. We allow for longer adaptation by increasing the burn-in period from the default value of

2,500 to 5,000.

. set seed 15

. bayes, burnin(5000): regress price length i.foreign
Burn-in ...
Simulation ...
Model summary

Likelihood:
price ~ regress(xb_price,{sigma2})

Priors:
{price:length 1.foreign _cons} ~ normal(0,10000) (1)

{sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_price.

https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesIntroductoryexample
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Bayesian linear regression MCMC iterations = 15,000
Random-walk Metropolis--Hastings sampling Burn-in = 5,000

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .3272
Efficiency: min = .05887

avg = .1093
Log marginal-likelihood = -699.23257 max = .1958

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

price
length 33.03301 1.80186 .060848 33.07952 29.36325 36.41022

foreign
Foreign 32.77011 98.97104 4.07922 34.3237 -164.1978 222.0855

_cons -8.063175 102.9479 3.34161 -9.110308 -205.9497 196.9341

sigma2 7538628 1297955 29334.9 7414320 5379756 1.04e+07

Note: Default priors are used for model parameters.

The posterior mean estimates of the regression coefficients are smaller (in absolute value) than the

corresponding estimates from the regress command, because the default prior for the coefficients,

normal(0, 10000), is informative and has a strong shrinkage effect. For example, the least-square

estimate of the constant term from regress is about −11,621, and its scale is much larger than the de-

fault prior standard deviation of 100. As a result, the default prior shrinks the estimate of the constant

toward 0 and, specifically, to −8.06.

You should be aware that the default priors are provided for convenience and are not guaranteed to

be uninformative in all cases. They are designed to have little effect on model parameters, the maximum

likelihood estimates of which are of moderate size, say, less than 100 in absolute value. For large-scale

parameters, as in this example, the default priors can become informative.
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Example 5: Flat priors
Continuing with example 4, we can override the default priors using the prior() option. We can, for

example, apply the completely uninformative flat prior, a prior with the density of 1, for the coefficient

parameters.

. set seed 15

. bayes, prior({price:}, flat) burnin(5000): regress price length i.foreign
Burn-in ...
Simulation ...
Model summary

Likelihood:
price ~ regress(xb_price,{sigma2})

Priors:
{price:length 1.foreign _cons} ~ 1 (flat) (1)

{sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_price.
Bayesian linear regression MCMC iterations = 15,000
Random-walk Metropolis--Hastings sampling Burn-in = 5,000

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .3404
Efficiency: min = .07704

avg = .1086
Log marginal-likelihood = -669.62603 max = .1898

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

price
length 89.51576 16.27187 .586237 89.60969 57.96996 122.7961

foreign
Foreign 2795.683 770.6359 26.0589 2787.139 1305.773 4298.785

_cons -11478.83 3202.027 113.271 -11504.65 -17845.87 -5244.189

sigma2 6270294 1089331 25002.1 6147758 4504695 8803268

Note: Default priors are used for some model parameters.

The posterior mean estimates for the coefficient parameters are now close to the least-square estimates

from regress. For example, the posteriormean estimate for {price: cons} is about−11,479, whereas

the least-square estimate is −11,621.

However, the flat priors should be used with caution. Flat priors are improper and may result in

improper posterior distributions for which Bayesian inference cannot be carried out. You should thus

choose the priors carefully, accounting for the properties of the likelihood model.

https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesex4
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Example 6: Zellner’s 𝑔-prior
A type of prior specific to the normal linear regression model is Zellner’s 𝑔-prior. We can apply

it to our example using the zellnersg0() prior. For this prior, we need to specify the dimension of

the prior, which is the number of regression coefficients (3), a degree of freedom (50) and the variance

parameter of the error term in the regression model, {sigma2}; the mean parameter is assumed to be 0
by zellnersg0(). See example 9 in [BAYES] bayesmh for more details about Zellner’s 𝑔-prior.

. set seed 15

. bayes, prior({price:}, zellnersg0(3, 50, {sigma2})) burnin(5000):
> regress price length i.foreign
Burn-in ...
Simulation ...
Model summary

Likelihood:
price ~ regress(xb_price,{sigma2})

Priors:
{price:length 1.foreign _cons} ~ zellnersg(3,50,0,{sigma2}) (1)

{sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_price.
Bayesian linear regression MCMC iterations = 15,000
Random-walk Metropolis--Hastings sampling Burn-in = 5,000

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .3019
Efficiency: min = .06402

avg = .105
Log marginal-likelihood = -697.84862 max = .1944

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

price
length 87.53039 16.24762 .569888 87.72965 55.5177 119.9915

foreign
Foreign 2759.267 794.043 31.3829 2793.241 1096.567 4202.283

_cons -11223.95 3211.553 113.34 -11308.39 -17534.25 -4898.139

sigma2 6845242 1159035 26286.9 6716739 4978729 9521252

Note: Default priors are used for some model parameters.

We see that using this Zellner’s 𝑔-prior has little effect on the coefficient parameters, and the simulated
posterior mean estimates are close to the least-square estimates from regress.

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesex9
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh


bayes — Bayesian regression models using the bayes prefix 26

Logistic regression with perfect predictors
Let’s revisit the example in Logistic regression model: A case of nonidentifiable parameters of

[BAYES] bayesmh. The example uses heartswitz.dta to model the binary outcome disease, the
presence of a heart disease, using the predictor variables restecg, isfbs, age, and male. The dataset
is a sample from Switzerland.

. use https://www.stata-press.com/data/r19/heartswitz, clear
(Subset of Switzerland heart disease data from UCI Machine Learning Repository)

Example 7: Perfect prediction
The logistic regression model for these data is

. logit disease restecg isfbs age male
(output omitted )

To fit a Bayesian logistic regression, we prefix the logit command with bayes. We also specify the

noisily option to show the estimation output of the logit command, which is run by the bayes prefix

to set up the model and compute starting values for the parameters.

. set seed 15

. bayes, noisily: logit disease restecg isfbs age male
note: restecg != 0 predicts success perfectly;

restecg omitted and 17 obs not used.
note: isfbs != 0 predicts success perfectly;

isfbs omitted and 3 obs not used.
note: male != 1 predicts success perfectly;

male omitted and 2 obs not used.
Iteration 0: Log likelihood = -4.2386144
Iteration 1: Log likelihood = -4.2358116
Iteration 2: Log likelihood = -4.2358076
Iteration 3: Log likelihood = -4.2358076
Logistic regression Number of obs = 26

LR chi2(1) = 0.01
Prob > chi2 = 0.9403

Log likelihood = -4.2358076 Pseudo R2 = 0.0007

disease Coefficient Std. err. z P>|z| [95% conf. interval]

restecg 0 (omitted)
isfbs 0 (omitted)

age -.0097846 .1313502 -0.07 0.941 -.2672263 .2476572
male 0 (omitted)

_cons 3.763893 7.423076 0.51 0.612 -10.78507 18.31285

Burn-in ...
Simulation ...
Model summary

Likelihood:
disease ~ logit(xb_disease)

Prior:
{disease:age _cons} ~ normal(0,10000) (1)

(1) Parameters are elements of the linear form xb_disease.
Bayesian logistic regression MCMC iterations = 12,500

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesLogisticregressionmodelAcaseofnonidentifiableparameters
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
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Random-walk Metropolis--Hastings sampling Burn-in = 2,500
MCMC sample size = 10,000
Number of obs = 26
Acceptance rate = .2337
Efficiency: min = .1076

avg = .1113
Log marginal-likelihood = -14.795726 max = .115

Equal-tailed
disease Mean Std. dev. MCSE Median [95% cred. interval]

restecg (omitted)
isfbs (omitted)

age -.0405907 .1650514 .004868 -.0328198 -.4005246 .2592641
male (omitted)

_cons 6.616447 9.516872 .290075 5.491008 -8.852858 28.99392

Note: Default priors are used for model parameters.

As evident from the output of the logit command, the covariates restecg, isfbs, and male are

omitted because of perfect prediction. Although these predictors cannot be identified using the likelihood

alone, they can be identified, potentially, in a posterior model with an informative prior. The default prior

normal(0, 10000), used by the bayes prefix for the regression coefficients, is not informative enough

to resolve the perfect prediction, and we must override it with a more informative prior.

Example 8: Informative prior
In the example in Logistic regression model: A case of nonidentifiable parameters of

[BAYES] bayesmh, we use information from another similar dataset, hearthungary.dta, to come up

with informative priors for the regression coefficients. We use the same priors with the bayes prefix.

We specify the asis option with the logit command to prevent dropping the perfect predictors from

the model. We also specify the nomleinitial option to prevent the bayes prefix from trying to obtain

ML estimates to use as starting values; reliable ML estimates cannot be provided by the logit command

when the perfect predictors are retained.

. set seed 15

. bayes, prior({disease:restecg age}, normal(0,10))
> prior({disease:isfbs male}, normal(1,10))
> prior({disease:_cons}, normal(-4,10)) nomleinitial:
> logit disease restecg isfbs age male, asis
Burn-in ...
Simulation ...
Model summary

Likelihood:
disease ~ logit(xb_disease)

Priors:
{disease:restecg age} ~ normal(0,10) (1)
{disease:isfbs male} ~ normal(1,10) (1)

{disease:_cons} ~ normal(-4,10) (1)

(1) Parameters are elements of the linear form xb_disease.

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesLogisticregressionmodelAcaseofnonidentifiableparameters
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
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Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 48
Acceptance rate = .2121
Efficiency: min = .01885

avg = .04328
Log marginal-likelihood = -11.006071 max = .06184

Equal-tailed
disease Mean Std. dev. MCSE Median [95% cred. interval]

restecg 1.965122 2.315475 .115615 1.655961 -2.029873 6.789415
isfbs 1.708631 2.726071 .113734 1.607439 -3.306837 7.334592

age .1258811 .0707431 .003621 .1245266 -.0016807 .2719748
male .2671381 2.237349 .162967 .3318061 -4.106425 4.609955

_cons -2.441911 2.750613 .110611 -2.538183 -7.596747 3.185172

For this posterior model with informative priors, we successfully estimate all regression parameters in

the logistic regression model.

The informative prior in this example is based on information from an independent dataset,

hearthungary.dta, which is a sample of observations on the same heart condition and predictor at-

tributes as heartswitz.dta but sampled from Hungary’s population. Borrowing information from

independent datasets to construct informative priors is justified only when the datasets are compatible

with the currently analyzed data.
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Multinomial logistic regression
Consider the health insurance dataset, sysdsn1.dta, to model the insurance outcome, insure,

which takes the values Indemnity, Prepaid, and Uninsure, using the predictor variables age, male,
nonwhite, and site. This model is considered in more detail in example 4 in [R] mlogit.

. use https://www.stata-press.com/data/r19/sysdsn1, clear
(Health insurance data)

First, we use the mlogit command to fit the model

. mlogit insure age male nonwhite i.site, nolog
Multinomial logistic regression Number of obs = 615

LR chi2(10) = 42.99
Prob > chi2 = 0.0000

Log likelihood = -534.36165 Pseudo R2 = 0.0387

insure Coefficient Std. err. z P>|z| [95% conf. interval]

Indemnity (base outcome)

Prepaid
age -.011745 .0061946 -1.90 0.058 -.0238862 .0003962

male .5616934 .2027465 2.77 0.006 .1643175 .9590693
nonwhite .9747768 .2363213 4.12 0.000 .5115955 1.437958

site
2 .1130359 .2101903 0.54 0.591 -.2989296 .5250013
3 -.5879879 .2279351 -2.58 0.010 -1.034733 -.1412433

_cons .2697127 .3284422 0.82 0.412 -.3740222 .9134476

Uninsure
age -.0077961 .0114418 -0.68 0.496 -.0302217 .0146294

male .4518496 .3674867 1.23 0.219 -.268411 1.17211
nonwhite .2170589 .4256361 0.51 0.610 -.6171725 1.05129

site
2 -1.211563 .4705127 -2.57 0.010 -2.133751 -.2893747
3 -.2078123 .3662926 -0.57 0.570 -.9257327 .510108

_cons -1.286943 .5923219 -2.17 0.030 -2.447872 -.1260134

https://www.stata.com/manuals/rmlogit.pdf#rmlogitRemarksandexamplesex_mlogit_insurance4
https://www.stata.com/manuals/rmlogit.pdf#rmlogit
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Next, we use the bayes prefix to performBayesian estimation of the samemultinomial logistic regression

model.

