
gsdesign logrank — Group sequential design for a log-rank test

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
gsdesign logrank computes stopping boundaries and sample sizes for interim analyses of group

sequential clinical trials performing survival analysis by using a log-rank test to compare survivor func-

tions. Stopping can be for efficacy, futility, or both. For stopping boundary calculations without sample

sizes, see [ADAPT] gsbounds. For sample-size calculations for a fixed-sample study using a log-rank

test, see [PSS-2] power logrank.

Quick start
Sample size and stopping boundaries for the log-rank test of 𝐻0 ∶ hazard ratio Δ = 1 versus two-sided

alternative 𝐻𝑎 ∶ Δ ≠ 1, with default familywise significance level 𝛼 = 0.05 and power of 0.8 to

detect a hazard ratio of Δ𝑎 = 0.737 without censoring, using default group sequential specifications

of O’Brien–Fleming efficacy boundaries with two analyses (one interim, one final)

gsdesign logrank, hratio(0.737)

Same as above, specified as a log hazard-ratio of −0.305

gsdesign logrank, lnhratio(-0.305)

Same as above, but use Schoenfeld’s sample-size calculation instead of the default Freedman method

gsdesign logrank, lnhratio(-0.305) schoenfeld

Sample size for censored design with survival probabilities surv1 = 0.5 and surv2 = 0.6, using a

Kim–DeMets efficacy boundary with parameter 𝜌𝑒 = 3 and analyses at 50%, 75%, and 100% of

the total data

gsdesign logrank 0.5 0.6, efficacy(kdemets(3)) information(50 75 100)

Same as above, specified as surv1 = 0.5 and hazard ratio of 0.737

gsdesign logrank 0.5, hratio(0.737) efficacy(kdemets(3)) ///
information(50 75 100)

Same as above, but add a binding O’Brien–Fleming-style futility bound

gsdesign logrank 0.5, hratio(0.737) efficacy(kdemets(3)) ///
futility(errobfleming, binding) information(50 75 100)

Same as above, but report fractional sample sizes and graph the boundaries

gsdesign logrank 0.5, hratio(0.737) nfractional efficacy(kdemets(3)) ///
futility(errobfleming, binding) information(50 75 100) ///
graphbounds
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Menu
Statistics > Power, precision, and sample size

Syntax
gsdesign logrank [ surv1 [ surv2 ] ] [ , logrankopts boundopts ]

where surv1 is the survival probability in the control (reference) group at the end of the study, and surv2
is the survival probability in the experimental (treatment) group at the end of the study.

logrankopts Description

Main

alpha(#) overall significance level for all tests; default is alpha(0.05)
power(#) overall power for all tests; default is power(0.8)
beta(#) overall probability of type II error for all tests;

default is beta(0.2)
onesided request a one-sided test; default is two-sided

nfractional report fractional sample size

nratio(#) ratio of sample sizes of experimental to control groups;
default is nratio(1), meaning equal group sizes

hratio(#) hazard ratio of the experimental to the control group; default
is hratio(0.5); may not be combined with lnhratio()

lnhratio(#) log hazard-ratio of the experimental to the control group;
may not be combined with hratio()

schoenfeld use the formula based on the log hazard-ratio in calculations;
default is to use the formula based on the hazard ratio

effect(effect) type of effect to display; default is effect(hratio) unless
option schoenfeld is specified, in which case it is
effect(lnhratio)

Censoring

simpson(# # # |matname) survival probabilities in the control group at three specific time
points to compute the probability of an event (failure), using
Simpson’s rule under uniform accrual

st1(varname𝑠 varname𝑡) variables varname𝑠, containing survival probabilities in the control
group, and varname𝑡, containing respective time points, to
compute the probability of an event (failure), using numerical
integration under uniform accrual

wdprob(#) proportion of subjects anticipated to withdraw from the study;
default is wdprob(0)

force allow calculation with unsupported power logrank options

collect is allowed; see [U] 11.1.10 Prefix commands.

force does not appear in the dialog box.

https://www.stata.com/manuals/adaptgsdesignlogrank.pdf#adaptgsdesignlogrankSyntaxsntx_logrankopts
https://www.stata.com/manuals/adaptgsdesignlogrank.pdf#adaptgsdesignlogrankSyntaxsntx_boundopts
https://www.stata.com/manuals/adaptgsdesignlogrank.pdf#adaptgsdesignlogrankSyntaxsntx_effectspec
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/pss-2powerlogrank.pdf#pss-2powerlogrankSyntaxoptions
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
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effect Description

hratio hazard ratio

lnhratio log hazard-ratio

boundopts Description

Bounds

efficacy(boundary) boundary for efficacy stopping; if neither efficacy()
nor futility() is specified, the default is
efficacy(obfleming)

futility(boundary[ , binding ]) boundary for futility stopping; use binding to request
binding futility bounds (default is nonbinding)

nlooks(#[ , equal ]) total number of analyses (nlooks() − 1 interim analyses
and one final analysis); use equal to enforce equal
information increments; if neither nlooks() nor
information() is specified, the default is nlooks(2)

information(numlist) sequence of information levels for analyses;
default is evenly spaced

nopvalues suppress 𝑝-values

Graph

graphbounds[ (graphopts) ] graph boundaries

matlistopts(general options) control the display of boundaries and sample size;
seldom used

optimopts optimization options for boundary calculations; seldom used

matlistopts() and optimopts do not appear in the dialog box.

boundary Description

obfleming classical O’Brien–Fleming bound

pocock classical Pocock bound

wtsiatis(#) classical Wang–Tsiatis bound with specified parameter value

errpocock error-spending Pocock-style bound

errobfleming error-spending O’Brien–Fleming-style bound

kdemets(#) error-spending Kim–DeMets bound with specified parameter value

hsdecani(#) error-spending Hwang–Shih–de Cani bound with specified parameter value

https://www.stata.com/manuals/adapt.pdf#adaptgsdesignlogrankSyntaxsntx_boundproc
https://www.stata.com/manuals/adapt.pdf#adaptgsdesignlogrankSyntaxsntx_boundproc
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/adapt.pdf#adaptgsdesignlogrankSyntaxsntx_graphopts
https://www.stata.com/manuals/pmatlist.pdf#pmatlistSyntaxgeneral_options
https://www.stata.com/manuals/adapt.pdf#adaptgsdesignlogrankSyntaxsntx_optimopts
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graphopts Description

xdimsampsize label the 𝑥 axis with the sample size collected (default)

xdiminformation label the 𝑥 axis with the information fraction;
use information levels if information() specified

xdimlooks label the 𝑥 axis with the number of each look

noshade do not shade the rejection, acceptance, and continuation
regions

rejectopts(area options) change the appearance of the rejection region

acceptopts(area options) change the appearance of the acceptance region

continueopts(area options) change the appearance of the continuation region

efficacyopts(connected options) change the appearance of the efficacy bound

futilityopts(connected options) change the appearance of the futility bound

nolooklines do not draw vertical reference lines at each look

looklinesopts(added line suboptions) change the appearance of the reference lines
marking each look

nofixed do not label critical values from a fixed study design

fixedopts(marker options) change the appearance of the fixed-study critical values

