
gsdesign usermethod — Add your own methods to the gsdesign command

Description Syntax Options Remarks and examples Stored results
References Also see

Description
The gsdesign usermethod command allows you to add your ownmethods to create a group sequential

design (GSD) and produce tables and graphs of the stopping boundaries.

Syntax
gsdesign usermethod ...[, designopts boundopts]

where usermethod is the name of the method you would like to add to the gsdesign command, de-

signopts are options controlling the sample-size calculation, and boundopts are options controlling

the calculation of the stopping boundaries.

When naming your gsdesign methods, you should follow the same convention as for naming the pro-

grams you add to Stata—do not pick “nice” names that may later be used by Stata’s built-in methods.

The length of usermethod may not exceed 16 characters.

designopts Description

Main

usermethodopts method-specific options for user-defined method
∗ alpha(#) overall significance level for all tests; default is alpha(0.05)
∗ power(#) overall power for all tests; default is power(0.8)

beta(#) overall probability of type II error for all tests;
default is beta(0.2)

onesided request a one-sided test; default is two-sided
∗ nfractional report fractional sample size

∗User-written sample-size evaluators must allow options alpha(), power(), and nfractional.
collect is allowed; see [U] 11.1.10 Prefix commands.

1

https://www.stata.com/manuals/adaptgsdesign.pdf#adaptgsdesign
https://www.stata.com/manuals/adaptgsdesignusermethod.pdf#adaptgsdesignusermethodSyntaxusermethod
https://www.stata.com/manuals/adaptgsdesignusermethod.pdf#adaptgsdesignusermethodSyntaxsntx_designopts
https://www.stata.com/manuals/adaptgsdesignusermethod.pdf#adaptgsdesignusermethodSyntaxsntx_boundopts
https://www.stata.com/manuals/adaptgsdesignusermethod.pdf#adaptgsdesignusermethodSyntaxsntx_designopts
https://www.stata.com/manuals/adaptgsdesignusermethod.pdf#adaptgsdesignusermethodSyntaxsntx_designopts
https://www.stata.com/manuals/adaptgsdesignusermethod.pdf#adaptgsdesignusermethodSyntaxsntx_boundopts
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands

gsdesign usermethod — Add your own methods to the gsdesign command 2

boundopts Description

Bounds

efficacy(boundary) boundary for efficacy stopping; if neither efficacy()
nor futility() is specified, the default is
efficacy(obfleming)

futility(boundary[, binding]) boundary for futility stopping; use binding to request
binding futility bounds (default is nonbinding)

nlooks(#[, equal]) total number of analyses (nlooks() − 1 interim analyses
and one final analysis); use equal to enforce equal
information increments; if neither nlooks() nor
information() is specified, the default is nlooks(2)

information(numlist) sequence of information levels for analyses;
default is evenly spaced

nopvalues suppress 𝑝-values

Graph

graphbounds[(graphopts)] graph boundaries

matlistopts(general options) control the display of boundaries and sample size;
seldom used

optimopts optimization options for boundary calculations; seldom used

boundary Description

obfleming classical O’Brien–Fleming bound

pocock classical Pocock bound

wtsiatis(#) classical Wang–Tsiatis bound with specified parameter value

errpocock error-spending Pocock-style bound

errobfleming error-spending O’Brien–Fleming-style bound

kdemets(#) error-spending Kim–DeMets bound with specified parameter value

hsdecani(#) error-spending Hwang–Shih–de Cani bound with specified parameter value

https://www.stata.com/manuals/adapt.pdf#adaptgsdesignusermethodSyntaxsntx_boundproc
https://www.stata.com/manuals/adapt.pdf#adaptgsdesignusermethodSyntaxsntx_boundproc
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/adapt.pdf#adaptgsdesignusermethodSyntaxsntx_graphopts
https://www.stata.com/manuals/pmatlist.pdf#pmatlistSyntaxgeneral_options
https://www.stata.com/manuals/adapt.pdf#adaptgsdesignusermethodSyntaxsntx_optimopts

gsdesign usermethod — Add your own methods to the gsdesign command 3

graphopts Description

xdimsampsize label the 𝑥 axis with the sample size collected (default)

xdiminformation label the 𝑥 axis with the information fraction;
use information levels if information() specified

xdimlooks label the 𝑥 axis with the number of each look

noshade do not shade the rejection, acceptance, and continuation
regions

rejectopts(area options) change the appearance of the rejection region

acceptopts(area options) change the appearance of the acceptance region

continueopts(area options) change the appearance of the continuation region

efficacyopts(connected options) change the appearance of the efficacy bound

futilityopts(connected options) change the appearance of the futility bound

nolooklines do not draw vertical reference lines at each look

looklinesopts(added line suboptions) change the appearance of the reference lines
marking each look

nofixed do not label critical values from a fixed study design

fixedopts(marker options) change the appearance of the fixed-study critical values

twoway options any options other than by() documented in
[G-3] twoway options

optimopts Description

intpointsscale(#) scaling factor for number of quadrature points;
default is intpointsscale(20)

initinfo(initinfo spec) initial value(s) for maximum information

initscale(#) initial value for scaling factor 𝐶 of classical bounds

infotolerance(#) tolerance for bisection search for maximum information of error-
spending bounds with futility stopping; default is infotol(1e-6)

marquardt use the Marquardt stepping algorithm in nonconcave regions;
default is to use a mixture of steepest descent and Newton

technique(algorithm spec) maximization technique

iterate(#) perform maximum of # iterations; default is iterate(300)
[no]log display an iteration log; default is nolog
trace display current parameter vector in iteration log

gradient display current gradient vector in iteration log

showstep report steps within an iteration in iteration log

hessian display current negative Hessian matrix in iteration log

showtolerance report the calculated result that is compared with the effective
convergence criterion

tolerance(#) tolerance for the parameter being optimized;
default is tolerance(1e-12)

ftolerance(#) tolerance for the objective function;
default is ftolerance(1e-10)

nrtolerance(#) tolerance for the scaled gradient;
default is nrtolerance(1e-16)

nonrtolerance ignore the nrtolerance() option

https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/adapt.pdf#adaptgsdesignusermethodOptionsopt_graphopts
https://www.stata.com/manuals/adapt.pdf#adaptgsdesignusermethodOptionsopt_graphopts
https://www.stata.com/manuals/g-3added_line_options.pdf#g-3added_line_optionsOptionsSuboptions
https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_optionsSyntax
https://www.stata.com/manuals/g-3twoway_options.pdf#g-3twoway_options
https://www.stata.com/manuals/adapt.pdf#adaptgsdesignusermethodOptionsopt_optim_initinfo
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_maxinfo
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_scaleC
https://www.stata.com/manuals/adapt.pdf#adaptgsdesignusermethodOptionsopt_optim_tech

gsdesign usermethod — Add your own methods to the gsdesign command 4

Options

� � �
Main �

alpha(#) sets the overall significance level, which is the familywise type I error rate for all analyses

(interim and final). alpha() must be in (0, 0.5). The default is alpha(0.05).

power(#) sets the overall power for all analyses. power() must be in (0.5, 1). The default is

power(0.8). If beta() is specified, power() is set to be 1 − beta(). Only one of power() or

beta() may be specified.

beta(#) sets the overall probability of a type II error. beta() must be in (0, 0.5). The default is

beta(0.2). If power() is specified, beta() is set to be 1 − power(). Only one of beta() or

power() may be specified.

onesided requests a study design for a one-sided test. The direction of the test is inferred from the effect

size.

nfractional specifies that fractional sample sizes be reported.

nratio(#) specifies the sample-size ratio of the experimental group relative to the control group,

𝑁2/𝑁1. The default is nratio(1), meaning equal allocation between the two groups.