. set seed 15

. bayes: mlogit insure age male nonwhite i.site
Burn-in ...
Simulation ...
Model summary

Likelihood:
Prepaid Uninsure ~ mlogit(xb_Prepaid,xb_Uninsure)

Priors:
{Prepaid:age male nonwhite i.site _cons} ~ normal(0,10000) (1)

{Uninsure:age male nonwhite i.site _cons} ~ normal(0,10000) (2)

(1) Parameters are elements of the linear form xb_Prepaid.
(2) Parameters are elements of the linear form xb_Uninsure.
Bayesian multinomial logistic regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Base outcome: Indemnity Number of obs = 615

Acceptance rate = .2442
Efficiency: min = .01992

avg = .03086
Log marginal-likelihood = -614.49286 max = .05659

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

Prepaid
age -.0125521 .006247 .000396 -.0125871 -.024602 -.0005809

male .5462718 .2086422 .012818 .5573004 .1263754 .9271802
nonwhite .9796293 .2275709 .015746 .9737777 .53642 1.401076

site
2 .098451 .214039 .012887 .0994476 -.3172914 .5260208
3 -.6043961 .2348319 .011596 -.6072807 -1.045069 -.1323191

_cons .3183984 .3309283 .021325 .3219128 -.3423583 .956505

Uninsure
age -.008377 .0118479 .000581 -.0082922 -.0323571 .0140366

male .4687524 .3537416 .02376 .4748359 -.2495656 1.147333
nonwhite .1755361 .42708 .022566 .198253 -.7214481 .938098

site
2 -1.298562 .4746333 .033628 -1.27997 -2.258622 -.4149035
3 -.2057122 .3533365 .020695 -.2009649 -.904768 .4924401

_cons -1.305083 .5830491 .02451 -1.296332 -2.463954 -.1758435

Note: Default priors are used for model parameters.

For this model and these data, the default prior specification of the bayes prefix is fairly uninformative

and, as a result, the posterior mean estimates for the parameters are close to the ML estimates obtained

with mlogit.
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We can report posterior summaries for the relative-risk ratios instead of the regression coefficients.

This is equivalent to applying an exponential transformation, exp(𝑏), to the simulated values of each of
the regression coefficients, 𝑏, and then summarizing them. We can obtain relative-risk ratio summaries

by replaying the bayes command with the rrr option specified. We use the already available simulation

results from the last estimation and do not refit the model. We could have also specified the rrr option

during the estimation.

. bayes, rrr
Model summary

Likelihood:
Prepaid Uninsure ~ mlogit(xb_Prepaid,xb_Uninsure)

Priors:
{Prepaid:age male nonwhite i.site _cons} ~ normal(0,10000) (1)

{Uninsure:age male nonwhite i.site _cons} ~ normal(0,10000) (2)

(1) Parameters are elements of the linear form xb_Prepaid.
(2) Parameters are elements of the linear form xb_Uninsure.
Bayesian multinomial logistic regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Base outcome: Indemnity Number of obs = 615

Acceptance rate = .2442
Efficiency: min = .02149

avg = .03181
Log marginal-likelihood = -614.49286 max = .06007

Equal-tailed
RRR Std. dev. MCSE Median [95% cred. interval]

Prepaid
age .9875456 .0061686 .000391 .9874918 .9756982 .9994192

male 1.764212 .3634348 .022268 1.745953 1.134708 2.527372
nonwhite 2.732931 .6240495 .042568 2.647929 1.709875 4.059566

site
2 1.129077 .2450092 .015242 1.104561 .7281185 1.692189
3 .5617084 .1338774 .00665 .5448304 .3516675 .8760614

_cons 1.451983 .4904589 .029972 1.379764 .7100938 2.60259

Uninsure
age .9917276 .0117452 .000575 .991742 .9681608 1.014136

male 1.699605 .6045513 .040763 1.60775 .7791391 3.149782
nonwhite 1.301138 .5448086 .027742 1.219271 .4860479 2.555117

site
2 .3045686 .1461615 .009698 .2780457 .1044944 .6604046
3 .8663719 .3155926 .01806 .8179411 .4046357 1.636304

_cons .3203309 .1976203 .008063 .2735332 .0850978 .8387492

Note: _cons estimates baseline relative risk for each outcome.
Note: Default priors are used for model parameters.
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Generalized linear model
Consider the insecticide experiment dataset, beetle.dta, to model the number of beetles killed, r, on

the number of subjected beetles, n; the type of beetles, beetle; and the log-dose of insecticide, ldose.
More details can be found in example 2 of [R] glm.

. use https://www.stata-press.com/data/r19/beetle, clear

Consider a generalized linear model with a binomial family and a complementary log–log link func-

tion for these data.

. glm r i.beetle ldose, family(binomial n) link(cloglog) nolog
Generalized linear models Number of obs = 24
Optimization : ML Residual df = 20

Scale parameter = 1
Deviance = 73.76505595 (1/df) Deviance = 3.688253
Pearson = 71.8901173 (1/df) Pearson = 3.594506
Variance function: V(u) = u*(1-u/n) [Binomial]
Link function : g(u) = ln(-ln(1-u/n)) [Complementary log--log]

AIC = 6.74547
Log likelihood = -76.94564525 BIC = 10.20398

OIM
r Coefficient std. err. z P>|z| [95% conf. interval]

beetle
Red flour -.0910396 .1076132 -0.85 0.398 -.3019576 .1198783
Mealworm -1.836058 .1307125 -14.05 0.000 -2.09225 -1.579867

ldose 19.41558 .9954265 19.50 0.000 17.46458 21.36658
_cons -34.84602 1.79333 -19.43 0.000 -38.36089 -31.33116

https://www.stata.com/manuals/rglm.pdf#rglmRemarksandexamplesex_glm_insectexp
https://www.stata.com/manuals/rglm.pdf#rglm
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To fit a Bayesian generalized linear model with default priors, we type

. set seed 15

. bayes: glm r i.beetle ldose, family(binomial n) link(cloglog)
Burn-in ...
Simulation ...
Model summary

Likelihood:
r ~ glm(xb_r)

Prior:
{r:i.beetle ldose _cons} ~ normal(0,10000) (1)

(1) Parameters are elements of the linear form xb_r.
Bayesian generalized linear models MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Family: binomial n Number of obs = 24
Link: complementary log--log Scale parameter = 1

Acceptance rate = .2003
Efficiency: min = .03414

avg = .05094
Log marginal-likelihood = -102.9776 max = .08012

Equal-tailed
r Mean Std. dev. MCSE Median [95% cred. interval]

beetle
Red flour -.0903569 .106067 .004527 -.093614 -.2964984 .112506
Mealworm -1.843952 .130297 .004603 -1.848374 -2.091816 -1.594582

ldose 19.52814 .9997765 .054106 19.52709 17.6146 21.6217
_cons -35.04832 1.800461 .096777 -35.0574 -38.81427 -31.61378

Note: Default priors are used for model parameters.

The posterior mean estimates of the regression parameters are not that different from the ML estimates

obtained with glm.
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If desired, we can request highest posterior density intervals be reported instead of default equal-

tailed credible intervals by specifying the hpd option. We can also change the credible-interval level; for

example, to request 90% credible intervals, we specify the clevel(90) option. We also could specify

these options during estimation.

. bayes, clevel(90) hpd
Model summary

Likelihood:
r ~ glm(xb_r)

Prior:
{r:i.beetle ldose _cons} ~ normal(0,10000) (1)

(1) Parameters are elements of the linear form xb_r.
Bayesian generalized linear models MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Family: binomial n Number of obs = 24
Link: complementary log--log Scale parameter = 1

Acceptance rate = .2003
Efficiency: min = .03414

avg = .05094
Log marginal-likelihood = -102.9776 max = .08012

HPD
r Mean Std. dev. MCSE Median [90% cred. interval]

beetle
Red flour -.0903569 .106067 .004527 -.093614 -.2444412 .1020305
Mealworm -1.843952 .130297 .004603 -1.848374 -2.03979 -1.620806

ldose 19.52814 .9997765 .054106 19.52709 17.86148 21.16389
_cons -35.04832 1.800461 .096777 -35.0574 -37.96057 -32.00411

Note: Default priors are used for model parameters.
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Truncated Poisson regression
The semiconductor manufacturing dataset, probe.dta, contains observational data of failure rates,

failure, of silicon wafers with width, width, and depth, depth, tested at four different probes, probe.
A wafer is rejected if more than 10 failures are detected. See example 2 in [R] tpoisson.

. use https://www.stata-press.com/data/r19/probe, clear
(Silicon wafers)

We fit a truncated Poisson regression model with a truncation point of 10. We suppress the constant

regression term from the likelihood equation using the noconstant option to retain all four probe levels

by including ibn.probe in the list of covariates, which declares probe to be a factor variable with no

base level.

. tpoisson failures ibn.probe depth width, noconstant ll(10) nolog
Truncated Poisson regression
Limits: lower = 10 Number of obs = 88

upper = +inf Wald chi2(6) = 11340.50
Log likelihood = -239.35746 Prob > chi2 = 0.0000

failures Coefficient Std. err. z P>|z| [95% conf. interval]

probe
1 2.714025 .0752617 36.06 0.000 2.566515 2.861536
2 2.602722 .0692732 37.57 0.000 2.466949 2.738495
3 2.725459 .0721299 37.79 0.000 2.584087 2.866831
4 3.139437 .0377137 83.24 0.000 3.065519 3.213354

depth -.0005034 .0033375 -0.15 0.880 -.0070447 .006038
width .0330225 .015573 2.12 0.034 .0025001 .063545

https://www.stata.com/manuals/rtpoisson.pdf#rtpoissonRemarksandexamplesex2
https://www.stata.com/manuals/rtpoisson.pdf#rtpoisson
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Example 9: Default priors
We first apply the bayes prefix with default priors to perform Bayesian estimation of the model. The

estimation takes a little longer, so we specify the dots option to see the progress.

. set seed 15

. bayes, dots: tpoisson failures ibn.probe depth width, noconstant ll(10)
Burn-in 2500 aaaaaaaaa1000.........2000..... done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done
Model summary

Likelihood:
failures ~ tpoisson(xb_failures)

Prior:
{failures:i.probe depth width} ~ normal(0,10000) (1)

(1) Parameters are elements of the linear form xb_failures.
Bayesian truncated Poisson regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Limits: Lower = 10 Number of obs = 88

Upper = +inf Acceptance rate = .1383
Efficiency: min = .004447

avg = .01322
Log marginal-likelihood = -288.22663 max = .04082

Equal-tailed
failures Mean Std. dev. MCSE Median [95% cred. interval]

probe
1 2.689072 .0696122 .008596 2.688881 2.557394 2.833737
2 2.581567 .0644141 .00966 2.588534 2.436973 2.701187
3 2.712054 .0695932 .006415 2.717959 2.55837 2.844429
4 3.13308 .0397521 .004592 3.133433 3.055979 3.208954

depth -.000404 .0033313 .000165 -.000504 -.0067928 .0061168
width .036127 .0165308 .001821 .0360637 .001239 .067552

Note: Default priors are used for model parameters.
Note: There is a high autocorrelation after 500 lags.