twoway options any options other than by() documented in
[G-3] twoway options

optimopts Description

intpointsscale(#) scaling factor for number of quadrature points;
default is intpointsscale(20)

initinfo(initinfo spec) initial value(s) for maximum information

initscale(#) initial value for scaling factor 𝐶 of classical bounds

infotolerance(#) tolerance for bisection search for maximum information of error-
spending bounds with futility stopping; default is infotol(1e-6)

marquardt use the Marquardt stepping algorithm in nonconcave regions;
default is to use a mixture of steepest descent and Newton

technique(algorithm spec) maximization technique

iterate(#) perform maximum of # iterations; default is iterate(300)
[ no ]log display an iteration log; default is nolog
trace display current parameter vector in iteration log

gradient display current gradient vector in iteration log

showstep report steps within an iteration in iteration log

hessian display current negative Hessian matrix in iteration log

showtolerance report the calculated result that is compared with the effective
convergence criterion

tolerance(#) tolerance for the parameter being optimized;
default is tolerance(1e-12)

ftolerance(#) tolerance for the objective function;
default is ftolerance(1e-10)

nrtolerance(#) tolerance for the scaled gradient;
default is nrtolerance(1e-16)

nonrtolerance ignore the nrtolerance() option

https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/adapt.pdf#adaptgsdesignlogrankOptionsopt_graphopts
https://www.stata.com/manuals/adapt.pdf#adaptgsdesignlogrankOptionsopt_graphopts
https://www.stata.com/manuals/g-3added_line_options.pdf#g-3added_line_optionsOptionsSuboptions
https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_optionsSyntax
https://www.stata.com/manuals/g-3twoway_options.pdf#g-3twoway_options
https://www.stata.com/manuals/adapt.pdf#adaptgsdesignlogrankOptionsopt_optim_initinfo
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_maxinfo
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_scaleC
https://www.stata.com/manuals/adapt.pdf#adaptgsdesignlogrankOptionsopt_optim_tech
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Options� � �
Main �

alpha(#) sets the overall significance level, which is the familywise type I error rate for all analyses

(interim and final). alpha() must be in (0, 0.5). The default is alpha(0.05).

power(#) sets the overall power for all analyses. power() must be in (0.5, 1). The default is

power(0.8). If beta() is specified, power() is set to be 1 − beta(). Only one of power() or

beta() may be specified.

beta(#) sets the overall probability of a type II error. beta() must be in (0, 0.5). The default is

beta(0.2). If power() is specified, beta() is set to be 1 − power(). Only one of beta() or

power() may be specified.

onesided requests a study design for a one-sided test. The direction of the test is inferred from the effect

size.

nfractional specifies that fractional sample sizes be reported.

nratio(#) specifies the sample-size ratio of the experimental group relative to the control group,

𝑁2/𝑁1. The default is nratio(1), meaning equal allocation between the two groups.

hratio(#) specifies the hazard ratio (effect size) of the experimental group to the control group. The

default is hratio(0.5). This value typically defines the clinically significant improvement of the

experimental procedure over the control procedure desired to be detected by the log-rank test with a

certain power.

You can specify an effect size either as a hazard ratio in hratio() or as a log hazard-ratio in

lnhratio(). The default is hratio(0.5). If both arguments surv1 and surv2 are specified,

hratio() is not allowed and the hazard ratio is instead computed as ln(surv2)/ ln(surv1).
This option may not be combined with lnhratio().

lnhratio(#) specifies the log hazard-ratio (effect size) of the experimental group to the control group.

This value typically defines the clinically significant improvement of the experimental procedure over

the control procedure desired to be detected by the log-rank test with a certain power.

You can specify an effect size either as a hazard ratio in hratio() or as a log hazard-ratio in

lnhratio(). The default is hratio(0.5). If both arguments surv1 and surv2 are specified,

lnhratio() is not allowed and the log hazard-ratio is computed as ln{ ln(surv2)/ ln(surv1)}.
This option may not be combined with hratio().

schoenfeld requests calculations using the formula based on the log hazard-ratio, according to Schoen-

feld (1981). The default is to use the formula based on the hazard ratio, according to Freedman (1982).

See the technical note in [PSS-2] power logrank for a comparison of the two formulas.

effect(effect) specifies the type of effect size to be reported in the output as delta. effect is one

of hratio or lnhratio. By default, the effect size delta is a hazard ratio, effect(hratio),
for a hazard-ratio test and a log hazard-ratio, effect(lnhratio), for a log hazard-ratio test (when
schoenfeld is specified).

� � �
Censoring �

simpson(# # # |matname) specifies survival probabilities in the control group at three specific time

points to compute the probability of an event (failure) using Simpson’s rule under the assumption of

uniform accrual. Either the actual values or a 1 × 3 matrix, matname, containing these values can

https://www.stata.com/manuals/pss-2powerlogrank.pdf#pss-2powerlogrankRemarksandexamplesex2
https://www.stata.com/manuals/pss-2powerlogrank.pdf#pss-2powerlogrank
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be specified. By default, the probability of an event is approximated as an average of the failure

probabilities 1−𝑠1 and 1−𝑠2; see Methods and formulas in [PSS-2] power logrank. simpson() may

not be combined with st1() and may not be used if command argument surv1 or surv2 is specified.

st1(varname𝑠 varname𝑡) specifies variables varname𝑠, containing survival probabilities in the con-

trol group, and varname𝑡, containing respective time points, to compute the probability of an event

(failure) using numerical integration under the assumption of uniform accrual; see [R] dydx. The

minimum and the maximum values of varname𝑡 must be the length of the follow-up period and the

duration of the study, respectively. By default, the probability of an event is approximated as an aver-

age of the failure probabilities 1−𝑠1 and 1−𝑠2; see Methods and formulas in [PSS-2] power logrank.

st1() may not be combined with simpson() and may not be used if command argument surv1 or

surv2 is specified.

wdprob(#) specifies the proportion of subjects anticipated to withdraw from the study. The default is

wdprob(0).

� � �
Bounds �

efficacy(boundary) specifies the boundary for efficacy stopping. If neither efficacy() nor

futility() is specified, the default is efficacy(obfleming).

futility(boundary[ , binding ]) specifies the boundary for futility stopping.

binding specifies binding futility bounds. With binding futility bounds, if the result of an interim

analysis crosses the futility boundary and lies in the acceptance region, the trial must end or risk

overrunning the specified type I error. With nonbinding futility bounds, the trial does not need to

stop if the result of an interim analysis crosses the futility boundary; the familywise type I error

rate is controlled even if the trial continues. By default, futility bounds are nonbinding.

nlooks(# [ , equal ]) specifies the total number of analyses to be performed (nlooks() − 1 interim

analyses and one final analysis). If neither nlooks() nor information() is specified, the default is

nlooks(2).

equal indicates that equal information increments be enforced, which is to say that the same number

of new observations will be collected at each look. The default behavior is to start by dividing

information evenly among looks, then proceed by rounding up to a whole number of observations

at each look. This can cause slight differences in the information collected at each look.

information(numlist) specifies a sequence of information levels for interim and final analyses. This

must be a sequence of increasing positive numbers, but the scale is unimportant because the infor-

mation sequence will be automatically rescaled to ensure the maximum information is reached at the

final look. By default, analyses are evenly spaced.

nopvalues suppresses the 𝑝-values from being reported in the table of boundaries for each look.

