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Intro — Introduction to adaptive designs for clinical trials

Description Remarks and examples References Also see

Description
This entry provides a brief introduction to adaptive designs for clinical trials. For a general intro-

duction to group sequential designs and their implementation in Stata, see [ADAPT] GSD intro and

[ADAPT] gs, respectively.

Remarks and examples
Armitage (1993) observes that “classical theory of experimental design deals predominantly with

experiments of predetermined size, presumably because the pioneers of the subject, particularly R. A.

Fisher, worked in agricultural research, where the outcome of a field trial is not available until long after

the experiment has been designed and started.” This type of study, where the target sample size is fixed

during the design stage, is known as a fixed-sample design (FSD). In other applications, it is common for

data to trickle in, providing researchers the opportunity to conduct interim analyses of a partial dataset.

This is especially common in clinical trials—studies examining the effects of treatments on humans—

where participants are usually accrued over time.

An alternative to an FSD is an adaptive design, a type of experimental design increasingly popular for

clinical trials. The US Food and Drug Administration (2019) describes an adaptive design as “a clinical

trial design that allows for prospectively planned modifications to one or more aspects of the design

based on accumulating data from subjects in the trial.” By providing a framework to modify aspects of

the study design, an adaptive design allows the trial to be adjusted to account for information that was

unavailable during the design stage.

Adaptive designs for clinical trials offer several potential advantages over FSDs. Many adaptive de-

signs offer the prospect of increased statistical efficiency, often in the form of a smaller expected sample

size than that of an equivalently powered FSD. This can save resources for the sponsor of the trial. Re-

sources can also be saved by employing adaptations that modify the recruitment practices or the desired

sample size of an ongoing trial to maximize the probability of identifying a clinically meaningful treat-

ment effect. There is also an ethical argument for some adaptations, particularly those that reduce the

number of participants assigned to ineffective treatments. Some adaptations even allow the trial to test

additional hypotheses that were not considered during the design stage, such as whether a treatment is

particularly effective in some subgroups of the population.

Adaptive designs are not a panacea for all challenges encountered during a clinical trial, and this

has led some authors to caution against viewing adaptive designs as a distinct class of clinical trials.

Piantadosi (2017, 416), for example, advocates using the term “adaptive design features” to emphasize

that adaptations are tools for a trialist, not an alternative to addressing underlying issues in a clinical trial

design.

Adaptive designs are not without their drawbacks, often in the form of increased complexity. Sample-

size calculations and statistical analysis of adaptive designs are typically more complicated than the

equivalent methods for FSDs. The implementation of an adaptive design adds logistical challenges: in-

terim analyses require timely and accurate data to be reported multiple times over the course of the trial,

and adaptations to theway participants are assigned to treatment groups add complexity to the recruitment

process. Also, even if an adaptive design has a smaller expected sample size than a similarly powered

1



Intro — Introduction to adaptive designs for clinical trials 2

FSD, the adaptive design may have a larger maximum sample size. This is because the expected sample

size is the average sample size if the trial were to be repeated many times, while the maximum sample

size is the largest possible sample under the adaptive design.

The most popular forms of adaptive designs for clinical trials fall into several broad categories.

• Group sequential designs provide the ability to stop a trial early if an interim analysis of the

data provides compelling evidence that a treatment is effective or ineffective. This is one of the

most widely used adaptive designs and will be the focus of this manual.

• Adaptive methods for sample-size modification allow the desired sample size to be adjusted

while the trial is underway. Blinded sample-size reestimation adjusts the sample size based

on estimates of nuisance parameters (such as the variance of a normal mean) that have been

pooled over all treatment groups, while unblinded sample-size reestimation can use estimates of

nuisance parameters from individual treatment groups or even interim estimates of the treatment

effect.

• Adaptive randomization designs modify the way participants are randomized (allocated) to

treatment groups. Covariate-adaptive randomization seeks to reduce differences in the distri-

bution of covariates in the treatment groups by modifying the probability that a participant will

be assigned to a treatment group based on covariate data collected from the participant before

randomization. Response-adaptive randomization modifies allocation probabilities based on

interim estimates of treatment effects and can be used to reduce the number of participants

assigned to less effective treatments.

• Adaptive designs for treatment-armmodification allow the addition or removal of treatment

groups, or arms, during the course of the study. Examples include early-phase dose-finding

trials that add or remove arms at different dosage levels, and late-phase multiarm trials that

“drop the loser”, terminating one arm at a time. Large-scale ongoing adaptive platform trials

follow a prespecified master protocol to compare multiple experimental arms against a single

treatment arm; new experimental arms are added as new treatments become available, and

experimental arms may be terminated based on the results of interim analyses.

• Adaptive enrichment designs typically begin by enrolling participants from a diverse popula-

tion and use interim data about treatment efficacy to restrict subsequent recruitment to targeted

population subgroups. This approach is particularly appealing when participant characteristics,

such as genetic markers, are believed to play a role in treatment efficacy.

Adaptive design of clinical trials is a topic of active research, and the list above is by no means

exhaustive. In what follows, we focus on group sequential designs. For more information about adaptive

designs, see Pong and Chow (2010), Chow and Chang (2012), Bhatt and Mehta (2016), Pallmann et al.

(2018), and US Food and Drug Administration (2019).
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GSD intro — Introduction to group sequential designs

Description Remarks and examples References Also see

Description
This entry provides a general introduction to group sequential designs (GSDs) and describes relevant

statistical terminology. For an introduction to Stata’s commands for GSDs, see [ADAPT] gs.

Remarks and examples
Remarks are presented under the following headings:

Introduction
FSDs
GSDs

Components of GSD
Origins of GSD
Brief overview of GSD
Graphing group sequential boundaries

Introduction
For a brief introduction to adaptive designs, see [ADAPT] Intro. In this section, we describe GSDs for

clinical trials in more detail.

Clinical trials are experimental studies in which the investigator assigns treatments to the participants.

Each clinical trial begins with a design that determines the number of participants to recruit and how to

allocate the participants to the treatments. GSDs are a subset of clinical trial designs that incorporate

preplanned analyses of interim data.

In a GSD, the data-collection step is split into multiple predefined stages, and an interim analysis is

performed at each stage as the data accumulate [Pocock (1977), O’Brien and Fleming (1979), Lan and

DeMets (1983), Jennison and Turnbull (2000), Wassmer and Brannath (2016)]. Each analysis of the data

is known as a look. Stopping boundaries are calculated for each look such that analyses from multiple

looks are guaranteed not to exceed a predefined overall false-positive error rate, ensuring control of

familywise type I error. Unlike fixed-sample designs (FSDs), GSDs can be stopped early in the presence

of compelling evidence against or in favor of the null hypothesis.

FSDs

To understand the process of creating and implementing GSDs, it is helpful to begin by considering

FSDs. To plan an FSD, the investigator will begin by calculating the required sample size based on several

factors, such as the size of a clinically meaningful effect, the desired power and significance level, results

of previous studies, and practical considerations like cost and ability to recruit participants.

The next step is to recruit participants to the study. Depending on the scale of the study, recruitment

could take place at a single site or at many sites. Recruitment often continues for months or even years.

When a participant is recruited to the study, they are assigned, or randomized, to a treatment group. The

gold standard of clinical trial design is a randomized controlled trial, where participants are randomly

assigned to control or experimental groups, or arms. Trials without a control group are common in early-

phase clinical trials designed to explore the appropriate dosage of a therapeutic agent and to investigate

4



GSD intro — Introduction to group sequential designs 5

how the treatment affects participants. Uncontrolled trials are less common in late-phase clinical trials

designed to demonstrate treatment efficacy, though there are circumstances warranting their use (see

Remarks and examples in [ADAPT] gsdesign onemean and in [ADAPT] gsdesign oneproportion for

examples).

In a classical two-arm randomized controlled trial, one group receives the experimental treatment,

while the other group receives a control treatment. If there are no existing treatments that are comparable

with the experimental treatment, the control group will typically receive a placebo. When a standard of

care exists, there is often an ethical argument against using a placebo. In this case, an active control is

used, wherein participants receive the existing standard of care.

After being assigned to a treatment arm, participants are monitored to collect data on the outcome of

interest, which is typically referred to as the endpoint. In studies with multiple endpoints, it is common

to designate one primary endpoint or to combine multiple endpoints into a single composite endpoint.

Depending on the endpoint, the follow-up period may last for years. This is especially common in trials

with survival outcomes (also known as time-to-event endpoints). Some participants might leave the study

before their primary endpoint data are collected, a phenomenon known as loss to follow-up.

In a large clinical trial, it is not uncommon for several years to elapse before all the endpoint data are

collected. If the trial follows an FSD, no analysis of treatment efficacy is conducted until all endpoint

data have been obtained. At the end of an FSD, the data are analyzed and the null hypothesis is either

rejected or not. In contrast with some other disciplines, in the context of clinical trials, it is common to

describe the failure to reject 𝐻0 as “accepting the null hypothesis”. The flowchart in figure 1 details the

course of an FSD.

Plan study
Recruit

subjects &
collect data

Final
analysis

Reject H0

Accept H0

Fixed design

Figure 1. FSD flowchart

GSDs

In the context of a long clinical trial, there is the potential for substantial benefit to both participants

and sponsors if a treatment can be declared effective or ineffective before the trial is scheduled to end.

GSDs accomplish this by allowing for multiple preplanned analyses of interim trial data while controlling

the familywise error rate.

At each interim look, a statistical test is performed, and the test statistic is compared with sets of

critical values called stopping boundaries to determine whether 𝐻0 can be rejected (known as efficacy

stopping) or accepted (known as futility stopping). If the interim test is inconclusive, the study continues

to the next look. At the final look, 𝐻0 must be rejected or accepted.
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Planning a clinical trial using a GSD is similar to planning a trial using an FSD, but some additional

considerations are required. On the logistical side, preparations must be made to ensure that interim data

are of high quality and are quickly available to the data analysis team, often an independent group called

a Data Monitoring Committee. On the statistical side, investigators must determine the type of stopping

rule to apply (efficacy stopping, futility stopping, or both), the number and spacing of interim analyses,

and the boundary-calculation procedure to be used.

Stopping boundaries are calculated, and sample-size calculations that account for the planned interim

analyses are performed. The recruitment, randomization, treatment, and follow-up of a GSD are akin to

those of an FSD. But instead of waiting to collect all endpoint data before analysis, interim analyses are

performed, and the study can be terminated early for efficacy (if 𝐻0 is rejected) or for futility (if 𝐻0 is

accepted).

The flowchart in figure 2 details the course of a GSD. Each interim analysis offers the opportunity to

terminate the trial to reject 𝐻0 (if efficacy bounds are used) and the opportunity to terminate the trial to

accept 𝐻0 (if futility bounds are used). If the interim test is inconclusive, the trial continues to collect

more data until the next look. The process continues until an interim analysis determines that the trial

should stop or until all possible data are collected and the final analysis is performed.

efficacy

Plan study
Recruit

subjects &
collect data

Interim
analysis

Final
analysis

Reject H0

Accept H0

Reject H0

Accept H0

Group sequential design

Continue study

futility

Stop for

Stop for

Figure 2. GSD flowchart

Components of GSD
The components of power and sample-size analysis for FSDs are also relevant to GSDs. Please read

Components of PSS analysis in [PSS-2] Intro (power) before reading this section. The key components

of GSDs include variations of components of FSDs as well as components that are specific to GSDs. We

describe them below.

• Statistical analysis method: A clinical trial following a GSD must identify the intended statis-

tical analysis method during the design stage. The type of statistical test to be used dictates the

methodology used in calculating the sample sizes at interim analyses (but not the critical values

for the stopping boundaries). AGSD is able to provide strong control of familywise type I error

when, under the null hypothesis, the sequence of test statistics from interim analyses follows a

multivariate normal distribution with a covariance matrix that depends only on the amount of

the data analyzed at each interim look. To use a GSDwith a test that does not produce a normally



GSD intro — Introduction to group sequential designs 7

distributed test statistic under the null hypothesis, the significance level approach, which uses

stopping boundaries based on 𝑝-values instead of critical values, may be used (see Methods and

formulas in [ADAPT] gsbounds for details).

• Significance level, 𝛼: GSDs must account for multiple hypothesis tests being conducted. It is
not sufficient to conduct each test at the desired overall significance level 𝛼 because conducting

multiple tests means that the chance of committing a type I error at one or more interim analyses

will be greater than the desired 𝛼. Instead, the familywise error rate is controlled, ensuring that
Pr(reject 𝐻0 at any look | 𝐻0 is true) = 𝛼.

• Power, 1 − 𝛽: The power of a group sequential test is the probability of rejecting a false null
hypothesis at any look, or Pr(reject 𝐻0 at any look | 𝐻0 is false) = 1 − 𝛽. Power is calcu-

lated relative to a prespecified effect size, and the smaller the effect size, the larger the sample

required to achieve a given power.

• Accrual and endpoints: In a GSD, as in most clinical trial designs, participants are generally

recruited, or accrued, over time. The outcome of interest is known as the endpoint. GSDs offer

the most benefit when the collection of endpoint data is rapid compared with accrual. If the

time between randomization and endpoint-data collection is excessively long, there will be less

benefit in terminating a trial early because resources already will have been expended to recruit

many participants who are still in follow-up but whose endpoints have not yet been collected.

• Interim looks: Interim looks, or interim analyses of the data available to date, are the defining

feature of GSDs. To conduct a GSD properly, it is necessary to ensure that endpoint data are

collected in a timely and reliable manner and provided to the statistical analysis group or Data

Monitoring Committee without unblinding individuals who should remain blinded. In the con-

text of a clinical trial, blinding refers to knowledge of which treatment group a participant was

assigned to.

• Stopping rule: GSDs can allow for efficacy stopping (early rejection of 𝐻0) as well as futility

stopping (early acceptance of 𝐻0). During the design stage, a set of critical values known

as stopping boundaries is calculated. At each interim analysis, the test statistic is compared

with the critical values for that look. If the statistic is more extreme than the efficacy critical

value, we say that it has crossed the efficacy boundary and the trial is stopped for treatment

efficacy. If the statistic is less extreme than the futility critical value, we say that it has crossed

the futility boundary and the trial is stopped for futility. Futility bounds can be either binding

or nonbinding. If a study with binding futility bounds is not stopped after crossing the futility

bound, it risks overrunning the desired type I error. Nonbinding futility bounds are similar

to binding futility bounds, but if a nonbinding futility bound is crossed, investigators have

the option of stopping for futility or continuing the trial in the hope that more evidence will

accumulate in favor of the experimental treatment, and there is no risk of excessive type I error.

The cost for nonbinding futility bounds is a slightly larger sample size than required by binding

futility bounds with equivalent type I error and power.

• Expected sample size: If a group sequential trial, a clinical trial using a GSD, stops early, it can

use a substantially smaller sample size than an equivalently powered FSD. But if all the interim

tests are inconclusive, the study will continue to the final look and use the maximum possible

sample size, which is always larger than that of an equivalent FSD. The expected sample size of

a GSD is the average sample size that would be used if the trial were to be repeated many times.

Expected sample size is calculated relative to a given effect size; the expected sample size of a

GSD with efficacy stopping will decrease when the effect size is large, reflecting the increased
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probability of early stopping for efficacy. GSDs with futility stopping will often have a smaller

expected sample size than an equivalent FSD when the effect size is 0 because of the ability to

accept the null hypothesis and stop the trial early for futility.

• Boundary-calculation procedure: Frequently, an investigator will decide which stopping rule

to employ (efficacy stopping, futility stopping, or both) and howmany interim looks to perform

before picking the procedure they will use to calculate the bounds. There are several different

formulas available to calculate stopping boundaries, but the most popular ones fall into two

broad categories: classical bounds and error-spending bounds. Classical boundary-calculation

procedures compute the boundary critical values directly, while error-spending procedures de-

fine an error-spending function that partitions the type I error (for efficacy bounds) or type II

error (for futility bounds) between the planned looks. For designs with both efficacy and futility

stopping, it is not necessary to use the same boundary-calculation method for both efficacy and

futility bounds, but classical bounds cannot be combined with error-spending bounds.

Some boundary-calculation procedures are conservative, which means they offer little chance

of early stopping unless the true effect size is quite large (in the case of efficacy bounds) or quite

small (in the case of futility bounds). A trial employing a conservative bound is more likely to

continue to the final look, yielding an expected sample size that is not dramatically smaller than

the sample size required by an equivalent fixed-sample trial. However, the maximum sample

size (that is, the sample size at the final look) of a trial with a conservative bound is generally

not much greater than the sample size required by an equivalent fixed trial. Another direct result

of specifying conservative bounds is that the critical value at the final look tends to be close to

the critical value employed by an equivalent FSD. In contrast, anticonservative boundaries offer

a much better shot at early stopping (often yielding a small expected sample size) at the cost

of a larger maximum sample size and final critical values that are considerably larger than the

critical value of an equivalent FSD. Other boundary-calculation procedures use a parameter to

control their shape; depending on the value of the parameter, these bounds can be conservative,

anticonservative, or somewhere in the middle.

• Information: The amount of information a dataset contains about an unknown parameter is

known as the Fisher information. Generally, information is proportional to the sample size, but

not always. For example, with time-to-event data, the amount of information is proportional

to the number of events observed. When designing a group sequential trial, the timing of the

interim looks is specified in terms of the information fraction, the fraction of the maximum

possible information to be collected by the study. For example, in a GSD with four equally

spaced looks, analyses will occur when 25%, 50%, 75%, and 100% of the data are collected.

If a group sequential trial continues to its final look, the maximum amount of information will

be collected, which is always greater than the information of an equivalently powered FSD. The

ratio of the maximum information required by a GSD to the information of an equivalent FSD is

known as the information ratio, and the maximum sample size (or number of events) of a GSD

is the product of the information ratio and the sample size of an equivalent FSD.

Origins of GSD
Clinical trials are studies investigating the effects of a treatment on human participants. Large clinical

trials, such as those designed to determine the efficacy of an experimental treatment, typically enroll

participants over months or years, randomizing some participants to the experimental treatment group

and others to a control group. In an FSD, no analysis is conducted until all data are collected.
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In the context of a clinical trial, there is an ethical imperative not to expose participants to inferior

treatments. GSDs address this ethical consideration by providing a protocol for the interim analyses of

clinical trial data. If an interim analysis demonstrates that the new treatment is effective, the trial can stop

early, hastening regulatory approval and sparing future participants from being assigned to the control

group. If an interim analysis demonstrates that the new treatment is ineffective, the trial can stop early

and resources can be allocated to testing more promising treatments.

When done naïvely, conducting multiple analyses at a nominal significance level will inflate type I

error. Wassmer and Brannath (2016) note that traditional methods of controlling the familywise error

rate, such as the Bonferroni correction, are overly conservative because they do not exploit the covari-

ance structure of test statistics from a sequential analysis. Wallis (1980) recounts the origin of modern

sequential analysis theory, which arose not in the context of clinical trials, but as a more efficient way

to test weaponry during the SecondWorldWar. AbrahamWald, a Hungarian Jewish mathematician who

immigrated to the United States and participated in the war effort as a member of the Statistical Research

Group at Columbia University, developed the sequential probability ratio test (SPRT) in 1943. (Wald is

known for several contributions to statistics, including the eponymous Wald test; see the vignette in the

[TS] varwle entry for more information about his life.)

The SPRT was so useful to the military that access to Wald’s report was restricted to prevent it from

falling into enemy hands. Two years later, the restriction was lifted and Wald (1945) published the first

public account of the SPRT, which uses fixed stopping rules but does not fix the maximum sample size.

Applying the Neyman–Pearson theory of hypothesis testing, practitioners of the SPRT begin by formu-

lating two hypotheses, 𝐻0 and 𝐻𝑎, which are compared using a sequence of likelihood-ratio tests. A

continuation interval (𝑎, 𝑏) is defined, with critical values 𝑎 and 𝑏 chosen so that the probabilities of
type I and type II errors are equal to prespecified levels. After each sample is collected, the investi-

gator calculates the likelihood ratio of the two hypotheses; if it falls within the continuation interval,

the experiment continues and another sample is taken. If the likelihood ratio lies outside (𝑎, 𝑏), the ex-
periment ends and either 𝐻0 or 𝐻𝑎 is rejected (depending on whether the likelihood ratio is above or

below the continuation interval). In contrast with the prevailing modern interpretation of null-hypothesis

significance testing, the SPRT provides a mechanism to reject 𝐻𝑎 and accept 𝐻0.

Brief overview of GSD
More recent developments in sequential experimental design have introduced classes of sequential

tests with different properties, including a fixed maximum sample size. But the appeal of a controlled

framework for accepting 𝐻0 has endured in sequential experimental designs, in no small part because

accepting 𝐻0 provides grounds for terminating the experiment due to futility. The term “accept 𝐻0”

is widely used in literature about sequential clinical trials, and we will use it (without quotes) in the

remainder of this manual to refer to the demonstration of futility in a sequential design. The complement

of futility stopping is efficacy stopping, where the experiment is terminated because 𝐻0 can be rejected,

even if the maximum sample size has not been reached.
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In most clinical trials, it is not feasible to perform statistical analysis after each sample is collected, so

fully sequential designs are rare in practice. GSDs address this logistical challenge by scheduling interim

analyses after groups of samples have been collected. A major advance in GSDs came when Pocock

(1977) established clear guidelines for calculating efficacy stopping boundaries that attain desired levels

of type I and type II errors.

Pocock published critical values for a test statistic that follows a standard normal distribution un-

der 𝐻0. For test statistics following other distributions, Pocock recommends using a critical value that

has an equivalent significance level to the published 𝑧 score. For a demonstration, see example 2 in

[ADAPT] gsdesign onemean.

While Pocock’s boundaries use the same critical value at each interim look, O’Brien and Fleming

(1979) introduced group sequential boundaries with critical values that are conservative for early looks

and less so as more data are collected. O’Brien–Fleming boundaries have proven popular among re-

searchers who are wary of stopping a trial very early for anything less than the strongest evidence, but

who appreciate the smaller maximum sample size and final-look critical values compared with those of

Pocock’s boundaries.

Wang and Tsiatis (1987) developed a one-parameter family of boundaries that includes the Pocock

and O’Brien–Fleming boundaries as special cases. Wang–Tsiatis bounds are popular with researchers

who want a boundary that is less conservative than O’Brien–Fleming bounds but more conservative than

Pocock bounds. However, it is possible to select values of theWang–Tsiatis parameter that create bounds

that are more conservative than the O’Brien–Fleming bound or more anticonservative than the Pocock

bound.

Lan and DeMets (1983) introduced the error-spending approach to constructing stopping boundaries.

This approach controls the overall probability of type I error by “spending” error probability at interim

looks. This allows the number and timing of interim looks to be updated while the trial is in progress.

Lan and DeMets (1983) presented error-spending functions that correspond to boundaries that ap-

proximate both Pocock and O’Brien–Fleming bounds. Kim and DeMets (1987) created a useful family

of error-spending functions indexed by a power parameter, and Hwang, Shih, and de Cani (1990) intro-

duced another one-parameter family of error-spending functions. While the parameters for Kim–DeMets

and Hwang–Shih–de Cani bounds use different scales, both boundary-calculation procedures are quite

flexible and can produce bounds that are as conservative or anticonservative as desired.

The process of conducting interim analyses with a GSD is the same regardless of the procedure used

to calculate the stopping boundaries. The boundaries comprise a series of critical values, one for each

look. At each interim look, the data are analyzed and a test statistic is calculated. If the design includes

efficacy bounds, the test statistic is compared with the efficacy critical value, and 𝐻0 is rejected if the

statistic is more extreme than the efficacy critical value. If the design includes futility bounds, the test

statistic is compared with the futility critical value, and 𝐻0 is accepted if the statistic is less extreme than

the futility critical value.

Graphing group sequential boundaries
When comparing different GSDs, it is often helpful to visualize the boundaries of different methods.

We begin by presenting a simple GSD using O’Brien–Fleming efficacy boundaries for a two-sided test

of means in figure 3 below. Here we plan on conducting up to five analyses: four interim looks and one

final analysis. At each interim look, if the test statistic calculated from the available data is within the

green continuation region, then the study continues accruing more participants, but if the test statistic
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is outside the efficacy bounds and in the blue rejection region, then 𝐻0 is rejected and the experiment

is stopped early for efficacy. At the fifth and final look, there is no continuation region; if the final test

statistic is not outside the efficacy bounds, it will lie in the red acceptance region and 𝐻0 is accepted.
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Group sequential design for a two-sample means test

Figure 3. Two-sided O’Brien–Fleming efficacy bounds for a test of the equality of two means

Next we consider a similar scenario that includes futility bounds as well as efficacy bounds. Efficacy

bounds separate the rejection region from the continuation region, and futility bounds separate the ac-

ceptance region from the continuation region. If the test statistic from an interim analysis falls within

the continuation region, then the study proceeds as planned. If it falls within the rejection region, then

𝐻0 is rejected and the study is terminated due to treatment efficacy. If the test statistic lies within the

acceptance region, then 𝐻0 is accepted and the study is terminated due to futility. As in the previous

example, at the final look, there is no continuation region and 𝐻0 must be accepted or rejected.
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Figure 4. Two-sided O’Brien–Fleming efficacy and futility bounds

In both graphs, the vertical axis is labeled “𝑧-value” because the theory underlying a GSD’s ability

to control familywise type I error is based on a sequence of test statistics whose marginal distribution

under the null hypothesis is normal with a mean of 0 and a variance of 1. For details about how to

calculate group sequential boundaries in Stata, including how to incorporate test statistics that are not

normally distributed, see [ADAPT] gsbounds. To additionally calculate sample sizes for interim analyses,

see [ADAPT] gsdesign.

References
Hwang, I. K., W. J. Shih, and J. S. de Cani. 1990. Group sequential designs using a family of type I error probability

spending functions. Statistics in Medicine 9: 1439–1445. https://doi.org/10.1002/sim.4780091207.

Jennison, C., and B. W. Turnbull. 2000. Group Sequential Methods with Applications to Clinical Trials. Boca Raton, FL:

Chapman and Hall/CRC.

Kim, K., and D. L. DeMets. 1987. Design and analysis of group sequential tests based on the type I error spending rate

function. Biometrika 74: 149–154. https://doi.org/10.1093/biomet/74.1.149.

Lan, K. K. G., and D. L. DeMets. 1983. Discrete sequential boundaries for clinical trials. Biometrika 70: 659–663.

https://doi.org/10.1093/biomet/70.3.659.

O’Brien, P. C., and T. R. Fleming. 1979. A multiple testing procedure for clinical trials. Biometrics 35: 549–556. https:

//doi.org/10.2307/2530245.

Pocock, S. J. 1977. Group sequential methods in the design and analysis of clinical trials. Biometrika 64: 191–199.

https://doi.org/10.1093/biomet/64.2.191.

Wald, A. 1945. Sequential tests of statistical hypotheses. Annals of Mathematical Statistics 16: 117–186. https://doi.org/

10.1214/aoms/1177731118.

Wallis,W.A. 1980. The statistical research group, 1942–1945. Journal of theAmerican StatisticalAssociation 75: 320–330.

https://doi.org/10.2307/2287451.

Wang, S. K., and A. A. Tsiatis. 1987. Approximately optimal one-parameter boundaries for group sequential trials. Bio-

metrics 43: 193–199. https://doi.org/10.2307/2531959.

https://doi.org/10.1002/sim.4780091207
https://doi.org/10.1093/biomet/74.1.149
https://doi.org/10.1093/biomet/70.3.659
https://doi.org/10.2307/2530245
https://doi.org/10.2307/2530245
https://doi.org/10.1093/biomet/64.2.191
https://doi.org/10.1214/aoms/1177731118
https://doi.org/10.1214/aoms/1177731118
https://doi.org/10.2307/2287451
https://doi.org/10.2307/2531959


GSD intro — Introduction to group sequential designs 13

Wassmer, G., and W. Brannath. 2016. Group Sequential and Confirmatory Adaptive Designs in Clinical Trials. Cham,

Switzerland: Springer.

Also see
[ADAPT] Intro — Introduction to adaptive designs for clinical trials

[ADAPT] gs — Introduction to commands for group sequential design

[ADAPT] Glossary



gs — Introduction to commands for group sequential design

Description Menu Syntax Remarks and examples
Stored results Acknowledgments References Also see

Description
The gs suite of commands is useful for planning group sequential trials. These commands compute

stopping boundaries and sample sizes for each look of a group sequential design (GSD). The gs commands

can be used to calculate critical values for efficacy boundaries, futility boundaries, or both. Boundary-

calculation procedures include those of Pocock (1977), O’Brien and Fleming (1979), Wang and Tsiatis

(1987), Kim and DeMets (1987), and Hwang, Shih, and de Cani (1990).

The gsbounds command calculates stopping boundaries that can be applied to any group sequential

clinical trial. The gsdesign method set of commands calculates both stopping boundaries and sample

sizes for interim analyses with five different hypothesis tests: one- and two-sample means tests, one-

and two-sample proportions tests, and the log-rank test. Interim analyses using other hypothesis tests are

supported through the ability to incorporate user-defined sample-size calculations. Study designs can be

displayed in a table and a graph.

Menu
Statistics > Power, precision, and sample size

14
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Syntax
Compute stopping boundaries

gsbounds, gsboundopts

where gsboundopts are options described in [ADAPT] gsbounds.

Compute sample size and stopping boundaries

gsdesign method ...[ , designopts boundopts ]
where designopts are options controlling the sample-size calculation and boundopts are options control-

ling the calculation of the stopping boundaries.

method Description

One sample

onemean One-sample mean test

oneproportion One-sample proportion test

Two independent samples

twomeans Two-sample means test

twoproportions Two-sample proportions test

Survival analysis

logrank Log-rank test

User-defined methods

usermethod Add your own method to gsdesign

Remarks and examples
Remarks are presented under the following headings:

Introduction
Efficacy stopping
Futility stopping
Graphing stopping boundaries
Boundary and sample-size calculations using gsdesign

One-sample tests
Two-sample tests
Survival analysis
Add your own methods

This section describes how to compute boundaries and sample sizes for GSDs using the gs suite of

commands. For a software-free introduction to GSDs, see [ADAPT] GSD intro.

Introduction
Clinical trials are studies investigating the effects of a treatment on human participants, and unlike

some other types of studies, clinical trials rarely collect data all at once. It is common for large clinical

trials to recruit participants over the course of months or years. Depending on the outcome of interest,

known as the clinical endpoint, the study could follow up with participants over the course of several

years.
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Sponsors of clinical trials have both ethical and economic motivations for making trials as efficient

as possible. One way of accomplishing this is to analyze trial data while the study is still underway. A

positive result at an interim analysis can lead to early termination of the study due to treatment efficacy,

sparing future participants from being assigned to the control group and receiving an inferior treatment.

If the interim analysis demonstrates that the new treatment is ineffective, the trial can stop early and

resources can be allocated to testing more promising treatments.

It is widely known that conductingmultiple hypothesis tests at a nominal significance level will inflate

type I error, but applying a simplistic technique like the Bonferroni correction to the results of interim

analyses is overly conservative and will cause excessive type II error. GSDs provide a framework for

conducting multiple interim analyses of clinical trial data while maintaining control of familywise type I

and type II errors.

The gs suite of commands comprises the gsbounds command and the gsdesign method commands.

This suite can be used to design group sequential clinical trials by calculating stopping boundaries and

sample sizes for interim analyses, or looks. The gsbounds command calculates stopping boundaries

that can be applied to any clinical trial following a GSD. The gsdesign method commands calculate

both stopping boundaries and sample sizes for each look. The gsbounds and gsdesign method com-

mands provide the same features and syntax for computing stopping boundaries; gsdesign extends the
capabilities of gsbounds and additionally computes sample sizes. In the examples below, we first intro-
duce gsbounds and focus on features for stopping boundaries. Then we move to examples that include

sample-size calculations with gsdesign, which will be more commonly used in practice.

gsbounds and gsdesign provide four options—efficacy(), futility(), nlooks(), and

information()—that allow us to specify the boundary-calculation procedure and the number and spac-

ing of looks. Below, we introduce the syntax with gsbounds, but the options are specified in the same
way with gsdesign.

By default, O’Brien–Fleming efficacy bounds are computed. The efficacy() option allows you to
select from among seven available boundary-calculation procedures, such as the Pocock boundary:

gsbounds, efficacy(pocock) ...

To request futility bounds instead of efficacy bounds, replace the efficacy() option with futility().
All boundary-calculation procedures available for efficacy bounds are also available for futility bounds.

gsbounds, futility(pocock) ...

To compute both efficacy and futility bounds, specify both options:

gsbounds, efficacy(pocock) futility(pocock) ...

To request more than 2 equally spaced looks (the default), specify the nlooks() option:

gsbounds, nlooks(5) ...

To request that looks be performed at specific information levels rather than being equally spaced, use

the information() option:

gsbounds, information(50 60 70 80 90) ...

In addition to the options demonstrated above for specifying boundaries, the gsdesign method com-

mands allow both common andmethod-specific arguments and options for specifying your desired power

and sample-size settings. See [PSS-2] power for discussion of the method-specific specifications such as

effect size. Here we demonstrate the common options alpha(), power(), beta(), onesided, and
nfractional.
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To specify a significance level other than the default of 0.05, use the alpha() option:

gsdesign method ..., alpha(0.01) ...

Option power() specifies the desired power; alternatively, beta() can be used to specify type II

error. For 90% power, specify

gsdesign method ..., power(0.9) ...

or, equivalently, specify

gsdesign method ..., beta(0.1) ...

For a one-sided test instead of a two-sided test, specify option onesided:

gsdesign method ..., onesided ...

To see fractional sample sizes instead of sample-sizes rounded up to a whole number, use option

nfractional:

gsdesign method ..., nfractional ...

As the examples below demonstrate, these options as well as the method-specific syntax can be com-

bined to obtain your desired boundary and sample-size computations for a GSD.

Efficacy stopping
The boundary-calculation procedure developed by Pocock (1977) was the first widely accepted stop-

ping rule that allowed clinical trials to be terminated early due to treatment efficacy while maintaining

desired levels of type I and type II errors. The theory underlying Pocock’s boundary was formulated in

the context of a 𝑧 test for the difference in means between two normal responses with known variance,
and it was extended to many other cases.

Pocock’s stopping rule, and other efficacy bounds that have come since, defines critical values for a

test statistic that is normally distributed under the null hypothesis with 0 mean and unit variance. At each

interim look, the test is conducted and the test statistic is compared with the efficacy critical value. If the

test statistic is equal to or exceeds the critical value, the null hypothesis is rejected early and the trial is

terminated; if the test statistic is less extreme than the critical value, the trial continues to the following

look.

Example 1: Two-sided Pocock efficacy bounds
Consider a two-sided test of the difference between two means with known standard deviations. The

standardized test statistic 𝑧 follows a normal distribution. Suppose that we wish to test for efficacy at
three equally spaced looks using Pocock efficacy bounds. The familywise type I error allowed is 5%,

while the desired power is 90%.

We use gsbounds to calculate and graph the stopping boundaries and compare them with those of a

fixed-sample trial. If we wanted to additionally calculate sample sizes at each look, we would use com-

mand gsdesign twomeans; see example 9 for a demonstration. To calculate Pocock efficacy bounds,
we use the efficacy(pocock) option. The nlooks(3) option specifies three equally spaced looks

(two interim analyses and a final analysis). The alpha(0.05) and power(0.9) options specify the

familywise significance level and power of the test, respectively.
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. gsbounds, alpha(0.05) power(0.9) efficacy(pocock) nlooks(3)
Group sequential boundaries
Efficacy: Pocock
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.9000

Info. ratio = 1.1506
Fixed-study crit. values = ±1.9600
Critical values and p-values for a group sequential design

Info. Efficacy
Look frac. Lower Upper p-value

1 0.33 -2.2895 2.2895 0.0221
2 0.67 -2.2895 2.2895 0.0221
3 1.00 -2.2895 2.2895 0.0221

Note: Critical values are for z statistics;
otherwise, use p-value boundaries.

gsbounds displays a summary of the alpha and power parameters used in the design, followed by a
table of stopping boundaries. To facilitate comparing the GSD with a fixed study design, gsbounds also
displays the fixed-study critical values and the information ratio, which is the ratio of the sample size at

the final look of a GSD to the sample size from a fixed study design.

Pocock efficacy bounds are characterized by using the same critical value at all looks. To maintain

a familywise type I error of 0.05, Pocock boundaries require the 𝑧 statistic to reach or exceed ±2.29 at

any look (which corresponds to a 𝑝-value of 0.022) to reject 𝐻0. This is far larger than the critical value

of ±1.96 required by a fixed-sample test. Pocock bounds allow for the possibility of very early stopping

if the effect size is large, but if the study continues to the final look, it will require approximately 15%

more participants than an equivalently powered fixed design, as seen by the information ratio of 1.151.

Example 2: Two-sided O’Brien–Fleming efficacy bounds
O’Brien–Fleming boundaries have critical values that are conservative for early looks and less con-

servative as more data are collected. The final critical values in an O’Brien–Fleming design are sim-

ilar to those of a fixed study design. Here we use the efficacy(obfleming) option to calculate

O’Brien–Fleming efficacy bounds for the scenario described in the previous example.
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. gsbounds, alpha(0.05) power(0.9) efficacy(obfleming) nlooks(3)
Group sequential boundaries
Efficacy: O’Brien--Fleming
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.9000

Info. ratio = 1.0161
Fixed-study crit. values = ±1.9600
Critical values and p-values for a group sequential design

Info. Efficacy
Look frac. Lower Upper p-value

1 0.33 -3.4711 3.4711 0.0005
2 0.67 -2.4544 2.4544 0.0141
3 1.00 -2.0040 2.0040 0.0451

Note: Critical values are for z statistics;
otherwise, use p-value boundaries.

The O’Brien–Fleming design makes it difficult to reject 𝐻0 at early looks but easier at later looks. At

the first look, the critical values of ±3.471 correspond to a 𝑝-value of 0.0005, while the critical values at
the last look, ±2.004, correspond to a 𝑝-value of 0.045. The information ratio of 1.016 indicates that the
maximum sample size is only 1.6% larger than that of a fixed design.

The procedure for interim analysis with O’Brien–Fleming bounds is equivalent to the procedure we

used with Pocock bounds with the exception that the critical values change from one look to the next. At

the first look, we compare the test statistic 𝑧1 against critical values ±3.471. If |𝑧1| ≥ 3.471, we reject

𝐻0 and terminate the trial due to treatment efficacy.

If |𝑧1| < 3.471, the trial continues to the second look, where a second hypothesis test is conducted,

yielding test statistic 𝑧2. If |𝑧2| ≥ 2.454, we reject 𝐻0 and stop the trial at the second look. But if

|𝑧2| < 2.454, we continue to the third and final look, where we calculate test statistic 𝑧3.

At the final look, test statistic 𝑧3 is compared with critical values ±2.004. If |𝑧3| ≥ 2.004, then we

reject 𝐻0, and if |𝑧3| < 2.004, then we fail to reject 𝐻0. In the context of GSDs, it is not uncommon to

discuss accepting 𝐻0, a concept that is unheard-of in many other areas of practice. As we will see in the

next section, the concept of accepting the null hypothesis holds particular appeal when applied to GSDs

because it allows trials to be stopped early for futility, a practice that can be thought of as “abandoning a

lost cause” (Gould 1989).

Futility stopping
When the alternative hypothesis is true, the efficacy stopping rules described above can stop a trial

early to reject 𝐻0 and provide dramatic savings in sample size. But when 𝐻0 is true, it is a type I error

to reject 𝐻0; by design, we limit the type I error probability to a small number, 𝛼. To achieve similar
savings in sample size when 𝐻0 is true, futility bounds allow us to stop a trial early to accept the null

hypothesis.
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There are two types of futility bounds, binding and nonbinding. If the test statistic at an interim

analysis crosses a binding futility bound, 𝐻0 must be accepted and the trial must be stopped early for

futility. A trial that continues after crossing a binding futility bound is no longer subject to the familywise

type I error control specified in the design. For this reason, many researchers prefer to use nonbinding

futility bounds, which may be crossed without the obligation to stop the trial.

Example 3: Two-sided O’Brien–Fleming efficacy and nonbinding Pocock futility bounds
Here we include the futility(pocock) option to add Pocock futility bounds to the design from

example 2. By default, futility bounds are nonbinding. As before, we plan for three evenly spaced looks

and allow an overall significance level of 5% and power of 90%.

. gsbounds, alpha(0.05) power(0.9) efficacy(obfleming) futility(pocock)
> nlooks(3)
Group sequential boundaries
Efficacy: O’Brien--Fleming
Futility: Pocock, nonbinding
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.9000

Info. ratio = 1.2601
Fixed-study crit. values = ±1.9600
Critical values and p-values for a group sequential design

Info. Efficacy Futility
Look frac. Lower Upper p-value Lower Upper p-value

1 0.33 -3.4711 3.4711 0.0005 -0.4661 0.4661 0.6411
2 0.67 -2.4544 2.4544 0.0141 -1.3363 1.3363 0.1814
3 1.00 -2.0040 2.0040 0.0451 -2.0040 2.0040 0.0451

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.

Adding nonbinding futility bounds does not affect the calculation of the efficacy bounds, which take the

same values as they did in example 2. At any analysis, if the test statistic is above the efficacy upper

bound or below the efficacy lower bound, the trial will be stopped for efficacy. However, if the test

statistic at an interim analysis lies between the futility lower bound and the futility upper bound, we

have the option to accept 𝐻0 and stop the trial for futility, saving resources. In practice, the decision to

terminate a clinical trial is often made by an independent Data Monitoring Committee.

At the first look, we compare test statistic 𝑧1 against the efficacy and futility critical values. If |𝑧1| ≥
3.471, we reject 𝐻0 and stop the trial for efficacy. If |𝑧1| < 0.466, we have the option to accept 𝐻0 and

stop the trial for futility. If |𝑧1| ∈ [0.466, 3.471), the trial must continue to the second look.
The procedure at the second look is the same, except the critical values are different and the continu-

ation region, the interval between the efficacy and futility critical values, has shrunk. Test statistic 𝑧2 is

compared with the efficacy critical values, and if |𝑧2| ≥ 2.454, we reject 𝐻0 and terminate the trial. If

|𝑧2| < 1.336, we have the option of stopping for futility, and if |𝑧2| ∈ [1.336, 2.454), we must continue
to the third and final look.
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At the final look of a GSD, the efficacy bounds and the futility bounds take the same critical value

because there is no continuation region at the final analysis: 𝐻0 must be rejected or accepted. Test

statistic 𝑧3 is compared with critical values ±2.004. If |𝑧3| ≥ 2.004, then 𝐻0 is rejected; otherwise, it is

accepted.

Example 4: One-sided error-spending efficacy and binding futility bounds
It is common for GSDs that allow futility stopping to specify a one-sided alternative hypothesis. Here

we consider the two-sided trial from example 3, but we specify a one-sided test with an overall sig-

nificance level of 2.5%, half of what was used in the two-sided case. Instead of the classic Pocock and

O’Brien–Fleming bounds from previous examples, here we choose error-spending Kim–DeMets bounds

with parameter 𝜌 = 3 for both efficacy and futility, and we make the futility bound binding.

. gsbounds, alpha(0.025) power(0.9) efficacy(kdemets(3))
> futility(kdemets(3), binding) nlooks(3) onesided
Group sequential boundaries
Efficacy: Error-spending Kim--DeMets, rho = 3.0000
Futility: Error-spending Kim--DeMets, binding, rho = 3.0000
Study parameters:

alpha = 0.0250 (upper one-sided)
power = 0.9000

Info. ratio = 1.0308
Fixed-study crit. value = 1.9600
Critical values and p-values for a group sequential design

Info. Efficacy Futility
Look frac. Upper p-value Lower p-value

1 0.33 3.1130 0.0009 -0.7779 0.7817
2 0.67 2.4619 0.0069 0.7788 0.2180
3 1.00 1.9920 0.0232 1.9920 0.0232

Note: Critical values are for z statistics; otherwise,
use p-value boundaries.

With an efficacy upper bound and a futility lower bound, we have three possible outcomes at interim

looks: efficacy stopping, futility stopping, and continuation of the trial. At the first look, we calculate

test statistic 𝑧1. If 𝑧1 < −0.778, we must accept 𝐻0 and stop the trial for futility; if 𝑧1 ≥ 3.113, we must

reject 𝐻0 and stop the trial for efficacy; and if −0.778 ≤ 𝑧1 < 3.113, we must continue to the second

look.

At the second look, the efficacy and futility bounds are closer together. The testing procedure is

similar to the first look, but now the test statistic 𝑧2 is compared with a futility lower bound of 0.779 and

an efficacy upper bound of 2.462. At the third and final look, the efficacy and futility bounds are equal.

If 𝑧3 < 1.992, we accept 𝐻0, and if 𝑧3 ≥ 1.992, we reject 𝐻0.

Graphing stopping boundaries
gsbounds and gsdesign support the graphbounds option to display a visual representation of the

stopping boundaries. This can be very helpful when designing a clinical trial and considering different

configurations of stopping rules and interim analyses.
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Example 5: Graphing one-sided efficacy and binding futility bounds
Here we graph the stopping boundaries from the design in example 4.

. gsbounds, alpha(0.025) power(0.9) efficacy(kdemets(3))
> futility(kdemets(3), binding) nlooks(3) onesided graphbounds
(output omitted )
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Figure 1. One-sided efficacy and futility bounds

The graph displays the bounds visually, dividing the range of possible 𝑧-values into rejection, accep-
tance, and continuation regions. The vertical axis is the value of the 𝑧 statistic and the horizontal axis is
the information fraction, the fraction of the total information that has been collected at the time of the

analysis. The information fraction is typically proportional to the sample size, except in time-to-event

studies, in which case it is proportional to the number of events observed.

We progress from left to right in the graph as information is collected during the clinical trial. The

efficacy bounds, which separate the rejection region from the continuation region, are drawn in blue and

marked with a dot at each look. Futility bounds separate the acceptance region from the continuation

region and are drawn in red.

Before the first look (that is, when the information fraction is < 0.33), it is impossible to reject or

accept𝐻0 because the data have not yet been analyzed, so all 𝑧-values fall within the continuation region.
Beginning at the first look, the range of 𝑧-values is divided into rejection, acceptance, and continuation
regions.

The continuation region at the first look is wide, encompassing 𝑧-values in the range [−0.778, 3.113).
By the second look, occurring with an information fraction of 0.67, the continuation region has shrunk to

[0.779, 2.462). At the final look, there is no continuation region because the efficacy and futility bounds
meet.
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The graph also includes a point marking the critical value that would be used in an equivalently

powered fixed study design. This point appears at a 𝑧-value of 1.96, which gives a one-sided type I
error of 0.025 in a fixed design with a single analysis. Compared with the GSD, the analysis in the fixed

design occurs at an information fraction of 0.97. This is calculated as the inverse of the information ratio:

1/1.03 = 0.97.

Example 6: Graphing two-sided efficacy and nonbinding futility bounds
Graphing the stopping boundaries is a particularly useful technique with complicated stopping rules

and many interim analyses. Here we consider a two-sided design with efficacy and futility bounds, and

interim analyses conducted at seven unevenly spaced looks.

We choose an O’Brien–Fleming efficacy bound and a nonbindingWang–Tsiatis futility bound. Wang

andTsiatis (1987) introduced a single-parameter family of stopping bounds that includes both Pocock and

O’Brien–Fleming bounds as special cases. The shape ofWang–Tsiatis bounds is determined by parame-

terΔ, with a Pocock bound equivalent to aWang–Tsiatis bound with Δ = 0.5, and an O’Brien–Fleming

bound equivalent to a Wang–Tsiatis bound with Δ = 0. Here we let Δ = 0.25 to yield a futility bound

that has characteristics halfway between a Pocock futility bound and an O’Brien–Fleming futility bound.

Instead of using the nlooks() option to specify evenly spaced looks, we use the information()
option to provide a numlist of the information levels at each of the seven looks. We graph the boundaries

and specify graphbounds() suboption xdimlooks to label the horizontal axis with the number of looks
rather than the information fraction.

. gsbounds, alpha(0.05) power(0.9) efficacy(obfleming) futility(wtsiatis(0.25))
> information(0.25 0.5 0.65 0.75 0.84 0.92 1) graphbounds(xdimlooks)
Group sequential boundaries
Efficacy: O’Brien--Fleming
Futility: Wang--Tsiatis, nonbinding, Delta = 0.2500
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.9000

Info. ratio = 1.2409
Fixed-study crit. values = ±1.9600
Critical values and p-values for a group sequential design

Info. Efficacy Futility
Look frac. Lower Upper p-value Lower Upper p-value

1 0.25 -4.1845 4.1845 0.0000 . . .
2 0.50 -2.9589 2.9589 0.0031 -0.7473 0.7473 0.4549
3 0.65 -2.5951 2.5951 0.0095 -1.2198 1.2198 0.2225
4 0.75 -2.4159 2.4159 0.0157 -1.4952 1.4952 0.1349
5 0.84 -2.2828 2.2828 0.0224 -1.7231 1.7231 0.0849
6 0.92 -2.1813 2.1813 0.0292 -1.9128 1.9128 0.0558
7 1.00 -2.0923 2.0923 0.0364 -2.0923 2.0923 0.0364

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.
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Figure 2. Two-sided efficacy and futility bounds

On the graph, we see the acceptance region displayed as a truncated inner wedge, and on the table of

stopping boundaries, we see that the futility critical values for the first look are missing. This is because,

to attain the specified significance level and power, the futility lower bound would have been greater

than the futility upper bound, implying that futility stopping is impossible at the first look.

Boundary and sample-size calculations using gsdesign
The previous examples have used gsbounds to calculate stopping bounds, but when designing a group

sequential clinical trial, you will want to know the sample size at each look as well as the boundary

critical values. This is done using the gsdesign method set of commands, where method is onemean,
oneproportion, twomeans, twoproportions, logrank, or even a user-defined method.

One-sample tests

The gold standard for clinical trials is the randomized controlled trial, where participants are randomly

assigned to one of two groups: one group receives the experimental treatment while the other group is

kept as a control. The groups are often called arms, and the experimental arm will receive the experi-

mental treatment. The control arm will receive either a placebo (an inactive substance such as a sugar

pill, or a “sham” procedure for nonpharmacological trials) or an active control (typically the standard of

care, a treatment that has been previously studied and is known to be effective).

However, there are some scenarios where randomizing subjects to a control group would be imprac-

tical or unethical, such as a clinical trial of a treatment for a serious condition where there is a moral

argument against giving participants a placebo but there is no existing standard of care. In these cases, a

single-arm clinical trial is desired, and a one-sample test is conducted.



gs — Introduction to commands for group sequential design 25

Example 7: Boundary and sample-size calculations for a one-sample mean test
We consider a clinical trial of the chemotherapy medicine sunitinib as a treatment for advanced

non–small cell lung cancer. Suppose that we are interested in developing a treatment for patients whose

cancers have not responded to the standard treatment options. There is no possibility of forming an active

control group with this population because the standard of care has already proven ineffective for them.

The clinical outcomes for patients with untreated advanced non–small cell lung cancer are known to be

very poor, so we have ethical reasons to avoid creating a placebo control group. We decide to conduct a

single-arm clinical trial and perform a one-sample test.

The clinical endpoint of this study is the tumor shrinkage rate (TSR), a measure of how quickly a

participant’s largest tumor is shrinking (or growing, in the case of negative TSR values). We want to test

whether the mean TSR is greater than 0 with a one-sided test and a familywise significance level of 2.5%.

We anticipate the standard deviation of the TSR to be 2, and we require 90% power to detect a mean TSR

of 0.5. We plan on conducting two evenly spaced looks at the data, and we will use an O’Brien–Fleming

efficacy bound.

. gsdesign onemean 0 0.5, sd(2) alpha(0.025) power(0.9) efficacy(obfleming)
> nlooks(2) onesided
Group sequential design for a one-sample mean test
t test
H0: m = m0 versus Ha: m > m0
Efficacy: O’Brien--Fleming
Study parameters:

alpha = 0.0250 (upper one-sided)
power = 0.9000
delta = 0.2500

m0 = 0.0000
ma = 0.5000
sd = 2.0000

Expected sample size:
H0 = 171.78
Ha = 145.20

Info. ratio = 1.0071
N fixed = 171

N max = 172
Fixed-study crit. value = 1.9600
Critical values, p-values, and sample sizes
for a group sequential design

Info. Efficacy Sample size
Look frac. Upper p-value N

1 0.50 2.7965 0.0026 86
2 1.00 1.9774 0.0240 172

Note: Critical values are for z statistics;
otherwise, use p-value boundaries.

gsdesign onemean displays the specified study parameters, including m0, the mean under the null
hypothesis; ma, the mean under the alternative hypothesis; and delta, the difference in means divided
by the standard deviation.

The next section of output displays the expected sample size, which is the average sample size if the

group sequential trial were to be repeated many times. The average sample size under 𝐻0 is 171.78,

nearly the same as the maximum of 172 participants at the final look. This is expected because our
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design does not allow for early stopping to accept 𝐻0. If 𝐻𝑎 is true, we expect an average of only 145.2

participants because of the probability of early stopping to reject 𝐻0, a savings over the 171 participants

required by the fixed design.

Next we see the information ratio, the sample size for a fixed study with an equivalent significance

level and power (N fixed), and the maximum sample size of the GSD (N max). The information ratio is
the ratio of the maximum sample size of the GSD to the fixed-study sample size. We then see the critical

value for a fixed study with an equivalent significance level.

At the end of the display is a table of stopping boundaries, 𝑝-values, and sample sizes for the two
looks. The efficacy critical values in the table can be compared directly with the 𝑧 statistic from a one-

sided 𝑧 test of whether the mean TSR is equal to 0. We do not presume to know the population standard

deviation a priori (which is why we did not specify the knownsds option), so we must estimate the

standard deviation when conducting the one-sample mean test. This would indicate that the proper one-

sample mean test for this study is a 𝑡 test, which yields a 𝑡 statistic, not a 𝑧 statistic.
With these rather large sample sizes (especially at the second look), it would be common to conduct

a large-sample 𝑧 test in this scenario. The use of this test relies on the fact that the estimate of the

population standard deviation improves with increasing sample size. The distribution of the test statistic

asymptotically approaches a normal distribution, enabling the use of a 𝑧 test with large samples, even
with unknown standard deviation. However, if we prefer to conduct a 𝑡 test, we can instead use the

significance level approach and compare the 𝑝-value from the 𝑡 test against the 𝑝-values corresponding
to the boundary critical values, which are also reported in this table.

For more examples of gsdesign onemean, see [ADAPT] gsdesign onemean.

Example 8: Boundary and sample-size calculations for a one-sample proportion test
We consider an alternate endpoint for the clinical trial of sunitinib as a treatment for advanced

non–small cell lung cancer described in example 7. Instead of measuring the TSR, suppose we are inter-

ested in the objective response rate (ORR), defined as the proportion of participants that exhibit at least

a partial response to therapy. It is important to emphasize that the outcome of each participant is binary

(either they exhibit a response to therapy or they do not), and we calculate the proportion as the number

of participants who exhibit a response divided by the total number of participants.

We can use gsdesign oneproportion to determine the required sample sizes if wewish to determine
whether the ORR of participants receiving sunitinib is greater than 5%, and we plan to conduct a one-

sided proportion test at the 2.5% familywise significance level. We require 90% power to detect an ORR

of 10%. We will conduct two evenly spaced looks using an O’Brien–Fleming efficacy bound and a

nonbinding Pocock futility bound, which we graph.
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. gsdesign oneproportion 0.05 0.1, alpha(0.025) power(0.9) efficacy(obfleming)
> futility(pocock) nlooks(2) onesided graphbounds
Group sequential design for a one-sample proportion test
Score z test
H0: p = p0 versus Ha: p > p0
Efficacy: O’Brien--Fleming
Futility: Pocock, nonbinding
Study parameters:

alpha = 0.0250 (upper one-sided)
power = 0.9000
delta = 0.0500

p0 = 0.0500
pa = 0.1000

Expected sample size:
H0 = 181.12
Ha = 251.76

Info. ratio = 1.1662
N fixed = 264

N max = 308
Fixed-study crit. value = 1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Futility Sample size
Look frac. Upper p-value Lower p-value N

1 0.50 2.7965 0.0026 0.9521 0.1705 154
2 1.00 1.9774 0.0240 1.9774 0.0240 308

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.
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Figure 3. One-sided test of one proportion with efficacy and futility bounds
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Once we have collected data from 154 participants, we could conduct a large-sample test of one

proportion with command prtest, which yields a 𝑧 statistic, 𝑧1; see [R] prtest. If 𝑧1 ≥ 2.797, we

reject 𝐻0 and declare the treatment to be effective, and if 𝑧1 < 0.952, we can choose to accept 𝐻0 and

terminate the trial due to futility or we can continue the trial. If 𝑧1 ∈ [0.952, 2.797), we must continue
the trial because 𝑧1 lies in the continuation region. At the second and final look, there is no continuation

region; if 𝑧2 ≥ 1.977, we reject 𝐻0, and if 𝑧2 < 1.977, we accept 𝐻0.

Comparedwith a fixed study design with equivalent significance level and power, thisGSD has a larger

maximum sample size (308 participants versus 264 for the fixed trial). But the group sequential trial has

a smaller expected sample size than the fixed trial under both the null and the alternative hypotheses. If

this trial were to be repeated many times, on average it would require only 181.12 participants if 𝐻0 was

true and only 251.76 participants if 𝐻𝑎 was true, which is fewer than the 264 required for the fixed trial.

For more examples of gsdesign oneproportion, see [ADAPT] gsdesign oneproportion.

Two-sample tests

In a classic randomized controlled trial, participants are randomly assigned to one of two groups: the

experimental group (which receives the treatment being tested) and the control group (which receives

either a placebo or the existing standard of care, if one exists). The two groups are often called arms,

making this a two-arm trial. Examples of treatments include new drugs, medical devices, and medical

procedures. To determine the efficacy of the treatment, the responses of participants in the experimental

arm are compared with the responses of participants in the control arm.

When the responses are continuous, a two-sample test of means can be performed to determine

whether the mean of the experimental arm is the same as that of the control arm. When the response

from each participant is binary, a two-sample test of proportions can be performed to determine whether

the proportion of “successes” in the control arm is the same as the proportion in the experimental arm.

Example 9: Boundary and sample-size calculations for a two-sample means test
Subarachnoid hemorrhage (SAH) is a type of stroke that is typically caused by head trauma or a brain

aneurysm, and a large proportion of patients who survive SAH are affected by cerebral vasospasm during

their recovery. Fatal vasospasm occurs in approximately 5 to 10% of patients who are hospitalized for

SAH (Macdonald, Pluta, and Zhang 2007). One way to detect vasospasm is by measuring peak systolic

velocity (PSV) of blood in the middle cerebral artery. In a preliminary study of high-dose intraarterial

nicardipine as a treatment for cerebral vasospasm, Badjatia et al. (2004) defined mild vasospasm as time-

averaged PSV of 200–249 cm/s, moderate vasospasm as PSV of 250–299 cm/s, and severe vasospasm as

PSV in excess of 300 cm/s. Suppose that we want to design a clinical trial that compares nicardipine to

papaverine, the standard intraarterial treatment for vasospasm following SAH. We assign participants to

the experimental and control arms in a 1:1 ratio, and we measure the ΔPSV (percent reduction in PSV) of

each participant.

The analysis will compare the average ΔPSV in the control arm, 𝜇1, against the average ΔPSV in the

experimental arm, 𝜇2. We will test the null hypothesis 𝐻0 ∶ 𝜇1 = 𝜇2 versus the one-sided alternative

𝐻𝑎 ∶ 𝜇2 > 𝜇1 with a familywise significance level of 2.5%. We use gsdesign twomeans to calculate

sample sizes for a GSD that requires 90% power to detect the difference between a 15% reduction in mean

ΔPSV in the control arm and a 20% mean reduction in the experimental arm, with a common standard

deviation of 20.
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We specify efficacy(wtsiatis(0.25)) to use a Wang–Tsiatis efficacy bound with parameter

Δ𝑒 = 0.25, and we specify futility(obfleming) to use a nonbinding O’Brien–Fleming futility

bound. The nonbinding futility bound allows us to accept 𝐻0 and terminate the trial for futility if it

is crossed, but if we choose to continue the trial despite crossing the nonbinding futility bound, the fam-

ilywise type I error is still controlled at the 2.5% significance level. We specify four analyses with 30%,

60%, 80%, and 100% of the data.

. gsdesign twomeans 15 20, sd(20) alpha(0.025) power(0.9)
> efficacy(wtsiatis(0.25)) futility(obfleming)
> information(30 60 80 100) onesided graphbounds
Group sequential design for a two-sample means test
t test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 > m1
Efficacy: Wang--Tsiatis, Delta = 0.2500
Futility: O’Brien--Fleming, nonbinding
Study parameters:

alpha = 0.0250 (upper one-sided)
power = 0.9000
delta = 5.0000

m1 = 15.0000
m2 = 20.0000
sd = 20.0000

Expected sample size:
H0 = 438.96
Ha = 518.27

Info. ratio = 1.1631
N fixed = 676

N max = 786
N1 max = 393
N2 max = 393

Fixed-study crit. value = 1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Futility
Look frac. Upper p-value Lower p-value

1 0.30 2.8703 0.0021 -0.5895 0.7222
2 0.60 2.4136 0.0079 0.9371 0.1743
3 0.80 2.2461 0.0123 1.5933 0.0555
4 1.00 2.1243 0.0168 2.1243 0.0168

Note: Critical values are for z statistics; otherwise,
use p-value boundaries.