� � �
Bounds �

efficacy(boundary) specifies the boundary for efficacy stopping. If neither efficacy() nor

futility() is specified, the default is efficacy(obfleming).

futility(boundary[, binding]) specifies the boundary for futility stopping.

binding specifies binding futility bounds. With binding futility bounds, if the result of an interim

analysis crosses the futility boundary and lies in the acceptance region, the trial must end or risk

overrunning the specified type I error. With nonbinding futility bounds, the trial does not need to

stop if the result of an interim analysis crosses the futility boundary; the familywise type I error

rate is controlled even if the trial continues. By default, futility bounds are nonbinding.

nlooks(# [, equal]) specifies the total number of analyses to be performed (nlooks() − 1 interim

analyses and one final analysis). If neither nlooks() nor information() is specified, the default is

nlooks(2).

equal indicates that equal information increments be enforced, which is to say that the same number

of new observations will be collected at each look. The default behavior is to start by dividing

information evenly among looks, then proceed by rounding up to a whole number of observations

at each look. This can cause slight differences in the information collected at each look.

information(numlist) specifies a sequence of information levels for interim and final analyses. This

must be a sequence of increasing positive numbers, but the scale is unimportant because the infor-

mation sequence will be automatically rescaled to ensure the maximum information is reached at the

final look. By default, analyses are evenly spaced.

nopvalues suppresses the 𝑝-values from being reported in the table of boundaries for each look.

https://www.stata.com/manuals/adapt.pdf#adaptgsdesignusermethodOptionsopt_boundproc
https://www.stata.com/manuals/adapt.pdf#adaptgsdesignusermethodOptionsopt_boundproc
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_maxinfo

gsdesign usermethod — Add your own methods to the gsdesign command 5

� � �
Graph �

graphbounds and graphbounds(graphopts) produce graphical output showing the stopping bound-

aries.

graphopts are the following:

xdimsampsize labels the 𝑥 axis with the sample size collected (the default).

xdiminformation labels the 𝑥 axis with the information fraction unless information() is spec-
ified, in which case information levels will be used.

xdimlooks labels the 𝑥 axis with the number of each look.

noshade suppresses shading of the rejection, acceptance, and continuation regions of the graph.

rejectopts(area options) affects the rendition of the rejection region. See

[G-3] area options.

acceptopts(area options) affects the rendition of the acceptance region. See

[G-3] area options.

continueopts(area options) affects the rendition of the continuation region. See

[G-3] area options.

efficacyopts(connected options) affects the rendition of the efficacy bound. See

[G-3] cline options and [G-3] marker options.

futilityopts(connected options) affects the rendition of the futility bound. See

[G-3] cline options and [G-3] marker options.

nolooklines suppresses the vertical reference lines drawn at each look.

looklinesopts(added line suboptions) affects the rendition of reference lines marking each

look. See suboptions in [G-3] added line options.

nofixed suppresses the fixed-study critical values in the plot.

fixedopts(marker options) affects the rendition of the fixed-study critical values. See

[G-3] marker options.

twoway options are any of the options documented in [G-3] twoway options, excluding by().
These include options for titling the graph (see [G-3] title options) and for saving the graph to

disk (see [G-3] saving option).

matlistopts(general options) affects the display of the matrix of boundaries and sample sizes. gen-

eral options are title(), tindent(), rowtitle(), showcoleq(), coleqonly, colorcoleq(),
aligncolnames(), and linesize(); see general options in [P]matlist. This option is seldom used.

optimopts control the iterative algorithm used to calculate stopping boundaries:

intpointsscale(#) specifies the scaling factor for the number of quadrature points used during the

numerical evaluation of stopping probabilities at each look. The default is intpointsscale(20).
See Methods and formulas in [ADAPT] gsbounds.

initinfo(initinfo spec) specifies either one or two initial values to be used in the iterative calcula-

tion of the maximum information.

The syntax initinfo(#) is applicable when using classical group sequential boundaries (Pocock

bounds, O’Brien–Fleming bounds, and Wang–Tsiatis bounds), as well as with efficacy-only

stopping when using error-spending boundaries (error-spending Pocock-style efficacy bounds,

https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3cline_options.pdf#g-3cline_options
https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_options
https://www.stata.com/manuals/g-3cline_options.pdf#g-3cline_options
https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_options
https://www.stata.com/manuals/g-3added_line_options.pdf#g-3added_line_optionsOptionsSuboptions
https://www.stata.com/manuals/g-3added_line_options.pdf#g-3added_line_optionsOptionsSuboptions
https://www.stata.com/manuals/g-3added_line_options.pdf#g-3added_line_options
https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_optionsSyntax
https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_options
https://www.stata.com/manuals/g-3twoway_options.pdf#g-3twoway_options
https://www.stata.com/manuals/g-3title_options.pdf#g-3title_options
https://www.stata.com/manuals/g-3saving_option.pdf#g-3saving_option
https://www.stata.com/manuals/pmatlist.pdf#pmatlistGeneraloptions
https://www.stata.com/manuals/pmatlist.pdf#pmatlistGeneraloptions
https://www.stata.com/manuals/pmatlist.pdf#pmatlist
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_numint
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsbounds
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_maxinfo

gsdesign usermethod — Add your own methods to the gsdesign command 6

error-spending O’Brien–Fleming-style efficacy bounds, Kim–DeMets efficacy bounds, and

Hwang–Shih–de Cani efficacy bounds). The default is to use the information from a fixed study

design; see Methods and formulas in [ADAPT] gsbounds.

The syntax initinfo(# #) is applicable when using error-spending group sequential boundaries

with futility stopping (error-spending Pocock-style bounds, error-spending O’Brien–Fleming-

style bounds, Kim–DeMets bounds, and Hwang–Shih–de Cani bounds). With this syntax, the

first and second numbers specify the lower and upper starting values, respectively, for the bisec-

tion algorithm estimating the maximum information. The default is to use the information from a

fixed study design for the lower initial value and the information corresponding to a Bonferroni

correction for the upper initial value; see Methods and formulas in [ADAPT] gsbounds. To specify

just the lower starting value, use initinfo(# .), and to specify just the upper starting value, use
initinfo(. #).

initscale(#) specifies the initial value to be used during the iterative calculation of scaling fac-

tor 𝐶 for classical group sequential boundaries (Pocock bounds, O’Brien–Fleming bounds, and

Wang–Tsiatis bounds). The default is to use the 𝑧-value corresponding to the specified value of

alpha(). See Methods and formulas in [ADAPT] gsbounds.

infotolerance(#) specifies the tolerance for the bisection algorithm used in the itera-

tive calculation of the maximum information of error-spending group sequential boundaries

with futility stopping (error-spending Pocock-style bounds, error-spending O’Brien–Fleming-

style bounds, Kim–DeMets bounds, and Hwang–Shih–de Cani bounds). The default is

infotolerance(1e-6). See Methods and formulas in [ADAPT] gsbounds.

marquardt specifies that the optimizer should use the modified Marquardt algorithm when, at an

iteration step, it finds that 𝐻 is singular. The default is to use a mixture of steepest descent and

Newton, which is equivalent to the difficult option in [R] ml.

technique(algorithm spec) specifies how the objective function is to be maximized. The following

algorithms are allowed. For details, see Pitblado, Poi, and Gould (2024).

technique(bfgs) specifies the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

technique(nr) specifies Stata’s modified Newton–Raphson (NR) algorithm.

technique(dfp) specifies the Davidon–Fletcher–Powell (DFP) algorithm.