With the default prior specification, the posterior mean estimates for the regression parameters are simi-

lar to the ML estimates obtained with the tpoisson command. However, the bayes prefix issues a high

autocorrelation warning note and reports a minimum efficiency of only 0.004. The posterior model with

default priors seems to be somewhat challenging for the MH sampler. We could allow for longer burn-in

and increase the MCMC sample size to improve the MCMC convergence and increase the estimation pre-

cision. Instead, we will provide an alternative prior specification that will increase the model flexibility

and improve its fit to the data.

Example 10: Hyperpriors
We now assume that the four probe coefficients, {failures:ibn.probe}, have a normal prior dis-

tribution with mean parameter {probe mean} and a variance of 10,000. It is reasonable to assume that

all four probes have positive failure rates and that {probe mean} is a positive hyperparameter. We de-

cide to assign {probe mean} a gamma(2, 1) hyperprior, which is a distribution with a positive domain



bayes — Bayesian regression models using the bayes prefix 37

and a mean of 2. We use this prior for the purpose of illustration; this prior is not informative for this

model and these data. We initialize {probe mean} with 1 to give it a starting value compatible with its

hyperprior.

. set seed 15

. bayes, prior({failures:ibn.probe}, normal({probe_mean}, 10000))
> prior({probe_mean}, gamma(2, 1)) initial({probe_mean} 1) dots:
> tpoisson failures ibn.probe depth width, noconstant ll(10)
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done
Model summary

Likelihood:
failures ~ tpoisson(xb_failures)

Priors:
{failures:i.probe} ~ normal({probe_mean},10000) (1)

{failures:depth width} ~ normal(0,10000) (1)
Hyperprior:

{probe_mean} ~ gamma(2,1)

(1) Parameters are elements of the linear form xb_failures.
Bayesian truncated Poisson regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Limits: Lower = 10 Number of obs = 88

Upper = +inf Acceptance rate = .304
Efficiency: min = .04208

avg = .0775
Log marginal-likelihood = -287.91504 max = .127

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

failures
probe

1 2.703599 .0770656 .003757 2.704613 2.551404 2.848774
2 2.592738 .0711972 .002796 2.594628 2.446274 2.728821
3 2.716223 .0755001 .003549 2.719622 2.568376 2.863064
4 3.137069 .0388127 .001317 3.136773 3.062074 3.211616

depth -.000461 .0033562 .000109 -.0004457 -.0067607 .0062698
width .0337508 .0152654 .000532 .0337798 .003008 .0622191

probe_mean 2.051072 1.462867 .041051 1.71286 .2211973 5.809428

Note: Default priors are used for some model parameters.

The MCMC simulation achieves an average efficiency of about 8% with no indication of convergence

problems. The posterior mean estimates for the regression parameters are similar to the ML estimates;

moreover, the MCMC standard errors are much lower than those achieved by the previous model with

default priors. By introducing the hyperparameter {probe mean}, we have improved the goodness of
fit of the model.
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Zero-inflated negative binomial model
In this example, we consider a Bayesian model using zero-inflated negative binomial likelihood. We

revisit example 1 in [R] zinb, which models the number of fish caught by visitors to a national park.

The probability that a particular visitor fished is assumed to depend on the variables child and camper,
which are supplied as covariates to the inflate() option of zinb.

. use https://www.stata-press.com/data/r19/fish, clear
(Fictional fishing data)
. zinb count persons livebait, inflate(child camper) nolog
Zero-inflated negative binomial regression Number of obs = 250
Inflation model: logit Nonzero obs = 108

Zero obs = 142
LR chi2(2) = 82.23

Log likelihood = -401.5478 Prob > chi2 = 0.0000

count Coefficient Std. err. z P>|z| [95% conf. interval]

count
persons .9742984 .1034938 9.41 0.000 .7714543 1.177142

livebait 1.557523 .4124424 3.78 0.000 .7491503 2.365895
_cons -2.730064 .476953 -5.72 0.000 -3.664874 -1.795253

inflate
child 3.185999 .7468551 4.27 0.000 1.72219 4.649808

camper -2.020951 .872054 -2.32 0.020 -3.730146 -.3117567
_cons -2.695385 .8929071 -3.02 0.003 -4.44545 -.9453189

/lnalpha .5110429 .1816816 2.81 0.005 .1549535 .8671323

alpha 1.667029 .3028685 1.167604 2.380076

https://www.stata.com/manuals/rzinb.pdf#rzinbRemarksandexamplesex1
https://www.stata.com/manuals/rzinb.pdf#rzinb
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Let’s fit a Bayesian model with default normal prior distributions.

. set seed 15

. bayes, dots: zinb count persons livebait, inflate(child camper)
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done
Model summary

Likelihood:
count ~ zinb(xb_count,xb_inflate,{lnalpha})

Priors:
{count:persons livebait _cons} ~ normal(0,10000) (1)

{inflate:child camper _cons} ~ normal(0,10000) (2)
{lnalpha} ~ normal(0,10000)

(1) Parameters are elements of the linear form xb_count.
(2) Parameters are elements of the linear form xb_inflate.
Bayesian zero-inflated negative binomial model MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Inflation model: logit Number of obs = 250

Acceptance rate = .3084
Efficiency: min = .03716

avg = .0791
Log marginal-likelihood = -438.47876 max = .1613

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

count
persons .9851217 .1084239 .003601 .985452 .7641609 1.203561

livebait 1.536074 .4083865 .013509 1.515838 .753823 2.3539
_cons -2.805915 .4700702 .014974 -2.795244 -3.73847 -1.89491

inflate
child 46.95902 36.33974 1.87977 38.77997 3.612863 138.3652

camper -46.123 36.34857 1.88567 -37.66796 -137.4568 -2.544566
_cons -46.62439 36.36232 1.88355 -38.5171 -137.5522 -3.272469

lnalpha .7055935 .1591234 .003962 .7048862 .3959316 1.025356

Note: Default priors are used for model parameters.
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The posterior mean estimates for the main regression coefficients {count:persons},
{count:livebait}, and {count: cons} are relatively close to the ML estimates from the zinb com-

mand, but the inflation coefficients, {inflate:child}, {inflate:camper}, and {inflate: cons},
are quite different. For example, zinb estimates {inflate: cons} are about −2.7, whereas the

corresponding posterior mean estimate is about −46.6. To explain this large discrepancy, we draw the

diagnostic plot of {inflate: cons}.

. bayesgraph diagnostic {inflate:_cons}
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The marginal posterior distribution of {inflate: cons} is highly skewed to the left, and it is apparent

that its posterior mean is much smaller than its posterior mode. In large samples, under proper nonin-

formative priors, the posterior mode estimator and the ML estimator are equivalent. Therefore, it is not

surprising that the posterior mean of {inflate: cons} is much smaller than its ML estimate. We can

obtain a rough estimate of the posterior mode in this example.

First, we need to save the simulation results in a dataset, say, sim zinb.dta. You can do this during
estimation or on replay by specifying the saving() option with the bayes prefix.

. bayes, saving(sim_zinb)
note: file sim_zinb.dta saved.
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Next, we load the dataset and identify the variable that represents the parameter {inflate: cons}.

. use sim_zinb, clear

. describe
Contains data from sim_zinb.dta
Observations: 6,874

Variables: 12 27 Mar 2025 16:32

Variable Storage Display Value
name type format label Variable label

_chain int %8.0g Chain identifier
_index long %12.0g Iteration number
_loglikelihood double %10.0g Log likelihood
_logposterior double %10.0g Log posterior
eq1_p1 double %10.0g {count:persons}
eq1_p2 double %10.0g {count:livebait}
eq1_p3 double %10.0g {count:_cons}
eq2_p1 double %10.0g {inflate:child}
eq2_p2 double %10.0g {inflate:camper}
eq2_p3 double %10.0g {inflate:_cons}
eq0_p1 double %10.0g {lnalpha}
_frequency long %12.0g Frequency weight

Sorted by:

Variable eq2 p3 with the variable label {inflate: cons} contains MCMC estimates for the

{inflate: cons} parameter.

We use the egen’s mode() function to generate a constant variable, mode, which contains the mode
estimate for {inflate: cons}.

. egen mode = mode(eq2_p3)

. display mode[1]
-3.417458

Themode estimate for {inflate: cons} is about−3.42, and it is indeedmuch closer to theML estimate

of −2.70 than its posterior mean estimate.

The inflation parameter 𝛼 in the likelihood of the zero-inflated negative binomial model is log-

transformed, and it is represented by {lnalpha} in our posterior model. To summarize the simulation

result for 𝛼 directly, we can use the bayesstats summary command to exponentiate {lnalpha}.

. bayesstats summary (alpha: exp({lnalpha}))
Posterior summary statistics MCMC sample size = 10,000

alpha : exp({lnalpha})

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

alpha 2.050889 .3292052 .008191 2.023616 1.485768 2.788087
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Parametric survival model
Consider example 7 in [ST] streg, which analyzes the effect of a hip-protection device, age, and sex

on the risk of hip fractures in patients. The survival dataset is hip3.dta with time to event variable

time1 and failure variable fracture. The data are already stset.
. use https://www.stata-press.com/data/r19/hip3, clear
(Hip-fracture study)
. stset
-> stset time1, id(id) failure(fracture) time0(time0)
Survival-time data settings

ID variable: id
Failure event: fracture!=0 & fracture<.

Observed time interval: (time0, time1]
Exit on or before: failure

206 total observations
0 exclusions

206 observations remaining, representing
148 subjects
37 failures in single-failure-per-subject data

1,703 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 39

It is assumed that the hazard curves for men and women have different shapes. We use the streg
command to fit a model with Weibull survival distribution and the ancillary variable male to account for

the difference between men and women.

. streg protect age, distribution(weibull) ancillary(male) nolog
Failure _d: fracture

Analysis time _t: time1
ID variable: id

Weibull PH regression
No. of subjects = 148 Number of obs = 206
No. of failures = 37
Time at risk = 1,703

LR chi2(2) = 39.80
Log likelihood = -69.323532 Prob > chi2 = 0.0000

_t Coefficient Std. err. z P>|z| [95% conf. interval]

_t
protect -2.130058 .3567005 -5.97 0.000 -2.829178 -1.430938

age .0939131 .0341107 2.75 0.006 .0270573 .1607689
_cons -10.17575 2.551821 -3.99 0.000 -15.17722 -5.174269

ln_p
male -.4887189 .185608 -2.63 0.008 -.8525039 -.1249339

_cons .4540139 .1157915 3.92 0.000 .2270667 .6809611

We then perform Bayesian analysis of the same model using the bayes prefix. We apply more con-

servative normal priors, normal(0, 100), by specifying the normalprior(10) option. To allow for

longer adaptation of the MCMC sampler, we increase the burn-in period to 5,000, burnin(5000).

https://www.stata.com/manuals/ststreg.pdf#ststregRemarksandexamplesex7
https://www.stata.com/manuals/ststreg.pdf#ststreg
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. set seed 15

. bayes, normalprior(10) burnin(5000) dots:
> streg protect age, distribution(weibull) ancillary(male)

Failure _d: fracture
Analysis time _t: time1

ID variable: id
Burn-in 5000 aaaaaaaaa1000aaaaaaaaa2000aaaaaaaaa3000aaaaaaaaa4000aaaaaaaaa5000
> done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done
Model summary

Likelihood:
_t ~ streg_weibull(xb__t,xb_ln_p)

Priors:
{_t:protect age _cons} ~ normal(0,100) (1)

{ln_p:male _cons} ~ normal(0,100) (2)

(1) Parameters are elements of the linear form xb__t.
(2) Parameters are elements of the linear form xb_ln_p.
Bayesian Weibull PH regression MCMC iterations = 15,000
Random-walk Metropolis--Hastings sampling Burn-in = 5,000

MCMC sample size = 10,000
No. of subjects = 148 Number of obs = 206
No. of failures = 37
Time at risk = 1703

Acceptance rate = .3418
Efficiency: min = .01

avg = .03421
Log marginal-likelihood = -91.348814 max = .05481

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

_t
protect -2.114715 .3486032 .017409 -2.105721 -2.818483 -1.46224

age .0859305 .0328396 .001403 .0862394 .0210016 .1518009
_cons -9.57056 2.457818 .117851 -9.551418 -14.49808 -4.78585

ln_p
male -.5753907 .2139477 .014224 -.5468488 -1.07102 -.2317242

_cons .4290642 .11786 .011786 .4242712 .203933 .6548229
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The posterior mean estimates for the regression parameters { t:protect}, { t:age}, and

{ t: cons} are close to the estimates reported by the streg command. However, the estimate for

{ln p:male} is somewhat different. If we inspect the diagnostic plot for {ln p:male}, we will see
that the reason for this is the asymmetrical shape of its marginal posterior distribution.

