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Description
gsbounds computes stopping boundaries for group sequential designs (GSDs), a class of experimen-

tal design popular in clinical trials. GSDs incorporate planned interim analyses, or looks at the data,

and provide criteria for stopping the trial early based on values of a test statistic. Stopping can be for

efficacy, futility, or both. For a software-free introduction to GSDs, see [ADAPT] GSD intro; for an in-

troduction to Stata’s gs suite of commands, see [ADAPT] gs, and for associated sample-size calculations,

see [ADAPT] gsdesign.

Quick start
Calculate boundaries using the default settings: a two-sided O’Brien–Fleming design with two evenly

spaced analyses (one interim look, one final look), power of 0.8, and familywise significance level

𝛼 = 0.05

gsbounds

Same as above, but add a nonbinding O’Brien–Fleming futility boundary and conduct three evenly

spaced analyses

gsbounds, efficacy(obfleming) futility(obfleming) nlooks(3)

Same as above, but plan the looks to occur with 50%, 75%, and 100% of the data, and visualize the

bounds on a graph

gsbounds, efficacy(obfleming) futility(obfleming) ///
information(0.5 0.75 1) graphbounds

Same as above, but use error-spending approximations of O’Brien–Fleming bounds

gsbounds, efficacy(errobfleming) futility(errobfleming) ///
information(0.5 0.75 1) graphbounds

Nonbinding futility boundaries for an upper one-sided test using a five-look Wang–Tsiatis design with

parameter Δ𝑓 = 0.3, power of 0.9, and significance level 𝛼 = 0.01

gsbounds, alpha(0.01) power(0.9) futility(wtsiatis(0.3)) nlooks(5) upper

Same as above, but use a binding futility bound

gsbounds, alpha(0.01) power(0.9) futility(wtsiatis(0.3), binding) ///
nlooks(5) upper

Efficacy and nonbinding futility boundaries for a lower one-sided test using a seven-look error-spending

Hwang–Shih–de Cani design with efficacy parameter 𝛾𝑒 = −2, futility parameter 𝛾𝑓 = −4, power

of 0.9, and significance level 𝛼 = 0.01

gsbounds, alpha(0.01) power(0.9) efficacy(hsdecani(-2)) ///
futility(hsdecani(-4)) nlooks(7) lower
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https://www.stata.com/manuals/adaptgsdintro.pdf#adaptGSDintro
https://www.stata.com/manuals/adaptgs.pdf#adaptgs
https://www.stata.com/manuals/adaptgsdesign.pdf#adaptgsdesign
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Same as above, but use a binding Kim–DeMets futility boundary with parameter 𝜌𝑓 = 2.5, and graph

the boundaries but not the fixed-sample critical values

gsbounds, alpha(0.01) power(0.9) efficacy(hsdecani(-2)) ///
futility(kdemets(2.5), binding) nlooks(7) lower ///
graphbounds(nofixed)

Menu
Statistics > Power, precision, and sample size

Syntax
Calculate efficacy stopping boundaries

gsbounds [ , efficacy(boundary) options ]

Calculate futility stopping boundaries

gsbounds, futility(boundary[ , binding ]) [ options ]

Calculate efficacy and futility stopping boundaries

gsbounds, efficacy(boundary) futility(boundary[ , binding ]) [ options ]

boundary Description

obfleming classical O’Brien–Fleming bound

pocock classical Pocock bound

wtsiatis(#) classical Wang–Tsiatis bound with specified parameter value

errpocock error-spending Pocock-style bound

errobfleming error-spending O’Brien–Fleming-style bound

kdemets(#) error-spending Kim–DeMets bound with specified parameter value

hsdecani(#) error-spending Hwang–Shih–de Cani bound with specified parameter value

https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsSyntaxsntx_boundproc
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsSyntaxsntx_options
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsSyntaxsntx_boundproc
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsSyntaxsntx_options
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsSyntaxsntx_boundproc
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsSyntaxsntx_boundproc
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsSyntaxsntx_options
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options Description

Main

efficacy(boundary) boundary for efficacy stopping; if neither efficacy()
nor futility() is specified, the default is
efficacy(obfleming)

futility(boundary[ , binding ]) boundary for futility stopping; use binding to request binding
futility bounds (default is nonbinding)

nlooks(#) total number of analyses
(nlooks() − 1 interim analyses and one final analysis)

information(numlist) sequence of information levels for analyses;
default is evenly spaced

nopvalues suppress 𝑝-values
alpha(#) overall significance level for all tests; default is alpha(0.05)
power(#) overall power for all tests; default is power(0.8)
beta(#) overall probability of type II error for all tests;

default is beta(0.2)
upper upper one-sided test; default is two-sided

lower lower one-sided test; default is two-sided

onesided synonym for upper

Graph

graphbounds[ (graphopts) ] graph boundaries

matlistopts(general options) control the display of boundaries; seldom used

optimopts optimization options for boundary calculations; seldom used

collect is allowed; see [U] 11.1.10 Prefix commands.

matlistopts() and optimopts do not appear in the dialog box.

graphopts Description

xdiminformation label the 𝑥 axis with the information fraction (default);
use information levels if information() specified

xdimlooks label the 𝑥 axis with the number of each look

noshade do not shade the rejection, acceptance, and continuation
regions

rejectopts(area options) change the appearance of the rejection region

acceptopts(area options) change the appearance of the acceptance region

continueopts(area options) change the appearance of the continuation region

efficacyopts(connected options) change the appearance of the efficacy bound

futilityopts(connected options) change the appearance of the futility bound

nolooklines do not draw vertical reference lines at each look

looklinesopts(added line suboptions) change the appearance of the reference lines
marking each look

nofixed do not label critical values from a fixed study design

fixedopts(marker options) change the appearance of the fixed-study critical values

twoway options any options other than by() documented in
[G-3] twoway options

https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsSyntaxsntx_boundproc
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsSyntaxsntx_boundproc
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsSyntaxsntx_graphopts
https://www.stata.com/manuals/pmatlist.pdf#pmatlistSyntaxgeneral_options
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsSyntaxsntx_optimopts
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/adapt.pdf#adaptgsboundsOptionsopt_graphopts
https://www.stata.com/manuals/adapt.pdf#adaptgsboundsOptionsopt_graphopts
https://www.stata.com/manuals/g-3added_line_options.pdf#g-3added_line_optionsOptionsSuboptions
https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_optionsSyntax
https://www.stata.com/manuals/g-3twoway_options.pdf#g-3twoway_options


gsbounds — Boundaries for group sequential trials 4

optimopts Description

intpointsscale(#) scaling factor for number of quadrature points;
default is intpointsscale(20)

initinfo(initinfo spec) initial value(s) for maximum information

initscale(#) initial value for scaling factor 𝐶 of classical bounds

infotolerance(#) tolerance for bisection search for maximum information of error-
spending bounds with futility stopping; default is infotol(1e-6)

marquardt use the Marquardt stepping algorithm in nonconcave regions;
default is to use a mixture of steepest descent and Newton

technique(algorithm spec) maximization technique

iterate(#) perform maximum of # iterations; default is iterate(300)
[ no ]log display an iteration log; default is nolog
trace display current parameter vector in iteration log

gradient display current gradient vector in iteration log

showstep report steps within an iteration in iteration log

hessian display current negative Hessian matrix in iteration log

showtolerance report the calculated result that is compared with the effective
convergence criterion

tolerance(#) tolerance for the parameter being optimized;
default is tolerance(1e-12)

ftolerance(#) tolerance for the objective function;
default is ftolerance(1e-10)

nrtolerance(#) tolerance for the scaled gradient;
default is nrtolerance(1e-16)

nonrtolerance ignore the nrtolerance() option

Options

� � �
Main �

efficacy(boundary) specifies the boundary for efficacy stopping. If neither efficacy() nor

futility() is specified, the default is efficacy(obfleming).

futility(boundary[ , binding ]) specifies the boundary for futility stopping.

binding specifies binding futility bounds. With binding futility bounds, if the result of an interim

analysis crosses the futility boundary and lies in the acceptance region, the trial must end or risk

overrunning the specified type I error. With nonbinding futility bounds, the trial does not need to

stop if the result of an interim analysis crosses the futility boundary; the familywise type I error

rate is controlled even if the trial continues. By default, futility bounds are nonbinding.

nlooks(#) specifies the total number of analyses to be performed (nlooks() − 1 interim analyses and

one final analysis). If neither nlooks() nor information() is specified, the default is nlooks(2).

information(numlist) specifies a sequence of information levels for interim and final analyses. This

must be a sequence of increasing positive numbers, but the scale is unimportant because the infor-

mation sequence will be automatically rescaled to ensure the maximum information is reached at the

final look. By default, analyses are evenly spaced.

nopvalues suppresses the 𝑝-values from being reported in the table of boundaries for each look.

https://www.stata.com/manuals/adapt.pdf#adaptgsboundsOptionsopt_optim_initinfo
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_maxinfo
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_scaleC
https://www.stata.com/manuals/adapt.pdf#adaptgsboundsOptionsopt_optim_tech
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsOptionsopt_boundproc
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsOptionsopt_boundproc
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_maxinfo
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alpha(#) sets the overall significance level, which is the familywise type I error rate for all analyses

(interim and final). The default is alpha(0.05).

power(#) sets the overall power for all analyses. The default is power(0.8). If beta() is specified,

power() is set to be 1 − beta(). Only one of power() or beta() may be specified.

beta(#) sets the overall probability of a type II error. The default is beta(0.2). If power() is specified,
beta() is set to be 1 − power(). Only one of beta() or power() may be specified.

upper indicates an upper one-sided test, which means that the postulated value of the parameter is larger

than the value under the null hypothesis. The default is two-sided.

lower indicates a lower one-sided test, which means that the postulated value of the parameter is smaller

than the value under the null hypothesis. The default is two-sided.

onesided is a synonym for upper.