Sample size
Look N1 N2 N

1 118 118 236
2 236 236 472
3 314 314 628
4 393 393 786
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Figure 4. One-sided test of the equality of two means with efficacy and futility bounds

gsdesign twomeans begins by displaying a description of the test being performed, a list of the

requested boundaries, and a summary of the parameters used in the design.

The next section of output displays the expected sample size, which is the average sample size if the

group sequential trial were to be repeated many times. On average, we expect this trial to require 438.96

participants if 𝐻0 is true and 518.27 participants if 𝐻𝑎 is true.

Next we see the information ratio, the sample size for a fixed study with an equivalent significance

level and power (N fixed), the maximum sample size of the GSD (N max), and the maximum sample

sizes for each group (N1 max and N2 max). The information ratio is the ratio of the maximum sample

size of the GSD to the fixed-study sample size. We then see the critical value for a fixed study with an

equivalent significance level.

Finally, gsdesign twomeans displays tables with the critical values and 𝑝-values for the stopping
boundaries as well as the sample sizes at each look. The first look occurs once ΔPSV has been recorded

from 118 participants in each arm. With such a large sample, we conduct a 𝑧 test instead of a 𝑡 test
because the two tests are asymptotically equivalent as the sample size increases. The 𝑧 statistic from this

large-sample 𝑧 test, 𝑧1, is compared with the boundary critical values. If 𝑧1 ≥ 2.87, we will reject 𝐻0
and terminate the trial early due to treatment efficacy. If 𝑧1 < −0.59, we have the option to stop the

trial for futility, but the familywise type I error will still be controlled at the 2.5% level should the trial

proceed. If 𝑧1 ∈ [−0.59, 2.87), the trial must continue.
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When we have ΔPSV for 236 participants in each arm, we will perform another large-sample 𝑧 test
and compare the test statistic, 𝑧2, with the boundary critical values for the second look. If 𝑧2 ≥ 2.414,

we reject 𝐻0 and end the trial for efficacy, while if 𝑧2 < 0.937, we have the option of stopping the trial

for futility and accepting 𝐻0. If 𝑧2 ∈ [0.937, 2.414), we must continue the trial. At the third look, the
testing procedure is similar, but the continuation region has shrunk to 𝑧3 ∈ [1.593, 2.246). If the trial
continues to the fourth and final look, with a total of 786 participants, there is no continuation region,

because the futility critical value is the same as the efficacy critical value. If 𝑧4 ≥ 2.124, we reject 𝐻0;

otherwise, we accept 𝐻0.

For more examples of gsdesign twomeans, see [ADAPT] gsdesign twomeans.

Example 10: Boundary and sample-size calculations for a two-sample proportions test
We consider a variation of the study of nicardipine as a treatment for vasospasm, as described in

example 9. Suppose we are interested in an alternate endpoint: the proportion of participants whose

vasospasm is resolved because of the treatment. We will record a participant’s response as 1 if their

time-averaged PSV in the middle cerebral artery is below 200 cm/s after treatment, and we will record

their response as 0 if their PSV is 200 cm/s or above.

Participants will be randomly assigned to the experimental arm, whose members receive intraarterial

nicardipine, or to the control group, whose members receive the standard of care, which is intraarterial

papaverine, in a 1:1 ratio. Based on previous research from Badjatia et al. (2004) and others, we an-

ticipate that a single treatment will resolve vasospasm in 50% of control-group participants and 60%

of experimental-group participants. We will test whether the two proportions are the same by using a

one-sided Pearson’s 𝜒2 test with familywise significance level of 2.5% and power of 90% to detect the

difference between 𝑝1 = 0.5 and 𝑝2 = 0.6.

To stop the trial early for evidence of treatment efficacy, we will use an error-spending approxima-

tion of the O’Brien–Fleming bound, and for futility stopping, we will use a nonbinding error-spending

Hwang–Shih–de Cani bound with parameter 𝛾𝑓 = −2. If the test statistic from an interim analysis

crosses a nonbinding futility bound, we have the option to accept 𝐻0 and terminate the trial, saving re-

sources and “abandoning a lost cause,” but if we continue the trial, the familywise type I error is still

controlled. We plan three evenly spaced looks, two interim analyses, and one final analysis.
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. gsdesign twoproportions .5 .6, alpha(0.025) power(0.9) efficacy(errobfleming)
> futility(hsdecani(-2)) nlooks(3) onesided graphbounds
Group sequential design for a two-sample proportions test
Pearson’s chi-squared test
H0: p2 = p1 versus Ha: p2 > p1
Efficacy: Error-spending O’Brien--Fleming style
Futility: Error-spending Hwang--Shih--de Cani, nonbinding, gamma = -2.0000
Study parameters:

alpha = 0.0250 (upper one-sided)
power = 0.9000
delta = 0.1000 (difference)

p1 = 0.5000
p2 = 0.6000

Expected sample size:
H0 = 650.03
Ha = 869.55

Info. ratio = 1.0665
N fixed = 1,038

N max = 1,106
N1 max = 553
N2 max = 553

Fixed-study crit. value = 1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Futility
Look frac. Upper p-value Lower p-value

1 0.33 3.7103 0.0001 -0.2418 0.5955
2 0.67 2.5114 0.0060 0.9367 0.1745
3 1.00 1.9930 0.0231 1.9930 0.0231

Note: Critical values are for z statistics; otherwise,
use p-value boundaries.

Sample size
Look N1 N2 N

1 185 185 370
2 369 369 738
3 553 553 1,106
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Figure 5. One-sided test of the equality of two proportions with efficacy and futility bounds

gsdesign twoproportions shows the specified study parameters, including the control-group pro-
portion p1, the experimental-group proportion p2, and the difference in proportions delta.

The next section of output displays the expected sample size under the null and alternative hypotheses.

The expected sample size is the average sample size (taking into account early stopping) that would be

observed if this trial were to be repeated many times. If 𝐻0 is true, our trial will require an average of

650.03 participants, and if 𝐻𝑎 is true, we will require an average of 869.55 participants.

Next we see the information ratio, the sample size for a fixed study with an equivalent significance

level and power (N fixed), the maximum sample size of the GSD (N max), and the maximum sample

sizes for each group (N1 max and N2 max). The information ratio is the ratio of the maximum sample

size of the GSD to the fixed-study sample size. We then see the critical value for a fixed study with an

equivalent significance level.

Finally, gsdesign twoproportions displays tables with the critical values and 𝑝-values for the
stopping boundaries as well as the sample sizes at each look. At the first look, we will conduct Pear-

son’s 𝜒2 test with command prtest, which reports a 𝑧 statistic, 𝑧1, that can be compared directly

with the boundary critical values. Just like the classical O’Brien–Fleming boundary, the error-spending

O’Brien–Fleming-style efficacy bound is very conservative at early looks, with a critical value at the

first look of 3.71, which corresponds to a 𝑝-value of 0.0001.
On the graph, we see that if 𝑧1 ≥ 3.71, it lies in the blue rejection region, so we will reject 𝐻0 and

stop the trial early for efficacy. If 𝑧1 < −0.242, it lies in the red acceptance region, and we have the

option of accepting 𝐻0 and stopping the trial for futility or continuing the trial without overrunning the

2.5% familywise type I error. If 𝑧1 ∈ [−0.242, 3.71), then 𝑧1 lies in the green continuation region and

the trial must continue.
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At the second look, the testing procedure is similar, but the efficacy and futility critical values are

closer together, shrinking the continuation region to 𝑧2 ∈ [0.937, 2.511). At the third and final look, the
efficacy critical values equal the futility critical values, so there is no continuation region. If 𝑧3 ≥ 1.993,

we reject 𝐻0; otherwise, we accept 𝐻0.

For more examples of gsdesign twoproportions, see [ADAPT] gsdesign twoproportions.

Survival analysis

When analyzing time-to-event data, we often want to compare the survivor functions of two groups.

If we denote the time of failure as 𝑇, we can define the survivor function as the probability of surviving
beyond time 𝑡, expressed mathematically as 𝑆(𝑡) = Pr(𝑇 > 𝑡). A related term is the hazard function,

the instantaneous rate of failure at time 𝑡, conditional on survival until time 𝑡, written as ℎ(𝑡).
Consider a survival study comparing survivor functions in two groups by using the log-rank test, and

let 𝑆1(𝑡) and 𝑆2(𝑡) denote the survivor functions of the control and the experimental groups, respectively.
The log-rank test is most appropriate when the hazard functions are thought to be proportional across the

groups, in which case it is the most powerful nonparametric test of 𝑆1(⋅) = 𝑆2(⋅). The proportional-
hazards assumption can be written as ℎ2(𝑡) = Δℎ1(𝑡) for all 𝑡 or, equivalently, 𝑆2(𝑡) = {𝑆1(𝑡)}Δ,

where Δ is the hazard ratio. If Δ < 1, then survival in the experimental group is higher than survival

in the control group, which means that the experimental treatment is superior to the control treatment. If

Δ > 1, then the control treatment is superior to the experimental treatment.

Sample-size calculations for the log-rank test compute the number of events observed in the study.

The required sample size is equal to the required number of events if a failure event is observed for every

participant in the trial. Often, the time of failure is not known for some participants, a phenomenon known

as censoring. Administrative censoring occurs when a trial ends before all participants have experienced

a failure event. Nonadministrative censoring occurs when participants withdraw from the study or are

lost to follow-up. If censoring occurs in the study, the required number of participants will be greater

than the required number of events.

Example 11: Boundary and sample-size calculations for a log-rank test
The Beta-Blocker Heart Attack Trial (BHAT) was one of the first large-scale clinical trials to adopt

a group sequential monitoring plan (DeMets et al. 1984). This was a double-blind study in which par-

ticipants who had experienced a heart attack were randomized to one of two groups: the control group

(which received a placebo) and the intervention group (which received the beta-blocker propranolol).

The endpoint, or outcome of interest, was time until death by any cause, and survival analysis was con-

ducted using a log-rank test.

The BHAT’s independent Policy and Data Monitoring Board adopted the then-recently published

O’Brien–Fleming method for calculating efficacy bounds, but here we consider how the trial could have

been designed using methods that were not available at the time. The original BHAT was powered to

detect the difference between nonadherence-adjusted three-year survival probabilities of 82.54% for the

control group and 86.25% for the intervention group. Seven biannual analyses were scheduled for 11,

16, 21, 28, 34, 40, and 48 months into the study. The log-rank test statistic crossed the O’Brien–Fleming

boundary at the sixth of seven looks, and the BHAT was terminated for treatment efficacy eight months

before the trial was scheduled to end.
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Here we use gsdesign logrank to calculate sample sizes for a design that is inspired by the BHAT

but that allows for both efficacy and futility stopping. We will conduct a one-sided test of hazard ratio

Δ, with 𝐻0 ∶ Δ = 1 versus 𝐻𝑎 ∶ Δ < 1. We will allow a one-sided familywise type I error rate of 2.5%,

and we require 90% power to detect the difference in survival probability described above. We will

use the error-spending approximation of O’Brien–Fleming bounds for efficacy stopping and nonbinding

Kim–DeMets futility bounds with parameter 𝜌𝑓 = 3. Instead of spacing the seven looks evenly, we

use the information() option and follow Method 2 from Lan and DeMets (1989, 1195) to specify the

timing of interim looks based on calendar time, which we use as the horizontal axis of our graph.

. gsdesign logrank 0.8254 0.8625, alpha(0.025) power(0.9)
> efficacy(errobfleming) futility(kdemets(3))
> information(11 16 21 28 34 40 48) onesided
> graphbounds(xdiminformation xtitle(”Months”))
Group sequential design for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR < 1
Efficacy: Error-spending O’Brien--Fleming style
Futility: Error-spending Kim--DeMets, nonbinding, rho = 3.0000
Study parameters:

alpha = 0.0250 (lower one-sided)
power = 0.9000
delta = 0.7709 (hazard ratio)

hratio = 0.7709
Censoring:

s1 = 0.8254
s2 = 0.8625

Pr_E = 0.1560
Expected number of events:

H0 = 378.92
Ha = 469.55

Info. ratio = 1.0727
E fixed = 628
N fixed = 4,024

N max = 4,316
N1 max = 2,158
N2 max = 2,158

Fixed-study crit. value = -1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Futility Events
Look frac. Lower p-value Upper p-value E

1 0.23 -4.5380 0.0000 1.4276 0.9233 155
2 0.33 -3.7128 0.0001 0.7980 0.7876 225
3 0.44 -3.2081 0.0007 0.2509 0.5991 295
4 0.58 -2.7361 0.0031 -0.4339 0.3322 393
5 0.71 -2.4739 0.0067 -0.9312 0.1759 477
6 0.83 -2.2717 0.0116 -1.3987 0.0810 562
7 1.00 -2.0473 0.0203 -2.0473 0.0203 674

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.
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Figure 6. One-sided log-rank test with efficacy and futility bounds

At the top of the output, gsdesign logrank displays a description of the trial with null and alterna-

tive hypotheses as well as study parameters. We see that the survival probabilities 0.8254 and 0.8625

correspond to a hazard ratio of 0.7709, which is the effect size used when calculating the number of

events necessary to achieve 90% power.

If the null hypothesis is correct (the hazard ratio is 1) and this trial were to be repeated many times,

we would expect to observe an average of 378.92 events per trial. If the hazard ratio is truly 0.7709 (the

value under the alternative hypothesis) and the trial were to be repeated many times, we would expect

an average of 469.55 events per trial.

A fixed study would require 628 events (deaths) to detect a hazard ratio of 0.7709 with 90% power,

which, with the specified survival probabilities, corresponds to a sample size of 4,024. The GSD requires

a maximum of 674 events (corresponding to a sample of size 4,316) if it continues to the final look.

The table at the end of the output displays the critical values and 𝑝-values for stopping boundaries and
the sample sizes at each look, where sample size is reported as the number of events observed. Boundary

critical values are reported on the 𝑧 scale and are designed to be compared against the 𝑧 statistic from
a log-rank test. Command sts test (see [ST] sts test) conducts the log-rank test and reports a 𝜒2 test

statistic, which is not directly comparable with the 𝑧 scale critical values. However, the square root of
the 𝜒2 test statistic is a 𝑧 statistic, which can be directly compared with the boundary critical values.

The first look occurs 11months into the study, at which point 155 events are expected to have occurred,

and a log-rank test is performed. We denote the square root of the 𝜒2 test statistic from the first look as

𝑧1, and we note that the sign of 𝑧1 depends on whether the observed hazard ratio was greater than 1 (in

which case 𝑧1 is positive) or less than 1 (in which case 𝑧1 is negative). If 𝑧1 ≤ −4.538, we say that 𝑧1
lies in the rejection region (shaded blue on the graph) and we reject 𝐻0, terminating the trial early due

to treatment efficacy. If 𝑧1 > 1.428, it lies in the acceptance region and we may terminate the trial for

futility; however, if the trial proceeds, the familywise type I error is still controlled at the 2.5% level. If

𝑧1 ∈ (−4.538, 1.428], then 𝑧1 lies in the green continuation region and the trial must continue.
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The testing procedure is similar at each of the following interim looks, with the efficacy bound in-

creasing and the futility bound decreasing at each look, shrinking the continuation region. At the seventh

and final look, the efficacy critical value is equal to the futility critical value and there is no continuation

region. If 𝑧7 ≤ −2.047, we reject 𝐻0; otherwise, we accept 𝐻0.

For more examples, see [ADAPT] gsdesign logrank.

Add your own methods

The gsdesign command provides several built-in methods, and additional power methods can be

used with the methodok option. However, if you want to design a clinical trial using a method that is

not included, you can write your own sample-size calculation and use it with gsdesign.

All you need to do is write a program that computes the sample size for a fixed study; gsdesign
will calculate the stopping boundaries, information ratio, and sample sizes at each look. The procedure

for adding a method to gsdesign is identical to the procedure for adding a sample-size calculation to

the power command. Detailed instructions can be found in [ADAPT] gsdesign usermethod, but a quick

guide is as follows:

1. Create a program that computes a fixed-study sample size and follows power’s naming con-
vention: power cmd mymethod, where mymethod is the name of your method.

2. Ensure your program accepts the nfractional option. This is necessary because gsdesign
uses the fractional sample size when calculating the sample required at each look.

3. Store the resulting sample size following power’s simple naming conventions. Store the

total sample size in r(N). For two-sample methods, additionally store control-group and

experimental-group sample sizes in r(N1) and r(N2), respectively. For time-to-eventmethods,
additionally store the number of events in r(E) and store macro r(endpoint) as “survival”.

4. Place your program power cmd mymethod where Stata can find it.

Example 12: Group sequential design with user-defined methods
To show how easy this is, let’s write a program to compute sample size for a fixed-study one-sample 𝑧

test given standardized difference, significance level, and power. For simplicity, we assume a two-sided

test.
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We will call our new method myztest.

program power_cmd_myztest, rclass
version 19.5 // (or version 19 if you do not have StataNow)

syntax, STDDiff(real) /// standardized difference (effect size)
[ Alpha(real 0.05) /// significance level

Power(real 0.8) /// power
NFRACtional /// report fractional sample size

]

tempname N
scalar ‘N’ = ((invnormal(‘power’) + invnormal(1 - ‘alpha’ / 2)) / ‘stddiff’)^2
if (”‘nfractional’” == ””) {

scalar ‘N’ = ceil(‘N’)
}

return scalar power = ‘power’
return scalar N = ‘N’
return scalar alpha = ‘alpha’
return scalar stddiff = ‘stddiff’

end

The computation in this program is trivial, but yours could be as complicated as you like. It could

even involve simulation to compute the sample size.

With our program in hand, we can design a clinical trial using the default values of 5% familywise sig-

nificance level, 80% power, and an O’Brien–Fleming efficacy boundary with two evenly spaced looks.

We need only specify the effect size by using stddiff().

. gsdesign myztest, stddiff(0.7)
Group sequential design for myztest
Two-sided test
Efficacy: O’Brien--Fleming
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.8000

Expected sample size:
H0 = 16.96
Ha = 15.06

Info. ratio = 1.0078
N fixed = 17

N max = 17
Fixed-study crit. values = ±1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Sample size
Look frac. Lower Upper p-value N

1 0.50 -2.7965 2.7965 0.0052 9
2 1.00 -1.9774 1.9774 0.0480 17

Notes: Critical values are for z statistics; otherwise,
use p-value boundaries.
Requested information fraction not attained.
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gsdesign called our program power cmd myztest for the sample-size calculation for a fixed design
and used the stored result r(N) to calculate the sample sizes at both looks. In this case, the use of a user-
defined program to calculate sample size was purely for didactic purposes; the same calculation could

have been conducted with built-in command gsdesign onemean, diff(0.7) sd(1) knownsd.

This example was simple, but all the standard gsdesign options apply to user-defined methods. For
example, suppose we wanted to design a trial using a one-sample 𝑧 test at the familywise 10% level

with 90% power to detect a standardized difference of 0.3. We use Wang–Tsiatis efficacy bounds with

parameter Δ𝑒 = 0.25 and binding Wang–Tsiatis futility bounds with parameter Δ𝑓 = 0.3. We require

six looks, spaced at 30%, 50%, 70%, 80%, 90%, and 100% of the data, and we graph the bounds with a

custom subtitle.

. gsdesign myztest, stddiff(0.3) alpha(0.1) power(0.9) efficacy(wtsiatis(0.25))
> futility(wtsiatis(0.3), binding) information(30 50 70 80 90 100)
> graphbounds(subtitle(”One-sample z test”))
Group sequential design for myztest
Two-sided test
Efficacy: Wang--Tsiatis, Delta = 0.2500
Futility: Wang--Tsiatis, binding, Delta = 0.3000
Study parameters:

alpha = 0.1000 (two-sided)
power = 0.9000

Expected sample size:
H0 = 74.34
Ha = 64.92

Info. ratio = 1.2596
N fixed = 96

N max = 120
Fixed-study crit. values = ±1.6449
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Futility
Look frac. Lower Upper p-value Lower Upper p-value

1 0.30 -2.4353 2.4353 0.0149 . . .
2 0.50 -2.1434 2.1434 0.0321 -0.6200 0.6200 0.5352
3 0.70 -1.9704 1.9704 0.0488 -1.1563 1.1563 0.2476
4 0.80 -1.9057 1.9057 0.0567 -1.3880 1.3880 0.1651
5 0.90 -1.8504 1.8504 0.0642 -1.6022 1.6022 0.1091
6 1.00 -1.8023 1.8023 0.0715 -1.8023 1.8023 0.0715

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.

Sample size
Look N

1 36
2 60
3 84
4 96
5 108
6 120
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Figure 7. User-written one-sample 𝑧 test with efficacy and futility bounds

Our program power cmd myztest need only handle the sample-size calculation in the case of a fixed
study design; gsdesign handles the rest, including the graph.

For more examples, see [ADAPT] gsdesign usermethod.

Stored results
See Stored results in [ADAPT] gsbounds.

See Stored results in [ADAPT] gsdesign.

Also see Stored results in the gsdesign method-specific entries.
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gsbounds — Boundaries for group sequential trials

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
gsbounds computes stopping boundaries for group sequential designs (GSDs), a class of experimen-

tal design popular in clinical trials. GSDs incorporate planned interim analyses, or looks at the data,

and provide criteria for stopping the trial early based on values of a test statistic. Stopping can be for

efficacy, futility, or both. For a software-free introduction to GSDs, see [ADAPT] GSD intro; for an in-

troduction to Stata’s gs suite of commands, see [ADAPT] gs, and for associated sample-size calculations,

see [ADAPT] gsdesign.

Quick start
Calculate boundaries using the default settings: a two-sided O’Brien–Fleming design with two evenly

spaced analyses (one interim look, one final look), power of 0.8, and familywise significance level

𝛼 = 0.05

gsbounds

Same as above, but add a nonbinding O’Brien–Fleming futility boundary and conduct three evenly

spaced analyses

gsbounds, efficacy(obfleming) futility(obfleming) nlooks(3)

Same as above, but plan the looks to occur with 50%, 75%, and 100% of the data, and visualize the

bounds on a graph

gsbounds, efficacy(obfleming) futility(obfleming) ///
information(0.5 0.75 1) graphbounds

Same as above, but use error-spending approximations of O’Brien–Fleming bounds

gsbounds, efficacy(errobfleming) futility(errobfleming) ///
information(0.5 0.75 1) graphbounds

Nonbinding futility boundaries for an upper one-sided test using a five-look Wang–Tsiatis design with

parameter Δ𝑓 = 0.3, power of 0.9, and significance level 𝛼 = 0.01

gsbounds, alpha(0.01) power(0.9) futility(wtsiatis(0.3)) nlooks(5) upper

Same as above, but use a binding futility bound

gsbounds, alpha(0.01) power(0.9) futility(wtsiatis(0.3), binding) ///
nlooks(5) upper

Efficacy and nonbinding futility boundaries for a lower one-sided test using a seven-look error-spending

Hwang–Shih–de Cani design with efficacy parameter 𝛾𝑒 = −2, futility parameter 𝛾𝑓 = −4, power

of 0.9, and significance level 𝛼 = 0.01

gsbounds, alpha(0.01) power(0.9) efficacy(hsdecani(-2)) ///
futility(hsdecani(-4)) nlooks(7) lower

42
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Same as above, but use a binding Kim–DeMets futility boundary with parameter 𝜌𝑓 = 2.5, and graph

the boundaries but not the fixed-sample critical values

gsbounds, alpha(0.01) power(0.9) efficacy(hsdecani(-2)) ///
futility(kdemets(2.5), binding) nlooks(7) lower ///
graphbounds(nofixed)

Menu
Statistics > Power, precision, and sample size

Syntax
Calculate efficacy stopping boundaries

gsbounds [ , efficacy(boundary) options ]

Calculate futility stopping boundaries

gsbounds, futility(boundary[ , binding ]) [ options ]

Calculate efficacy and futility stopping boundaries

gsbounds, efficacy(boundary) futility(boundary[ , binding ]) [ options ]

boundary Description

obfleming classical O’Brien–Fleming bound

pocock classical Pocock bound

wtsiatis(#) classical Wang–Tsiatis bound with specified parameter value

errpocock error-spending Pocock-style bound

errobfleming error-spending O’Brien–Fleming-style bound

kdemets(#) error-spending Kim–DeMets bound with specified parameter value

hsdecani(#) error-spending Hwang–Shih–de Cani bound with specified parameter value
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options Description

Main

efficacy(boundary) boundary for efficacy stopping; if neither efficacy()
nor futility() is specified, the default is
efficacy(obfleming)

futility(boundary[ , binding ]) boundary for futility stopping; use binding to request binding
futility bounds (default is nonbinding)

nlooks(#) total number of analyses
(nlooks() − 1 interim analyses and one final analysis)

information(numlist) sequence of information levels for analyses;
default is evenly spaced

nopvalues suppress 𝑝-values
alpha(#) overall significance level for all tests; default is alpha(0.05)
power(#) overall power for all tests; default is power(0.8)
beta(#) overall probability of type II error for all tests;

default is beta(0.2)
upper upper one-sided test; default is two-sided

lower lower one-sided test; default is two-sided

onesided synonym for upper

Graph

graphbounds[ (graphopts) ] graph boundaries

matlistopts(general options) control the display of boundaries; seldom used

optimopts optimization options for boundary calculations; seldom used

collect is allowed; see [U] 11.1.10 Prefix commands.

matlistopts() and optimopts do not appear in the dialog box.

graphopts Description

xdiminformation label the 𝑥 axis with the information fraction (default);
use information levels if information() specified

xdimlooks label the 𝑥 axis with the number of each look

noshade do not shade the rejection, acceptance, and continuation
regions

rejectopts(area options) change the appearance of the rejection region

acceptopts(area options) change the appearance of the acceptance region

continueopts(area options) change the appearance of the continuation region

efficacyopts(connected options) change the appearance of the efficacy bound

futilityopts(connected options) change the appearance of the futility bound

nolooklines do not draw vertical reference lines at each look

looklinesopts(added line suboptions) change the appearance of the reference lines
marking each look

nofixed do not label critical values from a fixed study design

fixedopts(marker options) change the appearance of the fixed-study critical values

twoway options any options other than by() documented in
[G-3] twoway options
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optimopts Description

intpointsscale(#) scaling factor for number of quadrature points;
default is intpointsscale(20)

initinfo(initinfo spec) initial value(s) for maximum information

initscale(#) initial value for scaling factor 𝐶 of classical bounds

infotolerance(#) tolerance for bisection search for maximum information of error-
spending bounds with futility stopping; default is infotol(1e-6)

marquardt use the Marquardt stepping algorithm in nonconcave regions;
default is to use a mixture of steepest descent and Newton

technique(algorithm spec) maximization technique

iterate(#) perform maximum of # iterations; default is iterate(300)
[ no ]log display an iteration log; default is nolog
trace display current parameter vector in iteration log

gradient display current gradient vector in iteration log

showstep report steps within an iteration in iteration log

hessian display current negative Hessian matrix in iteration log

showtolerance report the calculated result that is compared with the effective
convergence criterion

tolerance(#) tolerance for the parameter being optimized;
default is tolerance(1e-12)

ftolerance(#) tolerance for the objective function;
default is ftolerance(1e-10)

nrtolerance(#) tolerance for the scaled gradient;
default is nrtolerance(1e-16)

nonrtolerance ignore the nrtolerance() option

Options

� � �
Main �

efficacy(boundary) specifies the boundary for efficacy stopping. If neither efficacy() nor

futility() is specified, the default is efficacy(obfleming).

futility(boundary[ , binding ]) specifies the boundary for futility stopping.
binding specifies binding futility bounds. With binding futility bounds, if the result of an interim

analysis crosses the futility boundary and lies in the acceptance region, the trial must end or risk

overrunning the specified type I error. With nonbinding futility bounds, the trial does not need to

stop if the result of an interim analysis crosses the futility boundary; the familywise type I error

rate is controlled even if the trial continues. By default, futility bounds are nonbinding.

nlooks(#) specifies the total number of analyses to be performed (nlooks() − 1 interim analyses and

one final analysis). If neither nlooks() nor information() is specified, the default is nlooks(2).

information(numlist) specifies a sequence of information levels for interim and final analyses. This

must be a sequence of increasing positive numbers, but the scale is unimportant because the infor-

mation sequence will be automatically rescaled to ensure the maximum information is reached at the

final look. By default, analyses are evenly spaced.

nopvalues suppresses the 𝑝-values from being reported in the table of boundaries for each look.
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alpha(#) sets the overall significance level, which is the familywise type I error rate for all analyses

(interim and final). The default is alpha(0.05).

power(#) sets the overall power for all analyses. The default is power(0.8). If beta() is specified,

power() is set to be 1 − beta(). Only one of power() or beta() may be specified.

beta(#) sets the overall probability of a type II error. The default is beta(0.2). If power() is specified,
beta() is set to be 1 − power(). Only one of beta() or power() may be specified.

upper indicates an upper one-sided test, which means that the postulated value of the parameter is larger
than the value under the null hypothesis. The default is two-sided.

lower indicates a lower one-sided test, which means that the postulated value of the parameter is smaller
than the value under the null hypothesis. The default is two-sided.

onesided is a synonym for upper.

� � �
Graph �

graphbounds and graphbounds(graphopts) produce graphical output showing the stopping bound-

aries.

graphopts are the following:

xdiminformation labels the 𝑥 axis with the information fraction unless information() is spec-
ified, in which case information levels will be used. This is the default 𝑥-axis label.

xdimlooks labels the 𝑥 axis with the number of each look.

noshade suppresses shading of the rejection, acceptance, and continuation regions of the graph.

rejectopts(area options) affects the rendition of the rejection region. See
[G-3] area options.

acceptopts(area options) affects the rendition of the acceptance region. See
[G-3] area options.

continueopts(area options) affects the rendition of the continuation region. See
[G-3] area options.

efficacyopts(connected options) affects the rendition of the efficacy bound. See
[G-3] cline options and [G-3] marker options.

futilityopts(connected options) affects the rendition of the futility bound. See
[G-3] cline options and [G-3] marker options.

nolooklines suppresses the vertical reference lines drawn at each look.

looklinesopts(added line suboptions) affects the rendition of reference lines marking each

look. See suboptions in [G-3] added line options.

nofixed suppresses the fixed-study critical values in the plot.

fixedopts(marker options) affects the rendition of the fixed-study critical values. See
[G-3] marker options.

twoway options are any of the options documented in [G-3] twoway options, excluding by().
These include options for titling the graph (see [G-3] title options) and for saving the graph to

disk (see [G-3] saving option).
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The following options are available with gsbounds but are not shown in the dialog box:

matlistopts(general options) affects the display of the matrix of boundaries. general options

are title(), tindent(), rowtitle(), showcoleq(), coleqonly, colorcoleq(),
aligncolnames(), and linesize(); see general options in [P] matlist. This option is sel-

dom used.

optimopts control the iterative algorithm used to calculate stopping boundaries:

intpointsscale(#) specifies the scaling factor for the number of quadrature points used during the
numerical evaluation of stopping probabilities at each look. The default is intpointsscale(20).
See Methods and formulas.

initinfo(initinfo spec) specifies either one or two initial values to be used in the iterative calcula-
tion of the maximum information.

The syntax initinfo(#) is applicable when using classical group sequential boundaries (Pocock
bounds, O’Brien–Fleming bounds, and Wang–Tsiatis bounds), as well as with efficacy-only

stopping when using error-spending boundaries (error-spending Pocock-style efficacy bounds,

error-spending O’Brien–Fleming-style efficacy bounds, Kim–DeMets efficacy bounds, and

Hwang–Shih–de Cani efficacy bounds). The default is to use the information from a fixed study

design; see Methods and formulas.

The syntax initinfo(# #) is applicable when using error-spending group sequential boundaries
with futility stopping (error-spending Pocock-style bounds, error-spending O’Brien–Fleming-

style bounds, Kim–DeMets bounds, and Hwang–Shih–de Cani bounds). With this syntax, the

first and second numbers specify the lower and upper starting values, respectively, for the bisec-

tion algorithm estimating the maximum information. The default is to use the information from a

fixed study design for the lower initial value and the information corresponding to a Bonferroni

correction for the upper initial value; see Methods and formulas. To specify just the lower starting

value, use initinfo(# .), and to specify just the upper starting value, use initinfo(. #).

initscale(#) specifies the initial value to be used during the iterative calculation of scaling fac-

tor 𝐶 for classical group sequential boundaries (Pocock bounds, O’Brien–Fleming bounds, and

Wang–Tsiatis bounds). The default is to use the 𝑧-value corresponding to the specified value of
alpha(). See Methods and formulas.

infotolerance(#) specifies the tolerance for the bisection algorithm used in the itera-

tive calculation of the maximum information of error-spending group sequential boundaries

with futility stopping (error-spending Pocock-style bounds, error-spending O’Brien–Fleming-

style bounds, Kim–DeMets bounds, and Hwang–Shih–de Cani bounds). The default is

infotolerance(1e-6). See Methods and formulas.

marquardt specifies that the optimizer should use the modified Marquardt algorithm when, at an

iteration step, it finds that 𝐻 is singular. The default is to use a mixture of steepest descent and

Newton, which is equivalent to the difficult option in [R] ml.

technique(algorithm spec) specifies how the objective function is to be maximized. The following

algorithms are allowed. For details, see Pitblado, Poi, and Gould (2024).

technique(bfgs) specifies the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

technique(nr) specifies Stata’s modified Newton–Raphson (NR) algorithm.

technique(dfp) specifies the Davidon–Fletcher–Powell (DFP) algorithm.
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The default is technique(bfgs) when using classical group sequential boundaries (Pocock

bounds, O’Brien–Fleming bounds, and Wang–Tsiatis bounds) and also for the second opti-

mization step used to estimate the maximum information with efficacy-only stopping when

using error-spending boundaries (error-spending Pocock-style efficacy bounds, error-spending

O’Brien–Fleming-style efficacy bounds, Kim–DeMets efficacy bounds, and Hwang–Shih–de

Cani efficacy bounds). The default is technique(nr) for the sequential optimization steps used

to estimate critical values for error-spending boundaries. You can also switch between two al-

gorithms by specifying the technique name followed by the number of iterations. For example,

specifying technique(nr 10 bfgs 20) requests 10 iterations with the NR algorithm followed by

20 iterations with the BFGS algorithm, and then back to NR for 10 iterations, and so on. The process

continues until convergence or until the maximum number of iterations is reached.

iterate(#) specifies the maximum number of iterations. If convergence is not declared by the

time the number of iterations equals iterate(), an error message is issued. The default value of
iterate(#) is the number set using set maxiter, which is 300 by default.

[ no ]log requests an iteration log showing the progress of the optimization. The default is nolog.

trace adds to the iteration log a display of the current parameter vector.

gradient adds to the iteration log a display of the current gradient vector.

showstep adds to the iteration log a report on the steps within an iteration. This option was added so
that developers at StataCorp could view the stepping when they were improving the ml optimizer
code. At this point, it mainly provides entertainment.

hessian adds to the iteration log a display of the current negative Hessian matrix.

showtolerance adds to the iteration log the calculated value that is compared with the effective

convergence criterion at the end of each iteration. Until convergence is achieved, the smallest

calculated value is reported. shownrtolerance is a synonym of showtolerance.

Below, we describe the three convergence tolerances. Convergence is declared when the

nrtolerance() criterion is met and either the tolerance() or the ftolerance() criterion is also
met.

tolerance(#) specifies the tolerance for the parameter vector. When the relative change in

the parameter vector from one iteration to the next is less than or equal to tolerance(), the
tolerance() convergence criterion is satisfied. The default is tolerance(1e-12).

ftolerance(#) specifies the tolerance for the objective function. When the relative change in

the objective function from one iteration to the next is less than or equal to ftolerance(), the
ftolerance() convergence is satisfied. The default is ftolerance(1e-10).

nrtolerance(#) specifies the tolerance for the scaled gradient. Convergence is declared when

gH−1g′ < nrtolerance(). The default is nrtolerance(1e-16).

nonrtolerance specifies that the default nrtolerance() criterion be turned off.

boundary
obfleming specifies a classical O’Brien–Fleming design for efficacy or futility bounds (O’Brien and

Fleming 1979). O’Brien–Fleming efficacy bounds are characterized by being extremely conservative

at early looks. The O’Brien–Fleming design is a member of theWang–Tsiatis family and is equivalent

to specifying a boundary of wtsiatis(0).
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pocock specifies a classical Pocock design for efficacy or futility bounds (Pocock 1977). Pocock efficacy
bounds are characterized by using the same critical value at all looks. The Pocock design is a member

of the Wang–Tsiatis family and is equivalent to specifying a boundary of wtsiatis(0.5).

wtsiatis(#) specifies a classical Wang–Tsiatis design for efficacy or futility bounds (Wang and Tsiatis

1987). The shape ofWang–Tsiatis bounds is determined by parameter Δ ∈ [−10, 0.7], where smaller
values of Δ yield bounds that are more conservative at early looks.

errpocock specifies an error-spending Pocock-style design for efficacy or futility bounds (Lan and

DeMets 1983). The critical values from error-spending Pocock-style bounds are very similar to those

of classic Pocock bounds, but they are obtained using an error-spending function.

errobfleming specifies an error-spending O’Brien–Fleming-style design for efficacy or futility bounds
(Lan and DeMets 1983). The critical values from error-spending O’Brien–Fleming-style bounds

are very similar to those of classic O’Brien–Fleming bounds, but they are obtained using an error-

spending function.

kdemets(#) specifies an error-spending Kim–DeMets design for efficacy or futility bounds (Kim and

DeMets 1987). The shape of Kim–DeMets bounds is determined by power parameter 𝜌 ∈ (0, 10],
where larger values of 𝜌 yield bounds that are more conservative at early looks.

hsdecani(#) specifies an error-spending Hwang–Shih–de Cani design for efficacy or futility bounds

(Hwang, Shih, and de Cani 1990). The shape of Hwang–Shih–de Cani bounds is determined by

parameter 𝛾 ∈ [−30, 3], where smaller values of 𝛾 yield bounds that are more conservative at early

looks.

For a design with both efficacy and futility stopping boundaries, if you specify a classical boundary

(that is, in theWang–Tsiatis family) for one, then you must specify a classical boundary for the other. So,

you could not specify a boundary in the Wang–Tsiatis family for one boundary and an error-spending

boundary for the other. When specifying efficacy and futility boundaries from the same family, the

efficacy parameter does not need to be the same as the futility parameter.

Boundaries that are conservative at early looks, such as the O’Brien–Fleming bound, offer little

chance of early stopping unless the true effect size is quite large (in the case of efficacy bounds) or quite

small (in the case of futility bounds). A trial employing a conservative bound is more likely to continue

to the final look, yielding an expected sample size that is not dramatically smaller than the sample size

required by an equivalent fixed-sample trial. However, the maximum sample size (that is, the sample

size at the final look) of a trial with a conservative bound is generally not much greater than the sample

size required by an equivalent fixed trial. Another direct result of specifying conservative bounds is that

the critical value at the final look tends to be close to the critical value employed by an equivalent fixed

design. In contrast, anticonservative boundaries such as the Pocock bound offer a much better shot at

early stopping (often yielding a small expected sample size) at the cost of a larger maximum sample size

and final critical values that are considerably larger than the critical value of an equivalent fixed design.
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Remarks and examples
Remarks are presented under the following headings:

Introduction
Examples

Efficacy stopping
Efficacy and futility stopping
Nonbinding futility bounds
One-sided tests
Error-spending bounds
Unevenly spaced looks
Futility-only stopping

This entry describes the gsbounds command and the methodology for calculating stopping bound-

aries for GSDs. For a software-free introduction to GSDs, see [ADAPT] GSD intro; for an introduc-

tion to Stata’s gs suite of commands, see [ADAPT] gs; and for associated sample-size calculations, see

[ADAPT] gsdesign.

Introduction
Clinical trials, studies investigating the effects of a treatment on human participants, must address

ethical concerns that are often not considered when designing other types of experiments. These ethical

imperatives, such as not unnecessarily exposing participants to harmful or inferior treatments, must be

met while also meeting scientific needs (such as type I error and power) and financial realities that can

limit sample sizes.

In a classical fixed-sample design, an experiment of predetermined size is conducted and all data are

collected before analysis. This approach is efficient if the data are all collected at once, but in the context

of a large clinical trial, participants are typically enrolled over the course of months or years and data

about the clinical endpoint are collected bit by bit. In this scenario, GSDs offer a tantalizing prospect: the

ability to end a study early when preliminary data are overwhelmingly favorable or unfavorable. Early

stopping, without sacrificing type I error, is beneficial because it saves resources and, more importantly,

addresses the ethical need to avoid exposing participants to suboptimal treatments unnecessarily.

In a GSD, a number of interim analyses, or looks, are conducted at prespecified points during the

collection of experimental data. At each look, the test statistic is calculated based on the data available at

the time, and it is compared with critical values defined by the efficacy and futility boundaries. If the test

statistic is more extreme than the critical values defined by the efficacy boundaries, then 𝐻0 is rejected

and the study is terminated early for efficacy. The complement to efficacy stopping is futility stopping,

and if the test statistic crosses the futility boundaries, then 𝐻0 is accepted and the study is terminated

early for futility. The concept of accepting 𝐻0, while taboo in many areas, is a long-established practice

in GSDs (see Origins of GSD in [ADAPT]GSD intro) and is often thought of as “abandoning a lost cause”

(Gould 1989). If 𝐻0 is neither rejected nor accepted after the interim analysis, the trial continues until

the next look.

Stata’s gsbounds command allows the calculation of stopping boundaries for efficacy and futility,

allows for both one-sided and two-sided tests, and implements the most popular boundary calculations.

In the examples that follow, the graphbounds option is used to visualize the boundaries. The boundaries
divide the range of possible test statistic values into regions: the rejection region, the acceptance region,

and the continuation region. If the test statistic falls within the rejection region, then 𝐻0 is rejected and

the study is terminated due to treatment efficacy. If the test statistic lies within the acceptance region,
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then 𝐻0 is accepted and the study is terminated due to futility. If the test statistic is within the contin-

uation region, the study proceeds as planned. Efficacy bounds separate the rejection region from the

continuation region, and futility bounds separate the acceptance region from the continuation region. At

the final look, there is no continuation region, and 𝐻0 must be accepted or rejected.

Examples

Efficacy stopping

Example 1: Two-sided Pocock efficacy bounds
Consider a two-sided test of the difference between two means with known standard deviations. The

standardized test statistic 𝑧 follows a normal distribution, and we wish to test for efficacy at five equally
spaced looks using Pocock efficacy bounds. The familywise type I error allowed is 0.05, while the desired

power (at a prespecified clinically significant effect size) is 80%.

We use gsbounds to calculate and graph the stopping boundaries and compare them with those of

a fixed-sample trial. To calculate Pocock efficacy bounds, we specify the efficacy(pocock) option,

while the nlooks(5) option specifies five equally spaced looks (four interim analyses and a final anal-

ysis). The alpha() and power() options are not specified, which leaves them at their default values of

alpha(0.05) and power(0.8).
. gsbounds, efficacy(pocock) nlooks(5)
Group sequential boundaries
Efficacy: Pocock
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.8000

Info. ratio = 1.2286
Fixed-study crit. values = ±1.9600
Critical values and p-values for a group sequential design

Info. Efficacy
Look frac. Lower Upper p-value

1 0.20 -2.4132 2.4132 0.0158
2 0.40 -2.4132 2.4132 0.0158
3 0.60 -2.4132 2.4132 0.0158
4 0.80 -2.4132 2.4132 0.0158
5 1.00 -2.4132 2.4132 0.0158

Note: Critical values are for z statistics;
otherwise, use p-value boundaries.

gsbounds begins by displaying a summary of the𝛼 and power parameters used in the design, followed

by a table of stopping boundaries. To facilitate comparing the GSD with a fixed study design, gsbounds
also displays the fixed-study critical values and the information ratio, which is the ratio of the sample

size at the final look of a GSD to the sample size from a fixed study design.
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Pocock efficacy bounds are characterized by using the same critical value at all looks. To maintain a

familywise type I error of 0.05, Pocock boundaries require that the 𝑧 statistic reach or exceed ±2.413 at

any look (which corresponds to a 𝑝-value of 0.0158) to reject 𝐻0. This is far larger than the critical value

of ±1.96 required by a fixed-sample test. Pocock bounds allow for the possibility of very early stopping

if the effect size is large, but if the study continues to the final look, it will require approximately 22.9%

more participants than an equivalently powered fixed design, as seen by the information ratio of 1.229.

To plot the bounds for visual inspection, we rerun the previous gsbounds command with the

graphbounds option.

. gsbounds, efficacy(pocock) nlooks(5) graphbounds
(output omitted )
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Parameters: α = .05 (two-sided), 1-β = .8
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Figure 1. Pocock efficacy bounds

The graph displays the bounds visually, dividing the range of possible 𝑧-values into continuation,

rejection, and acceptance regions. The vertical axis is the value of the 𝑧 statistic, and the horizontal axis
is the information fraction, or the fraction of the total information that has been collected at the time of

the analysis. The information fraction is typically proportional to the sample size, except in time-to-event

studies, in which case it is proportional to the number of events observed. The information fraction is

reported in the Info. frac. column of the table above.

We progress from left to right in the graph as information is collected during the clinical trial. The

efficacy bounds, which separate the rejection and continuation regions, are drawn in blue and marked

with a dot at each look. Before the first look (that is, when the information fraction is < 0.2), it is

impossible to reject 𝐻0 because the data have not yet been analyzed, so all 𝑧-values fall within the

continuation region. Beginning with the first look, the range of 𝑧-values is divided into rejection and
continuation regions. Because we are conducting a two-sided test, the rejection region is made up of two

areas: 𝑧-values ≥ 2.413 and 𝑧-values ≤ −2.413.

At the first look, a 𝑧 test is performed using the command ztest or ztesti, and 𝑧 statistic 𝑧1 is

calculated; see [R] ztest. 𝑧1 is compared with the critical values of the efficacy bounds. If 𝑧1 lies in the

rejection region above the efficacy upper bound or below the efficacy lower bound, the null hypothesis
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is rejected and the trial is terminated early for treatment efficacy. Mathematically, we would write that

we reject 𝐻0 if 𝑧1 ≥ 2.413 or 𝑧1 ≤ −2.413. If 𝑧1 lies in the continuation region between the upper and

lower efficacy bounds, written as 𝑧1 ∈ (−2.413, 2.413), then the trial continues.
Because Pocock efficacy bounds use the same critical values for each look, the procedure during the

second, third, and fourth looks will be the same. At the final look, there is no continuation region. If

|𝑧5| < 2.413, then 𝐻0 is accepted, and if |𝑧5| ≥ 2.413, then 𝐻0 is rejected.

The graph also includes points marking the critical values that would be used in an equivalently

powered fixed study design. These points appear at 𝑧-values of ±1.96, which give a type I error of

0.05 in a fixed design with a single analysis. Compared with the GSD, the analysis in the fixed design

occurs at an information fraction of 0.814. This is calculated as the inverse of the information ratio:

1/1.229 = 0.814.

At the fifth look, the critical values of the Pocock design are more extreme than the critical values of

the fixed design. If |𝑧5| ∈ [1.96, 2.413), the researcher will be unable to reject 𝐻0, because they used a

Pocock design; they will likely regret not having chosen a fixed design, which would have allowed them

to reject 𝐻0 with the same 𝑧-value (and a smaller sample).
To avoid this uncomfortable situation, some researchers prefer to use O’Brien–Fleming boundaries,

which are demonstrated in the following example.

Example 2: Two-sided O’Brien–Fleming efficacy bounds
O’Brien–Fleming efficacy boundaries are extremely conservative at early looks and far less so at later

looks. The final critical values in an O’Brien–Fleming design are similar to those of a fixed study design.

Here we calculate O’Brien–Fleming efficacy bounds for the scenario described in the previous example.

. gsbounds, efficacy(obfleming) nlooks(5) graphbounds
Group sequential boundaries
Efficacy: O’Brien--Fleming
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.8000

Info. ratio = 1.0284
Fixed-study crit. values = ±1.9600
Critical values and p-values for a group sequential design

Info. Efficacy
Look frac. Lower Upper p-value

1 0.20 -4.5617 4.5617 0.0000
2 0.40 -3.2256 3.2256 0.0013
3 0.60 -2.6337 2.6337 0.0084
4 0.80 -2.2809 2.2809 0.0226
5 1.00 -2.0401 2.0401 0.0413

Note: Critical values are for z statistics;
otherwise, use p-value boundaries.
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O'Brien–Fleming efficacy

Figure 2. O’Brien–Fleming efficacy bounds

The O’Brien–Fleming design makes it difficult to reject 𝐻0 at early looks but easier at later looks. At

the first look, the critical values of ±4.562 correspond to a 𝑝-value of 0.000005, while the critical values
at the last look, ±2.04, correspond to a 𝑝-value of 0.0413. The information ratio of 1.028 indicates that
the maximum sample size is only 2.8% larger than that of a fixed design.

In the graph, the efficacy bounds take the shape of a funnel with the opening to the left; the continuation

region shrinks as more information is collected. By the final look, the critical values of the efficacy

bounds are nearly the same as the critical values from a fixed study design. The fixed design uses nearly

the same amount of information as the final look of the O’Brien–Fleming design, with the data analysis

in the fixed design occurring at information fraction 1/1.028 = 0.97.

The procedure for interim analysis with O’Brien–Fleming bounds is equivalent to the procedure we

used with Pocock bounds, except that the critical values change from one look to the next. At the first

look, the continuation region is defined by |𝑧1| < 4.562 and the rejection region by |𝑧1| ≥ 4.562. At the

second look, the continuation region is defined by |𝑧2| < 3.226 and the rejection region by |𝑧2| ≥ 3.226.

The pattern continues until the fifth and final look, which has no continuation region. At the fifth look,

the acceptance region is defined by |𝑧5| < 2.04 and the rejection region by |𝑧5| ≥ 2.04.

Example 3: Two-sided Wang–Tsiatis efficacy bounds
Both Pocock and O’Brien–Fleming boundaries are special cases of a one-parameter family of bound-

aries described by Wang and Tsiatis (1987). This family of boundaries is indexed by power parameter

Δ. Setting Δ = 0.5 yields a Pocock boundary, whereas setting Δ = 0 yields an O’Brien–Fleming

boundary. Wang–Tsiatis boundaries with Δ ∈ (0, 0.5) offer a balance between the two designs.
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We continue example 2, this time calculating Wang–Tsiatis efficacy bounds with power parameter

Δ𝑒 = 0.25.

. gsbounds, efficacy(wtsiatis(0.25)) nlooks(5) graphbounds
Group sequential boundaries
Efficacy: Wang--Tsiatis, Delta = 0.2500
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.8000

Info. ratio = 1.0718
Fixed-study crit. values = ±1.9600
Critical values and p-values for a group sequential design

Info. Efficacy
Look frac. Lower Upper p-value

1 0.20 -3.1941 3.1941 0.0014
2 0.40 -2.6859 2.6859 0.0072
3 0.60 -2.4270 2.4270 0.0152
4 0.80 -2.2586 2.2586 0.0239
5 1.00 -2.1360 2.1360 0.0327

Note: Critical values are for z statistics;
otherwise, use p-value boundaries.
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Figure 3. Wang–Tsiatis efficacy bounds, Δ = 0.25

In addition to the values of 𝛼 and power used to calculate the bounds, gsbounds now reports the

efficacy parameter for the Wang–Tsiatis bounds. The boundaries themselves are a compromise be-

tween the two previous designs. The critical values at early looks are less conservative than those of

the O’Brien–Fleming design, making it more likely that a study with a positive result will be stopped

very early. At the first look, the critical values of ±3.194 correspond to a 𝑝-value of 0.0014, while the
second look critical values of ±2.686 correspond to a 𝑝-value of 0.0072. If the study continues to its
conclusion, the final critical values of ±2.136 correspond to a 𝑝-value of 0.0327.
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The maximum required sample size is 7.2% larger than that of a fixed study, which means that data

analysis in a fixed study is conducted at information fraction 1/1.072 = 0.933. Looking at the graph,

we see that the funnel shape of the efficacy bounds is less pronounced than with the O’Brien–Fleming

efficacy bounds, but the general form is similar.

Efficacy and futility stopping

Example 4: Two-sided Wang–Tsiatis efficacy and futility bounds
Efficacy boundaries allow early stopping to reject 𝐻0, but in some cases, there is an ethical argument

for early stopping to accept 𝐻0, such as when the experimental treatment causes deleterious side effects.

If we can demonstrate that the experimental treatment is not significantly better than a placebo, we can

end the trial early and prevent participants from receiving a treatment that does more harm than good.

Even in the absence of harmful side effects, ending a trial early by accepting 𝐻0 means that participants

who would have been recruited into a “dead-end” study can instead be recruited to test the next promising

treatment.

We continue with the scenario of example 3, this time adding futility bounds to permit early stopping

to accept𝐻0. Wewant to allow futility stopping, but we do not want to be hasty in abandoning a treatment

just because the very first results are not promising. To accomplish this, we use an O’Brien–Fleming

futility bound that creates a narrow acceptance region at early looks.

We specify a binding futility bound with futility() suboption binding. If the 𝑧 statistic from an

interim analysis crosses a binding futility bound, the trial must be stopped for futility or else it will risk

exceeding the desired familywise type I error.

. gsbounds, efficacy(wtsiatis(0.25)) futility(obfleming, binding) nlooks(5)
> graphbounds
Group sequential boundaries
Efficacy: Wang--Tsiatis, Delta = 0.2500
Futility: O’Brien--Fleming, binding
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.8000

Info. ratio = 1.1961
Fixed-study crit. values = ±1.9600
Critical values and p-values for a group sequential design

Info. Efficacy Futility
Look frac. Lower Upper p-value Lower Upper p-value

1 0.20 -3.0960 3.0960 0.0020 . . .
2 0.40 -2.6034 2.6034 0.0092 -0.3669 0.3669 0.7137
3 0.60 -2.3525 2.3525 0.0186 -1.0907 1.0907 0.2754
4 0.80 -2.1892 2.1892 0.0286 -1.6297 1.6297 0.1032
5 1.00 -2.0704 2.0704 0.0384 -2.0704 2.0704 0.0384

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.
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Figure 4. Wang–Tsiatis efficacy and futility bounds

The table of boundary values includes columns for futility lower and upper bounds, but the futility

bounds for the first look are missing. This is because, to achieve the required significance level and

power, the futility lower bound at the first look would have been above the futility upper bound. As such,

the trial cannot be stopped for futility at the first look, and the futility bounds for this look are reported

as missing. If 𝑧1, the test statistic at the first look, lies within the continuation region of (−3.096, 3.096),
then the study will continue. If |𝑧1| ≥ 3.096, then𝐻0 is rejected and the trial is stopped early for efficacy.

At the second look, there are three possibilities: If |𝑧2| < 0.367, then 𝐻0 is accepted and the trial is

terminated for futility. If |𝑧2| ≥ 2.603, then 𝐻0 is rejected and the trial is terminated due to treatment

efficacy. If |𝑧2| ∈ [0.367, 2.603), then the trial continues. A similar procedure is followed at the third

and fourth looks, and by the fourth look, the continuation region has shrunk to |𝑧4| ∈ [1.63, 2.189); if
|𝑧4| < 1.63, the trial is terminated for futility, and if |𝑧4| ≥ 2.189, the trial is terminated due to efficacy.

At the final look of a GSD with both efficacy and futility boundaries, the efficacy critical values are

always the same as the futility critical values, and there is no continuation region. Here, if |𝑧5| < 2.07,

𝐻0 is accepted; otherwise, 𝐻0 is rejected. The sample size at the fifth look is 19.6% larger than that of

a fixed study design, but the ability to stop the trial early due to futility has increased the chance that the

trial will be terminated before the fifth look.

In the graph, we see the familiar funnel-shaped efficacy bounds, but now the futility bounds form a

truncated “inner wedge” inside the efficacy bounds. The critical values from an equivalent fixed study

design are similar to the critical values from the fifth look of the GSD, but the data analysis of the fixed

study occurs at information fraction 1/1.196 = 0.836.

Compared with the efficacy-only design of example 3 (which used the same significance level, power,

efficacy bound type, and efficacy parameter as this example), we see that adding futility boundaries

increases the maximum sample size from 107.2% to 119.6% of the fixed-study sample size. What’s

more, adding binding futility bounds has shrunk the efficacy critical values. Without futility bounds, the

efficacy critical values at the first and fifth looks were ±3.194 and ±2.136, respectively (corresponding
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to 𝑝-values of 0.0014 and 0.033). The addition of binding futility bounds has decreased those efficacy
critical values to ±3.096 and ±2.07, respectively (equivalent to 𝑝-values of 0.002 and 0.038). Similar
decreases in efficacy critical values are seen at the second, third, and fourth looks as well.

This decrease is best understood by considering the case of a true null hypothesis and examining the

behavior of the two designs. In this case, the correct action would be to accept 𝐻0; it is a type I error

to reject 𝐻0. When the null hypothesis is true, each interim look in the efficacy-only GSD presents the

opportunity to continue the trial or to commit a type I error and mistakenly reject 𝐻0. Only at the very

last look do we have the option to correctly accept 𝐻0. In the trial with both efficacy and futility bounds,

we have more opportunities to correctly accept 𝐻0, making it less likely that the trial will continue to

later looks. If we were to use the same efficacy critical values as in the efficacy-only design, the actual

probability of committing a type I error would be lower than the specified significance level, and the test

would be conservative. By relaxing the efficacy critical values, the desired significance level is achieved.

Nonbinding futility bounds

Example 5: Two-sided Wang–Tsiatis efficacy and nonbinding futility bounds
The binding futility bounds we used in example 4 come with the restriction that the trial must be

stopped if an interim analysis crosses the futility boundary. We can relax this requirement by removing

futility() suboption binding to calculate nonbinding futility bounds. We omit the graphbounds
option because the shape of this graph is nearly identical to that of the binding design.

. gsbounds, efficacy(wtsiatis(0.25)) futility(obfleming) nlooks(5)
Group sequential boundaries
Efficacy: Wang--Tsiatis, Delta = 0.2500
Futility: O’Brien--Fleming, nonbinding
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.8000

Info. ratio = 1.2507
Fixed-study crit. values = ±1.9600
Critical values and p-values for a group sequential design

Info. Efficacy Futility
Look frac. Lower Upper p-value Lower Upper p-value

1 0.20 -3.1941 3.1941 0.0014 . . .
2 0.40 -2.6859 2.6859 0.0072 -0.4050 0.4050 0.6855
3 0.60 -2.4270 2.4270 0.0152 -1.1396 1.1396 0.2544
4 0.80 -2.2586 2.2586 0.0239 -1.6875 1.6875 0.0915
5 1.00 -2.1360 2.1360 0.0327 -2.1360 2.1360 0.0327

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.

Examining the efficacy boundaries, we see that the critical values are identical to the efficacy critical

values from the efficacy-only design of example 3. This is because nonbinding futility bounds do not

affect the calculation of efficacy bounds.
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At the end of example 4, we saw that binding futility bounds reduced the chance of erroneously

rejecting a true null hypothesis because the trial is required to stop if the 𝑧 statistic from an interim analysis

crosses the futility bound. This is not the case with nonbinding futility bounds, where the experimenter

can decide to continue the experiment even if the futility boundary is crossed.

Compared with the binding futility bounds of example 4, the nonbinding boundaries are slightly wider

and the information ratio is larger (1.251 for the nonbinding design versus 1.196 for the binding design).

The phenomenon of larger information ratios for designs with nonbinding futility bounds than for designs

with binding futility bounds holds true, in general, and can be considered a cost associated with the

increased flexibility offered by nonbinding designs.

One-sided tests

Example 6: One-sided O’Brien–Fleming efficacy bounds
The previous examples have all involved two-sided tests. When conducting a clinical trial of an

experimental treatment, the researcher usually has a good idea of whether the effect will be positive or

negative, but often two-sided tests are conducted to demonstrate impartiality. However, in some cases, it

may be of interest to consider a one-sided alternative hypothesis. Here we plan to conduct a two-sample

means test with a one-sided alternative hypothesis.

In example 2, we used a two-sided O’Brien–Fleming design with five equally spaced looks, a sig-

nificance level of 0.05, and a power of 0.8. Here we use a similar design, but we restrict ourselves to a

one-sided alternative hypothesis. This restricts the rejection region to positive values of a 𝑧 statistic that
are larger than the efficacy upper bound.

In the two-sided design with a significance level of 0.05, under the null hypothesis, there is a 2.5%

probability that the observed 𝑧 statistic is above the efficacy upper bound and a 2.5% probability that

it is below the efficacy lower bound. To design a comparable study using a one-sided test, we adopt a

significance level of 0.025 to match the efficacy upper bound of the two-sided design.