� � �
Graph �

graphbounds and graphbounds(graphopts) produce graphical output showing the stopping bound-

aries.

graphopts are the following:

xdimsampsize labels the 𝑥 axis with the sample size collected (the default).

xdiminformation labels the 𝑥 axis with the information fraction unless information() is spec-
ified, in which case information levels will be used.

xdimlooks labels the 𝑥 axis with the number of each look.

https://www.stata.com/manuals/pss-2powerlogrank.pdf#pss-2powerlogrankMethodsandformulas
https://www.stata.com/manuals/pss-2powerlogrank.pdf#pss-2powerlogrank
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rdydx.pdf#rdydx
https://www.stata.com/manuals/pss-2powerlogrank.pdf#pss-2powerlogrankMethodsandformulas
https://www.stata.com/manuals/pss-2powerlogrank.pdf#pss-2powerlogrank
https://www.stata.com/manuals/adapt.pdf#adaptgsdesignlogrankOptionsopt_boundproc
https://www.stata.com/manuals/adapt.pdf#adaptgsdesignlogrankOptionsopt_boundproc
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_maxinfo
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noshade suppresses shading of the rejection, acceptance, and continuation regions of the graph.

rejectopts(area options) affects the rendition of the rejection region. See

[G-3] area options.

acceptopts(area options) affects the rendition of the acceptance region. See

[G-3] area options.

continueopts(area options) affects the rendition of the continuation region. See

[G-3] area options.

efficacyopts(connected options) affects the rendition of the efficacy bound. See

[G-3] cline options and [G-3] marker options.

futilityopts(connected options) affects the rendition of the futility bound. See

[G-3] cline options and [G-3] marker options.

nolooklines suppresses the vertical reference lines drawn at each look.

looklinesopts(added line suboptions) affects the rendition of reference lines marking each

look. See suboptions in [G-3] added line options.

nofixed suppresses the fixed-study critical values in the plot.

fixedopts(marker options) affects the rendition of the fixed-study critical values. See

[G-3] marker options.

twoway options are any of the options documented in [G-3] twoway options, excluding by().
These include options for titling the graph (see [G-3] title options) and for saving the graph to

disk (see [G-3] saving option).

The following options are available with gsdesign logrank but are not shown in the dialog box:

force indicates that gsdesign logrank should allow unsupported power logrank options, such as

options specifying a cluster randomized design. Even with option force, the power logrank options
specified must be compatible with sample-size determination, not effect size or power calculation. In

addition, numlists are not supported in options or in arguments as they are with power, even when

force is specified.

matlistopts(general options) affects the display of the matrix of boundaries and sample sizes. gen-

eral options are title(), tindent(), rowtitle(), showcoleq(), coleqonly, colorcoleq(),
aligncolnames(), and linesize(); see general options in [P]matlist. This option is seldom used.

optimopts control the iterative algorithm used to calculate stopping boundaries:

intpointsscale(#) specifies the scaling factor for the number of quadrature points used during the

numerical evaluation of stopping probabilities at each look. The default is intpointsscale(20).
See Methods and formulas in [ADAPT] gsbounds.

initinfo(initinfo spec) specifies either one or two initial values to be used in the iterative calcula-

tion of the maximum information.

The syntax initinfo(#) is applicable when using classical group sequential boundaries (Pocock

bounds, O’Brien–Fleming bounds, and Wang–Tsiatis bounds), as well as with efficacy-only

stopping when using error-spending boundaries (error-spending Pocock-style efficacy bounds,

error-spending O’Brien–Fleming-style efficacy bounds, Kim–DeMets efficacy bounds, and

Hwang–Shih–de Cani efficacy bounds). The default is to use the information from a fixed study

design; see Methods and formulas in [ADAPT] gsbounds.

https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3cline_options.pdf#g-3cline_options
https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_options
https://www.stata.com/manuals/g-3cline_options.pdf#g-3cline_options
https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_options
https://www.stata.com/manuals/g-3added_line_options.pdf#g-3added_line_optionsOptionsSuboptions
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https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_optionsSyntax
https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_options
https://www.stata.com/manuals/g-3twoway_options.pdf#g-3twoway_options
https://www.stata.com/manuals/g-3title_options.pdf#g-3title_options
https://www.stata.com/manuals/g-3saving_option.pdf#g-3saving_option
https://www.stata.com/manuals/pss-2powerlogrank.pdf#pss-2powerlogrankSyntax
https://www.stata.com/manuals/pss-2powerlogrank.pdf#pss-2powerlogrankSyntax
https://www.stata.com/manuals/pmatlist.pdf#pmatlistGeneraloptions
https://www.stata.com/manuals/pmatlist.pdf#pmatlistGeneraloptions
https://www.stata.com/manuals/pmatlist.pdf#pmatlist
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_numint
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https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_startinfo
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsbounds
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The syntax initinfo(# #) is applicable when using error-spending group sequential boundaries

with futility stopping (error-spending Pocock-style bounds, error-spending O’Brien–Fleming-

style bounds, Kim–DeMets bounds, and Hwang–Shih–de Cani bounds). With this syntax, the

first and second numbers specify the lower and upper starting values, respectively, for the bisec-

tion algorithm estimating the maximum information. The default is to use the information from a

fixed study design for the lower initial value and the information corresponding to a Bonferroni

correction for the upper initial value; see Methods and formulas in [ADAPT] gsbounds. To specify

just the lower starting value, use initinfo(# .), and to specify just the upper starting value, use
initinfo(. #).

initscale(#) specifies the initial value to be used during the iterative calculation of scaling fac-

tor 𝐶 for classical group sequential boundaries (Pocock bounds, O’Brien–Fleming bounds, and

Wang–Tsiatis bounds). The default is to use the 𝑧-value corresponding to the specified value of

alpha(). See Methods and formulas in [ADAPT] gsbounds.

infotolerance(#) specifies the tolerance for the bisection algorithm used in the itera-

tive calculation of the maximum information of error-spending group sequential boundaries

with futility stopping (error-spending Pocock-style bounds, error-spending O’Brien–Fleming-

style bounds, Kim–DeMets bounds, and Hwang–Shih–de Cani bounds). The default is

infotolerance(1e-6). See Methods and formulas in [ADAPT] gsbounds.

marquardt specifies that the optimizer should use the modified Marquardt algorithm when, at an

iteration step, it finds that 𝐻 is singular. The default is to use a mixture of steepest descent and

Newton, which is equivalent to the difficult option in [R] ml.

technique(algorithm spec) specifies how the objective function is to be maximized. The following

algorithms are allowed. For details, see Pitblado, Poi, and Gould (2024).

technique(bfgs) specifies the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

technique(nr) specifies Stata’s modified Newton–Raphson (NR) algorithm.

technique(dfp) specifies the Davidon–Fletcher–Powell (DFP) algorithm.