� � �
Graph �

graphbounds and graphbounds(graphopts) produce graphical output showing the stopping bound-

aries.

graphopts are the following:

xdiminformation labels the 𝑥 axis with the information fraction unless information() is spec-
ified, in which case information levels will be used. This is the default 𝑥-axis label.

xdimlooks labels the 𝑥 axis with the number of each look.

noshade suppresses shading of the rejection, acceptance, and continuation regions of the graph.

rejectopts(area options) affects the rendition of the rejection region. See

[G-3] area options.

acceptopts(area options) affects the rendition of the acceptance region. See

[G-3] area options.

continueopts(area options) affects the rendition of the continuation region. See

[G-3] area options.

efficacyopts(connected options) affects the rendition of the efficacy bound. See

[G-3] cline options and [G-3] marker options.

futilityopts(connected options) affects the rendition of the futility bound. See

[G-3] cline options and [G-3] marker options.

nolooklines suppresses the vertical reference lines drawn at each look.

looklinesopts(added line suboptions) affects the rendition of reference lines marking each

look. See suboptions in [G-3] added line options.

nofixed suppresses the fixed-study critical values in the plot.

fixedopts(marker options) affects the rendition of the fixed-study critical values. See

[G-3] marker options.

twoway options are any of the options documented in [G-3] twoway options, excluding by().
These include options for titling the graph (see [G-3] title options) and for saving the graph to

disk (see [G-3] saving option).

https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3cline_options.pdf#g-3cline_options
https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_options
https://www.stata.com/manuals/g-3cline_options.pdf#g-3cline_options
https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_options
https://www.stata.com/manuals/g-3added_line_options.pdf#g-3added_line_optionsOptionsSuboptions
https://www.stata.com/manuals/g-3added_line_options.pdf#g-3added_line_optionsOptionsSuboptions
https://www.stata.com/manuals/g-3added_line_options.pdf#g-3added_line_options
https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_optionsSyntax
https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_options
https://www.stata.com/manuals/g-3twoway_options.pdf#g-3twoway_options
https://www.stata.com/manuals/g-3title_options.pdf#g-3title_options
https://www.stata.com/manuals/g-3saving_option.pdf#g-3saving_option
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The following options are available with gsbounds but are not shown in the dialog box:

matlistopts(general options) affects the display of the matrix of boundaries. general options

are title(), tindent(), rowtitle(), showcoleq(), coleqonly, colorcoleq(),
aligncolnames(), and linesize(); see general options in [P] matlist. This option is sel-

dom used.

optimopts control the iterative algorithm used to calculate stopping boundaries:

intpointsscale(#) specifies the scaling factor for the number of quadrature points used during the

numerical evaluation of stopping probabilities at each look. The default is intpointsscale(20).
See Methods and formulas.

initinfo(initinfo spec) specifies either one or two initial values to be used in the iterative calcula-

tion of the maximum information.

The syntax initinfo(#) is applicable when using classical group sequential boundaries (Pocock

bounds, O’Brien–Fleming bounds, and Wang–Tsiatis bounds), as well as with efficacy-only

stopping when using error-spending boundaries (error-spending Pocock-style efficacy bounds,

error-spending O’Brien–Fleming-style efficacy bounds, Kim–DeMets efficacy bounds, and

Hwang–Shih–de Cani efficacy bounds). The default is to use the information from a fixed study

design; see Methods and formulas.

The syntax initinfo(# #) is applicable when using error-spending group sequential boundaries

with futility stopping (error-spending Pocock-style bounds, error-spending O’Brien–Fleming-

style bounds, Kim–DeMets bounds, and Hwang–Shih–de Cani bounds). With this syntax, the

first and second numbers specify the lower and upper starting values, respectively, for the bisec-

tion algorithm estimating the maximum information. The default is to use the information from a

fixed study design for the lower initial value and the information corresponding to a Bonferroni

correction for the upper initial value; see Methods and formulas. To specify just the lower starting

value, use initinfo(# .), and to specify just the upper starting value, use initinfo(. #).

initscale(#) specifies the initial value to be used during the iterative calculation of scaling fac-

tor 𝐶 for classical group sequential boundaries (Pocock bounds, O’Brien–Fleming bounds, and

Wang–Tsiatis bounds). The default is to use the 𝑧-value corresponding to the specified value of

alpha(). See Methods and formulas.

infotolerance(#) specifies the tolerance for the bisection algorithm used in the itera-

tive calculation of the maximum information of error-spending group sequential boundaries

with futility stopping (error-spending Pocock-style bounds, error-spending O’Brien–Fleming-

style bounds, Kim–DeMets bounds, and Hwang–Shih–de Cani bounds). The default is

infotolerance(1e-6). See Methods and formulas.

marquardt specifies that the optimizer should use the modified Marquardt algorithm when, at an

iteration step, it finds that 𝐻 is singular. The default is to use a mixture of steepest descent and

Newton, which is equivalent to the difficult option in [R] ml.

technique(algorithm spec) specifies how the objective function is to be maximized. The following

algorithms are allowed. For details, see Pitblado, Poi, and Gould (2024).

technique(bfgs) specifies the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

technique(nr) specifies Stata’s modified Newton–Raphson (NR) algorithm.

technique(dfp) specifies the Davidon–Fletcher–Powell (DFP) algorithm.

https://www.stata.com/manuals/pmatlist.pdf#pmatlistGeneraloptions
https://www.stata.com/manuals/pmatlist.pdf#pmatlistGeneraloptions
https://www.stata.com/manuals/pmatlist.pdf#pmatlist
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_numint
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_maxinfo
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_startinfo
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_startinfo
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_scaleC
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_scaleC
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_scaleC
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_startinfo
https://www.stata.com/manuals/rml.pdf#rml
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The default is technique(bfgs) when using classical group sequential boundaries (Pocock

bounds, O’Brien–Fleming bounds, and Wang–Tsiatis bounds) and also for the second opti-

mization step used to estimate the maximum information with efficacy-only stopping when

using error-spending boundaries (error-spending Pocock-style efficacy bounds, error-spending

O’Brien–Fleming-style efficacy bounds, Kim–DeMets efficacy bounds, and Hwang–Shih–de

Cani efficacy bounds). The default is technique(nr) for the sequential optimization steps used

to estimate critical values for error-spending boundaries. You can also switch between two al-

gorithms by specifying the technique name followed by the number of iterations. For example,

specifying technique(nr 10 bfgs 20) requests 10 iterations with the NR algorithm followed by

20 iterations with the BFGS algorithm, and then back to NR for 10 iterations, and so on. The process

continues until convergence or until the maximum number of iterations is reached.

iterate(#) specifies the maximum number of iterations. If convergence is not declared by the

time the number of iterations equals iterate(), an error message is issued. The default value of
iterate(#) is the number set using set maxiter, which is 300 by default.

[ no ]log requests an iteration log showing the progress of the optimization. The default is nolog.

trace adds to the iteration log a display of the current parameter vector.

gradient adds to the iteration log a display of the current gradient vector.

showstep adds to the iteration log a report on the steps within an iteration. This option was added so

that developers at StataCorp could view the stepping when they were improving the ml optimizer

code. At this point, it mainly provides entertainment.

hessian adds to the iteration log a display of the current negative Hessian matrix.

showtolerance adds to the iteration log the calculated value that is compared with the effective

convergence criterion at the end of each iteration. Until convergence is achieved, the smallest

calculated value is reported. shownrtolerance is a synonym of showtolerance.

Below, we describe the three convergence tolerances. Convergence is declared when the

nrtolerance() criterion is met and either the tolerance() or the ftolerance() criterion is also

met.

tolerance(#) specifies the tolerance for the parameter vector. When the relative change in

the parameter vector from one iteration to the next is less than or equal to tolerance(), the
tolerance() convergence criterion is satisfied. The default is tolerance(1e-12).

ftolerance(#) specifies the tolerance for the objective function. When the relative change in

the objective function from one iteration to the next is less than or equal to ftolerance(), the
ftolerance() convergence is satisfied. The default is ftolerance(1e-10).

nrtolerance(#) specifies the tolerance for the scaled gradient. Convergence is declared when

gH−1g′ < nrtolerance(). The default is nrtolerance(1e-16).

nonrtolerance specifies that the default nrtolerance() criterion be turned off.

boundary
obfleming specifies a classical O’Brien–Fleming design for efficacy or futility bounds (O’Brien and

Fleming 1979). O’Brien–Fleming efficacy bounds are characterized by being extremely conservative

at early looks. The O’Brien–Fleming design is a member of theWang–Tsiatis family and is equivalent

to specifying a boundary of wtsiatis(0).

https://www.stata.com/manuals/rsetiter.pdf#rsetiter
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pocock specifies a classical Pocock design for efficacy or futility bounds (Pocock 1977). Pocock efficacy
bounds are characterized by using the same critical value at all looks. The Pocock design is a member

of the Wang–Tsiatis family and is equivalent to specifying a boundary of wtsiatis(0.5).