The default is technique(bfgs) when using classical group sequential boundaries (Pocock

bounds, O’Brien–Fleming bounds, and Wang–Tsiatis bounds) and also for the second opti-

mization step used to estimate the maximum information with efficacy-only stopping when

using error-spending boundaries (error-spending Pocock-style efficacy bounds, error-spending

O’Brien–Fleming-style efficacy bounds, Kim–DeMets efficacy bounds, and Hwang–Shih–de

Cani efficacy bounds). The default is technique(nr) for the sequential optimization steps used

to estimate critical values for error-spending boundaries. You can also switch between two al-

gorithms by specifying the technique name followed by the number of iterations. For example,

specifying technique(nr 10 bfgs 20) requests 10 iterations with the NR algorithm followed by

20 iterations with the BFGS algorithm, and then back to NR for 10 iterations, and so on. The process

continues until convergence or until the maximum number of iterations is reached.

https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_startinfo
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsbounds
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_startinfo
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsbounds
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_scaleC
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_scaleC
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_scaleC
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsbounds
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_startinfo
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsbounds
https://www.stata.com/manuals/rml.pdf#rml

gsdesign usermethod — Add your own methods to the gsdesign command 7

iterate(#) specifies the maximum number of iterations. If convergence is not declared by the

time the number of iterations equals iterate(), an error message is issued. The default value of
iterate(#) is the number set using set maxiter, which is 300 by default.

[no]log requests an iteration log showing the progress of the optimization. The default is nolog.

trace adds to the iteration log a display of the current parameter vector.

gradient adds to the iteration log a display of the current gradient vector.

showstep adds to the iteration log a report on the steps within an iteration. This option was added so

that developers at StataCorp could view the stepping when they were improving the ml optimizer

code. At this point, it mainly provides entertainment.

hessian adds to the iteration log a display of the current negative Hessian matrix.

showtolerance adds to the iteration log the calculated value that is compared with the effective

convergence criterion at the end of each iteration. Until convergence is achieved, the smallest

calculated value is reported. shownrtolerance is a synonym of showtolerance.

Below, we describe the three convergence tolerances. Convergence is declared when the

nrtolerance() criterion is met and either the tolerance() or the ftolerance() criterion is also

met.

tolerance(#) specifies the tolerance for the parameter vector. When the relative change in

the parameter vector from one iteration to the next is less than or equal to tolerance(), the
tolerance() convergence criterion is satisfied. The default is tolerance(1e-12).

ftolerance(#) specifies the tolerance for the objective function. When the relative change in

the objective function from one iteration to the next is less than or equal to ftolerance(), the
ftolerance() convergence is satisfied. The default is ftolerance(1e-10).

nrtolerance(#) specifies the tolerance for the scaled gradient. Convergence is declared when

gH−1g′ < nrtolerance(). The default is nrtolerance(1e-16).

nonrtolerance specifies that the default nrtolerance() criterion be turned off.

boundary
obfleming specifies a classical O’Brien–Fleming design for efficacy or futility bounds (O’Brien and

Fleming 1979). O’Brien–Fleming efficacy bounds are characterized by being extremely conservative

at early looks. The O’Brien–Fleming design is a member of theWang–Tsiatis family and is equivalent

to specifying a boundary of wtsiatis(0).

pocock specifies a classical Pocock design for efficacy or futility bounds (Pocock 1977). Pocock efficacy
bounds are characterized by using the same critical value at all looks. The Pocock design is a member

of the Wang–Tsiatis family and is equivalent to specifying a boundary of wtsiatis(0.5).

wtsiatis(#) specifies a classical Wang–Tsiatis design for efficacy or futility bounds (Wang and Tsiatis

1987). The shape ofWang–Tsiatis bounds is determined by parameter Δ ∈ [−10, 0.7], where smaller
values of Δ yield bounds that are more conservative at early looks.

errpocock specifies an error-spending Pocock-style design for efficacy or futility bounds (Lan and

DeMets 1983). The critical values from error-spending Pocock-style bounds are very similar to those

of classic Pocock bounds, but they are obtained using an error-spending function.

https://www.stata.com/manuals/rsetiter.pdf#rsetiter

gsdesign usermethod — Add your own methods to the gsdesign command 8

errobfleming specifies an error-spending O’Brien–Fleming-style design for efficacy or futility bounds
(Lan and DeMets 1983). The critical values from error-spending O’Brien–Fleming-style bounds

are very similar to those of classic O’Brien–Fleming bounds, but they are obtained using an error-

spending function.

kdemets(#) specifies an error-spending Kim–DeMets design for efficacy or futility bounds (Kim and

DeMets 1987). The shape of Kim–DeMets bounds is determined by power parameter 𝜌 ∈ (0, 10],
where larger values of 𝜌 yield bounds that are more conservative at early looks.

hsdecani(#) specifies an error-spending Hwang–Shih–de Cani design for efficacy or futility bounds

(Hwang, Shih, and de Cani 1990). The shape of Hwang–Shih–de Cani bounds is determined by

parameter 𝛾 ∈ [−30, 3], where smaller values of 𝛾 yield bounds that are more conservative at early

looks.

For a design with both efficacy and futility stopping boundaries, if you specify a classical boundary

(that is, in theWang–Tsiatis family) for one, then you must specify a classical boundary for the other. So,

you could not specify a boundary in the Wang–Tsiatis family for one boundary and an error-spending

boundary for the other. When specifying efficacy and futility boundaries from the same family, the

efficacy parameter does not need to be the same as the futility parameter.

Boundaries that are conservative at early looks, such as the O’Brien–Fleming bound, offer little

chance of early stopping unless the true effect size is quite large (in the case of efficacy bounds) or quite

small (in the case of futility bounds). A trial employing a conservative bound is more likely to continue

to the final look, yielding an expected sample size that is not dramatically smaller than the sample size

required by an equivalent fixed-sample trial. However, the maximum sample size (that is, the sample

size at the final look) of a trial with a conservative bound is generally not much greater than the sample

size required by an equivalent fixed trial. Another direct result of specifying conservative bounds is that

the critical value at the final look tends to be close to the critical value employed by an equivalent fixed

design. In contrast, anticonservative boundaries such as the Pocock bound offer a much better shot at

early stopping (often yielding a small expected sample size) at the cost of a larger maximum sample size

and final critical values that are considerably larger than the critical value of an equivalent fixed design.

Remarks and examples
Remarks are presented under the following headings:

Steps for adding a new method to the gsdesign command
A quick example
Convention for naming options and storing results
Example: A log-rank test for substantial superiority

Graphing boundaries
Initializer and parser

Using an initializer and parser
Initializer’s s() return settings

This entry describes the use of the gsdesign command with a user-defined sample-size evaluator.

See [ADAPT] GSD intro for a general introduction to GSDs for clinical trials; see [ADAPT] gsbounds for

information about group sequential bounds; and see [ADAPT] gsdesign for information about designing

group sequential clinical trials with the gsdesign command. Also see [PSS-2] Intro (power) for a general
introduction to power and sample-size analysis, and see [PSS-2] power usermethod for additional details

about how to write your own sample-size evaluator.

https://www.stata.com/manuals/adaptgsdintro.pdf#adaptGSDintro
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsbounds
https://www.stata.com/manuals/adaptgsdesign.pdf#adaptgsdesign
https://www.stata.com/manuals/pss-2intropower.pdf#pss-2Intro(power)
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethod

gsdesign usermethod — Add your own methods to the gsdesign command 9

Steps for adding a new method to the gsdesign command
gsdesign works by combining stopping boundaries calculated by gsbounds with the fixed-design

sample size calculated by power. If the sample-size calculation you want does not exist as a built-in

power method, you can write your own sample-size evaluator and use it with gsdesign.

Adding your own methods to gsdesign is easy. Suppose you want to add your own method, user-

method, to gsdesign:

1. Create the evaluator, an r-class program called power cmd usermethod that computes the

sample size that would be required for a fixed study design. Save the program as ado-file

power cmd usermethod.ado.