The default is technique(bfgs) when using classical group sequential boundaries (Pocock

bounds, O’Brien–Fleming bounds, and Wang–Tsiatis bounds) and also for the second opti-

mization step used to estimate the maximum information with efficacy-only stopping when

using error-spending boundaries (error-spending Pocock-style efficacy bounds, error-spending

O’Brien–Fleming-style efficacy bounds, Kim–DeMets efficacy bounds, and Hwang–Shih–de

Cani efficacy bounds). The default is technique(nr) for the sequential optimization steps used

to estimate critical values for error-spending boundaries. You can also switch between two al-

gorithms by specifying the technique name followed by the number of iterations. For example,

specifying technique(nr 10 bfgs 20) requests 10 iterations with the NR algorithm followed by

20 iterations with the BFGS algorithm, and then back to NR for 10 iterations, and so on. The process

continues until convergence or until the maximum number of iterations is reached.

https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_startinfo
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsbounds
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_scaleC
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_scaleC
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_scaleC
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsbounds
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_startinfo
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsbounds
https://www.stata.com/manuals/rml.pdf#rml
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iterate(#) specifies the maximum number of iterations. If convergence is not declared by the

time the number of iterations equals iterate(), an error message is issued. The default value of
iterate(#) is the number set using set maxiter, which is 300 by default.

[ no ]log requests an iteration log showing the progress of the optimization. The default is nolog.

trace adds to the iteration log a display of the current parameter vector.

gradient adds to the iteration log a display of the current gradient vector.

showstep adds to the iteration log a report on the steps within an iteration. This option was added so

that developers at StataCorp could view the stepping when they were improving the ml optimizer

code. At this point, it mainly provides entertainment.

hessian adds to the iteration log a display of the current negative Hessian matrix.

showtolerance adds to the iteration log the calculated value that is compared with the effective

convergence criterion at the end of each iteration. Until convergence is achieved, the smallest

calculated value is reported. shownrtolerance is a synonym of showtolerance.

Below, we describe the three convergence tolerances. Convergence is declared when the

nrtolerance() criterion is met and either the tolerance() or the ftolerance() criterion is also

met.

tolerance(#) specifies the tolerance for the parameter vector. When the relative change in

the parameter vector from one iteration to the next is less than or equal to tolerance(), the
tolerance() convergence criterion is satisfied. The default is tolerance(1e-12).

ftolerance(#) specifies the tolerance for the objective function. When the relative change in

the objective function from one iteration to the next is less than or equal to ftolerance(), the
ftolerance() convergence is satisfied. The default is ftolerance(1e-10).

nrtolerance(#) specifies the tolerance for the scaled gradient. Convergence is declared when

gH−1g′ < nrtolerance(). The default is nrtolerance(1e-16).

nonrtolerance specifies that the default nrtolerance() criterion be turned off.

boundary
obfleming specifies a classical O’Brien–Fleming design for efficacy or futility bounds (O’Brien and

Fleming 1979). O’Brien–Fleming efficacy bounds are characterized by being extremely conservative

at early looks. The O’Brien–Fleming design is a member of theWang–Tsiatis family and is equivalent

to specifying a boundary of wtsiatis(0).

pocock specifies a classical Pocock design for efficacy or futility bounds (Pocock 1977). Pocock efficacy
bounds are characterized by using the same critical value at all looks. The Pocock design is a member

of the Wang–Tsiatis family and is equivalent to specifying a boundary of wtsiatis(0.5).

wtsiatis(#) specifies a classical Wang–Tsiatis design for efficacy or futility bounds (Wang and Tsiatis

1987). The shape ofWang–Tsiatis bounds is determined by parameter Δ ∈ [−10, 0.7], where smaller
values of Δ yield bounds that are more conservative at early looks.

errpocock specifies an error-spending Pocock-style design for efficacy or futility bounds (Lan and

DeMets 1983). The critical values from error-spending Pocock-style bounds are very similar to those

of classic Pocock bounds, but they are obtained using an error-spending function.

https://www.stata.com/manuals/rsetiter.pdf#rsetiter
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errobfleming specifies an error-spending O’Brien–Fleming-style design for efficacy or futility bounds
(Lan and DeMets 1983). The critical values from error-spending O’Brien–Fleming-style bounds

are very similar to those of classic O’Brien–Fleming bounds, but they are obtained using an error-

spending function.

kdemets(#) specifies an error-spending Kim–DeMets design for efficacy or futility bounds (Kim and

DeMets 1987). The shape of Kim–DeMets bounds is determined by power parameter 𝜌 ∈ (0, 10],
where larger values of 𝜌 yield bounds that are more conservative at early looks.

hsdecani(#) specifies an error-spending Hwang–Shih–de Cani design for efficacy or futility bounds

(Hwang, Shih, and de Cani 1990). The shape of Hwang–Shih–de Cani bounds is determined by

parameter 𝛾 ∈ [−30, 3], where smaller values of 𝛾 yield bounds that are more conservative at early

looks.

For a design with both efficacy and futility stopping boundaries, if you specify a classical boundary

(that is, in theWang–Tsiatis family) for one, then you must specify a classical boundary for the other. So,

you could not specify a boundary in the Wang–Tsiatis family for one boundary and an error-spending

boundary for the other. When specifying efficacy and futility boundaries from the same family, the

efficacy parameter does not need to be the same as the futility parameter.

Boundaries that are conservative at early looks, such as the O’Brien–Fleming bound, offer little

chance of early stopping unless the true effect size is quite large (in the case of efficacy bounds) or quite

small (in the case of futility bounds). A trial employing a conservative bound is more likely to continue

to the final look, yielding an expected sample size that is not dramatically smaller than the sample size

required by an equivalent fixed-sample trial. However, the maximum sample size (that is, the sample

size at the final look) of a trial with a conservative bound is generally not much greater than the sample

size required by an equivalent fixed trial. Another direct result of specifying conservative bounds is that

the critical value at the final look tends to be close to the critical value employed by an equivalent fixed

design. In contrast, anticonservative boundaries such as the Pocock bound offer a much better shot at

early stopping (often yielding a small expected sample size) at the cost of a larger maximum sample size

and final critical values that are considerably larger than the critical value of an equivalent fixed design.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using gsdesign logrank
Background for examples
Computing sample size and boundaries in the absence of censoring
Computing sample size and boundaries in the presence of censoring
Computing sample size and boundaries with uniform accrual

This entry describes the use of the gsdesign logrank command for designing a group sequential

analysis for a two-sample comparison of survivor functions using the log-rank test. See [ADAPT] GSD

intro for a general introduction to group sequential designs (GSDs) for clinical trials; see [ADAPT] gs-

bounds for information about group sequential bounds; and see [ADAPT] gsdesign for information about

designing group sequential clinical trials with the gsdesign command. Also see [PSS-2] Intro (power)

for a general introduction to power and sample-size analysis, and see [PSS-2] power logrank for details

about fixed-sample study designs for a log-rank test of two survivor functions.