wtsiatis(#) specifies a classical Wang–Tsiatis design for efficacy or futility bounds (Wang and Tsiatis

1987). The shape ofWang–Tsiatis bounds is determined by parameter Δ ∈ [−10, 0.7], where smaller
values of Δ yield bounds that are more conservative at early looks.

errpocock specifies an error-spending Pocock-style design for efficacy or futility bounds (Lan and

DeMets 1983). The critical values from error-spending Pocock-style bounds are very similar to those

of classic Pocock bounds, but they are obtained using an error-spending function.

errobfleming specifies an error-spending O’Brien–Fleming-style design for efficacy or futility bounds
(Lan and DeMets 1983). The critical values from error-spending O’Brien–Fleming-style bounds

are very similar to those of classic O’Brien–Fleming bounds, but they are obtained using an error-

spending function.

kdemets(#) specifies an error-spending Kim–DeMets design for efficacy or futility bounds (Kim and

DeMets 1987). The shape of Kim–DeMets bounds is determined by power parameter 𝜌 ∈ (0, 10],
where larger values of 𝜌 yield bounds that are more conservative at early looks.

hsdecani(#) specifies an error-spending Hwang–Shih–de Cani design for efficacy or futility bounds

(Hwang, Shih, and de Cani 1990). The shape of Hwang–Shih–de Cani bounds is determined by

parameter 𝛾 ∈ [−30, 3], where smaller values of 𝛾 yield bounds that are more conservative at early

looks.

For a design with both efficacy and futility stopping boundaries, if you specify a classical boundary

(that is, in theWang–Tsiatis family) for one, then you must specify a classical boundary for the other. So,

you could not specify a boundary in the Wang–Tsiatis family for one boundary and an error-spending

boundary for the other. When specifying efficacy and futility boundaries from the same family, the

efficacy parameter does not need to be the same as the futility parameter.

Boundaries that are conservative at early looks, such as the O’Brien–Fleming bound, offer little

chance of early stopping unless the true effect size is quite large (in the case of efficacy bounds) or quite

small (in the case of futility bounds). A trial employing a conservative bound is more likely to continue

to the final look, yielding an expected sample size that is not dramatically smaller than the sample size

required by an equivalent fixed-sample trial. However, the maximum sample size (that is, the sample

size at the final look) of a trial with a conservative bound is generally not much greater than the sample

size required by an equivalent fixed trial. Another direct result of specifying conservative bounds is that

the critical value at the final look tends to be close to the critical value employed by an equivalent fixed

design. In contrast, anticonservative boundaries such as the Pocock bound offer a much better shot at

early stopping (often yielding a small expected sample size) at the cost of a larger maximum sample size

and final critical values that are considerably larger than the critical value of an equivalent fixed design.
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Remarks and examples
Remarks are presented under the following headings:

Introduction
Examples

Efficacy stopping
Efficacy and futility stopping
Nonbinding futility bounds
One-sided tests
Error-spending bounds
Unevenly spaced looks
Futility-only stopping

This entry describes the gsbounds command and the methodology for calculating stopping bound-

aries for GSDs. For a software-free introduction to GSDs, see [ADAPT] GSD intro; for an introduc-

tion to Stata’s gs suite of commands, see [ADAPT] gs; and for associated sample-size calculations, see

[ADAPT] gsdesign.

Introduction
Clinical trials, studies investigating the effects of a treatment on human participants, must address

ethical concerns that are often not considered when designing other types of experiments. These ethical

imperatives, such as not unnecessarily exposing participants to harmful or inferior treatments, must be

met while also meeting scientific needs (such as type I error and power) and financial realities that can

limit sample sizes.

In a classical fixed-sample design, an experiment of predetermined size is conducted and all data are

collected before analysis. This approach is efficient if the data are all collected at once, but in the context

of a large clinical trial, participants are typically enrolled over the course of months or years and data

about the clinical endpoint are collected bit by bit. In this scenario, GSDs offer a tantalizing prospect: the

ability to end a study early when preliminary data are overwhelmingly favorable or unfavorable. Early

stopping, without sacrificing type I error, is beneficial because it saves resources and, more importantly,

addresses the ethical need to avoid exposing participants to suboptimal treatments unnecessarily.

In a GSD, a number of interim analyses, or looks, are conducted at prespecified points during the

collection of experimental data. At each look, the test statistic is calculated based on the data available at

the time, and it is compared with critical values defined by the efficacy and futility boundaries. If the test

statistic is more extreme than the critical values defined by the efficacy boundaries, then 𝐻0 is rejected

and the study is terminated early for efficacy. The complement to efficacy stopping is futility stopping,

and if the test statistic crosses the futility boundaries, then 𝐻0 is accepted and the study is terminated

early for futility. The concept of accepting 𝐻0, while taboo in many areas, is a long-established practice

in GSDs (see Origins of GSD in [ADAPT]GSD intro) and is often thought of as “abandoning a lost cause”

(Gould 1989). If 𝐻0 is neither rejected nor accepted after the interim analysis, the trial continues until

the next look.

Stata’s gsbounds command allows the calculation of stopping boundaries for efficacy and futility,

allows for both one-sided and two-sided tests, and implements the most popular boundary calculations.

In the examples that follow, the graphbounds option is used to visualize the boundaries. The boundaries
divide the range of possible test statistic values into regions: the rejection region, the acceptance region,

and the continuation region. If the test statistic falls within the rejection region, then 𝐻0 is rejected and

the study is terminated due to treatment efficacy. If the test statistic lies within the acceptance region,

https://www.stata.com/manuals/adaptgsdintro.pdf#adaptGSDintro
https://www.stata.com/manuals/adaptgs.pdf#adaptgs
https://www.stata.com/manuals/adaptgsdesign.pdf#adaptgsdesign
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_fixdesign
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_endpoint
https://www.stata.com/manuals/adaptgsdintro.pdf#adaptGSDintroRemarksandexamplesOriginsofGSD
https://www.stata.com/manuals/adaptgsdintro.pdf#adaptGSDintro
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then 𝐻0 is accepted and the study is terminated due to futility. If the test statistic is within the contin-

uation region, the study proceeds as planned. Efficacy bounds separate the rejection region from the

continuation region, and futility bounds separate the acceptance region from the continuation region. At

the final look, there is no continuation region, and 𝐻0 must be accepted or rejected.

Examples

Efficacy stopping

Example 1: Two-sided Pocock efficacy bounds
Consider a two-sided test of the difference between two means with known standard deviations. The

standardized test statistic 𝑧 follows a normal distribution, and we wish to test for efficacy at five equally
spaced looks using Pocock efficacy bounds. The familywise type I error allowed is 0.05, while the desired

power (at a prespecified clinically significant effect size) is 80%.

We use gsbounds to calculate and graph the stopping boundaries and compare them with those of

a fixed-sample trial. To calculate Pocock efficacy bounds, we specify the efficacy(pocock) option,

while the nlooks(5) option specifies five equally spaced looks (four interim analyses and a final anal-

ysis). The alpha() and power() options are not specified, which leaves them at their default values of

alpha(0.05) and power(0.8).
. gsbounds, efficacy(pocock) nlooks(5)
Group sequential boundaries
Efficacy: Pocock
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.8000

Info. ratio = 1.2286
Fixed-study crit. values = ±1.9600
Critical values and p-values for a group sequential design

Info. Efficacy
Look frac. Lower Upper p-value

1 0.20 -2.4132 2.4132 0.0158
2 0.40 -2.4132 2.4132 0.0158
3 0.60 -2.4132 2.4132 0.0158
4 0.80 -2.4132 2.4132 0.0158
5 1.00 -2.4132 2.4132 0.0158

Note: Critical values are for z statistics;
otherwise, use p-value boundaries.

gsbounds begins by displaying a summary of the𝛼 and power parameters used in the design, followed

by a table of stopping boundaries. To facilitate comparing the GSD with a fixed study design, gsbounds
also displays the fixed-study critical values and the information ratio, which is the ratio of the sample

size at the final look of a GSD to the sample size from a fixed study design.

https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_pocock
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Pocock efficacy bounds are characterized by using the same critical value at all looks. To maintain a

familywise type I error of 0.05, Pocock boundaries require that the 𝑧 statistic reach or exceed ±2.413 at

any look (which corresponds to a 𝑝-value of 0.0158) to reject 𝐻0. This is far larger than the critical value

of ±1.96 required by a fixed-sample test. Pocock bounds allow for the possibility of very early stopping

if the effect size is large, but if the study continues to the final look, it will require approximately 22.9%

more participants than an equivalently powered fixed design, as seen by the information ratio of 1.229.

To plot the bounds for visual inspection, we rerun the previous gsbounds command with the

graphbounds option.

. gsbounds, efficacy(pocock) nlooks(5) graphbounds
(output omitted )
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Parameters: α = .05 (two-sided), 1-β = .8

Pocock efficacy

Figure 1. Pocock efficacy bounds

The graph displays the bounds visually, dividing the range of possible 𝑧-values into continuation,

rejection, and acceptance regions. The vertical axis is the value of the 𝑧 statistic, and the horizontal axis
is the information fraction, or the fraction of the total information that has been collected at the time of

the analysis. The information fraction is typically proportional to the sample size, except in time-to-event

studies, in which case it is proportional to the number of events observed. The information fraction is

reported in the Info. frac. column of the table above.