A. Be sure your program accepts the nfractional option. This is necessary because

gsdesign uses fractional sample sizes when calculating the sample size required at

each look.

B. Store the resulting sample size following power’s simple naming conventions. Store
the total sample size in r(N). For two-sample methods, additionally store control-

group and experimental-group sample sizes in r(N1) and r(N2), respectively. For
time-to-event methods, additionally store the number of events in r(E) and store local
macro r(endpoint) as “survival”.

C. If your method allows one-sided tests, store local macro r(direction) as “upper”
for an upper one-sided test and as “lower” for a lower one-sided test.

2. Optionally, create an initializer or a parser, s-class programs called, respectively,

power cmd usermethod init (defined by ado-file power cmd usermethod init.ado) and
power cmd usermethod parse (defined by ado-file

power cmd usermethod parse.ado). This step is not necessary but can be used to customize
the titles and parameters displayed by gsdesign. See Initializer and parser for more details.

3. Place all of your programs where Stata can find them.

You are done. You can now use gsdesign usermethod like any other gsdesign method.

All user-defined methods for gsdesign are, by construct, also user-defined methods for the power
command. This means that your evaluator can be used to calculate the sample size for a fixed study design

by running command power usermethod. This ability can be exploited, as we do in our second example.

However, it bears mentioning that the power command allows user-defined evaluators to calculate power
and effect size in addition to sample size, but gsdesign only supports sample-size calculations.

A quick example
Before we discuss the technical details in the following sections, let’s try an example to show how

easy this all is. We will write a program to compute sample size for a fixed-study one-sample 𝑧 test given
standardized difference, significance level, and power. For simplicity, we assume a two-sided test.

https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsbounds
https://www.stata.com/manuals/pss-2power.pdf#pss-2power
https://www.stata.com/manuals/pprogram.pdf#pprogram
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_fixdesign
https://www.stata.com/manuals/pprogram.pdf#pprogram
https://www.stata.com/manuals/adaptgsdesignusermethod.pdf#adaptgsdesignusermethodRemarksandexamplesinitparse
https://www.stata.com/manuals/adaptgsdesignusermethod.pdf#adaptgsdesignusermethodRemarksandexamplespowsuperlogrank

gsdesign usermethod — Add your own methods to the gsdesign command 10

We will call our new method myztest and save it as power cmd myztest.ado.

program power_cmd_myztest, rclass
version 19.5 // (or version 19 if you do not have StataNow)

/* parse syntax */
syntax, STDDiff(real) /// standardized difference (effect size)

[Alpha(real 0.05) /// significance level
Power(real 0.8) /// power
NFRACtional /// report fractional sample size

]

/* calculate sample size for a fixed study */
tempname N
scalar ‘N’ = ((invnormal(‘power’) + invnormal(1 - ‘alpha’ / 2)) / ‘stddiff’)^2
if (”‘nfractional’” == ””) {

scalar ‘N’ = ceil(‘N’)
}

/* return stored results */
return scalar N = ‘N’
return scalar alpha = ‘alpha’
return scalar power = ‘power’
return scalar stddiff = ‘stddiff’

end

Our program consists of three sections: the syntax command for parsing options, the sample-size

computation, and returning the stored results. The three sections work as follows:

Parse: The power cmd myztest program accepts three of gsdesign’s designopts: alpha() for

significance level, power() for power, and nfractional to compute fractional sample size.

It also has its own option, stddiff(), to specify a standardized difference.

Compute: After parsing options, sample size is computed and stored in temporary scalar ‘N’.

Return: Finally, the resulting sample size and other results are returned as scalars. Following power’s
convention for naming commonly returned results, the computed sample size is stored in

r(N), the significance level in r(alpha), and the power in r(power). The program addi-

tionally stores the standardized difference in r(stddiff).

We save our program as power cmd myztest.ado and place the program where Stata can find it.

Now we can use myztest within gsdesign as we would any other existing method of gsdesign.

To design a group sequential trial using myztest with a standardized difference of 0.7 and default

specifications of O’Brien–Fleming efficacy bounds with two evenly spaced looks, power of 0.8, and

two-sided significance level of 0.05, we run

https://www.stata.com/manuals/psyntax.pdf#psyntax
https://www.stata.com/manuals/adaptgsdesignusermethod.pdf#adaptgsdesignusermethodSyntaxsntx_designopts
https://www.stata.com/manuals/pmacro.pdf#pmacro
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplesconvention
https://www.stata.com/manuals/psysdirremarksandexamples.pdf#psysdirRemarksandexamplesadopath

gsdesign usermethod — Add your own methods to the gsdesign command 11

. gsdesign myztest, stddiff(0.7)
Group sequential design for myztest
Two-sided test
Efficacy: O’Brien--Fleming
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.8000

Expected sample size:
H0 = 16.96
Ha = 15.06

Info. ratio = 1.0078
N fixed = 17

N max = 17
Fixed-study crit. values = ±1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Sample size
Look frac. Lower Upper p-value N

1 0.50 -2.7965 2.7965 0.0052 9
2 1.00 -1.9774 1.9774 0.0480 17

Notes: Critical values are for z statistics; otherwise,
use p-value boundaries.
Requested information fraction not attained.

We can use any type of boundary allowed by gsdesign, and we can even display the bounds on a

graph. For a four-look design with Wang–Tsiatis efficacy bounds with efficacy parameter Δ𝑒 = 0.25

and O’Brien–Fleming nonbinding futility bounds, we run

. gsdesign myztest, stddiff(0.7) efficacy(wtsiatis(0.25)) futility(obfleming)
> nlooks(4) graphbounds
Group sequential design for myztest
Two-sided test
Efficacy: Wang--Tsiatis, Delta = 0.2500
Futility: O’Brien--Fleming, nonbinding
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.8000

Expected sample size:
H0 = 12.56
Ha = 14.09

Info. ratio = 1.2141
N fixed = 17

N max = 20
Fixed-study crit. values = ±1.9600

gsdesign usermethod — Add your own methods to the gsdesign command 12

Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Futility
Look frac. Lower Upper p-value Lower Upper p-value

1 0.25 -2.9887 2.9887 0.0028 . . .
2 0.50 -2.5132 2.5132 0.0120 -0.8059 0.8059 0.4203
3 0.75 -2.2709 2.2709 0.0232 -1.5492 1.5492 0.1213
4 1.00 -2.1133 2.1133 0.0346 -2.1133 2.1133 0.0346

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.

Sample size
Look N

1 5
2 10
3 15
4 20

-4

-3

-2

-1

1

2

3

4

0

z-
va

lu
e

2 4 6 8 10 12 14 16 18 20 220
Sample size

Stop for efficacy
(reject H0)
Stop for futility
(accept H0)
Continue
Efficacy
Futility
Fixed-study
critical values

Parameters: α = .05 (two-sided), 1-β = .8, ∆e = .25

Wang–Tsiatis efficacy & O'Brien–Fleming nonbinding futility

Group sequential design for a myztest test

Figure 1. User-written one-sample 𝑧 test with efficacy and futility bounds

The above is just a simple example. Your program can be as complicated as you would like; you can

even use simulations to compute your results. You can also customize your output and graphs with an

initializer or parser.

Convention for naming options and storing results
You can specify any method-specific options you want, but for the gsdesign command to auto-

matically recognize its common design options, you must ensure that you follow gsdesign’s naming
convention for designopts in your program. For example, gsdesign specifies the significance level in

https://www.stata.com/manuals/adaptgsdesignusermethod.pdf#adaptgsdesignusermethodRemarksandexamplesinitparse
https://www.stata.com/manuals/adaptgsdesignusermethod.pdf#adaptgsdesignusermethodSyntaxsntx_designopts

gsdesign usermethod — Add your own methods to the gsdesign command 13

the alpha() option with minimum abbreviation of a(). You need to ensure that you use the same option
name with the same abbreviation in your evaluator to specify the significance level. The same applies to

all the designopts described in the Syntax section.

