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Description
The gs suite of commands is useful for planning group sequential trials. These commands compute

stopping boundaries and sample sizes for each look of a group sequential design (GSD). The gs commands

can be used to calculate critical values for efficacy boundaries, futility boundaries, or both. Boundary-

calculation procedures include those of Pocock (1977), O’Brien and Fleming (1979), Wang and Tsiatis

(1987), Kim and DeMets (1987), and Hwang, Shih, and de Cani (1990).

The gsbounds command calculates stopping boundaries that can be applied to any group sequential

clinical trial. The gsdesign method set of commands calculates both stopping boundaries and sample

sizes for interim analyses with five different hypothesis tests: one- and two-sample means tests, one-

and two-sample proportions tests, and the log-rank test. Interim analyses using other hypothesis tests are

supported through the ability to incorporate user-defined sample-size calculations. Study designs can be

displayed in a table and a graph.

Menu
Statistics > Power, precision, and sample size
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gs — Introduction to commands for group sequential design 2

Syntax
Compute stopping boundaries

gsbounds, gsboundopts

where gsboundopts are options described in [ADAPT] gsbounds.

Compute sample size and stopping boundaries

gsdesign method ...[ , designopts boundopts ]
where designopts are options controlling the sample-size calculation and boundopts are options control-

ling the calculation of the stopping boundaries.

method Description

One sample

onemean One-sample mean test

oneproportion One-sample proportion test

Two independent samples

twomeans Two-sample means test

twoproportions Two-sample proportions test

Survival analysis

logrank Log-rank test

User-defined methods

usermethod Add your own method to gsdesign

Remarks and examples
Remarks are presented under the following headings:

Introduction
Efficacy stopping
Futility stopping
Graphing stopping boundaries
Boundary and sample-size calculations using gsdesign

One-sample tests
Two-sample tests
Survival analysis
Add your own methods

This section describes how to compute boundaries and sample sizes for GSDs using the gs suite of

commands. For a software-free introduction to GSDs, see [ADAPT] GSD intro.

Introduction
Clinical trials are studies investigating the effects of a treatment on human participants, and unlike

some other types of studies, clinical trials rarely collect data all at once. It is common for large clinical

trials to recruit participants over the course of months or years. Depending on the outcome of interest,

known as the clinical endpoint, the study could follow up with participants over the course of several

years.

https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsDescription
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsSyntaxsntx_options
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsbounds
https://www.stata.com/manuals/adaptgsdesign.pdf#adaptgsdesignDescription
https://www.stata.com/manuals/adaptgs.pdf#adaptgsSyntaxsntx_method
https://www.stata.com/manuals/adaptgsdesign.pdf#adaptgsdesignSyntaxsntx_designopts
https://www.stata.com/manuals/adaptgsdesign.pdf#adaptgsdesignSyntaxsntx_boundopts
https://www.stata.com/manuals/adaptgsdesign.pdf#adaptgsdesignSyntaxsntx_designopts
https://www.stata.com/manuals/adaptgsdesign.pdf#adaptgsdesignSyntaxsntx_boundopts
https://www.stata.com/manuals/adaptgsdesignonemean.pdf#adaptgsdesignonemean
https://www.stata.com/manuals/adaptgsdesignoneproportion.pdf#adaptgsdesignoneproportion
https://www.stata.com/manuals/adaptgsdesigntwomeans.pdf#adaptgsdesigntwomeans
https://www.stata.com/manuals/adaptgsdesigntwoproportions.pdf#adaptgsdesigntwoproportions
https://www.stata.com/manuals/adaptgsdesignlogrank.pdf#adaptgsdesignlogrank
https://www.stata.com/manuals/adaptgsdesignusermethod.pdf#adaptgsdesignusermethod
https://www.stata.com/manuals/adaptgsdintro.pdf#adaptGSDintro
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Sponsors of clinical trials have both ethical and economic motivations for making trials as efficient

as possible. One way of accomplishing this is to analyze trial data while the study is still underway. A

positive result at an interim analysis can lead to early termination of the study due to treatment efficacy,

sparing future participants from being assigned to the control group and receiving an inferior treatment.

If the interim analysis demonstrates that the new treatment is ineffective, the trial can stop early and

resources can be allocated to testing more promising treatments.

It is widely known that conductingmultiple hypothesis tests at a nominal significance level will inflate

type I error, but applying a simplistic technique like the Bonferroni correction to the results of interim

analyses is overly conservative and will cause excessive type II error. GSDs provide a framework for

conducting multiple interim analyses of clinical trial data while maintaining control of familywise type I

and type II errors.

The gs suite of commands comprises the gsbounds command and the gsdesign method commands.

This suite can be used to design group sequential clinical trials by calculating stopping boundaries and

sample sizes for interim analyses, or looks. The gsbounds command calculates stopping boundaries

that can be applied to any clinical trial following a GSD. The gsdesign method commands calculate

both stopping boundaries and sample sizes for each look. The gsbounds and gsdesign method com-

mands provide the same features and syntax for computing stopping boundaries; gsdesign extends the

capabilities of gsbounds and additionally computes sample sizes. In the examples below, we first intro-

duce gsbounds and focus on features for stopping boundaries. Then we move to examples that include

sample-size calculations with gsdesign, which will be more commonly used in practice.

gsbounds and gsdesign provide four options—efficacy(), futility(), nlooks(), and

information()—that allow us to specify the boundary-calculation procedure and the number and spac-

ing of looks. Below, we introduce the syntax with gsbounds, but the options are specified in the same
way with gsdesign.

By default, O’Brien–Fleming efficacy bounds are computed. The efficacy() option allows you to

select from among seven available boundary-calculation procedures, such as the Pocock boundary:

gsbounds, efficacy(pocock) ...

To request futility bounds instead of efficacy bounds, replace the efficacy() option with futility().
All boundary-calculation procedures available for efficacy bounds are also available for futility bounds.

gsbounds, futility(pocock) ...

To compute both efficacy and futility bounds, specify both options:

gsbounds, efficacy(pocock) futility(pocock) ...

To request more than 2 equally spaced looks (the default), specify the nlooks() option:

gsbounds, nlooks(5) ...

To request that looks be performed at specific information levels rather than being equally spaced, use

the information() option:

gsbounds, information(50 60 70 80 90) ...

In addition to the options demonstrated above for specifying boundaries, the gsdesign method com-

mands allow both common andmethod-specific arguments and options for specifying your desired power

and sample-size settings. See [PSS-2] power for discussion of the method-specific specifications such as

effect size. Here we demonstrate the common options alpha(), power(), beta(), onesided, and
nfractional.

https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_interimanalysis
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_stopbound
https://www.stata.com/manuals/pss-2power.pdf#pss-2power
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To specify a significance level other than the default of 0.05, use the alpha() option:

gsdesign method ..., alpha(0.01) ...

Option power() specifies the desired power; alternatively, beta() can be used to specify type II

error. For 90% power, specify

gsdesign method ..., power(0.9) ...

or, equivalently, specify

gsdesign method ..., beta(0.1) ...

For a one-sided test instead of a two-sided test, specify option onesided:

gsdesign method ..., onesided ...

To see fractional sample sizes instead of sample-sizes rounded up to a whole number, use option

nfractional:

gsdesign method ..., nfractional ...

As the examples below demonstrate, these options as well as the method-specific syntax can be com-

bined to obtain your desired boundary and sample-size computations for a GSD.