We progress from left to right in the graph as information is collected during the clinical trial. The

efficacy bounds, which separate the rejection and continuation regions, are drawn in blue and marked

with a dot at each look. Before the first look (that is, when the information fraction is < 0.2), it is

impossible to reject 𝐻0 because the data have not yet been analyzed, so all 𝑧-values fall within the

continuation region. Beginning with the first look, the range of 𝑧-values is divided into rejection and

continuation regions. Because we are conducting a two-sided test, the rejection region is made up of two

areas: 𝑧-values ≥ 2.413 and 𝑧-values ≤ −2.413.

At the first look, a 𝑧 test is performed using the command ztest or ztesti, and 𝑧 statistic 𝑧1 is

calculated; see [R] ztest. 𝑧1 is compared with the critical values of the efficacy bounds. If 𝑧1 lies in the

rejection region above the efficacy upper bound or below the efficacy lower bound, the null hypothesis

https://www.stata.com/manuals/rztest.pdf#rztest
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is rejected and the trial is terminated early for treatment efficacy. Mathematically, we would write that

we reject 𝐻0 if 𝑧1 ≥ 2.413 or 𝑧1 ≤ −2.413. If 𝑧1 lies in the continuation region between the upper and

lower efficacy bounds, written as 𝑧1 ∈ (−2.413, 2.413), then the trial continues.
Because Pocock efficacy bounds use the same critical values for each look, the procedure during the

second, third, and fourth looks will be the same. At the final look, there is no continuation region. If

|𝑧5| < 2.413, then 𝐻0 is accepted, and if |𝑧5| ≥ 2.413, then 𝐻0 is rejected.

The graph also includes points marking the critical values that would be used in an equivalently

powered fixed study design. These points appear at 𝑧-values of ±1.96, which give a type I error of

0.05 in a fixed design with a single analysis. Compared with the GSD, the analysis in the fixed design

occurs at an information fraction of 0.814. This is calculated as the inverse of the information ratio:

1/1.229 = 0.814.

At the fifth look, the critical values of the Pocock design are more extreme than the critical values of

the fixed design. If |𝑧5| ∈ [1.96, 2.413), the researcher will be unable to reject 𝐻0, because they used a

Pocock design; they will likely regret not having chosen a fixed design, which would have allowed them

to reject 𝐻0 with the same 𝑧-value (and a smaller sample).
To avoid this uncomfortable situation, some researchers prefer to use O’Brien–Fleming boundaries,

which are demonstrated in the following example.

Example 2: Two-sided O’Brien–Fleming efficacy bounds
O’Brien–Fleming efficacy boundaries are extremely conservative at early looks and far less so at later

looks. The final critical values in an O’Brien–Fleming design are similar to those of a fixed study design.

Here we calculate O’Brien–Fleming efficacy bounds for the scenario described in the previous example.

. gsbounds, efficacy(obfleming) nlooks(5) graphbounds
Group sequential boundaries
Efficacy: O’Brien--Fleming
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.8000

Info. ratio = 1.0284
Fixed-study crit. values = ±1.9600
Critical values and p-values for a group sequential design

Info. Efficacy
Look frac. Lower Upper p-value

1 0.20 -4.5617 4.5617 0.0000
2 0.40 -3.2256 3.2256 0.0013
3 0.60 -2.6337 2.6337 0.0084
4 0.80 -2.2809 2.2809 0.0226
5 1.00 -2.0401 2.0401 0.0413

Note: Critical values are for z statistics;
otherwise, use p-value boundaries.

https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_obf
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O'Brien–Fleming efficacy

Figure 2. O’Brien–Fleming efficacy bounds

The O’Brien–Fleming design makes it difficult to reject 𝐻0 at early looks but easier at later looks. At

the first look, the critical values of ±4.562 correspond to a 𝑝-value of 0.000005, while the critical values
at the last look, ±2.04, correspond to a 𝑝-value of 0.0413. The information ratio of 1.028 indicates that
the maximum sample size is only 2.8% larger than that of a fixed design.

In the graph, the efficacy bounds take the shape of a funnel with the opening to the left; the continuation

region shrinks as more information is collected. By the final look, the critical values of the efficacy

bounds are nearly the same as the critical values from a fixed study design. The fixed design uses nearly

the same amount of information as the final look of the O’Brien–Fleming design, with the data analysis

in the fixed design occurring at information fraction 1/1.028 = 0.97.

The procedure for interim analysis with O’Brien–Fleming bounds is equivalent to the procedure we

used with Pocock bounds, except that the critical values change from one look to the next. At the first

look, the continuation region is defined by |𝑧1| < 4.562 and the rejection region by |𝑧1| ≥ 4.562. At the

second look, the continuation region is defined by |𝑧2| < 3.226 and the rejection region by |𝑧2| ≥ 3.226.

The pattern continues until the fifth and final look, which has no continuation region. At the fifth look,

the acceptance region is defined by |𝑧5| < 2.04 and the rejection region by |𝑧5| ≥ 2.04.

Example 3: Two-sided Wang–Tsiatis efficacy bounds
Both Pocock and O’Brien–Fleming boundaries are special cases of a one-parameter family of bound-

aries described by Wang and Tsiatis (1987). This family of boundaries is indexed by power parameter

Δ. Setting Δ = 0.5 yields a Pocock boundary, whereas setting Δ = 0 yields an O’Brien–Fleming

boundary. Wang–Tsiatis boundaries with Δ ∈ (0, 0.5) offer a balance between the two designs.

https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_maxss
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We continue example 2, this time calculating Wang–Tsiatis efficacy bounds with power parameter

Δ𝑒 = 0.25.

. gsbounds, efficacy(wtsiatis(0.25)) nlooks(5) graphbounds
Group sequential boundaries
Efficacy: Wang--Tsiatis, Delta = 0.2500
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.8000

Info. ratio = 1.0718
Fixed-study crit. values = ±1.9600
Critical values and p-values for a group sequential design

Info. Efficacy
Look frac. Lower Upper p-value

1 0.20 -3.1941 3.1941 0.0014
2 0.40 -2.6859 2.6859 0.0072
3 0.60 -2.4270 2.4270 0.0152
4 0.80 -2.2586 2.2586 0.0239
5 1.00 -2.1360 2.1360 0.0327

Note: Critical values are for z statistics;
otherwise, use p-value boundaries.
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Parameters: α = .05 (two-sided), 1-β = .8, ∆e = .25

Wang–Tsiatis efficacy

Figure 3. Wang–Tsiatis efficacy bounds, Δ = 0.25

In addition to the values of 𝛼 and power used to calculate the bounds, gsbounds now reports the

efficacy parameter for the Wang–Tsiatis bounds. The boundaries themselves are a compromise be-

tween the two previous designs. The critical values at early looks are less conservative than those of

the O’Brien–Fleming design, making it more likely that a study with a positive result will be stopped

very early. At the first look, the critical values of ±3.194 correspond to a 𝑝-value of 0.0014, while the
second look critical values of ±2.686 correspond to a 𝑝-value of 0.0072. If the study continues to its

conclusion, the final critical values of ±2.136 correspond to a 𝑝-value of 0.0327.

https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsRemarksandexamplesex2
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_wt
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The maximum required sample size is 7.2% larger than that of a fixed study, which means that data

analysis in a fixed study is conducted at information fraction 1/1.072 = 0.933. Looking at the graph,

we see that the funnel shape of the efficacy bounds is less pronounced than with the O’Brien–Fleming

efficacy bounds, but the general form is similar.

Efficacy and futility stopping

Example 4: Two-sided Wang–Tsiatis efficacy and futility bounds
Efficacy boundaries allow early stopping to reject 𝐻0, but in some cases, there is an ethical argument

for early stopping to accept 𝐻0, such as when the experimental treatment causes deleterious side effects.

If we can demonstrate that the experimental treatment is not significantly better than a placebo, we can

end the trial early and prevent participants from receiving a treatment that does more harm than good.

Even in the absence of harmful side effects, ending a trial early by accepting 𝐻0 means that participants

who would have been recruited into a “dead-end” study can instead be recruited to test the next promising

treatment.

We continue with the scenario of example 3, this time adding futility bounds to permit early stopping

to accept𝐻0. Wewant to allow futility stopping, but we do not want to be hasty in abandoning a treatment

just because the very first results are not promising. To accomplish this, we use an O’Brien–Fleming

futility bound that creates a narrow acceptance region at early looks.

We specify a binding futility bound with futility() suboption binding. If the 𝑧 statistic from an

interim analysis crosses a binding futility bound, the trial must be stopped for futility or else it will risk

exceeding the desired familywise type I error.

. gsbounds, efficacy(wtsiatis(0.25)) futility(obfleming, binding) nlooks(5)
> graphbounds
Group sequential boundaries
Efficacy: Wang--Tsiatis, Delta = 0.2500
Futility: O’Brien--Fleming, binding
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.8000

Info. ratio = 1.1961
Fixed-study crit. values = ±1.9600
Critical values and p-values for a group sequential design

Info. Efficacy Futility
Look frac. Lower Upper p-value Lower Upper p-value

1 0.20 -3.0960 3.0960 0.0020 . . .
2 0.40 -2.6034 2.6034 0.0092 -0.3669 0.3669 0.7137
3 0.60 -2.3525 2.3525 0.0186 -1.0907 1.0907 0.2754
4 0.80 -2.1892 2.1892 0.0286 -1.6297 1.6297 0.1032
5 1.00 -2.0704 2.0704 0.0384 -2.0704 2.0704 0.0384

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.

https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsRemarksandexamplesex3
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Figure 4. Wang–Tsiatis efficacy and futility bounds

The table of boundary values includes columns for futility lower and upper bounds, but the futility

bounds for the first look are missing. This is because, to achieve the required significance level and

power, the futility lower bound at the first look would have been above the futility upper bound. As such,

the trial cannot be stopped for futility at the first look, and the futility bounds for this look are reported

as missing. If 𝑧1, the test statistic at the first look, lies within the continuation region of (−3.096, 3.096),
then the study will continue. If |𝑧1| ≥ 3.096, then𝐻0 is rejected and the trial is stopped early for efficacy.