To be compatible with gsdesign, you must ensure that your sample-size evaluator stores the total

sample size in scalar r(N). For two-sample methods, you must additionally store the control-group sam-
ple size in scalar r(N1) and the experimental-group sample size in scalar r(N2).

For time-to-event methods, your evaluator must store local macro r(endpoint) as “survival” and
store the number of events in scalar r(E). If your method allows for censoring, store the survival prob-
ability of the control group in scalar r(s1) and the survival probability of the experimental group in

scalar r(s2), store the overall probability of experiencing a failure event in scalar r(Pr E), and store
the probability of withdrawal in scalar r(Pr w).

If your method allows one-sided tests, it should store local macro r(direction) as “upper” when
an upper one-sided test is specified and as “lower” when a lower one-sided test is specified.

If you want to display additional parameters in the gsdesign output, you must store them as scalars

and let gsdesign know to display them through the use of an initializer or parser. However, the full

functionality of the gsdesign command is available without the use of an initializer or parser.

Example: A log-rank test for substantial superiority
Many aspects of the COVID-19 pandemicwere unprecedented, including the speedwith which vaccines

were developed. Unlike the yearslong development process of previous vaccines, the first COVID-19

vaccines began phase 3 clinical trials for efficacy less than half a year after COVID-19 was declared a

global pandemic. One of these vaccines was produced by the company Sinovac, and Palacios et al.

(2020) describe the PROFISCOV phase 3 clinical trial of the Sinovac COVID-19 vaccine among healthcare

workers in Brazil.

The primary endpoint, or outcome of interest, was the incidence of symptomatic COVID-19. Rather

than merely recording whether study participants caught COVID-19, the researchers monitored how long

it took each participant to catch COVID-19, making this a survival study. Participants who had not expe-

rienced symptomatic COVID-19 by the end of the study’s one-year follow-up period were considered to

have been censored. This type of censoring is known as administrative censoring.

The PROFISCOV study measured vaccine efficacy as 1 − HR, where HR is the hazard ratio of the

experimental to the control participants (Palacios et al. 2020, Study Protocol). The alternative hypothesis

of the PROFISCOV study was a vaccine efficacy of 60%, corresponding to a hazard ratio of 0.4. However,

the null hypothesis was not a vaccine efficacy of 0% (which would correspond to a hazard ratio of 1 and

indicate no treatment effect); instead, the null hypothesis was a vaccine efficacy of 30% (corresponding to

a hazard ratio of 0.7). To declare the Sinovac COVID-19 vaccine effective, the planners of the PROFISCOV

study required it to beat the control by more than 30%. This type of study is known as a superiority trial

or, more specifically, a substantial superiority trial with a superiority margin of 30%.

gsdesign does not have a built-in method for calculating sample size for a substantial superiority test
of two survivor functions, so we will write our own. We assume a log-rank test will be used to compare

the two survivor functions, so we model our command after power logrank. We write a sample-size

evaluator based on the Methods and formulas described in [PSS-2] power logrank, but we follow the

example of Julious (2010, 264) to modify the formulas to accommodate a superiority margin, provided

in the form of a hazard ratio under the null hypothesis.

https://www.stata.com/manuals/adaptgsdesignusermethod.pdf#adaptgsdesignusermethodSyntaxsntx_designopts
https://www.stata.com/manuals/adaptgsdesignusermethod.pdf#adaptgsdesignusermethodSyntax
https://www.stata.com/manuals/adaptgsdesignusermethod.pdf#adaptgsdesignusermethodRemarksandexamplesinitparse
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossaryadmincensoring
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_ssuperior
https://www.stata.com/manuals/pss-2powerlogrank.pdf#pss-2powerlogrank
https://www.stata.com/manuals/pss-2powerlogrank.pdf#pss-2powerlogrankMethodsandformulas
https://www.stata.com/manuals/pss-2powerlogrank.pdf#pss-2powerlogrank

gsdesign usermethod — Add your own methods to the gsdesign command 14

We will call our new method superlogrank. It will compute the number of events and sample

size for a fixed-design substantial superiority trial using a log-rank test to compare two survivor func-

tions. Sample-size evaluator power cmd superlogrank accepts the standard gsdesign designopts of

alpha(), power(), nfractional, and onesided, but we decide to make onesided a required option

because we are only interested in testing a one-sided alternative hypothesis: that the Sinovac COVID-19

vaccine is substantially better than the placebo.

Like power logrank, our command power cmd superlogrank performs sample-size calculations

for a test of the hazard ratio using the Freedman method (the default) or for a test of the log hazard-

ratio using the Schoenfeld method (with option schoenfeld). Most of the remaining syntax for

power cmd superlogrank is akin to a simplified version of the power logrank syntax: the survival

probability in the control group is provided as an optional argument to the command (specified before the

comma), the hazard ratio under the alternative hypothesis is specified with option hratio(), the proba-
bility of withdrawal is specified with option wdprob(), and the ratio of experimental-group sample size
to control-group sample size is specified with option nratio().

Command power cmd superlogrank accepts the additional option hr0(), the hazard ratio under

the null hypothesis. We set the default to be hr0(1), which corresponds to a superiority margin of 0 (that
is, the vaccine efficacy under the null hypothesis is 0%). If hr0() is left at its default, the substantial

superiority test reduces to a standard log-rank test.

program power_cmd_superlogrank, rclass
version 19.5 // (or version 19 if you do not have StataNow)

/* parse syntax and check for valid options */
syntax [anything(name=s1)] /// P(survival) of control group (optional)

, ONESIDed /// one-sided test (required option)
[HRatio(real 0.5) /// hazard ratio under Ha

hr0(real 1) /// hazard ratio under H0
WDProb(real 0) /// P(nonadministrative censoring)
NRATio(real 1) /// ratio of experimental/controls
SCHoenfeld /// use Schoenfeld calculation
Alpha(real 0.05) /// significance level
Power(real 0.8) /// power
NFRACtional /// report fractional sample size

]

/* assume 0% survival if s1 is not specified */
if (‘”‘s1’”’ != ””) {

confirm number ‘s1’
assert (‘s1’ >= 0) & (‘s1’ < 1)

}
else {

local s1 = 0
}
assert (‘hratio’ > 0)
assert (‘hr0’ > 0)
assert (‘nratio’ > 0)
assert (‘wdprob’ >= 0) & (‘wdprob’ < 1)
assert (‘alpha’ > 0) & (‘alpha’ < 1)
assert (‘power’ > 0) & (‘power’ < 1)

https://www.stata.com/manuals/adaptgsdesignusermethod.pdf#adaptgsdesignusermethodSyntaxsntx_designopts

gsdesign usermethod — Add your own methods to the gsdesign command 15

/* calculate number of failures (events) & fixed-study sample size */
tempname zalpha zbeta Dratio lhs rhs E s2 prE N N1 N2
scalar ‘zalpha’ = invnormal(1 - ‘alpha’)
scalar ‘zbeta’ = invnormal(‘power’)
scalar ‘Dratio’ = ‘hratio’ / ‘hr0’
scalar ‘lhs’ = (‘zalpha’ + ‘zbeta’)^2 / ‘nratio’
if (”‘schoenfeld’” != ””) {

/* Schoenfeld calculation */
scalar ‘rhs’ = ((‘nratio’ + 1) / log(‘Dratio’))^2

}
else {

/* Freedman calculation */
scalar ‘rhs’ = ((‘nratio’ * ‘Dratio’ + 1) / (‘Dratio’ - 1))^2