. gsbounds, alpha(0.025) efficacy(obfleming) nlooks(5) upper graphbounds
Group sequential boundaries
Efficacy: O’Brien--Fleming
Study parameters:

alpha = 0.0250 (upper one-sided)
power = 0.8000

Info. ratio = 1.0284
Fixed-study crit. value = 1.9600
Critical values and p-values
for a group sequential design

Info. Efficacy
Look frac. Upper p-value

1 0.20 4.5617 0.0000
2 0.40 3.2256 0.0006
3 0.60 2.6337 0.0042
4 0.80 2.2809 0.0113
5 1.00 2.0401 0.0207

Note: Critical values are for z statistics;
otherwise, use p-value boundaries.
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Figure 6. One-sided O’Brien–Fleming efficacy bounds

As expected, the efficacy upper bound for a one-sided design with significance level 0.025 is identical

to the efficacy upper bound in the two-sided design with significance level 0.05. The graph of the one-

sided bound is identical to the upper portion of the graph of the two-sided bound from example 2.

The procedure for comparing test statistics to the boundary critical values is somewhat simpler with

a single bound: At the first through fourth looks, we reject 𝐻0 if the 𝑧 statistic exceeds the critical value;
otherwise, we continue the experiment. At the final look, we reject 𝐻0 if 𝑧5 ≥ 2.04; otherwise, we

accept 𝐻0.

Error-spending bounds

Example 7: One-sided error-spending O’Brien–Fleming-style efficacy bounds
In example 6, we used a one-sided O’Brien–Fleming design with five equally spaced looks, a sig-

nificance level of 0.025, and a power of 0.8. O’Brien–Fleming efficacy bounds possess properties that

appeal to clinical trialists: The conservative critical values at early looks ensure that a trial is not stopped

very early unless the evidence against the null hypothesis is overwhelming, and the critical values at the

final look are nearly the same as those from a fixed study design, reducing the risk of the group sequential

trial being unable to reject 𝐻0 despite a final 𝑧 statistic that would have resulted in rejecting 𝐻0 under a

fixed study design.

The large critical values at early looks correspond to a very small probability of committing a type I

error. Viewed from the perspective of the error-spending paradigm, we can say that the O’Brien–Fleming

design spends very little error at early looks, instead saving the error for later looks. If we rerun the

design from example 6, we can examine the cumulative type I error spent by displaying returned matrix

r(aspent).
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. gsbounds, alpha(0.025) efficacy(obfleming) nlooks(5) upper
(output omitted )

. matrix list r(aspent)
r(aspent)[5,1]

alpha spent:
per look

Look 1 2.537e-06
Look 2 .00062953
Look 3 .0044518
Look 4 .01279229
Look 5 .025

In the classical O’Brien–Fleming design, critical values are calculated directly, and the error spent at

each look is a product of those critical values. Boundaries cannot be modified while the trial is underway

because the critical value at each look depends on the critical values of all other looks. With error-

spending boundaries, the error spent at each look is determined by the error-spending function, and

the critical value is a product of the error spent. In this case, each critical value depends on the total

information to be collected and the error spent at previous looks, but not on the critical values of future

looks.

When Lan and DeMets (1983) developed the error-spending approach, they formulated an error-

spending function that approximates the error spent at each look by O’Brien–Fleming bounds. By spend-

ing the type I error at nearly the same rate as the classic O’Brien–Fleming design, the error-spending

approximation attains critical values that are nearly the same as those of the classic O’Brien–Fleming

design.

Here we modify the design used in example 6 by specifying an efficacy boundary of errobfleming
to calculate error-spending O’Brien–Fleming-style bounds.

. gsbounds, alpha(0.025) efficacy(errobfleming) nlooks(5) upper graphbounds
Group sequential boundaries
Efficacy: Error-spending O’Brien--Fleming style
Study parameters:

alpha = 0.0250 (upper one-sided)
power = 0.8000

Info. ratio = 1.0247
Fixed-study crit. value = 1.9600
Critical values and p-values
for a group sequential design

Info. Efficacy
Look frac. Upper p-value

1 0.20 4.8769 0.0000
2 0.40 3.3570 0.0004
3 0.60 2.6803 0.0037
4 0.80 2.2898 0.0110
5 1.00 2.0310 0.0211

Note: Critical values are for z statistics;
otherwise, use p-value boundaries.
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Figure 7. One-sided error-spending O’Brien–Fleming-style efficacy bounds

The critical values of the error-spending O’Brien–Fleming-style bounds are very similar to those of

the classic O’Brien–Fleming design. Both start off conservatively at early looks and approach the fixed-

study critical value by the final look. The information ratio of both designs is also very similar. At the

final look, the classic O’Brien–Fleming design required 2.8%more information than an equivalent fixed

design, while the error-spending approximation requires 2.5% more.

Examining the graph, it is difficult to distinguish the difference between the shape of the error-

spending O’Brien–Fleming-style bounds and the classic O’Brien–Fleming bounds from example 6.

To see the cumulative type I error spent at each look, we examine r(aspent).

. matrix list r(aspent)
r(aspent)[5,1]

alpha spent:
per look

Look 1 5.389e-07
Look 2 .00039415
Look 3 .00380806
Look 4 .01221179
Look 5 .025

Unsurprisingly, we see that the error-spending O’Brien–Fleming-style design spends the allotted 𝛼
of 0.025 at nearly the same rate as the classic O’Brien–Fleming design.

Example 8: One-sided error-spending efficacy and futility bounds
Clinical trials using one-sided tests stand to benefit from futility stopping just as much as trials using

two-sided tests. Consider a trial with the one-sided alternative hypothesis that the mean of the experi-

mental group is less than the mean of the control group. We plan for three evenly spaced looks, and we

use error-spending bounds.
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Wewant an efficacy boundary that is conservative at early looks, so we choose Kim–DeMets efficacy

bounds with parameter 𝜌𝑒 = 3, which yields bounds that are similar in shape to O’Brien–Fleming

bounds, if slightly less conservative at very early looks. To increase the chance that we can accept the

null hypothesis at the first look if the evidence supports 𝐻0, we want a futility boundary that is less

conservative at early looks. Selecting Hwang–Shih–de Cani futility bounds with parameter 𝛾𝑓 = 1

accomplishes this by producing bounds that are similar in shape to Pocock bounds, and we make the

futility bound nonbinding so that stopping is not required if it is crossed at an interim analysis. As in

example 6, we use a significance level of 0.025, but here we specify the power to be 0.9.

. gsbounds, alpha(0.025) power(0.9) efficacy(kdemets(3)) futility(hsdecani(1))
> nlooks(3) lower graphbounds
Group sequential boundaries
Efficacy: Error-spending Kim--DeMets, rho = 3.0000
Futility: Error-spending Hwang--Shih--de Cani, nonbinding, gamma = 1.0000
Study parameters:

alpha = 0.0250 (lower one-sided)
power = 0.9000

Info. ratio = 1.2315
Fixed-study crit. value = -1.9600
Critical values and p-values for a group sequential design

Info. Efficacy Futility
Look frac. Lower p-value Upper p-value

1 0.33 -3.1130 0.0009 -0.3798 0.3521
2 0.67 -2.4619 0.0069 -1.3016 0.0965
3 1.00 -2.0087 0.0223 -2.0087 0.0223

Note: Critical values are for z statistics; otherwise,
use p-value boundaries.
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Figure 8. One-sided lower error-spending efficacy and futility bounds
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At the first look, the continuation region is the interval between the efficacy lower bound of −3.113

and the futility upper bound of −0.38. If 𝑧1 > −0.38, then 𝐻0 may be accepted and the trial terminated

for futility; if 𝑧1 ≤ −3.113, then 𝐻0 is rejected and the trial is terminated due to treatment efficacy. At

the second look, the continuation region has shrunk to (−2.462, −1.302]. At the third and final look,
the critical values of the efficacy lower bound and the futility upper bound coincide, and there is no

continuation region: If 𝑧3 ≤ −2.009, then 𝐻0 is rejected; otherwise, it is accepted.

If the study continues to the last look, the final critical value is very close to the critical value for a

fixed study design, but the GSD requires 23.1% more participants than a fixed design.

Unevenly spaced looks

Example 9: One-sided error-spending bounds with unevenly spaced looks
In example 8, we used a three-look GSD with evenly spaced information increments. Here we con-

sider a similar scenario, but we add a new look halfway between the first and second looks. To specify

four looks with uneven spacing, we use the information() option. Because information() is auto-

matically rescaled, we need not specify the final information level as 1, so we can type information(1
1.5 2 3) to avoid repeating decimals.

. gsbounds, alpha(0.025) power(0.9) efficacy(kdemets(3)) futility(hsdecani(1))
> information(1 1.5 2 3) lower graphbounds
Group sequential boundaries
Efficacy: Error-spending Kim--DeMets, rho = 3.0000
Futility: Error-spending Hwang--Shih--de Cani, nonbinding, gamma = 1.0000
Study parameters:

alpha = 0.0250 (lower one-sided)
power = 0.9000

Info. ratio = 1.2456
Fixed-study crit. value = -1.9600
Critical values and p-values for a group sequential design

Info. Efficacy Futility
Look frac. Lower p-value Upper p-value

1 0.33 -3.1130 0.0009 -0.3916 0.3477
2 0.50 -2.7889 0.0026 -0.7827 0.2169
3 0.67 -2.5133 0.0060 -1.2002 0.1150
4 1.00 -2.0120 0.0221 -2.0120 0.0221

Note: Critical values are for z statistics; otherwise,
use p-value boundaries.
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Figure 9. One-sided lower error-spending efficacy and futility bounds with unevenly spaced looks

The shape of the bounds is strikingly similar to the design in example 8, but the 𝑥 axis of the graph has
been labeled using the scale we specified in the information() option. The properties of the design,

including the final critical value and the information ratio, are in line with the three-look design, but the

additional look gives us one more opportunity to terminate the trial early.

Futility-only stopping

Example 10: One-sided error-spending Pocock-style futility bounds
The previous examples have all allowed early stopping due to efficacy, but occasionally only futility

stopping is desired. This can occur, for example, if there is concern about uncommon but serious adverse

events, which are harmful side effects of the treatment and negative medical outcomes not associated

with an underlying disease. In this case, even if the interim results offer compelling evidence of treatment

efficacy, the trial will continue in order to collect a sample large enough to evaluate the pattern of adverse

events. If the interim results are not promising, the trial can be terminated early for futility.

Here critical values for the futility bounds are calculated for each look, but critical values for the

efficacy bounds are only calculated for the final look because 𝐻0 cannot be rejected until the end of

the study. As in example 7, we will design a study with five equally spaced looks, an upper one-sided

significance level of 0.025, and a power of 0.8. But we replace the error-spending O’Brien–Fleming-

style efficacy bound with a nonbinding error-spending Pocock-style futility bound.
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. gsbounds, alpha(0.025) futility(errpocock) nlooks(5) upper graphbounds
Group sequential boundaries
Futility: Error-spending Pocock style, nonbinding
Study parameters:

alpha = 0.0250 (upper one-sided)
power = 0.8000

Info. ratio = 1.3060
Fixed-study crit. value = 1.9600
Critical values and p-values for a group sequential design

Info. Efficacy Futility
Look frac. Upper p-value Lower p-value

1 0.20 -0.1307 0.5520
2 0.40 0.5751 0.2826
3 0.60 1.1163 0.1321
4 0.80 1.5672 0.0585
5 1.00 1.9600 0.0250 1.9600 0.0250

Note: Critical values are for z statistics; otherwise,
use p-value boundaries.
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Figure 10. Error-spending Pocock-style nonbinding futility bound

At the first look, we are allowed, but not required, to accept 𝐻0 if 𝑧1 < −0.131; otherwise, the trial

continues. No efficacy critical value is reported for the first look because we cannot stop the trial for

efficacy at this point. This procedure is repeated at the second, third, and fourth looks, with progressively

larger futility critical values. At the fifth look, which is the only look with an efficacy critical value, we

reject 𝐻0 if 𝑧5 ≥ 1.96; otherwise, we accept 𝐻0.

The critical value at the fifth look is equal to the critical value from an equivalently powered fixed

study design. This is because a GSD with futility-only stopping offers a single opportunity to reject 𝐻0 at

the end of the study, just as a fixed design does. If we had specified binding futility bounds, the critical

value would have been even smaller than that of a fixed design. This is because, if the null hypothesis
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is true, binding futility bounds reduce the probability of committing a type I error because the trial can

be forced to stop for futility before reaching the opportunity to reject 𝐻0 at the final look. To avoid

underspending the desired type I error in the presence of binding futility bounds, efficacy critical values

are reduced until the desired 𝛼 level is reached.

On the graph, the efficacy bound is drawn as a single dot rather than a line because only the last look

uses an efficacy bound. The dot for the efficacy bound covers the final dot marking the final futility

bound because they share the same critical value.

Stored results
gsbounds stores the following in r():

Scalars

r(alpha) overall significance level (familywise type I error)

r(beta) overall probability of a type II error

r(binding) 1 for binding futility bounds, 0 for nonbinding
r(effparam) efficacy parameter (if wtsiatis(), kdemets(), or hsdecani() specified)
r(futparam) futility parameter (if wtsiatis(), kdemets(), or hsdecani() specified)
r(info ratio) ratio of maximum information required to that of a fixed study design

r(nlooks) number of analyses

r(onesided) 1 for a one-sided test, 0 otherwise
r(power) overall power

r(stop) 0 for futility bounds, 1 for efficacy bounds, 2 for both
r(z fixed) critical value for an equivalent fixed study design

Macros

r(cmd) gsbounds
r(cmdline) command as typed

r(direction) upper, lower, or two-sided
r(effbnd) pocock, obfleming, wtsiatis, errpocock, errobfleming, kdemets, or hsdecani
r(futbnd) pocock, obfleming, wtsiatis, errpocock, errobfleming, kdemets, or hsdecani

Matrices

r(aspent) cumulative alpha spent per look (stored with efficacy-only stopping or when futility bounds

are binding)
r(aspent fstop) cumulative alpha spent per look if futility stopping does occur (stored when futility bounds

are nonbinding)
r(aspent nofstop) cumulative alpha spent per look if futility stopping does not occur (stored when futility

bounds are nonbinding)
r(bounds) stopping boundaries

r(bspent) cumulative beta spent per look (when futility bounds are specified)

r(info frac) information fraction

r(info level) specified information level

r(p crit) 𝑝-values corresponding to boundary critical values
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Methods and formulas
Methods and formulas are presented under the following headings:

Group sequential bounds
Classical (Wang–Tsiatis) bounds
Error-spending bounds
Significance level approach

Group sequential bounds
After each group of observations is collected, an analysis is performed and the test statistic 𝑍 is

calculated. In the description that follows, we assume that𝑍 follows a standard normal distribution under

𝐻0. For test statistics that follow other distributions, the normal model is used to calculate boundaries

that are then converted to the appropriate scale using the significance level approach.

In a GSD with 𝐾 looks, let (𝑛1, . . . , 𝑛𝐾) be the cumulative sample sizes at looks 1 through 𝐾, with

the maximum sample size of 𝑛𝐾 attained at the final look. For any 𝑘 in (1, . . . , 𝐾), let ℐ𝑘 denote the

information fraction at look 𝑘. This is the fraction of the maximum sample size that has been observed,

with ℐ𝑘 = 𝑛𝑘/𝑛𝐾 for 𝑘 in (1, . . . , 𝐾). For studies with time-to-event outcomes, where information
is proportional to the number of events observed, interpret 𝑛𝑘 to be the cumulative number of events

observed at stage 𝑘, and interpret 𝑛𝐾 to be the maximum number of events.

Each test statistic 𝑍𝑘 is calculated using all observations collected through look 𝑘. This cumulative
quality implies that (𝑍1, . . . , 𝑍𝐾) are not independent. Jennison and Turnbull (2000, 49) show that

(𝑍1, . . . , 𝑍𝐾) is multivariate normal with

Cov(𝑍𝑗, 𝑍𝑘) = √ ℐ𝑗

ℐ𝑘
for 1 ≤ 𝑗 ≤ 𝑘 ≤ 𝐾 (1)

When (𝑍1, . . . , 𝑍𝐾) follow this distribution, the score statistics (𝑆1, . . . , 𝑆𝐾) that correspond to these
𝑧 statistics are said to have the property of “independent increments”. For any 𝑘 in (1, . . . , 𝐾), 𝑆𝑘 is

equal to 𝑍𝑘 multiplied by the square root of the Fisher information for the parameter involved in the test.

The independent increments property means that 𝑆1, (𝑆2 − 𝑆1), . . . , (𝑆𝐾 − 𝑆𝐾−1) are independently
distributed.

Without loss of generality, consider a GSD for an upper one-sided test with both efficacy and binding

futility bounds. Denote critical values for efficacy stopping as (𝑒1, . . . , 𝑒𝐾) and critical values for futility
stopping as (𝑓1, . . . , 𝑓𝐾). At interim look 𝑘 < 𝐾, if test statistic𝑍𝑘 ≥ 𝑒𝑘, the trial is stopped for efficacy;

if 𝑍𝑘 < 𝑓𝑘, the trial is stopped for futility; and if 𝑓𝑘 ≤ 𝑍𝑘 < 𝑒𝑘, the trial continues. At the final look,

there is no continuation region because 𝑓𝐾 = 𝑒𝐾.

Let 𝛼𝑘 and 𝛽𝑘 be the respective probabilities of type I and type II error at look 𝑘, and let 𝛼 = ∑𝐾
𝑘=1 𝛼𝑘

and 𝛽 = ∑𝐾
𝑘=1 𝛽𝑘 be the overall probabilities of type I and type II error (with power equal to 1 − 𝛽).

Using the result of Wassmer and Brannath (2016, 57), we write the probability of type I error during the

first and subsequent looks as

𝛼1 = Pr𝐻0
(𝑍1 ≥ 𝑒1) and 𝛼𝑘 = Pr𝐻0

(𝑍𝑘 ≥ 𝑒𝑘 ∩
𝑘−1
⋂
𝑗=1

𝑓𝑗 ≤ 𝑍𝑗 < 𝑒𝑗) for 𝑘 ∈ (2, . . . , 𝐾) (2)

Similarly, the formula for the stagewise probability of type II error is

𝛽1 = Pr𝐻𝑎
(𝑍1 < 𝑓1) and 𝛽𝑘 = Pr𝐻𝑎

(𝑍𝑘 < 𝑓𝑘 ∩
𝑘−1
⋂
𝑗=1

𝑓𝑗 ≤ 𝑍𝑗 < 𝑒𝑗) for 𝑘 ∈ (2, . . . , 𝐾) (3)
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where Pr𝐻0
(⋅) indicates the probability under the null hypothesis and Pr𝐻𝑎

(⋅) indicates the probability
under the alternative hypothesis.

For trials with efficacy stopping only, replace (𝑓1, . . . , 𝑓𝐾−1) with −∞ and let 𝑓𝐾 = 𝑒𝐾 in the

calculations above. For trials with nonbinding futility bounds, replace (𝑓1, . . . , 𝑓𝐾−1) with −∞ in (2)

but not in (3). For trials with futility stopping only, replace (𝑒1, . . . , 𝑒𝐾−1) with ∞ and let 𝑒𝐾 = 𝑓𝐾 (in

this case, stored result r(bounds) records interim efficacy critical values as .z). For two-sided trials,
replace all instances of 𝑍 with |𝑍| in (2), and replace 𝑍𝑗 with |𝑍𝑗| in (3).

To calculate the probabilities in (2) and (3), cumulative multivariate normal distributions are evaluated

with lower limit (𝑓1, . . . , 𝑓𝐾) and upper limit (𝑒1, . . . , 𝑒𝐾). Two-sided tests require additional integration
from (−𝑒1, . . . , −𝑒𝐾) to (−𝑓1, . . . , −𝑓𝐾). The covariance matrix of the distribution, defined in (1),
allows the multivariate normal integral to be decomposed into a series of univariate integrals using the

recursive integration formula of Armitage, McPherson, and Rowe (1969).

The integrals are approximated using Simpson’s rule, with quadrature points spaced closer together

toward the center of the distribution than at the tails, as per Jennison and Turnbull (2000, 349). The

number of quadrature points is 12𝑟 − 3, with 𝑟 = 20 by default. Jennison and Turnbull (2000) report

that using 𝑟 = 16 yields probabilities that are accurate to 10−6. The value of 𝑟 can be set with the

intpointsscale(#) option. When integrating over narrow intervals, the number of quadrature points

is increased adaptively to ensure sufficient precision.

Classical (Wang–Tsiatis) bounds
Wang and Tsiatis (1987) developed a class of group sequential boundaries with shape parameter Δ.

The Wang–Tsiatis family includes the classical bounds of Pocock (1977) and O’Brien and Fleming

(1979) as special cases. The Pocock boundary is equivalent to a Wang–Tsiatis design with Δ = 0.5,

and the O’Brien–Fleming boundary is a Wang–Tsiatis design with Δ = 0. The implementation of

classical boundaries pocock, obfleming, and wtsiatis() follows the work of Pampallona and Tsiatis
(1994), who extended the Wang–Tsiatis family of bounds to include futility stopping.

To allow efficacy and futility bounds to use different parameters, we use the notation Δ𝑒 and Δ𝑓. We

define efficacy critical value 𝑒𝑘 = 𝐶 ∗ ℐΔ𝑒−1/2
𝑘 , where Δ𝑒 controls the shape of the efficacy bounds and

𝐶 is a scaling factor. At the final look, ℐ𝐾 = 1, so 𝑒𝐾 = 𝐶. Futility critical value 𝑓𝑘 = 𝐶 ∗ ℐΔ𝑓−1/2
𝑘 +

ℳ1/2(ℐ1/2
𝑘 − ℐΔ𝑓−1/2

𝑘 ), where ℳ is the maximum information of the trial and Δ𝑓 controls the shape of

the futility bound. ℳ can be thought of as a standardized version of the Fisher information, scaled to

equal the expected information at the final look of a group sequential trial with an effect size of 1 under

𝐻𝑎. The expected information of an equivalent fixed-sample trial is denoted as ℱ. For a one-sided trial,

ℱ = {Φ−1(1−𝛼)+Φ−1(1−𝛽)}2, where Φ−1(⋅) is the inverse standard normal cumulative distribution
function. For a two-sided trial, 𝛼 is replaced with 𝛼/2.

Two-dimensional optimization is performed to find values of 𝐶 and ℳ that yield the desired prob-

abilities of type I and type II errors. The starting value for 𝐶 can be specified with the initscale(#)
option. The default starting value for 𝐶 is 𝑧𝛼 for one-sided trials and 𝑧𝛼/2 for two-sided trials, where

𝑧𝛼 = Φ−1(1 − 𝛼). The starting value for ℳ can be specified with the initinfo(#) option, and the

default starting value for ℳ is ℱ. Other aspects of the optimization process, such as the optimization

technique and number of iterations, can be controlled by specifying additional optimization options (see

optimopts).

Let 𝑅 represent the information ratio, the ratio of the maximum sample size of aWang–Tsiatis design

to that of a fixed design with equivalent type I and type II error. We calculate 𝑅 = ℳ/ℱ.



gsbounds — Boundaries for group sequential trials 70

Error-spending bounds
Instead of calculating critical values 𝑒𝑘 directly, the error-spending approach defines an 𝛼-spending

function 𝛼∗(𝑡). This function must be monotonically increasing over 𝑡 ∈ [0, 1], and it must satisfy

𝛼∗(0) = 0 and 𝛼∗(𝑡) = 𝛼 for 𝑡 ≥ 1. The 𝛼-spending function is used to partition 𝛼 into (𝛼1, . . . , 𝛼𝐾)
by setting 𝛼1 = 𝛼∗(ℐ1) and 𝛼𝑘 = 𝛼∗(ℐ𝑘) − 𝛼∗(ℐ𝑘−1) for 𝑘 in (2, . . . , 𝐾).

Lan and DeMets (1983) proposed error-spending functions that closely approximate classical Pocock

and O’Brien–Fleming bounds. The 𝛼-spending function for Pocock-style bounds is 𝛼∗
P(𝑡; 𝛼) =

min[𝛼 log{1+(𝑒−1)𝑡}, 𝛼]. The𝛼-spending function for O’Brien–Fleming-style bounds is𝛼∗
OBF(𝑡; 𝛼) =

min{2−2Φ(𝑧𝛼/2/
√

𝑡), 𝛼} for one-sided bounds and 𝛼∗
OBF(𝑡; 𝛼) = min{4−4Φ(𝑧𝛼/4/

√
𝑡), 𝛼} for two-

sided bounds (Wassmer and Brannath 2016), where Φ(⋅) is the standard normal cumulative distribution
function.

Kim and DeMets (1987) introduced a single parameter family of error-spending functions indexed

by parameter 𝜌 > 0, with 𝛼-spending function 𝛼∗
KD(𝑡; 𝜌, 𝛼) = min(𝛼𝑡𝜌, 𝛼). Another popular error-

spending function, proposed by Hwang, Shih, and de Cani (1990), uses parameter 𝛾 in 𝛼-spending func-
tion

𝛼∗
HSD(𝑡; 𝛾, 𝛼) =

⎧{
⎨{⎩

𝛼(1 − 𝑒−𝛾𝑡)/(1 − 𝑒−𝛾) for𝛾 ≠ 0

𝛼𝑡 for𝛾 = 0

The error-spending approach can also be used to spend type II error, with the resulting 𝛽-spending
function 𝛽∗(⋅) following rules analogous to those of the 𝛼-spending function. It is used to partition 𝛽
into 𝛽1 = 𝛽∗(ℐ1) and 𝛽𝑘 = 𝛽∗(ℐ𝑘) − 𝛽∗(ℐ𝑘−1) for 𝑘 in (2, . . . , 𝐾).

For trials with efficacy stopping only, 𝑒1 = Φ−1(1−𝛼1) for a one-sided test and 𝑒1 = Φ−1(1−𝛼1/2)
for a two-sided test. The error spent at subsequent looks depends on the stopping boundaries of the

previous stages, so boundary values are found sequentially through numerical optimization. A separate

optimization step is then performed to determine the maximum information ℳ. The starting value for

ℳ can be specified with the initinfo(#) option. The default starting value for ℳ is ℱ, the expected

information from an equivalent fixed study design.

For trials allowing stopping for futility, calculation of the boundary critical values and maximum in-

formation cannot be decomposed into separate optimization steps. In this case, a numerical search forℳ
is performed using the bisection method, and boundaries are recalculated at each step. The tolerance for

the bisection search can be specified with the infotol(#) option, and the default value is infotol(1e-
6). The lower starting value in the search for ℳ can be specified with the initinfo(# .) option, and

the upper starting value can be specified as initinfo(. #). To specify both lower and upper starting
values, use syntax initinfo(# #), specifying first the lower starting value and then the upper starting
value. By default, the lower starting value for the bisection search is ℱ, and the upper starting value is

the information required by a Bonferroni correction for repeated hypothesis tests.

Regardless of whether stopping is for efficacy, futility, or both, rarely modified aspects of the op-

timization process, such as the optimization technique and number of iterations, can be controlled by

specifying additional optimization options (see optimopts).

As with classical Wang–Tsiatis designs, the information ratio for error-spending designs is calculated

as 𝑅 = ℳ/ℱ.
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Significance level approach
The theory behind GSDs relies on the assumption that test statistics (𝑍1, . . . , 𝑍𝐾) follow amultivariate

normal distributionwith covariance specified in (1) andmarginal standard normal distributions under𝐻0.

The classic example is the difference of means between two normally distributed responses, scaled by

a known standard deviation. However, many common test statistics are asymptotically normal, such as

log odds-ratios and log-rank tests.

When the desired test does not produce an asymptotically normal test statistic, Pocock (1977) suggests

the significance level approach to approximately control errors in GSDs. Jennison and Turnbull (2000,

80) and Wassmer and Brannath (2016, 103) advocate the use of this approximation, describing it as

“remarkably accurate” and “stupendously accurate”, respectively.

For test statistic 𝑇𝑘 with cumulative distribution 𝐹(⋅) under 𝐻0, we calculate standardized test statis-

tic 𝑇 ∗
𝑘 = Φ−1{𝐹(𝑇𝑘)} that has the same significance level as 𝑇𝑘. That is, 𝐹(𝑇𝑘) = Φ(𝑇 ∗

𝑘 ). The

standardized test statistic 𝑇 ∗
𝑘 can be compared directly with critical values 𝑒𝑘 and 𝑓𝑘. Equivalently, we

can calculate the 𝑝-value of test statistic 𝑇𝑘 and compare it with the 𝑝-values corresponding to 𝑒𝑘 and

𝑓𝑘. The 𝑝-value technique is straightforward to implement and is demonstrated in examples 2 and 3
of [ADAPT] gsdesign onemean, example 2 of [ADAPT] gsdesign twomeans, and examples 2 and 3 of

[ADAPT] gsdesign twoproportions.

The significance level approach can be used as long as the assumption of independent increments is

met. Many popular statistical tests satisfy this assumption; however, Jennison and Turnbull (2000) pro-

vide several examples of scenarios where this assumption does not hold, even asymptotically. One such

example is the group sequential analysis of longitudinal data comparing themean response of two groups,

where the within-subject response has an autoregressive element. The significance level approach does

not justify the use of group sequential testing when the assumption of independent increments is violated;

it only applies when this assumption is satisfied but the test statistics are not normally distributed.
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
gsdesign computes stopping boundaries and sample sizes for interim analyses of clinical trials using

group sequential designs (GSDs). Stopping can be for efficacy, futility, or both. gsdesign can be used

with sample-size calculations from a variety of [PSS-2] powermethods, including user-defined methods.

For stopping boundary calculations without sample sizes, see [ADAPT] gsbounds. For a software-free

introduction to GSDs, see [ADAPT] GSD intro; for an introduction to Stata’s gs suite of commands, see

[ADAPT] gs.

Quick start
Sample sizes and stopping boundaries for a two-sided test of two sample means, with 𝐻0 ∶ 𝜇1 = 𝜇2

versus 𝐻𝑎 ∶ 𝜇1 ≠ 𝜇2 and a shared standard deviation of 9, with default power of 0.8 to detect the

difference between control-group mean 𝑚1 = 8 and experimental-group mean 𝑚2 = 12 at default

overall significance level𝛼 = 0.05, using default group sequential specifications of O’Brien–Fleming

efficacy boundaries with two analyses (one interim, one final)

gsdesign twomeans 8 12, sd(9)

Same as above, but with an overall significance level of 0.01 and using an O’Brien–Fleming design with

three looks to calculate both efficacy and nonbinding futility boundaries

gsdesign twomeans 8 12, sd(9) alpha(0.01) efficacy(obfleming) ///
futility(obfleming) nlooks(3)

Same as above, but use Kim–DeMets boundaries with parameters 𝜌𝑒 = 4 and 𝜌𝑓 = 2.5, and assign twice

as many participants to the experimental arm as to the control arm

gsdesign twomeans 8 12, sd(9) nratio(2) alpha(0.01) ///
efficacy(kdemets(4)) futility(kdemets(2.5)) nlooks(3)

Sample size and stopping boundaries for one-sample proportion test of𝐻0 ∶ 𝜋 = 0.2 versus𝐻𝑎 ∶ 𝜋 ≠ 0.2

with power of 0.9 to detect the difference between null proportion 𝑝0 = 0.2 and alternative proportion

𝑝𝑎 = 0.3 at overall significance level 𝛼 = 0.1, using Wang–Tsiatis efficacy boundaries with eight

analyses and efficacy parameter Δ𝑒 = 0.25

gsdesign oneproportion 0.2 0.3, alpha(0.1) power(0.9) ///
efficacy(wtsiatis(0.25)) nlooks(8)

Same as above, but report fractional sample sizes and graph the boundaries without shading

gsdesign oneproportion 0.2 0.3, alpha(0.1) nfractional power(0.9) ///
efficacy(wtsiatis(0.25)) nlooks(8) graphbounds(noshade)

Sample size and number of events for the log-rank test of 𝐻0 ∶ 𝐻𝑅 = 1 versus 𝐻𝑎 ∶ 𝐻𝑅 < 1 with

default significance level 𝛼 = 0.05 and power of 0.8 to detect the difference between a control-group

survival probability of 0.3 and an experimental-group survival probability of 0.5, using error-spending

O’Brien–Fleming-style efficacy boundaries with five analyses

gsdesign logrank 0.3 0.5, onesided efficacy(errobfleming) nlooks(5)

73
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Same as above, but time the looks to occur with 40%, 60%, 80%, 90%, and 100% of the data, adjust the

sample size for 5% withdrawal, and graph the boundaries

gsdesign logrank 0.3 0.5, wdprob(0.05) onesided ///
efficacy(errobfleming) information(0.4 0.6 0.8 0.9 1) ///
graphbounds

Menu
Statistics > Power, precision, and sample size

Syntax
gsdesign method ...[ , designopts boundopts ]

wheremethod . . . refers to a power method that is used for sample-size calculation, designopts are options

controlling the sample-size calculation, and boundopts are options controlling the calculation of the

stopping boundaries.

method Description

onemean GSD for one-sample mean test

twomeans GSD for two-sample means test

oneproportion GSD for one-sample proportion test

twoproportions GSD for two-sample proportions test

logrank GSD for a log-rank test

usermethod user-defined sample-size calculation

gsdesign supports the above methods when they are used to calculate sample size with simple random sampling. To use an
unsupported method, specify option methodok; see designopts table below.

designopts Description

Main

methodopts method-specific options

alpha(#) overall significance level for all tests; default is alpha(0.05)
power(#) overall power for all tests; default is power(0.8)
beta(#) overall probability of type II error for all tests;

default is beta(0.2)
onesided request a one-sided test; default is two-sided

nfractional report fractional sample size

force allow calculation with unsupported methodopts

methodok allow calculation with unsupported method

poweriteration(powiteropts) iteration options for the calculation of fixed-study sample size;
not available with method logrank; seldom used

collect is allowed; see [U] 11.1.10 Prefix commands.

force, methodok, and poweriteration() do not appear in the dialog box.
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methodopts [ADAPT] entry

onemeanopts [ADAPT] gsdesign onemean

twomeansopts [ADAPT] gsdesign twomeans

onepropopts [ADAPT] gsdesign oneproportion

twopropopts [ADAPT] gsdesign twoproportions

logrankopts [ADAPT] gsdesign logrank

usermethodopts [ADAPT] gsdesign usermethod

powiteropts Description

init(#) initial value for fixed-study sample size

iterate(#) maximum number of iterations; default is iterate(500)
tolerance(#) parameter tolerance; default is tolerance(1e-12)
ftolerance(#) function tolerance; default is ftolerance(1e-12)

boundopts Description

Bounds

efficacy(boundary) boundary for efficacy stopping; if neither efficacy()
nor futility() is specified, the default is
efficacy(obfleming)

futility(boundary[ , binding ]) boundary for futility stopping; use binding to request
binding futility bounds (default is nonbinding)

nlooks(#[ , equal ]) total number of analyses (nlooks() − 1 interim analyses
and one final analysis); use equal to enforce equal
information increments; if neither nlooks() nor
information() is specified, the default is nlooks(2)

information(numlist) sequence of information levels for analyses;
default is evenly spaced

nopvalues suppress 𝑝-values

Graph

graphbounds[ (graphopts) ] graph boundaries

matlistopts(general options) control the display of boundaries and sample size;
seldom used

optimopts optimization options for boundary calculations; seldom used

matlistopts() and optimopts do not appear in the dialog box.

boundary Description

obfleming classical O’Brien–Fleming bound

pocock classical Pocock bound

wtsiatis(#) classical Wang–Tsiatis bound with specified parameter value

errpocock error-spending Pocock-style bound

errobfleming error-spending O’Brien–Fleming-style bound

kdemets(#) error-spending Kim–DeMets bound with specified parameter value

hsdecani(#) error-spending Hwang–Shih–de Cani bound with specified parameter value
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graphopts Description

xdimsampsize label the 𝑥 axis with the sample size collected (default)

xdiminformation label the 𝑥 axis with the information fraction;
use information levels if information() specified

xdimlooks label the 𝑥 axis with the number of each look

noshade do not shade the rejection, acceptance, and continuation
regions

rejectopts(area options) change the appearance of the rejection region

acceptopts(area options) change the appearance of the acceptance region

continueopts(area options) change the appearance of the continuation region

efficacyopts(connected options) change the appearance of the efficacy bound

futilityopts(connected options) change the appearance of the futility bound

nolooklines do not draw vertical reference lines at each look

looklinesopts(added line suboptions) change the appearance of the reference lines
marking each look

nofixed do not label critical values from a fixed study design

fixedopts(marker options) change the appearance of the fixed-study critical values

twoway options any options other than by() documented in
[G-3] twoway options

optimopts Description

intpointsscale(#) scaling factor for number of quadrature points;
default is intpointsscale(20)

initinfo(initinfo spec) initial value(s) for maximum information

initscale(#) initial value for scaling factor 𝐶 of classical bounds

infotolerance(#) tolerance for bisection search for maximum information of error-
spending bounds with futility stopping; default is infotol(1e-6)

marquardt use the Marquardt stepping algorithm in nonconcave regions;
default is to use a mixture of steepest descent and Newton

technique(algorithm spec) maximization technique

iterate(#) perform maximum of # iterations; default is iterate(300)
[ no ]log display an iteration log; default is nolog
trace display current parameter vector in iteration log

gradient display current gradient vector in iteration log

showstep report steps within an iteration in iteration log

hessian display current negative Hessian matrix in iteration log

showtolerance report the calculated result that is compared with the effective
convergence criterion

tolerance(#) tolerance for the parameter being optimized;
default is tolerance(1e-12)

ftolerance(#) tolerance for the objective function;
default is ftolerance(1e-10)

nrtolerance(#) tolerance for the scaled gradient;
default is nrtolerance(1e-16)

nonrtolerance ignore the nrtolerance() option
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Options

� � �
Main �

alpha(#) sets the overall significance level, which is the familywise type I error rate for all analyses

(interim and final). alpha() must be in (0, 0.5). The default is alpha(0.05).

power(#) sets the overall power for all analyses. power() must be in (0.5, 1). The default is

power(0.8). If beta() is specified, power() is set to be 1 − beta(). Only one of power() or

beta() may be specified.

beta(#) sets the overall probability of a type II error. beta() must be in (0, 0.5). The default is

beta(0.2). If power() is specified, beta() is set to be 1 − power(). Only one of beta() or

power() may be specified.

onesided requests a study design for a one-sided test. The direction of the test is inferred from the effect

size.

nfractional specifies that fractional sample sizes be reported.

� � �
Bounds �

efficacy(boundary) specifies the boundary for efficacy stopping. If neither efficacy() nor

futility() is specified, the default is efficacy(obfleming).

futility(boundary[ , binding ]) specifies the boundary for futility stopping.
binding specifies binding futility bounds. With binding futility bounds, if the result of an interim

analysis crosses the futility boundary and lies in the acceptance region, the trial must end or risk

overrunning the specified type I error. With nonbinding futility bounds, the trial does not need to

stop if the result of an interim analysis crosses the futility boundary; the familywise type I error

rate is controlled even if the trial continues. By default, futility bounds are nonbinding.

nlooks(# [ , equal ]) specifies the total number of analyses to be performed (nlooks() − 1 interim

analyses and one final analysis). If neither nlooks() nor information() is specified, the default is
nlooks(2).

equal indicates that equal information increments be enforced, which is to say that the same number
of new observations will be collected at each look. The default behavior is to start by dividing

information evenly among looks, then proceed by rounding up to a whole number of observations

at each look. This can cause slight differences in the information collected at each look.

information(numlist) specifies a sequence of information levels for interim and final analyses. This

must be a sequence of increasing positive numbers, but the scale is unimportant because the infor-

mation sequence will be automatically rescaled to ensure the maximum information is reached at the

final look. By default, analyses are evenly spaced.

nopvalues suppresses the 𝑝-values from being reported in the table of boundaries for each look.



gsdesign — Study design for group sequential trials 78

� � �
Graph �

graphbounds and graphbounds(graphopts) produce graphical output showing the stopping bound-

aries.

graphopts are the following:

xdimsampsize labels the 𝑥 axis with the sample size collected (the default).

xdiminformation labels the 𝑥 axis with the information fraction unless information() is spec-
ified, in which case information levels will be used.

xdimlooks labels the 𝑥 axis with the number of each look.

noshade suppresses shading of the rejection, acceptance, and continuation regions of the graph.

rejectopts(area options) affects the rendition of the rejection region. See
[G-3] area options.

acceptopts(area options) affects the rendition of the acceptance region. See
[G-3] area options.

continueopts(area options) affects the rendition of the continuation region. See
[G-3] area options.

efficacyopts(connected options) affects the rendition of the efficacy bound. See
[G-3] cline options and [G-3] marker options.

futilityopts(connected options) affects the rendition of the futility bound. See
[G-3] cline options and [G-3] marker options.

nolooklines suppresses the vertical reference lines drawn at each look.

looklinesopts(added line suboptions) affects the rendition of reference lines marking each

look. See suboptions in [G-3] added line options.

nofixed suppresses the fixed-study critical values in the plot.

fixedopts(marker options) affects the rendition of the fixed-study critical values. See
[G-3] marker options.

twoway options are any of the options documented in [G-3] twoway options, excluding by().
These include options for titling the graph (see [G-3] title options) and for saving the graph to

disk (see [G-3] saving option).

The following options are available with gsdesign but are not shown in the dialog box:

force indicates that gsdesign should allow unsupported method options, such as options specifying

a finite population correction or a cluster randomized design. Even with option force, the method
options specified must be compatible with sample-size determination, not effect size or power cal-

culation. In addition, numlists are not supported in method options or in arguments as they are with

power, even when force is specified.

methodok indicates that gsdesign should allow unsupported methods. Option methodok is not required
to run gsdesign with user-defined methods, but it is required to use power methods other than those
described in method. Option methodok implies option force.
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poweriteration(powiteropts) controls the iterative algorithm used to calculate the fixed-study sample

size. This is seldom used.

powiteropts are the following:

init(#) specifies an initial value for the sample size when iteration is used to compute the fixed-
study sample size. The default is to use a closed-form normal approximation to compute an

initial sample size.

iterate(#) specifies the maximum number of iterations for the Newton method during calcula-

tion of the fixed-study sample size. The default is iterate(500).

tolerance(#) specifies the tolerance used to determine whether successive parameter es-

timates have converged when calculating the fixed-study sample size. The default is

tolerance(1e-12). See Convergence criteria in [M-5] solvenl( ) for details.

ftolerance(#) specifies the tolerance used when calculating the fixed-study sample size to de-
termine whether the proposed solution of a nonlinear equation is sufficiently close to 0 based on

the squared Euclidean distance. The default is ftolerance(1e-12). See Convergence criteria
in [M-5] solvenl( ) for details.

matlistopts(general options) affects the display of the matrix of boundaries and sample sizes. gen-

eral options are title(), tindent(), rowtitle(), showcoleq(), coleqonly, colorcoleq(),
aligncolnames(), and linesize(); see general options in [P]matlist. This option is seldom used.

optimopts control the iterative algorithm used to calculate stopping boundaries:

intpointsscale(#) specifies the scaling factor for the number of quadrature points used during the
numerical evaluation of stopping probabilities at each look. The default is intpointsscale(20).
See Methods and formulas in [ADAPT] gsbounds.

initinfo(initinfo spec) specifies either one or two initial values to be used in the iterative calcula-
tion of the maximum information.

The syntax initinfo(#) is applicable when using classical group sequential boundaries (Pocock
bounds, O’Brien–Fleming bounds, and Wang–Tsiatis bounds), as well as with efficacy-only

stopping when using error-spending boundaries (error-spending Pocock-style efficacy bounds,

error-spending O’Brien–Fleming-style efficacy bounds, Kim–DeMets efficacy bounds, and

Hwang–Shih–de Cani efficacy bounds). The default is to use the information from a fixed study

design; see Methods and formulas in [ADAPT] gsbounds.

The syntax initinfo(# #) is applicable when using error-spending group sequential boundaries
with futility stopping (error-spending Pocock-style bounds, error-spending O’Brien–Fleming-

style bounds, Kim–DeMets bounds, and Hwang–Shih–de Cani bounds). With this syntax, the

first and second numbers specify the lower and upper starting values, respectively, for the bisec-

tion algorithm estimating the maximum information. The default is to use the information from a

fixed study design for the lower initial value and the information corresponding to a Bonferroni

correction for the upper initial value; see Methods and formulas in [ADAPT] gsbounds. To specify

just the lower starting value, use initinfo(# .), and to specify just the upper starting value, use
initinfo(. #).
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initscale(#) specifies the initial value to be used during the iterative calculation of scaling fac-

tor 𝐶 for classical group sequential boundaries (Pocock bounds, O’Brien–Fleming bounds, and

Wang–Tsiatis bounds). The default is to use the 𝑧-value corresponding to the specified value of
alpha(). See Methods and formulas in [ADAPT] gsbounds.

infotolerance(#) specifies the tolerance for the bisection algorithm used in the itera-

tive calculation of the maximum information of error-spending group sequential boundaries

with futility stopping (error-spending Pocock-style bounds, error-spending O’Brien–Fleming-

style bounds, Kim–DeMets bounds, and Hwang–Shih–de Cani bounds). The default is

infotolerance(1e-6). See Methods and formulas in [ADAPT] gsbounds.

marquardt specifies that the optimizer should use the modified Marquardt algorithm when, at an

iteration step, it finds that 𝐻 is singular. The default is to use a mixture of steepest descent and

Newton, which is equivalent to the difficult option in [R] ml.

technique(algorithm spec) specifies how the objective function is to be maximized. The following

algorithms are allowed. For details, see Pitblado, Poi, and Gould (2024).

technique(bfgs) specifies the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

technique(nr) specifies Stata’s modified Newton–Raphson (NR) algorithm.

technique(dfp) specifies the Davidon–Fletcher–Powell (DFP) algorithm.

The default is technique(bfgs) when using classical group sequential boundaries (Pocock

bounds, O’Brien–Fleming bounds, and Wang–Tsiatis bounds) and also for the second opti-

mization step used to estimate the maximum information with efficacy-only stopping when

using error-spending boundaries (error-spending Pocock-style efficacy bounds, error-spending

O’Brien–Fleming-style efficacy bounds, Kim–DeMets efficacy bounds, and Hwang–Shih–de

Cani efficacy bounds). The default is technique(nr) for the sequential optimization steps used

to estimate critical values for error-spending boundaries. You can also switch between two al-

gorithms by specifying the technique name followed by the number of iterations. For example,

specifying technique(nr 10 bfgs 20) requests 10 iterations with the NR algorithm followed by

20 iterations with the BFGS algorithm, and then back to NR for 10 iterations, and so on. The process

continues until convergence or until the maximum number of iterations is reached.

iterate(#) specifies the maximum number of iterations. If convergence is not declared by the

time the number of iterations equals iterate(), an error message is issued. The default value of
iterate(#) is the number set using set maxiter, which is 300 by default.

[ no ]log requests an iteration log showing the progress of the optimization. The default is nolog.

trace adds to the iteration log a display of the current parameter vector.

gradient adds to the iteration log a display of the current gradient vector.

showstep adds to the iteration log a report on the steps within an iteration. This option was added so
that developers at StataCorp could view the stepping when they were improving the ml optimizer
code. At this point, it mainly provides entertainment.

hessian adds to the iteration log a display of the current negative Hessian matrix.

showtolerance adds to the iteration log the calculated value that is compared with the effective

convergence criterion at the end of each iteration. Until convergence is achieved, the smallest

calculated value is reported. shownrtolerance is a synonym of showtolerance.
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Below, we describe the three convergence tolerances. Convergence is declared when the

nrtolerance() criterion is met and either the tolerance() or the ftolerance() criterion is also
met.

tolerance(#) specifies the tolerance for the parameter vector. When the relative change in

the parameter vector from one iteration to the next is less than or equal to tolerance(), the
tolerance() convergence criterion is satisfied. The default is tolerance(1e-12).

ftolerance(#) specifies the tolerance for the objective function. When the relative change in

the objective function from one iteration to the next is less than or equal to ftolerance(), the
ftolerance() convergence is satisfied. The default is ftolerance(1e-10).

nrtolerance(#) specifies the tolerance for the scaled gradient. Convergence is declared when

gH−1g′ < nrtolerance(). The default is nrtolerance(1e-16).

nonrtolerance specifies that the default nrtolerance() criterion be turned off.

boundary
obfleming specifies a classical O’Brien–Fleming design for efficacy or futility bounds (O’Brien and

Fleming 1979). O’Brien–Fleming efficacy bounds are characterized by being extremely conservative

at early looks. The O’Brien–Fleming design is a member of theWang–Tsiatis family and is equivalent

to specifying a boundary of wtsiatis(0).

pocock specifies a classical Pocock design for efficacy or futility bounds (Pocock 1977). Pocock efficacy
bounds are characterized by using the same critical value at all looks. The Pocock design is a member

of the Wang–Tsiatis family and is equivalent to specifying a boundary of wtsiatis(0.5).

wtsiatis(#) specifies a classical Wang–Tsiatis design for efficacy or futility bounds (Wang and Tsiatis

1987). The shape ofWang–Tsiatis bounds is determined by parameter Δ ∈ [−10, 0.7], where smaller
values of Δ yield bounds that are more conservative at early looks.

errpocock specifies an error-spending Pocock-style design for efficacy or futility bounds (Lan and

DeMets 1983). The critical values from error-spending Pocock-style bounds are very similar to those

of classic Pocock bounds, but they are obtained using an error-spending function.

errobfleming specifies an error-spending O’Brien–Fleming-style design for efficacy or futility bounds
(Lan and DeMets 1983). The critical values from error-spending O’Brien–Fleming-style bounds

are very similar to those of classic O’Brien–Fleming bounds, but they are obtained using an error-

spending function.

kdemets(#) specifies an error-spending Kim–DeMets design for efficacy or futility bounds (Kim and

DeMets 1987). The shape of Kim–DeMets bounds is determined by power parameter 𝜌 ∈ (0, 10],
where larger values of 𝜌 yield bounds that are more conservative at early looks.

hsdecani(#) specifies an error-spending Hwang–Shih–de Cani design for efficacy or futility bounds

(Hwang, Shih, and de Cani 1990). The shape of Hwang–Shih–de Cani bounds is determined by

parameter 𝛾 ∈ [−30, 3], where smaller values of 𝛾 yield bounds that are more conservative at early

looks.

For a design with both efficacy and futility stopping boundaries, if you specify a classical boundary

(that is, in theWang–Tsiatis family) for one, then you must specify a classical boundary for the other. So,

you could not specify a boundary in the Wang–Tsiatis family for one boundary and an error-spending

boundary for the other. When specifying efficacy and futility boundaries from the same family, the

efficacy parameter does not need to be the same as the futility parameter.
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Boundaries that are conservative at early looks, such as the O’Brien–Fleming bound, offer little

chance of early stopping unless the true effect size is quite large (in the case of efficacy bounds) or quite

small (in the case of futility bounds). A trial employing a conservative bound is more likely to continue

to the final look, yielding an expected sample size that is not dramatically smaller than the sample size

required by an equivalent fixed-sample trial. However, the maximum sample size (that is, the sample

size at the final look) of a trial with a conservative bound is generally not much greater than the sample

size required by an equivalent fixed trial. Another direct result of specifying conservative bounds is that

the critical value at the final look tends to be close to the critical value employed by an equivalent fixed

design. In contrast, anticonservative boundaries such as the Pocock bound offer a much better shot at

early stopping (often yielding a small expected sample size) at the cost of a larger maximum sample size

and final critical values that are considerably larger than the critical value of an equivalent fixed design.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Examples

Design for GSD with tests of two means
Background on the BHAT study
Design for GSD with survival analysis

This entry describes the gsdesign command and the methodology for calculating stopping bound-

aries and sample sizes for group sequential designs, or GSDs. For a software-free introduction to GSDs,

see [ADAPT] GSD intro; for an introduction to Stata’s gs suite of commands, see [ADAPT] gs; to calcu-

late stopping boundaries without sample sizes, see [ADAPT] gsbounds; and to calculate sample sizes for

fixed study designs, see [PSS-2] power.

Introduction
Clinical trials are studies investigating the effects of a treatment on human participants, and sponsors

of clinical trials have both ethical and economic motivations for making trials as efficient as possible.

One way of accomplishing this is to analyze trial data while the study is still underway. A positive result

at an interim analysis can lead to early termination of the study due to treatment efficacy, sparing future

participants from being assigned to the control group and receiving an inferior treatment. If the interim

analysis demonstrates that the new treatment is ineffective, the trial can stop early and resources can be

allocated to testing more promising treatments.

When done naïvely, conducting multiple analyses at a nominal significance level will inflate type I

error. Group sequential experimental designs provide a protocol for the interim analysis of clinical trial

data and a framework in which the trial can be stopped early for efficacy or futility while maintaining

control of familywise type I and type II errors.

AGSD lays out a sequence of looks, or analyses of the clinical trial data. Interim analyses, which take

place before the trial is scheduled to end, provide the ability to terminate the trial early if the result at

the interim look is sufficiently unambiguous. Efficacy stopping occurs when the null hypothesis, 𝐻0,

is rejected at an interim look and the clinical trial is terminated early due to treatment efficacy. The

complement to efficacy stopping is futility stopping, in which the trial is terminated because 𝐻0 has

been accepted during an interim look. The concept of accepting the null hypothesis runs counter to the

prevailing modern interpretation of null hypothesis significance testing, but accepting 𝐻0 has a long

history in the context of sequential trials and is commonly performed in the literature about sequential

clinical trials. See Origins of GSD in [ADAPT] GSD intro for a history of GSDs.
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The decision to terminate a clinical trial is frequently made by an independent monitoring group, often

called a Data Monitoring Committee. The committee may decide to terminate the trial early because of

demonstrated treatment efficacy or futility at an interim analysis. The Data Monitoring Committee can

also stop a clinical trial for reasons such as safety and the prevalence of adverse events, which are harmful

side effects of the treatment and negative medical outcomes not associated with an underlying disease.

When determining whether to terminate a trial because of efficacy or futility, the committee can compare

the test statistic from the interim analysis against the critical values of the efficacy or futility bounds. Test

statistics with asymptotically standard normal distributions under 𝐻0 can be compared directly with the

boundary critical values, and statistics that follow other distributions under 𝐻0 may be evaluated using

the significance level approach.

The critical values of the group sequential efficacy and futility bounds depend on several factors: the

overall power (1− 𝛽) and significance level (𝛼) of the design, the type of boundary (gsdesign supports
seven types of boundaries), whether the test has a one- or two-sided alternative hypothesis, and the

information fraction at which the analyses occur. Technically, the information fraction is the proportion

of the maximum possible Fisher information that has been collected about the parameter being estimated

as part of the test, but this definition is too abstract to be useful. In most cases, the information fraction

is the proportion of the maximum sample size that has been collected. For survival data, the information

fraction is the proportion of the total number of events (failures) that have been observed, not the total

number of participants. To calculate the maximum sample size of a GSD, gsdesign scales up the sample
size of an equivalently powered fixed-sample design by a factor known as the information ratio.

Examples

Design for GSD with tests of two means

Example 1: Pocock efficacy bounds for a test of two sample means
Jennison and Turnbull (2000, 27) demonstrate the use of Pocock efficacy bounds by considering a test

of two means: 𝜇1 and 𝜇2. The null hypothesis is 𝐻0 ∶ 𝜇1 = 𝜇2, and the two-sided alternative hypothesis

is 𝐻𝑎 ∶ 𝜇1 ≠ 𝜇2. They assume a known standard deviation of 2 for both groups and desire a test with

90% power to detect a difference in means of one unit, while maintaining an overall significance level

of 𝛼 = 0.05 over five evenly spaced looks.

Given these specifications, we use gsdesign twomeans with a control group mean, 𝑚1, of 0 and a

difference in means of 1, specified with the diff(1) option. The efficacy(pocock) and nlooks(5)
options request the efficacy boundaries and sample size for a Pocock design with five evenly spaced

looks. alpha() is omitted because it is left at its default value of 0.05, and beta() is omitted because

power(), defined as (1 − 𝛽), is specified instead. The graphbounds option instructs Stata to draw a

graph of the boundaries and sample size at each look. The sd() option specifies the shared standard

deviation of both groups, and the knownsd option indicates that the population standard deviation is

known for both control and treatment groups.
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. gsdesign twomeans 0, diff(1) sd(2) knownsds power(0.9) efficacy(pocock)
> nlooks(5) graphbounds
Group sequential design for a two-sample means test
z test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1
Efficacy: Pocock
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.9000
delta = 1.0000

m1 = 0.0000
m2 = 1.0000

diff = 1.0000
sd = 2.0000

Expected sample size:
H0 = 199.00
Ha = 115.43

Info. ratio = 1.2066
N fixed = 170

N max = 204
N1 max = 102
N2 max = 102

Fixed-study crit. values = ±1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Sample size
Look frac. Lower Upper p-value N1 N2 N

1 0.20 -2.4132 2.4132 0.0158 21 21 42
2 0.40 -2.4132 2.4132 0.0158 41 41 82
3 0.60 -2.4132 2.4132 0.0158 61 61 122
4 0.80 -2.4132 2.4132 0.0158 82 82 164
5 1.00 -2.4132 2.4132 0.0158 102 102 204

Notes: Critical values are for z statistics; otherwise, use p-value
boundaries.
Requested information fraction not attained.



gsdesign — Study design for group sequential trials 85

-3

-2

-1

1

2

3

0

z-
va

lu
e

20 40 60 80 100 120 140 160 180 200 2200
Sample size

Stop for efficacy
(reject H0)
Stop for futility
(accept H0)
Continue
Efficacy
Fixed-study
critical values

Parameters: α = .05 (two-sided), 1-β = .9, δ = 1, µ1 = 0, µ2-µ1 = 1, σ = 2

Pocock efficacy

Group sequential design for a two-sample means test

Figure 1. Pocock efficacy bounds for a test of the equality of two means

According to this design, the first lookwill occurwhen results have been collected from 21 participants

in the control group and 21 participants in the experimental group. A 𝑧 test of the two means will be
conducted, and if the 𝑧 statistic from that test, 𝑧1, lies in the rejection region (𝑧1 ≥ 2.413 or 𝑧1 ≤
−2.413), then 𝐻0 will be rejected and the trial will end due to treatment efficacy. The efficacy boundary

separates the rejection region from the continuation region; if |𝑧1| < 2.413, the test statistic lies within

the continuation region and the trial will continue to the second look.

At each successive look, the same procedure is repeated. A defining characteristic of Pocock efficacy

bounds is that the same critical value is used at all looks, so at each look the test statistic is compared

with ±2.413. At the fifth and final look, there is no continuation region: if |𝑧5| ≥ 2.413, then the null

hypothesis is rejected, and if |𝑧5| < 2.413, then the null hypothesis is accepted.

The graph displays the bounds visually, dividing the range of possible 𝑧-values into continuation,

rejection, and acceptance regions. The vertical axis is the value of the 𝑧 statistic, and the horizontal axis
is the sample size. We progress from left to right in the graph as samples are collected during the course

of the trial. The efficacy bounds, which separate the continuation and rejection regions, are drawn in

blue and marked with a dot at each look. Before the first look (that is, when fewer than 42 samples have

been collected), it is impossible to reject 𝐻0 because the data have not yet been analyzed, so all 𝑧-values
fall within the continuation region. Beginning with the first look, the range of 𝑧-values is divided into
continuation and rejection regions. Because we are conducting a two-sided test, the rejection region is

made up of two areas: 𝑧-values≥ 2.413 and 𝑧-values≤ −2.413. At the final look, there is no continuation

region; it has been replaced by the acceptance region because the trial cannot be continued beyond the

fifth look.

To facilitate comparison with a fixed-sample study design, gsdesign displays the estimated sample

size and critical values for a fixed study along with the information ratio, the ratio of the maximum

sample size from a GSD to the sample size of a fixed design. The Pocock design allows the trial to end

after collecting data from as few as 42 participants, but if the trial continues to completion, it will require

20% more participants to attain the same power and significance level as a fixed-sample trial.
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When comparing the efficiency of a GSD versus a fixed-sample design, it is useful to examine the

expected sample size of the GSD. The expected sample size, which is calculated relative to a given effect

size, is the average sample size that a group sequential trial would need if the experiment were to be

repeated many times. In the output above, we see that the expected sample size under 𝐻0 is 199. This

means that if the true difference between group means is 0 and the trial is repeated many times, the

average sample size will be 199. The expected sample size under 𝐻𝑎 of 115.43 means that if the true

difference between group means is 1, the average sample size over repeated experiments will be 115.43,

a substantial savings over the 170 subjects required by the fixed-sample design.

When designing this study, Jennison and Turnbull (2000) reported the maximum sample size as 210

participants, slightly more than the 204 calculated by gsdesign. The difference is due to the fact that
Jennison and Turnbull forced the spacing of the looks to be exactly equal by requiring each arm of

the study to collect data from 21 new participants between each look. By default, gsdesign begins

by dividing information evenly among looks, and then gsdesign rounds the sample sizes up to whole

numbers (which can cause slight differences in the spacing between looks). To match the calculation of

Jennison and Turnbull (2000), we add the equal suboption in the nlooks() option.

. gsdesign twomeans 0, diff(1) sd(2) knownsds power(0.9) efficacy(pocock)
> nlooks(5, equal)
Group sequential design for a two-sample means test
z test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1
Efficacy: Pocock
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.9000
delta = 1.0000

m1 = 0.0000
m2 = 1.0000

diff = 1.0000
sd = 2.0000

Expected sample size:
H0 = 204.80
Ha = 116.94

Info. ratio = 1.2066
N fixed = 170

N max = 210
N1 max = 105
N2 max = 105

Fixed-study crit. values = ±1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Sample size
Look frac. Lower Upper p-value N1 N2 N

1 0.20 -2.4132 2.4132 0.0158 21 21 42
2 0.40 -2.4132 2.4132 0.0158 42 42 84
3 0.60 -2.4132 2.4132 0.0158 63 63 126
4 0.80 -2.4132 2.4132 0.0158 84 84 168
5 1.00 -2.4132 2.4132 0.0158 105 105 210

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.