Efficacy stopping
The boundary-calculation procedure developed by Pocock (1977) was the first widely accepted stop-

ping rule that allowed clinical trials to be terminated early due to treatment efficacy while maintaining

desired levels of type I and type II errors. The theory underlying Pocock’s boundary was formulated in

the context of a 𝑧 test for the difference in means between two normal responses with known variance,

and it was extended to many other cases.

Pocock’s stopping rule, and other efficacy bounds that have come since, defines critical values for a

test statistic that is normally distributed under the null hypothesis with 0 mean and unit variance. At each

interim look, the test is conducted and the test statistic is compared with the efficacy critical value. If the

test statistic is equal to or exceeds the critical value, the null hypothesis is rejected early and the trial is

terminated; if the test statistic is less extreme than the critical value, the trial continues to the following

look.

Example 1: Two-sided Pocock efficacy bounds
Consider a two-sided test of the difference between two means with known standard deviations. The

standardized test statistic 𝑧 follows a normal distribution. Suppose that we wish to test for efficacy at

three equally spaced looks using Pocock efficacy bounds. The familywise type I error allowed is 5%,

while the desired power is 90%.

We use gsbounds to calculate and graph the stopping boundaries and compare them with those of a

fixed-sample trial. If we wanted to additionally calculate sample sizes at each look, we would use com-

mand gsdesign twomeans; see example 9 for a demonstration. To calculate Pocock efficacy bounds,

we use the efficacy(pocock) option. The nlooks(3) option specifies three equally spaced looks

(two interim analyses and a final analysis). The alpha(0.05) and power(0.9) options specify the

familywise significance level and power of the test, respectively.

https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_pocock
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_fixdesign
https://www.stata.com/manuals/adaptgsdesigntwomeans.pdf#adaptgsdesigntwomeans
https://www.stata.com/manuals/adaptgs.pdf#adaptgsRemarksandexamplesex9
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. gsbounds, alpha(0.05) power(0.9) efficacy(pocock) nlooks(3)
Group sequential boundaries
Efficacy: Pocock
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.9000

Info. ratio = 1.1506
Fixed-study crit. values = ±1.9600
Critical values and p-values for a group sequential design

Info. Efficacy
Look frac. Lower Upper p-value

1 0.33 -2.2895 2.2895 0.0221
2 0.67 -2.2895 2.2895 0.0221
3 1.00 -2.2895 2.2895 0.0221

Note: Critical values are for z statistics;
otherwise, use p-value boundaries.

gsbounds displays a summary of the alpha and power parameters used in the design, followed by a

table of stopping boundaries. To facilitate comparing the GSD with a fixed study design, gsbounds also

displays the fixed-study critical values and the information ratio, which is the ratio of the sample size at

the final look of a GSD to the sample size from a fixed study design.

Pocock efficacy bounds are characterized by using the same critical value at all looks. To maintain

a familywise type I error of 0.05, Pocock boundaries require the 𝑧 statistic to reach or exceed ±2.29 at

any look (which corresponds to a 𝑝-value of 0.022) to reject 𝐻0. This is far larger than the critical value

of ±1.96 required by a fixed-sample test. Pocock bounds allow for the possibility of very early stopping

if the effect size is large, but if the study continues to the final look, it will require approximately 15%

more participants than an equivalently powered fixed design, as seen by the information ratio of 1.151.

Example 2: Two-sided O’Brien–Fleming efficacy bounds
O’Brien–Fleming boundaries have critical values that are conservative for early looks and less con-

servative as more data are collected. The final critical values in an O’Brien–Fleming design are sim-

ilar to those of a fixed study design. Here we use the efficacy(obfleming) option to calculate

O’Brien–Fleming efficacy bounds for the scenario described in the previous example.

https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_obf


gs — Introduction to commands for group sequential design 6

. gsbounds, alpha(0.05) power(0.9) efficacy(obfleming) nlooks(3)
Group sequential boundaries
Efficacy: O’Brien--Fleming
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.9000

Info. ratio = 1.0161
Fixed-study crit. values = ±1.9600
Critical values and p-values for a group sequential design

Info. Efficacy
Look frac. Lower Upper p-value

1 0.33 -3.4711 3.4711 0.0005
2 0.67 -2.4544 2.4544 0.0141
3 1.00 -2.0040 2.0040 0.0451

Note: Critical values are for z statistics;
otherwise, use p-value boundaries.

The O’Brien–Fleming design makes it difficult to reject 𝐻0 at early looks but easier at later looks. At

the first look, the critical values of ±3.471 correspond to a 𝑝-value of 0.0005, while the critical values at
the last look, ±2.004, correspond to a 𝑝-value of 0.045. The information ratio of 1.016 indicates that the
maximum sample size is only 1.6% larger than that of a fixed design.

The procedure for interim analysis with O’Brien–Fleming bounds is equivalent to the procedure we

used with Pocock bounds with the exception that the critical values change from one look to the next. At

the first look, we compare the test statistic 𝑧1 against critical values ±3.471. If |𝑧1| ≥ 3.471, we reject

𝐻0 and terminate the trial due to treatment efficacy.

If |𝑧1| < 3.471, the trial continues to the second look, where a second hypothesis test is conducted,

yielding test statistic 𝑧2. If |𝑧2| ≥ 2.454, we reject 𝐻0 and stop the trial at the second look. But if

|𝑧2| < 2.454, we continue to the third and final look, where we calculate test statistic 𝑧3.

At the final look, test statistic 𝑧3 is compared with critical values ±2.004. If |𝑧3| ≥ 2.004, then we

reject 𝐻0, and if |𝑧3| < 2.004, then we fail to reject 𝐻0. In the context of GSDs, it is not uncommon to

discuss accepting 𝐻0, a concept that is unheard-of in many other areas of practice. As we will see in the

next section, the concept of accepting the null hypothesis holds particular appeal when applied to GSDs

because it allows trials to be stopped early for futility, a practice that can be thought of as “abandoning a

lost cause” (Gould 1989).

Futility stopping
When the alternative hypothesis is true, the efficacy stopping rules described above can stop a trial

early to reject 𝐻0 and provide dramatic savings in sample size. But when 𝐻0 is true, it is a type I error

to reject 𝐻0; by design, we limit the type I error probability to a small number, 𝛼. To achieve similar

savings in sample size when 𝐻0 is true, futility bounds allow us to stop a trial early to accept the null

hypothesis.
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There are two types of futility bounds, binding and nonbinding. If the test statistic at an interim

analysis crosses a binding futility bound, 𝐻0 must be accepted and the trial must be stopped early for

futility. A trial that continues after crossing a binding futility bound is no longer subject to the familywise

type I error control specified in the design. For this reason, many researchers prefer to use nonbinding

futility bounds, which may be crossed without the obligation to stop the trial.

Example 3: Two-sided O’Brien–Fleming efficacy and nonbinding Pocock futility bounds
Here we include the futility(pocock) option to add Pocock futility bounds to the design from

example 2. By default, futility bounds are nonbinding. As before, we plan for three evenly spaced looks

and allow an overall significance level of 5% and power of 90%.

. gsbounds, alpha(0.05) power(0.9) efficacy(obfleming) futility(pocock)
> nlooks(3)
Group sequential boundaries
Efficacy: O’Brien--Fleming
Futility: Pocock, nonbinding
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.9000

Info. ratio = 1.2601
Fixed-study crit. values = ±1.9600
Critical values and p-values for a group sequential design

Info. Efficacy Futility
Look frac. Lower Upper p-value Lower Upper p-value

1 0.33 -3.4711 3.4711 0.0005 -0.4661 0.4661 0.6411
2 0.67 -2.4544 2.4544 0.0141 -1.3363 1.3363 0.1814
3 1.00 -2.0040 2.0040 0.0451 -2.0040 2.0040 0.0451

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.