}
scalar ‘E’ = ‘lhs’ * ‘rhs’
scalar ‘s2’ = ‘s1’^‘hratio’
scalar ‘prE’ = 1 - (‘s1’ + ‘nratio’ * ‘s2’) / (‘nratio’ + 1)
scalar ‘N’ = ‘E’ / (‘prE’ * (1 - ‘wdprob’))
scalar ‘N1’ = ‘N’ * ‘nratio’ / (‘nratio’ + 1)
scalar ‘N2’ = ‘N’ / (‘nratio’ + 1)

if (”‘nfractional’” == ””) {
/* round up to a whole number */
scalar ‘E’ = ceil(‘E’)
scalar ‘N1’ = ceil(‘N1’)
scalar ‘N2’ = ceil(‘N2’)
scalar ‘N’ = ‘N1’ + ‘N2’

}

/* return stored results */
return scalar E = ‘E’
return scalar N = ‘N’
return scalar N1 = ‘N1’
return scalar N2 = ‘N2’
return scalar hratio = ‘hratio’
return scalar hr0 = ‘hr0’
return scalar nratio = ‘nratio’
return scalar s1 = ‘s1’
return scalar s2 = ‘s2’
return scalar Pr_E = ‘prE’
return scalar Pr_w = ‘wdprob’
return scalar alpha = ‘alpha’
return scalar power = ‘power’
return scalar nfractional = (”‘nfractional’” != ””)
return local direction = cond(‘Dratio’ > 1, ”upper”, ”lower”)
return local endpoint = ”survival”

end

While this program is considerably more complicated than our previous program,

power cmd myztest, it contains the same three basic parts: it starts by parsing the syntax, then it

calculates the sample size, and finally it returns the stored results. The three sections work as follows:

Parse: The power cmd superlogrank program accepts four common gsdesign designopts

(onesided, alpha(), power(), and nfractional), as well as several of its own options.

To match the syntax of power logrank, program power cmd superlogrank reads the sur-

vival probability of the control group as an argument (before the comma) rather than as an

option. The syntax is parsed with the syntax command and checked for validity.

https://www.stata.com/manuals/adaptgsdesignusermethod.pdf#adaptgsdesignusermethodRemarksandexamplesmyztest
https://www.stata.com/manuals/adaptgsdesignusermethod.pdf#adaptgsdesignusermethodSyntaxsntx_designopts

gsdesign usermethod — Add your own methods to the gsdesign command 16

Compute: The required number of events (failures) is calculated and stored in temporary scalar ‘E’,
and the control-group sample size, experimental-group sample size, and total sample size are

calculated and stored in temporary scalars ‘N1’, ‘N2’, and ‘N’, respectively. Additional

temporary scalars hold the probability of survival in the experimental group (‘s2’) and the
overall probability of failure (‘prE’).

Return: The design parameters specified to power cmd superlogrank are returned as scalars, as are
indicators that a one-sided test was conducted and that the fractional sample size was calcu-

lated. The overall sample size is returned as r(N). By returning the control- and experimental-
group sample sizes as r(N1) and r(N2), power cmd superlogrank tells gsdesign that

method superlogrank performs a two-sample test.

Because local macro r(endpoint) is returned as ”survival”, gsdesign will recognize

superlogrank as a survival method and know to look for returned results r(E), r(Pr E),
r(s1), r(s2), and r(Pr w). Additionally, gsdesign will know the direction of the one-

sided test because power cmd superlogrank stores local macro r(direction) as either

”upper” or ”lower”.

Any user-defined method for gsdesign is, by design, also a user-defined method for the power com-

mand. This enables us to perform a simple sanity check of our new program: if superlogrank is used

as a power method and option hr0() is left at its default value of 1, it should yield the same sample size
as power logrank with the same options. For this sanity check, we arbitrarily choose a control-group

survival probability of 83%, hazard ratio of 0.8, withdrawal probability of 12%, significance level of

2.5% for a one-sided test using the Schoenfeld method, and power of 90%, and we allocate 1.5 times as

many participants to the experimental arm as to the control arm. We verify:

gsdesign usermethod — Add your own methods to the gsdesign command 17

. power logrank 0.83, hratio(0.8) wdprob(0.12) nratio(1.5) schoenfeld
> onesided alpha(0.025) power(0.9)
Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Schoenfeld method
H0: ln(HR) = 0 versus Ha: ln(HR) < 0
Study parameters:

alpha = 0.0250
power = 0.9000
delta = -0.2231 (log hazard-ratio)

hratio = 0.8000
N2/N1 = 1.5000

Censoring and withdrawal:
s1 = 0.8300
s2 = 0.8615

Pr_E = 0.1511
Pr_w = 0.1200

Estimated number of events and sample sizes:
E = 880
N = 6,614

N1 = 2,646
N2 = 3,968

N2/N1 = 1.4996
. power superlogrank 0.83, hratio(0.8) wdprob(0.12) nratio(1.5) schoenfeld
> onesided alpha(0.025) power(0.9)
Estimated sample sizes
One-sided test

alpha power N

.025 .9 6,614

The output of power superlogrank is stark compared with the detailed output of power logrank,
but the sample-size calculation is identical. The output of power superlogrank can be improved

through the addition of an initializer or parser, but the functionality of gsdesign superlogrank does

not require an initializer or parser.

Returning to the design of the PROFISCOV trial, Palacios et al. (2020) report that the study was de-

signed to have 90% power with a one-sided significance level of 2.5%, and it used error-spending

Hwang–Shih–de Cani efficacy and futility bounds with parameter 𝛾𝑒 = 𝛾𝑓 = −4 and a single in-

terim look once 40% of the total number of events had been observed. We assume that all participants

in the clinical trial will be followed until they develop symptomatic COVID-19, so we omit the command

argument specifying the control-group survival probability. Using a hazard ratio of 0.7 under the null

hypothesis and 0.4 under the alternative hypothesis, we calculate the stopping boundaries and sample

sizes using gsdesign superlogrank.

https://www.stata.com/manuals/adaptgsdesignusermethod.pdf#adaptgsdesignusermethodRemarksandexamplesinitparse

gsdesign usermethod — Add your own methods to the gsdesign command 18

. gsdesign superlogrank, hratio(0.4) hr0(0.7) onesided alpha(0.025) power(0.9)
> efficacy(hsdecani(-4)) futility(hsdecani(-4)) information(0.4 1)
Group sequential design for superlogrank
One-sided test
Efficacy: Error-spending Hwang--Shih--de Cani, gamma = -4.0000
Futility: Error-spending Hwang--Shih--de Cani, nonbinding, gamma = -4.0000
Study parameters:

alpha = 0.0250 (lower one-sided)
power = 0.9000

Censoring:
s1 = 0.0000
s2 = 0.0000

Pr_E = 1.0000
Expected number of events:

H0 = 113.41
Ha = 126.11

Info. ratio = 1.0142
E fixed = 142
N fixed = 142

N max = 144
N1 max = 72
N2 max = 72

Fixed-study crit. value = -1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Futility Events
Look frac. Lower p-value Upper p-value E

1 0.40 -2.9037 0.0018 0.3739 0.6457 58
2 1.00 -1.9753 0.0241 -1.9753 0.0241 144

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.

gsdesign begins by displaying the study parameters and, because it knows that superlogrank is a

survival method, details about censoring.

The next section of the output displays the expected number of events, which is the average number

of events if the group sequential trial were to be repeated many times. The following section reports the

information ratio, the sample size for a fixed study with an equivalent significance level and power (N
fixed), the maximum sample size of the GSD (N max), and the maximum sample sizes for each group

(N1 max and N2 max). The information ratio is the ratio of the number of failures at the final look of the
GSD to the number of failures in a fixed study design.

In this case, the maximum sample size is the same as themaximum number of events because we omit-

ted information about censoring, so gsdesign superlogrank assumes that all participants are followed

until they contract symptomatic COVID-19.