https://www.stata.com/manuals/adaptgsdintro.pdf#adaptGSDintro
https://www.stata.com/manuals/adaptgsdintro.pdf#adaptGSDintro
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsbounds
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsbounds
https://www.stata.com/manuals/adaptgsdesign.pdf#adaptgsdesign
https://www.stata.com/manuals/pss-2intropower.pdf#pss-2Intro(power)
https://www.stata.com/manuals/pss-2powerlogrank.pdf#pss-2powerlogrank
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Introduction
When analyzing time-to-event data, we frequently use the failure function, the survivor function, and

the hazard function, denoted 𝐹(𝑡), 𝑆(𝑡), and ℎ(𝑡), respectively. The failure function is the probability of
experiencing a failure event at or before time 𝑡. If we denote the time of failure as 𝑇, we can define the
failure function as the cumulative distribution function of 𝑇, where 𝐹(𝑡) = Pr(𝑇 ≤ 𝑡). The probability
density function of 𝑇 is the derivative of the failure function with respect to time, written as 𝑓(𝑡) =
𝜕𝐹(𝑡)/𝜕𝑡. The survivor function is defined as the probability of surviving beyond time 𝑡, expressed
mathematically as 𝑆(𝑡) = Pr(𝑇 > 𝑡) = 1− 𝐹(𝑡). The hazard function at time 𝑡 is the instantaneous rate
of failure at time 𝑡, conditional on survival until time 𝑡, written as ℎ(𝑡) = 𝑓(𝑡)/𝑆(𝑡).

Consider a survival study comparing survivor functions in two groups using the log-rank test. Let

𝑆1(𝑡) and 𝑆2(𝑡) denote the survivor functions of the control and the experimental groups, respectively.
The log-rank test is the most powerful nonparametric test of 𝑆1(⋅) = 𝑆2(⋅) if the hazard functions are

proportional. That is, ℎ2(𝑡) = Δℎ1(𝑡) for all 𝑡 or, equivalently, 𝑆2(𝑡) = {𝑆1(𝑡)}Δ, where Δ is the

hazard ratio. If Δ < 1, survival in the experimental group is higher than survival in the control group,

which means that the experimental treatment is superior to the control treatment. If Δ > 1, then the

control treatment is superior to the experimental treatment. Under the proportional-hazards assumption,

the test of the equality of the two survivor functions 𝐻0 ∶ 𝑆1(𝑡) = 𝑆2(𝑡) versus 𝐻𝑎 ∶ 𝑆1(𝑡) ≠ 𝑆2(𝑡) is
equivalent to testing 𝐻0 ∶ Δ = 1 versus 𝐻𝑎 ∶ Δ ≠ 1 or 𝐻0 ∶ ln(Δ) = 0 versus 𝐻𝑎 ∶ ln(Δ) ≠ 0.

The methods implemented in gsdesign logrank for boundary and sample-size calculations relate

the power of the log-rank test directly to the number of events observed in the study. The required

sample size is equal to the required number of events if a failure event is observed for every participant

in the trial. Often, the time of failure is not known for some participants, a phenomenon known as

censoring. Administrative censoring occurs when a trial ends before all participants have experienced a

failure event. Nonadministrative censoring occurs when participants withdraw from the study or are lost

to follow-up. If censoring occurs in the study, the required number of participants will be greater than

the required number of events. In the presence of administrative censoring or withdrawal, gsdesign
logrank requires additional information to estimate the probability that a participant’s failure time will

be observed.

Using gsdesign logrank
gsdesign logrank computes stopping boundaries and sample size for a log-rank test comparing the

survivor functions in two groups. gsdesign logrank can be thought of as a combination of power
logrank for sample-size calculations and gsbounds for stopping boundary calculations. gsdesign
logrank supports two methods of estimating the required sample size: the method of Freedman (1982),

which uses a formula based on the hazard ratio and is the default, and the method of Schoenfeld (1981),

which uses a formula based on the log hazard-ratio.

To determine the required number of events, the investigator must specify the effect size. Effect

size is usually expressed as a hazard ratio, Δ𝑎, by using the hratio() option. Alternatively, you may

specify the effect size as a log hazard-ratio, ln(Δ𝑎), with the lnhratio() option. When administrative

censoring is anticipated, the survival probabilities of the two groups, surv1 and surv2, may be specified

and the effect size is calculated from the survival probabilities. If the effect size is not specified, a hazard

ratio of 0.5 is assumed.

https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossaryadmincensoring
https://www.stata.com/manuals/pss-2powerlogrank.pdf#pss-2powerlogrankDescription
https://www.stata.com/manuals/pss-2powerlogrank.pdf#pss-2powerlogrankDescription
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsDescription
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By default, all computations assume no censoring. In the presence of administrative censoring, you

must specify a survival probability at the end of the study in the control group as the first command

argument, surv1. You can also specify a survival probability at the end of the study in the experimental

group as the second command argument, surv2. Otherwise, it will be computed using the specified hazard

ratio or log hazard-ratio and the control-group survival probability. To accommodate an accrual period

under the assumption of uniform accrual, survival information may instead be supplied in the simpson()
option or the st1() option; see Including information about subject accrual in [PSS-2] power logrank

for details. To adjust the sample-size calculation for withdrawal from the trial, specify the anticipated

proportion of withdrawals in the wdprob() option.

By default, gsdesign logrank assumes that the control and experimental arms will be the same size.
If participants are not allocated equally between the two arms, the nratio() option is used to specify

the ratio of participants in the experimental arm to the control arm.

Options alpha(), power(), beta(), and onesided are used for both sample-size and stopping-

boundary calculations. The default significance level, known as the familywise type I error rate, is 0.05

and can be changed by specifying the alpha() option. The default power is 0.8, which corresponds to

a type II error rate of 0.2. This can be modified either by specifying the power in the power() option

or by specifying the type II error in the beta() option. The default test is two-sided, and the onesided
option requests a one-sided test, the direction of which is indicated by the effect size.

The group sequential stopping rule is determined by the efficacy() and futility() options. Stop-
ping can be for efficacy, futility, or both, and if no stopping rule is specified, the default is to use an

O’Brien–Fleming efficacy bound. If futility bounds are requested, the default behavior is to treat them

as nonbinding. A trial that crosses a nonbinding futility bound can be stopped for futility, but the fam-

ilywise type I error is controlled even if the trial continues. Binding futility bounds can be requested

with futility() suboption binding. A trial that crosses a binding futility bound must be stopped for

futility; if it continues, the familywise type I error will not be controlled at the specified significance

level.

The number of looks, or analyses of the trial data, is specified with nlooks(). Alternatively, the

information() option can be used to specify the spacing of the looks as a numlist of increasing infor-

mation levels. In this case, values of the numlist are automatically rescaled so that the final look has the

maximum information required by the design. If neither nlooks() nor information() is specified,

the default is two looks.

By default, the sample sizes in each arm are rounded up to whole numbers at each look, but the

nfractional option can be used to report fractional sample sizes. If nlooks() is specified, the default

behavior is to divide information evenly among each look before rounding. Rounding can cause slight

differences in the amount of information collected at each look, and nlooks() suboption equal can be

specified to enforce equal information increments by requiring the same number of new observations per

arm at each look.