Adding nonbinding futility bounds does not affect the calculation of the efficacy bounds, which take the

same values as they did in example 2. At any analysis, if the test statistic is above the efficacy upper

bound or below the efficacy lower bound, the trial will be stopped for efficacy. However, if the test

statistic at an interim analysis lies between the futility lower bound and the futility upper bound, we

have the option to accept 𝐻0 and stop the trial for futility, saving resources. In practice, the decision to

terminate a clinical trial is often made by an independent Data Monitoring Committee.

At the first look, we compare test statistic 𝑧1 against the efficacy and futility critical values. If |𝑧1| ≥
3.471, we reject 𝐻0 and stop the trial for efficacy. If |𝑧1| < 0.466, we have the option to accept 𝐻0 and

stop the trial for futility. If |𝑧1| ∈ [0.466, 3.471), the trial must continue to the second look.
The procedure at the second look is the same, except the critical values are different and the continu-

ation region, the interval between the efficacy and futility critical values, has shrunk. Test statistic 𝑧2 is

compared with the efficacy critical values, and if |𝑧2| ≥ 2.454, we reject 𝐻0 and terminate the trial. If

|𝑧2| < 1.336, we have the option of stopping for futility, and if |𝑧2| ∈ [1.336, 2.454), we must continue
to the third and final look.

https://www.stata.com/manuals/adaptgs.pdf#adaptgsRemarksandexamplesex2
https://www.stata.com/manuals/adaptgs.pdf#adaptgsRemarksandexamplesex2
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_dmc
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At the final look of a GSD, the efficacy bounds and the futility bounds take the same critical value

because there is no continuation region at the final analysis: 𝐻0 must be rejected or accepted. Test

statistic 𝑧3 is compared with critical values ±2.004. If |𝑧3| ≥ 2.004, then 𝐻0 is rejected; otherwise, it is

accepted.

Example 4: One-sided error-spending efficacy and binding futility bounds
It is common for GSDs that allow futility stopping to specify a one-sided alternative hypothesis. Here

we consider the two-sided trial from example 3, but we specify a one-sided test with an overall sig-

nificance level of 2.5%, half of what was used in the two-sided case. Instead of the classic Pocock and

O’Brien–Fleming bounds from previous examples, here we choose error-spending Kim–DeMets bounds

with parameter 𝜌 = 3 for both efficacy and futility, and we make the futility bound binding.

. gsbounds, alpha(0.025) power(0.9) efficacy(kdemets(3))
> futility(kdemets(3), binding) nlooks(3) onesided
Group sequential boundaries
Efficacy: Error-spending Kim--DeMets, rho = 3.0000
Futility: Error-spending Kim--DeMets, binding, rho = 3.0000
Study parameters:

alpha = 0.0250 (upper one-sided)
power = 0.9000

Info. ratio = 1.0308
Fixed-study crit. value = 1.9600
Critical values and p-values for a group sequential design

Info. Efficacy Futility
Look frac. Upper p-value Lower p-value

1 0.33 3.1130 0.0009 -0.7779 0.7817
2 0.67 2.4619 0.0069 0.7788 0.2180
3 1.00 1.9920 0.0232 1.9920 0.0232

Note: Critical values are for z statistics; otherwise,
use p-value boundaries.

With an efficacy upper bound and a futility lower bound, we have three possible outcomes at interim

looks: efficacy stopping, futility stopping, and continuation of the trial. At the first look, we calculate

test statistic 𝑧1. If 𝑧1 < −0.778, we must accept 𝐻0 and stop the trial for futility; if 𝑧1 ≥ 3.113, we must

reject 𝐻0 and stop the trial for efficacy; and if −0.778 ≤ 𝑧1 < 3.113, we must continue to the second

look.

At the second look, the efficacy and futility bounds are closer together. The testing procedure is

similar to the first look, but now the test statistic 𝑧2 is compared with a futility lower bound of 0.779 and

an efficacy upper bound of 2.462. At the third and final look, the efficacy and futility bounds are equal.

If 𝑧3 < 1.992, we accept 𝐻0, and if 𝑧3 ≥ 1.992, we reject 𝐻0.

Graphing stopping boundaries
gsbounds and gsdesign support the graphbounds option to display a visual representation of the

stopping boundaries. This can be very helpful when designing a clinical trial and considering different

configurations of stopping rules and interim analyses.

https://www.stata.com/manuals/adaptgs.pdf#adaptgsRemarksandexamplesex3
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_kd
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Example 5: Graphing one-sided efficacy and binding futility bounds
Here we graph the stopping boundaries from the design in example 4.

. gsbounds, alpha(0.025) power(0.9) efficacy(kdemets(3))
> futility(kdemets(3), binding) nlooks(3) onesided graphbounds
(output omitted )
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Fixed-study
critical value

Parameters: α = .025 (one-sided), 1-β = .9, ρe = 3, ρf = 3

Error-spending Kim–DeMets efficacy & binding futility

Figure 1. One-sided efficacy and futility bounds

The graph displays the bounds visually, dividing the range of possible 𝑧-values into rejection, accep-
tance, and continuation regions. The vertical axis is the value of the 𝑧 statistic and the horizontal axis is
the information fraction, the fraction of the total information that has been collected at the time of the

analysis. The information fraction is typically proportional to the sample size, except in time-to-event

studies, in which case it is proportional to the number of events observed.

We progress from left to right in the graph as information is collected during the clinical trial. The

efficacy bounds, which separate the rejection region from the continuation region, are drawn in blue and

marked with a dot at each look. Futility bounds separate the acceptance region from the continuation

region and are drawn in red.

Before the first look (that is, when the information fraction is < 0.33), it is impossible to reject or

accept𝐻0 because the data have not yet been analyzed, so all 𝑧-values fall within the continuation region.
Beginning at the first look, the range of 𝑧-values is divided into rejection, acceptance, and continuation
regions.

The continuation region at the first look is wide, encompassing 𝑧-values in the range [−0.778, 3.113).
By the second look, occurring with an information fraction of 0.67, the continuation region has shrunk to

[0.779, 2.462). At the final look, there is no continuation region because the efficacy and futility bounds
meet.

https://www.stata.com/manuals/adaptgs.pdf#adaptgsRemarksandexamplesex4
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The graph also includes a point marking the critical value that would be used in an equivalently

powered fixed study design. This point appears at a 𝑧-value of 1.96, which gives a one-sided type I

error of 0.025 in a fixed design with a single analysis. Compared with the GSD, the analysis in the fixed

design occurs at an information fraction of 0.97. This is calculated as the inverse of the information ratio:

1/1.03 = 0.97.

Example 6: Graphing two-sided efficacy and nonbinding futility bounds
Graphing the stopping boundaries is a particularly useful technique with complicated stopping rules

and many interim analyses. Here we consider a two-sided design with efficacy and futility bounds, and

interim analyses conducted at seven unevenly spaced looks.

We choose an O’Brien–Fleming efficacy bound and a nonbindingWang–Tsiatis futility bound. Wang

andTsiatis (1987) introduced a single-parameter family of stopping bounds that includes both Pocock and

O’Brien–Fleming bounds as special cases. The shape ofWang–Tsiatis bounds is determined by parame-

ter Δ, with a Pocock bound equivalent to aWang–Tsiatis bound with Δ = 0.5, and an O’Brien–Fleming

bound equivalent to a Wang–Tsiatis bound with Δ = 0. Here we let Δ = 0.25 to yield a futility bound

that has characteristics halfway between a Pocock futility bound and an O’Brien–Fleming futility bound.