The table at the end of the output displays the stopping boundaries and sample sizes at each look,

where sample size is reported as the number of events observed. Boundary critical values are reported

on the 𝑧 scale and are designed to be compared against the 𝑧 statistic from a log-rank test for substantial

superiority.

https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_maxss

gsdesign usermethod — Add your own methods to the gsdesign command 19

Graphing boundaries

It is unrealistic to assume, aswe did above, that all participants in the clinical trial will be followed until

they develop symptomatic COVID-19. Here we assume that only 1% of participants in the control group

develop symptomatic COVID-19 during the follow-up period, and we assume that 10% of all participants

withdraw from the study before contracting COVID-19. We leave the rest of the design parameters at their

previous values, but we add gsdesign option graphbounds to display the boundaries visually.

. gsdesign superlogrank 0.99, hratio(0.4) hr0(0.7) wdprob(0.1) onesided
> alpha(0.025) power(0.9) efficacy(hsdecani(-4))
> futility(hsdecani(-4)) information(0.4 1) graphbounds
Group sequential design for superlogrank
One-sided test
Efficacy: Error-spending Hwang--Shih--de Cani, gamma = -4.0000
Futility: Error-spending Hwang--Shih--de Cani, nonbinding, gamma = -4.0000
Study parameters:

alpha = 0.0250 (lower one-sided)
power = 0.9000

Censoring and withdrawal:
s1 = 0.9900
s2 = 0.9960

Pr_E = 0.0070
Pr_w = 0.1000

Expected number of events:
H0 = 113.41
Ha = 126.11

Info. ratio = 1.0142
E fixed = 142
N fixed = 22,404

N max = 22,722
N1 max = 11,361
N2 max = 11,361

Fixed-study crit. value = -1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Futility Events
Look frac. Lower p-value Upper p-value E

1 0.40 -2.9037 0.0018 0.3739 0.6457 58
2 1.00 -1.9753 0.0241 -1.9753 0.0241 144

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.

gsdesign usermethod — Add your own methods to the gsdesign command 20

-3.5

-3

-2.5

-2

-1.5

-1

-.5

.5

1

0

z-
va

lu
e

20 40 60 80 100 120 140 1600
Events

Stop for efficacy
(reject H0)
Stop for futility
(accept H0)
Continue
Efficacy
Futility
Fixed-study
critical value

Parameters: α = .025 (one-sided), 1-β = .9, γe = -4, γf = -4

Error-spending Hwang–Shih–de Cani efficacy & nonbinding futility

Group sequential design for a superlogrank test

Figure 2. Log-rank test for substantial superiority with efficacy and futility bounds

The required number of events is unchanged from its previous value, but incorporating information

about censoring has increased the number of participants we need in order to observe those failures. After

taking into account participant withdrawal as well as administrative censoring, we anticipate requiring

22,722 participants to observe 144 failures.

Examining the graph, we see that the entire region from 0 to 58 events is shaded green, the color of the

continuation region. This is because the data have not yet been analyzed, so the trial cannot be stopped.

The first look will be conducted once 58 participants have contracted symptomatic COVID-19, and a log-

rank test for substantial superiority will be performed. If the test statistic, 𝑧1, is ≤ −2.904, we say that

𝑧1 lies in the rejection region (shaded blue on the graph) and we reject 𝐻0, terminating the trial early due

to treatment efficacy. If 𝑧1 > 0.374, it lies in the acceptance region and we can accept 𝐻0, terminating

the trial early for futility. Because the futility bound is nonbinding, if we continue the trial despite 𝑧1
crossing the futility bound, the familywise type I error is still controlled. If −2.904 < 𝑧1 ≤ 0.374, we

say that 𝑧1 lies in the continuation region, and the trial must proceed to the second and final look.

At the final look, there is no continuation region; the futility critical value equals the efficacy critical

value of −1.975, so 𝐻0 must be rejected or accepted. While accepting the null hypothesis is taboo in

many disciplines, it has a long history in the context of sequential trials (see Origins of GSD for a history

of GSDs). If test statistic 𝑧2 ≤ −1.975, we reject 𝐻0; if 𝑧2 > −1.975, we accept 𝐻0.

Initializer and parser
The initializer and parser are optional s-class programs named power cmd usermethod init and

power cmd usermethod parse, respectively. Initializers and parsers are more important for user-

defined power commands than for user-defined gsdesign commands, but they can still be useful tools

to customize the output and graphs produced by gsdesign.

https://www.stata.com/manuals/adaptgsdintro.pdf#adaptGSDintroRemarksandexamplesOriginsofGSD
https://www.stata.com/manuals/pprogram.pdf#pprogram
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethod

gsdesign usermethod — Add your own methods to the gsdesign command 21

The option to provide both an initializer and a parser is provided as a convenience to the user, but in

practice only one is ever needed because the s() returned values can be set by either an initializer or a

parser. In fact, it is generally counterproductive to use both an initializer and a parser because the s()
returned values are collected by gsdesign (or by power, in the case of power usermethod) after first

running the parser and then the initializer. This means that if the initializer executes sreturn clear, it
will clear any s() returned values set by the parser.

The difference between the initializer and the parser is that the parser is executedwith all the arguments

and options specified to gsdesign (or to power, in the case of power usermethod), while only options

are passed to the initializer, not arguments. This is done to enable the parser to parse the full command

specification (instead of the evaluator program), should you so desire. A side effect is that a parser can

be more useful than an initializer if your user-defined method accepts arguments as well as options.

Using an initializer and parser

Using our user-defined method superlogrank as an example, we define a parser,

power cmd superlogrank parse, to set s() results and customize the output and graph pro-

duced by gsdesign superlogrank. We choose a parser over an initializer because program

power cmd superlogrank accepts the control-group survival probability as an argument (before the

comma), not an option, so it will only be passed to a parser, not an initializer. We write our parser and

save it as power cmd superlogrank parse.ado.
program power_cmd_superlogrank_parse, sclass

version 19.5 // (or version 19 if you do not have StataNow)

/* parse relevant syntax */
syntax [anything(name=s1)] ///

, [WDProb(string) ///
NRATio(string) ///
SCHoenfeld ///
* /// asterisk (*) captures all other options

]

/* identify parameters to display */
local diparam hratio hr0
local grparam HR{sub:a} HR{sub:0}
if (‘”‘nratio’”’ != ””) {

local diparam ‘diparam’ nratio
local grparam ‘grparam’ N{sub:2}/N{sub:1}

}
if (‘”‘s1’”’ != ””) {

local diparam ‘diparam’ s1 s2 Pr_E
local grparam ‘grparam’ S{sub:1}(T) S{sub:2}(T) p{sub:E}

}
if (‘”‘wdprob’”’ != ””) {

local diparam ‘diparam’ Pr_w
local grparam ‘grparam’ p{sub:w}

}

https://www.stata.com/manuals/adaptgsdesignusermethod.pdf#adaptgsdesignusermethodRemarksandexamplesinitset
https://www.stata.com/manuals/adaptgsdesignusermethod.pdf#adaptgsdesignusermethodRemarksandexamplessuperlogrank

gsdesign usermethod — Add your own methods to the gsdesign command 22

/* return stored results */
sreturn clear
local suptest = ”Log-rank test for substantial superiority”
local testtype = cond(”‘schoenfeld’” == ””, ”Freedman”, ”Schoenfeld”)
sreturn local pss_subtitle = ”‘suptest’, ‘testtype’ method”
sreturn local pss_title ”for two-sample comparison of survivor functions”
sreturn local pss_colnames ‘diparam’
sreturn local pss_colgrsymbols ‘grparam’

end

We rerun the same gsdesign superlogrank command specification as before, but this time the

parser sets s-class returned values to customize the output and graph.