Background for examples
In the following examples, we consider designing a clinical trial of a treatment for hepatocellular

carcinoma, the most common type of primary liver cancer. In 2023, Peng et al. described the results of

the LAUNCH trial, a phase 3 randomized controlled trial comparing lenvatinib monotherapy (the control

arm) against lenvatinib plus transarterial chemoembolization (the experimental arm) as a treatment for

primary advanced hepatocellular carcinoma. The primary endpoint of the trial was overall survival, the

time from randomization to death from any cause.

https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossaryadmincensoring
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossaryaccrual_period
https://www.stata.com/manuals/pss-2powerlogrank.pdf#pss-2powerlogrankRemarksandexamplesIncludinginformationaboutsubjectaccrual
https://www.stata.com/manuals/pss-2powerlogrank.pdf#pss-2powerlogrank
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_maxinfo
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Lenvatinib is an anti-cancer medication that can be taken orally and is used to treat some thyroid,

kidney, and liver cancers, including hepatocellular carcinoma. Transarterial chemoembolization is a

procedure where a catheter is inserted in the artery supplying blood to the tumor, and small particles with

injectable anti-cancer drugs are introduced directly into the area of the tumor, blocking off the tumor’s

blood supply and providing a concentrated dose of chemotherapeutic medication.

Computing sample size and boundaries in the absence of censoring

Example 1: GSD for a log-rank test with O’Brien–Fleming efficacy bounds
Peng et al. (2023) randomized participants to the control and experimental arms in a 1:1 ratio and

conducted a log-rank test of 𝐻0 ∶ Δ = 1 versus the two-sided alternative 𝐻𝑎 ∶ Δ ≠ 1 with a familywise

significance level of 5%. They required 90% power to detect a hazard ratio of Δ𝑎 = 0.67 and planned a

single interim analysis using classical O’Brien–Fleming efficacy bounds once two-thirds of the data had

been collected. We use gsdesign logrank to design and graph the boundaries of a clinical trial with

these parameters.
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. gsdesign logrank, hratio(0.67) power(0.9) efficacy(obfleming)
> information(0.667 1) graphbounds
Group sequential design for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR != 1
Efficacy: O’Brien--Fleming
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.9000
delta = 0.6700 (hazard ratio)

hratio = 0.6700
Censoring:

Pr_E = 1.0000
Expected number of events:

H0 = 272.71
Ha = 220.55

Info. ratio = 1.0155
E fixed = 270
N fixed = 270

N max = 274
N1 max = 137
N2 max = 137

Fixed-study crit. values = ±1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Events
Look frac. Lower Upper p-value E

1 0.67 -2.4524 2.4524 0.0142 183
2 1.00 -2.0028 2.0028 0.0452 274

Note: Critical values are for z statistics; otherwise, use
p-value boundaries.
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Group sequential design for a two-sample log-rank test

Figure 1. GSD with O’Brien–Fleming efficacy bounds for a two-sided log-rank test
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gsdesign logrank displays the specified study parameters, including hratio, the hazard ratio under
the alternative hypothesis, and Pr E, the probability that a participant will die by the end of the study.

The next section of the output displays the expected number of events, which is the average number

of events if the group sequential trial were to be repeated many times. The following section reports the

information ratio, the sample size for a fixed study with an equivalent significance level and power (N
fixed), the maximum sample size of the GSD (N max), and the maximum sample sizes for each group

(N1 max and N2 max). The information ratio is the ratio of the maximum sample size of the GSD to the

fixed-study sample size.

If the null hypothesis of 𝐻0 ∶ Δ = 1 were true, the control and experimental arms of the trial would

have equal hazards. In this case, the average trial would require 272.71 events, nearly the full sample

size of 274. This is because the efficacy bounds do not allow for early stopping to accept 𝐻0, so if the

null hypothesis is true, the trial will usually proceed to the final look. If 𝐻𝑎 is true, the average trial will

require 220.55 events, which is a savings over the 270 events required by the fixed trial.

The table at the end of the output displays the critical values for the stopping boundaries and the

corresponding 𝑝-values as well as sample sizes at each look, where sample size is reported as the number
of events observed. Boundary critical values are reported on the 𝑧 scale and are designed to be compared
against the 𝑧 statistic from a log-rank test. Command sts test (see [ST] sts test) conducts the log-

rank test and reports a 𝜒2 test statistic, which is not directly comparable with the 𝑧 scale critical values.
However, the square root of the 𝜒2 test statistic is a 𝑧 statistic, which can be directly compared with the
boundary critical values.

We planned the first look to occurwith 66.7%of the data, which corresponds to 183 events. Examining

the graph, we see that the entire region from 0 to 182 events is shaded green, the color of the continuation

region. This is because the data have not yet been analyzed, so the trial cannot be stopped. The first look

will be conducted once 183 deaths have occurred, and a log-rank test will be performed. We denote the

square root of the 𝜒2 test statistic from the first look as 𝑧1 and note that the sign of 𝑧1 depends on whether

the observed hazard ratio was greater than 1 (in which case 𝑧1 is positive) or less than 1 (in which case 𝑧1
is negative). If |𝑧1| ≥ 2.452, we say that 𝑧1 lies in the rejection region (shaded blue on the graph), and we

reject 𝐻0, terminating the trial early due to treatment efficacy. If |𝑧1| < 2.452, it lies in the continuation

region, and we proceed to the final look.

At the final look, there is no continuation region; 𝐻0 must be rejected or accepted. While accepting

the null hypothesis is taboo in many disciplines, it has a long history in the context of sequential trials

(see Origins of GSD in [ADAPT] GSD intro). As before, we take the square root of the 𝜒2 test statistic

and label it 𝑧2. If |𝑧2| ≥ 2.003, then we reject 𝐻0 and conclude that Δ ≠ 1, while if |𝑧2| < 2.003, then

we accept 𝐻0.

Computing sample size and boundaries in the presence of censoring

Example 2: GSD for a log-rank test with censoring
In the previous example, we assumed no censoring would occur, so the failure time of all participants

would be observed. That is often an unrealistic expectation, and here we adjust the sample size to account

for censoring. We divide censoring into two types: administrative censoring, which occurs when the

trial ends before all participants have experienced a failure event, and withdrawal, which occurs when

a participant withdraws from the study or is lost to follow-up. gsdesign logrank takes a conservative

https://www.stata.com/manuals/stststest.pdf#stststest
https://www.stata.com/manuals/adaptgsdintro.pdf#adaptGSDintroRemarksandexamplesOriginsofGSD
https://www.stata.com/manuals/adaptgsdintro.pdf#adaptGSDintro
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stance on withdrawal, assuming that participants who withdraw do so as soon as the study begins, before

they can contribute meaningful data to the trial. For more information about censoring, see Computing

sample size in the presence of censoring in [PSS-2] power logrank.

Peng et al. (2023) describe an anticipated withdrawal rate of 10%, which we will incorporate using the

wdprob() option. Based on a previous study of lenvatinib as a treatment for hepatocellular carcinoma

(Kudo et al. 2018), we anticipate that 5% of the participants in the control arm will be alive at the end of

the trial. We include the control-group survival probability as command argument surv1.