Instead of using the nlooks() option to specify evenly spaced looks, we use the information()
option to provide a numlist of the information levels at each of the seven looks. We graph the boundaries

and specify graphbounds() suboption xdimlooks to label the horizontal axis with the number of looks

rather than the information fraction.

. gsbounds, alpha(0.05) power(0.9) efficacy(obfleming) futility(wtsiatis(0.25))
> information(0.25 0.5 0.65 0.75 0.84 0.92 1) graphbounds(xdimlooks)
Group sequential boundaries
Efficacy: O’Brien--Fleming
Futility: Wang--Tsiatis, nonbinding, Delta = 0.2500
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.9000

Info. ratio = 1.2409
Fixed-study crit. values = ±1.9600
Critical values and p-values for a group sequential design

Info. Efficacy Futility
Look frac. Lower Upper p-value Lower Upper p-value

1 0.25 -4.1845 4.1845 0.0000 . . .
2 0.50 -2.9589 2.9589 0.0031 -0.7473 0.7473 0.4549
3 0.65 -2.5951 2.5951 0.0095 -1.2198 1.2198 0.2225
4 0.75 -2.4159 2.4159 0.0157 -1.4952 1.4952 0.1349
5 0.84 -2.2828 2.2828 0.0224 -1.7231 1.7231 0.0849
6 0.92 -2.1813 2.1813 0.0292 -1.9128 1.9128 0.0558
7 1.00 -2.0923 2.0923 0.0364 -2.0923 2.0923 0.0364

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.

https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_obf
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_wt
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
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O'Brien–Fleming efficacy & Wang–Tsiatis nonbinding futility

Figure 2. Two-sided efficacy and futility bounds

On the graph, we see the acceptance region displayed as a truncated inner wedge, and on the table of

stopping boundaries, we see that the futility critical values for the first look are missing. This is because,

to attain the specified significance level and power, the futility lower bound would have been greater

than the futility upper bound, implying that futility stopping is impossible at the first look.

Boundary and sample-size calculations using gsdesign
The previous examples have used gsbounds to calculate stopping bounds, but when designing a group

sequential clinical trial, you will want to know the sample size at each look as well as the boundary

critical values. This is done using the gsdesign method set of commands, where method is onemean,
oneproportion, twomeans, twoproportions, logrank, or even a user-defined method.

One-sample tests

The gold standard for clinical trials is the randomized controlled trial, where participants are randomly

assigned to one of two groups: one group receives the experimental treatment while the other group is

kept as a control. The groups are often called arms, and the experimental arm will receive the experi-

mental treatment. The control arm will receive either a placebo (an inactive substance such as a sugar

pill, or a “sham” procedure for nonpharmacological trials) or an active control (typically the standard of

care, a treatment that has been previously studied and is known to be effective).

However, there are some scenarios where randomizing subjects to a control group would be imprac-

tical or unethical, such as a clinical trial of a treatment for a serious condition where there is a moral

argument against giving participants a placebo but there is no existing standard of care. In these cases, a

single-arm clinical trial is desired, and a one-sample test is conducted.

https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_rct
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Example 7: Boundary and sample-size calculations for a one-sample mean test
We consider a clinical trial of the chemotherapy medicine sunitinib as a treatment for advanced

non–small cell lung cancer. Suppose that we are interested in developing a treatment for patients whose

cancers have not responded to the standard treatment options. There is no possibility of forming an active

control group with this population because the standard of care has already proven ineffective for them.

The clinical outcomes for patients with untreated advanced non–small cell lung cancer are known to be

very poor, so we have ethical reasons to avoid creating a placebo control group. We decide to conduct a

single-arm clinical trial and perform a one-sample test.

The clinical endpoint of this study is the tumor shrinkage rate (TSR), a measure of how quickly a

participant’s largest tumor is shrinking (or growing, in the case of negative TSR values). We want to test

whether the mean TSR is greater than 0 with a one-sided test and a familywise significance level of 2.5%.

We anticipate the standard deviation of the TSR to be 2, and we require 90% power to detect a mean TSR

of 0.5. We plan on conducting two evenly spaced looks at the data, and we will use an O’Brien–Fleming

efficacy bound.

. gsdesign onemean 0 0.5, sd(2) alpha(0.025) power(0.9) efficacy(obfleming)
> nlooks(2) onesided
Group sequential design for a one-sample mean test
t test
H0: m = m0 versus Ha: m > m0
Efficacy: O’Brien--Fleming
Study parameters:

alpha = 0.0250 (upper one-sided)
power = 0.9000
delta = 0.2500

m0 = 0.0000
ma = 0.5000
sd = 2.0000

Expected sample size:
H0 = 171.78
Ha = 145.20

Info. ratio = 1.0071
N fixed = 171

N max = 172
Fixed-study crit. value = 1.9600
Critical values, p-values, and sample sizes
for a group sequential design

Info. Efficacy Sample size
Look frac. Upper p-value N

1 0.50 2.7965 0.0026 86
2 1.00 1.9774 0.0240 172

Note: Critical values are for z statistics;
otherwise, use p-value boundaries.

gsdesign onemean displays the specified study parameters, including m0, the mean under the null

hypothesis; ma, the mean under the alternative hypothesis; and delta, the difference in means divided
by the standard deviation.

The next section of output displays the expected sample size, which is the average sample size if the

group sequential trial were to be repeated many times. The average sample size under 𝐻0 is 171.78,

nearly the same as the maximum of 172 participants at the final look. This is expected because our
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design does not allow for early stopping to accept 𝐻0. If 𝐻𝑎 is true, we expect an average of only 145.2

participants because of the probability of early stopping to reject 𝐻0, a savings over the 171 participants

required by the fixed design.

Next we see the information ratio, the sample size for a fixed study with an equivalent significance

level and power (N fixed), and the maximum sample size of the GSD (N max). The information ratio is
the ratio of the maximum sample size of the GSD to the fixed-study sample size. We then see the critical

value for a fixed study with an equivalent significance level.

At the end of the display is a table of stopping boundaries, 𝑝-values, and sample sizes for the two

looks. The efficacy critical values in the table can be compared directly with the 𝑧 statistic from a one-

sided 𝑧 test of whether the mean TSR is equal to 0. We do not presume to know the population standard

deviation a priori (which is why we did not specify the knownsds option), so we must estimate the

standard deviation when conducting the one-sample mean test. This would indicate that the proper one-

sample mean test for this study is a 𝑡 test, which yields a 𝑡 statistic, not a 𝑧 statistic.
With these rather large sample sizes (especially at the second look), it would be common to conduct

a large-sample 𝑧 test in this scenario. The use of this test relies on the fact that the estimate of the

population standard deviation improves with increasing sample size. The distribution of the test statistic

asymptotically approaches a normal distribution, enabling the use of a 𝑧 test with large samples, even

with unknown standard deviation. However, if we prefer to conduct a 𝑡 test, we can instead use the

significance level approach and compare the 𝑝-value from the 𝑡 test against the 𝑝-values corresponding
to the boundary critical values, which are also reported in this table.

For more examples of gsdesign onemean, see [ADAPT] gsdesign onemean.