At the second look, there are three possibilities: If |𝑧2| < 0.367, then 𝐻0 is accepted and the trial is

terminated for futility. If |𝑧2| ≥ 2.603, then 𝐻0 is rejected and the trial is terminated due to treatment

efficacy. If |𝑧2| ∈ [0.367, 2.603), then the trial continues. A similar procedure is followed at the third

and fourth looks, and by the fourth look, the continuation region has shrunk to |𝑧4| ∈ [1.63, 2.189); if
|𝑧4| < 1.63, the trial is terminated for futility, and if |𝑧4| ≥ 2.189, the trial is terminated due to efficacy.

At the final look of a GSD with both efficacy and futility boundaries, the efficacy critical values are

always the same as the futility critical values, and there is no continuation region. Here, if |𝑧5| < 2.07,

𝐻0 is accepted; otherwise, 𝐻0 is rejected. The sample size at the fifth look is 19.6% larger than that of

a fixed study design, but the ability to stop the trial early due to futility has increased the chance that the

trial will be terminated before the fifth look.

In the graph, we see the familiar funnel-shaped efficacy bounds, but now the futility bounds form a

truncated “inner wedge” inside the efficacy bounds. The critical values from an equivalent fixed study

design are similar to the critical values from the fifth look of the GSD, but the data analysis of the fixed

study occurs at information fraction 1/1.196 = 0.836.

Compared with the efficacy-only design of example 3 (which used the same significance level, power,

efficacy bound type, and efficacy parameter as this example), we see that adding futility boundaries

increases the maximum sample size from 107.2% to 119.6% of the fixed-study sample size. What’s

more, adding binding futility bounds has shrunk the efficacy critical values. Without futility bounds, the

efficacy critical values at the first and fifth looks were ±3.194 and ±2.136, respectively (corresponding

https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsRemarksandexamplesex3
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to 𝑝-values of 0.0014 and 0.033). The addition of binding futility bounds has decreased those efficacy
critical values to ±3.096 and ±2.07, respectively (equivalent to 𝑝-values of 0.002 and 0.038). Similar

decreases in efficacy critical values are seen at the second, third, and fourth looks as well.

This decrease is best understood by considering the case of a true null hypothesis and examining the

behavior of the two designs. In this case, the correct action would be to accept 𝐻0; it is a type I error

to reject 𝐻0. When the null hypothesis is true, each interim look in the efficacy-only GSD presents the

opportunity to continue the trial or to commit a type I error and mistakenly reject 𝐻0. Only at the very

last look do we have the option to correctly accept 𝐻0. In the trial with both efficacy and futility bounds,

we have more opportunities to correctly accept 𝐻0, making it less likely that the trial will continue to

later looks. If we were to use the same efficacy critical values as in the efficacy-only design, the actual

probability of committing a type I error would be lower than the specified significance level, and the test

would be conservative. By relaxing the efficacy critical values, the desired significance level is achieved.

Nonbinding futility bounds

Example 5: Two-sided Wang–Tsiatis efficacy and nonbinding futility bounds
The binding futility bounds we used in example 4 come with the restriction that the trial must be

stopped if an interim analysis crosses the futility boundary. We can relax this requirement by removing

futility() suboption binding to calculate nonbinding futility bounds. We omit the graphbounds
option because the shape of this graph is nearly identical to that of the binding design.

. gsbounds, efficacy(wtsiatis(0.25)) futility(obfleming) nlooks(5)
Group sequential boundaries
Efficacy: Wang--Tsiatis, Delta = 0.2500
Futility: O’Brien--Fleming, nonbinding
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.8000

Info. ratio = 1.2507
Fixed-study crit. values = ±1.9600
Critical values and p-values for a group sequential design

Info. Efficacy Futility
Look frac. Lower Upper p-value Lower Upper p-value

1 0.20 -3.1941 3.1941 0.0014 . . .
2 0.40 -2.6859 2.6859 0.0072 -0.4050 0.4050 0.6855
3 0.60 -2.4270 2.4270 0.0152 -1.1396 1.1396 0.2544
4 0.80 -2.2586 2.2586 0.0239 -1.6875 1.6875 0.0915
5 1.00 -2.1360 2.1360 0.0327 -2.1360 2.1360 0.0327

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.

Examining the efficacy boundaries, we see that the critical values are identical to the efficacy critical

values from the efficacy-only design of example 3. This is because nonbinding futility bounds do not

affect the calculation of efficacy bounds.

https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsRemarksandexamplesex4
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsRemarksandexamplesex4
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At the end of example 4, we saw that binding futility bounds reduced the chance of erroneously

rejecting a true null hypothesis because the trial is required to stop if the 𝑧 statistic from an interim analysis

crosses the futility bound. This is not the case with nonbinding futility bounds, where the experimenter

can decide to continue the experiment even if the futility boundary is crossed.

Compared with the binding futility bounds of example 4, the nonbinding boundaries are slightly wider

and the information ratio is larger (1.251 for the nonbinding design versus 1.196 for the binding design).

The phenomenon of larger information ratios for designs with nonbinding futility bounds than for designs

with binding futility bounds holds true, in general, and can be considered a cost associated with the

increased flexibility offered by nonbinding designs.

One-sided tests

Example 6: One-sided O’Brien–Fleming efficacy bounds
The previous examples have all involved two-sided tests. When conducting a clinical trial of an

experimental treatment, the researcher usually has a good idea of whether the effect will be positive or

negative, but often two-sided tests are conducted to demonstrate impartiality. However, in some cases, it

may be of interest to consider a one-sided alternative hypothesis. Here we plan to conduct a two-sample

means test with a one-sided alternative hypothesis.

In example 2, we used a two-sided O’Brien–Fleming design with five equally spaced looks, a sig-

nificance level of 0.05, and a power of 0.8. Here we use a similar design, but we restrict ourselves to a

one-sided alternative hypothesis. This restricts the rejection region to positive values of a 𝑧 statistic that
are larger than the efficacy upper bound.

In the two-sided design with a significance level of 0.05, under the null hypothesis, there is a 2.5%

probability that the observed 𝑧 statistic is above the efficacy upper bound and a 2.5% probability that

it is below the efficacy lower bound. To design a comparable study using a one-sided test, we adopt a

significance level of 0.025 to match the efficacy upper bound of the two-sided design.

. gsbounds, alpha(0.025) efficacy(obfleming) nlooks(5) upper graphbounds
Group sequential boundaries
Efficacy: O’Brien--Fleming
Study parameters:

alpha = 0.0250 (upper one-sided)
power = 0.8000

Info. ratio = 1.0284
Fixed-study crit. value = 1.9600
Critical values and p-values
for a group sequential design

Info. Efficacy
Look frac. Upper p-value

1 0.20 4.5617 0.0000
2 0.40 3.2256 0.0006
3 0.60 2.6337 0.0042
4 0.80 2.2809 0.0113
5 1.00 2.0401 0.0207

Note: Critical values are for z statistics;
otherwise, use p-value boundaries.

https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsRemarksandexamplesex4
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsRemarksandexamplesex4
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsRemarksandexamplesex2
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Figure 6. One-sided O’Brien–Fleming efficacy bounds

As expected, the efficacy upper bound for a one-sided design with significance level 0.025 is identical

to the efficacy upper bound in the two-sided design with significance level 0.05. The graph of the one-

sided bound is identical to the upper portion of the graph of the two-sided bound from example 2.

The procedure for comparing test statistics to the boundary critical values is somewhat simpler with

a single bound: At the first through fourth looks, we reject 𝐻0 if the 𝑧 statistic exceeds the critical value;
otherwise, we continue the experiment. At the final look, we reject 𝐻0 if 𝑧5 ≥ 2.04; otherwise, we

accept 𝐻0.

Error-spending bounds

Example 7: One-sided error-spending O’Brien–Fleming-style efficacy bounds
In example 6, we used a one-sided O’Brien–Fleming design with five equally spaced looks, a sig-

nificance level of 0.025, and a power of 0.8. O’Brien–Fleming efficacy bounds possess properties that

appeal to clinical trialists: The conservative critical values at early looks ensure that a trial is not stopped

very early unless the evidence against the null hypothesis is overwhelming, and the critical values at the

final look are nearly the same as those from a fixed study design, reducing the risk of the group sequential

trial being unable to reject 𝐻0 despite a final 𝑧 statistic that would have resulted in rejecting 𝐻0 under a

fixed study design.