. gsdesign superlogrank 0.99, hratio(0.4) hr0(0.7) wdprob(0.1) onesided
> alpha(0.025) power(0.9) efficacy(hsdecani(-4))
> futility(hsdecani(-4)) information(0.4 1) graphbounds
Group sequential design for two-sample comparison of survivor functions
Log-rank test for substantial superiority, Freedman method
Efficacy: Error-spending Hwang--Shih--de Cani, gamma = -4.0000
Futility: Error-spending Hwang--Shih--de Cani, nonbinding, gamma = -4.0000
Study parameters:

alpha = 0.0250 (lower one-sided)
power = 0.9000

hratio = 0.4000
hr0 = 0.7000

Censoring and withdrawal:
s1 = 0.9900
s2 = 0.9960

Pr_E = 0.0070
Pr_w = 0.1000

Expected number of events:
H0 = 113.41
Ha = 126.11

Info. ratio = 1.0142
E fixed = 142
N fixed = 22,404

N max = 22,722
N1 max = 11,361
N2 max = 11,361

Fixed-study crit. value = -1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Futility Events
Look frac. Lower p-value Upper p-value E

1 0.40 -2.9037 0.0018 0.3739 0.6457 58
2 1.00 -1.9753 0.0241 -1.9753 0.0241 144

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.

https://www.stata.com/manuals/adaptgsdesignusermethod.pdf#adaptgsdesignusermethodRemarksandexamplessuperlogrank_graph

gsdesign usermethod — Add your own methods to the gsdesign command 23

-3.5

-3

-2.5

-2

-1.5

-1

-.5

.5

1

0

z-
va

lu
e

20 40 60 80 100 120 140 1600
Events

Stop for efficacy
(reject H0)
Stop for futility
(accept H0)
Continue
Efficacy
Futility
Fixed-study
critical value

Parameters: α = .025 (one-sided), HRa = .4, HR0 = .7, S1(T) = .99, S2(T) = 1, pE = .007,
 pw = .1, 1-β = .9, γe = -4, γf = -4

Error-spending Hwang–Shih–de Cani efficacy & nonbinding futility

Group sequential design for a superlogrank test

Figure 3. Customized graph of log-rank test for substantial superiority

With the addition of the parser, gsdesign superlogrank displays the values of study parameters

hratio and hr0. Also, our additional parameters and their custom symbols now appear in the “Param-

eters:” note on the graph.

Initializer’s s() return settings

The following s() results may be set by the initializer or parser. See [PSS-2] power usermethod for

more details.

Macros

s(pss samples) onesample for a one-sample test or twosample for a two-sample test

s(pss colnames) columns to be added to the default supported columns

s(pss allcolnames) all supported columns

s(pss tabcolnames) columns to be added to the default table

s(pss alltabcolnames) all columns to be displayed in the default table

s(pss collabels) labels for the specified columns

s(pss colformats) formats for the specified columns

s(pss colwidths) widths for the specified columns

s(pss colgrlabels) labels to be used to label columns on the graph

s(pss colgrsymbols) symbols to be used to label columns on the graph

s(pss delta) column name containing the effect-size parameter

s(pss target) column name containing the target parameter

s(pss targetlabel) label for the target parameter

s(pss argnames) column names containing command arguments

s(pss title) method-specific title

s(pss subtitle) subtitle

s(pss hyp lhs) left-hand-side parameter or value for the hypothesis

s(pss hyp rhs) right-hand-side parameter or value for the hypothesis

s(pss grhyp lhs) left-hand-side parameter or value for the hypothesis on the graph

s(pss grhyp rhs) right-hand-side parameter or value for the hypothesis on the graph

https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplesinitializer
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplesparser
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethod
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_samples
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_colnames
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_allcolnames
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_tabcolnames
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_alltabcolnames
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_collabels
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_colformats
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_colwidths
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_colgrlabels
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_colgrsymbols
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_delta
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_target
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_targetlabel
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_argnames
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_title
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_subtitle
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_hyp_lhs
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_hyp_rhs
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_grhyp_lhs
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_grhyp_rhs

gsdesign usermethod — Add your own methods to the gsdesign command 24

Stored results
Stored results include those stored by the user-defined method and the standard results from

gsdesign; see Stored results in [ADAPT] gsdesign.

References
Hwang, I. K., W. J. Shih, and J. S. de Cani. 1990. Group sequential designs using a family of type I error probability

spending functions. Statistics in Medicine 9: 1439–1445. https://doi.org/10.1002/sim.4780091207.

Julious, S. A. 2010. Sample Sizes for Clinical Trials. Boca Raton, FL: Chapman and Hall/CRC. https://doi.org/10.1201/

9781584887409.

Kim, K., and D. L. DeMets. 1987. Design and analysis of group sequential tests based on the type I error spending rate

function. Biometrika 74: 149–154. https://doi.org/10.1093/biomet/74.1.149.

Lan, K. K. G., and D. L. DeMets. 1983. Discrete sequential boundaries for clinical trials. Biometrika 70: 659–663.

https://doi.org/10.1093/biomet/70.3.659.

O’Brien, P. C., and T. R. Fleming. 1979. A multiple testing procedure for clinical trials. Biometrics 35: 549–556. https:

//doi.org/10.2307/2530245.

Palacios, R., E. G. Patiño, R. de Oliveira Piorelli, M. T. R. P. Conde, A. P. Batista, G. Zeng, Q. Xin, E. G. Kallas,

J. Flores, C. F. Ockenhouse, and C. Gast. 2020. Double-blind, randomized, placebo-controlled phase III clinical trial to

evaluate the efficacy and safety of treating healthcare professionals with the adsorbed COVID-19 (inactivated) vaccine

manufactured by Sinovac—PROFISCOV:A structured summary of a study protocol for a randomised controlled trial.

Trials 21: 853. https://doi.org/10.1186/s13063-020-04775-4.

Pitblado, J. S., B. P. Poi, and W. W. Gould. 2024. Maximum Likelihood Estimation with Stata. 5th ed. College Station,

TX: Stata Press.

Pocock, S. J. 1977. Group sequential methods in the design and analysis of clinical trials. Biometrika 64: 191–199.

https://doi.org/10.1093/biomet/64.2.191.

Wang, S. K., and A. A. Tsiatis. 1987. Approximately optimal one-parameter boundaries for group sequential trials. Bio-

metrics 43: 193–199. https://doi.org/10.2307/2531959.

Also see
[ADAPT] GSD intro — Introduction to group sequential designs

[ADAPT] gs — Introduction to commands for group sequential design

[ADAPT] gsbounds — Boundaries for group sequential trials

[ADAPT] gsdesign — Study design for group sequential trials

[ADAPT] Glossary

[PSS-2] power usermethod —Add your own methods to the power command

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/adaptgsdesign.pdf#adaptgsdesignStoredresults
https://www.stata.com/manuals/adaptgsdesign.pdf#adaptgsdesign
https://doi.org/10.1002/sim.4780091207
https://doi.org/10.1201/9781584887409
https://doi.org/10.1201/9781584887409
https://doi.org/10.1093/biomet/74.1.149
https://doi.org/10.1093/biomet/70.3.659
https://doi.org/10.2307/2530245
https://doi.org/10.2307/2530245
https://doi.org/10.1186/s13063-020-04775-4
https://www.stata-press.com/books/maximum-likelihood-estimation-stata/
https://doi.org/10.1093/biomet/64.2.191
https://doi.org/10.2307/2531959
https://www.stata.com/manuals/adaptgsdintro.pdf#adaptGSDintro
https://www.stata.com/manuals/adaptgs.pdf#adaptgs
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsbounds
https://www.stata.com/manuals/adaptgsdesign.pdf#adaptgsdesign
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossary
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethod
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