Example 8: Boundary and sample-size calculations for a one-sample proportion test
We consider an alternate endpoint for the clinical trial of sunitinib as a treatment for advanced

non–small cell lung cancer described in example 7. Instead of measuring the TSR, suppose we are inter-

ested in the objective response rate (ORR), defined as the proportion of participants that exhibit at least

a partial response to therapy. It is important to emphasize that the outcome of each participant is binary

(either they exhibit a response to therapy or they do not), and we calculate the proportion as the number

of participants who exhibit a response divided by the total number of participants.

We can use gsdesign oneproportion to determine the required sample sizes if wewish to determine
whether the ORR of participants receiving sunitinib is greater than 5%, and we plan to conduct a one-

sided proportion test at the 2.5% familywise significance level. We require 90% power to detect an ORR

of 10%. We will conduct two evenly spaced looks using an O’Brien–Fleming efficacy bound and a

nonbinding Pocock futility bound, which we graph.

https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_siglevapproach
https://www.stata.com/manuals/adaptgsdesignonemean.pdf#adaptgsdesignonemean
https://www.stata.com/manuals/adaptgs.pdf#adaptgsRemarksandexamplesex7
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. gsdesign oneproportion 0.05 0.1, alpha(0.025) power(0.9) efficacy(obfleming)
> futility(pocock) nlooks(2) onesided graphbounds
Group sequential design for a one-sample proportion test
Score z test
H0: p = p0 versus Ha: p > p0
Efficacy: O’Brien--Fleming
Futility: Pocock, nonbinding
Study parameters:

alpha = 0.0250 (upper one-sided)
power = 0.9000
delta = 0.0500

p0 = 0.0500
pa = 0.1000

Expected sample size:
H0 = 181.12
Ha = 251.76

Info. ratio = 1.1662
N fixed = 264

N max = 308
Fixed-study crit. value = 1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Futility Sample size
Look frac. Upper p-value Lower p-value N

1 0.50 2.7965 0.0026 0.9521 0.1705 154
2 1.00 1.9774 0.0240 1.9774 0.0240 308

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.
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Figure 3. One-sided test of one proportion with efficacy and futility bounds
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Once we have collected data from 154 participants, we could conduct a large-sample test of one

proportion with command prtest, which yields a 𝑧 statistic, 𝑧1; see [R] prtest. If 𝑧1 ≥ 2.797, we

reject 𝐻0 and declare the treatment to be effective, and if 𝑧1 < 0.952, we can choose to accept 𝐻0 and

terminate the trial due to futility or we can continue the trial. If 𝑧1 ∈ [0.952, 2.797), we must continue
the trial because 𝑧1 lies in the continuation region. At the second and final look, there is no continuation

region; if 𝑧2 ≥ 1.977, we reject 𝐻0, and if 𝑧2 < 1.977, we accept 𝐻0.

Comparedwith a fixed study design with equivalent significance level and power, thisGSD has a larger

maximum sample size (308 participants versus 264 for the fixed trial). But the group sequential trial has

a smaller expected sample size than the fixed trial under both the null and the alternative hypotheses. If

this trial were to be repeated many times, on average it would require only 181.12 participants if 𝐻0 was

true and only 251.76 participants if 𝐻𝑎 was true, which is fewer than the 264 required for the fixed trial.

For more examples of gsdesign oneproportion, see [ADAPT] gsdesign oneproportion.

Two-sample tests

In a classic randomized controlled trial, participants are randomly assigned to one of two groups: the

experimental group (which receives the treatment being tested) and the control group (which receives

either a placebo or the existing standard of care, if one exists). The two groups are often called arms,

making this a two-arm trial. Examples of treatments include new drugs, medical devices, and medical

procedures. To determine the efficacy of the treatment, the responses of participants in the experimental

arm are compared with the responses of participants in the control arm.

When the responses are continuous, a two-sample test of means can be performed to determine

whether the mean of the experimental arm is the same as that of the control arm. When the response

from each participant is binary, a two-sample test of proportions can be performed to determine whether

the proportion of “successes” in the control arm is the same as the proportion in the experimental arm.

Example 9: Boundary and sample-size calculations for a two-sample means test
Subarachnoid hemorrhage (SAH) is a type of stroke that is typically caused by head trauma or a brain

aneurysm, and a large proportion of patients who survive SAH are affected by cerebral vasospasm during

their recovery. Fatal vasospasm occurs in approximately 5 to 10% of patients who are hospitalized for

SAH (Macdonald, Pluta, and Zhang 2007). One way to detect vasospasm is by measuring peak systolic

velocity (PSV) of blood in the middle cerebral artery. In a preliminary study of high-dose intraarterial

nicardipine as a treatment for cerebral vasospasm, Badjatia et al. (2004) defined mild vasospasm as time-

averaged PSV of 200–249 cm/s, moderate vasospasm as PSV of 250–299 cm/s, and severe vasospasm as

PSV in excess of 300 cm/s. Suppose that we want to design a clinical trial that compares nicardipine to

papaverine, the standard intraarterial treatment for vasospasm following SAH. We assign participants to

the experimental and control arms in a 1:1 ratio, and we measure the ΔPSV (percent reduction in PSV) of

each participant.

The analysis will compare the average ΔPSV in the control arm, 𝜇1, against the average ΔPSV in the

experimental arm, 𝜇2. We will test the null hypothesis 𝐻0 ∶ 𝜇1 = 𝜇2 versus the one-sided alternative

𝐻𝑎 ∶ 𝜇2 > 𝜇1 with a familywise significance level of 2.5%. We use gsdesign twomeans to calculate

sample sizes for a GSD that requires 90% power to detect the difference between a 15% reduction in mean

ΔPSV in the control arm and a 20% mean reduction in the experimental arm, with a common standard

deviation of 20.

https://www.stata.com/manuals/rprtest.pdf#rprtest
https://www.stata.com/manuals/adaptgsdesignoneproportion.pdf#adaptgsdesignoneproportion
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We specify efficacy(wtsiatis(0.25)) to use a Wang–Tsiatis efficacy bound with parameter

Δ𝑒 = 0.25, and we specify futility(obfleming) to use a nonbinding O’Brien–Fleming futility

bound. The nonbinding futility bound allows us to accept 𝐻0 and terminate the trial for futility if it

is crossed, but if we choose to continue the trial despite crossing the nonbinding futility bound, the fam-

ilywise type I error is still controlled at the 2.5% significance level. We specify four analyses with 30%,

60%, 80%, and 100% of the data.

. gsdesign twomeans 15 20, sd(20) alpha(0.025) power(0.9)
> efficacy(wtsiatis(0.25)) futility(obfleming)
> information(30 60 80 100) onesided graphbounds
Group sequential design for a two-sample means test
t test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 > m1
Efficacy: Wang--Tsiatis, Delta = 0.2500
Futility: O’Brien--Fleming, nonbinding
Study parameters:

alpha = 0.0250 (upper one-sided)
power = 0.9000
delta = 5.0000

m1 = 15.0000
m2 = 20.0000
sd = 20.0000

Expected sample size:
H0 = 438.96
Ha = 518.27

Info. ratio = 1.1631
N fixed = 676

N max = 786
N1 max = 393
N2 max = 393

Fixed-study crit. value = 1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Futility
Look frac. Upper p-value Lower p-value

1 0.30 2.8703 0.0021 -0.5895 0.7222
2 0.60 2.4136 0.0079 0.9371 0.1743
3 0.80 2.2461 0.0123 1.5933 0.0555
4 1.00 2.1243 0.0168 2.1243 0.0168

Note: Critical values are for z statistics; otherwise,
use p-value boundaries.