. gsdesign logrank 0.05, hratio(0.67) wdprob(0.1) power(0.9)
> efficacy(obfleming) information(0.667 1)
Group sequential design for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR != 1
Efficacy: O’Brien--Fleming
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.9000
delta = 0.6700 (hazard ratio)

hratio = 0.6700
Censoring and withdrawal:

s1 = 0.0500
s2 = 0.1344

Pr_E = 0.9078
Pr_w = 0.1000

Expected number of events:
H0 = 272.71
Ha = 220.55

Info. ratio = 1.0155
E fixed = 270
N fixed = 330

N max = 336
N1 max = 168
N2 max = 168

Fixed-study crit. values = ±1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Events
Look frac. Lower Upper p-value E

1 0.67 -2.4524 2.4524 0.0142 183
2 1.00 -2.0028 2.0028 0.0452 274

Note: Critical values are for z statistics; otherwise, use
p-value boundaries.

In addition to Pr E, the probability that an event is observed by the end of the study, the output of

gsdesign logrank now includes additional information about censoring and withdrawal. The survival

probabilities of the control and experimental arms are labeled s1 and s2, respectively, and the probability
of withdrawal is labeled Pr w.

https://www.stata.com/manuals/pss-2powerlogrank.pdf#pss-2powerlogrankRemarksandexamplesComputingsamplesizeinthepresenceofcensoring
https://www.stata.com/manuals/pss-2powerlogrank.pdf#pss-2powerlogrankRemarksandexamplesComputingsamplesizeinthepresenceofcensoring
https://www.stata.com/manuals/pss-2powerlogrank.pdf#pss-2powerlogrank
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Now that censoring is incorporated into the design, we must recruit a larger sample of 168 participants

in each arm, but the number of events at each look is unchanged, as are the critical values of the efficacy

bound. This is to be expected because the power of the log-rank test is calculated in terms of the number

of events observed, which is not affected by censoring.

Computing sample size and boundaries with uniform accrual

Example 3: GSD for a log-rank test with uniform accrual
In example 2, we considered the effect of censoring on the study design, but we did not account for the

fact that the first participants recruited to the study would be observed for longer than the last participants

to join. Peng et al. (2023) describe the recruitment period as lasting 24 months and the follow-up period

as lasting an additional 24 months. The first participants to join the study would be monitored for up

to 48 months (or until they died or withdrew from the study), while the last participants would only be

monitored for 24 months.

If participants are recruited to the study at a uniform rate, Schoenfeld (1983) recommends a sample-

size calculation that involves estimating the integral of the survivor function using Simpson’s rule.

gsdesign logrank implements this calculation with the simpson() option, which requires estimates

of the survival probability in the control group at three points: at the minimum follow-up time, halfway

between the minimum and maximum follow-up times, and at the maximum follow-up time. This corre-

sponds to 24 months, 36 months, and 48 months in the LAUNCH study.

Based on the previous work of Kudo et al. (2018) and the assumptions made by Peng et al. (2023)

about the tumor burden in their population of interest, we predict that 20% of participants in the control

arm will be alive 24 months after they join the study, 10% will be alive after 36 months, and 5% will be

alive after 48 months.

. gsdesign logrank, hratio(0.67) simpson(0.2 0.1 .05) wdprob(0.1) power(0.9)
> efficacy(obfleming) information(0.667 1)
Group sequential design for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR != 1
Efficacy: O’Brien--Fleming
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.9000
delta = 0.6700 (hazard ratio)

hratio = 0.6700
Censoring and withdrawal:

Pr_E = 0.8350
Pr_w = 0.1000

Expected number of events:
H0 = 272.71
Ha = 220.55

Info. ratio = 1.0155
E fixed = 270
N fixed = 360

N max = 364
N1 max = 182
N2 max = 182

Fixed-study crit. values = ±1.9600

https://www.stata.com/manuals/adaptgsdesignlogrank.pdf#adaptgsdesignlogrankRemarksandexamplesex2


gsdesign logrank — Group sequential design for a log-rank test 18

Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Events
Look frac. Lower Upper p-value E

1 0.67 -2.4524 2.4524 0.0142 183
2 1.00 -2.0028 2.0028 0.0452 274

Note: Critical values are for z statistics; otherwise, use
p-value boundaries.

In example 2, we calculated the overall probability of observing a failure event, Pr E, to be 0.908.

After taking accrual into account, we now estimate Pr E to be 0.835. The reduced chance of observing

a failure event corresponds to a larger required sample size: 360 participants for a fixed-sample trial (up

from 330) and a maximum of 364 participants for the GSD (up from 336).

Altering the assumptions about participant accrual affected the required sample size but not the num-

ber of failures needed to attain 90% power or the critical values required to achieve a 5% familywise

significance level.

Example 4: GSD for a one-sided log-rank test with efficacy and futility stopping
In the previous examples, we endeavored to design a clinical trial modeled after the LAUNCH study

with increasingly sophisticated estimates of the probability of observing a failure event. We did not

modify the details of the interim analysis, a relatively simple design with an O’Brien–Fleming efficacy

bound and a a single look at 66.7% of the total number of failure events. Here we depart from the design

of Peng et al. (2023) and calculate stopping bounds and sample sizes for a study with both efficacy and

futility stopping.

Futility stopping is the complement of efficacy stopping, and it allows the trial to end early if interim

results are overwhelmingly unfavorable. This is done by calculating a futility bound, which we will

draw on the graph in red. Much as the efficacy bound shown in figure 1 divided the range of interim

test statistics into continuation and rejection regions, the futility bound further partitions the range of

test statistics by defining an acceptance region. With efficacy-only stopping, the acceptance region only

existed at the final look, but with futility stopping, it is possible to accept 𝐻0 before the scheduled end

of the trial.

There are two types of futility boundaries: nonbinding (the default) and binding. In a trial with binding

futility bounds, if an interim test statistic lies in the acceptance region, the trial must be terminated for

futility; if it continues, the familywise type I error will not be controlled at the desired significance level.

In contrast, if an interim test statistic crosses a nonbinding futility bound, the DataMonitoring Committee

can decide to halt the trial or allow it to continue without risk of overrunning the specified alpha level.

We choose to implement a nonbinding Hwang–Shih–de Cani futility boundary with parameter

𝛾𝑓 = −4. Hwang–Shih–de Cani bounds are calculated using the error-spending approach, which makes

them incompatible with classical O’Brien–Fleming bounds. Fortunately, there is an error-spending

approximation of the O’Brien–Fleming bound that we can use instead (see Methods and formulas in

[ADAPT] gsbounds for more information about classical and error-spending bounds). We specify error-

spending O’Brien–Fleming-style efficacy bounds with the efficacy(errobfleming) option.

https://www.stata.com/manuals/adaptgsdesignlogrank.pdf#adaptgsdesignlogrankRemarksandexamplesex2
https://www.stata.com/manuals/adaptgsdesignlogrank.pdf#adaptgsdesignlogrankRemarksandexamplesex1
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_dmc
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulas
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsbounds
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We anticipate that the hazard ratio will be less than 1, indicating that the experimental treatment of

lenvatinib plus transarterial chemoembolization is superior to the control treatment of lenvatinib alone.

As such, we request a one-sided test and reduce the significance level to half of what it was with a two-

sided alternative hypothesis. Finally, we add an additional interim analysis once half of the total number

of failure events have been observed.