The large critical values at early looks correspond to a very small probability of committing a type I

error. Viewed from the perspective of the error-spending paradigm, we can say that the O’Brien–Fleming

design spends very little error at early looks, instead saving the error for later looks. If we rerun the

design from example 6, we can examine the cumulative type I error spent by displaying returned matrix

r(aspent).

https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsRemarksandexamplesex2
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsRemarksandexamplesex6
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_errspend
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsRemarksandexamplesex6
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. gsbounds, alpha(0.025) efficacy(obfleming) nlooks(5) upper
(output omitted )

. matrix list r(aspent)
r(aspent)[5,1]

alpha spent:
per look

Look 1 2.537e-06
Look 2 .00062953
Look 3 .0044518
Look 4 .01279229
Look 5 .025

In the classical O’Brien–Fleming design, critical values are calculated directly, and the error spent at

each look is a product of those critical values. Boundaries cannot be modified while the trial is underway

because the critical value at each look depends on the critical values of all other looks. With error-

spending boundaries, the error spent at each look is determined by the error-spending function, and

the critical value is a product of the error spent. In this case, each critical value depends on the total

information to be collected and the error spent at previous looks, but not on the critical values of future

looks.

When Lan and DeMets (1983) developed the error-spending approach, they formulated an error-

spending function that approximates the error spent at each look by O’Brien–Fleming bounds. By spend-

ing the type I error at nearly the same rate as the classic O’Brien–Fleming design, the error-spending

approximation attains critical values that are nearly the same as those of the classic O’Brien–Fleming

design.

Here we modify the design used in example 6 by specifying an efficacy boundary of errobfleming
to calculate error-spending O’Brien–Fleming-style bounds.

. gsbounds, alpha(0.025) efficacy(errobfleming) nlooks(5) upper graphbounds
Group sequential boundaries
Efficacy: Error-spending O’Brien--Fleming style
Study parameters:

alpha = 0.0250 (upper one-sided)
power = 0.8000

Info. ratio = 1.0247
Fixed-study crit. value = 1.9600
Critical values and p-values
for a group sequential design

Info. Efficacy
Look frac. Upper p-value

1 0.20 4.8769 0.0000
2 0.40 3.3570 0.0004
3 0.60 2.6803 0.0037
4 0.80 2.2898 0.0110
5 1.00 2.0310 0.0211

Note: Critical values are for z statistics;
otherwise, use p-value boundaries.

https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsRemarksandexamplesex6
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsSyntaxsntx_boundproc
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Figure 7. One-sided error-spending O’Brien–Fleming-style efficacy bounds

The critical values of the error-spending O’Brien–Fleming-style bounds are very similar to those of

the classic O’Brien–Fleming design. Both start off conservatively at early looks and approach the fixed-

study critical value by the final look. The information ratio of both designs is also very similar. At the

final look, the classic O’Brien–Fleming design required 2.8%more information than an equivalent fixed

design, while the error-spending approximation requires 2.5% more.

Examining the graph, it is difficult to distinguish the difference between the shape of the error-

spending O’Brien–Fleming-style bounds and the classic O’Brien–Fleming bounds from example 6.

To see the cumulative type I error spent at each look, we examine r(aspent).

. matrix list r(aspent)
r(aspent)[5,1]

alpha spent:
per look

Look 1 5.389e-07
Look 2 .00039415
Look 3 .00380806
Look 4 .01221179
Look 5 .025

Unsurprisingly, we see that the error-spending O’Brien–Fleming-style design spends the allotted 𝛼
of 0.025 at nearly the same rate as the classic O’Brien–Fleming design.

Example 8: One-sided error-spending efficacy and futility bounds
Clinical trials using one-sided tests stand to benefit from futility stopping just as much as trials using

two-sided tests. Consider a trial with the one-sided alternative hypothesis that the mean of the experi-

mental group is less than the mean of the control group. We plan for three evenly spaced looks, and we

use error-spending bounds.

https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsRemarksandexamplesex6
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Wewant an efficacy boundary that is conservative at early looks, so we choose Kim–DeMets efficacy

bounds with parameter 𝜌𝑒 = 3, which yields bounds that are similar in shape to O’Brien–Fleming

bounds, if slightly less conservative at very early looks. To increase the chance that we can accept the

null hypothesis at the first look if the evidence supports 𝐻0, we want a futility boundary that is less

conservative at early looks. Selecting Hwang–Shih–de Cani futility bounds with parameter 𝛾𝑓 = 1

accomplishes this by producing bounds that are similar in shape to Pocock bounds, and we make the

futility bound nonbinding so that stopping is not required if it is crossed at an interim analysis. As in

example 6, we use a significance level of 0.025, but here we specify the power to be 0.9.

. gsbounds, alpha(0.025) power(0.9) efficacy(kdemets(3)) futility(hsdecani(1))
> nlooks(3) lower graphbounds
Group sequential boundaries
Efficacy: Error-spending Kim--DeMets, rho = 3.0000
Futility: Error-spending Hwang--Shih--de Cani, nonbinding, gamma = 1.0000
Study parameters:

alpha = 0.0250 (lower one-sided)
power = 0.9000

Info. ratio = 1.2315
Fixed-study crit. value = -1.9600
Critical values and p-values for a group sequential design

Info. Efficacy Futility
Look frac. Lower p-value Upper p-value

1 0.33 -3.1130 0.0009 -0.3798 0.3521
2 0.67 -2.4619 0.0069 -1.3016 0.0965
3 1.00 -2.0087 0.0223 -2.0087 0.0223

Note: Critical values are for z statistics; otherwise,
use p-value boundaries.
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Parameters: α = .025 (one-sided), 1-β = .9, ρe = 3, γf = 1
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Figure 8. One-sided lower error-spending efficacy and futility bounds

https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsRemarksandexamplesex6
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At the first look, the continuation region is the interval between the efficacy lower bound of −3.113

and the futility upper bound of −0.38. If 𝑧1 > −0.38, then 𝐻0 may be accepted and the trial terminated

for futility; if 𝑧1 ≤ −3.113, then 𝐻0 is rejected and the trial is terminated due to treatment efficacy. At

the second look, the continuation region has shrunk to (−2.462, −1.302]. At the third and final look,

the critical values of the efficacy lower bound and the futility upper bound coincide, and there is no

continuation region: If 𝑧3 ≤ −2.009, then 𝐻0 is rejected; otherwise, it is accepted.

If the study continues to the last look, the final critical value is very close to the critical value for a

fixed study design, but the GSD requires 23.1% more participants than a fixed design.

Unevenly spaced looks

Example 9: One-sided error-spending bounds with unevenly spaced looks
In example 8, we used a three-look GSD with evenly spaced information increments. Here we con-

sider a similar scenario, but we add a new look halfway between the first and second looks. To specify

four looks with uneven spacing, we use the information() option. Because information() is auto-

matically rescaled, we need not specify the final information level as 1, so we can type information(1
1.5 2 3) to avoid repeating decimals.

. gsbounds, alpha(0.025) power(0.9) efficacy(kdemets(3)) futility(hsdecani(1))
> information(1 1.5 2 3) lower graphbounds
Group sequential boundaries
Efficacy: Error-spending Kim--DeMets, rho = 3.0000
Futility: Error-spending Hwang--Shih--de Cani, nonbinding, gamma = 1.0000
Study parameters:

alpha = 0.0250 (lower one-sided)
power = 0.9000

Info. ratio = 1.2456
Fixed-study crit. value = -1.9600
Critical values and p-values for a group sequential design

Info. Efficacy Futility
Look frac. Lower p-value Upper p-value

1 0.33 -3.1130 0.0009 -0.3916 0.3477
2 0.50 -2.7889 0.0026 -0.7827 0.2169
3 0.67 -2.5133 0.0060 -1.2002 0.1150
4 1.00 -2.0120 0.0221 -2.0120 0.0221

Note: Critical values are for z statistics; otherwise,
use p-value boundaries.

https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsRemarksandexamplesex8
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Figure 9. One-sided lower error-spending efficacy and futility bounds with unevenly spaced looks

The shape of the bounds is strikingly similar to the design in example 8, but the 𝑥 axis of the graph has

been labeled using the scale we specified in the information() option. The properties of the design,

including the final critical value and the information ratio, are in line with the three-look design, but the

additional look gives us one more opportunity to terminate the trial early.

Futility-only stopping

Example 10: One-sided error-spending Pocock-style futility bounds
The previous examples have all allowed early stopping due to efficacy, but occasionally only futility

stopping is desired. This can occur, for example, if there is concern about uncommon but serious adverse

events, which are harmful side effects of the treatment and negative medical outcomes not associated

with an underlying disease. In this case, even if the interim results offer compelling evidence of treatment

efficacy, the trial will continue in order to collect a sample large enough to evaluate the pattern of adverse

events. If the interim results are not promising, the trial can be terminated early for futility.

Here critical values for the futility bounds are calculated for each look, but critical values for the

efficacy bounds are only calculated for the final look because 𝐻0 cannot be rejected until the end of

the study. As in example 7, we will design a study with five equally spaced looks, an upper one-sided

significance level of 0.025, and a power of 0.8. But we replace the error-spending O’Brien–Fleming-

style efficacy bound with a nonbinding error-spending Pocock-style futility bound.

https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsRemarksandexamplesex8
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsRemarksandexamplesex7


gsbounds — Boundaries for group sequential trials 25

. gsbounds, alpha(0.025) futility(errpocock) nlooks(5) upper graphbounds
Group sequential boundaries
Futility: Error-spending Pocock style, nonbinding
Study parameters:

alpha = 0.0250 (upper one-sided)
power = 0.8000

Info. ratio = 1.3060
Fixed-study crit. value = 1.9600
Critical values and p-values for a group sequential design

Info. Efficacy Futility
Look frac. Upper p-value Lower p-value

1 0.20 -0.1307 0.5520
2 0.40 0.5751 0.2826
3 0.60 1.1163 0.1321
4 0.80 1.5672 0.0585
5 1.00 1.9600 0.0250 1.9600 0.0250

Note: Critical values are for z statistics; otherwise,
use p-value boundaries.
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Figure 10. Error-spending Pocock-style nonbinding futility bound

At the first look, we are allowed, but not required, to accept 𝐻0 if 𝑧1 < −0.131; otherwise, the trial

continues. No efficacy critical value is reported for the first look because we cannot stop the trial for

efficacy at this point. This procedure is repeated at the second, third, and fourth looks, with progressively

larger futility critical values. At the fifth look, which is the only look with an efficacy critical value, we

reject 𝐻0 if 𝑧5 ≥ 1.96; otherwise, we accept 𝐻0.