Sample size
Look N1 N2 N

1 118 118 236
2 236 236 472
3 314 314 628
4 393 393 786



gs — Introduction to commands for group sequential design 17

-1

-.5

.5

1

1.5

2

2.5

3

3.5

0

z-
va

lu
e

100 200 300 400 500 600 700 800 9000
Sample size

Stop for efficacy
(reject H0)
Stop for futility
(accept H0)
Continue
Efficacy
Futility
Fixed-study
critical value

Parameters: α = .025 (one-sided), 1-β = .9, δ = 5, µ1 = 15, σ = 20, ∆e = .25

Wang–Tsiatis efficacy & O'Brien–Fleming nonbinding futility

Group sequential design for a two-sample means test

Figure 4. One-sided test of the equality of two means with efficacy and futility bounds

gsdesign twomeans begins by displaying a description of the test being performed, a list of the

requested boundaries, and a summary of the parameters used in the design.

The next section of output displays the expected sample size, which is the average sample size if the

group sequential trial were to be repeated many times. On average, we expect this trial to require 438.96

participants if 𝐻0 is true and 518.27 participants if 𝐻𝑎 is true.

Next we see the information ratio, the sample size for a fixed study with an equivalent significance

level and power (N fixed), the maximum sample size of the GSD (N max), and the maximum sample

sizes for each group (N1 max and N2 max). The information ratio is the ratio of the maximum sample

size of the GSD to the fixed-study sample size. We then see the critical value for a fixed study with an

equivalent significance level.

Finally, gsdesign twomeans displays tables with the critical values and 𝑝-values for the stopping
boundaries as well as the sample sizes at each look. The first look occurs once ΔPSV has been recorded

from 118 participants in each arm. With such a large sample, we conduct a 𝑧 test instead of a 𝑡 test
because the two tests are asymptotically equivalent as the sample size increases. The 𝑧 statistic from this

large-sample 𝑧 test, 𝑧1, is compared with the boundary critical values. If 𝑧1 ≥ 2.87, we will reject 𝐻0
and terminate the trial early due to treatment efficacy. If 𝑧1 < −0.59, we have the option to stop the

trial for futility, but the familywise type I error will still be controlled at the 2.5% level should the trial

proceed. If 𝑧1 ∈ [−0.59, 2.87), the trial must continue.
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When we have ΔPSV for 236 participants in each arm, we will perform another large-sample 𝑧 test

and compare the test statistic, 𝑧2, with the boundary critical values for the second look. If 𝑧2 ≥ 2.414,

we reject 𝐻0 and end the trial for efficacy, while if 𝑧2 < 0.937, we have the option of stopping the trial

for futility and accepting 𝐻0. If 𝑧2 ∈ [0.937, 2.414), we must continue the trial. At the third look, the

testing procedure is similar, but the continuation region has shrunk to 𝑧3 ∈ [1.593, 2.246). If the trial
continues to the fourth and final look, with a total of 786 participants, there is no continuation region,

because the futility critical value is the same as the efficacy critical value. If 𝑧4 ≥ 2.124, we reject 𝐻0;

otherwise, we accept 𝐻0.

For more examples of gsdesign twomeans, see [ADAPT] gsdesign twomeans.

Example 10: Boundary and sample-size calculations for a two-sample proportions test
We consider a variation of the study of nicardipine as a treatment for vasospasm, as described in

example 9. Suppose we are interested in an alternate endpoint: the proportion of participants whose

vasospasm is resolved because of the treatment. We will record a participant’s response as 1 if their

time-averaged PSV in the middle cerebral artery is below 200 cm/s after treatment, and we will record

their response as 0 if their PSV is 200 cm/s or above.

Participants will be randomly assigned to the experimental arm, whose members receive intraarterial

nicardipine, or to the control group, whose members receive the standard of care, which is intraarterial

papaverine, in a 1:1 ratio. Based on previous research from Badjatia et al. (2004) and others, we an-

ticipate that a single treatment will resolve vasospasm in 50% of control-group participants and 60%

of experimental-group participants. We will test whether the two proportions are the same by using a

one-sided Pearson’s 𝜒2 test with familywise significance level of 2.5% and power of 90% to detect the

difference between 𝑝1 = 0.5 and 𝑝2 = 0.6.

To stop the trial early for evidence of treatment efficacy, we will use an error-spending approxima-

tion of the O’Brien–Fleming bound, and for futility stopping, we will use a nonbinding error-spending

Hwang–Shih–de Cani bound with parameter 𝛾𝑓 = −2. If the test statistic from an interim analysis

crosses a nonbinding futility bound, we have the option to accept 𝐻0 and terminate the trial, saving re-

sources and “abandoning a lost cause,” but if we continue the trial, the familywise type I error is still

controlled. We plan three evenly spaced looks, two interim analyses, and one final analysis.

https://www.stata.com/manuals/adaptgsdesigntwomeans.pdf#adaptgsdesigntwomeans
https://www.stata.com/manuals/adaptgs.pdf#adaptgsRemarksandexamplesex9
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_pchi2
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_hsd
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_hsd
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. gsdesign twoproportions .5 .6, alpha(0.025) power(0.9) efficacy(errobfleming)
> futility(hsdecani(-2)) nlooks(3) onesided graphbounds
Group sequential design for a two-sample proportions test
Pearson’s chi-squared test
H0: p2 = p1 versus Ha: p2 > p1
Efficacy: Error-spending O’Brien--Fleming style
Futility: Error-spending Hwang--Shih--de Cani, nonbinding, gamma = -2.0000
Study parameters:

alpha = 0.0250 (upper one-sided)
power = 0.9000
delta = 0.1000 (difference)

p1 = 0.5000
p2 = 0.6000

Expected sample size:
H0 = 650.03
Ha = 869.55

Info. ratio = 1.0665
N fixed = 1,038

N max = 1,106
N1 max = 553
N2 max = 553

Fixed-study crit. value = 1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Futility
Look frac. Upper p-value Lower p-value

1 0.33 3.7103 0.0001 -0.2418 0.5955
2 0.67 2.5114 0.0060 0.9367 0.1745
3 1.00 1.9930 0.0231 1.9930 0.0231

Note: Critical values are for z statistics; otherwise,
use p-value boundaries.

Sample size
Look N1 N2 N

1 185 185 370
2 369 369 738
3 553 553 1,106
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Figure 5. One-sided test of the equality of two proportions with efficacy and futility bounds

gsdesign twoproportions shows the specified study parameters, including the control-group pro-

portion p1, the experimental-group proportion p2, and the difference in proportions delta.

The next section of output displays the expected sample size under the null and alternative hypotheses.

The expected sample size is the average sample size (taking into account early stopping) that would be

observed if this trial were to be repeated many times. If 𝐻0 is true, our trial will require an average of

650.03 participants, and if 𝐻𝑎 is true, we will require an average of 869.55 participants.

Next we see the information ratio, the sample size for a fixed study with an equivalent significance

level and power (N fixed), the maximum sample size of the GSD (N max), and the maximum sample

sizes for each group (N1 max and N2 max). The information ratio is the ratio of the maximum sample

size of the GSD to the fixed-study sample size. We then see the critical value for a fixed study with an

equivalent significance level.