. gsdesign logrank, hratio(0.67) simpson(0.2 0.1 0.05) wdprob(0.1) onesided
> power(0.9) alpha(0.025) efficacy(errobfleming)
> futility(hsdecani(-4)) information(0.5 0.667 1) graphbounds
Group sequential design for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR < 1
Efficacy: Error-spending O’Brien--Fleming style
Futility: Error-spending Hwang--Shih--de Cani, nonbinding, gamma = -4.0000
Study parameters:

alpha = 0.0250 (lower one-sided)
power = 0.9000
delta = 0.6700 (hazard ratio)

hratio = 0.6700
Censoring and withdrawal:

Pr_E = 0.8350
Pr_w = 0.1000

Expected number of events:
H0 = 183.14
Ha = 211.81

Info. ratio = 1.0306
E fixed = 270
N fixed = 360

N max = 370
N1 max = 185
N2 max = 185

Fixed-study crit. value = -1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Futility Events
Look frac. Lower p-value Upper p-value E

1 0.50 -2.9626 0.0015 -0.0672 0.4732 139
2 0.67 -2.5374 0.0056 -0.6491 0.2581 185
3 1.00 -1.9945 0.0230 -1.9945 0.0230 278

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.
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Group sequential design for a two-sample log-rank test

Figure 2. Error-spending efficacy and futility bounds for a one-sided log-rank test

The output of gsdesign logrank starts off quite similar to that of example 3, but the alternative

hypothesis is now reported as Ha: HR < 1. By halving the significance level when transitioning to a

one-sided test, we have kept the number of participants and events required by a fixed study unchanged.

Compared with the design in example 3, the maximum sample size has increased from 364 to 370, but

the expected number of events has changed much more dramatically. Without futility stopping, 272.71

events were expected under 𝐻0, but that has decreased to 183.14 events now that the trial can be stopped

early to accept the null hypothesis. The expected number of events under 𝐻𝑎 has decreased as well, from

220.55 to 211.81, due to the additional opportunity to stop the trial for efficacy once half of the data have

been collected.

Once 139 events have been recorded, the log-rank test is conducted and 𝑧1, the square root of the

𝜒2 statistic, is calculated. If the hazard ratio is less than 1, then 𝑧1 is negative; if the hazard ratio is

greater than 1 (meaning the control is outperforming the experimental treatment), then 𝑧1 is positive. If

𝑧1 ≤ −2.963, then the test statistic lies within the rejection region, so we reject𝐻0 and terminate the trial

early due to treatment efficacy. If 𝑧1 > −0.067, then it lies within the acceptance region and we have the

option of terminating the trial due to futility. If 𝑧1 lies in the continuation region of (−2.963, −0.067],
then the trial must continue.

The second look occurs once 185 failures have been observed, and the testing procedure is similar

except the continuation region has shrunk to (−2.537, −0.649]. At the final look, the efficacy and

futility critical values are the same, leaving no continuation region. If 𝑧3 ≤ −1.995, then we reject 𝐻0;

otherwise, 𝐻0 is accepted.

https://www.stata.com/manuals/adaptgsdesignlogrank.pdf#adaptgsdesignlogrankRemarksandexamplesex3
https://www.stata.com/manuals/adaptgsdesignlogrank.pdf#adaptgsdesignlogrankRemarksandexamplesex3
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Stored results
gsdesign logrank stores the following in r():

Scalars

r(alpha) overall significance level (familywise type I error)

r(beta) overall probability of a type II error

r(binding) 1 for binding futility bounds, 0 for nonbinding

r(delta) effect size

r(E fixed) number of events in a fixed study design

r(E fixedfrac) fractional number of events in a fixed study design

r(E max) maximum number of events if the study continues to completion

r(effparam) efficacy parameter (if wtsiatis(), kdemets(), or hsdecani() specified)

r(ESS0) expected sample size under null hypothesis

r(ESS1) expected sample size under alternative hypothesis

r(futparam) futility parameter (if wtsiatis(), kdemets(), or hsdecani() specified)

r(hratio) hazard ratio (unless lnhratio() specified)

r(info ratio) ratio of maximum information required to that of a fixed study design

r(lnhratio) log hazard-ratio (if lnhratio() specified)

r(N fixed) sample size of a fixed study design

r(N fixedfrac) fractional sample size of a fixed study design

r(N max) maximum sample size if the study continues to completion

r(N1 fixed) sample size of the control group in a fixed study design

r(N1 fixedfrac) fractional sample size of the control group in a fixed study design

r(N1 max) maximum sample size of the control group if the study continues to completion

r(N2 fixed) sample size of the experimental group in a fixed study design

r(N2 fixedfrac) fractional sample size of the experimental group in a fixed study design

r(N2 max) maximum sample size of the experimental group if the study continues to completion

r(nfractional) 1 if nfractional is specified, 0 otherwise

r(nlooks) number of analyses

r(nratio) specified ratio of sample sizes, 𝑁2/𝑁1
r(nratio a) attained ratio of sample sizes

r(onesided) 1 for a one-sided test, 0 otherwise

r(power) specified overall power

r(power a) attained overall power

r(Pr E) probability of an event (failure)

r(Pr w) proportion of withdrawals

r(s1) survival probability in the control group (if specified)

r(s2) survival probability in the experimental group (if specified)

r(stop) 0 for futility bounds, 1 for efficacy bounds, 2 for both

r(t min) minimum time (if st1() specified)

r(t max) maximum time (if st1() specified)

r(z fixed) critical value for an equivalent fixed study design

Macros

r(cmd) gsdesign
r(cmdline) command as typed

r(direction) upper, lower, or two-sided
r(effbnd) pocock, obfleming, wtsiatis, errpocock, errobfleming, kdemets, or hsdecani
r(effect) hratio or lnhratio
r(futbnd) pocock, obfleming, wtsiatis, errpocock, errobfleming, kdemets, or hsdecani
r(method) logrank
r(survvar) name of the variable containing survival probabilities (if st1() specified)

r(test) Freedman or Schoenfeld
r(timevar) name of the variable containing time points (if st1() specified)
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Matrices

r(aspent) cumulative alpha spent per look (stored with efficacy-only stopping or when futility

bounds are binding)
r(aspent fstop) cumulative alpha spent per look if futility stopping does occur (stored when futility

bounds are nonbinding)
r(aspent nofstop) cumulative alpha spent per look if futility stopping does not occur (stored when futility

bounds are nonbinding)
r(bounds) stopping boundaries

r(bspent) cumulative beta spent per look (when futility bounds are specified)

r(bspent a) attained cumulative beta spent per look (when futility bounds are specified)

r(design) sample size and stopping boundaries at interim looks

r(info frac) specified information fraction

r(info frac a) fraction of attained information

r(info level) specified information level

r(p crit) 𝑝-values corresponding to boundary critical values
r(sampsize) sample size at interim looks

r(simpmat) control-group survival probabilities (if simpson() is specified)

Methods and formulas
Sample sizes at interim analyses are calculated as the product of the information fraction, the infor-

mation ratio, and the sample size of a fixed-sample study.

See Methods and formulas in [ADAPT] gsbounds for the formulas used to calculate the stopping

boundaries, information fraction, and information ratio. See Methods and formulas in [PSS-2] power

logrank for the formulas used to calculate the sample size for a fixed study. See Methods and formulas

in [ADAPT] gsdesign for the formulas used to calculate the expected sample size.
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