If we enforce equal information increments, we arrive at a maximum sample size of 210. The in-

creased sample size causes a slight increase in attained power, stored as r(power a).
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. display ”Power attained at final analysis: ” r(power_a) * 100
Power attained at final analysis: 91.020745

We see that the additional observations yield an attained power of 91%. To understand why the infor-

mation increments were not exactly equal in the original design, it is informative to view the fractional

sample-size calculations by specifying the nfractional option.

. gsdesign twomeans 0, diff(1) sd(2) knownsds nfractional power(0.9)
> efficacy(pocock) nlooks(5)
Group sequential design for a two-sample means test
z test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1
Efficacy: Pocock
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.9000
delta = 1.0000

m1 = 0.0000
m2 = 1.0000

diff = 1.0000
sd = 2.0000

Expected sample size:
H0 = 197.83
Ha = 115.15

Info. ratio = 1.2066
N fixed = 168.12

N max = 202.85
N1 max = 101.43
N2 max = 101.43

Fixed-study crit. values = ±1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Sample size
Look frac. Lower Upper p-value N1 N2 N

1 0.20 -2.4132 2.4132 0.0158 20.285 20.285 40.571
2 0.40 -2.4132 2.4132 0.0158 40.571 40.571 81.141
3 0.60 -2.4132 2.4132 0.0158 60.856 60.856 121.71
4 0.80 -2.4132 2.4132 0.0158 81.141 81.141 162.28
5 1.00 -2.4132 2.4132 0.0158 101.43 101.43 202.85

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.

. display ”Power attained at final analysis: ” r(power_a) * 100
Power attained at final analysis: 90.003222

Option nfractional instructs gsdesign not to round sample sizes up to the nearest whole number.
We can see that the first look occurs with 20.285 observations per arm, and the second occurs with 40.571

observations per arm. Rounding up to whole numbers of participants, this gives us 21 observations per

arm for the first look, and an additional 20 observations (for a total of 41) at the second look. If this trial

were to continue to the fifth look, it would require 202.85 participants to attain 90% power to detect a

difference in means of one unit. As the sample size increases, the relative impact of rounding up to a

whole number of observations diminishes.
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Example 2: Pocock bounds with efficacy and futility stopping
In example 1, we saw that the GSD resulted in a substantially smaller expected sample size than an

equivalent fixed study design if the alternative hypothesis was true but not if the null hypothesis was true.

To increase the potential to stop the trial early if the treatment is ineffective, we now add futility bounds

to the experimental design. Futility bounds separate the continuation region from the acceptance region

and allow early acceptance of 𝐻0 when there is evidence that the treatment is not meaningfully different

from the control.

We use the same design as in example 1, this time adding the futility(pocock) option to add

nonbinding Pocock futility bounds.

. gsdesign twomeans 0, diff(1) sd(2) knownsds power(0.9) efficacy(pocock)
> futility(pocock) nlooks(5) graphbounds
Group sequential design for a two-sample means test
z test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1
Efficacy: Pocock
Futility: Pocock, nonbinding
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.9000
delta = 1.0000

m1 = 0.0000
m2 = 1.0000

diff = 1.0000
sd = 2.0000

Expected sample size:
H0 = 124.55
Ha = 132.66

Info. ratio = 1.5966
N fixed = 170

N max = 270
N1 max = 135
N2 max = 135

Fixed-study crit. values = ±1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Futility
Look frac. Lower Upper p-value Lower Upper p-value

1 0.20 -2.4132 2.4132 0.0158 -0.1490 0.1490 0.8815
2 0.40 -2.4132 2.4132 0.0158 -0.9078 0.9078 0.3640
3 0.60 -2.4132 2.4132 0.0158 -1.4900 1.4900 0.1362
4 0.80 -2.4132 2.4132 0.0158 -1.9808 1.9808 0.0476
5 1.00 -2.4132 2.4132 0.0158 -2.4132 2.4132 0.0158

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.
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Sample size
Look N1 N2 N

1 27 27 54
2 54 54 108
3 81 81 162
4 108 108 216
5 135 135 270
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Pocock efficacy & nonbinding futility

Group sequential design for a two-sample means test

Figure 2. Pocock efficacy and futility bounds for a test of the equality of two means

The maximum sample size required by this design is even larger than that of the efficacy-only design,

but the ability to end the trial early for futility can result in a considerably smaller sample size if 𝐻0 is

true. The efficacy bounds for this design are the same as they were in example 1; this is because adding

nonbinding futility bounds to a group sequential trial does not affect the calculation of efficacy bound

critical values.

As before, if |𝑧1| ≥ 2.413, we reject 𝐻0 and end the trial early for efficacy. With the addition of

the futility bounds, we have the option of ending the trial early for futility if |𝑧1| < 0.149. If |𝑧1| ∈
[0.149, 2.413), the trial must continue. While the Pocock efficacy bounds use the same critical values

for all looks, the futility bounds do not; they grow from ±0.149 at the first look to ±1.981 by the fourth

look, coinciding with the efficacy bounds at the fifth look.

As we move from left to right on the graph by collecting additional samples, we see the futility region

grow and the continuation region shrink. The narrowing continuation region means that the trial is in-

creasingly likely to stop due to futility or efficacy as more samples are collected. But if the test statistics

do not cross the boundaries and the trial continues to the fifth look, the group sequential trial will require

about 60% more participants than an equivalently powered fixed study.

One way to reduce the maximum sample size would be to use a boundary that is more conservative

at early looks, such as an O’Brien–Fleming boundary. Another option is to use binding futility bounds

instead of nonbinding bounds. While nonbinding futility bounds offer the option to stop the trial for
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efficacy if they are crossed, binding futility bounds require the termination of the trial if they are crossed.

Continuing a trial that has crossed a binding futility bound can inflate the type I error, and any conclusions

reached by the trial will be viewed with suspicion.

We rerun the previous example with futility() suboption binding to specify binding futility

bounds, omitting the graphbounds option.

. gsdesign twomeans 0, diff(1) sd(2) knownsds power(0.9) efficacy(pocock)
> futility(pocock, binding) nlooks(5)
Group sequential design for a two-sample means test
z test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1
Efficacy: Pocock
Futility: Pocock, binding
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.9000
delta = 1.0000

m1 = 0.0000
m2 = 1.0000

diff = 1.0000
sd = 2.0000

Expected sample size:
H0 = 120.18
Ha = 113.00

Info. ratio = 1.5453
N fixed = 170

N max = 260
N1 max = 130
N2 max = 130

Fixed-study crit. values = ±1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Futility
Look frac. Lower Upper p-value Lower Upper p-value

1 0.20 -2.3564 2.3564 0.0185 -0.1290 0.1290 0.8974
2 0.40 -2.3564 2.3564 0.0185 -0.8754 0.8754 0.3813
3 0.60 -2.3564 2.3564 0.0185 -1.4482 1.4482 0.1476
4 0.80 -2.3564 2.3564 0.0185 -1.9310 1.9310 0.0535
5 1.00 -2.3564 2.3564 0.0185 -2.3564 2.3564 0.0185

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.

Sample size
Look N1 N2 N

1 26 26 52
2 52 52 104
3 78 78 156
4 104 104 208
5 130 130 260
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The binding futility bounds give a modest reduction in maximum sample size, down from 270 to 260.

Compared with the nonbinding design, the binding design uses slightly smaller futility critical values.

Also, while the efficacy-only design and the design with nonbinding futility bounds used efficacy critical

values of ±2.413, here the efficacy critical values have shrunk to ±2.356.

To understand why, consider what happens when the null hypothesis is true. In this case, the correct

action is to accept 𝐻0, and it is a type I error to reject 𝐻0. In the efficacy-only design of example 1, each

interim look presents the opportunity to continue the trial or to commit a type I error andmistakenly reject

𝐻0; only at the final look do we have the option to correctly accept 𝐻0. With binding futility bounds,

every look offers the possibility of crossing the futility boundary and correctly accepting 𝐻0, making it

less likely that the trial will continue to later looks. If we were to use the same efficacy critical values as

in the efficacy-only design, the actual probability of committing a type I error would be lower than the

specified significance level, and the test would be conservative. By relaxing the efficacy critical values,

the desired significance level is achieved. We do not relax the efficacy critical values when nonbinding

futility boundaries are used because there is no guarantee that the trial will be stopped after crossing a

futility boundary.

See [ADAPT] gsdesign twomeans for more examples of GSDs for tests of two sample means.

Background on the BHAT study

The Beta-Blocker Heart Attack Trial (BHAT) was one of the first large-scale clinical trials to adopt

a group sequential monitoring plan (Cook and DeMets 2008). This was a double-blind study in which

participants who had experienced a heart attack were randomized to one of two groups: the control group

(which received a placebo) and the intervention group (which received the beta blocker propranolol).

The endpoint, or outcome of interest, was total mortality, and survival analysis was conducted using a

log-rank test with a two-sided alternative hypothesis.

Recruitment ran from June 1978 to October 1980, with follow-up scheduled to continue until June

1982. Oversight was provided by an independent Policy and Data Monitoring Board (PDMB), which

contained physicians, biostatisticians, and an ethicist. While the BHAT’s study protocol did not set strict

rules for early termination, the PDMB adopted the then-recently publishedO’Brien–Flemingmethod early

on (DeMets et al. 1984).

Based on a combination of factors, including a log-rank test statistic that crossed the O’Brien–Fleming

boundary at the sixth of seven looks, the PDMB stopped the BHAT for treatment efficacy in October of

1981, eight months before follow-up was scheduled to end in June 1982. Lan and DeMets (1989) report

the values of the log-rank test statistic at each of the interim looks:

May October March October April October

1979 1979 1980 1980 1981 1981

test statistic 1.68 2.24 2.37 2.30 2.34 2.82

DeMets, Furberg, and Friedman (2006, Case 2) report that the BHAT was designed with a two-tailed

alpha level of 0.05 and 90% power to detect the difference between nonadherence-adjusted three-year

survival probabilities of 82.54% for the control group and 86.25% for the intervention group. A total of

seven biannual analyses were planned, and O’Brien–Fleming efficacy bounds were calculated assuming

seven evenly spaced looks.
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Design for GSD with survival analysis

Example 3: BHAT study
To re-create the design of the BHAT, we run gsdesign logrank with survival probabilities 0.8254

and 0.8625 for the control and intervention arms, respectively. We specify a power of 90% and

O’Brien–Fleming efficacy bounds with seven evenly spaced looks.

. gsdesign logrank 0.8254 0.8625, power(0.9) efficacy(obfleming) nlooks(7)
> graphbounds
Group sequential design for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR != 1
Efficacy: O’Brien--Fleming
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.9000
delta = 0.7709 (hazard ratio)

hratio = 0.7709
Censoring:

s1 = 0.8254
s2 = 0.8625

Pr_E = 0.1560
Expected number of events:

H0 = 642.71
Ha = 459.40

Info. ratio = 1.0323
E fixed = 628
N fixed = 4,024

N max = 4,152
N1 max = 2,076
N2 max = 2,076

Fixed-study crit. values = ±1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Events
Look frac. Lower Upper p-value E

1 0.14 -5.4590 5.4590 0.0000 93
2 0.29 -3.8601 3.8601 0.0001 186
3 0.43 -3.1518 3.1518 0.0016 278
4 0.57 -2.7295 2.7295 0.0063 371
5 0.71 -2.4413 2.4413 0.0146 463
6 0.86 -2.2286 2.2286 0.0258 556
7 1.00 -2.0633 2.0633 0.0391 648

Note: Critical values are for z statistics; otherwise, use
p-value boundaries.
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Figure 3. BHAT trial with O’Brien–Fleming efficacy bounds

At the top of the output, gsdesign displays a description of the trial with null and alternative hypothe-
ses as well as study parameters. We see that the survival probabilities 0.8254 and 0.8625 correspond to a

hazard ratio of 0.7709, which is the effect size used when calculating the number of events necessary to

achieve 90% power. A fixed study would require 628 events (deaths) to detect a hazard ratio of 0.7709

with 90% power, and with the specified survival probabilities, this corresponds to a sample size of 4,024.

The GSD requires a maximum of 648 events (corresponding to a sample of size 4,152) if it continues

to the final look. If the null hypothesis is correct (the hazard ratio is 1) and the BHATwere to be repeated

many times using this design, we would expect to observe an average of 642.71 events per trial. This

is near the maximum because if the null hypothesis is true, in most replications the trial will continue

to the final look; only rarely will the trial be stopped early for efficacy (which would be a type I error).

If the hazard ratio is truly 0.7709 (the value under the alternative hypothesis) and the trial were to be

repeated many times, we would expect an average of 459.4 events per trial. The substantial sample-size

savings (try saying that five times fast) is due to the fact that many replications of the trial will correctly

be stopped early for efficacy.

The log-rank statistic is asymptotically normally distributedwith independent information increments,

and can be compared directly against group sequential critical values (Tsiatis 1982). The critical values

we calculate match those used by the PDMB Cook and DeMets (2008, 306).

At the first look, the test statistic 𝑧1 = 1.68 < 5.459, so the trial continued. The test statistics at

the following four looks are also in the continuation region (𝑧2 = 2.24 < 3.86, 𝑧3 = 2.37 < 3.152,

𝑧4 = 2.30 < 2.73, and 𝑧5 = 2.34 < 2.441), bringing the trial to the sixth of seven planned looks. At the

sixth look, the test statistic crosses the efficacy bound, 𝑧6 = 2.82 > 2.229, which supports the PDMB’s

decision to stop the trial for treatment efficacy.
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Two aspects of the O’Brien–Fleming bound that the PDMB found appealing were the conservative

critical values early in the trial and the final critical value that is only marginally larger than the fixed-

study critical value (DeMets et al. 1984). An additional advantage is that even if the trial were to continue

to the final look, the O’Brien–Fleming design requires only 3% more information (deaths, in this case)

than a fixed study.

While the BHAT was a success story for the use of group sequential clinical trials, it was not without

its challenges (DeMets, Furberg, and Friedman 2006). The number of participants recruited was nearly

equal to the desired sample size, so the power would have been almost 90% to detect the difference

between the anticipated survival probabilities of 82.54% and 86.25%, but survival was higher than an-

ticipated for both the control and intervention groups. At the sixth look, only 318 of the anticipated 556

events had been observed, and a smaller-than-anticipated number of events can reduce the power of the

test. Fortunately, adherence was also better than anticipated, and the effect size was larger than antici-

pated. The reduced number of events observed impacted the power of the test but did not influence the

probability of committing a type I error.

A potentially more vexing issue is that the efficacy critical values were calculated under the assump-

tion of equal information increments, but the interim analyses were scheduled based on calendar time,

making it impossible to enforce an evenly spaced information sequence. Severe violations of this as-

sumption can cause excessive type I error, but the number of deaths between looks was approximately

equal, and type I error control is robust to minor violations of this assumption (DeMets et al. 1984).

Example 4: Error-spending bounds
One of themembers of the PDMB from the BHAT, David DeMets, was inspired by the experience to find

a more flexible method of calculating group sequential boundaries. Lan and DeMets (1983) developed

error-spending methods, which depend on the total information to be collected and the interim analyses

already conducted but not on the critical values of future looks. This flexibility allows error-spending

bounds to adjust to scenarios such as the BHAT, where the precise information fraction at each look is

not known a priori. This framework was further extended by Lan and DeMets (1989), who introduced

methods for calculating stopping boundaries based on calendar time.

Here we reimagine the BHAT trial using an error-spending approximation to the classical

O’Brien–Fleming boundary (Lan and DeMets 1983). Instead of specifying evenly spaced looks, we

use Method 2 from Lan and DeMets (1989, 1195) to specify the timing of interim looks based on cal-

endar time. To do this, we use the information() option instead of the nlooks() option, and we

specify the timing of each look as the number of months since June 1979, when the study began accruing

participants. We graph the bounds and label the 𝑥 axis with the number of months since June 1979.

. gsdesign logrank 0.8254 0.8625, power(0.9) efficacy(errobfleming)
> information(11 16 21 28 34 40 48)
> graphbounds(xdiminformation xtitle(”Months”))
Group sequential design for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR != 1
Efficacy: Error-spending O’Brien--Fleming style
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.9000
delta = 0.7709 (hazard ratio)

hratio = 0.7709
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Censoring:
s1 = 0.8254
s2 = 0.8625

Pr_E = 0.1560
Expected number of events:

H0 = 641.04
Ha = 461.13

Info. ratio = 1.0280
E fixed = 628
N fixed = 4,024

N max = 4,136
N1 max = 2,068
N2 max = 2,068

Fixed-study crit. values = ±1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Events
Look frac. Lower Upper p-value E

1 0.23 -4.5380 4.5380 0.0000 148
2 0.33 -3.7128 3.7128 0.0002 216
3 0.44 -3.2081 3.2081 0.0013 283
4 0.58 -2.7361 2.7361 0.0062 377
5 0.71 -2.4739 2.4739 0.0134 458
6 0.83 -2.2717 2.2717 0.0231 538
7 1.00 -2.0473 2.0473 0.0406 646

Note: Critical values are for z statistics; otherwise, use
p-value boundaries.
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Figure 4. BHAT trial with error-spending bounds
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The new designmaintains the same familywise significance level, power, and effect size as the original

BHAT design, so the fixed-study equivalent of the new design requires the same 628 events as the fixed

equivalent of the original BHAT. Comparing the stopping boundaries of the new error-spending design

against those of the original design, we see that the new critical values are quite close to those calculated

using classical O’Brien–Fleming bounds with evenly spaced looks. The maximum number of events

remains nearly the same, with the new design calling for 646 events at the final analysis versus 648 for

the classical O’Brien–Fleming design.

More importantly, when the new error-spending boundaries are used to determine stopping for the

BHAT trial, they support the same conclusion as the classical O’Brien–Fleming boundaries: to terminate

the trial for efficacy at the sixth look. The first five tests statistics lie in the continuation region of the

new design, but at the sixth look, 𝑧6 = 2.82 > 2.272.

Stored results
To calculate the fixed-study sample size, gsdesign method runs power method and returns all the

method-specific stored results as well as the following common results in r():

Scalars

r(alpha) overall significance level (familywise type I error)

r(beta) overall probability of a type II error

r(binding) 1 for binding futility bounds, 0 for nonbinding
r(E fixed) total number of events (failures) in a fixed study design (survival analysis only)

r(E max) maximum observed events if the study continues to completion (survival analysis only)

r(effparam) efficacy parameter (if wtsiatis(), kdemets(), or hsdecani() specified)
r(Efrac fixed) fractional total number of events (failures) in a fixed study design (survival analysis only)

r(ESS0) expected sample size under null hypothesis

r(ESS1) expected sample size under alternative hypothesis

r(futparam) futility parameter (if wtsiatis(), kdemets(), or hsdecani() specified)
r(info ratio) ratio of maximum information required to that of a fixed study design

r(N fixed) sample size of a fixed study design

r(N fixedfrac) fractional sample size of a fixed study design

r(N max) maximum sample size if the study continues to completion

r(N1 fixed) sample size of the control group in a fixed study design (multiarm trials only)

r(N1 fixedfrac) fractional sample size of the control group in a fixed study design (multiarm trials only)

r(N1 max) maximum sample size of the control group if the study continues to completion (multiarm

trials only)
r(N2 fixed) sample size of the experimental group in a fixed study design (multiarm trials only)

r(N2 fixedfrac) fractional sample size of the experimental group in a fixed study design (multiarm trials

only)
r(N2 max) maximum sample size of the experimental group if the study continues to completion (mul-

tiarm trials only)
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(nlooks) number of analyses

r(onesided) 1 for a one-sided test, 0 otherwise
r(power) specified overall power

r(power a) attained overall power

r(stop) 0 for futility bounds, 1 for efficacy bounds, 2 for both
r(z fixed) critical value for an equivalent fixed study design

Macros

r(cmd) gsdesign
r(cmdline) command as typed

r(direction) upper, lower, or two-sided
r(effbnd) pocock, obfleming, wtsiatis, errpocock, errobfleming, kdemets, or hsdecani
r(futbnd) pocock, obfleming, wtsiatis, errpocock, errobfleming, kdemets, or hsdecani
r(method) method name
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Matrices

r(aspent) cumulative alpha spent per look (stored with efficacy-only stopping or when futility bounds

are binding)
r(aspent fstop) cumulative alpha spent per look if futility stopping does occur (stored when futility bounds

are nonbinding)
r(aspent nofstop) cumulative alpha spent per look if futility stopping does not occur (stored when futility

bounds are nonbinding)
r(bounds) stopping boundaries

r(bspent) cumulative beta spent per look (when futility bounds are specified)

r(bspent a) attained cumulative beta spent per look (when futility bounds are specified)

r(design) sample size and stopping boundaries at interim looks

r(info frac) specified information fraction

r(info frac a) fraction of attained information

r(info level) specified information level

r(p crit) 𝑝-values corresponding to boundary critical values
r(sampsize) sample size at interim looks

Methods and formulas
See Methods and formulas in [ADAPT] gsbounds for the formulas used to calculate the stopping

boundaries, information fraction, and information ratio. See Methods and formulas in [PSS-2] power for

the formulas used to calculate sample size of a fixed study design.

Methods and formulas are presented under the following headings:

Sample sizes at interim analyses
Expected sample size

Sample sizes at interim analyses
When planning a study using a GSD with 𝐾 looks, we must specify the information fraction at each

look, denoted as (ℐ1, . . . , ℐ𝐾). For any 𝑘 in (1, . . . , 𝐾), let ℐ𝑘 represent the proportion of trial data that

has been collected by look 𝑘. In most cases, the information fraction is the proportion of the maximum
sample size that has been collected, but for time-to-event data, the information fraction is the proportion

of the total number of failure events that have been observed, not the total number of participants.

With gsdesign, the information(numlist) option can be used to specify the information fraction as
a strictly increasing sequence, which is then scaled so that ℐ𝐾 = 1. Alternatively, the nlooks() option
can be used to specify the number of evenly spaced looks, and the information fraction is calculated

automatically.

To determine the sample size required at each look of a GSD, we begin by calculating 𝑛fix, the sample

size of a fixed study design with equivalent type I and type II error. Next we calculate the information

ratio, 𝑅, which is the ratio of the maximum sample size of the GSD to 𝑛fix. Regardless of the properties

of the study, 𝑅 is always greater than 1 (see Methods and formulas in [ADAPT] gsbounds for more

information).

Let (𝑛1, . . . , 𝑛𝐾) be the cumulative sample sizes at looks 1 through 𝐾, with the maximum sample

size of 𝑛𝐾 attained at the final look. For any look 𝑘 in (1, . . . , 𝐾), the sample size 𝑛𝑘 = ℐ𝑘 × 𝑛fix × 𝑅.
In practice, sample sizes must be rounded up to whole numbers of participants, so gsdesign rounds up
sample sizes unless the nfractional option is specified.
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Expected sample size
After each group of observations is collected, an analysis is performed and the test statistic 𝑍 is

calculated. In the description that follows, we assume that𝑍 follows a standard normal distribution under

𝐻0. For test statistics that follow other distributions, the normal model is used to calculate boundary

critical values, and then 𝑝-values for the test statistics are compared with 𝑝-values corresponding to the
boundary critical values. The 𝑝-value comparison is known as the significance level approach and is
described in [ADAPT] gsbounds.

Without loss of generality, consider a GSD for an upper one-sided test with both efficacy and binding

futility bounds. Denote critical values for efficacy stopping as (𝑒1, . . . , 𝑒𝐾) and critical values for futility
stopping as (𝑓1, . . . , 𝑓𝐾). At interim look 𝑘 < 𝐾, if test statistic𝑍𝑘 ≥ 𝑒𝑘, the trial is stopped for efficacy;

if 𝑍𝑘 < 𝑓𝑘, the trial is stopped for futility; and if 𝑓𝑘 ≤ 𝑍𝑘 < 𝑒𝑘, the trial continues. At the final look,

there is no continuation region because 𝑓𝐾 = 𝑒𝐾.

The probability of stopping the trial at look 𝑘 is a function of the effect size 𝛿 and is denoted as 𝜔𝑘(𝛿),
where 𝜔1(𝛿) = Pr𝛿(𝑍1 < 𝑓1) + Pr𝛿(𝑍1 ≥ 𝑒1) and

𝜔𝑘(𝛿) = Pr𝛿 {(𝑍𝑘 < 𝑓𝑘 ∪ 𝑍𝑘 ≥ 𝑒𝑘) ∩
𝑘−1
⋂
𝑗=1

𝑓𝑗 ≤ 𝑍𝑗 < 𝑒𝑗} for 𝑘 ∈ (2, . . . , 𝐾)

For trials with efficacy stopping only, replace (𝑓1, . . . , 𝑓𝐾−1) with −∞ and let 𝑓𝐾 = 𝑒𝐾. For trials

with nonbinding futility bounds, replace (𝑓1, . . . , 𝑓𝐾−1) with −∞ when 𝛿 = 0 but not when 𝛿 ≠ 0. For

trials with futility stopping only, replace (𝑒1, . . . , 𝑒𝐾−1) with ∞ and let 𝑒𝐾 = 𝑓𝐾. For two-sided trials,

replace 𝑍𝑘 with |𝑍𝑘|.
The expected sample size is a function of effect size 𝛿 and is calculated as

ESS(𝛿) =
𝐾

∑
𝑘=1

𝑛𝑘 ∗ 𝜔𝑘(𝛿)
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gsdesign onemean — Group sequential design for a one-sample mean test

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
gsdesign onemean computes stopping boundaries and sample sizes for interim analyses of clinical

trials using a one-sample mean test with a group sequential design (GSD). Stopping can be for efficacy,

futility, or both. For stopping boundary calculations without sample sizes, see [ADAPT] gsbounds. For

sample-size calculations for a fixed-sample test of one mean, see [PSS-2] power onemean.

Quick start
Sample size and stopping boundaries for a two-sided test of𝐻0 ∶ 𝜇 = 10 versus𝐻𝑎 ∶ 𝜇 ≠ 10, with default

power of 0.8 to detect the difference between the mean under the null hypothesis, 𝑚0 = 10, and an

observed mean of𝑚𝑎 = 15, with standard deviation of 12 and at default familywise significance level

𝛼 = 0.05, using default group sequential specifications of O’Brien–Fleming efficacy boundaries with

two analyses (one interim, one final)

gsdesign onemean 10 15, sd(12)

Same as above, but specified as 𝑚0 and difference 𝑚𝑎 − 𝑚0 = 5

gsdesign onemean 10, diff(5) sd(12)

Same as above, but for a one-sided test with familywise significance level 𝛼 = 0.025, power of 0.9, and

Pocock bounds with three analyses

gsdesign onemean 10, diff(5) sd(12) alpha(0.025) power(0.9) onesided ///
efficacy(pocock) nlooks(3)

Same as above, but use an error-spending O’Brien–Fleming-style efficacy bound and a nonbinding error-

spending Pocock-style futility bound

gsdesign onemean 10, diff(5) sd(12) alpha(0.025) power(0.9) onesided ///
efficacy(errobfleming) futility(errpocock) nlooks(3)

Same as above, but treat the standard deviation as known, use a nonbindingHwang–Shih–de Cani futility

bound with parameter 𝛾𝑓 = −1, time the looks to occur with 50%, 75%, and 100% of the data, and

graph the bounds

gsdesign onemean 10, diff(5) sd(12) knownsd alpha(0.025) power(0.9) ///
onesided efficacy(errobfleming) futility(hsdecani(-1)) ///
information(50 75 100) graphbounds

Same as above, but use a Kim–DeMets efficacy bound with parameter 𝜌𝑒 = 2.5, label the 𝑥 axis of the

graph with information instead of sample size, and do not plot the critical values from a fixed study

design

gsdesign onemean 10, diff(5) sd(12) knownsd alpha(0.025) power(0.9) ///
onesided efficacy(kdemets(2.5)) futility(hsdecani(-1)) ///
information(50 75 100) graphbounds(xdiminformation nofixed)

100
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Menu
Statistics > Power, precision, and sample size

Syntax
gsdesign onemean 𝑚0 𝑚𝑎 [ , onemeanopts boundopts ]

where 𝑚0 is the value of the mean under the null hypothesis and 𝑚𝑎 is the value of the mean under the

alternative hypothesis.

onemeanopts Description

Main

alpha(#) overall significance level for all tests; default is alpha(0.05)
power(#) overall power for all tests; default is power(0.8)
beta(#) overall probability of type II error for all tests;

default is beta(0.2)
onesided request a one-sided test; default is two-sided

nfractional report fractional sample size

diff(#) difference between the alternative mean and the null mean,
𝑚𝑎 − 𝑚0; specify instead of the alternative mean 𝑚𝑎

sd(#) standard deviation; default is sd(1)
knownsd request computation assuming known standard deviation;

default is to assume an unknown standard deviation

force allow calculation with unsupported power onemean options
poweriteration(powiteropts) iteration options for the calculation of fixed-study sample size;

seldom used

collect is allowed; see [U] 11.1.10 Prefix commands.

force and poweriteration() do not appear in the dialog box.

powiteropts Description

init(#) initial value for fixed-study sample size

iterate(#) maximum number of iterations; default is iterate(500)
tolerance(#) parameter tolerance; default is tolerance(1e-12)
ftolerance(#) function tolerance; default is ftolerance(1e-12)
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boundopts Description

Bounds

efficacy(boundary) boundary for efficacy stopping; if neither efficacy()
nor futility() is specified, the default is
efficacy(obfleming)

futility(boundary[ , binding ]) boundary for futility stopping; use binding to request
binding futility bounds (default is nonbinding)

nlooks(#[ , equal ]) total number of analyses (nlooks() − 1 interim analyses
and one final analysis); use equal to enforce equal
information increments; if neither nlooks() nor
information() is specified, the default is nlooks(2)

information(numlist) sequence of information levels for analyses;
default is evenly spaced

nopvalues suppress 𝑝-values

Graph

graphbounds[ (graphopts) ] graph boundaries

matlistopts(general options) control the display of boundaries and sample size;
seldom used

optimopts optimization options for boundary calculations; seldom used

matlistopts() and optimopts do not appear in the dialog box.

boundary Description

obfleming classical O’Brien–Fleming bound

pocock classical Pocock bound

wtsiatis(#) classical Wang–Tsiatis bound with specified parameter value

errpocock error-spending Pocock-style bound

errobfleming error-spending O’Brien–Fleming-style bound

kdemets(#) error-spending Kim–DeMets bound with specified parameter value

hsdecani(#) error-spending Hwang–Shih–de Cani bound with specified parameter value
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graphopts Description

xdimsampsize label the 𝑥 axis with the sample size collected (default)

xdiminformation label the 𝑥 axis with the information fraction;
use information levels if information() specified

xdimlooks label the 𝑥 axis with the number of each look

noshade do not shade the rejection, acceptance, and continuation
regions

rejectopts(area options) change the appearance of the rejection region

acceptopts(area options) change the appearance of the acceptance region

continueopts(area options) change the appearance of the continuation region

efficacyopts(connected options) change the appearance of the efficacy bound

futilityopts(connected options) change the appearance of the futility bound

nolooklines do not draw vertical reference lines at each look

looklinesopts(added line suboptions) change the appearance of the reference lines
marking each look

nofixed do not label critical values from a fixed study design

fixedopts(marker options) change the appearance of the fixed-study critical values

twoway options any options other than by() documented in
[G-3] twoway options

optimopts Description

intpointsscale(#) scaling factor for number of quadrature points;
default is intpointsscale(20)

initinfo(initinfo spec) initial value(s) for maximum information

initscale(#) initial value for scaling factor 𝐶 of classical bounds

infotolerance(#) tolerance for bisection search for maximum information of error-
spending bounds with futility stopping; default is infotol(1e-6)

marquardt use the Marquardt stepping algorithm in nonconcave regions;
default is to use a mixture of steepest descent and Newton

technique(algorithm spec) maximization technique

iterate(#) perform maximum of # iterations; default is iterate(300)
[ no ]log display an iteration log; default is nolog
trace display current parameter vector in iteration log

gradient display current gradient vector in iteration log

showstep report steps within an iteration in iteration log

hessian display current negative Hessian matrix in iteration log

showtolerance report the calculated result that is compared with the effective
convergence criterion

tolerance(#) tolerance for the parameter being optimized;
default is tolerance(1e-12)

ftolerance(#) tolerance for the objective function;
default is ftolerance(1e-10)

nrtolerance(#) tolerance for the scaled gradient;
default is nrtolerance(1e-16)

nonrtolerance ignore the nrtolerance() option
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Options

� � �
Main �

alpha(#) sets the overall significance level, which is the familywise type I error rate for all analyses

(interim and final). alpha() must be in (0, 0.5). The default is alpha(0.05).

power(#) sets the overall power for all analyses. power() must be in (0.5, 1). The default is

power(0.8). If beta() is specified, power() is set to be 1 − beta(). Only one of power() or

beta() may be specified.

beta(#) sets the overall probability of a type II error. beta() must be in (0, 0.5). The default is

beta(0.2). If power() is specified, beta() is set to be 1 − power(). Only one of beta() or

power() may be specified.

onesided requests a study design for a one-sided test. The direction of the test is inferred from the effect

size.

nfractional specifies that fractional sample sizes be reported.

diff(#) specifies the difference between the alternative mean and the null mean, 𝑚𝑎 − 𝑚0. You can

either specify the alternative mean 𝑚𝑎 as a command argument or specify the difference between the

two means in diff(). If you specify diff(#), the alternative mean is computed as 𝑚𝑎 = 𝑚0 + #.

sd(#) specifies the sample standard deviation or the population standard deviation. The default is sd(1).
By default, sd() specifies the sample standard deviation. If knownsd is specified, sd() specifies the
population standard deviation.

knownsd requests that the standard deviation be treated as known in the computation. By default, the stan-
dard deviation is treated as unknown and the computation is based on a 𝑡 test, which uses a Student’s
𝑡 distribution as a sampling distribution of the test statistic. If knownsd is specified, the computation
is based on a 𝑧 test, which uses a normal distribution as the sampling distribution of the test statistic.
In either case, critical values for efficacy and futility boundaries calculated by gsdesign onemean
are reported on the standardized 𝑧 scale. When a 𝑡 test is performed, you can use the significance level
approach and compare the 𝑝-value from the 𝑡 test to the 𝑝-value boundaries reported by gsdesign
onemean, as demonstrated in example 2.

� � �
Bounds �

efficacy(boundary) specifies the boundary for efficacy stopping. If neither efficacy() nor

futility() is specified, the default is efficacy(obfleming).

futility(boundary[ , binding ]) specifies the boundary for futility stopping.
binding specifies binding futility bounds. With binding futility bounds, if the result of an interim

analysis crosses the futility boundary and lies in the acceptance region, the trial must end or risk

overrunning the specified type I error. With nonbinding futility bounds, the trial does not need to

stop if the result of an interim analysis crosses the futility boundary; the familywise type I error

rate is controlled even if the trial continues. By default, futility bounds are nonbinding.

nlooks(# [ , equal ]) specifies the total number of analyses to be performed (nlooks() − 1 interim

analyses and one final analysis). If neither nlooks() nor information() is specified, the default is
nlooks(2).
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equal indicates that equal information increments be enforced, which is to say that the same number
of new observations will be collected at each look. The default behavior is to start by dividing

information evenly among looks, then proceed by rounding up to a whole number of observations

at each look. This can cause slight differences in the information collected at each look.

information(numlist) specifies a sequence of information levels for interim and final analyses. This

must be a sequence of increasing positive numbers, but the scale is unimportant because the infor-

mation sequence will be automatically rescaled to ensure the maximum information is reached at the

final look. By default, analyses are evenly spaced.

nopvalues suppresses the 𝑝-values from being reported in the table of boundaries for each look.

� � �
Graph �

graphbounds and graphbounds(graphopts) produce graphical output showing the stopping bound-

aries.

graphopts are the following:

xdimsampsize labels the 𝑥 axis with the sample size collected (the default).

xdiminformation labels the 𝑥 axis with the information fraction unless information() is spec-
ified, in which case information levels will be used.

xdimlooks labels the 𝑥 axis with the number of each look.

noshade suppresses shading of the rejection, acceptance, and continuation regions of the graph.

rejectopts(area options) affects the rendition of the rejection region. See
[G-3] area options.

acceptopts(area options) affects the rendition of the acceptance region. See
[G-3] area options.

continueopts(area options) affects the rendition of the continuation region. See
[G-3] area options.

efficacyopts(connected options) affects the rendition of the efficacy bound. See
[G-3] cline options and [G-3] marker options.

futilityopts(connected options) affects the rendition of the futility bound. See
[G-3] cline options and [G-3] marker options.

nolooklines suppresses the vertical reference lines drawn at each look.

looklinesopts(added line suboptions) affects the rendition of reference lines marking each

look. See suboptions in [G-3] added line options.

nofixed suppresses the fixed-study critical values in the plot.

fixedopts(marker options) affects the rendition of the fixed-study critical values. See
[G-3] marker options.

twoway options are any of the options documented in [G-3] twoway options, excluding by().
These include options for titling the graph (see [G-3] title options) and for saving the graph to

disk (see [G-3] saving option).
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The following options are available with gsdesign onemean but are not shown in the dialog box:

force indicates that gsdesign onemean should allow unsupported power onemean options, such as

options specifying a finite population correction or a cluster randomized design. Even with option

force, the power onemean options specified must be compatible with sample-size determination, not
effect size or power calculation. In addition, numlists are not supported in options or in arguments as

they are with power, even when force is specified.

poweriteration(powiteropts) controls the iterative algorithm used to calculate the fixed-study sample

size. This is seldom used.

powiteropts are the following:

init(#) specifies an initial value for the sample size when iteration is used to compute the fixed-
study sample size. The default is to use a closed-form normal approximation to compute an

initial sample size.

iterate(#) specifies the maximum number of iterations for the Newton method during calcula-

tion of the fixed-study sample size. The default is iterate(500).

tolerance(#) specifies the tolerance used to determine whether successive parameter es-

timates have converged when calculating the fixed-study sample size. The default is

tolerance(1e-12). See Convergence criteria in [M-5] solvenl( ) for details.

ftolerance(#) specifies the tolerance used when calculating the fixed-study sample size to de-
termine whether the proposed solution of a nonlinear equation is sufficiently close to 0 based on

the squared Euclidean distance. The default is ftolerance(1e-12). See Convergence criteria
in [M-5] solvenl( ) for details.

matlistopts(general options) affects the display of the matrix of boundaries and sample sizes. gen-

eral options are title(), tindent(), rowtitle(), showcoleq(), coleqonly, colorcoleq(),
aligncolnames(), and linesize(); see general options in [P]matlist. This option is seldom used.

optimopts control the iterative algorithm used to calculate stopping boundaries:

intpointsscale(#) specifies the scaling factor for the number of quadrature points used during the
numerical evaluation of stopping probabilities at each look. The default is intpointsscale(20).
See Methods and formulas in [ADAPT] gsbounds.

initinfo(initinfo spec) specifies either one or two initial values to be used in the iterative calcula-
tion of the maximum information.

The syntax initinfo(#) is applicable when using classical group sequential boundaries (Pocock
bounds, O’Brien–Fleming bounds, and Wang–Tsiatis bounds), as well as with efficacy-only

stopping when using error-spending boundaries (error-spending Pocock-style efficacy bounds,

error-spending O’Brien–Fleming-style efficacy bounds, Kim–DeMets efficacy bounds, and

Hwang–Shih–de Cani efficacy bounds). The default is to use the information from a fixed study

design; see Methods and formulas in [ADAPT] gsbounds.

The syntax initinfo(# #) is applicable when using error-spending group sequential boundaries
with futility stopping (error-spending Pocock-style bounds, error-spending O’Brien–Fleming-

style bounds, Kim–DeMets bounds, and Hwang–Shih–de Cani bounds). With this syntax, the

first and second numbers specify the lower and upper starting values, respectively, for the bisec-

tion algorithm estimating the maximum information. The default is to use the information from a

fixed study design for the lower initial value and the information corresponding to a Bonferroni
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correction for the upper initial value; see Methods and formulas in [ADAPT] gsbounds. To specify

just the lower starting value, use initinfo(# .), and to specify just the upper starting value, use
initinfo(. #).

initscale(#) specifies the initial value to be used during the iterative calculation of scaling fac-

tor 𝐶 for classical group sequential boundaries (Pocock bounds, O’Brien–Fleming bounds, and

Wang–Tsiatis bounds). The default is to use the 𝑧-value corresponding to the specified value of
alpha(). See Methods and formulas in [ADAPT] gsbounds.

infotolerance(#) specifies the tolerance for the bisection algorithm used in the itera-

tive calculation of the maximum information of error-spending group sequential boundaries

with futility stopping (error-spending Pocock-style bounds, error-spending O’Brien–Fleming-

style bounds, Kim–DeMets bounds, and Hwang–Shih–de Cani bounds). The default is

infotolerance(1e-6). See Methods and formulas in [ADAPT] gsbounds.

marquardt specifies that the optimizer should use the modified Marquardt algorithm when, at an

iteration step, it finds that 𝐻 is singular. The default is to use a mixture of steepest descent and

Newton, which is equivalent to the difficult option in [R] ml.

technique(algorithm spec) specifies how the objective function is to be maximized. The following

algorithms are allowed. For details, see Pitblado, Poi, and Gould (2024).

technique(bfgs) specifies the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

technique(nr) specifies Stata’s modified Newton–Raphson (NR) algorithm.

technique(dfp) specifies the Davidon–Fletcher–Powell (DFP) algorithm.

The default is technique(bfgs) when using classical group sequential boundaries (Pocock

bounds, O’Brien–Fleming bounds, and Wang–Tsiatis bounds) and also for the second opti-

mization step used to estimate the maximum information with efficacy-only stopping when

using error-spending boundaries (error-spending Pocock-style efficacy bounds, error-spending

O’Brien–Fleming-style efficacy bounds, Kim–DeMets efficacy bounds, and Hwang–Shih–de

Cani efficacy bounds). The default is technique(nr) for the sequential optimization steps used

to estimate critical values for error-spending boundaries. You can also switch between two al-

gorithms by specifying the technique name followed by the number of iterations. For example,

specifying technique(nr 10 bfgs 20) requests 10 iterations with the NR algorithm followed by

20 iterations with the BFGS algorithm, and then back to NR for 10 iterations, and so on. The process

continues until convergence or until the maximum number of iterations is reached.

iterate(#) specifies the maximum number of iterations. If convergence is not declared by the

time the number of iterations equals iterate(), an error message is issued. The default value of
iterate(#) is the number set using set maxiter, which is 300 by default.

[ no ]log requests an iteration log showing the progress of the optimization. The default is nolog.

trace adds to the iteration log a display of the current parameter vector.

gradient adds to the iteration log a display of the current gradient vector.

showstep adds to the iteration log a report on the steps within an iteration. This option was added so
that developers at StataCorp could view the stepping when they were improving the ml optimizer
code. At this point, it mainly provides entertainment.

hessian adds to the iteration log a display of the current negative Hessian matrix.
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showtolerance adds to the iteration log the calculated value that is compared with the effective

convergence criterion at the end of each iteration. Until convergence is achieved, the smallest

calculated value is reported. shownrtolerance is a synonym of showtolerance.

Below, we describe the three convergence tolerances. Convergence is declared when the

nrtolerance() criterion is met and either the tolerance() or the ftolerance() criterion is also
met.

tolerance(#) specifies the tolerance for the parameter vector. When the relative change in

the parameter vector from one iteration to the next is less than or equal to tolerance(), the
tolerance() convergence criterion is satisfied. The default is tolerance(1e-12).

ftolerance(#) specifies the tolerance for the objective function. When the relative change in

the objective function from one iteration to the next is less than or equal to ftolerance(), the
ftolerance() convergence is satisfied. The default is ftolerance(1e-10).

nrtolerance(#) specifies the tolerance for the scaled gradient. Convergence is declared when

gH−1g′ < nrtolerance(). The default is nrtolerance(1e-16).

nonrtolerance specifies that the default nrtolerance() criterion be turned off.

boundary
obfleming specifies a classical O’Brien–Fleming design for efficacy or futility bounds (O’Brien and

Fleming 1979). O’Brien–Fleming efficacy bounds are characterized by being extremely conservative

at early looks. The O’Brien–Fleming design is a member of theWang–Tsiatis family and is equivalent

to specifying a boundary of wtsiatis(0).

pocock specifies a classical Pocock design for efficacy or futility bounds (Pocock 1977). Pocock efficacy
bounds are characterized by using the same critical value at all looks. The Pocock design is a member

of the Wang–Tsiatis family and is equivalent to specifying a boundary of wtsiatis(0.5).

wtsiatis(#) specifies a classical Wang–Tsiatis design for efficacy or futility bounds (Wang and Tsiatis

1987). The shape ofWang–Tsiatis bounds is determined by parameter Δ ∈ [−10, 0.7], where smaller
values of Δ yield bounds that are more conservative at early looks.

errpocock specifies an error-spending Pocock-style design for efficacy or futility bounds (Lan and

DeMets 1983). The critical values from error-spending Pocock-style bounds are very similar to those

of classic Pocock bounds, but they are obtained using an error-spending function.

errobfleming specifies an error-spending O’Brien–Fleming-style design for efficacy or futility bounds
(Lan and DeMets 1983). The critical values from error-spending O’Brien–Fleming-style bounds

are very similar to those of classic O’Brien–Fleming bounds, but they are obtained using an error-

spending function.

kdemets(#) specifies an error-spending Kim–DeMets design for efficacy or futility bounds (Kim and

DeMets 1987). The shape of Kim–DeMets bounds is determined by power parameter 𝜌 ∈ (0, 10],
where larger values of 𝜌 yield bounds that are more conservative at early looks.

hsdecani(#) specifies an error-spending Hwang–Shih–de Cani design for efficacy or futility bounds

(Hwang, Shih, and de Cani 1990). The shape of Hwang–Shih–de Cani bounds is determined by

parameter 𝛾 ∈ [−30, 3], where smaller values of 𝛾 yield bounds that are more conservative at early

looks.
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For a design with both efficacy and futility stopping boundaries, if you specify a classical boundary

(that is, in theWang–Tsiatis family) for one, then you must specify a classical boundary for the other. So,

you could not specify a boundary in the Wang–Tsiatis family for one boundary and an error-spending

boundary for the other. When specifying efficacy and futility boundaries from the same family, the

efficacy parameter does not need to be the same as the futility parameter.

Boundaries that are conservative at early looks, such as the O’Brien–Fleming bound, offer little

chance of early stopping unless the true effect size is quite large (in the case of efficacy bounds) or quite

small (in the case of futility bounds). A trial employing a conservative bound is more likely to continue

to the final look, yielding an expected sample size that is not dramatically smaller than the sample size

required by an equivalent fixed-sample trial. However, the maximum sample size (that is, the sample

size at the final look) of a trial with a conservative bound is generally not much greater than the sample

size required by an equivalent fixed trial. Another direct result of specifying conservative bounds is that

the critical value at the final look tends to be close to the critical value employed by an equivalent fixed

design. In contrast, anticonservative boundaries such as the Pocock bound offer a much better shot at

early stopping (often yielding a small expected sample size) at the cost of a larger maximum sample size

and final critical values that are considerably larger than the critical value of an equivalent fixed design.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using gsdesign onemean
Background for examples
Computing sample size and stopping boundaries
Unknown standard deviation and hypothesis tests on mean
Stopping for both efficacy and futility

This entry describes the use of the gsdesign onemean command for designing a group sequential

analysis for a one-sample mean test. See [ADAPT]GSD intro for a general introduction to GSDs for clin-

ical trials; see [ADAPT] gsbounds for information about group sequential bounds; and see [ADAPT] gs-

design for information about designing group sequential clinical trials with the gsdesign command.

Also see [PSS-2] Intro (power) for a general introduction to power and sample-size analysis, and see

[PSS-2] power onemean for details about study design for a one-sample mean test.

Introduction
The gold standard for clinical trials is the randomized controlled trial, a clinical trial where participants

are randomly assigned to one of two groups: one group receives the experimental treatment while the

other group is kept as a control. If no existing treatments are comparable with the experimental treatment,

the control group will typically receive a placebo. When a standard of care exists, there is often an

ethical argument against using a placebo. In this case, an active control is used, in which control-group

participants receive the existing standard of care.

Sometimes, however, it is desirable to omit the control group entirely and perform a single-arm trial.

This could occur with trials not intended for regulatory submission (such as early-phase trials), trials

where a placebo would be unethical and there is no existing comparable treatment, or clinical trials

where the population of interest is small and recruiting sufficient participants to create both treatment

and control groups would be difficult.
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If the outcome of interest, or endpoint, of a randomized controlled trial is continuous, researchers will

commonly want to test whether the mean of the treatment group is equal to the mean of the control group.

If there is no control group, the observed mean of the treatment group, 𝜇, is compared with reference
value 𝜇0, which is the value under the null hypothesis.

Here we consider the null hypothesis 𝐻0 ∶ 𝜇 = 𝜇0 versus the two-sided alternative hypothesis 𝐻𝑎 ∶
𝜇 ≠ 𝜇0, the upper one-sided alternative 𝐻𝑎 ∶ 𝜇 > 𝜇0, or the lower one-sided alternative 𝐻𝑎 ∶ 𝜇 < 𝜇0.

The actual test conducted will depend onwhether the standard deviation of the sampling process is known

a priori. In the case of a known standard deviation, the test statistic follows a standard normal distribution

under the null hypothesis, and the corresponding test is known as a 𝑧 test. In the case of an unknown
standard deviation, an estimate of the population standard deviation is used to form a test statistic that

follows Student’s 𝑡 distribution under the null hypothesis, and the corresponding test is a 𝑡 test. The

estimate of the population standard deviation improves with increasing sample size, and the distribution

of the test statistic approaches a normal distribution, enabling the use of a 𝑧 test with large samples, even
with unknown standard deviation.

Historically, clinical trials were not analyzed until after the trial was completed and all data were

collected. This enabled the use of traditional statistical methods such as those designed for agricultural

field experiments, where all data are typically collected over a short period during the harvest. However,

data from clinical trials tend to be collected over time, providing incentive to analyze the incomplete trial

data while the study is still underway. Several methods have been developed to enable interim analysis

of clinical trial data while controlling the type I error rate, and group sequential methods are among the

most popular designs.

A GSD plans for a sequence of looks, or analyses of the clinical trial data. If the result at an interim

look is sufficiently unambiguous, the trial can be stopped early. GSDs with efficacy bounds allow the

trial to be terminated early for treatment efficacy if the interim test statistic crosses the efficacy bound,

and designs with futility bounds allow early termination for futility if the interim test statistic crosses the

futility bound.

The required sample size estimated by gsdesign onemean will depend on whether the standard de-

viation is known, but the stopping boundaries will not; they are reported on a standardized 𝑧 scale. The
critical values from the boundaries may be compared directly with the 𝑧 statistic from a 𝑧 test but must be
transformed before being compared with the 𝑡 statistic from a 𝑡 test. This is demonstrated in example 2.

Using gsdesign onemean
gsdesign onemean calculates sample size and stopping boundaries for a group sequential trial com-

paring the population mean of one group against a prespecified reference value. gsdesign onemean
can be thought of as a combination of power onemean for sample-size calculations and gsbounds for

stopping boundary calculations.

To compute sample size, you must specify the effect size in one of two ways: by specifying 𝑚0 and

𝑚𝑎, the means under the null and alternative hypotheses, respectively, or by specifying the difference

𝑚𝑎−𝑚0 in the diff() option. There is no default value for diff(), so either𝑚0 and𝑚𝑎 or diff()must
be included as part of the command specification. 𝑚0 may be specified with diff(); if 𝑚0 is omitted,

it is assumed to be 0. Another aspect of the effect size is the standard deviation of the response. This is

specified with the sd() option, and the default standard deviation is 1. By default, the true population

standard deviation is assumed to be unknown, and sample-size calculations are based on a 𝑡 test; if the
population standard deviation is known, the knownsd option requests sample-size computations based

on a 𝑧 test.
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Options alpha(), power(), beta(), and onesided are used for both sample-size and stopping-

boundary calculations. The default significance level, known as the familywise type I error rate, is 0.05

and can be changed by specifying the alpha() option. The default power is 0.8, which corresponds to

a type II error rate of 0.2. This can be modified either by specifying the power in the power() option

or by specifying the type II error in the beta() option. The default test is two-sided, and the onesided
option requests a one-sided test, the direction of which is indicated by the sign of the effect size.

The group sequential stopping rule is determined by the efficacy() and futility() options. Stop-
ping can be for efficacy, futility, or both, and if no stopping rule is specified, the default is to use an

O’Brien–Fleming efficacy bound. If futility bounds are requested, the default behavior is to treat them

as nonbinding. A trial that crosses a nonbinding futility bound can be stopped for futility, but the fam-

ilywise type I error is controlled even if the trial continues. Binding futility bounds can be requested

with futility() suboption binding. A trial that crosses a binding futility bound must be stopped for

futility. If it continues, the familywise type I error will not be controlled at the specified significance

level.

The number of looks, or analyses of the trial data, is specified with nlooks(). Alternatively, the
information() option can be used to specify the spacing of the looks as a numlist of increasing infor-

mation levels. In this case, values of the numlist are automatically rescaled so that the final look has the

maximum information required by the design. If neither nlooks() nor information() is specified,

the default is two looks.

By default, the sample size is rounded up to a whole number at each look, but option nfractional
can be used to report fractional sample sizes. If nlooks() is specified, the default behavior is to divide

information evenly among looks before rounding. Rounding can cause slight differences in the amount

of information collected at each look, and nlooks() suboption equal can be specified to enforce equal
information increments by requiring the same number of new observations at each look.

Background for examples
Oncology is an area where single-arm trials have become increasingly popular, and single-arm on-

cology trials have even led to regulatory approval (Tenhunen et al. 2020). There are multiple reasons

for this trend, but Simon et al. (2015) identify several common factors of single-arm oncology trials that

have been approved by regulators, including “unprecedented effect on tumor response is observed in a

setting of high unmet medical need” as well as the existence of a well-defined target population.

Salvage therapy, also known as rescue therapy, is not a specific cancer treatment but rather a term to

describe treatments that are considered for a patient when all standard treatment protocols have failed.

We consider the design of a clinical trial of sunitinib malate as a salvage therapy for advanced unre-

sectable non–small cell lung cancer, where “unresectable” describes tumors that cannot be removed

surgically. Sunitinib is a tyrosine kinase inhibitor that has been used in the treatment of renal cancer and

gastrointestinal stromal tumors, and it has been considered more recently as a treatment for other can-

cers. Novello et al. (2009) report the results of a phase 2 clinical trial of sunitinib for participants with

advanced non–small cell lung cancer that did not respond to platinum-based chemotherapy, the standard

of care.

The trial’s endpoint, or outcome of interest, is the tumor shrinkage rate (TSR) of the participant’s

largest tumor, defined as TSR = (𝐷𝑏 − 𝐷𝑎)/(𝐷𝑏 × 𝑡) × 100%, where 𝐷𝑏 is the longest diameter of the

tumor before treatment, 𝐷𝑎 is the longest diameter after treatment, and 𝑡 is the time elapsed in days. This
endpoint was chosen based on the results of Yu et al. (2019), who identified TSR as a useful predictor of

long-term outcomes in participants with advanced unresectable non–small cell lung cancer who received

treatment with tyrosine kinase inhibitors.
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By focusing on participants with unresectable tumors that have not responded to existing treatments,

we have clearly defined a target population with high unmet medical need. There can be no active con-

trol because all standard treatment protocols have failed, and the only ethical justification for a placebo

control would be if it were necessary to draw valid conclusions about the effect of sunitinib on TSR. As it

so happens, non–small cell lung cancer is a well-studied disease, and it is known that spontaneous tumor

shrinkage in patients with advanced-stage disease is exceedingly rare (Shatola et al. 2020).

Computing sample size and stopping boundaries
Suppose that we wish to conduct a single-arm trial, where participants will undergo a CT scan to

measure tumor diameter both before and after a four-week course of sunitinib. We will test the null

hypothesis 𝐻0 ∶ 𝜇 = 𝜇0 versus the upper one-sided alternative 𝐻𝑎 ∶ 𝜇 > 𝜇0, where 𝜇 is the mean TSR

observed in study participants and 𝜇0 = 0, indicating no tumor shrinkage under the null hypothesis. We

choose a one-sided test because tumor shrinkage is of interest, not tumor growth. If we were interested

in testing whether sunitinib slowed the rate of tumor growth, we would need a control group to compare

against.

Example 1: Efficacy bounds for a one-sample mean test
Yu et al. (2019) observed that participants with TSR ≥ 0.49% had a nearly 50% increase in overall

survival time and in progression-free survival time when compared with participants with TSR < 0.49%,

so we desire 80% power to detect 𝜇𝑎 = 0.49. We will conduct a one-sided trial with a familywise signif-

icance level of 2.5%, and we will assume that TSR has a known standard deviation of 1.1%. Assuming a

known standard deviation is often unrealistic, and this assumption is relaxed in example 2. The stopping

rule we employ is a Pocock efficacy bound, with four looks at the data: three interim analyses and one

final analysis. We graph the bounds for visual inspection.

. gsdesign onemean 0 0.49, sd(1.1) knownsd alpha(0.025) efficacy(pocock)
> nlooks(4) onesided graphbounds
Group sequential design for a one-sample mean test
z test
H0: m = m0 versus Ha: m > m0
Efficacy: Pocock
Study parameters:

alpha = 0.0250 (upper one-sided)
power = 0.8000
delta = 0.4455

m0 = 0.0000
ma = 0.4900
sd = 1.1000

Expected sample size:
H0 = 47.45
Ha = 32.02

Info. ratio = 1.2025
N fixed = 40

N max = 48
Fixed-study crit. value = 1.9600
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Critical values, p-values, and sample sizes
for a group sequential design

Info. Efficacy Sample size
Look frac. Upper p-value N

1 0.25 2.3613 0.0091 12
2 0.50 2.3613 0.0091 24
3 0.75 2.3613 0.0091 36
4 1.00 2.3613 0.0091 48

Note: Critical values are for z statistics;
otherwise, use p-value boundaries.
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Group sequential design for a one-sample mean test

Figure 1. Sample size for a test of one mean with one-sided Pocock efficacy bounds

gsdesign onemean displays the specified study parameters, including m0, the mean under the null
hypothesis; ma, the mean under the alternative hypothesis; and delta, the difference in means divided
by the standard deviation.

The next section of output displays the expected sample size, which is the average sample size if

the group sequential trial were to be repeated many times. The average sample size under 𝐻0 is 47.45,

close to the maximum of 48 participants at the fourth look. This is expected because our design does

not allow for early stopping to accept the null hypothesis. If 𝐻𝑎 is true, we expect an average of only

32.02 participants due to the probability of early stopping to reject 𝐻0, a savings over the 40 participants

required by the fixed design.

Next we see the information ratio, the sample size for a fixed study with an equivalent significance

level and power (N fixed), and the maximum sample size of the GSD (N max). The information ratio is
the ratio of the maximum sample size of the GSD to the fixed-study sample size. We then see the critical

value for a fixed study with an equivalent significance level.
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At the end of the display is a table of stopping boundaries, 𝑝-values, and sample sizes for the four
looks. Because we indicated that the population standard deviation was known, the appropriate analysis

is a 𝑧 test, which yields a 𝑧 statistic. The first analysis, look 1, will be conducted once data have been
collected from 12 participants. The second and third looks take place with 24 and 36 observations,

respectively, and the final analysis occurs once data from all 48 participants have been collected. A

defining feature of Pocock efficacy bounds is that all looks use the same critical value, which in this case

is 2.361. If the test statistic at the first look, which we will label 𝑧1, is greater than or equal to 2.361,

then it lies in the rejection region, shaded blue on the graph. In this case, 𝐻0 will be rejected and the

study will terminate early due to treatment efficacy. If 𝑧1 is less than 2.361, then it is said to lie in the

continuation region and the study will proceed to the next look. The same procedure is repeated at the

second and third looks. At the final look, there is no continuation region, only rejection and acceptance

regions. 𝐻0 is rejected if 𝑧4 ≥ 2.361, and 𝐻0 is accepted if 𝑧4 < 2.361. In addition to displaying the

bounds visually, the graph also marks the critical value from a fixed study with equivalent power and

significance level.

Unknown standard deviation and hypothesis tests on mean

Example 2: Unknown standard deviation, specifying difference between means
Instead of specifying the alternative mean of 0.49 as in example 1, we can specify the difference

between the mean TSRs under the null and alternative hypotheses in the diff() option. Additionally, we
will omit option knownsd because we do not know the population standard deviation a priori. This yields

sample sizes for a 𝑡 test, which will be demonstrated. The overall shape of the bounds is unchanged from
figure 1, so we omit the graph.