Finally, gsdesign twoproportions displays tables with the critical values and 𝑝-values for the
stopping boundaries as well as the sample sizes at each look. At the first look, we will conduct Pear-

son’s 𝜒2 test with command prtest, which reports a 𝑧 statistic, 𝑧1, that can be compared directly

with the boundary critical values. Just like the classical O’Brien–Fleming boundary, the error-spending

O’Brien–Fleming-style efficacy bound is very conservative at early looks, with a critical value at the

first look of 3.71, which corresponds to a 𝑝-value of 0.0001.
On the graph, we see that if 𝑧1 ≥ 3.71, it lies in the blue rejection region, so we will reject 𝐻0 and

stop the trial early for efficacy. If 𝑧1 < −0.242, it lies in the red acceptance region, and we have the

option of accepting 𝐻0 and stopping the trial for futility or continuing the trial without overrunning the

2.5% familywise type I error. If 𝑧1 ∈ [−0.242, 3.71), then 𝑧1 lies in the green continuation region and

the trial must continue.
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At the second look, the testing procedure is similar, but the efficacy and futility critical values are

closer together, shrinking the continuation region to 𝑧2 ∈ [0.937, 2.511). At the third and final look, the
efficacy critical values equal the futility critical values, so there is no continuation region. If 𝑧3 ≥ 1.993,

we reject 𝐻0; otherwise, we accept 𝐻0.

For more examples of gsdesign twoproportions, see [ADAPT] gsdesign twoproportions.

Survival analysis

When analyzing time-to-event data, we often want to compare the survivor functions of two groups.

If we denote the time of failure as 𝑇, we can define the survivor function as the probability of surviving
beyond time 𝑡, expressed mathematically as 𝑆(𝑡) = Pr(𝑇 > 𝑡). A related term is the hazard function,

the instantaneous rate of failure at time 𝑡, conditional on survival until time 𝑡, written as ℎ(𝑡).
Consider a survival study comparing survivor functions in two groups by using the log-rank test, and

let 𝑆1(𝑡) and 𝑆2(𝑡) denote the survivor functions of the control and the experimental groups, respectively.
The log-rank test is most appropriate when the hazard functions are thought to be proportional across the

groups, in which case it is the most powerful nonparametric test of 𝑆1(⋅) = 𝑆2(⋅). The proportional-
hazards assumption can be written as ℎ2(𝑡) = Δℎ1(𝑡) for all 𝑡 or, equivalently, 𝑆2(𝑡) = {𝑆1(𝑡)}Δ,

where Δ is the hazard ratio. If Δ < 1, then survival in the experimental group is higher than survival

in the control group, which means that the experimental treatment is superior to the control treatment. If

Δ > 1, then the control treatment is superior to the experimental treatment.

Sample-size calculations for the log-rank test compute the number of events observed in the study.

The required sample size is equal to the required number of events if a failure event is observed for every

participant in the trial. Often, the time of failure is not known for some participants, a phenomenon known

as censoring. Administrative censoring occurs when a trial ends before all participants have experienced

a failure event. Nonadministrative censoring occurs when participants withdraw from the study or are

lost to follow-up. If censoring occurs in the study, the required number of participants will be greater

than the required number of events.

Example 11: Boundary and sample-size calculations for a log-rank test
The Beta-Blocker Heart Attack Trial (BHAT) was one of the first large-scale clinical trials to adopt

a group sequential monitoring plan (DeMets et al. 1984). This was a double-blind study in which par-

ticipants who had experienced a heart attack were randomized to one of two groups: the control group

(which received a placebo) and the intervention group (which received the beta-blocker propranolol).

The endpoint, or outcome of interest, was time until death by any cause, and survival analysis was con-

ducted using a log-rank test.

The BHAT’s independent Policy and Data Monitoring Board adopted the then-recently published

O’Brien–Fleming method for calculating efficacy bounds, but here we consider how the trial could have

been designed using methods that were not available at the time. The original BHAT was powered to

detect the difference between nonadherence-adjusted three-year survival probabilities of 82.54% for the

control group and 86.25% for the intervention group. Seven biannual analyses were scheduled for 11,

16, 21, 28, 34, 40, and 48 months into the study. The log-rank test statistic crossed the O’Brien–Fleming

boundary at the sixth of seven looks, and the BHAT was terminated for treatment efficacy eight months

before the trial was scheduled to end.

https://www.stata.com/manuals/adaptgsdesigntwoproportions.pdf#adaptgsdesigntwoproportions
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossaryadmincensoring
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Here we use gsdesign logrank to calculate sample sizes for a design that is inspired by the BHAT

but that allows for both efficacy and futility stopping. We will conduct a one-sided test of hazard ratio

Δ, with 𝐻0 ∶ Δ = 1 versus 𝐻𝑎 ∶ Δ < 1. We will allow a one-sided familywise type I error rate of 2.5%,

and we require 90% power to detect the difference in survival probability described above. We will

use the error-spending approximation of O’Brien–Fleming bounds for efficacy stopping and nonbinding

Kim–DeMets futility bounds with parameter 𝜌𝑓 = 3. Instead of spacing the seven looks evenly, we

use the information() option and follow Method 2 from Lan and DeMets (1989, 1195) to specify the

timing of interim looks based on calendar time, which we use as the horizontal axis of our graph.

. gsdesign logrank 0.8254 0.8625, alpha(0.025) power(0.9)
> efficacy(errobfleming) futility(kdemets(3))
> information(11 16 21 28 34 40 48) onesided
> graphbounds(xdiminformation xtitle(”Months”))
Group sequential design for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR < 1
Efficacy: Error-spending O’Brien--Fleming style
Futility: Error-spending Kim--DeMets, nonbinding, rho = 3.0000
Study parameters:

alpha = 0.0250 (lower one-sided)
power = 0.9000
delta = 0.7709 (hazard ratio)

hratio = 0.7709
Censoring:

s1 = 0.8254
s2 = 0.8625

Pr_E = 0.1560
Expected number of events:

H0 = 378.92
Ha = 469.55

Info. ratio = 1.0727
E fixed = 628
N fixed = 4,024

N max = 4,316
N1 max = 2,158
N2 max = 2,158

Fixed-study crit. value = -1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Futility Events
Look frac. Lower p-value Upper p-value E

1 0.23 -4.5380 0.0000 1.4276 0.9233 155
2 0.33 -3.7128 0.0001 0.7980 0.7876 225
3 0.44 -3.2081 0.0007 0.2509 0.5991 295
4 0.58 -2.7361 0.0031 -0.4339 0.3322 393
5 0.71 -2.4739 0.0067 -0.9312 0.1759 477
6 0.83 -2.2717 0.0116 -1.3987 0.0810 562
7 1.00 -2.0473 0.0203 -2.0473 0.0203 674

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.
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Figure 6. One-sided log-rank test with efficacy and futility bounds

At the top of the output, gsdesign logrank displays a description of the trial with null and alterna-

tive hypotheses as well as study parameters. We see that the survival probabilities 0.8254 and 0.8625

correspond to a hazard ratio of 0.7709, which is the effect size used when calculating the number of

events necessary to achieve 90% power.

If the null hypothesis is correct (the hazard ratio is 1) and this trial were to be repeated many times,

we would expect to observe an average of 378.92 events per trial. If the hazard ratio is truly 0.7709 (the

value under the alternative hypothesis) and the trial were to be repeated many times, we would expect

an average of 469.55 events per trial.

A fixed study would require 628 events (deaths) to detect a hazard ratio of 0.7709 with 90% power,

which, with the specified survival probabilities, corresponds to a sample size of 4,024. The GSD requires

a maximum of 674 events (corresponding to a sample of size 4,316) if it continues to the final look.