. bayesgraph diagnostic {ln_p:male}
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As evident from the density plot, the posterior distribution of {ln p:male} is skewed to the left, so

the posterior mean estimate, −0.58, is expected to be smaller than the ML estimate, −0.49, given that

we used fairly uninformative priors; see Zero-inflated negative binomial model for the comparison of

posterior mean, posterior mode, and ML estimates for highly skewed posterior distributions.

https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesZero-inflatednegativebinomialmodel
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Heckman selection model

Example 11
Arepresentative example of a Heckman selectionmodel is provided by wagenwk.dta, which contains

observations on the income of women who choose to work. See example 1 in [R] heckman.

. use https://www.stata-press.com/data/r19/womenwk, clear

The women’s income (wage) is assumed to depend on their education (educ) and their age (age). In
addition, the selection decision, or the choice of a woman to work, is assumed to depend on their marital

status (married), number of children (children), education, and age. We fit this selection model using

the heckman command.

. heckman wage educ age, select(married children educ age) nolog
Heckman selection model Number of obs = 2,000
(regression model with sample selection) Selected = 1,343

Nonselected = 657
Wald chi2(2) = 508.44

Log likelihood = -5178.304 Prob > chi2 = 0.0000

wage Coefficient Std. err. z P>|z| [95% conf. interval]

wage
education .9899537 .0532565 18.59 0.000 .8855729 1.094334

age .2131294 .0206031 10.34 0.000 .1727481 .2535108
_cons .4857752 1.077037 0.45 0.652 -1.625179 2.59673

select
married .4451721 .0673954 6.61 0.000 .3130794 .5772647

children .4387068 .0277828 15.79 0.000 .3842534 .4931601
education .0557318 .0107349 5.19 0.000 .0346917 .0767718

age .0365098 .0041533 8.79 0.000 .0283694 .0446502
_cons -2.491015 .1893402 -13.16 0.000 -2.862115 -2.119915

/athrho .8742086 .1014225 8.62 0.000 .6754241 1.072993
/lnsigma 1.792559 .027598 64.95 0.000 1.738468 1.84665

rho .7035061 .0512264 .5885365 .7905862
sigma 6.004797 .1657202 5.68862 6.338548

lambda 4.224412 .3992265 3.441942 5.006881

LR test of indep. eqns. (rho = 0): chi2(1) = 61.20 Prob > chi2 = 0.0000

https://www.stata.com/manuals/rheckman.pdf#rheckmanRemarksandexamplesex1
https://www.stata.com/manuals/rheckman.pdf#rheckman
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We then apply the bayes prefix to perform Bayesian estimation of the Heckman selection model.

. set seed 15

. bayes, dots: heckman wage educ age, select(married children educ age)
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done
Model summary

Likelihood:
wage ~ heckman(xb_wage,xb_select,{athrho} {lnsigma})

Priors:
{wage:education age _cons} ~ normal(0,10000) (1)

{select:married children education age _cons} ~ normal(0,10000) (2)
{athrho lnsigma} ~ normal(0,10000)

(1) Parameters are elements of the linear form xb_wage.
(2) Parameters are elements of the linear form xb_select.
Bayesian Heckman selection model MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 2,000

Selected = 1,343
Nonselected = 657

Acceptance rate = .3484
Efficiency: min = .02314

avg = .03657
Log marginal-likelihood = -5260.2024 max = .05013

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

wage
education .9919131 .051865 .002609 .9931531 .8884407 1.090137

age .2131372 .0209631 .001071 .2132548 .1720535 .2550835
_cons .4696264 1.089225 .0716 .4406188 -1.612032 2.65116

select
married .4461775 .0681721 .003045 .4456493 .3178532 .5785857

children .4401305 .0255465 .001156 .4402145 .3911135 .4903804
education .0559983 .0104231 .000484 .0556755 .0360289 .076662

age .0364752 .0042497 .000248 .0362858 .0280584 .0449843
_cons -2.494424 .18976 .011327 -2.498414 -2.861266 -2.114334

athrho .868392 .099374 .005961 .8699977 .6785641 1.062718
lnsigma 1.793428 .0269513 .001457 1.793226 1.740569 1.846779

Note: Default priors are used for model parameters.

The posterior mean estimates for the Bayesian model with default normal priors are similar to the ML

estimates obtained with the heckman command.
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We can calculate posterior summaries for the correlation parameter, 𝜌, and the standard error, 𝜎, in
their natural scale by inverse-transforming the model parameters {athrho} and {lnsigma} using the

bayesstats summary command. We also include posterior summaries for the selectivity effect 𝜆 = 𝜌𝜎.
. bayesstats summary (rho:1-2/(exp(2*{athrho})+1))
> (sigma:exp({lnsigma}))
> (lambda:exp({lnsigma})*(1-2/(exp(2*{athrho})+1)))
Posterior summary statistics MCMC sample size = 10,000

rho : 1-2/(exp(2*{athrho})+1)
sigma : exp({lnsigma})

lambda : exp({lnsigma})*(1-2/(exp(2*{athrho})+1))

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

rho .6970522 .0510145 .003071 .701373 .5905851 .7867018
sigma 6.012205 .1621422 .008761 6.008807 5.700587 6.339366

lambda 4.196646 .3937209 .024351 4.212609 3.411479 4.946325

Again, the posterior mean estimates of 𝜌, 𝜎, and 𝜆 agree with the ML estimates reported by heckman.

Multilevel models
The bayes prefix supports several multilevel commands such as mixed and meglm; see

[BAYES] Bayesian estimation. Multilevel models introduce effects at different levels of hierarchy such

as hospital effects and doctor-nested-within-hospital effects, which are often high-dimensional. These

effects are commonly referred to as random effects in frequentist models. Bayesian multilevel models

estimate random effects together with other model parameters. In contrast, frequentist multilevel models

integrate random effects out, but provide ways to predict them after estimation, conditional on other esti-

matedmodel parameters. Thus, in addition to regression coefficients and variance components (variances

and covariances of random effects), Bayesian multilevel models include random effects themselves as

model parameters. With a slight abuse of the terminology, we will sometimes refer to regression coeffi-

cients as fixed effects, keeping in mind that they are still random quantities from a Bayesian perspective.

Multilevel models are more difficult to simulate from because of the existence of high-dimensional

random-effects parameters. They typically require longer burn-in periods to achieve convergence and

larger MCMC sample sizes to obtain precise estimates of random effects and variance components.

Prior specification is particularly important for multilevel models. Using noninformative priors for

all model parameters will likely result in nonconvergence or high autocorrelation of the MCMC sample,

especially with small datasets. The default priors provided by the bayes prefix are chosen to be fairly

uninformative, which may often lead to low simulation efficiencies for model parameters and, espe-

cially, for variance components; see Default priors. So, do not be surprised to see high autocorrelation

with default priors, and be prepared to investigate various prior specifications during your analysis. For

example, you may need to use the iwishartprior() option to increase the degrees of freedom and to

specify a different scale matrix of the inverse-Wishart prior distribution used for the covariance matrices

of random effects.

https://www.stata.com/manuals/bayesbayesianestimation.pdf#bayesBayesianestimationDescriptionmecmds
https://www.stata.com/manuals/bayesbayesianestimation.pdf#bayesBayesianestimation
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryrandom_effects_parameters
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryfixed_effects_parameters
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesDefaultpriors
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To change the default priors, you will need to know the names of the model parameters. See Likeli-

hood model to learn how the bayes prefix labels the parameters. You can specify your own name stubs

for the groups of random-effects parameters using the restubs() option. After simulation, see Different
ways of specifying model parameters for how to refer to individual random effects to evaluate MCMC

convergence or to obtain their MCMC summaries.

By default, the bayes prefix does not compute or display MCMC summaries of individual random

effects to conserve computation time and space. You can specify the showreffects() or show() option
to compute and display them for chosen groups of random effects.

Also, the bayes prefix does not compute the log marginal-likelihood by default for multilevel mod-

els. The computation involves the inverse of the determinant of the sample covariance matrix of all

parameters and loses accuracy as the number of parameters grows. For high-dimensional models such as

multilevel models, the computation can be time consuming, and its accuracy may become unacceptably

low. Because it is difficult to access the levels of accuracy of the computation for all multilevel models,

the log marginal-likelihood is not computed by default. For multilevel models containing a small number

of random effects, you can use the remargl option to compute and display it.

Assessing convergence ofMCMC for multilevel models is challenging because of the high dimension-

ality. Technically, the convergence of all parameters, including the random-effects parameters, must be

explored. In practice, this may not always be feasible. Many applications focus on the regression coef-

ficients and variance components and treat random-effects parameters as nuisance. In this case, it may

be sufficient to check convergence only for the parameters of interest, especially because their conver-

gence is adversely affected whenever there are convergence problems for many of the random-effects

parameters. If the random-effects parameters are of primary interest in your study, you should evaluate

their convergence. For models with a small to moderate number of random-effects parameters, it may

be beneficial to always check the convergence of the random-effects parameters. Also see Convergence

of MCMC in [BAYES] bayesmh.

Two-level models

Consider example 1 from [ME] mixed that analyzed the weight gain of 48 pigs over 9 successive

weeks. Detailed Bayesian analysis of these data using bayesmh are presented in Panel-data andmultilevel
models in [BAYES] bayesmh. Here, we use bayes: mixed to fit Bayesian two-level random-intercept

and random-coefficient models to these data.

. use https://www.stata-press.com/data/r19/pig
(Longitudinal analysis of pig weights)

https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesbayes_prefix_renames
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesbayes_prefix_renames
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimationRemarksandexamplesbayesian_post_reref
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimationRemarksandexamplesbayesian_post_reref
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesConvergenceofMCMC
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesConvergenceofMCMC
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexamplesex1
https://www.stata.com/manuals/memixed.pdf#memixed
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesPanel-dataandmultilevelmodels
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesPanel-dataandmultilevelmodels
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
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Example 12: Random-intercept model, using option melabel
We first consider a simple random-intercept model of dependent variable weight on covariate week

with variable id identifying pigs. The random-intercept model assumes that all pigs share a common

growth rate but have different initial weight.

For comparison purposes, we first use the mixed command to fit this model by maximum likelihood.

. mixed weight week || id:
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log likelihood = -1014.9268
Iteration 1: Log likelihood = -1014.9268
Computing standard errors ...
Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 25337.49
Log likelihood = -1014.9268 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0390124 159.18 0.000 6.133433 6.286359
_cons 19.35561 .5974059 32.40 0.000 18.18472 20.52651

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Identity
var(_cons) 14.81751 3.124225 9.801716 22.40002

var(Residual) 4.383264 .3163348 3.805112 5.04926

LR test vs. linear model: chibar2(01) = 472.65 Prob >= chibar2 = 0.0000
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To fit a Bayesian analog of this model, we simply prefix the mixed command with bayes. We also

specify the melabel option with bayes to label model parameters in the output table as mixed does.