. gsdesign onemean, diff(0.49) sd(1.1) alpha(0.025) efficacy(pocock)
> nlooks(4) onesided
Group sequential design for a one-sample mean test
t test
H0: m = m0 versus Ha: m > m0
Efficacy: Pocock
Study parameters:

alpha = 0.0250 (upper one-sided)
power = 0.8000
delta = 0.4455

m0 = 0.0000
ma = 0.4900

diff = 0.4900
sd = 1.1000

Expected sample size:
H0 = 49.44
Ha = 33.48

Info. ratio = 1.2025
N fixed = 42

N max = 50
Fixed-study crit. value = 1.9600
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Critical values, p-values, and sample sizes
for a group sequential design

Info. Efficacy Sample size
Look frac. Upper p-value N

1 0.25 2.3613 0.0091 13
2 0.50 2.3613 0.0091 25
3 0.75 2.3613 0.0091 38
4 1.00 2.3613 0.0091 50

Notes: Critical values are for z statistics;
otherwise, use p-value boundaries.
Requested information fraction not
attained.

This alternate method of specifying the difference in means has not changed the fixed-study param-

eters reported by gsdesign, nor has it changed the critical values of the efficacy boundaries. What has

changed is the required sample size to achieve 80% power with a fixed study, which has increased from

40 participants in example 1 to 42 participants now that we do not assume a known standard deviation.

The information ratio is the same, but the larger fixed-study sample size yields larger required samples in

the GSD as well, with a maximum sample of 50 participants and correspondingly larger expected sample

sizes under the null and alternative hypotheses.

The biggest change, however, is the process of testing our hypothesis at the interim analyses. Previ-

ously, a 𝑧 test was performed and the resulting 𝑧 statistic was compared directly with the critical values of
the efficacy bounds. Now that the standard deviation is estimated, we use a 𝑡 test, which yields 𝑡 statis-
tics. These 𝑡 statistics should not be compared directly with the standardized 𝑧 critical values, as the

note under the table indicates. Instead, the 𝑝-value from the test can be compared with the boundaries by

using the significance level approach described in [ADAPT] gsbounds.

Imagine that the first look is conducted; the mean TSR of the first 13 participants is 0.9 and the sample

standard deviation is 1.3. We conduct a 𝑡 test using ttesti, the immediate form of the [R] ttest command.

We specify ttesti 13 0.9 1.3 0, with the sample size as the first number, the observed mean as the
second, the sample standard deviation as the third, and the mean under 𝐻0 as the fourth.

. ttesti 13 0.9 1.3 0
One-sample t test

Obs Mean Std. err. Std. dev. [95% conf. interval]

x 13 .9 .3605551 1.3 .1144179 1.685582

mean = mean(x) t = 2.4962
H0: mean = 0 Degrees of freedom = 12

Ha: mean < 0 Ha: mean != 0 Ha: mean > 0
Pr(T < t) = 0.9859 Pr(|T| > |t|) = 0.0281 Pr(T > t) = 0.0141

The output displays a 𝑡 statistic of 2.496 with 12 degrees of freedom. ttesti also displays the 𝑝-value
of the upper one-sided test: Pr(T > t) = 0.0141. This value, 𝑝1, can be compared directly with the

𝑝-value of the efficacy bound. Because 𝑝1 > 0.0091, we cannot reject 𝐻0 at this look.
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As the sample size increases and the degrees of freedom of the 𝑡 test increase, the 𝑡 distribution ap-
proaches a normal distribution. In practice, it is common to see a 𝑧 test used with large samples, even
when the population standard deviation is unknown and is estimated from the sample. But with small

samples, the significance level approach is best.

Stopping for both efficacy and futility

Example 3: Stopping for both efficacy and futility, graphing bounds
The previous two examples have used stopping rules allowing for efficacy stopping, but further ef-

ficiency gains can be realized if the trial is also allowed to stop early due to treatment futility. This is

done by creating a framework for accepting 𝐻0, a practice that is unheard-of in some areas of statistical

analysis but commonly discussed in the literature about GSDs.

Continuing with the scenario of example 2, we add a Wang–Tsiatis futility bound with parameter

Δ𝑓 = 0.3. The boundary is nonbinding, the default for futility bounds, meaning that if the trial crosses

the futility bound, stopping is optional. If the trial continues despite an interim result below the futility

bound, the familywise type I error is still controlled at the desired significance level of 2.5%.

. gsdesign onemean, diff(0.49) sd(1.1) alpha(0.025) efficacy(pocock)
> futility(wt(0.3)) nlooks(4) onesided graphbounds
Group sequential design for a one-sample mean test
t test
H0: m = m0 versus Ha: m > m0
Efficacy: Pocock
Futility: Wang--Tsiatis, nonbinding, Delta = 0.3000
Study parameters:

alpha = 0.0250 (upper one-sided)
power = 0.8000
delta = 0.4455

m0 = 0.0000
ma = 0.4900

diff = 0.4900
sd = 1.1000

Expected sample size:
H0 = 23.96
Ha = 37.78

Info. ratio = 1.5281
N fixed = 42

N max = 64
Fixed-study crit. value = 1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Futility Sample size
Look frac. Upper p-value Lower p-value N

1 0.25 2.3613 0.0091 0.2776 0.3906 16
2 0.50 2.3613 0.0091 1.1831 0.1184 32
3 0.75 2.3613 0.0091 1.8321 0.0335 48
4 1.00 2.3613 0.0091 2.3613 0.0091 64

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.
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Figure 2. Sample size for a test of one mean with one-sided efficacy and futility bounds

The fixed-study properties are unchanged from example 2, but the information ratio is increased,

reflecting the larger maximum sample size of the new GSD. However, the expected sample size under

𝐻0 has decreased dramatically due to the ability to terminate the trial early for futility.

As before, the Pocock efficacy bounds use the same critical 𝑧-value of 2.361 for all looks, which
corresponds to a 𝑝-value of 0.0091. Efficacy critical values are unaffected by the addition of nonbinding
futility bounds, but as is demonstrated in example 2 of [ADAPT] gsdesign, using binding futility bounds

would impact the critical values of efficacy bounds.

As in the previous example, we will conduct 𝑡 tests at each look, and we will compare the 𝑝-values
from each 𝑡 test with the corresponding efficacy and futility critical 𝑝-values. The graph, however, uses
the standardized 𝑧 scale on the vertical axis to facilitate comparison with graphs of other stopping bound-
aries.

The first test is conducted after 16 observations have been collected, and we will let 𝑝1 denote the

𝑝-value from the first look. If 𝑝1 > 0.391, then the test statistic lies in the acceptance region, and

researchers have the option to stop the trial early for futility. If 0.391 ≥ 𝑝1 > 0.0091, then the test statistic

falls within the continuation region, and the trial must proceed to the next look. If 𝑝1 ≤ 0.0091, then

it is inside the rejection region and 𝐻0 is rejected, terminating the trial early due to treatment efficacy.

If the trial does not stop at the first look, a similar procedure is performed at the second look once

32 observations have been recorded. This time, the futility boundary 𝑝-value has decreased to 0.118,
shrinking the continuation region and expanding the acceptance region. If the trial does not stop at the

second look, the procedure is repeated at the third lookwith 48 observations, where the futility 𝑝-value has
decreased to 0.034. If the trial proceeds to the final analysis with 64 observations, there is no continuation

region, because the futility bound critical value is identical to the efficacy bound 𝑝-value of 0.0091. If
𝑝4 ≤ 0.0091, then 𝐻0 is rejected; otherwise, 𝐻0 is accepted.
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Stored results
gsdesign onemean stores the following in r():

Scalars

r(alpha) overall significance level (familywise type I error)

r(beta) overall probability of a type II error

r(binding) 1 for binding futility bounds, 0 for nonbinding
r(delta) effect size

r(diff) difference between the alternative and null means

r(effparam) efficacy parameter (if wtsiatis(), kdemets(), or hsdecani() specified)
r(ESS0) expected sample size under null hypothesis

r(ESS1) expected sample size under alternative hypothesis

r(futparam) futility parameter (if wtsiatis(), kdemets(), or hsdecani() specified)
r(info ratio) ratio of maximum information required to that of a fixed study design

r(knownsd) 1 if option knownsd is specified, 0 otherwise
r(m0) mean under the null hypothesis

r(ma) mean under the alternative hypothesis

r(N fixed) sample size of a fixed study design

r(N fixedfrac) fractional sample size of a fixed study design

r(N max) maximum sample size if the study continues to completion

r(nfractional) 1 if nfractional is specified, 0 otherwise
r(nlooks) number of analyses

r(onesided) 1 for a one-sided test, 0 otherwise
r(pow converged) 1 if power calculation iteration algorithm converged, 0 otherwise
r(pow deltax) final parameter tolerance achieved for power calculation

r(pow ftolerance) requested distance of power calculation objective function from 0

r(pow function) final distance of power calculation objective function from 0

r(pow init) initial value for power calculation sample size

r(pow iter) number of iterations performed for power calculation

r(pow maxiter) maximum number of iterations for power calculation

r(pow tolerance) requested parameter tolerance for power calculation

r(power) specified overall power

r(power a) attained overall power

r(sd) standard deviation

r(stop) 0 for futility bounds, 1 for efficacy bounds, 2 for both
r(z fixed) critical value for an equivalent fixed study design

Macros

r(cmd) gsdesign
r(cmdline) command as typed

r(direction) upper, lower, or two-sided
r(effbnd) pocock, obfleming, wtsiatis, errpocock, errobfleming, kdemets, or hsdecani
r(futbnd) pocock, obfleming, wtsiatis, errpocock, errobfleming, kdemets, or hsdecani
r(method) onemean

Matrices

r(aspent) cumulative alpha spent per look (stored with efficacy-only stopping or when futility bounds

are binding)
r(aspent fstop) cumulative alpha spent per look if futility stopping does occur (stored when futility bounds

are nonbinding)
r(aspent nofstop) cumulative alpha spent per look if futility stopping does not occur (stored when futility

bounds are nonbinding)
r(bounds) stopping boundaries

r(bspent) cumulative beta spent per look (when futility bounds are specified)

r(bspent a) attained cumulative beta spent per look (when futility bounds are specified)

r(design) sample size and stopping boundaries at interim looks

r(info frac) specified information fraction

r(info frac a) fraction of attained information
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r(info level) specified information level

r(p crit) 𝑝-values corresponding to boundary critical values
r(sampsize) sample size at interim looks

Methods and formulas
Sample sizes at interim analyses are calculated as the product of the information fraction, the infor-

mation ratio, and the sample size of a fixed-sample study.

See Methods and formulas in [ADAPT] gsbounds for the formulas used to calculate the stopping

boundaries, information fraction, and information ratio. See Methods and formulas in [PSS-2] power

onemean for the formulas used to calculate the sample size for a fixed study. See Methods and formulas

in [ADAPT] gsdesign for the formulas used to calculate the expected sample size.
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Also see
[ADAPT] GSD intro — Introduction to group sequential designs

[ADAPT] gs — Introduction to commands for group sequential design

[ADAPT] gsbounds — Boundaries for group sequential trials

[ADAPT] gsdesign — Study design for group sequential trials

[ADAPT] gsdesign twomeans — Group sequential design for a two-sample means test

[ADAPT] Glossary

[PSS-2] power onemean — Power analysis for a one-sample mean test

[R] ttest — 𝑡 tests (mean-comparison tests)
[R] ztest — 𝑧 tests (mean-comparison tests, known variance)



gsdesign twomeans — Group sequential design for a two-sample means test

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
gsdesign twomeans computes stopping boundaries and sample sizes for interim analyses of clinical

trials using a two-sample mean test with a group sequential design (GSD). Stopping can be for efficacy,

futility, or both. For stopping boundary calculations without sample sizes, see [ADAPT] gsbounds. For

sample-size calculations for a fixed-sample test of two means, see [PSS-2] power twomeans.

Quick start
Sample size and stopping boundaries for a two-sided test of 𝐻0 ∶ 𝜇1 = 𝜇2 versus 𝐻𝑎 ∶ 𝜇1 ≠ 𝜇2, with

default significance level 𝛼 = 0.05 and power of 0.8 to detect the difference between a control-group

mean of 𝑚1 = 3 and an experimental-group mean of 𝑚2 = 7, with shared standard deviation of

9, using default group sequential specifications of O’Brien–Fleming efficacy boundaries with two

analyses (one interim, one final)

gsdesign twomeans 3 7, sd(9)

Same as above, but for an upper one-sided test with 𝛼 = 0.025, and replace the O’Brien–Fleming

efficacy bound with an error-spending Pocock-style bound with three looks

gsdesign twomeans 3 7, sd(9) alpha(0.025) onesided ///
efficacy(errpocock) nlooks(3)

Same as above, but add a nonbinding error-spending O’Brien–Fleming-style futility bound, and specify

the difference between means instead of the experimental-group mean

gsdesign twomeans 3, diff(4) sd(9) alpha(0.025) onesided ///
efficacy(errpocock) futility(errobfleming) nlooks(3)

Same as above, but specify a control-group standard deviation of 6 and an experimental-group standard

deviation of 12, and allocate twice as many subjects to the experimental group as the control group

gsdesign twomeans 3, diff(4) sd1(6) sd2(12) nratio(2) ///
alpha(0.025) onesided efficacy(errpocock) ///
futility(errobfleming) nlooks(3)

Same as above, but time the looks to occur with 50%, 75%, and 100% of the data, and plot the boundaries

gsdesign twomeans 3, diff(4) sd1(6) sd2(12) nratio(2) ///
alpha(0.025) onesided efficacy(errpocock) ///
futility(errobfleming) information(50 75 100)

Menu
Statistics > Power, precision, and sample size

121
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Syntax
gsdesign twomeans 𝑚1 𝑚2 [ , twomeansopts boundopts ]

where𝑚1 is the mean of the control (reference) group and𝑚2 is the mean of the experimental (treatment)

group.

twomeansopts Description

Main

alpha(#) overall significance level for all tests; default is alpha(0.05)
power(#) overall power for all tests; default is power(0.8)
beta(#) overall probability of type II error for all tests;

default is beta(0.2)
onesided request a one-sided test; default is two-sided

nfractional report fractional sample size

nratio(#) ratio of sample sizes of experimental to control groups;
default is nratio(1), meaning equal group sizes

diff(#) difference between the experimental-group mean and the
control-group mean, 𝑚2 − 𝑚1; specify instead of the
experimental-group mean 𝑚2

sd(#) common standard deviation of the control and the
experimental groups assuming equal standard deviations in
both groups; default is sd(1)

sd1(#) standard deviation of the control group; requires sd2()
sd2(#) standard deviation of the experimental group; requires sd1()
knownsds request computation assuming known standard deviations for both

groups; default is to assume unknown standard deviations

force allow calculation with unsupported power twomeans options
poweriteration(powiteropts) iteration options for the calculation of fixed-study sample size;

seldom used

collect is allowed; see [U] 11.1.10 Prefix commands.

force and poweriteration() do not appear in the dialog box.

powiteropts Description

init(#) initial value for fixed-study sample size

iterate(#) maximum number of iterations; default is iterate(500)
tolerance(#) parameter tolerance; default is tolerance(1e-12)
ftolerance(#) function tolerance; default is ftolerance(1e-12)
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boundopts Description

Bounds

efficacy(boundary) boundary for efficacy stopping; if neither efficacy()
nor futility() is specified, the default is
efficacy(obfleming)

futility(boundary[ , binding ]) boundary for futility stopping; use binding to request
binding futility bounds (default is nonbinding)

nlooks(#[ , equal ]) total number of analyses (nlooks() − 1 interim analyses
and one final analysis); use equal to enforce equal
information increments; if neither nlooks() nor
information() is specified, the default is nlooks(2)

information(numlist) sequence of information levels for analyses;
default is evenly spaced

nopvalues suppress 𝑝-values

Graph

graphbounds[ (graphopts) ] graph boundaries

matlistopts(general options) control the display of boundaries and sample size;
seldom used

optimopts optimization options for boundary calculations; seldom used

matlistopts() and optimopts do not appear in the dialog box.

boundary Description

obfleming classical O’Brien–Fleming bound

pocock classical Pocock bound

wtsiatis(#) classical Wang–Tsiatis bound with specified parameter value

errpocock error-spending Pocock-style bound

errobfleming error-spending O’Brien–Fleming-style bound

kdemets(#) error-spending Kim–DeMets bound with specified parameter value

hsdecani(#) error-spending Hwang–Shih–de Cani bound with specified parameter value
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graphopts Description

xdimsampsize label the 𝑥 axis with the sample size collected (default)

xdiminformation label the 𝑥 axis with the information fraction;
use information levels if information() specified

xdimlooks label the 𝑥 axis with the number of each look

noshade do not shade the rejection, acceptance, and continuation
regions

rejectopts(area options) change the appearance of the rejection region

acceptopts(area options) change the appearance of the acceptance region

continueopts(area options) change the appearance of the continuation region

efficacyopts(connected options) change the appearance of the efficacy bound

futilityopts(connected options) change the appearance of the futility bound

nolooklines do not draw vertical reference lines at each look

looklinesopts(added line suboptions) change the appearance of the reference lines
marking each look

nofixed do not label critical values from a fixed study design

fixedopts(marker options) change the appearance of the fixed-study critical values

twoway options any options other than by() documented in
[G-3] twoway options

optimopts Description

intpointsscale(#) scaling factor for number of quadrature points;
default is intpointsscale(20)

initinfo(initinfo spec) initial value(s) for maximum information

initscale(#) initial value for scaling factor 𝐶 of classical bounds

infotolerance(#) tolerance for bisection search for maximum information of error-
spending bounds with futility stopping; default is infotol(1e-6)

marquardt use the Marquardt stepping algorithm in nonconcave regions;
default is to use a mixture of steepest descent and Newton

technique(algorithm spec) maximization technique

iterate(#) perform maximum of # iterations; default is iterate(300)
[ no ]log display an iteration log; default is nolog
trace display current parameter vector in iteration log

gradient display current gradient vector in iteration log

showstep report steps within an iteration in iteration log

hessian display current negative Hessian matrix in iteration log

showtolerance report the calculated result that is compared with the effective
convergence criterion

tolerance(#) tolerance for the parameter being optimized;
default is tolerance(1e-12)

ftolerance(#) tolerance for the objective function;
default is ftolerance(1e-10)

nrtolerance(#) tolerance for the scaled gradient;
default is nrtolerance(1e-16)

nonrtolerance ignore the nrtolerance() option
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Options

� � �
Main �

alpha(#) sets the overall significance level, which is the familywise type I error rate for all analyses

(interim and final). alpha() must be in (0, 0.5). The default is alpha(0.05).

power(#) sets the overall power for all analyses. power() must be in (0.5, 1). The default is

power(0.8). If beta() is specified, power() is set to be 1 − beta(). Only one of power() or

beta() may be specified.

beta(#) sets the overall probability of a type II error. beta() must be in (0, 0.5). The default is

beta(0.2). If power() is specified, beta() is set to be 1 − power(). Only one of beta() or

power() may be specified.

onesided requests a study design for a one-sided test. The direction of the test is inferred from the effect

size.

nfractional specifies that fractional sample sizes be reported.

nratio(#) specifies the sample-size ratio of the experimental group relative to the control group,

𝑁2/𝑁1. The default is nratio(1), meaning equal allocation between the two groups.

diff(#) specifies the difference between the experimental-group mean and the control-group mean,

𝑚2 −𝑚1. You can either specify the experimental-group mean𝑚2 as a command argument or specify

the difference between the two means in diff(). If you specify diff(#), the experimental-group
mean is computed as 𝑚2 = 𝑚1 + #.

sd(#) specifies the common standard deviation of the control and the experimental groups assuming

equal standard deviations in both groups. The default is sd(1).

sd1(#) specifies the standard deviation of the control group. If you specify sd1(), you must also specify
sd2().

sd2(#) specifies the standard deviation of the experimental group. If you specify sd2(), you must also
specify sd1().

knownsds requests that standard deviations of each group be treated as known in the computations. By

default, standard deviations are treated as unknown and the computations are based on a two-sample

𝑡 test, which uses Student’s 𝑡 distribution as a sampling distribution of the test statistic. If knownsds
is specified, the computation is based on a two-sample 𝑧 test, which uses a normal distribution as
the sampling distribution of the test statistic. In either case, critical values for efficacy and futility

boundaries calculated by gsdesign twomeans are reported on the standardized 𝑧 scale. When a 𝑡 test
is performed, you can use the significance level approach and compare the 𝑝-value from the 𝑡 test to
the 𝑝-value boundaries reported by gsdesign twomeans, as demonstrated in example 2.

� � �
Bounds �

efficacy(boundary) specifies the boundary for efficacy stopping. If neither efficacy() nor

futility() is specified, the default is efficacy(obfleming).
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futility(boundary[ , binding ]) specifies the boundary for futility stopping.
binding specifies binding futility bounds. With binding futility bounds, if the result of an interim

analysis crosses the futility boundary and lies in the acceptance region, the trial must end or risk

overrunning the specified type I error. With nonbinding futility bounds, the trial does not need to

stop if the result of an interim analysis crosses the futility boundary; the familywise type I error

rate is controlled even if the trial continues. By default, futility bounds are nonbinding.

nlooks(# [ , equal ]) specifies the total number of analyses to be performed (nlooks() − 1 interim

analyses and one final analysis). If neither nlooks() nor information() is specified, the default is
nlooks(2).

equal indicates that equal information increments be enforced, which is to say that the same number
of new observations will be collected at each look. The default behavior is to start by dividing

information evenly among looks, then proceed by rounding up to a whole number of observations

at each look. This can cause slight differences in the information collected at each look.

information(numlist) specifies a sequence of information levels for interim and final analyses. This

must be a sequence of increasing positive numbers, but the scale is unimportant because the infor-

mation sequence will be automatically rescaled to ensure the maximum information is reached at the

final look. By default, analyses are evenly spaced.

nopvalues suppresses the 𝑝-values from being reported in the table of boundaries for each look.

� � �
Graph �

graphbounds and graphbounds(graphopts) produce graphical output showing the stopping bound-

aries.

graphopts are the following:

xdimsampsize labels the 𝑥 axis with the sample size collected (the default).

xdiminformation labels the 𝑥 axis with the information fraction unless information() is spec-
ified, in which case information levels will be used.

xdimlooks labels the 𝑥 axis with the number of each look.

noshade suppresses shading of the rejection, acceptance, and continuation regions of the graph.

rejectopts(area options) affects the rendition of the rejection region. See
[G-3] area options.

acceptopts(area options) affects the rendition of the acceptance region. See
[G-3] area options.

continueopts(area options) affects the rendition of the continuation region. See
[G-3] area options.

efficacyopts(connected options) affects the rendition of the efficacy bound. See
[G-3] cline options and [G-3] marker options.

futilityopts(connected options) affects the rendition of the futility bound. See
[G-3] cline options and [G-3] marker options.

nolooklines suppresses the vertical reference lines drawn at each look.

looklinesopts(added line suboptions) affects the rendition of reference lines marking each

look. See suboptions in [G-3] added line options.
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nofixed suppresses the fixed-study critical values in the plot.

fixedopts(marker options) affects the rendition of the fixed-study critical values. See
[G-3] marker options.

twoway options are any of the options documented in [G-3] twoway options, excluding by().
These include options for titling the graph (see [G-3] title options) and for saving the graph to

disk (see [G-3] saving option).

The following options are available with gsdesign twomeans but are not shown in the dialog box:

force indicates that gsdesign twomeans should allow unsupported power twomeans options, such

as options specifying a cluster randomized design. Even with option force, the power twomeans
options specified must be compatible with sample-size determination, not effect size or power calcu-

lation. In addition, numlists are not supported in options or in arguments as they are with power, even
when force is specified.

poweriteration(powiteropts) controls the iterative algorithm used to calculate the fixed-study sample

size. This is seldom used.

powiteropts are the following:

init(#) specifies an initial value for the sample size when iteration is used to compute the fixed-
study sample size. The default is to use a closed-form normal approximation to compute an

initial sample size.

iterate(#) specifies the maximum number of iterations for the Newton method during calcula-

tion of the fixed-study sample size. The default is iterate(500).

tolerance(#) specifies the tolerance used to determine whether successive parameter es-

timates have converged when calculating the fixed-study sample size. The default is

tolerance(1e-12). See Convergence criteria in [M-5] solvenl( ) for details.

ftolerance(#) specifies the tolerance used when calculating the fixed-study sample size to de-
termine whether the proposed solution of a nonlinear equation is sufficiently close to 0 based on

the squared Euclidean distance. The default is ftolerance(1e-12). See Convergence criteria
in [M-5] solvenl( ) for details.

matlistopts(general options) affects the display of the matrix of boundaries and sample sizes. gen-

eral options are title(), tindent(), rowtitle(), showcoleq(), coleqonly, colorcoleq(),
aligncolnames(), and linesize(); see general options in [P]matlist. This option is seldom used.

optimopts control the iterative algorithm used to calculate stopping boundaries:

intpointsscale(#) specifies the scaling factor for the number of quadrature points used during the
numerical evaluation of stopping probabilities at each look. The default is intpointsscale(20).
See Methods and formulas in [ADAPT] gsbounds.

initinfo(initinfo spec) specifies either one or two initial values to be used in the iterative calcula-
tion of the maximum information.

The syntax initinfo(#) is applicable when using classical group sequential boundaries (Pocock
bounds, O’Brien–Fleming bounds, and Wang–Tsiatis bounds), as well as with efficacy-only

stopping when using error-spending boundaries (error-spending Pocock-style efficacy bounds,

error-spending O’Brien–Fleming-style efficacy bounds, Kim–DeMets efficacy bounds, and

Hwang–Shih–de Cani efficacy bounds). The default is to use the information from a fixed study

design; see Methods and formulas in [ADAPT] gsbounds.
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The syntax initinfo(# #) is applicable when using error-spending group sequential boundaries
with futility stopping (error-spending Pocock-style bounds, error-spending O’Brien–Fleming-

style bounds, Kim–DeMets bounds, and Hwang–Shih–de Cani bounds). With this syntax, the

first and second numbers specify the lower and upper starting values, respectively, for the bisec-

tion algorithm estimating the maximum information. The default is to use the information from a

fixed study design for the lower initial value and the information corresponding to a Bonferroni

correction for the upper initial value; see Methods and formulas in [ADAPT] gsbounds. To specify

just the lower starting value, use initinfo(# .), and to specify just the upper starting value, use
initinfo(. #).

initscale(#) specifies the initial value to be used during the iterative calculation of scaling fac-

tor 𝐶 for classical group sequential boundaries (Pocock bounds, O’Brien–Fleming bounds, and

Wang–Tsiatis bounds). The default is to use the 𝑧-value corresponding to the specified value of
alpha(). See Methods and formulas in [ADAPT] gsbounds.

infotolerance(#) specifies the tolerance for the bisection algorithm used in the itera-

tive calculation of the maximum information of error-spending group sequential boundaries

with futility stopping (error-spending Pocock-style bounds, error-spending O’Brien–Fleming-

style bounds, Kim–DeMets bounds, and Hwang–Shih–de Cani bounds). The default is

infotolerance(1e-6). See Methods and formulas in [ADAPT] gsbounds.

marquardt specifies that the optimizer should use the modified Marquardt algorithm when, at an

iteration step, it finds that 𝐻 is singular. The default is to use a mixture of steepest descent and

Newton, which is equivalent to the difficult option in [R] ml.

technique(algorithm spec) specifies how the objective function is to be maximized. The following

algorithms are allowed. For details, see Pitblado, Poi, and Gould (2024).

technique(bfgs) specifies the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

technique(nr) specifies Stata’s modified Newton–Raphson (NR) algorithm.

technique(dfp) specifies the Davidon–Fletcher–Powell (DFP) algorithm.

The default is technique(bfgs) when using classical group sequential boundaries (Pocock

bounds, O’Brien–Fleming bounds, and Wang–Tsiatis bounds) and also for the second opti-

mization step used to estimate the maximum information with efficacy-only stopping when

using error-spending boundaries (error-spending Pocock-style efficacy bounds, error-spending

O’Brien–Fleming-style efficacy bounds, Kim–DeMets efficacy bounds, and Hwang–Shih–de

Cani efficacy bounds). The default is technique(nr) for the sequential optimization steps used

to estimate critical values for error-spending boundaries. You can also switch between two al-

gorithms by specifying the technique name followed by the number of iterations. For example,

specifying technique(nr 10 bfgs 20) requests 10 iterations with the NR algorithm followed by

20 iterations with the BFGS algorithm, and then back to NR for 10 iterations, and so on. The process

continues until convergence or until the maximum number of iterations is reached.

iterate(#) specifies the maximum number of iterations. If convergence is not declared by the

time the number of iterations equals iterate(), an error message is issued. The default value of
iterate(#) is the number set using set maxiter, which is 300 by default.

[ no ]log requests an iteration log showing the progress of the optimization. The default is nolog.

trace adds to the iteration log a display of the current parameter vector.

gradient adds to the iteration log a display of the current gradient vector.
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showstep adds to the iteration log a report on the steps within an iteration. This option was added so
that developers at StataCorp could view the stepping when they were improving the ml optimizer
code. At this point, it mainly provides entertainment.

hessian adds to the iteration log a display of the current negative Hessian matrix.

showtolerance adds to the iteration log the calculated value that is compared with the effective

convergence criterion at the end of each iteration. Until convergence is achieved, the smallest

calculated value is reported. shownrtolerance is a synonym of showtolerance.

Below, we describe the three convergence tolerances. Convergence is declared when the

nrtolerance() criterion is met and either the tolerance() or the ftolerance() criterion is also
met.

tolerance(#) specifies the tolerance for the parameter vector. When the relative change in

the parameter vector from one iteration to the next is less than or equal to tolerance(), the
tolerance() convergence criterion is satisfied. The default is tolerance(1e-12).

ftolerance(#) specifies the tolerance for the objective function. When the relative change in

the objective function from one iteration to the next is less than or equal to ftolerance(), the
ftolerance() convergence is satisfied. The default is ftolerance(1e-10).

nrtolerance(#) specifies the tolerance for the scaled gradient. Convergence is declared when

gH−1g′ < nrtolerance(). The default is nrtolerance(1e-16).

nonrtolerance specifies that the default nrtolerance() criterion be turned off.

boundary
obfleming specifies a classical O’Brien–Fleming design for efficacy or futility bounds (O’Brien and

Fleming 1979). O’Brien–Fleming efficacy bounds are characterized by being extremely conservative

at early looks. The O’Brien–Fleming design is a member of theWang–Tsiatis family and is equivalent

to specifying a boundary of wtsiatis(0).

pocock specifies a classical Pocock design for efficacy or futility bounds (Pocock 1977). Pocock efficacy
bounds are characterized by using the same critical value at all looks. The Pocock design is a member

of the Wang–Tsiatis family and is equivalent to specifying a boundary of wtsiatis(0.5).

wtsiatis(#) specifies a classical Wang–Tsiatis design for efficacy or futility bounds (Wang and Tsiatis

1987). The shape ofWang–Tsiatis bounds is determined by parameter Δ ∈ [−10, 0.7], where smaller
values of Δ yield bounds that are more conservative at early looks.

errpocock specifies an error-spending Pocock-style design for efficacy or futility bounds (Lan and

DeMets 1983). The critical values from error-spending Pocock-style bounds are very similar to those

of classic Pocock bounds, but they are obtained using an error-spending function.

errobfleming specifies an error-spending O’Brien–Fleming-style design for efficacy or futility bounds
(Lan and DeMets 1983). The critical values from error-spending O’Brien–Fleming-style bounds

are very similar to those of classic O’Brien–Fleming bounds, but they are obtained using an error-

spending function.

kdemets(#) specifies an error-spending Kim–DeMets design for efficacy or futility bounds (Kim and

DeMets 1987). The shape of Kim–DeMets bounds is determined by power parameter 𝜌 ∈ (0, 10],
where larger values of 𝜌 yield bounds that are more conservative at early looks.
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hsdecani(#) specifies an error-spending Hwang–Shih–de Cani design for efficacy or futility bounds

(Hwang, Shih, and de Cani 1990). The shape of Hwang–Shih–de Cani bounds is determined by

parameter 𝛾 ∈ [−30, 3], where smaller values of 𝛾 yield bounds that are more conservative at early

looks.

For a design with both efficacy and futility stopping boundaries, if you specify a classical boundary

(that is, in theWang–Tsiatis family) for one, then you must specify a classical boundary for the other. So,

you could not specify a boundary in the Wang–Tsiatis family for one boundary and an error-spending

boundary for the other. When specifying efficacy and futility boundaries from the same family, the

efficacy parameter does not need to be the same as the futility parameter.

Boundaries that are conservative at early looks, such as the O’Brien–Fleming bound, offer little

chance of early stopping unless the true effect size is quite large (in the case of efficacy bounds) or quite

small (in the case of futility bounds). A trial employing a conservative bound is more likely to continue

to the final look, yielding an expected sample size that is not dramatically smaller than the sample size

required by an equivalent fixed-sample trial. However, the maximum sample size (that is, the sample

size at the final look) of a trial with a conservative bound is generally not much greater than the sample

size required by an equivalent fixed trial. Another direct result of specifying conservative bounds is that

the critical value at the final look tends to be close to the critical value employed by an equivalent fixed

design. In contrast, anticonservative boundaries such as the Pocock bound offer a much better shot at

early stopping (often yielding a small expected sample size) at the cost of a larger maximum sample size

and final critical values that are considerably larger than the critical value of an equivalent fixed design.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using gsdesign twomeans
Background for examples 1 and 2
Computing sample size and stopping boundaries with known standard deviation
Unknown standard deviation and hypothesis tests on means
Background for example 3
Efficacy and futility stopping

This entry describes the use of the gsdesign twomeans command for designing a group sequential

analysis for a two-sample means test. See [ADAPT]GSD intro for a general introduction to GSDs for clin-

ical trials; see [ADAPT] gsbounds for information about group sequential bounds; and see [ADAPT] gs-

design for information about designing group sequential clinical trials with the gsdesign command.

Also see [PSS-2] Intro (power) for a general introduction to power and sample-size analysis, and see

[PSS-2] power twomeans for details about study design for a two-sample means test.

Introduction
In a classic randomized controlled trial, participants are randomly assigned to one of two groups: the

experimental group (which receives the treatment being tested) and the control group (which receives

either a placebo or the existing standard of care, if one exists). The two groups are often called arms,

making this a two-arm trial. Examples of treatments include new drugs, medical devices, and medical

procedures. To determine the efficacy of the treatment, the responses of participants in the experimental

arm are compared with the responses of participants in the control arm. When the responses are contin-

uous, a two-sample test of means can be performed to determine whether the mean of the experimental

arm is the same as that of the control arm.
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gsdesign twomeans calculates sample size and stopping boundaries for a group sequential trial com-
paring the population mean of the experimental group against that of the control group. Specifically, we

consider the null hypothesis 𝐻0 ∶ 𝜇1 = 𝜇2 versus the two-sided alternative hypothesis 𝐻𝑎 ∶ 𝜇1 ≠ 𝜇2, the

upper one-sided alternative 𝐻𝑎 ∶ 𝜇1 > 𝜇2, or the lower one-sided alternative 𝐻𝑎 ∶ 𝜇1 < 𝜇2.

The actual test conducted will depend on whether the population standard deviation of both groups is

known. In the case of a known standard deviation, the test statistic follows a standard normal distribution

under the null hypothesis, and the corresponding test is known as a two-sample 𝑧 test. A 𝑧 test is also
commonly used when sample sizes are large, even when the population standard deviations are unknown.

This is because the distribution of the test statistic approaches a normal distribution as the sample size

increases.

If the sample is not of sufficient size to use a large-sample 𝑧 test and the standard deviations are

unknown but assumed to be equal, then the test statistic has an exact Student’s 𝑡 distribution under the
null hypothesis and the corresponding test is referred to as a two-sample 𝑡 test. If the two unknown

standard deviations are not equal, then the distribution of the test statistic under the null hypothesis can

be approximated by a 𝑡 distribution with degrees of freedom estimated using Satterthwaite’s method, and

the resulting test is known as Satterthwaite’s 𝑡 test.
The required sample size estimated by gsdesign twomeans will depend on whether the standard

deviation is known, but the stopping boundaries will not; they are reported on a standardized 𝑧 scale.

The critical values from the boundaries may be compared directly with the 𝑧 statistic from a 𝑧 test. If
the analysis is performed using a 𝑡 test, the 𝑝-value from the 𝑡 test can be compared with the 𝑝-values
corresponding to the critical values for the boundaries. This is demonstrated in example 2.

Using gsdesign twomeans
gsdesign twomeans calculates sample size and stopping boundaries for a group sequential trial com-

paring the means of two populations. gsdesign twomeans can be thought of as a combination of power
twomeans for sample-size calculations and gsbounds for stopping boundary calculations.

To compute sample size, you must specify the effect size. There are two ways to do this: by specifying

the means of the control and experimental groups, 𝑚1 and 𝑚2, or by specifying 𝑚1 and the difference

𝑚2 − 𝑚1 in the diff() option. There is no default value for diff(), so either 𝑚1 and 𝑚2 or 𝑚1
and diff() must be included as part of the command specification. Another aspect of the effect size

is the standard deviation of the responses. This is specified with the sd() option if both groups share

a common standard deviation and specified with the sd1() and sd2() options otherwise. The default

behavior is to assume a common standard deviation of 1 and to assume that the standard deviation must

be estimated from the sample. If the true population standard deviation is known a priori, the knownsds
option requests that sample-size calculations be performed for a 𝑧 test, not a 𝑡 test.

By default, gsdesign twomeans assumes that the control and experimental arms will be the same

size. If participants are not allocated equally between the two arms, the nratio() option is used to

specify the ratio of participants in the experimental arm to the control arm.
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The alpha(), power(), beta(), and onesided options are used for both sample-size and stopping-
boundary calculations. The default significance level, known as the familywise type I error rate, is 0.05

and can be changed by specifying the alpha() option. The default power is 0.8, which corresponds to

a type II error rate of 0.2. This can be modified either by specifying the power in the power() option

or by specifying the type II error in the beta() option. The default test is two-sided, and the onesided
option requests a one-sided test, the direction of which is indicated by the sign of the effect size.

The group sequential stopping rule is determined by the efficacy() and futility() options. Stop-
ping can be for efficacy, futility, or both, and if no stopping rule is specified, the default is to use an

O’Brien–Fleming efficacy bound. If futility bounds are requested, the default behavior is to treat them

as nonbinding. A trial that crosses a nonbinding futility bound can be stopped for futility, but the fam-

ilywise type I error is controlled even if the trial continues. Binding futility bounds can be requested

with futility() suboption binding. A trial that crosses a binding futility bound must be stopped for

futility; if it continues, the familywise type I error will not be controlled at the specified significance

level.

The number of looks, or analyses of the trial data, is specified with nlooks(). Alternatively, the
information() option can be used to specify the spacing of the looks as a numlist of increasing infor-

mation levels. In this case, values of the numlist are automatically rescaled so that the final look has the

maximum information required by the design. If neither nlooks() nor information() is specified,

the default is two looks.

By default, the sample sizes in each arm are rounded up to whole numbers at each look, but the

nfractional option can be used to report fractional sample sizes. If nlooks() is specified, the default
behavior is to divide information evenly among looks before rounding. Rounding can cause slight dif-

ferences in the amount of information collected at each look, and nlooks() suboption equal can be

specified to enforce equal information increments by requiring the same number of new observations per

arm at each look.

Background for examples 1 and 2
Alzheimer’s disease (AD) is an incurable neurodegenerative disease characterized bymemory loss and

progressive cognitive decline. Historically, the only sure way to diagnose AD was through autopsy, but

recent research has identified biomarkers that can be used to diagnose AD and track disease progression

in living patients.

One of the most promising biomarkers for AD is glucose metabolism in the brain, which can be mea-

sured by a type of imaging known as fluorodeoxyglucose positron emission tomography (FDG PET).

Mosconi (2005) writes that FDG PET “has revealed glucose metabolic reductions in the parieto-temporal,

frontal and posterior cingulate cortices to be the hallmark ofAD”. FDG PETmeasures glucose metabolism

as standardized uptake value ratios (SUVRs), which can be used to track disease progression, with SUVR

levels falling as the disease becomes more severe.

Matthews et al. (2021) conducted a phase 2 clinical trial of the neuroprotective agent riluzole versus a

placebo for the treatment of mildAD. They used FDG PET to measure the SUVR of each subject at baseline

and again after six months of treatment, and they compared the average change in SUVR in the control

arm against that of the treatment arm. The results of their study were encouraging, with smaller declines

in SUVR observed in the experimental arm than in the control arm.
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Computing sample size and stopping boundaries with known standard deviation

Example 1: Pocock efficacy bounds for a test of two sample means
Suppose that we want design a follow-up study focusing on a target population ofAlzheimer’s patients

suffering from clinical depression. We will consider a placebo-controlled clinical trial, with participants

randomized to the treatment and placebo arms at a 1:1 ratio. The SUVR in the posterior cingulate will be

measured for each participant at baseline and again after six months of treatment, and the mean change

in SUVR from the control arm (𝜇1) and experimental arm (𝜇2) will be calculated. We will test the null

hypothesis 𝐻0 ∶ 𝜇1 = 𝜇2 versus the two-sided alternative hypothesis 𝐻𝑎 ∶ 𝜇1 ≠ 𝜇2.

Based on previous studies, we anticipate SUVR will decrease by an average of 0.05 in the control arm

and 0.01 in the experimental arm, giving 𝜇1 = −0.05 and 𝜇2 = −0.01. We will assume both arms have

a known standard deviation of 0.035, but this assumption is likely unrealistic and is relaxed in the next

example.

We require 80% power to detect the specified difference in means, and we will conduct a two-sided

trial with familywise significance level of 5%, using Pocock efficacy bounds with two evenly spaced

looks. Except for the efficacy boundary, these design specifications correspond to the default values of

the respective options in gsdesign twomeans, so they are not specified.
. gsdesign twomeans -0.05 -0.01, sd(0.035) knownsds efficacy(pocock)
Group sequential design for a two-sample means test
z test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1
Efficacy: Pocock
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.8000
delta = 0.0400

m1 = -0.0500
m2 = -0.0100
sd = 0.0350

Expected sample size:
H0 = 27.59
Ha = 21.22

Info. ratio = 1.1104
N fixed = 26

N max = 28
N1 max = 14
N2 max = 14

Fixed-study crit. values = ±1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Sample size
Look frac. Lower Upper p-value N1 N2 N

1 0.50 -2.1783 2.1783 0.0294 7 7 14
2 1.00 -2.1783 2.1783 0.0294 14 14 28

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.

gsdesign twomeans begins by displaying a description of the test being performed, the type of

bounds, and a summary of the parameters used in the design.
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The next section of the output displays the expected sample size, which is the average sample size if

the group sequential trial were to be repeated many times. The following section reports the information

ratio, the sample size for a fixed study with an equivalent significance level and power (N fixed), the
maximum sample size of the GSD (N max), and the maximum sample sizes for each group (N1 max and

N2 max). The information ratio is the ratio of the maximum sample size of the GSD to the fixed-study

sample size.

We can compare the expected sample sizes with the sample size for a fixed study and the maximum

sample size of the GSD. If the null hypothesis of equal change in SUVR between the control and the

experimental arms were true, the average trial would require 27.59 participants, nearly the full sample

size of 28. This is because the efficacy bounds do not allow for early stopping to accept 𝐻0, so if the

null hypothesis is true, the trial will usually proceed to the final look. If 𝐻𝑎 is true, the average trial will

require 21.22 participants, which is a savings over the 26 participants required by the fixed trial.

We also see the critical value for a fixed study with an equivalent significance level. The critical

values of ±1.96 would be used to reject 𝐻0 at the 0.05 level if a fixed study design were conducted

instead of a GSD.

Finally, gsdesign twomeans displays a table with the critical values and 𝑝-values for the efficacy
stopping boundaries as well as the sample sizes at each look. Pocock efficacy bounds use the same

critical value at all looks, and to maintain a familywise type I error of 0.05, the 𝑧 statistic must meet or
exceed ±2.178 at any look to reject 𝐻0.

To plot the bounds for visual inspection, we rerun the previous command but add the graphbounds
option.

. gsdesign twomeans -0.05 -0.01, sd(0.035) knownsds efficacy(pocock) graphbounds
(output omitted )
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Figure 1. Two-sided Pocock efficacy bounds for a test of the equality of two means
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On the graph, the horizontal axis is the total sample size (the sum of the sample sizes of both arms),

and the vertical axis is the 𝑧-value of the test statistic. The efficacy bounds are marked as blue lines,
with the location of looks indicated by blue dots. For comparison, the critical values of an equivalently

powered fixed study are marked with black dots.

The rejection region is shaded blue, the acceptance region red, and the continuation region green.

Before the first look, which occurs once results have been collected from 14 participants (7 in the control

arm and 7 in the experimental arm), it is impossible to reject 𝐻0 because no test has been conducted, so

the entire range of 𝑧-values is in the continuation region. Beginning at the first look, 𝑧-values equal to or
more extreme than ±2.1783 are in the rejection region. The efficacy-only design does not permit early

stopping to accept 𝐻0, so the acceptance region begins at the second and final look, and it encompasses

𝑧-values less extreme than ±2.1783.

Unknown standard deviation and hypothesis tests on means

Example 2: Unknown standard deviation, specifying difference between means
In the previous example, we relied on the assumption that the population standard deviation was

known to be 0.035 in both arms, which led to sample-size calculations based on a two-sample 𝑧 test.
Here we relax that assumption and assume that the standard deviation will be estimated from the sample.

We anticipate the standard deviation of the control group will be 0.05, while the standard deviation of

the experimental group will be 0.035. This yields sample sizes for a 𝑡 test, which is demonstrated below.
Additionally, instead of specifying 𝜇2 directly, here we use the diff() option to specify the difference

in means between the two arms. We omit the graphbounds option because the graph is minimally

changed from the previous example.
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. gsdesign twomeans -0.05, diff(0.04) sd1(0.05) sd2(0.035) efficacy(pocock)
Group sequential design for a two-sample means test
Satterthwaite’s t test assuming unequal variances
H0: m2 = m1 versus Ha: m2 != m1
Efficacy: Pocock
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.8000
delta = 0.0400

m1 = -0.0500
m2 = -0.0100

diff = 0.0400
sd1 = 0.0500
sd2 = 0.0350

Expected sample size:
H0 = 43.35
Ha = 33.60

Info. ratio = 1.1104
N fixed = 40

N max = 44
N1 max = 22
N2 max = 22

Fixed-study crit. values = ±1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Sample size
Look frac. Lower Upper p-value N1 N2 N

1 0.50 -2.1783 2.1783 0.0294 11 11 22
2 1.00 -2.1783 2.1783 0.0294 22 22 44

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.

Specifying the difference in means instead of the experimental group mean has not changed the study

parameters, but changing our assumptions about the standard deviations has increased the fixed-study

sample size from 26 in the previous example to 40 here. The information ratio is unchanged, but the

sample sizes required by the GSD have increased correspondingly, as have the expected sample sizes

under 𝐻0 and 𝐻𝑎.

The testing procedure has also changed. Instead of comparing the 𝑧 statistic directly with the efficacy
critical values, a 𝑡 test is performed, and we use the significance level approach described in [ADAPT] gs-
bounds. The table at the bottom of the output provides the 𝑝-value corresponding to each critical value.
We can compare the 𝑝-value for the 𝑡 test with these 𝑝-value boundaries.

Suppose the first look is conducted with 11 observations from each arm. From the data we collect,

we have a mean change in SUVR of −0.014 in the experimental arm with standard deviation 0.038 and a

mean change in SUVR of −0.062 in the control arm with standard deviation 0.057. We conduct a 𝑡 test
using ttesti, the immediate form of the [R] ttest command. We type ttesti 11 -0.014 0.038 11
-0.062 0.057, unequal, with the first three arguments specifying the experimental group sample size,
mean, and standard deviation, respectively, and the following three arguments specifying the control

group sample size, mean, and standard deviation. Option unequal indicates that we do not assume that
the population standard deviations of the two groups are equal and instructs ttesti to use Satterthwaite’s
method to estimate the degrees of freedom for the 𝑡 test.
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. ttesti 11 -0.014 0.038 11 -0.062 0.057, unequal
Two-sample t test with unequal variances

Obs Mean Std. err. Std. dev. [95% conf. interval]

x 11 -.014 .0114574 .038 -.0395287 .0115287
y 11 -.062 .0171861 .057 -.1002931 -.0237069

Combined 22 -.038 .0113582 .0532747 -.0616207 -.0143793

diff .048 .0206552 .0045018 .0914982

diff = mean(x) - mean(y) t = 2.3239
H0: diff = 0 Satterthwaite’s degrees of freedom = 17.4227

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.9838 Pr(|T| > |t|) = 0.0325 Pr(T > t) = 0.0162

The 𝑡 statistic of 2.324 cannot be compared directly with the efficacy critical values, but the 𝑝-value
for the two-sided test, 𝑝1 = 0.0325, can be compared with the 𝑝-value equivalent of the critical value
at the first look. Because 𝑝1 > 0.0294, we cannot reject 𝐻0 at this look, and the trial continues to the

second and final look. At the second look, we conduct another 𝑡 test and calculate the 𝑝-value, 𝑝2. If

𝑝2 ≤ 0.0294, then 𝐻0 is rejected; otherwise, 𝐻0 is accepted.

Background for example 3
Wilkinson et al. (2011) published the results of a clinical trial of levalbuterol used as a continuous

nebulization for the treatment of acute pediatric asthma exacerbations (asthma attacks). Levalbuterol was

found to be inferior to the standard of care, nebulization with racemic albuterol, which was an unexpected

result. To determine whether levalbuterol is more effective at higher doses, we wish to conduct a similar

study using 7.5 mg of levalbuterol instead of the 3.75 mg dose used by Wilkinson et al.

Study participants are children aged 6 to 17 who have previously been diagnosed with asthma by a

physician and who present to the emergency department with acute asthma exacerbation of moderate

severity. Participants are randomly assigned to either the treatment or the control group. Participants in

the treatment group receive 7.5 mg of levalbuterol administered via nebulizer over the course of one hour,

while participants in the control group receive the standard of care, which is a one-hour nebulization with

7.5 mg of racemic albuterol.

Upon hospital admission, each participant’s one-second forced expiratory volume is assessed. This is

a measurement of howmuch air the participant can exhale in one second, and higher values indicate better

lung function. A second measurement of expiratory volume is conducted two hours after treatment, and

the change in one-second forced expiratory volume (ΔFEV1) is calculated as the percent improvement

(or percent decline, for negative ΔFEV1) compared with the participant’s baseline value.

Efficacy and futility stopping

Example 3: Error-spending efficacy and futility bounds
Suppose we wish to design a clinical trial that will compare the averageΔFEV1 in the control arm, 𝜇1,

against the average ΔFEV1 in the experimental arm, 𝜇2. We will test the null hypothesis 𝐻0 ∶ 𝜇1 = 𝜇2
versus the one-sided alternative 𝐻𝑎 ∶ 𝜇1 < 𝜇2 with a familywise significance level of 2.5%. We require
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90% power to detect the difference between a 50% increase in mean ΔFEV1 in the control arm and a

60% mean increase in the experimental arm, with a common standard deviation of 35. Suppose that we

are particularly concerned about adverse events in the group receiving high-dose levalbuterol, so we will

randomize participants to the experimental and control arms in a 2:1 ratio, ensuring a larger sample size

(and more power) to detect adverse events in the experimental arm.

Depending on the recruitment rate, this clinical trial could take months or even years to complete.

There is an ethical imperative not to expose participants to inferior treatments, so if high-dose leval-

buterol is more effective than racemic albuterol, we would want to know as soon as possible. To this

end, we employ an error-spending O’Brien–Fleming-style efficacy bound. If high-dose levalbuterol is

not superior to racemic albuterol, we want to terminate the trial early for futility, so we also specify a non-

binding Kim–DeMets futility bound with parameter 𝜌𝑓 = 2. If a nonbinding futility bound is crossed, the

trial can be stopped for futility, but if the trial is continued, the familywise type I error is still controlled

at the desired level. We specify a four-look design and graph the bounds for inspection.

. gsdesign twomeans 50 60, sd(35) nratio(2) alpha(0.025) power(0.9) onesided
> efficacy(errobfleming) futility(kdemets(2)) nlooks(4) graphbounds
Group sequential design for a two-sample means test
t test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 > m1
Efficacy: Error-spending O’Brien--Fleming style
Futility: Error-spending Kim--DeMets, nonbinding, rho = 2.0000
Study parameters:

alpha = 0.0250 (upper one-sided)
power = 0.9000

nratio = 2.0000
delta = 10.0000

m1 = 50.0000
m2 = 60.0000
sd = 35.0000

Expected sample size:
H0 = 353.85
Ha = 470.42

Info. ratio = 1.0859
N fixed = 582

N max = 632
N1 max = 211
N2 max = 421

Fixed-study crit. value = 1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Futility
Look frac. Upper p-value Lower p-value

1 0.25 4.3326 0.0000 -0.8088 0.7907
2 0.50 2.9631 0.0015 0.3702 0.3556
3 0.75 2.3590 0.0092 1.2438 0.1068
4 1.00 2.0141 0.0220 2.0141 0.0220

Note: Critical values are for z statistics; otherwise,
use p-value boundaries.
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Sample size
Look N1 N2 N

1 53 106 159
2 106 211 317
3 158 316 474
4 211 421 632
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Parameters: α = .025 (one-sided), 1-β = .9, N2/N1 = 2, δ = 10, µ1 = 50, σ = 35, ρf = 2

Error-spending O'Brien–Fleming-style efficacy 
 Error-spending Kim–DeMets nonbinding futility

Group sequential design for a two-sample means test

Figure 2. Sample size for a test of the equality of two means with efficacy and futility bounds

The output begins with a description of the test being performed, the types of boundaries, and a

summary of the parameters used in the design.

Next it displays the expected sample sizes under the null and alternative hypotheses, the information

ratio, the sample size that would be required for an equivalently powered fixed study, the maximum

sample size for a GSD, and the critical value for a fixed study.

The sample size for a corresponding fixed study is the same sample size that would be calculated

hadwe run power twomeans 50 60, sd(35) nratio(2) power(0.9) alpha(0.025) onesided. The
fixed-study critical value of 1.96 would be used to reject𝐻0 at the 0.025 level using a fixed study design.

The expect sample sizes under the null and alternative hypotheses are both smaller than the fixed-study

sample size. This is not surprising, because this design incorporates both efficacy and futility stopping.

At the bottom of the output is a table with the critical values and 𝑝-values for the stopping boundaries
as well as the sample sizes at each look. O’Brien–Fleming boundaries are very conservative at early

looks, with final critical values only slightly larger than those of an equivalent fixed-sample design. The

error-spending approximation of the classical O’Brien–Fleming bounds shares this property, yielding

efficacy critical values at the first look of 4.333, but only 2.014 at the final look, a minor increase over

the fixed-study critical values.
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While the population standard deviation was not assumed to be known when designing this trial, the

large sample sizes involved enable the use of a large-sample 𝑧 test. The first look is conducted when
we have data from 53 controls and 106 experimental participants, and the test statistic, 𝑧1, is compared

with the boundary critical values. If 𝑧1 ≥ 4.333, we reject 𝐻0 and terminate the trial early for efficacy.

Even if we terminate the trial after the first look, we will have data about adverse events for over 100

experimental participants because we randomized twice as many participants to the experimental arm as

the control arm. If 𝑧1 < −0.809, we may accept 𝐻0 and terminate the trial for futility, but if the trial

is continued, the familywise type I error is still controlled. If 𝑧1 ∈ [−0.809, 4.333), then the trial must
continue to the next look.

At the second look, the testing procedure is the same, but the critical values of the efficacy bounds and

the futility bounds have narrowed, shrinking the continuation region to 𝑧2 ∈ [0.37, 2.963). If the trial
continues to the third look, the continuation region is further reduced to 𝑧3 ∈ [1.244, 2.359). At the fourth
and final look, the futility critical values equal the efficacy critical values and there is no continuation

region: If 𝑧4 ≥ 2.014, then 𝐻0 is rejected; otherwise, 𝐻0 is accepted. The boundaries are displayed on

the graph, and the critical value for a fixed study with equivalent significance level and power is marked

with a black dot.

Stored results
gsdesign twomeans stores the following in r():

Scalars

r(alpha) overall significance level (familywise type I error)

r(beta) overall probability of a type II error

r(binding) 1 for binding futility bounds, 0 for nonbinding
r(delta) effect size

r(diff) difference between the experimental- and control-group means

r(effparam) efficacy parameter (if wtsiatis(), kdemets(), or hsdecani() specified)
r(ESS0) expected sample size under null hypothesis

r(ESS1) expected sample size under alternative hypothesis

r(futparam) futility parameter (if wtsiatis(), kdemets(), or hsdecani() specified)
r(info ratio) ratio of maximum information required to that of a fixed study design

r(knownsds) 1 if option knownsds is specified, 0 otherwise
r(m1) control-group mean

r(m2) experimental-group mean

r(N fixed) sample size of a fixed study design

r(N fixedfrac) fractional sample size of a fixed study design

r(N max) maximum sample size if the study continues to completion

r(N1 fixed) sample size of the control group in a fixed study design

r(N1 fixedfrac) fractional sample size of the control group in a fixed study design

r(N1 max) maximum sample size of the control group if the study continues to completion

r(N2 fixed) sample size of the experimental group in a fixed study design

r(N2 fixedfrac) fractional sample size of the experimental group in a fixed study design

r(N2 max) maximum sample size of the experimental group if the study continues to completion

r(nfractional) 1 if nfractional is specified, 0 otherwise
r(nlooks) number of analyses

r(nratio) specified ratio of sample sizes, 𝑁2/𝑁1
r(nratio a) attained ratio of sample sizes

r(onesided) 1 for a one-sided test, 0 otherwise
r(pow converged) 1 if power calculation iteration algorithm converged, 0 otherwise
r(pow deltax) final parameter tolerance achieved for power calculation

r(pow ftolerance) requested distance of power calculation objective function from 0

r(pow function) final distance of power calculation objective function from 0
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r(pow init) initial value for power calculation sample size

r(pow iter) number of iterations performed for power calculation

r(pow maxiter) maximum number of iterations for power calculation

r(pow tolerance) requested parameter tolerance for power calculation

r(power) specified overall power

r(power a) attained overall power

r(sd) common standard deviation of both groups (if sd1() and sd2() not specified)
r(sd1) standard deviation of the control group

r(sd2) standard deviation of the experimental group

r(stop) 0 for futility bounds, 1 for efficacy bounds, 2 for both
r(unequal) 0 if sd1 = sd2, 1 otherwise
r(z fixed) critical value for an equivalent fixed study design

Macros

r(cmd) gsdesign
r(cmdline) command as typed

r(direction) upper, lower, or two-sided
r(effbnd) pocock, obfleming, wtsiatis, errpocock, errobfleming, kdemets, or hsdecani
r(futbnd) pocock, obfleming, wtsiatis, errpocock, errobfleming, kdemets, or hsdecani
r(method) twomeans

Matrices

r(aspent) cumulative alpha spent per look (stored with efficacy-only stopping or when futility

bounds are binding)
r(aspent fstop) cumulative alpha spent per look if futility stopping does occur (stored when futility

bounds are nonbinding)
r(aspent nofstop) cumulative alpha spent per look if futility stopping does not occur (stored when futility

bounds are nonbinding)
r(bounds) stopping boundaries

r(bspent) cumulative beta spent per look (when futility bounds are specified)

r(bspent a) attained cumulative beta spent per look (when futility bounds are specified)

r(design) sample size and stopping boundaries at interim looks

r(info frac) specified information fraction

r(info frac a) fraction of attained information

r(info level) specified information level

r(p crit) 𝑝-values corresponding to boundary critical values
r(sampsize) sample size at interim looks

Methods and formulas
Sample sizes at interim analyses are calculated as the product of the information fraction, the infor-

mation ratio, and the sample size of a fixed-sample study.

See Methods and formulas in [ADAPT] gsbounds for the formulas used to calculate the stopping

boundaries, information fraction, and information ratio. See Methods and formulas in [PSS-2] power

twomeans for the formulas used to calculate the sample size for a fixed study. SeeMethods and formulas

in [ADAPT] gsdesign for the formulas used to calculate the expected sample size.
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
gsdesign oneproportion computes stopping boundaries and sample sizes for interim analyses of

clinical trials using a one-sample proportion test with a group sequential design (GSD). Stopping can be

for efficacy, futility, or both. For stopping boundary calculations without sample sizes, see [ADAPT] gs-

bounds. For sample-size calculations for a fixed-sample test of one proportion, see [PSS-2] power one-

proportion.