The critical value at the fifth look is equal to the critical value from an equivalently powered fixed

study design. This is because a GSD with futility-only stopping offers a single opportunity to reject 𝐻0 at

the end of the study, just as a fixed design does. If we had specified binding futility bounds, the critical

value would have been even smaller than that of a fixed design. This is because, if the null hypothesis
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is true, binding futility bounds reduce the probability of committing a type I error because the trial can

be forced to stop for futility before reaching the opportunity to reject 𝐻0 at the final look. To avoid

underspending the desired type I error in the presence of binding futility bounds, efficacy critical values

are reduced until the desired 𝛼 level is reached.

On the graph, the efficacy bound is drawn as a single dot rather than a line because only the last look

uses an efficacy bound. The dot for the efficacy bound covers the final dot marking the final futility

bound because they share the same critical value.

Stored results
gsbounds stores the following in r():

Scalars

r(alpha) overall significance level (familywise type I error)

r(beta) overall probability of a type II error

r(binding) 1 for binding futility bounds, 0 for nonbinding

r(effparam) efficacy parameter (if wtsiatis(), kdemets(), or hsdecani() specified)

r(futparam) futility parameter (if wtsiatis(), kdemets(), or hsdecani() specified)

r(info ratio) ratio of maximum information required to that of a fixed study design

r(nlooks) number of analyses

r(onesided) 1 for a one-sided test, 0 otherwise

r(power) overall power

r(stop) 0 for futility bounds, 1 for efficacy bounds, 2 for both

r(z fixed) critical value for an equivalent fixed study design

Macros

r(cmd) gsbounds
r(cmdline) command as typed

r(direction) upper, lower, or two-sided
r(effbnd) pocock, obfleming, wtsiatis, errpocock, errobfleming, kdemets, or hsdecani
r(futbnd) pocock, obfleming, wtsiatis, errpocock, errobfleming, kdemets, or hsdecani

Matrices

r(aspent) cumulative alpha spent per look (stored with efficacy-only stopping or when futility bounds

are binding)
r(aspent fstop) cumulative alpha spent per look if futility stopping does occur (stored when futility bounds

are nonbinding)
r(aspent nofstop) cumulative alpha spent per look if futility stopping does not occur (stored when futility

bounds are nonbinding)
r(bounds) stopping boundaries

r(bspent) cumulative beta spent per look (when futility bounds are specified)

r(info frac) information fraction

r(info level) specified information level

r(p crit) 𝑝-values corresponding to boundary critical values
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Methods and formulas
Methods and formulas are presented under the following headings:

Group sequential bounds
Classical (Wang–Tsiatis) bounds
Error-spending bounds
Significance level approach

Group sequential bounds
After each group of observations is collected, an analysis is performed and the test statistic 𝑍 is

calculated. In the description that follows, we assume that𝑍 follows a standard normal distribution under

𝐻0. For test statistics that follow other distributions, the normal model is used to calculate boundaries

that are then converted to the appropriate scale using the significance level approach.

In a GSD with 𝐾 looks, let (𝑛1, . . . , 𝑛𝐾) be the cumulative sample sizes at looks 1 through 𝐾, with

the maximum sample size of 𝑛𝐾 attained at the final look. For any 𝑘 in (1, . . . , 𝐾), let ℐ𝑘 denote the

information fraction at look 𝑘. This is the fraction of the maximum sample size that has been observed,

with ℐ𝑘 = 𝑛𝑘/𝑛𝐾 for 𝑘 in (1, . . . , 𝐾). For studies with time-to-event outcomes, where information

is proportional to the number of events observed, interpret 𝑛𝑘 to be the cumulative number of events

observed at stage 𝑘, and interpret 𝑛𝐾 to be the maximum number of events.

Each test statistic 𝑍𝑘 is calculated using all observations collected through look 𝑘. This cumulative
quality implies that (𝑍1, . . . , 𝑍𝐾) are not independent. Jennison and Turnbull (2000, 49) show that

(𝑍1, . . . , 𝑍𝐾) is multivariate normal with

Cov(𝑍𝑗, 𝑍𝑘) = √ ℐ𝑗

ℐ𝑘
for 1 ≤ 𝑗 ≤ 𝑘 ≤ 𝐾 (1)

When (𝑍1, . . . , 𝑍𝐾) follow this distribution, the score statistics (𝑆1, . . . , 𝑆𝐾) that correspond to these

𝑧 statistics are said to have the property of “independent increments”. For any 𝑘 in (1, . . . , 𝐾), 𝑆𝑘 is

equal to 𝑍𝑘 multiplied by the square root of the Fisher information for the parameter involved in the test.

The independent increments property means that 𝑆1, (𝑆2 − 𝑆1), . . . , (𝑆𝐾 − 𝑆𝐾−1) are independently
distributed.

Without loss of generality, consider a GSD for an upper one-sided test with both efficacy and binding

futility bounds. Denote critical values for efficacy stopping as (𝑒1, . . . , 𝑒𝐾) and critical values for futility
stopping as (𝑓1, . . . , 𝑓𝐾). At interim look 𝑘 < 𝐾, if test statistic𝑍𝑘 ≥ 𝑒𝑘, the trial is stopped for efficacy;

if 𝑍𝑘 < 𝑓𝑘, the trial is stopped for futility; and if 𝑓𝑘 ≤ 𝑍𝑘 < 𝑒𝑘, the trial continues. At the final look,

there is no continuation region because 𝑓𝐾 = 𝑒𝐾.

Let 𝛼𝑘 and 𝛽𝑘 be the respective probabilities of type I and type II error at look 𝑘, and let 𝛼 = ∑𝐾
𝑘=1 𝛼𝑘

and 𝛽 = ∑𝐾
𝑘=1 𝛽𝑘 be the overall probabilities of type I and type II error (with power equal to 1 − 𝛽).

Using the result of Wassmer and Brannath (2016, 57), we write the probability of type I error during the

first and subsequent looks as

𝛼1 = Pr𝐻0
(𝑍1 ≥ 𝑒1) and 𝛼𝑘 = Pr𝐻0

(𝑍𝑘 ≥ 𝑒𝑘 ∩
𝑘−1
⋂
𝑗=1

𝑓𝑗 ≤ 𝑍𝑗 < 𝑒𝑗) for 𝑘 ∈ (2, . . . , 𝐾) (2)

Similarly, the formula for the stagewise probability of type II error is

𝛽1 = Pr𝐻𝑎
(𝑍1 < 𝑓1) and 𝛽𝑘 = Pr𝐻𝑎

(𝑍𝑘 < 𝑓𝑘 ∩
𝑘−1
⋂
𝑗=1

𝑓𝑗 ≤ 𝑍𝑗 < 𝑒𝑗) for 𝑘 ∈ (2, . . . , 𝐾) (3)

https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_siglevel
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_fisherinfo
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where Pr𝐻0
(⋅) indicates the probability under the null hypothesis and Pr𝐻𝑎

(⋅) indicates the probability
under the alternative hypothesis.

For trials with efficacy stopping only, replace (𝑓1, . . . , 𝑓𝐾−1) with −∞ and let 𝑓𝐾 = 𝑒𝐾 in the

calculations above. For trials with nonbinding futility bounds, replace (𝑓1, . . . , 𝑓𝐾−1) with −∞ in (2)

but not in (3). For trials with futility stopping only, replace (𝑒1, . . . , 𝑒𝐾−1) with ∞ and let 𝑒𝐾 = 𝑓𝐾 (in

this case, stored result r(bounds) records interim efficacy critical values as .z). For two-sided trials,

replace all instances of 𝑍 with |𝑍| in (2), and replace 𝑍𝑗 with |𝑍𝑗| in (3).
To calculate the probabilities in (2) and (3), cumulative multivariate normal distributions are evaluated

with lower limit (𝑓1, . . . , 𝑓𝐾) and upper limit (𝑒1, . . . , 𝑒𝐾). Two-sided tests require additional integration
from (−𝑒1, . . . , −𝑒𝐾) to (−𝑓1, . . . , −𝑓𝐾). The covariance matrix of the distribution, defined in (1),

allows the multivariate normal integral to be decomposed into a series of univariate integrals using the

recursive integration formula of Armitage, McPherson, and Rowe (1969).

The integrals are approximated using Simpson’s rule, with quadrature points spaced closer together

toward the center of the distribution than at the tails, as per Jennison and Turnbull (2000, 349). The

number of quadrature points is 12𝑟 − 3, with 𝑟 = 20 by default. Jennison and Turnbull (2000) report

that using 𝑟 = 16 yields probabilities that are accurate to 10−6. The value of 𝑟 can be set with the

intpointsscale(#) option. When integrating over narrow intervals, the number of quadrature points

is increased adaptively to ensure sufficient precision.