. set seed 15

. bayes, melabel: mixed weight week || id:
note: Gibbs sampling is used for regression coefficients and variance

components.
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done
Bayesian multilevel regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Number of obs = 432
Acceptance rate = .8112
Efficiency: min = .007005

avg = .5064
Log marginal-likelihood max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.209734 .0390718 .000391 6.209354 6.133233 6.285611

_cons 19.46511 .6239712 .07455 19.48275 18.2534 20.67396

id
var(_cons) 15.7247 3.436893 .049048 15.26104 10.31182 23.60471

var(Residual) 4.411155 .3193582 .004397 4.396044 3.834341 5.080979

Note: Default priors are used for model parameters.

The estimates of posterior means and posterior standard deviations are similar to the ML estimates

and standard errors from mixed. The results are also close to those from bayesmh in example 23 in

[BAYES] bayesmh.

The average efficiency of the simulation is about 51% and there is no indication of any immediate con-

vergence problems, but we should investigate convergencemore thoroughly; see, for example, example 5

in [BAYES] Bayesian commands and, more generally, Convergence of MCMC in [BAYES] bayesmh.

Because Bayesian multilevel models are generally slower than other commands, the bayes prefix

displays dots by default with multilevel commands. You can specify the nodots option to suppress

them.

Also, as we described inMultilevel models, the logmarginal-likelihood is not computed for multilevel

models by default because of the high dimensionality of the models. This is also described in the help file

that appears when you click on Log marginal-likelihood in the output header in the Results window.

For models with a small number of random effects, you can specify the remargl option to compute the

log marginal-likelihood.

https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesex23
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayesiancommands.pdf#bayesBayesiancommandsRemarksandexamplesex5
https://www.stata.com/manuals/bayesbayesiancommands.pdf#bayesBayesiancommands
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesConvergenceofMCMC
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesMultilevelmodels
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An important note about bayes: mixed is the default simulation method. Most bayes prefix com-

mands use an adaptive MH algorithm to sample model parameters. The high-dimensional nature of mul-

tilevel models greatly decreases the simulation efficiency of this algorithm. For Gaussian multilevel

models, such as bayes: mixed, model parameters can be sampled using a more efficient, albeit slower,
Gibbs algorithm under certain prior distributions. The default priors used for regression coefficients and

variance components allow the bayes prefix to use Gibbs sampling for these parameters with the mixed
command. If you change the prior distributions or the default blocking structure for some parameters,

Gibbs sampling may not be available for those parameters and an adaptive MH sampling will be used

instead.

Example 13: Random-intercept model, default output
When we specified the melabel option with bayes in example 12, we intentionally suppressed some

of the essential output from bayes: mixed. Here is what we would have seen had we not specified

melabel.

. bayes
Multilevel structure

id
{U0}: random intercepts

Model summary

Likelihood:
weight ~ normal(xb_weight,{e.weight:sigma2})

Priors:
{weight:week _cons} ~ normal(0,10000) (1)

{U0} ~ normal(0,{U0:sigma2}) (1)
{e.weight:sigma2} ~ igamma(.01,.01)

Hyperprior:
{U0:sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_weight.

https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesex12
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Bayesian multilevel regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Number of obs = 432
Acceptance rate = .8112
Efficiency: min = .007005

avg = .5064
Log marginal-likelihood max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.209734 .0390718 .000391 6.209354 6.133233 6.285611

_cons 19.46511 .6239712 .07455 19.48275 18.2534 20.67396

id
U0:sigma2 15.7247 3.436893 .049048 15.26104 10.31182 23.60471

e.weight
sigma2 4.411155 .3193582 .004397 4.396044 3.834341 5.080979

Note: Default priors are used for model parameters.

Let’s go over the default output in detail, starting with the model summary. For multilevel models, in

addition to the model summary, which describes the likelihood model and prior distributions, the bayes
prefix displays information about the multilevel structure of the model.

Multilevel structure

id
{U0}: random intercepts

Our multilevel model has one set of random effects, labeled as U0, which represent random intercepts

at the id level. Recall that in Bayesian models, random effects are not integrated out but estimated

together with other model parameters. So, {U0}, or using its full name {U0[id]}, represent random-
effects parameters in our model. See Likelihood model to learn about the default naming convention for

random-effects parameters.

According to the model summary below, the likelihood of the model is a normal linear regres-

sion with the linear predictor containing regression parameters {weight:week} and {weight: cons}
and random-effects parameters {U0}, and with the error variance labeled as {e.weight:sigma2}.
Regression coefficients {weight:week} and {weight: cons} have default normal priors with zero

means and variances of 10,000. The random intercepts {U0} are normally distributed with mean

zero and variance {U0:sigma2}. The variance components, error variance {e.weight:sigma2}, and
random-intercept variance {U0:sigma2} have default inverse-gamma priors, InvGamma(0.01, 0.01).
The random-intercept variance is a hyperparameter in our model.

https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryrandom_effects_parameters
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryrandom_effects_parameters
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesbayes_prefix_renames
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Model summary

Likelihood:
weight ~ normal(xb_weight,{e.weight:sigma2})

Priors:
{weight:week _cons} ~ normal(0,10000) (1)

{U0} ~ normal(0,{U0:sigma2}) (1)
{e.weight:sigma2} ~ igamma(.01,.01)

Hyperprior:
{U0:sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_weight.

The default output table of bayes: mixed uses the names of model parameters as they are defined by

the bayes prefix.

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.209734 .0390718 .000391 6.209354 6.133233 6.285611

_cons 19.46511 .6239712 .07455 19.48275 18.2534 20.67396

id
U0:sigma2 15.7247 3.436893 .049048 15.26104 10.31182 23.60471

e.weight
sigma2 4.411155 .3193582 .004397 4.396044 3.834341 5.080979

Note: Default priors are used for model parameters.

Becoming familiar with the native parameter names of the bayes prefix is important for prior specifi-

cation and for later postestimation. The melabel option is provided for easier comparison of the results

between the bayes prefix and the corresponding frequentist multilevel command.

Example 14: Displaying random effects
By default, the bayes prefix does not compute or display MCMC summaries for the random-effects

parameters to conserve space and computational time. You can specify the showreffects option to

display all random effects or the showreffects() or show() option to display specific random effects.

For example, continuing example 13, we can display the random-effects estimates for the first five pigs

as follows.

. bayes, show({U0[1/5]}) noheader

Equal-tailed
U0[id] Mean Std. dev. MCSE Median [95% cred. interval]

1 -1.778442 .8873077 .074832 -1.761984 -3.542545 .0062218
2 .7831408 .8775376 .071421 .7961802 -.9547035 2.491798
3 -2.052634 .9038672 .072325 -2.061559 -3.822966 -.3246834
4 -1.891103 .878177 .075611 -1.858056 -3.642227 -.1028766
5 -3.316584 .8894319 .074946 -3.320502 -5.0469 -1.568927

https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesex13
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These posterior mean estimates of random-effects parameters should be comparable with those predicted

by predict, reffects after mixed. Posterior standard deviations, however, will generally be larger

than the corresponding standard errors of random effects predicted after mixed, because the latter do not
incorporate the uncertainty about the estimated model parameters.

You can also use [BAYES] bayesstats summary to obtain MCMC summaries of random-effects pa-

rameters after estimation:

. bayesstats summary {U0[1/5]}
(output omitted )

If you decide to use the showreffects option to display all random-effects parameters, beware of

the increased computation time for models with many random effects. Then, the bayes prefix will

compute and display theMCMC summaries for only the first𝑀 random-effects parameters, where𝑀 is the

maximum matrix dimension (c(max matdim). The number of parameters displayed and stored in e(b)
cannot exceed c(max matdim). You can specify the show() option with bayes or use bayesstats
summary to obtain results for other random-effects parameters.

Example 15: Random-coefficient model
Continuing example 13, let’s consider a random-coefficient model that allows the growth rate to vary

among pigs.

Following mixed’s specification, we include the random slope for week at the id level by specifying

the week variable in the random-effects equation.

. set seed 15

. bayes: mixed weight week || id: week
note: Gibbs sampling is used for regression coefficients and variance

components.
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done
Multilevel structure

id
{U0}: random intercepts
{U1}: random coefficients for week

Model summary

Likelihood:
weight ~ normal(xb_weight,{e.weight:sigma2})

Priors:
{weight:week _cons} ~ normal(0,10000) (1)

{U0} ~ normal(0,{U0:sigma2}) (1)
{U1} ~ normal(0,{U1:sigma2}) (1)

{e.weight:sigma2} ~ igamma(.01,.01)
Hyperpriors:

{U0:sigma2} ~ igamma(.01,.01)
{U1:sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_weight.

https://www.stata.com/manuals/bayesbayesstatssummary.pdf#bayesbayesstatssummary
https://www.stata.com/manuals/pcreturn.pdf#pcreturnRemarksandexamplesmax_matdim
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesex13
https://www.stata.com/manuals/memixed.pdf#memixed
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Bayesian multilevel regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Number of obs = 432
Acceptance rate = .7473
Efficiency: min = .003057

avg = .07487
Log marginal-likelihood max = .1503

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.233977 .0801192 .01449 6.237648 6.05268 6.387741

_cons 19.44135 .3426786 .044377 19.44532 18.76211 20.11843

id
U0:sigma2 7.055525 1.649394 .050935 6.844225 4.466329 10.91587
U1:sigma2 .3941786 .0901945 .002717 .3825387 .2526756 .6044887

e.weight
sigma2 1.613775 .1261213 .003254 1.609296 1.386427 1.880891

Note: Default priors are used for model parameters.
Note: There is a high autocorrelation after 500 lags.

In addition to random intercepts {U0}, we now have random coefficients for week, labeled as {U1},
with the corresponding variance parameter {U1:sigma2}. Compared with the random-intercept model,
by capturing the variability of slopes on week, we reduced the estimates of the error variance and the

random-intercept variance.

The average simulation efficiency decreased to only 7%, and we now see a note about a high auto-

correlation after 500 lags. We can use, for example, bayesgraph diagnostics to verify that the high

autocorrelation in this example is not an indication of nonconvergence but rather of a slow mixing of our

MCMC sample. If we use bayesstats ess, we will see that the coefficient on weight and the constant

term have the lowest efficiency, which suggests that these parameters are likely to be correlated with

some of the random-effects estimates. If we want to reduce the autocorrelation and improve precision of

the estimates for these parameters, we can increase theMCMC sample size by specifying the mcmcsize()
option or thin the MCMC chain by specifying the thinning() option.
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Example 16: Random-coefficient model, unstructured covariance
In example 15, we assumed independence between random intercepts {U0} and random slopes on

week, {U1}. We relax this assumption here by specifying an unstructured covariance matrix.

Before we proceed with estimation, let’s review our model summary first by specifying the dryrun
option.

. bayes, dryrun: mixed weight week || id: week, covariance(unstructured)
Multilevel structure

id
{U0}: random intercepts
{U1}: random coefficients for week

Model summary

Likelihood:
weight ~ normal(xb_weight,{e.weight:sigma2})

Priors:
{weight:week _cons} ~ normal(0,10000) (1)

{U0 U1} ~ mvnormal(2,{U:Sigma,m}) (1)
{e.weight:sigma2} ~ igamma(.01,.01)

Hyperprior:
{U:Sigma,m} ~ iwishart(2,3,I(2))

(1) Parameters are elements of the linear form xb_weight.

The prior distributions for random effects {U0} and {U1} are no longer independent. Instead, they have

a joint prior—a bivariate normal distribution with covariance matrix parameter {U:Sigma,m}, which is
short for {U:Sigma,matrix}. The random-effects stub U is used to label the covariance matrix. The co-

variancematrix {U:Sigma,m} is assigned a fairly uninformative inverse-Wishart prior with three degrees

of freedom and an identity scale matrix; see Default priors for details.

https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesex15
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesDefaultpriors
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Let’s now fit the model but suppress the model summary for brevity.