Quick start
Sample size and stopping boundaries for a two-sided score test of𝐻0 ∶ 𝜋 = 0.3 versus𝐻𝑎 ∶ 𝜋 ≠ 0.3, with

default significance level 𝛼 = 0.05 and power of 0.8 to detect the difference between the proportion

under the null hypothesis, 𝑝0 = 0.3, and an observed proportion of 𝑝𝑎 = 0.4, using default group

sequential specifications of O’Brien–Fleming efficacy boundaries with two analyses (one interim,

one final)

gsdesign oneproportion 0.3 0.4

Same as above, but use Hwang–Shih–de Cani error-spending efficacy bounds with parameter 𝛾 = −2

and four looks

gsdesign oneproportion 0.3 0.4, efficacy(hsdecani(-2)) nlooks(4)

Same as above, but specified as 𝑝0 and difference 𝑝𝑎 − 𝑝0 = 0.1

gsdesign oneproportion 0.3, diff(0.1) efficacy(hsdecani(-2)) nlooks(4)

Same as above, but add nonbinding O’Brien–Fleming-style futility bounds and graph the boundaries

gsdesign oneproportion 0.3, diff(0.1) efficacy(hsdecani(-2)) ///
futility(errobfleming) nlooks(4) graphbounds

Same as above, but time the looks to occur with 40%, 60%, 80%, and 100% of the data

gsdesign oneproportion 0.3, diff(0.1) efficacy(hsdecani(-2)) ///
futility(errobfleming) information(4 6 8 10) graphbounds

Same as above, but remove the efficacy bound and make the futility bound binding

gsdesign oneproportion 0.3, diff(0.1) futility(errobfleming, binding) ///
information(4 6 8 10) graphbounds

Menu
Statistics > Power, precision, and sample size

143
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Syntax
gsdesign oneproportion 𝑝0 𝑝𝑎 [ , onepropopts boundopts ]

where 𝑝0 is the null (hypothesized) proportion or the value of the proportion under the null hypothesis, and

𝑝𝑎 is the alternative (target) proportion or the value of the proportion under the alternative hypothesis.

onepropopts Description

Main

alpha(#) overall significance level for all tests; default is alpha(0.05)
power(#) overall power for all tests; default is power(0.8)
beta(#) overall probability of type II error for all tests;

default is beta(0.2)
onesided request a one-sided test; default is two-sided

nfractional report fractional sample size

diff(#) difference between the alternative proportion and the null pro-
portion, 𝑝𝑎 − 𝑝0; specify instead of the alternative proportion 𝑝𝑎

test(test) specify the type of test; options are score (the default) and wald
continuity apply continuity correction to the normal approximation of the

discrete distribution

force allow calculation with unsupported power oneproportion options
poweriteration(powiteropts) iteration options for the calculation of fixed-study sample size;

seldom used

collect is allowed; see [U] 11.1.10 Prefix commands.

force and poweriteration() do not appear in the dialog box.

powiteropts Description

init(#) initial value for fixed-study sample size

iterate(#) maximum number of iterations; default is iterate(500)
tolerance(#) parameter tolerance; default is tolerance(1e-12)
ftolerance(#) function tolerance; default is ftolerance(1e-12)
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boundopts Description

Bounds

efficacy(boundary) boundary for efficacy stopping; if neither efficacy()
nor futility() is specified, the default is
efficacy(obfleming)

futility(boundary[ , binding ]) boundary for futility stopping; use binding to request
binding futility bounds (default is nonbinding)

nlooks(#[ , equal ]) total number of analyses (nlooks() − 1 interim analyses
and one final analysis); use equal to enforce equal
information increments; if neither nlooks() nor
information() is specified, the default is nlooks(2)

information(numlist) sequence of information levels for analyses;
default is evenly spaced

nopvalues suppress 𝑝-values

Graph

graphbounds[ (graphopts) ] graph boundaries

matlistopts(general options) control the display of boundaries and sample size;
seldom used

optimopts optimization options for boundary calculations; seldom used

matlistopts() and optimopts do not appear in the dialog box.

boundary Description

obfleming classical O’Brien–Fleming bound

pocock classical Pocock bound

wtsiatis(#) classical Wang–Tsiatis bound with specified parameter value

errpocock error-spending Pocock-style bound

errobfleming error-spending O’Brien–Fleming-style bound

kdemets(#) error-spending Kim–DeMets bound with specified parameter value

hsdecani(#) error-spending Hwang–Shih–de Cani bound with specified parameter value
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graphopts Description

xdimsampsize label the 𝑥 axis with the sample size collected (default)

xdiminformation label the 𝑥 axis with the information fraction;
use information levels if information() specified

xdimlooks label the 𝑥 axis with the number of each look

noshade do not shade the rejection, acceptance, and continuation
regions

rejectopts(area options) change the appearance of the rejection region

acceptopts(area options) change the appearance of the acceptance region

continueopts(area options) change the appearance of the continuation region

efficacyopts(connected options) change the appearance of the efficacy bound

futilityopts(connected options) change the appearance of the futility bound

nolooklines do not draw vertical reference lines at each look

looklinesopts(added line suboptions) change the appearance of the reference lines
marking each look

nofixed do not label critical values from a fixed study design

fixedopts(marker options) change the appearance of the fixed-study critical values

twoway options any options other than by() documented in
[G-3] twoway options

optimopts Description

intpointsscale(#) scaling factor for number of quadrature points;
default is intpointsscale(20)

initinfo(initinfo spec) initial value(s) for maximum information

initscale(#) initial value for scaling factor 𝐶 of classical bounds

infotolerance(#) tolerance for bisection search for maximum information of error-
spending bounds with futility stopping; default is infotol(1e-6)

marquardt use the Marquardt stepping algorithm in nonconcave regions;
default is to use a mixture of steepest descent and Newton

technique(algorithm spec) maximization technique

iterate(#) perform maximum of # iterations; default is iterate(300)
[ no ]log display an iteration log; default is nolog
trace display current parameter vector in iteration log

gradient display current gradient vector in iteration log

showstep report steps within an iteration in iteration log

hessian display current negative Hessian matrix in iteration log

showtolerance report the calculated result that is compared with the effective
convergence criterion

tolerance(#) tolerance for the parameter being optimized;
default is tolerance(1e-12)

ftolerance(#) tolerance for the objective function;
default is ftolerance(1e-10)

nrtolerance(#) tolerance for the scaled gradient;
default is nrtolerance(1e-16)

nonrtolerance ignore the nrtolerance() option
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Options

� � �
Main �

alpha(#) sets the overall significance level, which is the familywise type I error rate for all analyses

(interim and final). alpha() must be in (0, 0.5). The default is alpha(0.05).

power(#) sets the overall power for all analyses. power() must be in (0.5, 1). The default is

power(0.8). If beta() is specified, power() is set to be 1 − beta(). Only one of power() or

beta() may be specified.

beta(#) sets the overall probability of a type II error. beta() must be in (0, 0.5). The default is

beta(0.2). If power() is specified, beta() is set to be 1 − power(). Only one of beta() or

power() may be specified.

onesided requests a study design for a one-sided test. The direction of the test is inferred from the effect

size.

nfractional specifies that fractional sample sizes be reported.

diff(#) specifies the difference between the alternative proportion and the null proportion, 𝑝𝑎 − 𝑝0.

You can either specify the alternative proportion 𝑝𝑎 as a command argument or specify the differ-

ence between the two proportions in diff(). If you specify diff(#), the alternative proportion is
computed as 𝑝𝑎 = 𝑝0 + #.

test(test) specifies the type of test that will be used for data analysis. Sample-size calculations depend
on the test that will be conducted. test is either score or wald.

score requests computations for the score test, which uses the value of the null proportion in the

formula for the standard error of the estimator of the proportion. This is the default test, and this

test can be performed with command prtest; see [R] prtest.

wald requests computations for the Wald test, which uses the value of the alternative proportion in

the formula for the standard error of the estimator of the proportion.

Note that power oneproportion option test(binomial) cannot be used for sample-size calcula-

tions and is not compatible with gsdesign oneproportion. However, option continuity imple-

ments a continuity correction that yields an estimate of the sample size that would be required by

the exact binomial test at the specified significance level and power. The exact binomial test can be

performed with command bitest; see [R] bitest. When the exact binomial test is performed, you

can use the significance level approach and compare the 𝑝-value from the exact test to the 𝑝-value
boundaries reported by gsdesign oneproportion.

continuity requests that the continuity correction of Levin and Chen (1999) be applied to the normal

approximation of the discrete distribution. This yields an estimate of the sample size that would be

required by the exact binomial test at the specified significance level and power.

� � �
Bounds �

efficacy(boundary) specifies the boundary for efficacy stopping. If neither efficacy() nor

futility() is specified, the default is efficacy(obfleming).

futility(boundary[ , binding ]) specifies the boundary for futility stopping.
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binding specifies binding futility bounds. With binding futility bounds, if the result of an interim

analysis crosses the futility boundary and lies in the acceptance region, the trial must end or risk

overrunning the specified type I error. With nonbinding futility bounds, the trial does not need to

stop if the result of an interim analysis crosses the futility boundary; the familywise type I error

rate is controlled even if the trial continues. By default, futility bounds are nonbinding.

nlooks(# [ , equal ]) specifies the total number of analyses to be performed (nlooks() − 1 interim

analyses and one final analysis). If neither nlooks() nor information() is specified, the default is
nlooks(2).

equal indicates that equal information increments be enforced, which is to say that the same number
of new observations will be collected at each look. The default behavior is to start by dividing

information evenly among looks, then proceed by rounding up to a whole number of observations

at each look. This can cause slight differences in the information collected at each look.

information(numlist) specifies a sequence of information levels for interim and final analyses. This

must be a sequence of increasing positive numbers, but the scale is unimportant because the infor-

mation sequence will be automatically rescaled to ensure the maximum information is reached at the

final look. By default, analyses are evenly spaced.

nopvalues suppresses the 𝑝-values from being reported in the table of boundaries for each look.

� � �
Graph �

graphbounds and graphbounds(graphopts) produce graphical output showing the stopping bound-

aries.

graphopts are the following:

xdimsampsize labels the 𝑥 axis with the sample size collected (the default).

xdiminformation labels the 𝑥 axis with the information fraction unless information() is spec-
ified, in which case information levels will be used.

xdimlooks labels the 𝑥 axis with the number of each look.

noshade suppresses shading of the rejection, acceptance, and continuation regions of the graph.

rejectopts(area options) affects the rendition of the rejection region. See
[G-3] area options.

acceptopts(area options) affects the rendition of the acceptance region. See
[G-3] area options.

continueopts(area options) affects the rendition of the continuation region. See
[G-3] area options.

efficacyopts(connected options) affects the rendition of the efficacy bound. See
[G-3] cline options and [G-3] marker options.

futilityopts(connected options) affects the rendition of the futility bound. See
[G-3] cline options and [G-3] marker options.

nolooklines suppresses the vertical reference lines drawn at each look.

looklinesopts(added line suboptions) affects the rendition of reference lines marking each

look. See suboptions in [G-3] added line options.

nofixed suppresses the fixed-study critical values in the plot.
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fixedopts(marker options) affects the rendition of the fixed-study critical values. See
[G-3] marker options.

twoway options are any of the options documented in [G-3] twoway options, excluding by().
These include options for titling the graph (see [G-3] title options) and for saving the graph to

disk (see [G-3] saving option).

The following options are available with gsdesign oneproportion but are not shown in the dialog

box:

force indicates that gsdesign oneproportion should allow unsupported power oneproportion op-
tions, such as options specifying a cluster randomized design. Even with option force, the power
oneproportion options specified must be compatible with sample-size determination, not effect size
or power calculation. In addition, numlists are not supported in options or in arguments as they are

with power, even when force is specified.

poweriteration(powiteropts) controls the iterative algorithm used to calculate the fixed-study sample

size. This is seldom used.

powiteropts are the following:

init(#) specifies an initial value for the sample size when iteration is used to compute the fixed-
study sample size. The default is to use a closed-form normal approximation to compute an

initial sample size.

iterate(#) specifies the maximum number of iterations for the Newton method during calcula-

tion of the fixed-study sample size. The default is iterate(500).

tolerance(#) specifies the tolerance used to determine whether successive parameter es-

timates have converged when calculating the fixed-study sample size. The default is

tolerance(1e-12). See Convergence criteria in [M-5] solvenl( ) for details.

ftolerance(#) specifies the tolerance used when calculating the fixed-study sample size to de-
termine whether the proposed solution of a nonlinear equation is sufficiently close to 0 based on

the squared Euclidean distance. The default is ftolerance(1e-12). See Convergence criteria
in [M-5] solvenl( ) for details.

matlistopts(general options) affects the display of the matrix of boundaries and sample sizes. gen-

eral options are title(), tindent(), rowtitle(), showcoleq(), coleqonly, colorcoleq(),
aligncolnames(), and linesize(); see general options in [P]matlist. This option is seldom used.

optimopts control the iterative algorithm used to calculate stopping boundaries:

intpointsscale(#) specifies the scaling factor for the number of quadrature points used during the
numerical evaluation of stopping probabilities at each look. The default is intpointsscale(20).
See Methods and formulas in [ADAPT] gsbounds.

initinfo(initinfo spec) specifies either one or two initial values to be used in the iterative calcula-
tion of the maximum information.

The syntax initinfo(#) is applicable when using classical group sequential boundaries (Pocock
bounds, O’Brien–Fleming bounds, and Wang–Tsiatis bounds), as well as with efficacy-only

stopping when using error-spending boundaries (error-spending Pocock-style efficacy bounds,

error-spending O’Brien–Fleming-style efficacy bounds, Kim–DeMets efficacy bounds, and

Hwang–Shih–de Cani efficacy bounds). The default is to use the information from a fixed study

design; see Methods and formulas in [ADAPT] gsbounds.
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The syntax initinfo(# #) is applicable when using error-spending group sequential boundaries
with futility stopping (error-spending Pocock-style bounds, error-spending O’Brien–Fleming-

style bounds, Kim–DeMets bounds, and Hwang–Shih–de Cani bounds). With this syntax, the

first and second numbers specify the lower and upper starting values, respectively, for the bisec-

tion algorithm estimating the maximum information. The default is to use the information from a

fixed study design for the lower initial value and the information corresponding to a Bonferroni

correction for the upper initial value; see Methods and formulas in [ADAPT] gsbounds. To specify

just the lower starting value, use initinfo(# .), and to specify just the upper starting value, use
initinfo(. #).

initscale(#) specifies the initial value to be used during the iterative calculation of scaling fac-

tor 𝐶 for classical group sequential boundaries (Pocock bounds, O’Brien–Fleming bounds, and

Wang–Tsiatis bounds). The default is to use the 𝑧-value corresponding to the specified value of
alpha(). See Methods and formulas in [ADAPT] gsbounds.

infotolerance(#) specifies the tolerance for the bisection algorithm used in the itera-

tive calculation of the maximum information of error-spending group sequential boundaries

with futility stopping (error-spending Pocock-style bounds, error-spending O’Brien–Fleming-

style bounds, Kim–DeMets bounds, and Hwang–Shih–de Cani bounds). The default is

infotolerance(1e-6). See Methods and formulas in [ADAPT] gsbounds.

marquardt specifies that the optimizer should use the modified Marquardt algorithm when, at an

iteration step, it finds that 𝐻 is singular. The default is to use a mixture of steepest descent and

Newton, which is equivalent to the difficult option in [R] ml.

technique(algorithm spec) specifies how the objective function is to be maximized. The following

algorithms are allowed. For details, see Pitblado, Poi, and Gould (2024).

technique(bfgs) specifies the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

technique(nr) specifies Stata’s modified Newton–Raphson (NR) algorithm.

technique(dfp) specifies the Davidon–Fletcher–Powell (DFP) algorithm.

The default is technique(bfgs) when using classical group sequential boundaries (Pocock

bounds, O’Brien–Fleming bounds, and Wang–Tsiatis bounds) and also for the second opti-

mization step used to estimate the maximum information with efficacy-only stopping when

using error-spending boundaries (error-spending Pocock-style efficacy bounds, error-spending

O’Brien–Fleming-style efficacy bounds, Kim–DeMets efficacy bounds, and Hwang–Shih–de

Cani efficacy bounds). The default is technique(nr) for the sequential optimization steps used

to estimate critical values for error-spending boundaries. You can also switch between two al-

gorithms by specifying the technique name followed by the number of iterations. For example,

specifying technique(nr 10 bfgs 20) requests 10 iterations with the NR algorithm followed by

20 iterations with the BFGS algorithm, and then back to NR for 10 iterations, and so on. The process

continues until convergence or until the maximum number of iterations is reached.

iterate(#) specifies the maximum number of iterations. If convergence is not declared by the

time the number of iterations equals iterate(), an error message is issued. The default value of
iterate(#) is the number set using set maxiter, which is 300 by default.

[ no ]log requests an iteration log showing the progress of the optimization. The default is nolog.

trace adds to the iteration log a display of the current parameter vector.

gradient adds to the iteration log a display of the current gradient vector.



gsdesign oneproportion — Group sequential design for a one-sample proportion test 151

showstep adds to the iteration log a report on the steps within an iteration. This option was added so
that developers at StataCorp could view the stepping when they were improving the ml optimizer
code. At this point, it mainly provides entertainment.

hessian adds to the iteration log a display of the current negative Hessian matrix.

showtolerance adds to the iteration log the calculated value that is compared with the effective

convergence criterion at the end of each iteration. Until convergence is achieved, the smallest

calculated value is reported. shownrtolerance is a synonym of showtolerance.

Below, we describe the three convergence tolerances. Convergence is declared when the

nrtolerance() criterion is met and either the tolerance() or the ftolerance() criterion is also
met.

tolerance(#) specifies the tolerance for the parameter vector. When the relative change in

the parameter vector from one iteration to the next is less than or equal to tolerance(), the
tolerance() convergence criterion is satisfied. The default is tolerance(1e-12).

ftolerance(#) specifies the tolerance for the objective function. When the relative change in

the objective function from one iteration to the next is less than or equal to ftolerance(), the
ftolerance() convergence is satisfied. The default is ftolerance(1e-10).

nrtolerance(#) specifies the tolerance for the scaled gradient. Convergence is declared when

gH−1g′ < nrtolerance(). The default is nrtolerance(1e-16).

nonrtolerance specifies that the default nrtolerance() criterion be turned off.

boundary
obfleming specifies a classical O’Brien–Fleming design for efficacy or futility bounds (O’Brien and

Fleming 1979). O’Brien–Fleming efficacy bounds are characterized by being extremely conservative

at early looks. The O’Brien–Fleming design is a member of theWang–Tsiatis family and is equivalent

to specifying a boundary of wtsiatis(0).

pocock specifies a classical Pocock design for efficacy or futility bounds (Pocock 1977). Pocock efficacy
bounds are characterized by using the same critical value at all looks. The Pocock design is a member

of the Wang–Tsiatis family and is equivalent to specifying a boundary of wtsiatis(0.5).

wtsiatis(#) specifies a classical Wang–Tsiatis design for efficacy or futility bounds (Wang and Tsiatis

1987). The shape ofWang–Tsiatis bounds is determined by parameter Δ ∈ [−10, 0.7], where smaller
values of Δ yield bounds that are more conservative at early looks.

errpocock specifies an error-spending Pocock-style design for efficacy or futility bounds (Lan and

DeMets 1983). The critical values from error-spending Pocock-style bounds are very similar to those

of classic Pocock bounds, but they are obtained using an error-spending function.

errobfleming specifies an error-spending O’Brien–Fleming-style design for efficacy or futility bounds
(Lan and DeMets 1983). The critical values from error-spending O’Brien–Fleming-style bounds

are very similar to those of classic O’Brien–Fleming bounds, but they are obtained using an error-

spending function.

kdemets(#) specifies an error-spending Kim–DeMets design for efficacy or futility bounds (Kim and

DeMets 1987). The shape of Kim–DeMets bounds is determined by power parameter 𝜌 ∈ (0, 10],
where larger values of 𝜌 yield bounds that are more conservative at early looks.
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hsdecani(#) specifies an error-spending Hwang–Shih–de Cani design for efficacy or futility bounds

(Hwang, Shih, and de Cani 1990). The shape of Hwang–Shih–de Cani bounds is determined by

parameter 𝛾 ∈ [−30, 3], where smaller values of 𝛾 yield bounds that are more conservative at early

looks.

For a design with both efficacy and futility stopping boundaries, if you specify a classical boundary

(that is, in theWang–Tsiatis family) for one, then you must specify a classical boundary for the other. So,

you could not specify a boundary in the Wang–Tsiatis family for one boundary and an error-spending

boundary for the other. When specifying efficacy and futility boundaries from the same family, the

efficacy parameter does not need to be the same as the futility parameter.

Boundaries that are conservative at early looks, such as the O’Brien–Fleming bound, offer little

chance of early stopping unless the true effect size is quite large (in the case of efficacy bounds) or quite

small (in the case of futility bounds). A trial employing a conservative bound is more likely to continue

to the final look, yielding an expected sample size that is not dramatically smaller than the sample size

required by an equivalent fixed-sample trial. However, the maximum sample size (that is, the sample

size at the final look) of a trial with a conservative bound is generally not much greater than the sample

size required by an equivalent fixed trial. Another direct result of specifying conservative bounds is that

the critical value at the final look tends to be close to the critical value employed by an equivalent fixed

design. In contrast, anticonservative boundaries such as the Pocock bound offer a much better shot at

early stopping (often yielding a small expected sample size) at the cost of a larger maximum sample size

and final critical values that are considerably larger than the critical value of an equivalent fixed design.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using gsdesign oneproportion
Background for examples
Computing sample size and stopping boundaries

This entry describes the use of the gsdesign oneproportion command for designing a group se-

quential analysis for a one-sample proportion test. See [ADAPT] GSD intro for a general introduction to

GSDs for clinical trials; see [ADAPT] gsbounds for information about group sequential bounds; and see

[ADAPT] gsdesign for information about designing group sequential clinical trials with the gsdesign
command. Also see [PSS-2] Intro (power) for a general introduction to power and sample-size analysis,

and see [PSS-2] power oneproportion for details about study design for a one-sample proportion test.

Introduction
The analysis of proportions is carried out in clinical trials where the response variable, or endpoint,

is binary. Each observation is a Bernoulli outcome with a fixed probability 𝑝 of observing an event of

interest in a population. We assume the outcome is observed a fixed number of times and that individual

observations are independent with shared probability of success 𝑝. As an example, in a clinical trial of a
drug for tuberculosis treatment, the endpoint of interest might be culture status after eight weeks. Each

observation is the binary indicator of whether tuberculosis was present or absent from the culture taken

from one participant.
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Sometimes an endpoint that can take several values is discretized into a binary endpoint. For exam-

ple, the World Health Organization defines a low birthweight as below 2,500 grams. In a clinical trial

examining the effect of a prenatal nutrition program on the proportion of newborns with low birthweight,

each observation is the binary indicator of whether an infant weighs less than 2,500 grams at birth.

Some clinical trials combinemultiple endpoints into a single composite endpoint, which can be binary.

A heart failure trial might use a composite endpoint such as “cardiovascular death or heart failure hospi-

talization”. In this case, each observation is an indicator of whether heart failure caused a participant’s

death or hospitalization. The outcome from participants who died due to heart failure, were hospitalized

due to heart failure, or died following hospitalization for heart failure would be recorded as 1, while the

outcome from participants who neither died nor were hospitalized due to heart failure would be recorded

as 0.

The gold standard for clinical trials is the randomized controlled trial, where participants are randomly

assigned to one of two groups: one group receives the experimental treatment, while the other group is

kept as a control. The groups are often called arms, and the experimental arm will receive the experi-

mental treatment. The control arm will receive either a placebo (an inactive substance such as a sugar

pill, or a “sham” procedure for nonpharmacological trials) or an active control (typically the standard of

care, a treatment that has been previously studied and is known to be effective).

However, there are some scenarios where randomizing subjects to a control group would be imprac-

tical or unethical, such as the clinical trial of a treatment for a serious condition where there is a moral

argument against giving participants a placebo but there is no existing standard of care. In these cases, a

single-arm clinical trial is desired.

gsdesign oneproportion calculates sample size and stopping boundaries for a group sequential

trial comparing the population proportion of one group against a prespecified reference value. Specif-

ically, we consider the null hypothesis 𝐻0 ∶ 𝑝 = 𝑝0 versus the two-sided alternative hypothesis

𝐻𝑎 ∶ 𝑝 ≠ 𝑝0, the upper one-sided alternative𝐻𝑎 ∶ 𝑝 > 𝑝0, or the lower one-sided alternative𝐻𝑎 ∶ 𝑝 < 𝑝0.

Two common hypothesis tests for a one-sample proportion are the small-sample binomial test and the

asymptotic (large-sample) normal test. gsdesign oneproportion allows sample-size calculations for

tests using the large-sample normal approximation of the sampling distribution of the test statistic. This

test, implemented with command prtest, yields a 𝑧 statistic that can be compared with the boundary
critical values calculated by gsdesign oneproportion. For small samples, the exact binomial test

can be performed by using the bitest command, but the significance level approach must be used to

compare the 𝑝-value from the test statistic to the boundary.

Using gsdesign oneproportion
gsdesign oneproportion calculates sample size and stopping boundaries for a group sequential

trial comparing a population proportion against a hypothesized value. gsdesign oneproportion can

be thought of as a combination of power oneproportion for sample-size calculations and gsbounds
for stopping boundary calculations.

To compute sample size, you must specify the effect size. There are two ways to do this: by specifying

𝑝0 and 𝑝𝑎, the proportions under the null and alternative hypotheses, respectively, or by specifying 𝑝0
and the difference 𝑝𝑎 − 𝑝0 in the diff() option. There is no default value for diff(), so either 𝑝0 and

𝑝𝑎 or 𝑝0 and diff() must be included as part of the command specification. By default, sample sizes

are calculated assuming that a score test will be conducted. To perform sample-size calculations for a

Wald test, specify the test(wald) option.
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Options alpha(), power(), beta(), and onesided are used for both sample-size and stopping-

boundary calculations. The default significance level, known as the familywise type I error rate, is 0.05

and can be changed by specifying the alpha() option. The default power is 0.8, which corresponds to

a type II error rate of 0.2. This can be modified either by specifying the power in the power() option

or by specifying the type II error in the beta() option. The default test is two-sided, and the onesided
option requests a one-sided test, the direction of which is indicated by the sign of the effect size.

The group sequential stopping rule is determined by the efficacy() and futility() options. Stop-
ping can be for efficacy, futility, or both, and if no stopping rule is specified, the default is to use an

O’Brien–Fleming efficacy bound. If futility bounds are requested, the default behavior is to treat them

as nonbinding. A trial that crosses a nonbinding futility bound can be stopped for futility, but the fam-

ilywise type I error is controlled even if the trial continues. Binding futility bounds can be requested

with futility() suboption binding. A trial that crosses a binding futility bound must be stopped for

futility. If it continues, the familywise type I error will not be controlled at the specified significance

level.

The number of looks, or analyses of the trial data, is specified with nlooks(). Alternatively, the
information() option can be used to specify the spacing of the looks as a numlist of increasing infor-

mation levels. In this case, values of the numlist are automatically rescaled so that the final look has the

maximum information required by the design. If neither nlooks() nor information() is specified,

the default is two looks.

By default, the sample size is rounded up to a whole number at each look, but the nfractional
option can be used to report fractional sample sizes. If nlooks() is specified, the default behavior is to
divide information evenly among each look before rounding. Rounding can cause slight differences in

the amount of information collected at each look, and nlooks() suboption equal can be specified to

enforce equal information increments by requiring the same number of new observations at each look.

Background for examples
Oncology is an area where single-arm trials are becoming increasingly common, and some have even

led to approval by regulators. This trend is studied by Tenhunen et al. (2020), who note that regulatory

approval is most common in trials where the response rate is compared with a prespecified threshold for

success, andmany of the approved single-arm trials are lung cancer trials and trials of late-line treatments.

In example 1, we used gsdesign onemean to calculate sample sizes and bounds for a clinical trial

with a continuous endpoint for sunitinib malate as a salvage therapy for lung cancer. Salvage therapy,

also known as rescue therapy, is a term for treatments that are considered when all standard treatment

protocols have failed because they were ineffective or because they caused the patient intolerable side

effects. Here we consider the design of a clinical trial of sunitinib as a salvage therapy for advanced

unresectable non–small cell lung cancer, where “unresectable” describes tumors that cannot be removed

surgically.
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The trial’s outcome of interest is the objective response rate (ORR), defined as the proportion of partic-

ipants that exhibit at least a partial response to therapy (Delgado and Guddati 2021). Each participant’s

response to therapy can be considered a Bernoulli trial, with a response of 1 indicating clinical improve-

ment and a response of 0 indicating lack of improvement.

Socinski et al. (2008) report the results of a phase 2 clinical trial of sunitinib for participants with

advanced non–small cell lung cancer that had progressed despite treatment with the standard of care, a

platinum-based chemotherapy regimen. They found an ORR of 11.1%, which might seem small but can

be considered a victory because the probability of clinical improvement without treatment is effectively

0% (Shatola et al. 2020).

In this trial, there can be no active control because all standard treatment protocols have failed, and

it is not ethical to recruit participants to a placebo control arm knowing that they stand no chance of

improvement. Fortunately, a control arm is not necessary to compare the ORR of the experimental arm

with a prespecified clinically relevant ORR, so a single-arm trial can be used.

Computing sample size and stopping boundaries

Example 1: Efficacy bounds for a large-sample test of one proportion
We use gsdesign oneproportion to calculate efficacy bounds and sample sizes for this situation.

The ORR of untreated patients with advanced unresectable non–small cell lung cancer is 0%, and we

define a clinically meaningful threshold for success to be an ORR of 5%. Typically, the null hypothesis

in a clinical trial is “no treatment effect”, but we are uninterested in clinically irrelevant improvements

in ORR, so we modify our null hypothesis to be “no meaningful treatment effect”.

We will test 𝐻0 ∶ 𝑝 ≤ 0.05 against 𝐻𝑎 ∶ 𝑝 > 0.05, which is identical to testing whether sunitinib

is substantially superior to no treatment, with a superiority margin of 𝛿 = 0.05 (Chow et al. 2018,

chap. 4.1.2). We require 90% power to detect the difference between 𝑝0 = 0.05 and 𝑝𝑎 = 0.111 at a

familywise significance level of 2.5%. We plan on conducting a large-sample score test, and we employ

group sequential specifications of Pocock efficacy boundaries with two analyses (one interim, one final).
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. gsdesign oneproportion 0.05 0.111, alpha(0.025) power(0.9) onesided
> efficacy(pocock)
Group sequential design for a one-sample proportion test
Score z test
H0: p = p0 versus Ha: p > p0
Efficacy: Pocock
Study parameters:

alpha = 0.0250 (upper one-sided)
power = 0.9000
delta = 0.0610

p0 = 0.0500
pa = 0.1110

Expected sample size:
H0 = 202.50
Ha = 143.78

Info. ratio = 1.1001
N fixed = 186

N max = 204
Fixed-study crit. value = 1.9600
Critical values, p-values, and sample sizes
for a group sequential design

Info. Efficacy Sample size
Look frac. Upper p-value N

1 0.50 2.1783 0.0147 102
2 1.00 2.1783 0.0147 204

Note: Critical values are for z statistics;
otherwise, use p-value boundaries.

gsdesign oneproportion displays the specified study parameters, including p0, the proportion un-
der the null hypothesis; pa, the proportion under the alternative hypothesis; and delta, the difference
between pa and p0.

The next section of the output displays the expected sample size, which is the average sample size if

the group sequential trial were to be repeated many times. The following section reports the information

ratio, the sample size for a fixed study with an equivalent significance level and power (N fixed), and
the maximum sample size of the GSD (N max). The information ratio is the ratio of the sample size at the
final look of the GSD to the sample size from a fixed study design.

Expected sample size is calculated under both the null and the alternative hypotheses. Because this

design does not include futility bounds that would allow stopping to accept 𝐻0, the expected sample

size under the null hypothesis is 202.5 participants, nearly the full sample size of 204. If the alternative

hypothesis is true, the ability to stop early for treatment efficacy yields an expected sample size of 143.78,

a savings over the 186 subjects required by the fixed design.

The table at the end of the output displays the stopping boundaries and sample sizes at each look,

but it is informative to examine the bounds visually as well. We rerun the previous command with the

graphbounds option to produce a graph of the stopping boundaries.

. gsdesign oneproportion 0.05 0.111, alpha(0.025) power(0.9) onesided
> efficacy(pocock) graphbounds
(output omitted )
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Figure 1. Pocock efficacy bounds for a test of one proportion

On the graph, the horizontal axis marks the sample size collected, and the vertical axis represents the

𝑧 value of the test statistic. No tests are conducted until 102 observations have been collected, so for the
first 101 observations, all 𝑧-values lie within the continuation region. Once data from 102 participants

have been collected, a score test will be performed.

The 𝑧 statistic from that test, 𝑧1, will be compared with the efficacy critical value, marked with a blue

dot. If 𝑧1 ≥ 2.178, it lies in the blue rejection region, so we will reject 𝐻0 and the trial will be stopped

for efficacy; but if 𝑧1 < 2.178, it lies in the green continuation region, and the trial will continue to the

second and final look.

At the final look, the ORR will be calculated using data from all 204 participants, and a score test

will be conducted. As before, if 𝑧2 ≥ 2.178, then 𝐻0 will be rejected. But this time, if 𝑧2 < 2.178, it

will lie within the red acceptance region because there is no continuation region at the final look; so if

𝑧2 < 2.178, we will accept 𝐻0. The concept of accepting the null hypothesis has a long history in the

context of sequential hypothesis testing (see [ADAPT] GSD intro for details).

Example 2: Efficacy and futility bounds with uneven information increments
We continue the scenario from example 1, but we adjust the design by adding futility boundaries

and additional interim looks at the data. Previously, we used a classical Pocock efficacy bound, which

is characterized by having the same critical values at all looks. The classical Wang–Tsiatis efficacy

bound offers an alternative that is known for having very conservative critical values at early looks but

uses a final critical value that is close to the critical value of an equivalently powered fixed-sample

test. Here we choose an error-spending approximation of the O’Brien–Fleming efficacy bound, which

is similar in shape to the classical O’Brien–Fleming bound but is constructed using the error-spending

method. See Methods and formulas in [ADAPT] gsbounds for more information about the error-spending

approximation of the classical O’Brien–Fleming bound.
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In addition to the error-spending O’Brien–Fleming-style efficacy bound, we add a nonbinding error-

spending Hwang–Shih–de Cani futility bound with parameter 𝛾𝑓 = −3. Nonbinding futility bounds

offer the option of stopping early to accept 𝐻0 if the futility bound is crossed, but if the trial continues

after crossing a nonbinding futility bound, the familywise type I error is still controlled. We also add two

more looks in between the first look (with half the data) and the final look (with the complete dataset).

Option information() allows us to schedule those looks to occur with 75% and 90% of the data.

. gsdesign oneproportion 0.05 0.111, alpha(0.025) power(0.9) onesided
> efficacy(errobfleming) futility(hsdecani(-3))
> information(50 75 90 100) graphbounds
Group sequential design for a one-sample proportion test
Score z test
H0: p = p0 versus Ha: p > p0
Efficacy: Error-spending O’Brien--Fleming style
Futility: Error-spending Hwang--Shih--de Cani, nonbinding, gamma = -3.0000
Study parameters:

alpha = 0.0250 (upper one-sided)
power = 0.9000
delta = 0.0610

p0 = 0.0500
pa = 0.1110

Expected sample size:
H0 = 124.28
Ha = 147.09

Info. ratio = 1.0852
N fixed = 186

N max = 201
Fixed-study crit. value = 1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Futility Sample size
Look frac. Upper p-value Lower p-value N

1 0.50 2.9626 0.0015 0.2963 0.3835 101
2 0.75 2.3590 0.0092 1.1477 0.1255 151
3 0.90 2.1649 0.0152 1.6551 0.0490 181
4 1.00 2.0731 0.0191 2.0731 0.0191 201

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.
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Figure 2. One proportion test with error-spending efficacy and futility bounds

Compared with the design in example 1, the design with futility stopping has nearly the same max-

imum sample size (201 versus 204 observations) and expected sample size under 𝐻𝑎 (147.09 versus

143.78 observations) but a much smaller expected sample size under 𝐻0 (124.28 versus 202.5 observa-

tions).

The improved efficiency when 𝐻0 is true is due to the ability to accept the null hypothesis at interim

analyses. If 𝑧1 < 0.296, the trial can be ended for futility with only 101 observations. As the study

proceeds from one look to the next, the continuation region shrinks as the efficacy and futility bounds

get closer together. By the third look, with 90% of the data (181 observations), the continuation region

has shrunk to 𝑧3 ∈ [1.655, 2.165). At the final look, there is no continuation region because the efficacy
and futility critical values are equal. If 𝑧4 ≥ 2.073, then we reject 𝐻0; otherwise, we accept 𝐻0.

Example 3: Futility-only stopping
We continue the scenario from example 2. In that example, we allowed for early stopping for efficacy

(to reject 𝐻0) as well as for futility (to accept 𝐻0). This enabled a substantial reduction in sample size

compared with a fixed study design, but sometimes there are reasons for intentionally choosing a less

efficient design.

One argument against early stopping for efficacy is that a larger sample size allows for a better char-

acterization of adverse events, which are harmful side effects of the treatment and negative medical out-

comes not associated with an underlying disease. Socinski et al. (2008) report the incidence of several

adverse events among participants taking sunitinib, including fatigue, pain, hypertension, and pulmonary

hemorrhage. If sunitinib is effective at treating non–small cell lung cancer, it will be important to fully

understand its side effects before using it to treat the general population. But if sunitinib is not an effec-

tive treatment, it would be both wasteful and unethical not to stop the trial as soon as the lack of efficacy

is apparent.

To avoid stopping for efficacy before side effects can be characterized, we modify the design from

example 2 by removing the efficacy bound, but the rest of the design remains the same.
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. gsdesign oneproportion 0.05 0.111, alpha(0.025) power(0.9) onesided
> futility(hsdecani(-3)) information(50 75 90 100) graphbounds
Group sequential design for a one-sample proportion test
Score z test
H0: p = p0 versus Ha: p > p0
Futility: Error-spending Hwang--Shih--de Cani, nonbinding, gamma = -3.0000
Study parameters:

alpha = 0.0250 (upper one-sided)
power = 0.9000
delta = 0.0610

p0 = 0.0500
pa = 0.1110

Expected sample size:
H0 = 123.48
Ha = 197.78

Info. ratio = 1.0658
N fixed = 186

N max = 198
Fixed-study crit. value = 1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Futility Sample size
Look frac. Upper p-value Lower p-value N

1 0.50 0.2748 0.3917 99
2 0.75 1.1214 0.1311 148
3 0.90 1.6221 0.0524 178
4 1.00 1.9600 0.0250 1.9600 0.0250 198

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.
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Figure 3. One proportion test with futility bounds

The expected sample size under 𝐻𝑎 is nearly the maximum sample size (197.78 versus 198 obser-

vations), but the expected sample size under 𝐻0 is a third less than the fixed-study sample size (123.48

versus 186 observations). This achieves our goal of collecting data from as many patients as possible if

sunitinib is effective but saving participants from unnecessarily receiving the treatment if it is ineffective.

Efficacy stopping is not an option during the first three looks, so the efficacy critical value for these

looks is reported as missing. At each of these looks, the trial can be terminated for futility if the test

statistic is below the futility boundary, but because the futility bound is nonbinding, the familywise type I

error will be controlled even if the trial is continued.

At the final look, it is at last possible to reject 𝐻0. If 𝑧4 ≥ 1.96, then we reject the null hypothesis;

otherwise, we accept 𝐻0. On the graph, the efficacy bound is displayed as a single blue dot at the final

look because that is the only time efficacy stopping is allowed. Interestingly, the nonbinding futility-only

design uses the same critical value as the fixed design. To understand why, we display the contents of

matrix r(aspent nofstop), the cumulative type I error spent per look if the trial does not stop for
futility (even if it were to cross the futility bound at an interim look).

. matlist r(aspent_nofstop), format(%50.3g)
alpha spent
assuming no futility stopping

Look 1 0
Look 2 0
Look 3 0
Look 4 .025

Just like a fixed-sample trial with a one-sided significance level of 2.5%, this design spends its entire

allotment of type I error during a single analysis. Practically speaking, this means that if 𝐻0 is true, it is

impossible to reject the null (and commit a type I error) during the first three looks. If 𝐻0 is true and this

trial is repeated many times (each time continuing until the final look even if the futility bound is crossed
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during an interim analysis), then 2.5% of the time we will erroneously reject the null hypothesis at the

final look. Viewed from this perspective, this error-spending regimen is essentially the same as that of a

fixed-sample design, which is why it uses the same critical value.

Stored results
gsdesign oneproportion stores the following in r():

Scalars

r(alpha) overall significance level (familywise type I error)

r(beta) overall probability of a type II error

r(binding) 1 for binding futility bounds, 0 for nonbinding
r(continuity) 1 if continuity correction is used, 0 otherwise
r(delta) effect size

r(diff) difference between the alternative and null proportions

r(effparam) efficacy parameter (if wtsiatis(), kdemets(), or hsdecani() specified)
r(ESS0) expected sample size under null hypothesis

r(ESS1) expected sample size under alternative hypothesis

r(futparam) futility parameter (if wtsiatis(), kdemets(), or hsdecani() specified)
r(info ratio) ratio of maximum information required to that of a fixed study design

r(N fixed) sample size of a fixed study design

r(N fixedfrac) fractional sample size of a fixed study design

r(N max) maximum sample size if the study continues to completion

r(nfractional) 1 if nfractional is specified, 0 otherwise
r(nlooks) number of analyses

r(onesided) 1 for a one-sided test, 0 otherwise
r(p0) proportion under the null hypothesis

r(pa) proportion under the alternative hypothesis

r(pow converged) 1 if power calculation iteration algorithm converged, 0 otherwise
r(pow deltax) final parameter tolerance achieved for power calculation

r(pow ftolerance) requested distance of power calculation objective function from 0

r(pow function) final distance of power calculation objective function from 0

r(pow init) initial value for power calculation sample size

r(pow iter) number of iterations performed for power calculation

r(pow maxiter) maximum number of iterations for power calculation

r(pow tolerance) requested parameter tolerance for power calculation

r(power) specified overall power

r(power a) attained overall power

r(stop) 0 for futility bounds, 1 for efficacy bounds, 2 for both
r(z fixed) critical value for an equivalent fixed study design

Macros

r(cmd) gsdesign
r(cmdline) command as typed

r(direction) upper, lower, or two-sided
r(effbnd) pocock, obfleming, wtsiatis, errpocock, errobfleming, kdemets, or hsdecani
r(futbnd) pocock, obfleming, wtsiatis, errpocock, errobfleming, kdemets, or hsdecani
r(method) oneproportion
r(test) score or wald
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Matrices

r(aspent) cumulative alpha spent per look (stored with efficacy-only stopping or when futility

bounds are binding)
r(aspent fstop) cumulative alpha spent per look if futility stopping does occur (stored when futility

bounds are nonbinding)
r(aspent nofstop) cumulative alpha spent per look if futility stopping does not occur (stored when futility

bounds are nonbinding)
r(bounds) stopping boundaries

r(bspent) cumulative beta spent per look (when futility bounds are specified)

r(bspent a) attained cumulative beta spent per look (when futility bounds are specified)

r(design) sample size and stopping boundaries at interim looks

r(info frac) specified information fraction

r(info frac a) fraction of attained information

r(info level) specified information level

r(p crit) 𝑝-values corresponding to boundary critical values
r(sampsize) sample size at interim looks

Methods and formulas
Sample sizes at interim analyses are calculated as the product of the information fraction, the infor-

mation ratio, and the sample size of a fixed-sample study.

See Methods and formulas in [ADAPT] gsbounds for the formulas used to calculate the stopping

boundaries, information fraction, and information ratio. See Methods and formulas in [PSS-2] power

oneproportion for the formulas used to calculate the sample size for a fixed study. See Methods and

formulas in [ADAPT] gsdesign for the formulas used to calculate the expected sample size.
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gsdesign twoproportions — Group sequential design for a two-sample proportions test

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
gsdesign twoproportions computes stopping boundaries and sample sizes for interim analyses of

clinical trials using a two-sample proportions test with a group sequential design (GSD). Stopping can be

for efficacy, futility, or both. For stopping boundary calculations without sample sizes, see [ADAPT] gs-

bounds. For sample-size calculations for a fixed-sample test of two proportions, see [PSS-2] power

twoproportions.

Quick start
Sample size and stopping boundaries for a two-sided 𝜒2 test of 𝐻0 ∶ 𝜋1 = 𝜋2 versus 𝐻𝑎 ∶ 𝜋1 ≠ 𝜋2, with

default familywise significance level 𝛼 = 0.05 and power of 0.8 to detect the difference between

a control-group proportion of 𝑝1 = 0.7 and an experimental-group proportion of 𝑝2 = 0.55, using

default group sequential specifications of O’Brien–Fleming efficacy boundaries with two analyses

(one interim, one final)

gsdesign twoproportions 0.7 0.55

Same as above, but specified as 𝑝1 = 0.7 and difference between proportions 𝑝2 − 𝑝1 = −0.15

gsdesign twoproportions 0.7, diff(-0.15)

Same as above, but specified as 𝑝1 = 0.7 and ratio 𝑝2/𝑝1 = 0.7857

gsdesign twoproportions 0.7, ratio(0.7857)

Same as above, but specified as 𝑝1 = 0.7 and odds ratio {𝑝2/(1 − 𝑝2)}/{𝑝1/(1 − 𝑝1)} = 0.5238

gsdesign twoproportions 0.7, oratio(0.5238)

Same as above, but use a Wang–Tsiatis efficacy bound with parameter Δ𝑒 = 0.25 and conduct four

looks

gsdesign twoproportions 0.7, oratio(0.5238) efficacy(wtsiatis(0.25)) ///
nlooks(4)

Same as above, but calculate sample size for a likelihood-ratio test and add a binding O’Brien–Fleming

futility bound

gsdesign twoproportions 0.7, oratio(0.5238) test(lrchi2) ///
efficacy(wtsiatis(0.25)) futility(obfleming, binding) nlooks(4)

Same as above, but allocate twice as many participants to the experimental group as the control group

and graph the boundaries

gsdesign twoproportions 0.7, oratio(0.5238) test(lrchi2) nratio(2) ///
efficacy(wtsiatis(0.25)) futility(obfleming, binding) ///
nlooks(4) graphbounds

165
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Menu
Statistics > Power, precision, and sample size

Syntax
gsdesign twoproportions 𝑝1 𝑝2 [ , twopropopts boundopts ]

where 𝑝1 is the proportion in the control (reference) group, and 𝑝2 is the proportion in the experimental

(treatment) group.

twopropopts Description

Main

alpha(#) overall significance level for all tests; default is alpha(0.05)
power(#) overall power for all tests; default is power(0.8)
beta(#) overall probability of type II error for all tests;

default is beta(0.2)
onesided request a one-sided test; default is two-sided

nfractional report fractional sample size

nratio(#) ratio of sample sizes of experimental to control groups;
default is nratio(1), meaning equal group sizes

diff(#) difference between the experimental-group and the control-group
proportions, 𝑝2 − 𝑝1; specify instead of the experimental-group
proportion 𝑝2

rdiff(#) risk difference, 𝑝2 − 𝑝1; synonym for diff()
ratio(#) ratio of the experimental-group proportion to the control-group

proportion, 𝑝2/𝑝1; specify instead of the experimental-group
proportion 𝑝2

rrisk(#) relative risk, 𝑝2/𝑝1; synonym for ratio()
oratio(#) odds ratio, {𝑝2/(1 − 𝑝2)}/{𝑝1/(1 − 𝑝1)}; specify instead of the

experimental-group proportion 𝑝2
effect(effect) specify the type of effect to display; default is effect(diff)
test(test) specify the type of test; options are chi2 (the default) and lrchi2
continuity apply continuity correction to the normal approximation of the

discrete distribution

force allow calculation with unsupported power twoproportions
options

poweriteration(powiteropts) iteration options for the calculation of fixed-study sample size;
seldom used

collect is allowed; see [U] 11.1.10 Prefix commands.

force and poweriteration() do not appear in the dialog box.
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effect Description

diff difference between proportions, 𝑝2 − 𝑝1; the default

rdiff risk difference, 𝑝2 − 𝑝1; synonym for diff
ratio ratio of proportions, 𝑝2/𝑝1
rrisk relative risk, 𝑝2/𝑝1; synonym for ratio
oratio odds ratio, {𝑝2/(1 − 𝑝2)}/{𝑝1/(1 − 𝑝1)}

powiteropts Description

init(#) initial value for fixed-study sample size

iterate(#) maximum number of iterations; default is iterate(500)
tolerance(#) parameter tolerance; default is tolerance(1e-12)
ftolerance(#) function tolerance; default is ftolerance(1e-12)

boundopts Description

Bounds

efficacy(boundary) boundary for efficacy stopping; if neither efficacy()
nor futility() is specified, the default is
efficacy(obfleming)

futility(boundary[ , binding ]) boundary for futility stopping; use binding to request
binding futility bounds (default is nonbinding)

nlooks(#[ , equal ]) total number of analyses (nlooks() − 1 interim analyses
and one final analysis); use equal to enforce equal
information increments; if neither nlooks() nor
information() is specified, the default is nlooks(2)

information(numlist) sequence of information levels for analyses;
default is evenly spaced

nopvalues suppress 𝑝-values

Graph

graphbounds[ (graphopts) ] graph boundaries

matlistopts(general options) control the display of boundaries and sample size;
seldom used

optimopts optimization options for boundary calculations; seldom used

matlistopts() and optimopts do not appear in the dialog box.

boundary Description

obfleming classical O’Brien–Fleming bound

pocock classical Pocock bound

wtsiatis(#) classical Wang–Tsiatis bound with specified parameter value

errpocock error-spending Pocock-style bound

errobfleming error-spending O’Brien–Fleming-style bound

kdemets(#) error-spending Kim–DeMets bound with specified parameter value

hsdecani(#) error-spending Hwang–Shih–de Cani bound with specified parameter value
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graphopts Description

xdimsampsize label the 𝑥 axis with the sample size collected (default)

xdiminformation label the 𝑥 axis with the information fraction;
use information levels if information() specified

xdimlooks label the 𝑥 axis with the number of each look

noshade do not shade the rejection, acceptance, and continuation
regions

rejectopts(area options) change the appearance of the rejection region

acceptopts(area options) change the appearance of the acceptance region

continueopts(area options) change the appearance of the continuation region

efficacyopts(connected options) change the appearance of the efficacy bound

futilityopts(connected options) change the appearance of the futility bound

nolooklines do not draw vertical reference lines at each look

looklinesopts(added line suboptions) change the appearance of the reference lines
marking each look

nofixed do not label critical values from a fixed study design

fixedopts(marker options) change the appearance of the fixed-study critical values

twoway options any options other than by() documented in
[G-3] twoway options

optimopts Description

intpointsscale(#) scaling factor for number of quadrature points;
default is intpointsscale(20)

initinfo(initinfo spec) initial value(s) for maximum information

initscale(#) initial value for scaling factor 𝐶 of classical bounds

infotolerance(#) tolerance for bisection search for maximum information of error-
spending bounds with futility stopping; default is infotol(1e-6)

marquardt use the Marquardt stepping algorithm in nonconcave regions;
default is to use a mixture of steepest descent and Newton

technique(algorithm spec) maximization technique

iterate(#) perform maximum of # iterations; default is iterate(300)
[ no ]log display an iteration log; default is nolog
trace display current parameter vector in iteration log

gradient display current gradient vector in iteration log

showstep report steps within an iteration in iteration log

hessian display current negative Hessian matrix in iteration log

showtolerance report the calculated result that is compared with the effective
convergence criterion

tolerance(#) tolerance for the parameter being optimized;
default is tolerance(1e-12)

ftolerance(#) tolerance for the objective function;
default is ftolerance(1e-10)

nrtolerance(#) tolerance for the scaled gradient;
default is nrtolerance(1e-16)

nonrtolerance ignore the nrtolerance() option
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Options

� � �
Main �

alpha(#) sets the overall significance level, which is the familywise type I error rate for all analyses

(interim and final). alpha() must be in (0, 0.5). The default is alpha(0.05).

power(#) sets the overall power for all analyses. power() must be in (0.5, 1). The default is

power(0.8). If beta() is specified, power() is set to be 1 − beta(). Only one of power() or

beta() may be specified.

beta(#) sets the overall probability of a type II error. beta() must be in (0, 0.5). The default is

beta(0.2). If power() is specified, beta() is set to be 1 − power(). Only one of beta() or

power() may be specified.

onesided requests a study design for a one-sided test. The direction of the test is inferred from the effect

size.

nfractional specifies that fractional sample sizes be reported.

nratio(#) specifies the sample-size ratio of the experimental group relative to the control group,

𝑁2/𝑁1. The default is nratio(1), meaning equal allocation between the two groups.

diff(#) specifies the difference between the experimental-group proportion and the control-group pro-
portion, 𝑝2 − 𝑝1. You can either specify the experimental-group proportion 𝑝2 as a command argu-

ment or specify the difference between the two proportions in diff(). If you specify diff(#), the
experimental-group proportion is computed as 𝑝2 = 𝑝1 + #. This option may not be combined with

rdiff(), ratio(), rrisk(), or oratio().

rdiff(#) specifies the risk difference 𝑝2 − 𝑝1. This is a synonym for option diff(). rdiff() may not
be combined with diff(), ratio(), rrisk(), or oratio().

ratio(#) specifies the ratio of the experimental-group proportion to the control-group proportion,

𝑝2/𝑝1. You can either specify the experimental-group proportion 𝑝2 as a command argument or spec-

ify the ratio of the two proportions in ratio(). If you specify ratio(#), the experimental-group
proportion is computed as 𝑝2 = 𝑝1 × #. This option may not be combined with diff(), rdiff(),
rrisk(), or oratio().

rrisk(#) specifies the relative risk or risk ratio, 𝑝2/𝑝1. This is a synonym for option ratio(). rrisk()
may not be combined with diff(), rdiff(), ratio(), or oratio().

oratio(#) specifies the odds ratio {𝑝2/(1 − 𝑝2)}/{𝑝1/(1 − 𝑝1)}. You can either specify

the experimental-group proportion 𝑝2 as a command argument or specify the odds ratio in

oratio(). If you specify oratio(#), the experimental-group proportion is computed as

𝑝2 = 1/{1 + (1 − 𝑝1)/(𝑝1 × #)}. This option may not be combined with diff(), rdiff(),
ratio(), or rrisk().

effect(effect) specifies the parameterization of the effect size to be reported in the output as delta.
effect is one of diff, rdiff, ratio, rrisk, or oratio. If the effect size is specified with option
diff() or as 𝑝1 and 𝑝2, the default is to parameterize delta as the difference between propor-

tions, equivalent to specifying effect(diff). If the effect size is specified using option rdiff(),
ratio(), rrisk(), or oratio(), then delta defaults to using the corresponding parameterization.
effect(effect), however, requests an alternative parameterization of effect size delta—one that

corresponds to effect.
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test(test) specifies the type of test that will be used for data analysis. Sample-size calculations depend
on the test that will be conducted. test is either chi2 or lrchi2.

chi2 requests computations for Pearson’s 𝜒2 test. This is the default test, and this test can be per-

formed with command prtest or command tabulate twoway; see [R] prtest and [R] tabulate
twoway, respectively.

lrchi2 requests computations for the likelihood-ratio test. This test can be performed with command
tabulate twoway; see [R] tabulate twoway.

Note that power twoproportions option test(fisher) cannot be used to calculate sample size

and is therefore not compatible with gsdesign twoproportions. However, option continuity
implements a continuity correction that yields an estimate of the sample size that would be required by

Fisher’s exact test at the specified significance level and power. Fisher’s exact test can be performed

with command tabulate twoway; see [R] tabulate twoway. When Fisher’s exact test is performed,

you can use the significance level approach and compare the 𝑝-value from the 𝑡 test to the 𝑝-value
boundaries reported by gsdesign twoproportions, as demonstrated in example 2.

continuity requests that the continuity correction of Casagrande, Pike, and Smith (1978) be applied to
the normal approximation of the discrete distribution. This yields an estimate of the sample size that

would be required by Fisher’s exact test at the specified significance level and power. continuity
cannot be specified with test(lrchi2).

� � �
Bounds �

efficacy(boundary) specifies the boundary for efficacy stopping. If neither efficacy() nor

futility() is specified, the default is efficacy(obfleming).

futility(boundary[ , binding ]) specifies the boundary for futility stopping.
binding specifies binding futility bounds. With binding futility bounds, if the result of an interim

analysis crosses the futility boundary and lies in the acceptance region, the trial must end or risk

overrunning the specified type I error. With nonbinding futility bounds, the trial does not need to

stop if the result of an interim analysis crosses the futility boundary; the familywise type I error

rate is controlled even if the trial continues. By default, futility bounds are nonbinding.

nlooks(# [ , equal ]) specifies the total number of analyses to be performed (nlooks() − 1 interim

analyses and one final analysis). If neither nlooks() nor information() is specified, the default is
nlooks(2).

equal indicates that equal information increments be enforced, which is to say that the same number
of new observations will be collected at each look. The default behavior is to start by dividing

information evenly among looks, then proceed by rounding up to a whole number of observations

at each look. This can cause slight differences in the information collected at each look.

information(numlist) specifies a sequence of information levels for interim and final analyses. This

must be a sequence of increasing positive numbers, but the scale is unimportant because the infor-

mation sequence will be automatically rescaled to ensure the maximum information is reached at the

final look. By default, analyses are evenly spaced.

nopvalues suppresses the 𝑝-values from being reported in the table of boundaries for each look.
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� � �
Graph �

graphbounds and graphbounds(graphopts) produce graphical output showing the stopping bound-

aries.

graphopts are the following:

xdimsampsize labels the 𝑥 axis with the sample size collected (the default).

xdiminformation labels the 𝑥 axis with the information fraction unless information() is spec-
ified, in which case information levels will be used.

xdimlooks labels the 𝑥 axis with the number of each look.

noshade suppresses shading of the rejection, acceptance, and continuation regions of the graph.

rejectopts(area options) affects the rendition of the rejection region. See
[G-3] area options.

acceptopts(area options) affects the rendition of the acceptance region. See
[G-3] area options.

continueopts(area options) affects the rendition of the continuation region. See
[G-3] area options.

efficacyopts(connected options) affects the rendition of the efficacy bound. See
[G-3] cline options and [G-3] marker options.

futilityopts(connected options) affects the rendition of the futility bound. See
[G-3] cline options and [G-3] marker options.

nolooklines suppresses the vertical reference lines drawn at each look.

looklinesopts(added line suboptions) affects the rendition of reference lines marking each

look. See suboptions in [G-3] added line options.

nofixed suppresses the fixed-study critical values in the plot.

fixedopts(marker options) affects the rendition of the fixed-study critical values. See
[G-3] marker options.

twoway options are any of the options documented in [G-3] twoway options, excluding by().
These include options for titling the graph (see [G-3] title options) and for saving the graph to

disk (see [G-3] saving option).

The following options are available with gsdesign twoproportions but are not shown in the dialog

box:

force indicates that gsdesign twoproportions should allow unsupported power twoproportions
options, such as options specifying a cluster randomized design. Even with option force, the power
twoproportions options specified must be compatible with sample-size determination, not effect

size or power calculation. In addition, numlists are not supported in options or in arguments as they

are with power, even when force is specified.
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poweriteration(powiteropts) controls the iterative algorithm used to calculate the fixed-study sample

size. This is seldom used.

powiteropts are the following:

init(#) specifies an initial value for the sample size when iteration is used to compute the fixed-
study sample size. The default is to use a closed-form normal approximation to compute an

initial sample size.

iterate(#) specifies the maximum number of iterations for the Newton method during calcula-

tion of the fixed-study sample size. The default is iterate(500).

tolerance(#) specifies the tolerance used to determine whether successive parameter es-

timates have converged when calculating the fixed-study sample size. The default is

tolerance(1e-12). See Convergence criteria in [M-5] solvenl( ) for details.

ftolerance(#) specifies the tolerance used when calculating the fixed-study sample size to de-
termine whether the proposed solution of a nonlinear equation is sufficiently close to 0 based on

the squared Euclidean distance. The default is ftolerance(1e-12). See Convergence criteria
in [M-5] solvenl( ) for details.

matlistopts(general options) affects the display of the matrix of boundaries and sample sizes. gen-

eral options are title(), tindent(), rowtitle(), showcoleq(), coleqonly, colorcoleq(),
aligncolnames(), and linesize(); see general options in [P]matlist. This option is seldom used.

optimopts control the iterative algorithm used to calculate stopping boundaries:

intpointsscale(#) specifies the scaling factor for the number of quadrature points used during the
numerical evaluation of stopping probabilities at each look. The default is intpointsscale(20).
See Methods and formulas in [ADAPT] gsbounds.

initinfo(initinfo spec) specifies either one or two initial values to be used in the iterative calcula-
tion of the maximum information.

The syntax initinfo(#) is applicable when using classical group sequential boundaries (Pocock
bounds, O’Brien–Fleming bounds, and Wang–Tsiatis bounds), as well as with efficacy-only

stopping when using error-spending boundaries (error-spending Pocock-style efficacy bounds,

error-spending O’Brien–Fleming-style efficacy bounds, Kim–DeMets efficacy bounds, and

Hwang–Shih–de Cani efficacy bounds). The default is to use the information from a fixed study

design; see Methods and formulas in [ADAPT] gsbounds.