The table at the end of the output displays the critical values and 𝑝-values for stopping boundaries and
the sample sizes at each look, where sample size is reported as the number of events observed. Boundary

critical values are reported on the 𝑧 scale and are designed to be compared against the 𝑧 statistic from

a log-rank test. Command sts test (see [ST] sts test) conducts the log-rank test and reports a 𝜒2 test

statistic, which is not directly comparable with the 𝑧 scale critical values. However, the square root of

the 𝜒2 test statistic is a 𝑧 statistic, which can be directly compared with the boundary critical values.
The first look occurs 11months into the study, at which point 155 events are expected to have occurred,

and a log-rank test is performed. We denote the square root of the 𝜒2 test statistic from the first look as

𝑧1, and we note that the sign of 𝑧1 depends on whether the observed hazard ratio was greater than 1 (in

which case 𝑧1 is positive) or less than 1 (in which case 𝑧1 is negative). If 𝑧1 ≤ −4.538, we say that 𝑧1
lies in the rejection region (shaded blue on the graph) and we reject 𝐻0, terminating the trial early due

to treatment efficacy. If 𝑧1 > 1.428, it lies in the acceptance region and we may terminate the trial for

futility; however, if the trial proceeds, the familywise type I error is still controlled at the 2.5% level. If

𝑧1 ∈ (−4.538, 1.428], then 𝑧1 lies in the green continuation region and the trial must continue.

https://www.stata.com/manuals/stststest.pdf#stststest
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The testing procedure is similar at each of the following interim looks, with the efficacy bound in-

creasing and the futility bound decreasing at each look, shrinking the continuation region. At the seventh

and final look, the efficacy critical value is equal to the futility critical value and there is no continuation

region. If 𝑧7 ≤ −2.047, we reject 𝐻0; otherwise, we accept 𝐻0.

For more examples, see [ADAPT] gsdesign logrank.

Add your own methods

The gsdesign command provides several built-in methods, and additional power methods can be

used with the methodok option. However, if you want to design a clinical trial using a method that is

not included, you can write your own sample-size calculation and use it with gsdesign.

All you need to do is write a program that computes the sample size for a fixed study; gsdesign
will calculate the stopping boundaries, information ratio, and sample sizes at each look. The procedure

for adding a method to gsdesign is identical to the procedure for adding a sample-size calculation to

the power command. Detailed instructions can be found in [ADAPT] gsdesign usermethod, but a quick

guide is as follows:

1. Create a program that computes a fixed-study sample size and follows power’s naming con-

vention: power cmd mymethod, where mymethod is the name of your method.

2. Ensure your program accepts the nfractional option. This is necessary because gsdesign
uses the fractional sample size when calculating the sample required at each look.

3. Store the resulting sample size following power’s simple naming conventions. Store the

total sample size in r(N). For two-sample methods, additionally store control-group and

experimental-group sample sizes in r(N1) and r(N2), respectively. For time-to-eventmethods,
additionally store the number of events in r(E) and store macro r(endpoint) as “survival”.

4. Place your program power cmd mymethod where Stata can find it.

Example 12: Group sequential design with user-defined methods
To show how easy this is, let’s write a program to compute sample size for a fixed-study one-sample 𝑧

test given standardized difference, significance level, and power. For simplicity, we assume a two-sided

test.

https://www.stata.com/manuals/adaptgsdesignlogrank.pdf#adaptgsdesignlogrank
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethod
https://www.stata.com/manuals/adaptgsdesignusermethod.pdf#adaptgsdesignusermethod
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_nfraction
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We will call our new method myztest.

program power_cmd_myztest, rclass
version 19.5 // (or version 19 if you do not have StataNow)

syntax, STDDiff(real) /// standardized difference (effect size)
[ Alpha(real 0.05) /// significance level

Power(real 0.8) /// power
NFRACtional /// report fractional sample size

]

tempname N
scalar ‘N’ = ((invnormal(‘power’) + invnormal(1 - ‘alpha’ / 2)) / ‘stddiff’)^2
if (”‘nfractional’” == ””) {

scalar ‘N’ = ceil(‘N’)
}

return scalar power = ‘power’
return scalar N = ‘N’
return scalar alpha = ‘alpha’
return scalar stddiff = ‘stddiff’

end

The computation in this program is trivial, but yours could be as complicated as you like. It could

even involve simulation to compute the sample size.

With our program in hand, we can design a clinical trial using the default values of 5% familywise sig-

nificance level, 80% power, and an O’Brien–Fleming efficacy boundary with two evenly spaced looks.

We need only specify the effect size by using stddiff().

. gsdesign myztest, stddiff(0.7)
Group sequential design for myztest
Two-sided test
Efficacy: O’Brien--Fleming
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.8000

Expected sample size:
H0 = 16.96
Ha = 15.06

Info. ratio = 1.0078
N fixed = 17

N max = 17
Fixed-study crit. values = ±1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Sample size
Look frac. Lower Upper p-value N

1 0.50 -2.7965 2.7965 0.0052 9
2 1.00 -1.9774 1.9774 0.0480 17

Notes: Critical values are for z statistics; otherwise,
use p-value boundaries.
Requested information fraction not attained.
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gsdesign called our program power cmd myztest for the sample-size calculation for a fixed design
and used the stored result r(N) to calculate the sample sizes at both looks. In this case, the use of a user-

defined program to calculate sample size was purely for didactic purposes; the same calculation could

have been conducted with built-in command gsdesign onemean, diff(0.7) sd(1) knownsd.

This example was simple, but all the standard gsdesign options apply to user-defined methods. For

example, suppose we wanted to design a trial using a one-sample 𝑧 test at the familywise 10% level

with 90% power to detect a standardized difference of 0.3. We use Wang–Tsiatis efficacy bounds with

parameter Δ𝑒 = 0.25 and binding Wang–Tsiatis futility bounds with parameter Δ𝑓 = 0.3. We require

six looks, spaced at 30%, 50%, 70%, 80%, 90%, and 100% of the data, and we graph the bounds with a

custom subtitle.

. gsdesign myztest, stddiff(0.3) alpha(0.1) power(0.9) efficacy(wtsiatis(0.25))
> futility(wtsiatis(0.3), binding) information(30 50 70 80 90 100)
> graphbounds(subtitle(”One-sample z test”))
Group sequential design for myztest
Two-sided test
Efficacy: Wang--Tsiatis, Delta = 0.2500
Futility: Wang--Tsiatis, binding, Delta = 0.3000
Study parameters:

alpha = 0.1000 (two-sided)
power = 0.9000

Expected sample size:
H0 = 74.34
Ha = 64.92

Info. ratio = 1.2596
N fixed = 96

N max = 120
Fixed-study crit. values = ±1.6449
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Futility
Look frac. Lower Upper p-value Lower Upper p-value

1 0.30 -2.4353 2.4353 0.0149 . . .
2 0.50 -2.1434 2.1434 0.0321 -0.6200 0.6200 0.5352
3 0.70 -1.9704 1.9704 0.0488 -1.1563 1.1563 0.2476
4 0.80 -1.9057 1.9057 0.0567 -1.3880 1.3880 0.1651
5 0.90 -1.8504 1.8504 0.0642 -1.6022 1.6022 0.1091
6 1.00 -1.8023 1.8023 0.0715 -1.8023 1.8023 0.0715

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.

Sample size
Look N

1 36
2 60
3 84
4 96
5 108
6 120
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Figure 7. User-written one-sample 𝑧 test with efficacy and futility bounds

Our program power cmd myztest need only handle the sample-size calculation in the case of a fixed
study design; gsdesign handles the rest, including the graph.

For more examples, see [ADAPT] gsdesign usermethod.

Stored results
See Stored results in [ADAPT] gsbounds.

See Stored results in [ADAPT] gsdesign.

Also see Stored results in the gsdesign method-specific entries.
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