. set seed 15

. bayes, nomodelsummary: mixed weight week || id: week, covariance(unstructured)
note: Gibbs sampling is used for regression coefficients and variance

components.
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done
Multilevel structure

id
{U0}: random intercepts
{U1}: random coefficients for week

Bayesian multilevel regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Number of obs = 432
Acceptance rate = .7009
Efficiency: min = .003683

avg = .07461
Log marginal-likelihood max = .1602

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.207086 .0878022 .014469 6.204974 6.041093 6.384891

_cons 19.39551 .4077822 .050353 19.40187 18.53869 20.1993

id
U:Sigma_1_1 6.872161 1.627769 .061568 6.673481 4.282284 10.62194
U:Sigma_2_1 -.0866373 .2702822 .009861 -.0796118 -.645439 .4341423
U:Sigma_2_2 .399525 .0904532 .002488 .3885861 .2575883 .6104775

e.weight
sigma2 1.611889 .1263131 .003155 1.605368 1.381651 1.872563

Note: Default priors are used for model parameters.
Note: There is a high autocorrelation after 500 lags.

The 95% credible interval for the covariance between {U0} and {U1}, labeled as {U:Sigma 2 1} in the

output, is [−.65, 0.43], which suggests independence between {U0} and {U1}.
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The high autocorrelation note is due to the lower sampling efficiency of some of the regression coef-

ficients as can be seen from the output of bayesstats ess:

. bayesstats ess
Efficiency summaries MCMC sample size = 10,000

Efficiency: min = .003683
avg = .07461
max = .1602

ESS Corr. time Efficiency

weight
week 36.83 271.55 0.0037

_cons 65.58 152.48 0.0066

id
U:Sigma_1_1 698.99 14.31 0.0699
U:Sigma_2_1 751.20 13.31 0.0751
U:Sigma_2_2 1321.67 7.57 0.1322

e.weight
sigma2 1602.39 6.24 0.1602

We explore the impact of this high autocorrelation on MCMC convergence in example 17.

Example 17: Random-coefficient model, multiple chains
We continue with the random-coefficient model with unstructured covariance from example 16. Some

of the parameters such as the coefficients {weight:week} and {weight: cons} have low sampling

efficiency, which raises convergence and precision concerns. Simulating multiple Markov chains of the

model may help address these concerns.

We will simulate three chains by specifying the nchains(3) option. We will use the rseed(15)
option to ensure reproducibility with multiple chains; see Reproducing results in [BAYES] bayesmh.

We will also suppress various model summaries by specifying the nomodelsummary and nomesummary
options.

When using multiple chains to assess convergence, it is important to apply overdispersed initial val-

ues for different chains. It is difficult to quantify overdispersion because it is specific to the data and

model. The default initialization provided by the bayes: mixed command may or may not be suf-

ficient. To be certain, we recommend that you provide initial values explicitly, at least for the main

parameters of interest. In the following specification, we provide initial values for the two regression

coefficients referred to as {weight:}, the variance parameter {e.weight:sigma2}, and the covariance
matrix {U:Sigma, matrix}. We try to generate initial values that are sufficiently separated. For exam-

ple, we use rnormal(-10, 100) for the regression coefficients in the second chain and rnormal(10,
100) in the third chain. Specifying initial values for the random effects {U0} and {U1} would be more

tedious, so we let them be sampled from their corresponding prior distributions. Because the hyperpa-

rameters of these priors have overdispersed initial values, we indirectly provide some overdispersion for

the initial random effects as well.

https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesex17
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesex16
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesReproducingresults
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
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. bayes, nchains(3) rseed(15) nomodelsummary nomesummary
> init2({weight:} rnormal(-10,100) {e.weight:sigma2} 0.1 {U:Sigma,m} 100*I(2))
> init3({weight:} rnormal(10,100) {e.weight:sigma2} 100 {U:Sigma,m} (10,-5\-5,10)):
> mixed weight week || id: week, covariance(unstructured)
note: Gibbs sampling is used for regression coefficients and variance

components.
Chain 1

Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........

> 5000.........6000.........7000.........8000.........9000.........10000 done
Chain 2

Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........

> 5000.........6000.........7000.........8000.........9000.........10000 done
Chain 3

Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........

> 5000.........6000.........7000.........8000.........9000.........10000 done
Bayesian multilevel regression Number of chains = 3
Metropolis--Hastings and Gibbs sampling Per MCMC chain:

Iterations = 12,500
Burn-in = 2,500
Sample size = 10,000

Group variable: id Number of groups = 48
Obs per group:

min = 9
avg = 9.0
max = 9

Number of obs = 432
Avg acceptance rate = .6981
Avg efficiency: min = .003059

avg = .07659
max = .1663

Log marginal-likelihood Max Gelman--Rubin Rc = 1.055

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.201475 .0874855 .009133 6.200176 6.032975 6.374917

_cons 19.3941 .4344171 .035266 19.38919 18.52954 20.2323

id
U:Sigma_1_1 6.863804 1.6219 .035988 6.653249 4.329726 10.62575
U:Sigma_2_1 -.0799526 .2684949 .005546 -.0723027 -.6351419 .4354943
U:Sigma_2_2 .3983365 .0890525 .001378 .3869276 .258562 .6048894

e.weight
sigma2 1.612452 .1254983 .001777 1.605632 1.383175 1.874105

Note: Default priors are used for model parameters.
Note: Default initial values are used for multiple chains.
Note: There is a high autocorrelation after 500 lags in at least one of the

chains.
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While the sampling efficiency of the chains is about the same as in example 16, having three MCMC

samples instead of one improves the precision of the estimation results, as evident from the lower MCMC

errors for all model parameters.

Let’s compute Gelman–Rubin diagnostics as a convergence check. We can already see in the header

of bayes: mixed that the maximum Gelman–Rubin statistic Rc of 1.055 is close to 1.

. bayesstats grubin
Gelman--Rubin convergence diagnostic
Number of chains = 3
MCMC size, per chain = 10,000
Max Gelman--Rubin Rc = 1.055383

Rc

weight
week 1.006404

_cons 1.055383

id
U:Sigma_1_1 1.000567
U:Sigma_2_1 1.001168
U:Sigma_2_2 1.002119

e.weight
sigma2 .9999899

Convergence rule: Rc < 1.1

The convergence diagnostic estimates Rc for all reported parameters are lower than 1.1, suggesting the
convergence of the chains. We can also explore MCMC convergence visually; see [BAYES] bayesgraph.

Crossed-effects model

Let’s revisit example 4 from [ME] meglm, which analyzes salamander cross-breeding data. Two

populations of salamanders are considered: whiteside males and females (variables wsm and wsf) and
roughbutt males and females (variables rbm and rbf). Male and female identifiers are recorded in the

male and female variables. The outcome binary variable y indicates breeding success or failure.

In example 4 of [ME] meglm, we fit a crossed-effects logistic regression for successful mating, in

which the effects of male and female were crossed. For the purpose of illustration, we will fit a crossed-
effects probit regression here using meglm with the probit link.

. use https://www.stata-press.com/data/r19/salamander

. meglm y wsm##wsf || _all: R.male || female:, family(bernoulli) link(probit)
note: crossed random-effects model specified; option intmethod(laplace)

implied.
Fitting fixed-effects model:
Iteration 0: Log likelihood = -223.01026
Iteration 1: Log likelihood = -222.78736
Iteration 2: Log likelihood = -222.78735
Refining starting values:
Grid node 0: Log likelihood = -216.49485

https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesex16
https://www.stata.com/manuals/bayesbayesgraph.pdf#bayesbayesgraph
https://www.stata.com/manuals/memeglm.pdf#memeglmRemarksandexamplesex4_meglm
https://www.stata.com/manuals/memeglm.pdf#memeglm
https://www.stata.com/manuals/memeglm.pdf#memeglmRemarksandexamplesex4_meglm
https://www.stata.com/manuals/memeglm.pdf#memeglm
https://www.stata.com/manuals/memeglm.pdf#memeglm


bayes — Bayesian regression models using the bayes prefix 61

Fitting full model:
Iteration 0: Log likelihood = -216.49485 (not concave)
Iteration 1: Log likelihood = -214.34477 (not concave)
Iteration 2: Log likelihood = -212.34877 (not concave)
Iteration 3: Log likelihood = -212.15484
Iteration 4: Log likelihood = -209.36104 (not concave)
Iteration 5: Log likelihood = -209.34854
Iteration 6: Log likelihood = -208.26891
Iteration 7: Log likelihood = -208.11369
Iteration 8: Log likelihood = -208.11183
Iteration 9: Log likelihood = -208.11182
Mixed-effects GLM Number of obs = 360
Family: Bernoulli
Link: Probit

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

_all 1 360 360.0 360
female 60 6 6.0 6

Integration method: laplace
Wald chi2(3) = 40.58

Log likelihood = -208.11182 Prob > chi2 = 0.0000

y Coefficient Std. err. z P>|z| [95% conf. interval]

1.wsm -.4122104 .2715152 -1.52 0.129 -.9443705 .1199496
1.wsf -1.720297 .3232692 -5.32 0.000 -2.353893 -1.086701

wsm#wsf
1 1 2.121105 .3643124 5.82 0.000 1.407066 2.835144

_cons .5951036 .2297373 2.59 0.010 .1448267 1.04538

_all>male
var(_cons) .386743 .178314 .1566616 .954734

female
var(_cons) .4464129 .1980076 .1871475 1.064852

LR test vs. probit model: chi2(2) = 29.35 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
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To fit the corresponding Bayesian model, we prefix the above command with bayes:.

. set seed 15

. bayes: meglm y wsm##wsf || _all: R.male || female:, family(bernoulli)
> link(probit)
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done
Multilevel structure

male
{U0}: random intercepts

female
{V0}: random intercepts

Model summary

Likelihood:
y ~ meglm(xb_y)

Priors:
{y:1.wsm 1.wsf 1.wsm#1.wsf _cons} ~ normal(0,10000) (1)

{U0} ~ normal(0,{U0:sigma2}) (1)
{V0} ~ normal(0,{V0:sigma2}) (1)

Hyperpriors:
{U0:sigma2} ~ igamma(.01,.01)
{V0:sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_y.
Bayesian multilevel GLM MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000

No. of Observations per group
Group variable groups Minimum Average Maximum

_all 1 360 360.0 360
female 60 6 6.0 6
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Family: Bernoulli Number of obs = 360
Link: probit Acceptance rate = .3223

Efficiency: min = .008356
avg = .02043

Log marginal-likelihood max = .02773

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

y
1.wsm -.411886 .28122 .016889 -.4158334 -.9645049 .156521
1.wsf -1.722195 .3329918 .023312 -1.713574 -2.381169 -1.094443

wsm#wsf
1 1 2.110366 .3671998 .022643 2.09234 1.443113 2.831923

_cons .5858733 .2512646 .015407 .5906893 .0812177 1.077352

male
U0:sigma2 .4291858 .2195246 .024015 .3876708 .1347684 .9648611

female
V0:sigma2 .4928416 .2189307 .019043 .4576824 .1648551 1.003193

Note: Default priors are used for model parameters.

The variance components for male and female, {U0:sigma2} and {V0:sigma2}, are slightly higher

than the corresponding ML estimates, but the regression coefficients are similar.

For an example of Bayesian estimation of a crossed-effects logistic regression model, see Rabe-

Hesketh and Skrondal (2022, chap. 16).

Blocked-diagonal covariance structures

The 1989 fertility survey considered in example 5 of [ME]me analyzes the use of contraception among

Bangladeshi women. The survey contains data from 60 districts, identified by the district variable, and
includes demographic factors such as whether the woman is from an urban area (urban), mean-centered
age (age), and number of children (children). Here children is a factor variable coded as children =
0 (no children), children = 1 (one child), children = 2 (two children), and children = 3 (three or

more children). The outcome variable c use is a binary indicator for the use of contraception.

We consider a two-level logit model for c use with a random intercept and random coefficients for

indicators of having one, two, or three or more children. As “fixed” predictor variables, we use urban,
age, and children.