The syntax initinfo(# #) is applicable when using error-spending group sequential boundaries
with futility stopping (error-spending Pocock-style bounds, error-spending O’Brien–Fleming-

style bounds, Kim–DeMets bounds, and Hwang–Shih–de Cani bounds). With this syntax, the

first and second numbers specify the lower and upper starting values, respectively, for the bisec-

tion algorithm estimating the maximum information. The default is to use the information from a

fixed study design for the lower initial value and the information corresponding to a Bonferroni

correction for the upper initial value; see Methods and formulas in [ADAPT] gsbounds. To specify

just the lower starting value, use initinfo(# .), and to specify just the upper starting value, use
initinfo(. #).
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initscale(#) specifies the initial value to be used during the iterative calculation of scaling fac-

tor 𝐶 for classical group sequential boundaries (Pocock bounds, O’Brien–Fleming bounds, and

Wang–Tsiatis bounds). The default is to use the 𝑧-value corresponding to the specified value of
alpha(). See Methods and formulas in [ADAPT] gsbounds.

infotolerance(#) specifies the tolerance for the bisection algorithm used in the itera-

tive calculation of the maximum information of error-spending group sequential boundaries

with futility stopping (error-spending Pocock-style bounds, error-spending O’Brien–Fleming-

style bounds, Kim–DeMets bounds, and Hwang–Shih–de Cani bounds). The default is

infotolerance(1e-6). See Methods and formulas in [ADAPT] gsbounds.

marquardt specifies that the optimizer should use the modified Marquardt algorithm when, at an

iteration step, it finds that 𝐻 is singular. The default is to use a mixture of steepest descent and

Newton, which is equivalent to the difficult option in [R] ml.

technique(algorithm spec) specifies how the objective function is to be maximized. The following

algorithms are allowed. For details, see Pitblado, Poi, and Gould (2024).

technique(bfgs) specifies the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

technique(nr) specifies Stata’s modified Newton–Raphson (NR) algorithm.

technique(dfp) specifies the Davidon–Fletcher–Powell (DFP) algorithm.

The default is technique(bfgs) when using classical group sequential boundaries (Pocock

bounds, O’Brien–Fleming bounds, and Wang–Tsiatis bounds) and also for the second opti-

mization step used to estimate the maximum information with efficacy-only stopping when

using error-spending boundaries (error-spending Pocock-style efficacy bounds, error-spending

O’Brien–Fleming-style efficacy bounds, Kim–DeMets efficacy bounds, and Hwang–Shih–de

Cani efficacy bounds). The default is technique(nr) for the sequential optimization steps used

to estimate critical values for error-spending boundaries. You can also switch between two al-

gorithms by specifying the technique name followed by the number of iterations. For example,

specifying technique(nr 10 bfgs 20) requests 10 iterations with the NR algorithm followed by

20 iterations with the BFGS algorithm, and then back to NR for 10 iterations, and so on. The process

continues until convergence or until the maximum number of iterations is reached.

iterate(#) specifies the maximum number of iterations. If convergence is not declared by the

time the number of iterations equals iterate(), an error message is issued. The default value of
iterate(#) is the number set using set maxiter, which is 300 by default.

[ no ]log requests an iteration log showing the progress of the optimization. The default is nolog.

trace adds to the iteration log a display of the current parameter vector.

gradient adds to the iteration log a display of the current gradient vector.

showstep adds to the iteration log a report on the steps within an iteration. This option was added so
that developers at StataCorp could view the stepping when they were improving the ml optimizer
code. At this point, it mainly provides entertainment.

hessian adds to the iteration log a display of the current negative Hessian matrix.

showtolerance adds to the iteration log the calculated value that is compared with the effective

convergence criterion at the end of each iteration. Until convergence is achieved, the smallest

calculated value is reported. shownrtolerance is a synonym of showtolerance.
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Below, we describe the three convergence tolerances. Convergence is declared when the

nrtolerance() criterion is met and either the tolerance() or the ftolerance() criterion is also
met.

tolerance(#) specifies the tolerance for the parameter vector. When the relative change in

the parameter vector from one iteration to the next is less than or equal to tolerance(), the
tolerance() convergence criterion is satisfied. The default is tolerance(1e-12).

ftolerance(#) specifies the tolerance for the objective function. When the relative change in

the objective function from one iteration to the next is less than or equal to ftolerance(), the
ftolerance() convergence is satisfied. The default is ftolerance(1e-10).

nrtolerance(#) specifies the tolerance for the scaled gradient. Convergence is declared when

gH−1g′ < nrtolerance(). The default is nrtolerance(1e-16).

nonrtolerance specifies that the default nrtolerance() criterion be turned off.

boundary
obfleming specifies a classical O’Brien–Fleming design for efficacy or futility bounds (O’Brien and

Fleming 1979). O’Brien–Fleming efficacy bounds are characterized by being extremely conservative

at early looks. The O’Brien–Fleming design is a member of theWang–Tsiatis family and is equivalent

to specifying a boundary of wtsiatis(0).

pocock specifies a classical Pocock design for efficacy or futility bounds (Pocock 1977). Pocock efficacy
bounds are characterized by using the same critical value at all looks. The Pocock design is a member

of the Wang–Tsiatis family and is equivalent to specifying a boundary of wtsiatis(0.5).

wtsiatis(#) specifies a classical Wang–Tsiatis design for efficacy or futility bounds (Wang and Tsiatis

1987). The shape ofWang–Tsiatis bounds is determined by parameter Δ ∈ [−10, 0.7], where smaller
values of Δ yield bounds that are more conservative at early looks.

errpocock specifies an error-spending Pocock-style design for efficacy or futility bounds (Lan and

DeMets 1983). The critical values from error-spending Pocock-style bounds are very similar to those

of classic Pocock bounds, but they are obtained using an error-spending function.

errobfleming specifies an error-spending O’Brien–Fleming-style design for efficacy or futility bounds
(Lan and DeMets 1983). The critical values from error-spending O’Brien–Fleming-style bounds

are very similar to those of classic O’Brien–Fleming bounds, but they are obtained using an error-

spending function.

kdemets(#) specifies an error-spending Kim–DeMets design for efficacy or futility bounds (Kim and

DeMets 1987). The shape of Kim–DeMets bounds is determined by power parameter 𝜌 ∈ (0, 10],
where larger values of 𝜌 yield bounds that are more conservative at early looks.

hsdecani(#) specifies an error-spending Hwang–Shih–de Cani design for efficacy or futility bounds

(Hwang, Shih, and de Cani 1990). The shape of Hwang–Shih–de Cani bounds is determined by

parameter 𝛾 ∈ [−30, 3], where smaller values of 𝛾 yield bounds that are more conservative at early

looks.

For a design with both efficacy and futility stopping boundaries, if you specify a classical boundary

(that is, in theWang–Tsiatis family) for one, then you must specify a classical boundary for the other. So,

you could not specify a boundary in the Wang–Tsiatis family for one boundary and an error-spending

boundary for the other. When specifying efficacy and futility boundaries from the same family, the

efficacy parameter does not need to be the same as the futility parameter.
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Boundaries that are conservative at early looks, such as the O’Brien–Fleming bound, offer little

chance of early stopping unless the true effect size is quite large (in the case of efficacy bounds) or quite

small (in the case of futility bounds). A trial employing a conservative bound is more likely to continue

to the final look, yielding an expected sample size that is not dramatically smaller than the sample size

required by an equivalent fixed-sample trial. However, the maximum sample size (that is, the sample

size at the final look) of a trial with a conservative bound is generally not much greater than the sample

size required by an equivalent fixed trial. Another direct result of specifying conservative bounds is that

the critical value at the final look tends to be close to the critical value employed by an equivalent fixed

design. In contrast, anticonservative boundaries such as the Pocock bound offer a much better shot at

early stopping (often yielding a small expected sample size) at the cost of a larger maximum sample size

and final critical values that are considerably larger than the critical value of an equivalent fixed design.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using gsdesign twoproportions
Background for examples
Computing sample size and stopping boundaries

This entry describes the use of the gsdesign twoproportions command for designing a group se-

quential analysis for a two-sample proportions test. See [ADAPT] GSD intro for a general introduction

to GSDs for clinical trials; see [ADAPT] gsbounds for information about group sequential bounds; and

see [ADAPT] gsdesign for information about designing group sequential clinical trials with the gsdesign
command. Also see [PSS-2] Intro (power) for a general introduction to power and sample-size analysis,

and see [PSS-2] power twoproportions for details about study design for a two-sample proportions test.

Introduction
The comparison of two independent proportions is carried out in clinical trials with two groups of

participants (known as two-arm trials), where the response variable, or endpoint, is binary. We use the

term “success” to indicate observing the outcome of interest, but the outcome of interest could be some-

thing that nobody would consider a success in the traditional sense of the word, such as hospitalization

or even death.

As an example, in a clinical trial of a drug to treat chronic HIV infection, the endpoint of interest might

be whether the disease progresses toAIDS during a two-year course of treatment. Each observation is the

binary indicator of whether one participant’s HIV progresses to AIDS.

Sometimes an endpoint that can take several values is discretized into a binary endpoint. For instance,

the Apgar score of newborn health can range from 0 to 10, and scores below 4 are considered low by the

AmericanAcademy of Pediatrics (2015). A clinical trial investigating the effect of labor support by a lay

doula on newborn health might discretize the Apgar score taken five minutes after birth to determine the

proportion of newborns with low five-minute Apgar scores. In this case, each observation is the binary

indicator of whether an infant had a five-minute Apgar score below 4.

Some clinical trials combinemultiple endpoints into a single composite endpoint, which can be binary.

Aclinical trial of a treatment for COVID-19might use a composite endpoint, such as “death or intubation”.

In this case, each observation is an indicator of whether a participant died or was intubated. The outcome

from participants who died, were intubated, or died following intubation would be recorded as 1, while

the outcome from participants who neither died nor were intubated would be recorded as 0.
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To conduct hypothesis tests, we view each observation as a Bernoulli outcome, and within each arm,

we assume that the probability of success is constant for all participants in that arm. We use the notation

𝑝1 to denote the probability of success in the control arm and 𝑝2 to denote the probability of success in

the experimental arm. We assume the outcome is observed a fixed number of times in each arm and that

each Bernoulli outcome is independent of all other observations.

gsdesign twoproportions calculates sample size and stopping boundaries for a group sequential

trial comparing the population proportion of a reference (control) group against the population proportion

of an experimental (treatment) group. Specifically, we consider the null hypothesis 𝐻0 ∶ 𝑝2 = 𝑝1 versus

the two-sided alternative hypothesis 𝐻𝑎 ∶ 𝑝2 ≠ 𝑝1, the upper one-sided alternative 𝐻𝑎 ∶ 𝑝2 > 𝑝1, or the

lower one-sided alternative 𝐻𝑎 ∶ 𝑝2 < 𝑝1.

When the sample size is large, Pearson’s 𝜒2 test can be used to test the null hypothesis. Command

prtest implements this test and reports an asymptotically normal 𝑧 statistic that can be compared directly
with the boundary critical values reported by gsdesign twoproportions (the square of the 𝑧 statistic
has an asymptotic 𝜒2 distribution, hence the name of the test). If 𝐻0 is tested using a method that does

not produce a normally distributed test statistic, the significance level approach must be used to compare

the 𝑝-value from the test statistic to the boundary.

Using gsdesign twoproportions
gsdesign twoproportions calculates sample size and stopping boundaries for a group sequential

trial comparing the proportion of successes in two different populations. gsdesign twoproportions
can be thought of as a combination of power twoproportions for sample-size calculations and

gsbounds for stopping boundary calculations. By default, sample sizes are calculated assuming that

Pearson’s 𝜒2 test will be conducted. To perform sample-size calculations for a likelihood-ratio test,

specify the test(lrchi2) option.

To compute sample size, you must provide the effect size. There are several ways to do this: by

specifying 𝑝1 and 𝑝2, the proportions of the control and experimental groups, respectively; by specify-

ing 𝑝1 and the difference between the experimental-group proportion and the control-group proportion

(diff = 𝑝1 − 𝑝2); by specifying 𝑝1 and the risk difference (rdiff = 𝑝1 − 𝑝2); by specifying 𝑝1 and

the ratio of the experimental-group proportion to the control-group proportion (ratio = 𝑝2/𝑝1); by

specifying 𝑝1 and the relative risk (rrisk = 𝑝2/𝑝1); or by specifying 𝑝1 and the odds ratio (oratio =
{𝑝2/(1 − 𝑝2)}/{𝑝1/(1 − 𝑝1)}). There is no default value for the effect size, so it must be specified in
one of these formats.

Options alpha(), power(), beta(), and onesided are used for both sample-size and stopping-

boundary calculations. The default significance level, known as the familywise type I error rate, is 0.05

and can be changed by specifying the alpha() option. The default power is 0.8, which corresponds to

a type II error rate of 0.2. This can be modified either by specifying the power in the power() option

or by specifying the type II error in the beta() option. The default test is two-sided, and the onesided
option requests a one-sided test, the direction of which is indicated by the sign of the effect size.

The group sequential stopping rule is determined by the efficacy() and futility() options. Stop-
ping can be for efficacy, futility, or both, and if no stopping rule is specified, the default is to use an

O’Brien–Fleming efficacy bound. If futility bounds are requested, the default behavior is to treat them

as nonbinding. A trial that crosses a nonbinding futility bound can be stopped for futility, but the fam-

ilywise type I error is controlled even if the trial continues. Binding futility bounds can be requested

with futility() suboption binding. A trial that crosses a binding futility bound must be stopped for

futility. If it continues, the familywise type I error will not be controlled at the specified significance

level.
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The number of looks, or analyses of the trial data, is specified with nlooks(). Alternatively, the
information() option can be used to specify the spacing of the looks as a numlist of increasing infor-

mation levels. In this case, values of the numlist are automatically rescaled so that the final look has the

maximum information required by the design. If neither nlooks() nor information() is specified,

the default is two looks.

By default, the sample size is rounded up to a whole number at each look, but the nfractional
option can be used to report fractional sample sizes. If nlooks() is specified, the default behavior is to
divide information evenly among each look before rounding. Rounding can cause slight differences in

the amount of information collected at each look, and nlooks() suboption equal can be specified to

enforce equal information increments by requiring the same number of new observations at each look.

Background for examples
Beta blockers are a class of drugs that are used to reduce the risk of myocardial infarctions (MI),

known colloquially as heart attacks. In example 3 in [ADAPT] gsdesign, we re-created the experimental

design of the landmark Beta-Blocker Heart Attack Trial, which examined the effect of the beta blocker

propranolol on participant survival. Here we consider a clinical trial of beta blockers conducted by

the Dutch Echocardiographic Cardiac Risk Evaluation Applying Stress Echocardiography (DECREASE)

Study Group.

The DECREASE Study Group reported the results of a multicenter, randomized clinical trial to eval-

uate the use of beta blockers to reduce the incidence of MI within 30 days of major vascular surgery

(Poldermans et al. 1999). The target population consisted of patients with cardiac risk factors who were

undergoing major vascular surgery. Participants who were randomly assigned to the experimental arm

began taking a daily dose of the beta blocker bisoprolol at least one week before their scheduled surgery,

and continued taking daily bisoprolol for at least 30 days after surgery, during which time they also re-

ceived standard perioperative care. Participants randomized to the control arm only received standard

perioperative care.

A composite endpoint was used, with the outcomes of interest being death from cardiac causes and

nonfatalMI. The outcome of a participant was recorded as 1 if, in the 30 days after surgery, the participant

died due to cardiac causes or suffered a nonfatal MI. The outcome was recorded as 0 if the participant

survived for 30 days postoperatively without MI.

Computing sample size and stopping boundaries

Example 1: Sample size and efficacy bounds for a large-sample test of two proportions
Suppose that we are interested in designing a study that follows Poldermans et al. (1999). They

assumed that the incidence of the primary endpoint would be 30% in the control arm and 15% in the

experimental arm. They planned for a familywise two-sided significance level of 5%, power of 80%, and

one interim look at approximately 38% of the sample size using an O’Brien–Fleming efficacy boundary.

Below, we use gsdesign twoproportions to design and graph a study with these parameters, and we

leave test() at its default value of chi2.
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. gsdesign twoproportions 0.3 0.15, efficacy(obfleming) information(0.38 1)
> graphbounds
Group sequential design for a two-sample proportions test
Pearson’s chi-squared test
H0: p2 = p1 versus Ha: p2 != p1
Efficacy: O’Brien--Fleming
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.8000
delta = -0.1500 (difference)

p1 = 0.3000
p2 = 0.1500

Expected sample size:
H0 = 241.78
Ha = 231.11

Info. ratio = 1.0024
N fixed = 242

N max = 242
N1 max = 121
N2 max = 121

Fixed-study crit. values = ±1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Sample size
Look frac. Lower Upper p-value N1 N2 N

1 0.38 -3.1878 3.1878 0.0014 46 46 92
2 1.00 -1.9651 1.9651 0.0494 121 121 242

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.
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Figure 1. Two-sided test of the equality of two proportions with O’Brien–Fleming efficacy bounds
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gsdesign twoproportions displays the specified study parameters, including the control group

proportion p1, the experimental group proportion p2, and the difference in proportions.

The next section of the output displays the expected sample size (ESS), which is the average sample

size if the group sequential trial were to be repeated many times. The following section reports the

information ratio, the sample size for a fixed study with an equivalent significance level and power (N
fixed), the maximum sample size of the GSD (N max), and the maximum sample sizes for each group

(N1 max and N2 max). The information ratio is the ratio of the maximum sample size of the GSD to the

fixed-study sample size.

Without futility bounds, we cannot stop the trial early to accept 𝐻0, so if the null hypothesis is true,

it is not surprising that the ESS of 241.78 is nearly equal to the maximum sample size of 242. If 𝐻𝑎 is

true, the ESS is 231.11, a modest savings over the maximum sample size.

Examining the boundary critical values, we see the reason that the ESS under 𝐻𝑎 was not lower: there

is only one interim look, and the critical value at that look, ±3.188, sets a high bar for early stopping.

Once data have been collected from 46 subjects in each group, Pearson’s 𝜒2 test is performed and the

𝑧 statistic, 𝑧1, is compared with the efficacy critical values of ±3.188. To perform Pearson’s 𝜒2 test with

a two-sided alternative, we could use command prtest, which reports a 𝑧 statistic that can be compared
directly with the boundary critical values, or command tabulate, which performs the same test but
reports a 𝜒2 statistic (the 𝜒2 statistic is the square of the 𝑧 statistic, and the 𝑝-values reported by the two
tests are identical).

On the graph, we see that if |𝑧1| ≥ 3.188, then it lies in the blue rejection region and the trial will

be stopped early for efficacy due to the early rejection of 𝐻0. If |𝑧1| < 3.188, then it lies in the green

continuation region and the trial will continue on to the final look. At the final look, the critical values

are ±1.965, and there is no continuation region. If |𝑧2| ≥ 1.965, then 𝐻0 is rejected; otherwise, 𝑧2 lies

in the red acceptance region, which indicates that 𝐻0 is accepted.

O’Brien–Fleming efficacy bounds are known for being very conservative at early looks, but the final

look of an O’Brien–Fleming design uses a critical value that is only slightly larger than the fixed-study

critical value and requires a sample size only slightly larger than the fixed-study sample size. These

traits are exaggerated in this example with a single interim analysis, which explains why the fixed-study

critical values, marked on the plot as black dots, overlie the critical values for the final look of the GSD.

The information ratio of 1.0024 indicates that the GSD needs only 0.24% more information than a fixed

study design; after rounding the sample size up to a whole number in each arm, both designs require a

total of 242 participants.

Example 2: Sample size and efficacy bounds for an exact test of two proportions
In the previous example, we calculated sample sizes and bounds for a group sequential trial inspired by

the DECREASE study, and we assumed that the researchers would analyze the results of the trial using the

large-sample Pearson’s 𝜒2 test. In reality, Poldermans et al. (1999, 1791) state that “differences between

the groups in the rates of occurrence of the primary end point were evaluated by Fisher’s exact test”.

Sample sizes for Fisher’s exact test can be estimated using the continuity correction of Casagrande,

Pike, and Smith (1978), implemented in the continuity option. The rest of the study parameters remain
the same, but to add variety, we specify the effect size in terms of the control-group proportion of 0.3

and the relative risk (𝑝2/𝑝1) of 0.5.
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. gsdesign twoproportions 0.3, rrisk(0.5) continuity efficacy(obfleming)
> information(0.38 1)
Group sequential design for a two-sample proportions test
Pearson’s chi-squared test
H0: p2 = p1 versus Ha: p2 != p1
Efficacy: O’Brien--Fleming
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.8000
delta = 0.5000 (relative risk)

p1 = 0.3000
p2 = 0.1500

rrisk = 0.5000
Expected sample size:

H0 = 267.76
Ha = 255.93

Info. ratio = 1.0024
N fixed = 268

N max = 268
N1 max = 134
N2 max = 134

Fixed-study crit. values = ±1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Sample size
Look frac. Lower Upper p-value N1 N2 N

1 0.38 -3.1878 3.1878 0.0014 51 51 102
2 1.00 -1.9651 1.9651 0.0494 134 134 268

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.

The boundary critical values are the same as in example 1, but the continuity correction requires a

slightly larger sample. Poldermans et al. (1999) report that the first look was conducted when data had

been recorded from 53 participants in the control arm and 59 participants in the experimental arm. In

practice, it is rare to conduct an analysis with exactly the desired sample size for that look, but type I

error control is robust to minor deviations in attained sample size (DeMets et al. 1984).

At the time of the first look, 9 participants in the control arm had died due to postoperative cardiac

causes and 9 more had nonfatal heart attacks, for a total of 18 participants who experienced the endpoint

and 35 who did not. In the experimental arm, there were only 2 deaths from cardiac causes and no

nonfatal heart attacks, giving a total of 2 participants who experienced the endpoint and 57 who did not.

We will repeat the analysis of the DECREASE trial using Fisher’s exact test, but because the exact test

does not produce a 𝑧 statistic, we must use the significance level approach described in [ADAPT] gs-

bounds. We will compare the 𝑝-value from the exact test against the 𝑝-value reported in the table above.
The rejection region at the first look is |𝑧1| ≥ 3.188, which corresponds to a 𝑝-value ≤ 0.0014 using the

significance level approach. We conduct Fisher’s exact test using the immediate form of the tabulate
command with the exact option.
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. tabi 18 35 \ 2 57, exact
col

row 1 2 Total

1 18 35 53
2 2 57 59

Total 20 92 112
Fisher’s exact = 0.000

1-sided Fisher’s exact = 0.000

The two-sided 𝑝-value from the exact test was too small to be displayed in the output from tabi, but the
value is saved as r(p exact).

. display r(p_exact)

.00002983

The 𝑝-value from the exact test is less than 0.0014, so we would reject 𝐻0 at this look and terminate

the trial early for treatment efficacy. This is the same action taken by the independent safety committee

that performed the interim analysis of the DECREASE trial (Montori et al. 2005).

Example 3: Sample size, efficacy bounds, and futility bounds for a test of two propor-
tions

In the previous example, we used O’Brien–Fleming efficacy bounds to re-create the design of the

DECREASE clinical trial. Our design called for a maximum sample of 268 participants, the same size

as the sample required by a fixed design with equivalent power and significance level. The actual DE-

CREASE trial was terminated for efficacy at the first look, but a careful examination of the ESS from the

design in example 2 reveals modest reductions in ESS over the fixed study design, suggesting room for

improvement.

Here we modify the design of the DECREASE trial with the goal of lowering the ESS under both the null

and alternative hypotheses without dramatically increasing the maximum sample size. To start, we will

change the O’Brien–Fleming efficacy bound to a boundary that is somewhat less conservative at early

looks, increasing the probability of early stopping for efficacy if 𝐻𝑎 is true. One option is to use Pocock

efficacy boundaries, which use the same critical value at all looks and are very effective at rejecting 𝐻0
at early analyses. Unfortunately, the critical value at the final look of a Pocock design is much larger

than the fixed-study critical value, and if the test statistic at the final look exceeds the fixed-study critical

value but not the Pocock critical value, we will be unable to reject 𝐻0 and will regret having chosen

Pocock bounds.

Both O’Brien–Fleming and Pocock designs are members of the Wang–Tsiatis family of boundaries

indexed by power parameter Δ, with Δ = 0 for O’Brien–Fleming bounds and Δ = 0.5 for Pocock

bounds. We can split the difference between the two by using a Wang–Tsiatis bound with Δ = 0.25

for a boundary that is somewhat less conservative at early looks but not dramatically larger than the

fixed-study critical value at the final look.

The second change we make is adding nonbinding O’Brien–Fleming futility bounds to allow the trial

to stop early if there is strong evidence that the treatment is not meaningfully different from the control.

Nonbinding futility bounds give the independent Data Monitoring Committee the option of stopping the

trial if a futility bound is crossed, but the trial is not required to stop; if it continues after crossing a

nonbinding futility bound, the type I error is still controlled at the desired familywise significance level.
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Our final change is to add another interim analysis approximately halfway between the first look (with

38% of the data) and the final data analysis. We modify the numlist provided to the information()
option to include a second interim lookwith 70% of the data. Adding additional interim analyses provides

more opportunities to stop the trial early, but conducting more hypothesis tests requires larger efficacy

critical values to control type I error, so there is a tradeoff.

. gsdesign twoproportions 0.3, rrisk(0.5) continuity efficacy(wtsiatis(0.25))
> futility(obfleming) information(0.38 0.7 1) graphbounds
Group sequential design for a two-sample proportions test
Pearson’s chi-squared test
H0: p2 = p1 versus Ha: p2 != p1
Efficacy: Wang--Tsiatis, Delta = 0.2500
Futility: O’Brien--Fleming, nonbinding
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.8000
delta = 0.5000 (relative risk)

p1 = 0.3000
p2 = 0.1500

rrisk = 0.5000
Expected sample size:

H0 = 212.07
Ha = 234.64

Info. ratio = 1.1915
N fixed = 268

N max = 320
N1 max = 160
N2 max = 160

Fixed-study crit. values = ±1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Futility
Look frac. Lower Upper p-value Lower Upper p-value

1 0.38 -2.6622 2.6622 0.0078 -0.3150 0.3150 0.7528
2 0.70 -2.2851 2.2851 0.0223 -1.4017 1.4017 0.1610
3 1.00 -2.0902 2.0902 0.0366 -2.0902 2.0902 0.0366

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.

Sample size
Look N1 N2 N

1 61 61 122
2 112 112 224
3 160 160 320
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Group sequential design for a two-sample proportions test

Figure 2. Two-sided test of the equality of two proportions with efficacy and futility bounds

As anticipated, the modified design has a smaller ESS under both the null and alternative hypotheses,

with ESSs of 212.07 and 234.64, respectively. The maximum sample size, required if the trial continues

to the final look, is 320 participants, approximately 19% more than the fixed-study sample size of 268.

The addition of nonbinding futility bounds raises the possibility of terminating the trial early to accept

𝐻0. If the result of an interim analysis lies in the acceptance region, drawn on the graph in red, the Data

Monitoring Committee is able to stop the trial for futility. If the committee decides to continue collecting

data, the familywise type I error of the trial is still controlled at the desired 5% significance level.

gsdesign twoproportions displays the boundary critical values as 𝑧 values and displays the corre-
sponding 𝑝-values. When conducting Fisher’s exact test, we must use the significance level approach to

compare 𝑝-values from the tests against 𝑝-values corresponding to the boundary critical values.
Once data have been collected from 61 participants in each arm, the first interim analysis occurs and

Fisher’s exact test is conducted. If the two-sided 𝑝-value from the test, which we will denote 𝑝1, is greater

than 0.753, then it lies in the futility region and 𝐻0 can be accepted, terminating the trial. If 𝑝1 ≤ 0.008,

then it lies in the rejection region and we reject 𝐻0, terminating the trial due to treatment efficacy. If

0.008 < 𝑝1 ≤ 0.753, then 𝑝1 is in the continuation region and the trial continues recruiting participants.

The testing procedure at the second look is similar, but the rejection and acceptance regions have

grown and the continuation region has shrunk to (0.022, 0.161]. At the final look, the futility bound
meets the efficacy bound, and there is no continuation region; if 𝑝3 ≤ 0.037, then we reject 𝐻0, and if

𝑝3 > 0.037, then we accept 𝐻0.
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Stored results
gsdesign twoproportions stores the following in r():

Scalars

r(alpha) overall significance level (familywise type I error)

r(beta) overall probability of a type II error

r(binding) 1 for binding futility bounds, 0 for nonbinding
r(continuity) 1 if continuity correction is used, 0 otherwise
r(delta) effect size

r(diff) difference between the experimental- and control-group proportions (if diff() specified)
r(effparam) efficacy parameter (if wtsiatis(), kdemets(), or hsdecani() specified)
r(ESS0) expected sample size under null hypothesis

r(ESS1) expected sample size under alternative hypothesis

r(futparam) futility parameter (if wtsiatis(), kdemets(), or hsdecani() specified)
r(info ratio) ratio of maximum information required to that of a fixed study design

r(N fixed) sample size of a fixed study design

r(N fixedfrac) fractional sample size of a fixed study design

r(N max) maximum sample size if the study continues to completion

r(N1 fixed) sample size of the control group in a fixed study design

r(N1 fixedfrac) fractional sample size of the control group in a fixed study design

r(N1 max) maximum sample size of the control group if the study continues to completion

r(N2 fixed) sample size of the experimental group in a fixed study design

r(N2 fixedfrac) fractional sample size of the experimental group in a fixed study design

r(N2 max) maximum sample size of the experimental group if the study continues to completion

r(nfractional) 1 if nfractional is specified, 0 otherwise
r(nlooks) number of analyses

r(nratio) specified ratio of sample sizes, 𝑁2/𝑁1
r(nratio a) attained ratio of sample sizes

r(onesided) 1 for a one-sided test, 0 otherwise
r(oratio) odds ratio (if oratio() specified)
r(p1) control-group proportion

r(p2) experimental-group proportion

r(pow converged) 1 if power calculation iteration algorithm converged, 0 otherwise
r(pow deltax) final parameter tolerance achieved for power calculation

r(pow ftolerance) requested distance of power calculation objective function from 0

r(pow function) final distance of power calculation objective function from 0

r(pow init) initial value for power calculation sample size

r(pow iter) number of iterations performed for power calculation

r(pow maxiter) maximum number of iterations for power calculation

r(pow tolerance) requested parameter tolerance for power calculation

r(power) specified overall power

r(power a) attained overall power

r(ratio) ratio of the experimental-group proportion to the control-group proportion (if ratio()
specified)

r(rdiff) risk difference (if rdiff() specified)
r(rrisk) relative risk (if rrisk() specified)
r(stop) 0 for futility bounds, 1 for efficacy bounds, 2 for both
r(z fixed) critical value for an equivalent fixed study design

Macros

r(cmd) gsdesign
r(cmdline) command as typed

r(direction) upper, lower, or two-sided
r(effbnd) pocock, obfleming, wtsiatis, errpocock, errobfleming, kdemets, or hsdecani
r(effect) specified effect: diff, ratio, etc.
r(futbnd) pocock, obfleming, wtsiatis, errpocock, errobfleming, kdemets, or hsdecani
r(method) twoproportions
r(test) chi2 or lrchi2
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Matrices

r(aspent) cumulative alpha spent per look (stored with efficacy-only stopping or when futility

bounds are binding)
r(aspent fstop) cumulative alpha spent per look if futility stopping does occur (stored when futility

bounds are nonbinding)
r(aspent nofstop) cumulative alpha spent per look if futility stopping does not occur (stored when futility

bounds are nonbinding)
r(bounds) stopping boundaries

r(bspent) cumulative beta spent per look (when futility bounds are specified)

r(bspent a) attained cumulative beta spent per look (when futility bounds are specified)

r(design) sample size and stopping boundaries at interim looks

r(info frac) specified information fraction

r(info frac a) fraction of attained information

r(info level) specified information level

r(p crit) 𝑝-values corresponding to boundary critical values
r(sampsize) sample size at interim looks

Methods and formulas
Sample sizes at interim analyses are calculated as the product of the information fraction, the infor-

mation ratio, and the sample size of a fixed-sample study.

See Methods and formulas in [ADAPT] gsbounds for the formulas used to calculate the stopping

boundaries, information fraction, and information ratio. See Methods and formulas in [PSS-2] power

twoproportions for the formulas used to calculate the sample size for a fixed study. See Methods and

formulas in [ADAPT] gsdesign for the formulas used to calculate the ESS.
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
gsdesign logrank computes stopping boundaries and sample sizes for interim analyses of group

sequential clinical trials performing survival analysis by using a log-rank test to compare survivor func-

tions. Stopping can be for efficacy, futility, or both. For stopping boundary calculations without sample

sizes, see [ADAPT] gsbounds. For sample-size calculations for a fixed-sample study using a log-rank

test, see [PSS-2] power logrank.

Quick start
Sample size and stopping boundaries for the log-rank test of 𝐻0 ∶ hazard ratio Δ = 1 versus two-sided

alternative 𝐻𝑎 ∶ Δ ≠ 1, with default familywise significance level 𝛼 = 0.05 and power of 0.8 to

detect a hazard ratio of Δ𝑎 = 0.737 without censoring, using default group sequential specifications

of O’Brien–Fleming efficacy boundaries with two analyses (one interim, one final)

gsdesign logrank, hratio(0.737)

Same as above, specified as a log hazard-ratio of −0.305

gsdesign logrank, lnhratio(-0.305)

Same as above, but use Schoenfeld’s sample-size calculation instead of the default Freedman method

gsdesign logrank, lnhratio(-0.305) schoenfeld

Sample size for censored design with survival probabilities surv1 = 0.5 and surv2 = 0.6, using a

Kim–DeMets efficacy boundary with parameter 𝜌𝑒 = 3 and analyses at 50%, 75%, and 100% of

the total data

gsdesign logrank 0.5 0.6, efficacy(kdemets(3)) information(50 75 100)

Same as above, specified as surv1 = 0.5 and hazard ratio of 0.737

gsdesign logrank 0.5, hratio(0.737) efficacy(kdemets(3)) ///
information(50 75 100)

Same as above, but add a binding O’Brien–Fleming-style futility bound

gsdesign logrank 0.5, hratio(0.737) efficacy(kdemets(3)) ///
futility(errobfleming, binding) information(50 75 100)

Same as above, but report fractional sample sizes and graph the boundaries

gsdesign logrank 0.5, hratio(0.737) nfractional efficacy(kdemets(3)) ///
futility(errobfleming, binding) information(50 75 100) ///
graphbounds

187
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Menu
Statistics > Power, precision, and sample size

Syntax
gsdesign logrank [ surv1 [ surv2 ] ] [ , logrankopts boundopts ]

where surv1 is the survival probability in the control (reference) group at the end of the study, and surv2
is the survival probability in the experimental (treatment) group at the end of the study.

logrankopts Description

Main

alpha(#) overall significance level for all tests; default is alpha(0.05)
power(#) overall power for all tests; default is power(0.8)
beta(#) overall probability of type II error for all tests;

default is beta(0.2)
onesided request a one-sided test; default is two-sided

nfractional report fractional sample size

nratio(#) ratio of sample sizes of experimental to control groups;
default is nratio(1), meaning equal group sizes

hratio(#) hazard ratio of the experimental to the control group; default
is hratio(0.5); may not be combined with lnhratio()

lnhratio(#) log hazard-ratio of the experimental to the control group;
may not be combined with hratio()

schoenfeld use the formula based on the log hazard-ratio in calculations;
default is to use the formula based on the hazard ratio

effect(effect) type of effect to display; default is effect(hratio) unless
option schoenfeld is specified, in which case it is
effect(lnhratio)

Censoring

simpson(# # # |matname) survival probabilities in the control group at three specific time
points to compute the probability of an event (failure), using
Simpson’s rule under uniform accrual

st1(varname𝑠 varname𝑡) variables varname𝑠, containing survival probabilities in the control
group, and varname𝑡, containing respective time points, to
compute the probability of an event (failure), using numerical
integration under uniform accrual

wdprob(#) proportion of subjects anticipated to withdraw from the study;
default is wdprob(0)

force allow calculation with unsupported power logrank options

collect is allowed; see [U] 11.1.10 Prefix commands.

force does not appear in the dialog box.
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effect Description

hratio hazard ratio

lnhratio log hazard-ratio

boundopts Description

Bounds

efficacy(boundary) boundary for efficacy stopping; if neither efficacy()
nor futility() is specified, the default is
efficacy(obfleming)

futility(boundary[ , binding ]) boundary for futility stopping; use binding to request
binding futility bounds (default is nonbinding)

nlooks(#[ , equal ]) total number of analyses (nlooks() − 1 interim analyses
and one final analysis); use equal to enforce equal
information increments; if neither nlooks() nor
information() is specified, the default is nlooks(2)

information(numlist) sequence of information levels for analyses;
default is evenly spaced

nopvalues suppress 𝑝-values

Graph

graphbounds[ (graphopts) ] graph boundaries

matlistopts(general options) control the display of boundaries and sample size;
seldom used

optimopts optimization options for boundary calculations; seldom used

matlistopts() and optimopts do not appear in the dialog box.

boundary Description

obfleming classical O’Brien–Fleming bound

pocock classical Pocock bound

wtsiatis(#) classical Wang–Tsiatis bound with specified parameter value

errpocock error-spending Pocock-style bound

errobfleming error-spending O’Brien–Fleming-style bound

kdemets(#) error-spending Kim–DeMets bound with specified parameter value

hsdecani(#) error-spending Hwang–Shih–de Cani bound with specified parameter value
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graphopts Description

xdimsampsize label the 𝑥 axis with the sample size collected (default)

xdiminformation label the 𝑥 axis with the information fraction;
use information levels if information() specified

xdimlooks label the 𝑥 axis with the number of each look

noshade do not shade the rejection, acceptance, and continuation
regions

rejectopts(area options) change the appearance of the rejection region

acceptopts(area options) change the appearance of the acceptance region

continueopts(area options) change the appearance of the continuation region

efficacyopts(connected options) change the appearance of the efficacy bound

futilityopts(connected options) change the appearance of the futility bound

nolooklines do not draw vertical reference lines at each look

looklinesopts(added line suboptions) change the appearance of the reference lines
marking each look

nofixed do not label critical values from a fixed study design

fixedopts(marker options) change the appearance of the fixed-study critical values

twoway options any options other than by() documented in
[G-3] twoway options

optimopts Description

intpointsscale(#) scaling factor for number of quadrature points;
default is intpointsscale(20)

initinfo(initinfo spec) initial value(s) for maximum information

initscale(#) initial value for scaling factor 𝐶 of classical bounds

infotolerance(#) tolerance for bisection search for maximum information of error-
spending bounds with futility stopping; default is infotol(1e-6)

marquardt use the Marquardt stepping algorithm in nonconcave regions;
default is to use a mixture of steepest descent and Newton

technique(algorithm spec) maximization technique

iterate(#) perform maximum of # iterations; default is iterate(300)
[ no ]log display an iteration log; default is nolog
trace display current parameter vector in iteration log

gradient display current gradient vector in iteration log

showstep report steps within an iteration in iteration log

hessian display current negative Hessian matrix in iteration log

showtolerance report the calculated result that is compared with the effective
convergence criterion

tolerance(#) tolerance for the parameter being optimized;
default is tolerance(1e-12)

ftolerance(#) tolerance for the objective function;
default is ftolerance(1e-10)

nrtolerance(#) tolerance for the scaled gradient;
default is nrtolerance(1e-16)

nonrtolerance ignore the nrtolerance() option
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Options� � �
Main �

alpha(#) sets the overall significance level, which is the familywise type I error rate for all analyses

(interim and final). alpha() must be in (0, 0.5). The default is alpha(0.05).

power(#) sets the overall power for all analyses. power() must be in (0.5, 1). The default is

power(0.8). If beta() is specified, power() is set to be 1 − beta(). Only one of power() or

beta() may be specified.

beta(#) sets the overall probability of a type II error. beta() must be in (0, 0.5). The default is

beta(0.2). If power() is specified, beta() is set to be 1 − power(). Only one of beta() or

power() may be specified.

onesided requests a study design for a one-sided test. The direction of the test is inferred from the effect

size.

nfractional specifies that fractional sample sizes be reported.

nratio(#) specifies the sample-size ratio of the experimental group relative to the control group,

𝑁2/𝑁1. The default is nratio(1), meaning equal allocation between the two groups.

hratio(#) specifies the hazard ratio (effect size) of the experimental group to the control group. The

default is hratio(0.5). This value typically defines the clinically significant improvement of the
experimental procedure over the control procedure desired to be detected by the log-rank test with a

certain power.

You can specify an effect size either as a hazard ratio in hratio() or as a log hazard-ratio in

lnhratio(). The default is hratio(0.5). If both arguments surv1 and surv2 are specified,

hratio() is not allowed and the hazard ratio is instead computed as ln(surv2)/ ln(surv1).
This option may not be combined with lnhratio().

lnhratio(#) specifies the log hazard-ratio (effect size) of the experimental group to the control group.
This value typically defines the clinically significant improvement of the experimental procedure over

the control procedure desired to be detected by the log-rank test with a certain power.

You can specify an effect size either as a hazard ratio in hratio() or as a log hazard-ratio in

lnhratio(). The default is hratio(0.5). If both arguments surv1 and surv2 are specified,

lnhratio() is not allowed and the log hazard-ratio is computed as ln{ ln(surv2)/ ln(surv1)}.
This option may not be combined with hratio().

schoenfeld requests calculations using the formula based on the log hazard-ratio, according to Schoen-
feld (1981). The default is to use the formula based on the hazard ratio, according to Freedman (1982).

See the technical note in [PSS-2] power logrank for a comparison of the two formulas.

effect(effect) specifies the type of effect size to be reported in the output as delta. effect is one

of hratio or lnhratio. By default, the effect size delta is a hazard ratio, effect(hratio),
for a hazard-ratio test and a log hazard-ratio, effect(lnhratio), for a log hazard-ratio test (when
schoenfeld is specified).

� � �
Censoring �

simpson(# # # |matname) specifies survival probabilities in the control group at three specific time

points to compute the probability of an event (failure) using Simpson’s rule under the assumption of

uniform accrual. Either the actual values or a 1 × 3 matrix, matname, containing these values can
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be specified. By default, the probability of an event is approximated as an average of the failure

probabilities 1−𝑠1 and 1−𝑠2; see Methods and formulas in [PSS-2] power logrank. simpson() may
not be combined with st1() and may not be used if command argument surv1 or surv2 is specified.

st1(varname𝑠 varname𝑡) specifies variables varname𝑠, containing survival probabilities in the con-

trol group, and varname𝑡, containing respective time points, to compute the probability of an event

(failure) using numerical integration under the assumption of uniform accrual; see [R] dydx. The

minimum and the maximum values of varname𝑡 must be the length of the follow-up period and the

duration of the study, respectively. By default, the probability of an event is approximated as an aver-

age of the failure probabilities 1−𝑠1 and 1−𝑠2; see Methods and formulas in [PSS-2] power logrank.

st1() may not be combined with simpson() and may not be used if command argument surv1 or

surv2 is specified.

wdprob(#) specifies the proportion of subjects anticipated to withdraw from the study. The default is

wdprob(0).

� � �
Bounds �

efficacy(boundary) specifies the boundary for efficacy stopping. If neither efficacy() nor

futility() is specified, the default is efficacy(obfleming).

futility(boundary[ , binding ]) specifies the boundary for futility stopping.
binding specifies binding futility bounds. With binding futility bounds, if the result of an interim

analysis crosses the futility boundary and lies in the acceptance region, the trial must end or risk

overrunning the specified type I error. With nonbinding futility bounds, the trial does not need to

stop if the result of an interim analysis crosses the futility boundary; the familywise type I error

rate is controlled even if the trial continues. By default, futility bounds are nonbinding.

nlooks(# [ , equal ]) specifies the total number of analyses to be performed (nlooks() − 1 interim

analyses and one final analysis). If neither nlooks() nor information() is specified, the default is
nlooks(2).

equal indicates that equal information increments be enforced, which is to say that the same number
of new observations will be collected at each look. The default behavior is to start by dividing

information evenly among looks, then proceed by rounding up to a whole number of observations

at each look. This can cause slight differences in the information collected at each look.

information(numlist) specifies a sequence of information levels for interim and final analyses. This

must be a sequence of increasing positive numbers, but the scale is unimportant because the infor-

mation sequence will be automatically rescaled to ensure the maximum information is reached at the

final look. By default, analyses are evenly spaced.

nopvalues suppresses the 𝑝-values from being reported in the table of boundaries for each look.

� � �
Graph �

graphbounds and graphbounds(graphopts) produce graphical output showing the stopping bound-

aries.

graphopts are the following:

xdimsampsize labels the 𝑥 axis with the sample size collected (the default).

xdiminformation labels the 𝑥 axis with the information fraction unless information() is spec-
ified, in which case information levels will be used.

xdimlooks labels the 𝑥 axis with the number of each look.
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noshade suppresses shading of the rejection, acceptance, and continuation regions of the graph.

rejectopts(area options) affects the rendition of the rejection region. See
[G-3] area options.

acceptopts(area options) affects the rendition of the acceptance region. See
[G-3] area options.

continueopts(area options) affects the rendition of the continuation region. See
[G-3] area options.

efficacyopts(connected options) affects the rendition of the efficacy bound. See
[G-3] cline options and [G-3] marker options.

futilityopts(connected options) affects the rendition of the futility bound. See
[G-3] cline options and [G-3] marker options.

nolooklines suppresses the vertical reference lines drawn at each look.

looklinesopts(added line suboptions) affects the rendition of reference lines marking each

look. See suboptions in [G-3] added line options.

nofixed suppresses the fixed-study critical values in the plot.

fixedopts(marker options) affects the rendition of the fixed-study critical values. See
[G-3] marker options.

twoway options are any of the options documented in [G-3] twoway options, excluding by().
These include options for titling the graph (see [G-3] title options) and for saving the graph to

disk (see [G-3] saving option).

The following options are available with gsdesign logrank but are not shown in the dialog box:

force indicates that gsdesign logrank should allow unsupported power logrank options, such as

options specifying a cluster randomized design. Even with option force, the power logrank options
specified must be compatible with sample-size determination, not effect size or power calculation. In

addition, numlists are not supported in options or in arguments as they are with power, even when
force is specified.

matlistopts(general options) affects the display of the matrix of boundaries and sample sizes. gen-

eral options are title(), tindent(), rowtitle(), showcoleq(), coleqonly, colorcoleq(),
aligncolnames(), and linesize(); see general options in [P]matlist. This option is seldom used.

optimopts control the iterative algorithm used to calculate stopping boundaries:

intpointsscale(#) specifies the scaling factor for the number of quadrature points used during the
numerical evaluation of stopping probabilities at each look. The default is intpointsscale(20).
See Methods and formulas in [ADAPT] gsbounds.

initinfo(initinfo spec) specifies either one or two initial values to be used in the iterative calcula-
tion of the maximum information.

The syntax initinfo(#) is applicable when using classical group sequential boundaries (Pocock
bounds, O’Brien–Fleming bounds, and Wang–Tsiatis bounds), as well as with efficacy-only

stopping when using error-spending boundaries (error-spending Pocock-style efficacy bounds,

error-spending O’Brien–Fleming-style efficacy bounds, Kim–DeMets efficacy bounds, and

Hwang–Shih–de Cani efficacy bounds). The default is to use the information from a fixed study

design; see Methods and formulas in [ADAPT] gsbounds.
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The syntax initinfo(# #) is applicable when using error-spending group sequential boundaries
with futility stopping (error-spending Pocock-style bounds, error-spending O’Brien–Fleming-

style bounds, Kim–DeMets bounds, and Hwang–Shih–de Cani bounds). With this syntax, the

first and second numbers specify the lower and upper starting values, respectively, for the bisec-

tion algorithm estimating the maximum information. The default is to use the information from a

fixed study design for the lower initial value and the information corresponding to a Bonferroni

correction for the upper initial value; see Methods and formulas in [ADAPT] gsbounds. To specify

just the lower starting value, use initinfo(# .), and to specify just the upper starting value, use
initinfo(. #).

initscale(#) specifies the initial value to be used during the iterative calculation of scaling fac-

tor 𝐶 for classical group sequential boundaries (Pocock bounds, O’Brien–Fleming bounds, and

Wang–Tsiatis bounds). The default is to use the 𝑧-value corresponding to the specified value of
alpha(). See Methods and formulas in [ADAPT] gsbounds.

infotolerance(#) specifies the tolerance for the bisection algorithm used in the itera-

tive calculation of the maximum information of error-spending group sequential boundaries

with futility stopping (error-spending Pocock-style bounds, error-spending O’Brien–Fleming-

style bounds, Kim–DeMets bounds, and Hwang–Shih–de Cani bounds). The default is

infotolerance(1e-6). See Methods and formulas in [ADAPT] gsbounds.

marquardt specifies that the optimizer should use the modified Marquardt algorithm when, at an

iteration step, it finds that 𝐻 is singular. The default is to use a mixture of steepest descent and

Newton, which is equivalent to the difficult option in [R] ml.

technique(algorithm spec) specifies how the objective function is to be maximized. The following

algorithms are allowed. For details, see Pitblado, Poi, and Gould (2024).

technique(bfgs) specifies the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

technique(nr) specifies Stata’s modified Newton–Raphson (NR) algorithm.

technique(dfp) specifies the Davidon–Fletcher–Powell (DFP) algorithm.

The default is technique(bfgs) when using classical group sequential boundaries (Pocock

bounds, O’Brien–Fleming bounds, and Wang–Tsiatis bounds) and also for the second opti-

mization step used to estimate the maximum information with efficacy-only stopping when

using error-spending boundaries (error-spending Pocock-style efficacy bounds, error-spending

O’Brien–Fleming-style efficacy bounds, Kim–DeMets efficacy bounds, and Hwang–Shih–de

Cani efficacy bounds). The default is technique(nr) for the sequential optimization steps used

to estimate critical values for error-spending boundaries. You can also switch between two al-

gorithms by specifying the technique name followed by the number of iterations. For example,

specifying technique(nr 10 bfgs 20) requests 10 iterations with the NR algorithm followed by

20 iterations with the BFGS algorithm, and then back to NR for 10 iterations, and so on. The process

continues until convergence or until the maximum number of iterations is reached.
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iterate(#) specifies the maximum number of iterations. If convergence is not declared by the

time the number of iterations equals iterate(), an error message is issued. The default value of
iterate(#) is the number set using set maxiter, which is 300 by default.

[ no ]log requests an iteration log showing the progress of the optimization. The default is nolog.

trace adds to the iteration log a display of the current parameter vector.

gradient adds to the iteration log a display of the current gradient vector.

showstep adds to the iteration log a report on the steps within an iteration. This option was added so
that developers at StataCorp could view the stepping when they were improving the ml optimizer
code. At this point, it mainly provides entertainment.

hessian adds to the iteration log a display of the current negative Hessian matrix.

showtolerance adds to the iteration log the calculated value that is compared with the effective

convergence criterion at the end of each iteration. Until convergence is achieved, the smallest

calculated value is reported. shownrtolerance is a synonym of showtolerance.

Below, we describe the three convergence tolerances. Convergence is declared when the

nrtolerance() criterion is met and either the tolerance() or the ftolerance() criterion is also
met.

tolerance(#) specifies the tolerance for the parameter vector. When the relative change in

the parameter vector from one iteration to the next is less than or equal to tolerance(), the
tolerance() convergence criterion is satisfied. The default is tolerance(1e-12).

ftolerance(#) specifies the tolerance for the objective function. When the relative change in

the objective function from one iteration to the next is less than or equal to ftolerance(), the
ftolerance() convergence is satisfied. The default is ftolerance(1e-10).

nrtolerance(#) specifies the tolerance for the scaled gradient. Convergence is declared when

gH−1g′ < nrtolerance(). The default is nrtolerance(1e-16).

nonrtolerance specifies that the default nrtolerance() criterion be turned off.

boundary
obfleming specifies a classical O’Brien–Fleming design for efficacy or futility bounds (O’Brien and

Fleming 1979). O’Brien–Fleming efficacy bounds are characterized by being extremely conservative

at early looks. The O’Brien–Fleming design is a member of theWang–Tsiatis family and is equivalent

to specifying a boundary of wtsiatis(0).

pocock specifies a classical Pocock design for efficacy or futility bounds (Pocock 1977). Pocock efficacy
bounds are characterized by using the same critical value at all looks. The Pocock design is a member

of the Wang–Tsiatis family and is equivalent to specifying a boundary of wtsiatis(0.5).

wtsiatis(#) specifies a classical Wang–Tsiatis design for efficacy or futility bounds (Wang and Tsiatis

1987). The shape ofWang–Tsiatis bounds is determined by parameter Δ ∈ [−10, 0.7], where smaller
values of Δ yield bounds that are more conservative at early looks.

errpocock specifies an error-spending Pocock-style design for efficacy or futility bounds (Lan and

DeMets 1983). The critical values from error-spending Pocock-style bounds are very similar to those

of classic Pocock bounds, but they are obtained using an error-spending function.
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errobfleming specifies an error-spending O’Brien–Fleming-style design for efficacy or futility bounds
(Lan and DeMets 1983). The critical values from error-spending O’Brien–Fleming-style bounds

are very similar to those of classic O’Brien–Fleming bounds, but they are obtained using an error-

spending function.

kdemets(#) specifies an error-spending Kim–DeMets design for efficacy or futility bounds (Kim and

DeMets 1987). The shape of Kim–DeMets bounds is determined by power parameter 𝜌 ∈ (0, 10],
where larger values of 𝜌 yield bounds that are more conservative at early looks.

hsdecani(#) specifies an error-spending Hwang–Shih–de Cani design for efficacy or futility bounds

(Hwang, Shih, and de Cani 1990). The shape of Hwang–Shih–de Cani bounds is determined by

parameter 𝛾 ∈ [−30, 3], where smaller values of 𝛾 yield bounds that are more conservative at early

looks.

For a design with both efficacy and futility stopping boundaries, if you specify a classical boundary

(that is, in theWang–Tsiatis family) for one, then you must specify a classical boundary for the other. So,

you could not specify a boundary in the Wang–Tsiatis family for one boundary and an error-spending

boundary for the other. When specifying efficacy and futility boundaries from the same family, the

efficacy parameter does not need to be the same as the futility parameter.

Boundaries that are conservative at early looks, such as the O’Brien–Fleming bound, offer little

chance of early stopping unless the true effect size is quite large (in the case of efficacy bounds) or quite

small (in the case of futility bounds). A trial employing a conservative bound is more likely to continue

to the final look, yielding an expected sample size that is not dramatically smaller than the sample size

required by an equivalent fixed-sample trial. However, the maximum sample size (that is, the sample

size at the final look) of a trial with a conservative bound is generally not much greater than the sample

size required by an equivalent fixed trial. Another direct result of specifying conservative bounds is that

the critical value at the final look tends to be close to the critical value employed by an equivalent fixed

design. In contrast, anticonservative boundaries such as the Pocock bound offer a much better shot at

early stopping (often yielding a small expected sample size) at the cost of a larger maximum sample size

and final critical values that are considerably larger than the critical value of an equivalent fixed design.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using gsdesign logrank
Background for examples
Computing sample size and boundaries in the absence of censoring
Computing sample size and boundaries in the presence of censoring
Computing sample size and boundaries with uniform accrual

This entry describes the use of the gsdesign logrank command for designing a group sequential

analysis for a two-sample comparison of survivor functions using the log-rank test. See [ADAPT] GSD

intro for a general introduction to group sequential designs (GSDs) for clinical trials; see [ADAPT] gs-

bounds for information about group sequential bounds; and see [ADAPT] gsdesign for information about

designing group sequential clinical trials with the gsdesign command. Also see [PSS-2] Intro (power)

for a general introduction to power and sample-size analysis, and see [PSS-2] power logrank for details

about fixed-sample study designs for a log-rank test of two survivor functions.
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Introduction
When analyzing time-to-event data, we frequently use the failure function, the survivor function, and

the hazard function, denoted 𝐹(𝑡), 𝑆(𝑡), and ℎ(𝑡), respectively. The failure function is the probability of
experiencing a failure event at or before time 𝑡. If we denote the time of failure as 𝑇, we can define the
failure function as the cumulative distribution function of 𝑇, where 𝐹(𝑡) = Pr(𝑇 ≤ 𝑡). The probability
density function of 𝑇 is the derivative of the failure function with respect to time, written as 𝑓(𝑡) =
𝜕𝐹(𝑡)/𝜕𝑡. The survivor function is defined as the probability of surviving beyond time 𝑡, expressed
mathematically as 𝑆(𝑡) = Pr(𝑇 > 𝑡) = 1− 𝐹(𝑡). The hazard function at time 𝑡 is the instantaneous rate
of failure at time 𝑡, conditional on survival until time 𝑡, written as ℎ(𝑡) = 𝑓(𝑡)/𝑆(𝑡).

Consider a survival study comparing survivor functions in two groups using the log-rank test. Let

𝑆1(𝑡) and 𝑆2(𝑡) denote the survivor functions of the control and the experimental groups, respectively.
The log-rank test is the most powerful nonparametric test of 𝑆1(⋅) = 𝑆2(⋅) if the hazard functions are
proportional. That is, ℎ2(𝑡) = Δℎ1(𝑡) for all 𝑡 or, equivalently, 𝑆2(𝑡) = {𝑆1(𝑡)}Δ, where Δ is the

hazard ratio. If Δ < 1, survival in the experimental group is higher than survival in the control group,

which means that the experimental treatment is superior to the control treatment. If Δ > 1, then the

control treatment is superior to the experimental treatment. Under the proportional-hazards assumption,

the test of the equality of the two survivor functions 𝐻0 ∶ 𝑆1(𝑡) = 𝑆2(𝑡) versus 𝐻𝑎 ∶ 𝑆1(𝑡) ≠ 𝑆2(𝑡) is
equivalent to testing 𝐻0 ∶ Δ = 1 versus 𝐻𝑎 ∶ Δ ≠ 1 or 𝐻0 ∶ ln(Δ) = 0 versus 𝐻𝑎 ∶ ln(Δ) ≠ 0.

The methods implemented in gsdesign logrank for boundary and sample-size calculations relate

the power of the log-rank test directly to the number of events observed in the study. The required

sample size is equal to the required number of events if a failure event is observed for every participant

in the trial. Often, the time of failure is not known for some participants, a phenomenon known as

censoring. Administrative censoring occurs when a trial ends before all participants have experienced a

failure event. Nonadministrative censoring occurs when participants withdraw from the study or are lost

to follow-up. If censoring occurs in the study, the required number of participants will be greater than

the required number of events. In the presence of administrative censoring or withdrawal, gsdesign
logrank requires additional information to estimate the probability that a participant’s failure time will
be observed.

Using gsdesign logrank
gsdesign logrank computes stopping boundaries and sample size for a log-rank test comparing the

survivor functions in two groups. gsdesign logrank can be thought of as a combination of power
logrank for sample-size calculations and gsbounds for stopping boundary calculations. gsdesign
logrank supports two methods of estimating the required sample size: the method of Freedman (1982),
which uses a formula based on the hazard ratio and is the default, and the method of Schoenfeld (1981),

which uses a formula based on the log hazard-ratio.

To determine the required number of events, the investigator must specify the effect size. Effect

size is usually expressed as a hazard ratio, Δ𝑎, by using the hratio() option. Alternatively, you may

specify the effect size as a log hazard-ratio, ln(Δ𝑎), with the lnhratio() option. When administrative

censoring is anticipated, the survival probabilities of the two groups, surv1 and surv2, may be specified

and the effect size is calculated from the survival probabilities. If the effect size is not specified, a hazard

ratio of 0.5 is assumed.
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By default, all computations assume no censoring. In the presence of administrative censoring, you

must specify a survival probability at the end of the study in the control group as the first command

argument, surv1. You can also specify a survival probability at the end of the study in the experimental

group as the second command argument, surv2. Otherwise, it will be computed using the specified hazard

ratio or log hazard-ratio and the control-group survival probability. To accommodate an accrual period

under the assumption of uniform accrual, survival information may instead be supplied in the simpson()
option or the st1() option; see Including information about subject accrual in [PSS-2] power logrank

for details. To adjust the sample-size calculation for withdrawal from the trial, specify the anticipated

proportion of withdrawals in the wdprob() option.

By default, gsdesign logrank assumes that the control and experimental arms will be the same size.
If participants are not allocated equally between the two arms, the nratio() option is used to specify

the ratio of participants in the experimental arm to the control arm.

Options alpha(), power(), beta(), and onesided are used for both sample-size and stopping-

boundary calculations. The default significance level, known as the familywise type I error rate, is 0.05

and can be changed by specifying the alpha() option. The default power is 0.8, which corresponds to

a type II error rate of 0.2. This can be modified either by specifying the power in the power() option

or by specifying the type II error in the beta() option. The default test is two-sided, and the onesided
option requests a one-sided test, the direction of which is indicated by the effect size.

The group sequential stopping rule is determined by the efficacy() and futility() options. Stop-
ping can be for efficacy, futility, or both, and if no stopping rule is specified, the default is to use an

O’Brien–Fleming efficacy bound. If futility bounds are requested, the default behavior is to treat them

as nonbinding. A trial that crosses a nonbinding futility bound can be stopped for futility, but the fam-

ilywise type I error is controlled even if the trial continues. Binding futility bounds can be requested

with futility() suboption binding. A trial that crosses a binding futility bound must be stopped for

futility; if it continues, the familywise type I error will not be controlled at the specified significance

level.

The number of looks, or analyses of the trial data, is specified with nlooks(). Alternatively, the
information() option can be used to specify the spacing of the looks as a numlist of increasing infor-

mation levels. In this case, values of the numlist are automatically rescaled so that the final look has the

maximum information required by the design. If neither nlooks() nor information() is specified,

the default is two looks.