Classical (Wang–Tsiatis) bounds
Wang and Tsiatis (1987) developed a class of group sequential boundaries with shape parameter Δ.

The Wang–Tsiatis family includes the classical bounds of Pocock (1977) and O’Brien and Fleming

(1979) as special cases. The Pocock boundary is equivalent to a Wang–Tsiatis design with Δ = 0.5,

and the O’Brien–Fleming boundary is a Wang–Tsiatis design with Δ = 0. The implementation of

classical boundaries pocock, obfleming, and wtsiatis() follows the work of Pampallona and Tsiatis

(1994), who extended the Wang–Tsiatis family of bounds to include futility stopping.

To allow efficacy and futility bounds to use different parameters, we use the notation Δ𝑒 and Δ𝑓. We

define efficacy critical value 𝑒𝑘 = 𝐶 ∗ ℐΔ𝑒−1/2
𝑘 , where Δ𝑒 controls the shape of the efficacy bounds and

𝐶 is a scaling factor. At the final look, ℐ𝐾 = 1, so 𝑒𝐾 = 𝐶. Futility critical value 𝑓𝑘 = 𝐶 ∗ ℐΔ𝑓−1/2
𝑘 +

ℳ1/2(ℐ1/2
𝑘 − ℐΔ𝑓−1/2

𝑘 ), where ℳ is the maximum information of the trial and Δ𝑓 controls the shape of

the futility bound. ℳ can be thought of as a standardized version of the Fisher information, scaled to

equal the expected information at the final look of a group sequential trial with an effect size of 1 under

𝐻𝑎. The expected information of an equivalent fixed-sample trial is denoted as ℱ. For a one-sided trial,

ℱ = {Φ−1(1−𝛼)+Φ−1(1−𝛽)}2, where Φ−1(⋅) is the inverse standard normal cumulative distribution
function. For a two-sided trial, 𝛼 is replaced with 𝛼/2.

Two-dimensional optimization is performed to find values of 𝐶 and ℳ that yield the desired prob-

abilities of type I and type II errors. The starting value for 𝐶 can be specified with the initscale(#)
option. The default starting value for 𝐶 is 𝑧𝛼 for one-sided trials and 𝑧𝛼/2 for two-sided trials, where

𝑧𝛼 = Φ−1(1 − 𝛼). The starting value for ℳ can be specified with the initinfo(#) option, and the

default starting value for ℳ is ℱ. Other aspects of the optimization process, such as the optimization

technique and number of iterations, can be controlled by specifying additional optimization options (see

optimopts).

Let 𝑅 represent the information ratio, the ratio of the maximum sample size of aWang–Tsiatis design

to that of a fixed design with equivalent type I and type II error. We calculate 𝑅 = ℳ/ℱ.

https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulaseq2
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulaseq3
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulaseq2
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulaseq3
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulaseq2
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulaseq3
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulaseq1
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsOptionsopt_optimopts
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Error-spending bounds
Instead of calculating critical values 𝑒𝑘 directly, the error-spending approach defines an 𝛼-spending

function 𝛼∗(𝑡). This function must be monotonically increasing over 𝑡 ∈ [0, 1], and it must satisfy

𝛼∗(0) = 0 and 𝛼∗(𝑡) = 𝛼 for 𝑡 ≥ 1. The 𝛼-spending function is used to partition 𝛼 into (𝛼1, . . . , 𝛼𝐾)
by setting 𝛼1 = 𝛼∗(ℐ1) and 𝛼𝑘 = 𝛼∗(ℐ𝑘) − 𝛼∗(ℐ𝑘−1) for 𝑘 in (2, . . . , 𝐾).

Lan and DeMets (1983) proposed error-spending functions that closely approximate classical Pocock

and O’Brien–Fleming bounds. The 𝛼-spending function for Pocock-style bounds is 𝛼∗
P(𝑡; 𝛼) =

min[𝛼 log{1+(𝑒−1)𝑡}, 𝛼]. The𝛼-spending function for O’Brien–Fleming-style bounds is𝛼∗
OBF(𝑡; 𝛼) =

min{2−2Φ(𝑧𝛼/2/
√

𝑡), 𝛼} for one-sided bounds and 𝛼∗
OBF(𝑡; 𝛼) = min{4−4Φ(𝑧𝛼/4/

√
𝑡), 𝛼} for two-

sided bounds (Wassmer and Brannath 2016), where Φ(⋅) is the standard normal cumulative distribution
function.

Kim and DeMets (1987) introduced a single parameter family of error-spending functions indexed

by parameter 𝜌 > 0, with 𝛼-spending function 𝛼∗
KD(𝑡; 𝜌, 𝛼) = min(𝛼𝑡𝜌, 𝛼). Another popular error-

spending function, proposed by Hwang, Shih, and de Cani (1990), uses parameter 𝛾 in 𝛼-spending func-
tion

𝛼∗
HSD(𝑡; 𝛾, 𝛼) =

⎧{
⎨{⎩

𝛼(1 − 𝑒−𝛾𝑡)/(1 − 𝑒−𝛾) for𝛾 ≠ 0

𝛼𝑡 for𝛾 = 0

The error-spending approach can also be used to spend type II error, with the resulting 𝛽-spending
function 𝛽∗(⋅) following rules analogous to those of the 𝛼-spending function. It is used to partition 𝛽
into 𝛽1 = 𝛽∗(ℐ1) and 𝛽𝑘 = 𝛽∗(ℐ𝑘) − 𝛽∗(ℐ𝑘−1) for 𝑘 in (2, . . . , 𝐾).

For trials with efficacy stopping only, 𝑒1 = Φ−1(1−𝛼1) for a one-sided test and 𝑒1 = Φ−1(1−𝛼1/2)
for a two-sided test. The error spent at subsequent looks depends on the stopping boundaries of the

previous stages, so boundary values are found sequentially through numerical optimization. A separate

optimization step is then performed to determine the maximum information ℳ. The starting value for

ℳ can be specified with the initinfo(#) option. The default starting value for ℳ is ℱ, the expected

information from an equivalent fixed study design.

For trials allowing stopping for futility, calculation of the boundary critical values and maximum in-

formation cannot be decomposed into separate optimization steps. In this case, a numerical search for ℳ
is performed using the bisection method, and boundaries are recalculated at each step. The tolerance for

the bisection search can be specified with the infotol(#) option, and the default value is infotol(1e-
6). The lower starting value in the search for ℳ can be specified with the initinfo(# .) option, and

the upper starting value can be specified as initinfo(. #). To specify both lower and upper starting

values, use syntax initinfo(# #), specifying first the lower starting value and then the upper starting
value. By default, the lower starting value for the bisection search is ℱ, and the upper starting value is

the information required by a Bonferroni correction for repeated hypothesis tests.

Regardless of whether stopping is for efficacy, futility, or both, rarely modified aspects of the op-

timization process, such as the optimization technique and number of iterations, can be controlled by

specifying additional optimization options (see optimopts).

As with classical Wang–Tsiatis designs, the information ratio for error-spending designs is calculated

as 𝑅 = ℳ/ℱ.
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Significance level approach
The theory behind GSDs relies on the assumption that test statistics (𝑍1, . . . , 𝑍𝐾) follow amultivariate

normal distributionwith covariance specified in (1) andmarginal standard normal distributions under𝐻0.

The classic example is the difference of means between two normally distributed responses, scaled by

a known standard deviation. However, many common test statistics are asymptotically normal, such as

log odds-ratios and log-rank tests.

When the desired test does not produce an asymptotically normal test statistic, Pocock (1977) suggests

the significance level approach to approximately control errors in GSDs. Jennison and Turnbull (2000,

80) and Wassmer and Brannath (2016, 103) advocate the use of this approximation, describing it as

“remarkably accurate” and “stupendously accurate”, respectively.

For test statistic 𝑇𝑘 with cumulative distribution 𝐹(⋅) under 𝐻0, we calculate standardized test statis-

tic 𝑇 ∗
𝑘 = Φ−1{𝐹(𝑇𝑘)} that has the same significance level as 𝑇𝑘. That is, 𝐹(𝑇𝑘) = Φ(𝑇 ∗

𝑘 ). The

standardized test statistic 𝑇 ∗
𝑘 can be compared directly with critical values 𝑒𝑘 and 𝑓𝑘. Equivalently, we

can calculate the 𝑝-value of test statistic 𝑇𝑘 and compare it with the 𝑝-values corresponding to 𝑒𝑘 and

𝑓𝑘. The 𝑝-value technique is straightforward to implement and is demonstrated in examples 2 and 3

of [ADAPT] gsdesign onemean, example 2 of [ADAPT] gsdesign twomeans, and examples 2 and 3 of

[ADAPT] gsdesign twoproportions.

The significance level approach can be used as long as the assumption of independent increments is

met. Many popular statistical tests satisfy this assumption; however, Jennison and Turnbull (2000) pro-

vide several examples of scenarios where this assumption does not hold, even asymptotically. One such

example is the group sequential analysis of longitudinal data comparing themean response of two groups,

where the within-subject response has an autoregressive element. The significance level approach does

not justify the use of group sequential testing when the assumption of independent increments is violated;

it only applies when this assumption is satisfied but the test statistics are not normally distributed.
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