It seems reasonable to expect positive correlation between the three random coefficients. Following

example 5 in [ME] me, we will use the covariance(exchangeable) option and repeat district: to

specify a blocked-diagonal covariance structure for the random effects.

https://www.stata.com/manuals/meme.pdf#memeRemarksandexamplesex5
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https://www.stata.com/manuals/meme.pdf#memeRemarksandexamplesex5
https://www.stata.com/manuals/meme.pdf#meme


bayes — Bayesian regression models using the bayes prefix 64

Let’s first run bayes: melogit with the dryrun option to see the model parameters.

. use https://www.stata-press.com/data/r19/bangladesh
(Bangladesh Fertility Survey, 1989)
. bayes, dryrun: melogit c_use i.urban age i.children ||
> district: i.children, covariance(exchangeable) ||
> district:
Multilevel structure

district
{U0}: random intercepts
{U1}: random coefficients for 1.children
{U2}: random coefficients for 2.children
{U3}: random coefficients for 3.children

Model summary

Likelihood:
c_use ~ melogit(xb_c_use)

Priors:
{c_use:1.urban age i.children _cons} ~ normal(0,10000) (1)

{U0} ~ normal(0,{U0:sigma2}) (1)
{U1 U2 U3} ~ mvn0exchangeable(3,{U:sigma2},{U:rho})

(1)
Hyperpriors:

{U:rho} ~ uniform(-1,1)
{U0:sigma2} ~ igamma(.01,.01)
{U:sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_c_use.

The random coefficients {U1}, {U2}, and {U3} are assigned a multivariate normal prior with an

exchangeable covariance structure, mvn0exchangeable(). This prior introduces two hyperparameters:
{U:sigma2}, for the diagonal variance term of the covariance matrix, and {U:rho}, for the off-diagonal
correlation term such that the covariance is equal to {U:sigma2}×{U:rho}. The random intercept

{U0} is assigned a normal prior with hyperparameter {U0:sigma2} for its variance. It is recommended

to assign informative priors to {U0:sigma2}, {U:sigma2}, and {U:rho}. For example, we believe the
correlation parameter to be between 0 and 0.5 and thus assign the uniform(0, 0.5) prior to {U:rho}.
In addition, let’s say that, from historical data, the mean variability for children random coefficients was

found to be about 0.2 and the mean variability for the random intercepts was found to be about 0.25. We

may then assign the igamma(11,2) prior to {U:sigma2} and the igamma(9,2) prior to {U0:sigma2}
to incorporate this prior knowledge. We will also add the or option to obtain estimates of the odds ratios.
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. bayes, prior({U:rho}, uniform(0,0.5)) prior({U:sigma2}, igamma(11,2))
> prior({U0:sigma2}, igamma(9,2)) rseed(17):
> melogit c_use i.urban age i.children ||
> district: i.children, covariance(exchangeable) ||
> district:, or
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done
Multilevel structure

district
{U0}: random intercepts
{U1}: random coefficients for 1.children
{U2}: random coefficients for 2.children
{U3}: random coefficients for 3.children

Model summary

Likelihood:
c_use ~ melogit(xb_c_use)

Priors:
{c_use:1.urban age i.children _cons} ~ normal(0,10000) (1)

{U0} ~ normal(0,{U0:sigma2}) (1)
{U1 U2 U3} ~ mvn0exchangeable(3,{U:sigma2},{U:rho})

(1)
Hyperpriors:

{U:rho} ~ uniform(0,0.5)
{U:sigma2} ~ igamma(11,2)

{U0:sigma2} ~ igamma(9,2)

(1) Parameters are elements of the linear form xb_c_use.
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Bayesian multilevel logistic regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: district Number of groups = 60

Obs per group:
min = 2
avg = 32.2
max = 118

Family: Bernoulli Number of obs = 1,934
Link: logit Acceptance rate = .2401

Efficiency: min = .009968
avg = .02371

Log marginal-likelihood max = .04605

Equal-tailed
Odds ratio Std. dev. MCSE Median [95% cred. interval]

c_use
1.urban 2.153732 .2632265 .023028 2.135123 1.710943 2.728066

age .9734474 .0076718 .000478 .9736178 .9585345 .9887891

children
1 3.043873 .5490154 .03425 3.00129 2.119798 4.241168
2 4.030936 .7761135 .040228 3.949568 2.77722 5.714252
3 3.85945 .724596 .047131 3.778789 2.644804 5.448504

_cons .1850523 .0271077 .002155 .1827656 .1395885 .242633

district
U:rho .3236901 .1286163 .010136 .3422138 .0326351 .4943052

U0:sigma2 .2147372 .0541223 .002522 .2069007 .1315863 .3416939
U:sigma2 .1736623 .0435398 .004361 .1676818 .1039366 .2793393

Note: Estimates are transformed only in the first equation to odds ratios.
Note: _cons estimates baseline odds (conditional on zero random effects).
Note: Default priors are used for some model parameters.

The posterior odds-ratio estimates for the fixed-effects parameters are close to the estimates reported

by the melogit command in example 5. Our model reports an estimate of 0.32 for the correlation

between random coefficients, a variance of 0.17 for the random coefficients, and a variance of 0.21 for

the random intercepts.

Panel-data models
The bayes prefix supports several panel-data commands such as xtreg and xtlogit; see

[BAYES] Bayesian estimation.

Panel-data models, also known as longitudinal-data models, are used for analyzing cross-sectional

time series when there is an explicit time component. Panel-data models require that the panel variable

be specified using the xtset command. See [XT] xt for details.

Panel-data models can also be viewed as two-level random-intercept models, so many comments from

Multilevel models apply to these models too.

All Bayesian panel-data models include random intercepts, referred to as {U[panelvar]} or simply

{U}, with the panel variable panelvar used as the grouping variable. These intercepts are commonly

referred to as random effects in frequentist models.

https://www.stata.com/manuals/meme.pdf#memeRemarksandexamplesex5
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Random intercepts are assigned default prior distributions specific to the likelihood family of the

model. For linear and generalized linear models, the default prior is normal with zero mean and unknown

variance {var U}. Other models have special random-effects priors, and these are described in Methods

and formulas of the command-specific bayes entries. Positive hyperparameters such as {var U} are

assigned default inverse-gamma priors. Categorical outcome models such as [BAYES] bayes: xtmlogit

have multiple random effects. In cases when these random effects are correlated, the model includes a

matrix hyperparameter {U:Sigma,m} that is assigned a default inverse-Wishart prior.

You can specify your own priors for regression coefficients, random effects, and auxiliary model

parameters. To change the default priors, you will need to know the names of the model parameters. See

Likelihood model to learn how the bayes prefix labels the parameters. You can also use the dryrun
option to see the names of model parameters specific to each bayes model before estimation. After

estimation, see Different ways of specifying model parameters for how to refer to individual random

effects to evaluate MCMC convergence or to obtain their MCMC summaries.

Bayesian panel-data models estimate random effects together with regression coefficients and other

model parameters. By default, the bayes prefix does not compute or display MCMC summaries of indi-

vidual random effects to conserve computation time and space. You can specify the showreffects()
or show() option to compute and display them for chosen subsets of random effects.

By default, all panel-data models use Gibbs sampling for variance components. Linear panel-

data models, bayes: xtreg, additionally use Gibbs sampling for regression coefficients. With

bayes: xtreg, we can specify Gibbs sampling also for random effects by using the gibbs option.

Unlike other bayes commands, panel-data models support the [BAYES] bayespredict postesti-

mation command to compute Bayesian predictions; see examples in [BAYES] bayes: xtpoisson and

[BAYES] bayes: xtmlogit.

Example 18: Random-effects linear model
In example 12, we considered a random-intercept model analyzing the weight gain of pigs. In that

example, the dependent variable, weight, is regressed on variable week, and random intercepts are

introduced with respect to the group variable id. Let’s fit the same random-intercept model but now

using bayes: xtreg. First, we should declare our data as panel data.
. use https://www.stata-press.com/data/r19/pig
(Longitudinal analysis of pig weights)
. xtset id
Panel variable: id (balanced)

https://www.stata.com/manuals/bayesbayesxtmlogit.pdf#bayesbayesxtmlogit
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesbayes_prefix_renames
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimationRemarksandexamplesbayesian_post_reref
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredict
https://www.stata.com/manuals/bayesbayesxtpoisson.pdf#bayesbayesxtpoisson
https://www.stata.com/manuals/bayesbayesxtmlogit.pdf#bayesbayesxtmlogit
https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesex12
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We can use bayes: xtreg to fit the same model that we previously fit using bayes: mixed. Both
commands use the same default priors and the same default sampling method.

. bayes, rseed(17): xtreg weight week
note: Gibbs sampling is used for regression coefficients and variance

components.
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done
Model summary

Likelihood:
weight ~ normal(xb_weight,{sigma2})

Priors:
{weight:week _cons} ~ normal(0,10000) (1)

{U[id]} ~ normal(0,{var_U}) (1)
{sigma2} ~ igamma(0.01,0.01)

Hyperprior:
{var_U} ~ igamma(0.01,0.01)

(1) Parameters are elements of the linear form xb_weight.
Bayesian RE normal regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Number of obs = 432
Acceptance rate = .8089
Efficiency: min = .008983

avg = .5507
Log marginal-likelihood max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.209598 .0391057 .000391 6.209511 6.134362 6.28693

_cons 19.2624 .5480876 .057828 19.23869 18.18444 20.36098

var_U 15.75035 3.489106 .042737 15.31299 10.28186 23.8984
sigma2 4.417614 .3188951 .004392 4.401373 3.837572 5.07726

Note: Default priors are used for model parameters.

The results are similar to those from example 12, up to MCMC sampling variation.

https://www.stata.com/manuals/bayesbayes.pdf#bayesbayesRemarksandexamplesex12
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To improve efficiency, all panel-data models by default use Gibbs sampling for variance components.

Panel-data linear models (bayes: xtreg) use Gibbs sampling also for regression coefficients. With

bayes: xtreg, we can improve sampling efficiency further by specifying the gibbs option to use Gibbs
sampling also for random effects. Beware that, depending on the number of random effects, this may

increase the computation time substantially.

. bayes, gibbs rseed(17): xtreg weight week
note: Gibbs sampling is used for all parameters, including random effects.
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000...... ...9000.........10000 done
Model summary

Likelihood:
weight ~ normal(xb_weight,{sigma2})

Priors:
{weight:week _cons} ~ normal(0,10000) (1)

{U[id]} ~ normal(0,{var_U}) (1)
{sigma2} ~ igamma(0.01,0.01)

Hyperprior:
{var_U} ~ igamma(0.01,0.01)

(1) Parameters are elements of the linear form xb_weight.
Bayesian RE normal regression MCMC iterations = 12,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Number of obs = 432
Acceptance rate = 1
Efficiency: min = .01606

avg = .6605
Log marginal-likelihood max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.209921 .0390177 .00039 6.209939 6.132542 6.285744

_cons 19.26382 .6209709 .048995 19.27342 18.0418 20.5063

var_U 15.80222 3.488439 .038688 15.33375 10.3458 24.03719
sigma2 4.412905 .3236225 .00359 4.395282 3.821423 5.095022

Note: Default priors are used for model parameters.

Using full Gibbs sampling, we see that our estimates of regression coefficients and variance components

are similar but that the minimum efficiency is increased to 0.016 from 0.009.
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Example 19: Random-effects ordered logit model
Consider example 1 from [XT] xtologit, which analyzes data from a smoking prevention project in

schools. The dependent variable, tobacco and health knowledge score thk, has four categories. Predictor
variables include preintervention score, prethk, classroom curriculum, cc, and television intervention,
tv, as well as the interaction of the last two. The school identifier variable school is set as the panel

variable.

. use https://www.stata-press.com/data/r19/tvsfpors
(Television, School, and Family Project)
. xtset school
Panel variable: school (unbalanced)

The bayes: xtologit command is used to fit a Bayesian model. The default prior distribution for

regression coefficients is normal with zero mean and variances of 10,000. The default prior distribution

for random effects is normal with mean zero and variance {var U}. The hyperparameter {var U} is

assigned an inverse-gamma hyperprior. The three cutpoints for the ordered logit likelihood, { cut1},
{ cut2}, and { cut3}, are assigned a flat prior.

. bayes, rseed(17): xtologit thk prethk cc##tv
note: Gibbs sampling is used for variance components.
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000..... done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done
Model summary

Likelihood:
thk ~ ologit(xb_thk,{_cut1 ... _cut3})

Priors:
{thk:prethk 1.cc 1.tv 1.cc#1.tv} ~ normal(0,10000) (1)

{U[school]} ~ normal(0,{var_U}) (1)
{_cut1 _cut2 _cut3} ~ 1 (flat)

Hyperprior:
{var_U} ~ igamma(0.01,0.01)

(1) Parameters are elements of the linear form xb_thk.

https://www.stata.com/manuals/xtxtologit.pdf#xtxtologitRemarksandexamplesex1_xtologit
https://www.stata.com/manuals/xtxtologit.pdf#xtxtologit
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Bayesian RE ordered logistic regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: school Number of groups = 28

Obs per group:
min = 18
avg = 57.1
max = 137

Number of obs = 1,600
Acceptance rate = .506
Efficiency: min = .00404

avg = .01548
Log marginal-likelihood max = .03692

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

thk
prethk .4024205 .03817 .001987 .4016996 .3289603 .480875

1.cc .9329812 .2127196 .019923 .9304351 .5156044 1.367753
1.tv .3037174 .2089864 .03288 .2919775 -.0874367 .7099491

cc#tv
1 1 -.4663504 .2985113 .02669 -.4502481 -1.057705 .0993408

_cut1 -.0960417 .1673066 .016383 -.0987278 -.4235516 .2458889
_cut2 1.151299 .1739417 .020155 1.148734 .8009236 1.49998
_cut3 2.340316 .1798423 .020381 2.338304 1.994793 2.696972
var_U .1089538 .0529856 .002903 .0988449 .0351552 .2362116

Note: Default priors are used for model parameters.
Note: There is a high autocorrelation after 500 lags.

The command issues a high autocorrelation warning because of slower convergence for some of the

parameters. You can use bayesstats ess to find that {thk:1.tv} is the parameter that has the lowest

ESS. Slower convergence of panel-data models is often caused by the presence of many random effects,

which indirectly influences the convergence of regression coefficients as well.
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Sometimes, the sampling efficiency can be improved by simply increasing the burn-in period, thus

prolonging the adaptation phase of the sampling algorithm. In the next run, we double the default burn-in

period.

. bayes, burnin(5000) rseed(17): xtologit thk prethk cc##tv
note: Gibbs sampling is used for variance components.
Burn-in 5000 aaaaaaaaa1000aaaaaaaaa2000.........3000.........4000.........5000
> done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done
Model summary

Likelihood:
thk ~ ologit(xb_thk,{_cut1 ... _cut3})

Priors:
{thk:prethk 1.cc 1.tv 1.cc#1.tv} ~ normal(0,10000) (1)

{U[school]} ~ normal(0,{var_U}) (1)
{_cut1 _cut2 _cut3} ~ 1 (flat)

Hyperprior:
{var_U} ~ igamma(0.01,0.01)

(1) Parameters are elements of the linear form xb_thk.
Bayesian RE ordered logistic regression MCMC iterations = 15,000
Metropolis--Hastings and Gibbs sampling Burn-in = 5,000

MCMC sample size = 10,000
Group variable: school Number of groups = 28

Obs per group:
min = 18
avg = 57.1
max = 137

Number of obs = 1,600
Acceptance rate = .5038
Efficiency: min = .003954

avg = .015
Log marginal-likelihood max = .0366

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

thk
prethk .4043504 .0380502 .001989 .4033533 .3325402 .4827048

1.cc .9352501 .2010255 .018787 .9288417 .5673248 1.348453
1.tv .3041591 .2085135 .033158 .3009742 -.117611 .7077558

cc#tv
1 1 -.4635365 .2798612 .027015 -.4525074 -1.028432 .0712566

_cut1 -.095777 .1627607 .016387 -.0969997 -.426459 .2438933
_cut2 1.15389 .1684856 .019615 1.154469 .8296157 1.499366
_cut3 2.344848 .1762402 .021575 2.34904 1.993787 2.685564
var_U .1064932 .0524515 .002873 .0964727 .034738 .2305971

Note: Default priors are used for model parameters.
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Compared with the frequentist estimates from example 1, the posterior mean estimates of the regression

coefficients and cutpoints are not that different. The most noticeable difference is for the random-effects

variance {var U}, which has a posterior mean of about 0.11, slightly higher than the frequentist estimate
of 0.07.

We can use bayesstats summary to display posterior estimates for the first five random effects

{U[school]} or simply {U}.

. bayesstats summary {U[1/5]}
Posterior summary statistics MCMC sample size = 10,000

Equal-tailed
U[school] Mean Std. dev. MCSE Median [95% cred. interval]

193 .0983182 .2360735 .008371 .0949512 -.3319545 .5649471
194 .0910507 .2044525 .013411 .0850659 -.3085782 .5080763
196 .1609138 .2372827 .010454 .159283 -.3000192 .6540844
197 -.0351616 .2304207 .009844 -.036144 -.5106465 .4080927
198 -.1724522 .2164482 .019579 -.1666214 -.6123599 .2548694

We could also replace the default priors with more informative ones. There are two ways to do this.

First, we can simply modify the parameters of the default prior without changing the family of the dis-

tribution. For example, we can use the normalprior(1) option to change the prior standard deviation

for regression coefficients from 100 to 1.

https://www.stata.com/manuals/xtxtologit.pdf#xtxtologitRemarksandexamplesex1_xtologit
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. bayes, normalprior(1) rseed(17): xtologit thk prethk cc##tv
note: Gibbs sampling is used for variance components.
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done
Model summary

Likelihood:
thk ~ ologit(xb_thk,{_cut1 ... _cut3})

Priors:
{thk:prethk 1.cc 1.tv 1.cc#1.tv} ~ normal(0,1) (1)

{U[school]} ~ normal(0,{var_U}) (1)
{_cut1 _cut2 _cut3} ~ 1 (flat)

Hyperprior:
{var_U} ~ igamma(0.01,0.01)

(1) Parameters are elements of the linear form xb_thk.
Bayesian RE ordered logistic regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: school Number of groups = 28

Obs per group:
min = 18
avg = 57.1
max = 137

Number of obs = 1,600
Acceptance rate = .5083
Efficiency: min = .005659

avg = .01438
Log marginal-likelihood max = .0411

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

thk
prethk .3972503 .0386982 .003252 .3967045 .3240223 .4752994

1.cc .8628827 .2182787 .029018 .8597381 .4505967 1.275168
1.tv .2691059 .1952139 .020681 .2561737 -.064717 .6803609

cc#tv
1 1 -.3874974 .2808 .030905 -.3749463 -.954762 .1415334

_cut1 -.1274545 .1812604 .017455 -.1252054 -.4761576 .2116238
_cut2 1.117835 .1811456 .017375 1.120978 .7740603 1.467072
_cut3 2.30662 .1859104 .015007 2.312644 1.958648 2.666062
var_U .1104883 .0550946 .002718 .100217 .0357647 .239713

Note: Default priors are used for some model parameters.

The magnitudes of the regression coefficient estimates shrink slightly toward 0. Similarly, we can use

the igammaprior() option to manipulate the shape and scale of the default inverse-gamma prior for

{var U}.

Another way of changing the default priors is to specify the prior() options for the selected groups

of model parameters. For example, we can change the prior for cutpoints from the default flat to normal

with mean 1 and variance 1.
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. bayes, prior({_cut1 _cut2 _cut3}, normal(1, 1))
> normalprior(1) rseed(17): xtologit thk prethk cc##tv
note: Gibbs sampling is used for variance components.
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done
Model summary

Likelihood:
thk ~ ologit(xb_thk,{_cut1 ... _cut3})

Priors:
{thk:prethk 1.cc 1.tv 1.cc#1.tv} ~ normal(0,1) (1)

{U[school]} ~ normal(0,{var_U}) (1)
{_cut1 _cut2 _cut3} ~ normal(1,1)

Hyperprior:
{var_U} ~ igamma(0.01,0.01)

(1) Parameters are elements of the linear form xb_thk.
Bayesian RE ordered logistic regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: school Number of groups = 28

Obs per group:
min = 18
avg = 57.1
max = 137

Number of obs = 1,600
Acceptance rate = .4909
Efficiency: min = .005571

avg = .01344
Log marginal-likelihood max = .04221

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

thk
prethk .3914625 .0344846 .00462 .3902991 .3256868 .4578337

1.cc .832213 .2079096 .024539 .8433861 .4080022 1.20791
1.tv .1969988 .2044468 .016094 .2080927 -.2166963 .5690862

cc#tv
1 1 -.3620582 .2739768 .032021 -.377875 -.9000601 .2192883

_cut1 -.1775701 .1673107 .016436 -.1657233 -.5312352 .1188874
_cut2 1.063019 .1684814 .018284 1.074538 .7075167 1.37078
_cut3 2.240986 .1739471 .017195 2.251752 1.881608 2.556478
var_U .1058796 .0550203 .002678 .0952031 .0334108 .2404828

Note: Default priors are used for some model parameters.

Time-series and DSGE models
The bayes prefix also supports vector autoregression ([BAYES] bayes: var), linear DSGE models

([BAYES] bayes: dsge), and nonlinear DSGE models ([BAYES] bayes: dsgenl). See the corresponding

entries for examples of these commands.

https://www.stata.com/manuals/bayesbayesvar.pdf#bayesbayesvar
https://www.stata.com/manuals/bayesbayesdsge.pdf#bayesbayesdsge
https://www.stata.com/manuals/bayesbayesdsgenl.pdf#bayesbayesdsgenl
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Video examples
Introduction to Bayesian statistics, part 1: The basic concepts

Introduction to Bayesian statistics, part 2: MCMC and the Metropolis–Hastings algorithm

A prefix for Bayesian regression in Stata

Bayesian linear regression using the bayes prefix

Bayesian linear regression using the bayes prefix: How to specify custom priors

Bayesian linear regression using the bayes prefix: Checking convergence of the MCMC chain

Bayesian linear regression using the bayes prefix: How to customize the MCMC chain

Stored results
In addition to the results stored by bayesmh, the bayes prefix stores the following in e():

Scalars

e(priorsigma) standard deviation of default normal priors

e(priorshape) shape of default inverse-gamma priors

e(priorscale) scale of default inverse-gamma priors

e(blocksize) maximum size for blocks of model parameters

Macros

e(prefix) bayes
e(cmdname) command name from estimation command

e(cmd) same as e(cmdname)
e(command) estimation command line

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.
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Also see
[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] bayesmh — Bayesian models using Metropolis–Hastings algorithm

[BAYES] bayesselect — Bayesian variable selection for linear regression

[BAYES] Bayesian postestimation — Postestimation tools after Bayesian estimation

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary

[U] 20 Estimation and postestimation commands

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata
Press are registered trademarks with the World Intellectual Property Organization of the
United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other
brand and product names are registered trademarks or trademarks of their respective com-
panies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights
reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/bayesbayesianestimation.pdf#bayesBayesianestimation
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayesselect.pdf#bayesbayesselect
https://www.stata.com/manuals/bayesbayesianpostestimation.pdf#bayesBayesianpostestimation
https://www.stata.com/manuals/bayesbayesiancommands.pdf#bayesBayesiancommands
https://www.stata.com/manuals/bayesintro.pdf#bayesIntro
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossary
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