By default, the sample sizes in each arm are rounded up to whole numbers at each look, but the

nfractional option can be used to report fractional sample sizes. If nlooks() is specified, the default
behavior is to divide information evenly among each look before rounding. Rounding can cause slight

differences in the amount of information collected at each look, and nlooks() suboption equal can be
specified to enforce equal information increments by requiring the same number of new observations per

arm at each look.

Background for examples
In the following examples, we consider designing a clinical trial of a treatment for hepatocellular

carcinoma, the most common type of primary liver cancer. In 2023, Peng et al. described the results of

the LAUNCH trial, a phase 3 randomized controlled trial comparing lenvatinib monotherapy (the control

arm) against lenvatinib plus transarterial chemoembolization (the experimental arm) as a treatment for

primary advanced hepatocellular carcinoma. The primary endpoint of the trial was overall survival, the

time from randomization to death from any cause.
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Lenvatinib is an anti-cancer medication that can be taken orally and is used to treat some thyroid,

kidney, and liver cancers, including hepatocellular carcinoma. Transarterial chemoembolization is a

procedure where a catheter is inserted in the artery supplying blood to the tumor, and small particles with

injectable anti-cancer drugs are introduced directly into the area of the tumor, blocking off the tumor’s

blood supply and providing a concentrated dose of chemotherapeutic medication.

Computing sample size and boundaries in the absence of censoring

Example 1: GSD for a log-rank test with O’Brien–Fleming efficacy bounds
Peng et al. (2023) randomized participants to the control and experimental arms in a 1:1 ratio and

conducted a log-rank test of 𝐻0 ∶ Δ = 1 versus the two-sided alternative 𝐻𝑎 ∶ Δ ≠ 1 with a familywise

significance level of 5%. They required 90% power to detect a hazard ratio of Δ𝑎 = 0.67 and planned a

single interim analysis using classical O’Brien–Fleming efficacy bounds once two-thirds of the data had

been collected. We use gsdesign logrank to design and graph the boundaries of a clinical trial with

these parameters.
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. gsdesign logrank, hratio(0.67) power(0.9) efficacy(obfleming)
> information(0.667 1) graphbounds
Group sequential design for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR != 1
Efficacy: O’Brien--Fleming
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.9000
delta = 0.6700 (hazard ratio)

hratio = 0.6700
Censoring:

Pr_E = 1.0000
Expected number of events:

H0 = 272.71
Ha = 220.55

Info. ratio = 1.0155
E fixed = 270
N fixed = 270

N max = 274
N1 max = 137
N2 max = 137

Fixed-study crit. values = ±1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Events
Look frac. Lower Upper p-value E

1 0.67 -2.4524 2.4524 0.0142 183
2 1.00 -2.0028 2.0028 0.0452 274

Note: Critical values are for z statistics; otherwise, use
p-value boundaries.
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Parameters: α = .05 (two-sided), 1-β = .9, δ = .67, pE = 1

O'Brien–Fleming efficacy

Group sequential design for a two-sample log-rank test

Figure 1. GSD with O’Brien–Fleming efficacy bounds for a two-sided log-rank test
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gsdesign logrank displays the specified study parameters, including hratio, the hazard ratio under
the alternative hypothesis, and Pr E, the probability that a participant will die by the end of the study.

The next section of the output displays the expected number of events, which is the average number

of events if the group sequential trial were to be repeated many times. The following section reports the

information ratio, the sample size for a fixed study with an equivalent significance level and power (N
fixed), the maximum sample size of the GSD (N max), and the maximum sample sizes for each group

(N1 max and N2 max). The information ratio is the ratio of the maximum sample size of the GSD to the

fixed-study sample size.

If the null hypothesis of 𝐻0 ∶ Δ = 1 were true, the control and experimental arms of the trial would

have equal hazards. In this case, the average trial would require 272.71 events, nearly the full sample

size of 274. This is because the efficacy bounds do not allow for early stopping to accept 𝐻0, so if the

null hypothesis is true, the trial will usually proceed to the final look. If 𝐻𝑎 is true, the average trial will

require 220.55 events, which is a savings over the 270 events required by the fixed trial.

The table at the end of the output displays the critical values for the stopping boundaries and the

corresponding 𝑝-values as well as sample sizes at each look, where sample size is reported as the number
of events observed. Boundary critical values are reported on the 𝑧 scale and are designed to be compared
against the 𝑧 statistic from a log-rank test. Command sts test (see [ST] sts test) conducts the log-

rank test and reports a 𝜒2 test statistic, which is not directly comparable with the 𝑧 scale critical values.
However, the square root of the 𝜒2 test statistic is a 𝑧 statistic, which can be directly compared with the
boundary critical values.

We planned the first look to occurwith 66.7%of the data, which corresponds to 183 events. Examining

the graph, we see that the entire region from 0 to 182 events is shaded green, the color of the continuation

region. This is because the data have not yet been analyzed, so the trial cannot be stopped. The first look

will be conducted once 183 deaths have occurred, and a log-rank test will be performed. We denote the

square root of the 𝜒2 test statistic from the first look as 𝑧1 and note that the sign of 𝑧1 depends on whether

the observed hazard ratio was greater than 1 (in which case 𝑧1 is positive) or less than 1 (in which case 𝑧1
is negative). If |𝑧1| ≥ 2.452, we say that 𝑧1 lies in the rejection region (shaded blue on the graph), and we

reject 𝐻0, terminating the trial early due to treatment efficacy. If |𝑧1| < 2.452, it lies in the continuation

region, and we proceed to the final look.

At the final look, there is no continuation region; 𝐻0 must be rejected or accepted. While accepting

the null hypothesis is taboo in many disciplines, it has a long history in the context of sequential trials

(see Origins of GSD in [ADAPT] GSD intro). As before, we take the square root of the 𝜒2 test statistic

and label it 𝑧2. If |𝑧2| ≥ 2.003, then we reject 𝐻0 and conclude that Δ ≠ 1, while if |𝑧2| < 2.003, then

we accept 𝐻0.

Computing sample size and boundaries in the presence of censoring

Example 2: GSD for a log-rank test with censoring
In the previous example, we assumed no censoring would occur, so the failure time of all participants

would be observed. That is often an unrealistic expectation, and here we adjust the sample size to account

for censoring. We divide censoring into two types: administrative censoring, which occurs when the

trial ends before all participants have experienced a failure event, and withdrawal, which occurs when

a participant withdraws from the study or is lost to follow-up. gsdesign logrank takes a conservative
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stance on withdrawal, assuming that participants who withdraw do so as soon as the study begins, before

they can contribute meaningful data to the trial. For more information about censoring, see Computing

sample size in the presence of censoring in [PSS-2] power logrank.

Peng et al. (2023) describe an anticipated withdrawal rate of 10%, which we will incorporate using the

wdprob() option. Based on a previous study of lenvatinib as a treatment for hepatocellular carcinoma

(Kudo et al. 2018), we anticipate that 5% of the participants in the control arm will be alive at the end of

the trial. We include the control-group survival probability as command argument surv1.

. gsdesign logrank 0.05, hratio(0.67) wdprob(0.1) power(0.9)
> efficacy(obfleming) information(0.667 1)
Group sequential design for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR != 1
Efficacy: O’Brien--Fleming
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.9000
delta = 0.6700 (hazard ratio)

hratio = 0.6700
Censoring and withdrawal:

s1 = 0.0500
s2 = 0.1344

Pr_E = 0.9078
Pr_w = 0.1000

Expected number of events:
H0 = 272.71
Ha = 220.55

Info. ratio = 1.0155
E fixed = 270
N fixed = 330

N max = 336
N1 max = 168
N2 max = 168

Fixed-study crit. values = ±1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Events
Look frac. Lower Upper p-value E

1 0.67 -2.4524 2.4524 0.0142 183
2 1.00 -2.0028 2.0028 0.0452 274

Note: Critical values are for z statistics; otherwise, use
p-value boundaries.

In addition to Pr E, the probability that an event is observed by the end of the study, the output of
gsdesign logrank now includes additional information about censoring and withdrawal. The survival

probabilities of the control and experimental arms are labeled s1 and s2, respectively, and the probability
of withdrawal is labeled Pr w.
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Now that censoring is incorporated into the design, we must recruit a larger sample of 168 participants

in each arm, but the number of events at each look is unchanged, as are the critical values of the efficacy

bound. This is to be expected because the power of the log-rank test is calculated in terms of the number

of events observed, which is not affected by censoring.

Computing sample size and boundaries with uniform accrual

Example 3: GSD for a log-rank test with uniform accrual
In example 2, we considered the effect of censoring on the study design, but we did not account for the

fact that the first participants recruited to the study would be observed for longer than the last participants

to join. Peng et al. (2023) describe the recruitment period as lasting 24 months and the follow-up period

as lasting an additional 24 months. The first participants to join the study would be monitored for up

to 48 months (or until they died or withdrew from the study), while the last participants would only be

monitored for 24 months.

If participants are recruited to the study at a uniform rate, Schoenfeld (1983) recommends a sample-

size calculation that involves estimating the integral of the survivor function using Simpson’s rule.

gsdesign logrank implements this calculation with the simpson() option, which requires estimates

of the survival probability in the control group at three points: at the minimum follow-up time, halfway

between the minimum and maximum follow-up times, and at the maximum follow-up time. This corre-

sponds to 24 months, 36 months, and 48 months in the LAUNCH study.

Based on the previous work of Kudo et al. (2018) and the assumptions made by Peng et al. (2023)

about the tumor burden in their population of interest, we predict that 20% of participants in the control

arm will be alive 24 months after they join the study, 10% will be alive after 36 months, and 5% will be

alive after 48 months.

. gsdesign logrank, hratio(0.67) simpson(0.2 0.1 .05) wdprob(0.1) power(0.9)
> efficacy(obfleming) information(0.667 1)
Group sequential design for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR != 1
Efficacy: O’Brien--Fleming
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.9000
delta = 0.6700 (hazard ratio)

hratio = 0.6700
Censoring and withdrawal:

Pr_E = 0.8350
Pr_w = 0.1000

Expected number of events:
H0 = 272.71
Ha = 220.55

Info. ratio = 1.0155
E fixed = 270
N fixed = 360

N max = 364
N1 max = 182
N2 max = 182

Fixed-study crit. values = ±1.9600
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Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Events
Look frac. Lower Upper p-value E

1 0.67 -2.4524 2.4524 0.0142 183
2 1.00 -2.0028 2.0028 0.0452 274

Note: Critical values are for z statistics; otherwise, use
p-value boundaries.

In example 2, we calculated the overall probability of observing a failure event, Pr E, to be 0.908.
After taking accrual into account, we now estimate Pr E to be 0.835. The reduced chance of observing

a failure event corresponds to a larger required sample size: 360 participants for a fixed-sample trial (up

from 330) and a maximum of 364 participants for the GSD (up from 336).

Altering the assumptions about participant accrual affected the required sample size but not the num-

ber of failures needed to attain 90% power or the critical values required to achieve a 5% familywise

significance level.

Example 4: GSD for a one-sided log-rank test with efficacy and futility stopping
In the previous examples, we endeavored to design a clinical trial modeled after the LAUNCH study

with increasingly sophisticated estimates of the probability of observing a failure event. We did not

modify the details of the interim analysis, a relatively simple design with an O’Brien–Fleming efficacy

bound and a a single look at 66.7% of the total number of failure events. Here we depart from the design

of Peng et al. (2023) and calculate stopping bounds and sample sizes for a study with both efficacy and

futility stopping.

Futility stopping is the complement of efficacy stopping, and it allows the trial to end early if interim

results are overwhelmingly unfavorable. This is done by calculating a futility bound, which we will

draw on the graph in red. Much as the efficacy bound shown in figure 1 divided the range of interim

test statistics into continuation and rejection regions, the futility bound further partitions the range of

test statistics by defining an acceptance region. With efficacy-only stopping, the acceptance region only

existed at the final look, but with futility stopping, it is possible to accept 𝐻0 before the scheduled end

of the trial.

There are two types of futility boundaries: nonbinding (the default) and binding. In a trial with binding

futility bounds, if an interim test statistic lies in the acceptance region, the trial must be terminated for

futility; if it continues, the familywise type I error will not be controlled at the desired significance level.

In contrast, if an interim test statistic crosses a nonbinding futility bound, the DataMonitoring Committee

can decide to halt the trial or allow it to continue without risk of overrunning the specified alpha level.

We choose to implement a nonbinding Hwang–Shih–de Cani futility boundary with parameter

𝛾𝑓 = −4. Hwang–Shih–de Cani bounds are calculated using the error-spending approach, which makes

them incompatible with classical O’Brien–Fleming bounds. Fortunately, there is an error-spending

approximation of the O’Brien–Fleming bound that we can use instead (see Methods and formulas in

[ADAPT] gsbounds for more information about classical and error-spending bounds). We specify error-

spending O’Brien–Fleming-style efficacy bounds with the efficacy(errobfleming) option.
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We anticipate that the hazard ratio will be less than 1, indicating that the experimental treatment of

lenvatinib plus transarterial chemoembolization is superior to the control treatment of lenvatinib alone.

As such, we request a one-sided test and reduce the significance level to half of what it was with a two-

sided alternative hypothesis. Finally, we add an additional interim analysis once half of the total number

of failure events have been observed.

. gsdesign logrank, hratio(0.67) simpson(0.2 0.1 0.05) wdprob(0.1) onesided
> power(0.9) alpha(0.025) efficacy(errobfleming)
> futility(hsdecani(-4)) information(0.5 0.667 1) graphbounds
Group sequential design for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR < 1
Efficacy: Error-spending O’Brien--Fleming style
Futility: Error-spending Hwang--Shih--de Cani, nonbinding, gamma = -4.0000
Study parameters:

alpha = 0.0250 (lower one-sided)
power = 0.9000
delta = 0.6700 (hazard ratio)

hratio = 0.6700
Censoring and withdrawal:

Pr_E = 0.8350
Pr_w = 0.1000

Expected number of events:
H0 = 183.14
Ha = 211.81

Info. ratio = 1.0306
E fixed = 270
N fixed = 360

N max = 370
N1 max = 185
N2 max = 185

Fixed-study crit. value = -1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Futility Events
Look frac. Lower p-value Upper p-value E

1 0.50 -2.9626 0.0015 -0.0672 0.4732 139
2 0.67 -2.5374 0.0056 -0.6491 0.2581 185
3 1.00 -1.9945 0.0230 -1.9945 0.0230 278

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.
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Figure 2. Error-spending efficacy and futility bounds for a one-sided log-rank test

The output of gsdesign logrank starts off quite similar to that of example 3, but the alternative

hypothesis is now reported as Ha: HR < 1. By halving the significance level when transitioning to a

one-sided test, we have kept the number of participants and events required by a fixed study unchanged.

Compared with the design in example 3, the maximum sample size has increased from 364 to 370, but

the expected number of events has changed much more dramatically. Without futility stopping, 272.71

events were expected under 𝐻0, but that has decreased to 183.14 events now that the trial can be stopped

early to accept the null hypothesis. The expected number of events under𝐻𝑎 has decreased as well, from

220.55 to 211.81, due to the additional opportunity to stop the trial for efficacy once half of the data have

been collected.

Once 139 events have been recorded, the log-rank test is conducted and 𝑧1, the square root of the

𝜒2 statistic, is calculated. If the hazard ratio is less than 1, then 𝑧1 is negative; if the hazard ratio is

greater than 1 (meaning the control is outperforming the experimental treatment), then 𝑧1 is positive. If

𝑧1 ≤ −2.963, then the test statistic lies within the rejection region, so we reject𝐻0 and terminate the trial

early due to treatment efficacy. If 𝑧1 > −0.067, then it lies within the acceptance region and we have the

option of terminating the trial due to futility. If 𝑧1 lies in the continuation region of (−2.963, −0.067],
then the trial must continue.

The second look occurs once 185 failures have been observed, and the testing procedure is similar

except the continuation region has shrunk to (−2.537, −0.649]. At the final look, the efficacy and

futility critical values are the same, leaving no continuation region. If 𝑧3 ≤ −1.995, then we reject 𝐻0;

otherwise, 𝐻0 is accepted.
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Stored results
gsdesign logrank stores the following in r():

Scalars

r(alpha) overall significance level (familywise type I error)

r(beta) overall probability of a type II error

r(binding) 1 for binding futility bounds, 0 for nonbinding
r(delta) effect size

r(E fixed) number of events in a fixed study design

r(E fixedfrac) fractional number of events in a fixed study design

r(E max) maximum number of events if the study continues to completion

r(effparam) efficacy parameter (if wtsiatis(), kdemets(), or hsdecani() specified)
r(ESS0) expected sample size under null hypothesis

r(ESS1) expected sample size under alternative hypothesis

r(futparam) futility parameter (if wtsiatis(), kdemets(), or hsdecani() specified)
r(hratio) hazard ratio (unless lnhratio() specified)
r(info ratio) ratio of maximum information required to that of a fixed study design

r(lnhratio) log hazard-ratio (if lnhratio() specified)
r(N fixed) sample size of a fixed study design

r(N fixedfrac) fractional sample size of a fixed study design

r(N max) maximum sample size if the study continues to completion

r(N1 fixed) sample size of the control group in a fixed study design

r(N1 fixedfrac) fractional sample size of the control group in a fixed study design

r(N1 max) maximum sample size of the control group if the study continues to completion

r(N2 fixed) sample size of the experimental group in a fixed study design

r(N2 fixedfrac) fractional sample size of the experimental group in a fixed study design

r(N2 max) maximum sample size of the experimental group if the study continues to completion

r(nfractional) 1 if nfractional is specified, 0 otherwise
r(nlooks) number of analyses

r(nratio) specified ratio of sample sizes, 𝑁2/𝑁1
r(nratio a) attained ratio of sample sizes

r(onesided) 1 for a one-sided test, 0 otherwise
r(power) specified overall power

r(power a) attained overall power

r(Pr E) probability of an event (failure)

r(Pr w) proportion of withdrawals

r(s1) survival probability in the control group (if specified)

r(s2) survival probability in the experimental group (if specified)

r(stop) 0 for futility bounds, 1 for efficacy bounds, 2 for both
r(t min) minimum time (if st1() specified)
r(t max) maximum time (if st1() specified)
r(z fixed) critical value for an equivalent fixed study design

Macros

r(cmd) gsdesign
r(cmdline) command as typed

r(direction) upper, lower, or two-sided
r(effbnd) pocock, obfleming, wtsiatis, errpocock, errobfleming, kdemets, or hsdecani
r(effect) hratio or lnhratio
r(futbnd) pocock, obfleming, wtsiatis, errpocock, errobfleming, kdemets, or hsdecani
r(method) logrank
r(survvar) name of the variable containing survival probabilities (if st1() specified)
r(test) Freedman or Schoenfeld
r(timevar) name of the variable containing time points (if st1() specified)
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Matrices

r(aspent) cumulative alpha spent per look (stored with efficacy-only stopping or when futility

bounds are binding)
r(aspent fstop) cumulative alpha spent per look if futility stopping does occur (stored when futility

bounds are nonbinding)
r(aspent nofstop) cumulative alpha spent per look if futility stopping does not occur (stored when futility

bounds are nonbinding)
r(bounds) stopping boundaries

r(bspent) cumulative beta spent per look (when futility bounds are specified)

r(bspent a) attained cumulative beta spent per look (when futility bounds are specified)

r(design) sample size and stopping boundaries at interim looks

r(info frac) specified information fraction

r(info frac a) fraction of attained information

r(info level) specified information level

r(p crit) 𝑝-values corresponding to boundary critical values
r(sampsize) sample size at interim looks

r(simpmat) control-group survival probabilities (if simpson() is specified)

Methods and formulas
Sample sizes at interim analyses are calculated as the product of the information fraction, the infor-

mation ratio, and the sample size of a fixed-sample study.

See Methods and formulas in [ADAPT] gsbounds for the formulas used to calculate the stopping

boundaries, information fraction, and information ratio. See Methods and formulas in [PSS-2] power

logrank for the formulas used to calculate the sample size for a fixed study. See Methods and formulas

in [ADAPT] gsdesign for the formulas used to calculate the expected sample size.
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Description Syntax Options Remarks and examples Stored results
References Also see

Description
The gsdesign usermethod command allows you to add your ownmethods to create a group sequential

design (GSD) and produce tables and graphs of the stopping boundaries.

Syntax
gsdesign usermethod ...[ , designopts boundopts ]

where usermethod is the name of the method you would like to add to the gsdesign command, de-

signopts are options controlling the sample-size calculation, and boundopts are options controlling

the calculation of the stopping boundaries.

When naming your gsdesign methods, you should follow the same convention as for naming the pro-

grams you add to Stata—do not pick “nice” names that may later be used by Stata’s built-in methods.

The length of usermethod may not exceed 16 characters.

designopts Description

Main

usermethodopts method-specific options for user-defined method
∗ alpha(#) overall significance level for all tests; default is alpha(0.05)
∗ power(#) overall power for all tests; default is power(0.8)

beta(#) overall probability of type II error for all tests;
default is beta(0.2)

onesided request a one-sided test; default is two-sided
∗ nfractional report fractional sample size

∗User-written sample-size evaluators must allow options alpha(), power(), and nfractional.
collect is allowed; see [U] 11.1.10 Prefix commands.

210
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boundopts Description

Bounds

efficacy(boundary) boundary for efficacy stopping; if neither efficacy()
nor futility() is specified, the default is
efficacy(obfleming)

futility(boundary[ , binding ]) boundary for futility stopping; use binding to request
binding futility bounds (default is nonbinding)

nlooks(#[ , equal ]) total number of analyses (nlooks() − 1 interim analyses
and one final analysis); use equal to enforce equal
information increments; if neither nlooks() nor
information() is specified, the default is nlooks(2)

information(numlist) sequence of information levels for analyses;
default is evenly spaced

nopvalues suppress 𝑝-values

Graph

graphbounds[ (graphopts) ] graph boundaries

matlistopts(general options) control the display of boundaries and sample size;
seldom used

optimopts optimization options for boundary calculations; seldom used

boundary Description

obfleming classical O’Brien–Fleming bound

pocock classical Pocock bound

wtsiatis(#) classical Wang–Tsiatis bound with specified parameter value

errpocock error-spending Pocock-style bound

errobfleming error-spending O’Brien–Fleming-style bound

kdemets(#) error-spending Kim–DeMets bound with specified parameter value

hsdecani(#) error-spending Hwang–Shih–de Cani bound with specified parameter value
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graphopts Description

xdimsampsize label the 𝑥 axis with the sample size collected (default)

xdiminformation label the 𝑥 axis with the information fraction;
use information levels if information() specified

xdimlooks label the 𝑥 axis with the number of each look

noshade do not shade the rejection, acceptance, and continuation
regions

rejectopts(area options) change the appearance of the rejection region

acceptopts(area options) change the appearance of the acceptance region

continueopts(area options) change the appearance of the continuation region

efficacyopts(connected options) change the appearance of the efficacy bound

futilityopts(connected options) change the appearance of the futility bound

nolooklines do not draw vertical reference lines at each look

looklinesopts(added line suboptions) change the appearance of the reference lines
marking each look

nofixed do not label critical values from a fixed study design

fixedopts(marker options) change the appearance of the fixed-study critical values

twoway options any options other than by() documented in
[G-3] twoway options

optimopts Description

intpointsscale(#) scaling factor for number of quadrature points;
default is intpointsscale(20)

initinfo(initinfo spec) initial value(s) for maximum information

initscale(#) initial value for scaling factor 𝐶 of classical bounds

infotolerance(#) tolerance for bisection search for maximum information of error-
spending bounds with futility stopping; default is infotol(1e-6)

marquardt use the Marquardt stepping algorithm in nonconcave regions;
default is to use a mixture of steepest descent and Newton

technique(algorithm spec) maximization technique

iterate(#) perform maximum of # iterations; default is iterate(300)
[ no ]log display an iteration log; default is nolog
trace display current parameter vector in iteration log

gradient display current gradient vector in iteration log

showstep report steps within an iteration in iteration log

hessian display current negative Hessian matrix in iteration log

showtolerance report the calculated result that is compared with the effective
convergence criterion

tolerance(#) tolerance for the parameter being optimized;
default is tolerance(1e-12)

ftolerance(#) tolerance for the objective function;
default is ftolerance(1e-10)

nrtolerance(#) tolerance for the scaled gradient;
default is nrtolerance(1e-16)

nonrtolerance ignore the nrtolerance() option
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Options

� � �
Main �

alpha(#) sets the overall significance level, which is the familywise type I error rate for all analyses

(interim and final). alpha() must be in (0, 0.5). The default is alpha(0.05).

power(#) sets the overall power for all analyses. power() must be in (0.5, 1). The default is

power(0.8). If beta() is specified, power() is set to be 1 − beta(). Only one of power() or

beta() may be specified.

beta(#) sets the overall probability of a type II error. beta() must be in (0, 0.5). The default is

beta(0.2). If power() is specified, beta() is set to be 1 − power(). Only one of beta() or

power() may be specified.

onesided requests a study design for a one-sided test. The direction of the test is inferred from the effect

size.

nfractional specifies that fractional sample sizes be reported.

nratio(#) specifies the sample-size ratio of the experimental group relative to the control group,

𝑁2/𝑁1. The default is nratio(1), meaning equal allocation between the two groups.

� � �
Bounds �

efficacy(boundary) specifies the boundary for efficacy stopping. If neither efficacy() nor

futility() is specified, the default is efficacy(obfleming).

futility(boundary[ , binding ]) specifies the boundary for futility stopping.
binding specifies binding futility bounds. With binding futility bounds, if the result of an interim

analysis crosses the futility boundary and lies in the acceptance region, the trial must end or risk

overrunning the specified type I error. With nonbinding futility bounds, the trial does not need to

stop if the result of an interim analysis crosses the futility boundary; the familywise type I error

rate is controlled even if the trial continues. By default, futility bounds are nonbinding.

nlooks(# [ , equal ]) specifies the total number of analyses to be performed (nlooks() − 1 interim

analyses and one final analysis). If neither nlooks() nor information() is specified, the default is
nlooks(2).

equal indicates that equal information increments be enforced, which is to say that the same number
of new observations will be collected at each look. The default behavior is to start by dividing

information evenly among looks, then proceed by rounding up to a whole number of observations

at each look. This can cause slight differences in the information collected at each look.

information(numlist) specifies a sequence of information levels for interim and final analyses. This

must be a sequence of increasing positive numbers, but the scale is unimportant because the infor-

mation sequence will be automatically rescaled to ensure the maximum information is reached at the

final look. By default, analyses are evenly spaced.

nopvalues suppresses the 𝑝-values from being reported in the table of boundaries for each look.
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� � �
Graph �

graphbounds and graphbounds(graphopts) produce graphical output showing the stopping bound-

aries.

graphopts are the following:

xdimsampsize labels the 𝑥 axis with the sample size collected (the default).

xdiminformation labels the 𝑥 axis with the information fraction unless information() is spec-
ified, in which case information levels will be used.

xdimlooks labels the 𝑥 axis with the number of each look.

noshade suppresses shading of the rejection, acceptance, and continuation regions of the graph.

rejectopts(area options) affects the rendition of the rejection region. See
[G-3] area options.

acceptopts(area options) affects the rendition of the acceptance region. See
[G-3] area options.

continueopts(area options) affects the rendition of the continuation region. See
[G-3] area options.

efficacyopts(connected options) affects the rendition of the efficacy bound. See
[G-3] cline options and [G-3] marker options.

futilityopts(connected options) affects the rendition of the futility bound. See
[G-3] cline options and [G-3] marker options.

nolooklines suppresses the vertical reference lines drawn at each look.

looklinesopts(added line suboptions) affects the rendition of reference lines marking each

look. See suboptions in [G-3] added line options.

nofixed suppresses the fixed-study critical values in the plot.

fixedopts(marker options) affects the rendition of the fixed-study critical values. See
[G-3] marker options.

twoway options are any of the options documented in [G-3] twoway options, excluding by().
These include options for titling the graph (see [G-3] title options) and for saving the graph to

disk (see [G-3] saving option).

matlistopts(general options) affects the display of the matrix of boundaries and sample sizes. gen-

eral options are title(), tindent(), rowtitle(), showcoleq(), coleqonly, colorcoleq(),
aligncolnames(), and linesize(); see general options in [P]matlist. This option is seldom used.

optimopts control the iterative algorithm used to calculate stopping boundaries:

intpointsscale(#) specifies the scaling factor for the number of quadrature points used during the
numerical evaluation of stopping probabilities at each look. The default is intpointsscale(20).
See Methods and formulas in [ADAPT] gsbounds.

initinfo(initinfo spec) specifies either one or two initial values to be used in the iterative calcula-
tion of the maximum information.

The syntax initinfo(#) is applicable when using classical group sequential boundaries (Pocock
bounds, O’Brien–Fleming bounds, and Wang–Tsiatis bounds), as well as with efficacy-only

stopping when using error-spending boundaries (error-spending Pocock-style efficacy bounds,
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error-spending O’Brien–Fleming-style efficacy bounds, Kim–DeMets efficacy bounds, and

Hwang–Shih–de Cani efficacy bounds). The default is to use the information from a fixed study

design; see Methods and formulas in [ADAPT] gsbounds.

The syntax initinfo(# #) is applicable when using error-spending group sequential boundaries
with futility stopping (error-spending Pocock-style bounds, error-spending O’Brien–Fleming-

style bounds, Kim–DeMets bounds, and Hwang–Shih–de Cani bounds). With this syntax, the

first and second numbers specify the lower and upper starting values, respectively, for the bisec-

tion algorithm estimating the maximum information. The default is to use the information from a

fixed study design for the lower initial value and the information corresponding to a Bonferroni

correction for the upper initial value; see Methods and formulas in [ADAPT] gsbounds. To specify

just the lower starting value, use initinfo(# .), and to specify just the upper starting value, use
initinfo(. #).

initscale(#) specifies the initial value to be used during the iterative calculation of scaling fac-

tor 𝐶 for classical group sequential boundaries (Pocock bounds, O’Brien–Fleming bounds, and

Wang–Tsiatis bounds). The default is to use the 𝑧-value corresponding to the specified value of
alpha(). See Methods and formulas in [ADAPT] gsbounds.

infotolerance(#) specifies the tolerance for the bisection algorithm used in the itera-

tive calculation of the maximum information of error-spending group sequential boundaries

with futility stopping (error-spending Pocock-style bounds, error-spending O’Brien–Fleming-

style bounds, Kim–DeMets bounds, and Hwang–Shih–de Cani bounds). The default is

infotolerance(1e-6). See Methods and formulas in [ADAPT] gsbounds.

marquardt specifies that the optimizer should use the modified Marquardt algorithm when, at an

iteration step, it finds that 𝐻 is singular. The default is to use a mixture of steepest descent and

Newton, which is equivalent to the difficult option in [R] ml.

technique(algorithm spec) specifies how the objective function is to be maximized. The following

algorithms are allowed. For details, see Pitblado, Poi, and Gould (2024).

technique(bfgs) specifies the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

technique(nr) specifies Stata’s modified Newton–Raphson (NR) algorithm.

technique(dfp) specifies the Davidon–Fletcher–Powell (DFP) algorithm.

The default is technique(bfgs) when using classical group sequential boundaries (Pocock

bounds, O’Brien–Fleming bounds, and Wang–Tsiatis bounds) and also for the second opti-

mization step used to estimate the maximum information with efficacy-only stopping when

using error-spending boundaries (error-spending Pocock-style efficacy bounds, error-spending

O’Brien–Fleming-style efficacy bounds, Kim–DeMets efficacy bounds, and Hwang–Shih–de

Cani efficacy bounds). The default is technique(nr) for the sequential optimization steps used

to estimate critical values for error-spending boundaries. You can also switch between two al-

gorithms by specifying the technique name followed by the number of iterations. For example,

specifying technique(nr 10 bfgs 20) requests 10 iterations with the NR algorithm followed by

20 iterations with the BFGS algorithm, and then back to NR for 10 iterations, and so on. The process

continues until convergence or until the maximum number of iterations is reached.



gsdesign usermethod — Add your own methods to the gsdesign command 216

iterate(#) specifies the maximum number of iterations. If convergence is not declared by the

time the number of iterations equals iterate(), an error message is issued. The default value of
iterate(#) is the number set using set maxiter, which is 300 by default.

[ no ]log requests an iteration log showing the progress of the optimization. The default is nolog.

trace adds to the iteration log a display of the current parameter vector.

gradient adds to the iteration log a display of the current gradient vector.

showstep adds to the iteration log a report on the steps within an iteration. This option was added so
that developers at StataCorp could view the stepping when they were improving the ml optimizer
code. At this point, it mainly provides entertainment.

hessian adds to the iteration log a display of the current negative Hessian matrix.

showtolerance adds to the iteration log the calculated value that is compared with the effective

convergence criterion at the end of each iteration. Until convergence is achieved, the smallest

calculated value is reported. shownrtolerance is a synonym of showtolerance.

Below, we describe the three convergence tolerances. Convergence is declared when the

nrtolerance() criterion is met and either the tolerance() or the ftolerance() criterion is also
met.

tolerance(#) specifies the tolerance for the parameter vector. When the relative change in

the parameter vector from one iteration to the next is less than or equal to tolerance(), the
tolerance() convergence criterion is satisfied. The default is tolerance(1e-12).

ftolerance(#) specifies the tolerance for the objective function. When the relative change in

the objective function from one iteration to the next is less than or equal to ftolerance(), the
ftolerance() convergence is satisfied. The default is ftolerance(1e-10).

nrtolerance(#) specifies the tolerance for the scaled gradient. Convergence is declared when

gH−1g′ < nrtolerance(). The default is nrtolerance(1e-16).

nonrtolerance specifies that the default nrtolerance() criterion be turned off.

boundary
obfleming specifies a classical O’Brien–Fleming design for efficacy or futility bounds (O’Brien and

Fleming 1979). O’Brien–Fleming efficacy bounds are characterized by being extremely conservative

at early looks. The O’Brien–Fleming design is a member of theWang–Tsiatis family and is equivalent

to specifying a boundary of wtsiatis(0).

pocock specifies a classical Pocock design for efficacy or futility bounds (Pocock 1977). Pocock efficacy
bounds are characterized by using the same critical value at all looks. The Pocock design is a member

of the Wang–Tsiatis family and is equivalent to specifying a boundary of wtsiatis(0.5).

wtsiatis(#) specifies a classical Wang–Tsiatis design for efficacy or futility bounds (Wang and Tsiatis

1987). The shape ofWang–Tsiatis bounds is determined by parameter Δ ∈ [−10, 0.7], where smaller
values of Δ yield bounds that are more conservative at early looks.

errpocock specifies an error-spending Pocock-style design for efficacy or futility bounds (Lan and

DeMets 1983). The critical values from error-spending Pocock-style bounds are very similar to those

of classic Pocock bounds, but they are obtained using an error-spending function.
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errobfleming specifies an error-spending O’Brien–Fleming-style design for efficacy or futility bounds
(Lan and DeMets 1983). The critical values from error-spending O’Brien–Fleming-style bounds

are very similar to those of classic O’Brien–Fleming bounds, but they are obtained using an error-

spending function.

kdemets(#) specifies an error-spending Kim–DeMets design for efficacy or futility bounds (Kim and

DeMets 1987). The shape of Kim–DeMets bounds is determined by power parameter 𝜌 ∈ (0, 10],
where larger values of 𝜌 yield bounds that are more conservative at early looks.

hsdecani(#) specifies an error-spending Hwang–Shih–de Cani design for efficacy or futility bounds

(Hwang, Shih, and de Cani 1990). The shape of Hwang–Shih–de Cani bounds is determined by

parameter 𝛾 ∈ [−30, 3], where smaller values of 𝛾 yield bounds that are more conservative at early

looks.

For a design with both efficacy and futility stopping boundaries, if you specify a classical boundary

(that is, in theWang–Tsiatis family) for one, then you must specify a classical boundary for the other. So,

you could not specify a boundary in the Wang–Tsiatis family for one boundary and an error-spending

boundary for the other. When specifying efficacy and futility boundaries from the same family, the

efficacy parameter does not need to be the same as the futility parameter.

Boundaries that are conservative at early looks, such as the O’Brien–Fleming bound, offer little

chance of early stopping unless the true effect size is quite large (in the case of efficacy bounds) or quite

small (in the case of futility bounds). A trial employing a conservative bound is more likely to continue

to the final look, yielding an expected sample size that is not dramatically smaller than the sample size

required by an equivalent fixed-sample trial. However, the maximum sample size (that is, the sample

size at the final look) of a trial with a conservative bound is generally not much greater than the sample

size required by an equivalent fixed trial. Another direct result of specifying conservative bounds is that

the critical value at the final look tends to be close to the critical value employed by an equivalent fixed

design. In contrast, anticonservative boundaries such as the Pocock bound offer a much better shot at

early stopping (often yielding a small expected sample size) at the cost of a larger maximum sample size

and final critical values that are considerably larger than the critical value of an equivalent fixed design.

Remarks and examples
Remarks are presented under the following headings:

Steps for adding a new method to the gsdesign command
A quick example
Convention for naming options and storing results
Example: A log-rank test for substantial superiority

Graphing boundaries
Initializer and parser

Using an initializer and parser
Initializer’s s() return settings

This entry describes the use of the gsdesign command with a user-defined sample-size evaluator.

See [ADAPT] GSD intro for a general introduction to GSDs for clinical trials; see [ADAPT] gsbounds for

information about group sequential bounds; and see [ADAPT] gsdesign for information about designing

group sequential clinical trials with the gsdesign command. Also see [PSS-2] Intro (power) for a general
introduction to power and sample-size analysis, and see [PSS-2] power usermethod for additional details

about how to write your own sample-size evaluator.
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Steps for adding a new method to the gsdesign command
gsdesign works by combining stopping boundaries calculated by gsbounds with the fixed-design

sample size calculated by power. If the sample-size calculation you want does not exist as a built-in
power method, you can write your own sample-size evaluator and use it with gsdesign.

Adding your own methods to gsdesign is easy. Suppose you want to add your own method, user-

method, to gsdesign:

1. Create the evaluator, an r-class program called power cmd usermethod that computes the

sample size that would be required for a fixed study design. Save the program as ado-file

power cmd usermethod.ado.

A. Be sure your program accepts the nfractional option. This is necessary because

gsdesign uses fractional sample sizes when calculating the sample size required at

each look.

B. Store the resulting sample size following power’s simple naming conventions. Store
the total sample size in r(N). For two-sample methods, additionally store control-
group and experimental-group sample sizes in r(N1) and r(N2), respectively. For
time-to-event methods, additionally store the number of events in r(E) and store local
macro r(endpoint) as “survival”.

C. If your method allows one-sided tests, store local macro r(direction) as “upper”
for an upper one-sided test and as “lower” for a lower one-sided test.

2. Optionally, create an initializer or a parser, s-class programs called, respectively,

power cmd usermethod init (defined by ado-file power cmd usermethod init.ado) and
power cmd usermethod parse (defined by ado-file
power cmd usermethod parse.ado). This step is not necessary but can be used to customize
the titles and parameters displayed by gsdesign. See Initializer and parser for more details.

3. Place all of your programs where Stata can find them.

You are done. You can now use gsdesign usermethod like any other gsdesign method.

All user-defined methods for gsdesign are, by construct, also user-defined methods for the power
command. This means that your evaluator can be used to calculate the sample size for a fixed study design

by running command power usermethod. This ability can be exploited, as we do in our second example.

However, it bears mentioning that the power command allows user-defined evaluators to calculate power
and effect size in addition to sample size, but gsdesign only supports sample-size calculations.

A quick example
Before we discuss the technical details in the following sections, let’s try an example to show how

easy this all is. We will write a program to compute sample size for a fixed-study one-sample 𝑧 test given
standardized difference, significance level, and power. For simplicity, we assume a two-sided test.
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We will call our new method myztest and save it as power cmd myztest.ado.

program power_cmd_myztest, rclass
version 19.5 // (or version 19 if you do not have StataNow)

/* parse syntax */
syntax, STDDiff(real) /// standardized difference (effect size)

[ Alpha(real 0.05) /// significance level
Power(real 0.8) /// power
NFRACtional /// report fractional sample size

]

/* calculate sample size for a fixed study */
tempname N
scalar ‘N’ = ((invnormal(‘power’) + invnormal(1 - ‘alpha’ / 2)) / ‘stddiff’)^2
if (”‘nfractional’” == ””) {

scalar ‘N’ = ceil(‘N’)
}

/* return stored results */
return scalar N = ‘N’
return scalar alpha = ‘alpha’
return scalar power = ‘power’
return scalar stddiff = ‘stddiff’

end

Our program consists of three sections: the syntax command for parsing options, the sample-size

computation, and returning the stored results. The three sections work as follows:

Parse: The power cmd myztest program accepts three of gsdesign’s designopts: alpha() for

significance level, power() for power, and nfractional to compute fractional sample size.
It also has its own option, stddiff(), to specify a standardized difference.

Compute: After parsing options, sample size is computed and stored in temporary scalar ‘N’.

Return: Finally, the resulting sample size and other results are returned as scalars. Following power’s
convention for naming commonly returned results, the computed sample size is stored in

r(N), the significance level in r(alpha), and the power in r(power). The program addi-

tionally stores the standardized difference in r(stddiff).

We save our program as power cmd myztest.ado and place the program where Stata can find it.

Now we can use myztest within gsdesign as we would any other existing method of gsdesign.

To design a group sequential trial using myztest with a standardized difference of 0.7 and default

specifications of O’Brien–Fleming efficacy bounds with two evenly spaced looks, power of 0.8, and

two-sided significance level of 0.05, we run
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. gsdesign myztest, stddiff(0.7)
Group sequential design for myztest
Two-sided test
Efficacy: O’Brien--Fleming
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.8000

Expected sample size:
H0 = 16.96
Ha = 15.06

Info. ratio = 1.0078
N fixed = 17

N max = 17
Fixed-study crit. values = ±1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Sample size
Look frac. Lower Upper p-value N

1 0.50 -2.7965 2.7965 0.0052 9
2 1.00 -1.9774 1.9774 0.0480 17

Notes: Critical values are for z statistics; otherwise,
use p-value boundaries.
Requested information fraction not attained.

We can use any type of boundary allowed by gsdesign, and we can even display the bounds on a
graph. For a four-look design with Wang–Tsiatis efficacy bounds with efficacy parameter Δ𝑒 = 0.25

and O’Brien–Fleming nonbinding futility bounds, we run

. gsdesign myztest, stddiff(0.7) efficacy(wtsiatis(0.25)) futility(obfleming)
> nlooks(4) graphbounds
Group sequential design for myztest
Two-sided test
Efficacy: Wang--Tsiatis, Delta = 0.2500
Futility: O’Brien--Fleming, nonbinding
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.8000

Expected sample size:
H0 = 12.56
Ha = 14.09

Info. ratio = 1.2141
N fixed = 17

N max = 20
Fixed-study crit. values = ±1.9600
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Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Futility
Look frac. Lower Upper p-value Lower Upper p-value

1 0.25 -2.9887 2.9887 0.0028 . . .
2 0.50 -2.5132 2.5132 0.0120 -0.8059 0.8059 0.4203
3 0.75 -2.2709 2.2709 0.0232 -1.5492 1.5492 0.1213
4 1.00 -2.1133 2.1133 0.0346 -2.1133 2.1133 0.0346

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.

Sample size
Look N

1 5
2 10
3 15
4 20
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Stop for efficacy
(reject H0)
Stop for futility
(accept H0)
Continue
Efficacy
Futility
Fixed-study
critical values

Parameters: α = .05 (two-sided), 1-β = .8, ∆e = .25

Wang–Tsiatis efficacy & O'Brien–Fleming nonbinding futility

Group sequential design for a myztest test

Figure 1. User-written one-sample 𝑧 test with efficacy and futility bounds

The above is just a simple example. Your program can be as complicated as you would like; you can

even use simulations to compute your results. You can also customize your output and graphs with an

initializer or parser.

Convention for naming options and storing results
You can specify any method-specific options you want, but for the gsdesign command to auto-

matically recognize its common design options, you must ensure that you follow gsdesign’s naming
convention for designopts in your program. For example, gsdesign specifies the significance level in
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the alpha() option with minimum abbreviation of a(). You need to ensure that you use the same option
name with the same abbreviation in your evaluator to specify the significance level. The same applies to

all the designopts described in the Syntax section.

To be compatible with gsdesign, you must ensure that your sample-size evaluator stores the total
sample size in scalar r(N). For two-sample methods, you must additionally store the control-group sam-
ple size in scalar r(N1) and the experimental-group sample size in scalar r(N2).

For time-to-event methods, your evaluator must store local macro r(endpoint) as “survival” and
store the number of events in scalar r(E). If your method allows for censoring, store the survival prob-
ability of the control group in scalar r(s1) and the survival probability of the experimental group in

scalar r(s2), store the overall probability of experiencing a failure event in scalar r(Pr E), and store
the probability of withdrawal in scalar r(Pr w).

If your method allows one-sided tests, it should store local macro r(direction) as “upper” when
an upper one-sided test is specified and as “lower” when a lower one-sided test is specified.

If you want to display additional parameters in the gsdesign output, you must store them as scalars

and let gsdesign know to display them through the use of an initializer or parser. However, the full

functionality of the gsdesign command is available without the use of an initializer or parser.

Example: A log-rank test for substantial superiority
Many aspects of the COVID-19 pandemicwere unprecedented, including the speedwith which vaccines

were developed. Unlike the yearslong development process of previous vaccines, the first COVID-19

vaccines began phase 3 clinical trials for efficacy less than half a year after COVID-19 was declared a

global pandemic. One of these vaccines was produced by the company Sinovac, and Palacios et al.

(2020) describe the PROFISCOV phase 3 clinical trial of the Sinovac COVID-19 vaccine among healthcare

workers in Brazil.

The primary endpoint, or outcome of interest, was the incidence of symptomatic COVID-19. Rather

than merely recording whether study participants caught COVID-19, the researchers monitored how long

it took each participant to catch COVID-19, making this a survival study. Participants who had not expe-

rienced symptomatic COVID-19 by the end of the study’s one-year follow-up period were considered to

have been censored. This type of censoring is known as administrative censoring.

The PROFISCOV study measured vaccine efficacy as 1 − HR, where HR is the hazard ratio of the

experimental to the control participants (Palacios et al. 2020, Study Protocol). The alternative hypothesis

of the PROFISCOV study was a vaccine efficacy of 60%, corresponding to a hazard ratio of 0.4. However,

the null hypothesis was not a vaccine efficacy of 0% (which would correspond to a hazard ratio of 1 and

indicate no treatment effect); instead, the null hypothesis was a vaccine efficacy of 30% (corresponding to

a hazard ratio of 0.7). To declare the Sinovac COVID-19 vaccine effective, the planners of the PROFISCOV

study required it to beat the control by more than 30%. This type of study is known as a superiority trial

or, more specifically, a substantial superiority trial with a superiority margin of 30%.

gsdesign does not have a built-in method for calculating sample size for a substantial superiority test
of two survivor functions, so we will write our own. We assume a log-rank test will be used to compare

the two survivor functions, so we model our command after power logrank. We write a sample-size

evaluator based on the Methods and formulas described in [PSS-2] power logrank, but we follow the

example of Julious (2010, 264) to modify the formulas to accommodate a superiority margin, provided

in the form of a hazard ratio under the null hypothesis.
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We will call our new method superlogrank. It will compute the number of events and sample

size for a fixed-design substantial superiority trial using a log-rank test to compare two survivor func-

tions. Sample-size evaluator power cmd superlogrank accepts the standard gsdesign designopts of

alpha(), power(), nfractional, and onesided, but we decide to make onesided a required option

because we are only interested in testing a one-sided alternative hypothesis: that the Sinovac COVID-19

vaccine is substantially better than the placebo.

Like power logrank, our command power cmd superlogrank performs sample-size calculations
for a test of the hazard ratio using the Freedman method (the default) or for a test of the log hazard-

ratio using the Schoenfeld method (with option schoenfeld). Most of the remaining syntax for

power cmd superlogrank is akin to a simplified version of the power logrank syntax: the survival

probability in the control group is provided as an optional argument to the command (specified before the

comma), the hazard ratio under the alternative hypothesis is specified with option hratio(), the proba-
bility of withdrawal is specified with option wdprob(), and the ratio of experimental-group sample size
to control-group sample size is specified with option nratio().

Command power cmd superlogrank accepts the additional option hr0(), the hazard ratio under
the null hypothesis. We set the default to be hr0(1), which corresponds to a superiority margin of 0 (that
is, the vaccine efficacy under the null hypothesis is 0%). If hr0() is left at its default, the substantial

superiority test reduces to a standard log-rank test.

program power_cmd_superlogrank, rclass
version 19.5 // (or version 19 if you do not have StataNow)

/* parse syntax and check for valid options */
syntax [anything(name=s1)] /// P(survival) of control group (optional)

, ONESIDed /// one-sided test (required option)
[ HRatio(real 0.5) /// hazard ratio under Ha

hr0(real 1) /// hazard ratio under H0
WDProb(real 0) /// P(nonadministrative censoring)
NRATio(real 1) /// ratio of experimental/controls
SCHoenfeld /// use Schoenfeld calculation
Alpha(real 0.05) /// significance level
Power(real 0.8) /// power
NFRACtional /// report fractional sample size

]

/* assume 0% survival if s1 is not specified */
if (‘”‘s1’”’ != ””) {

confirm number ‘s1’
assert (‘s1’ >= 0) & (‘s1’ < 1)

}
else {

local s1 = 0
}
assert (‘hratio’ > 0)
assert (‘hr0’ > 0)
assert (‘nratio’ > 0)
assert (‘wdprob’ >= 0) & (‘wdprob’ < 1)
assert (‘alpha’ > 0) & (‘alpha’ < 1)
assert (‘power’ > 0) & (‘power’ < 1)
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/* calculate number of failures (events) & fixed-study sample size */
tempname zalpha zbeta Dratio lhs rhs E s2 prE N N1 N2
scalar ‘zalpha’ = invnormal(1 - ‘alpha’)
scalar ‘zbeta’ = invnormal(‘power’)
scalar ‘Dratio’ = ‘hratio’ / ‘hr0’
scalar ‘lhs’ = (‘zalpha’ + ‘zbeta’)^2 / ‘nratio’
if (”‘schoenfeld’” != ””) {

/* Schoenfeld calculation */
scalar ‘rhs’ = ((‘nratio’ + 1) / log(‘Dratio’))^2

}
else {

/* Freedman calculation */
scalar ‘rhs’ = ((‘nratio’ * ‘Dratio’ + 1) / (‘Dratio’ - 1))^2

}
scalar ‘E’ = ‘lhs’ * ‘rhs’
scalar ‘s2’ = ‘s1’^‘hratio’
scalar ‘prE’ = 1 - (‘s1’ + ‘nratio’ * ‘s2’) / (‘nratio’ + 1)
scalar ‘N’ = ‘E’ / (‘prE’ * (1 - ‘wdprob’))
scalar ‘N1’ = ‘N’ * ‘nratio’ / (‘nratio’ + 1)
scalar ‘N2’ = ‘N’ / (‘nratio’ + 1)

if (”‘nfractional’” == ””) {
/* round up to a whole number */
scalar ‘E’ = ceil(‘E’)
scalar ‘N1’ = ceil(‘N1’)
scalar ‘N2’ = ceil(‘N2’)
scalar ‘N’ = ‘N1’ + ‘N2’

}

/* return stored results */
return scalar E = ‘E’
return scalar N = ‘N’
return scalar N1 = ‘N1’
return scalar N2 = ‘N2’
return scalar hratio = ‘hratio’
return scalar hr0 = ‘hr0’
return scalar nratio = ‘nratio’
return scalar s1 = ‘s1’
return scalar s2 = ‘s2’
return scalar Pr_E = ‘prE’
return scalar Pr_w = ‘wdprob’
return scalar alpha = ‘alpha’
return scalar power = ‘power’
return scalar nfractional = (”‘nfractional’” != ””)
return local direction = cond(‘Dratio’ > 1, ”upper”, ”lower”)
return local endpoint = ”survival”

end

While this program is considerably more complicated than our previous program,

power cmd myztest, it contains the same three basic parts: it starts by parsing the syntax, then it

calculates the sample size, and finally it returns the stored results. The three sections work as follows:

Parse: The power cmd superlogrank program accepts four common gsdesign designopts

(onesided, alpha(), power(), and nfractional), as well as several of its own options.
To match the syntax of power logrank, program power cmd superlogrank reads the sur-
vival probability of the control group as an argument (before the comma) rather than as an

option. The syntax is parsed with the syntax command and checked for validity.
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Compute: The required number of events (failures) is calculated and stored in temporary scalar ‘E’,
and the control-group sample size, experimental-group sample size, and total sample size are

calculated and stored in temporary scalars ‘N1’, ‘N2’, and ‘N’, respectively. Additional
temporary scalars hold the probability of survival in the experimental group (‘s2’) and the
overall probability of failure (‘prE’).

Return: The design parameters specified to power cmd superlogrank are returned as scalars, as are
indicators that a one-sided test was conducted and that the fractional sample size was calcu-

lated. The overall sample size is returned as r(N). By returning the control- and experimental-
group sample sizes as r(N1) and r(N2), power cmd superlogrank tells gsdesign that

method superlogrank performs a two-sample test.

Because local macro r(endpoint) is returned as ”survival”, gsdesign will recognize

superlogrank as a survival method and know to look for returned results r(E), r(Pr E),
r(s1), r(s2), and r(Pr w). Additionally, gsdesign will know the direction of the one-

sided test because power cmd superlogrank stores local macro r(direction) as either

”upper” or ”lower”.

Any user-defined method for gsdesign is, by design, also a user-defined method for the power com-
mand. This enables us to perform a simple sanity check of our new program: if superlogrank is used

as a power method and option hr0() is left at its default value of 1, it should yield the same sample size
as power logrank with the same options. For this sanity check, we arbitrarily choose a control-group

survival probability of 83%, hazard ratio of 0.8, withdrawal probability of 12%, significance level of

2.5% for a one-sided test using the Schoenfeld method, and power of 90%, and we allocate 1.5 times as

many participants to the experimental arm as to the control arm. We verify:
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. power logrank 0.83, hratio(0.8) wdprob(0.12) nratio(1.5) schoenfeld
> onesided alpha(0.025) power(0.9)
Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Schoenfeld method
H0: ln(HR) = 0 versus Ha: ln(HR) < 0
Study parameters:

alpha = 0.0250
power = 0.9000
delta = -0.2231 (log hazard-ratio)

hratio = 0.8000
N2/N1 = 1.5000

Censoring and withdrawal:
s1 = 0.8300
s2 = 0.8615

Pr_E = 0.1511
Pr_w = 0.1200

Estimated number of events and sample sizes:
E = 880
N = 6,614

N1 = 2,646
N2 = 3,968

N2/N1 = 1.4996
. power superlogrank 0.83, hratio(0.8) wdprob(0.12) nratio(1.5) schoenfeld
> onesided alpha(0.025) power(0.9)
Estimated sample sizes
One-sided test

alpha power N

.025 .9 6,614

The output of power superlogrank is stark compared with the detailed output of power logrank,
but the sample-size calculation is identical. The output of power superlogrank can be improved

through the addition of an initializer or parser, but the functionality of gsdesign superlogrank does

not require an initializer or parser.

Returning to the design of the PROFISCOV trial, Palacios et al. (2020) report that the study was de-

signed to have 90% power with a one-sided significance level of 2.5%, and it used error-spending

Hwang–Shih–de Cani efficacy and futility bounds with parameter 𝛾𝑒 = 𝛾𝑓 = −4 and a single in-

terim look once 40% of the total number of events had been observed. We assume that all participants

in the clinical trial will be followed until they develop symptomatic COVID-19, so we omit the command

argument specifying the control-group survival probability. Using a hazard ratio of 0.7 under the null

hypothesis and 0.4 under the alternative hypothesis, we calculate the stopping boundaries and sample

sizes using gsdesign superlogrank.
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. gsdesign superlogrank, hratio(0.4) hr0(0.7) onesided alpha(0.025) power(0.9)
> efficacy(hsdecani(-4)) futility(hsdecani(-4)) information(0.4 1)
Group sequential design for superlogrank
One-sided test
Efficacy: Error-spending Hwang--Shih--de Cani, gamma = -4.0000
Futility: Error-spending Hwang--Shih--de Cani, nonbinding, gamma = -4.0000
Study parameters:

alpha = 0.0250 (lower one-sided)
power = 0.9000

Censoring:
s1 = 0.0000
s2 = 0.0000

Pr_E = 1.0000
Expected number of events:

H0 = 113.41
Ha = 126.11

Info. ratio = 1.0142
E fixed = 142
N fixed = 142

N max = 144
N1 max = 72
N2 max = 72

Fixed-study crit. value = -1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Futility Events
Look frac. Lower p-value Upper p-value E

1 0.40 -2.9037 0.0018 0.3739 0.6457 58
2 1.00 -1.9753 0.0241 -1.9753 0.0241 144

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.

gsdesign begins by displaying the study parameters and, because it knows that superlogrank is a

survival method, details about censoring.

The next section of the output displays the expected number of events, which is the average number

of events if the group sequential trial were to be repeated many times. The following section reports the

information ratio, the sample size for a fixed study with an equivalent significance level and power (N
fixed), the maximum sample size of the GSD (N max), and the maximum sample sizes for each group

(N1 max and N2 max). The information ratio is the ratio of the number of failures at the final look of the
GSD to the number of failures in a fixed study design.

In this case, the maximum sample size is the same as themaximum number of events because we omit-

ted information about censoring, so gsdesign superlogrank assumes that all participants are followed
until they contract symptomatic COVID-19.

The table at the end of the output displays the stopping boundaries and sample sizes at each look,

where sample size is reported as the number of events observed. Boundary critical values are reported

on the 𝑧 scale and are designed to be compared against the 𝑧 statistic from a log-rank test for substantial

superiority.
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Graphing boundaries

It is unrealistic to assume, aswe did above, that all participants in the clinical trial will be followed until

they develop symptomatic COVID-19. Here we assume that only 1% of participants in the control group

develop symptomatic COVID-19 during the follow-up period, and we assume that 10% of all participants

withdraw from the study before contracting COVID-19. We leave the rest of the design parameters at their

previous values, but we add gsdesign option graphbounds to display the boundaries visually.
. gsdesign superlogrank 0.99, hratio(0.4) hr0(0.7) wdprob(0.1) onesided
> alpha(0.025) power(0.9) efficacy(hsdecani(-4))
> futility(hsdecani(-4)) information(0.4 1) graphbounds
Group sequential design for superlogrank
One-sided test
Efficacy: Error-spending Hwang--Shih--de Cani, gamma = -4.0000
Futility: Error-spending Hwang--Shih--de Cani, nonbinding, gamma = -4.0000
Study parameters:

alpha = 0.0250 (lower one-sided)
power = 0.9000

Censoring and withdrawal:
s1 = 0.9900
s2 = 0.9960

Pr_E = 0.0070
Pr_w = 0.1000

Expected number of events:
H0 = 113.41
Ha = 126.11

Info. ratio = 1.0142
E fixed = 142
N fixed = 22,404

N max = 22,722
N1 max = 11,361
N2 max = 11,361

Fixed-study crit. value = -1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Futility Events
Look frac. Lower p-value Upper p-value E

1 0.40 -2.9037 0.0018 0.3739 0.6457 58
2 1.00 -1.9753 0.0241 -1.9753 0.0241 144

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.
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Figure 2. Log-rank test for substantial superiority with efficacy and futility bounds

The required number of events is unchanged from its previous value, but incorporating information

about censoring has increased the number of participants we need in order to observe those failures. After

taking into account participant withdrawal as well as administrative censoring, we anticipate requiring

22,722 participants to observe 144 failures.

Examining the graph, we see that the entire region from 0 to 58 events is shaded green, the color of the

continuation region. This is because the data have not yet been analyzed, so the trial cannot be stopped.

The first look will be conducted once 58 participants have contracted symptomatic COVID-19, and a log-

rank test for substantial superiority will be performed. If the test statistic, 𝑧1, is ≤ −2.904, we say that

𝑧1 lies in the rejection region (shaded blue on the graph) and we reject 𝐻0, terminating the trial early due

to treatment efficacy. If 𝑧1 > 0.374, it lies in the acceptance region and we can accept 𝐻0, terminating

the trial early for futility. Because the futility bound is nonbinding, if we continue the trial despite 𝑧1
crossing the futility bound, the familywise type I error is still controlled. If −2.904 < 𝑧1 ≤ 0.374, we

say that 𝑧1 lies in the continuation region, and the trial must proceed to the second and final look.

At the final look, there is no continuation region; the futility critical value equals the efficacy critical

value of −1.975, so 𝐻0 must be rejected or accepted. While accepting the null hypothesis is taboo in

many disciplines, it has a long history in the context of sequential trials (see Origins of GSD for a history

of GSDs). If test statistic 𝑧2 ≤ −1.975, we reject 𝐻0; if 𝑧2 > −1.975, we accept 𝐻0.

Initializer and parser
The initializer and parser are optional s-class programs named power cmd usermethod init and

power cmd usermethod parse, respectively. Initializers and parsers are more important for user-

defined power commands than for user-defined gsdesign commands, but they can still be useful tools

to customize the output and graphs produced by gsdesign.
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The option to provide both an initializer and a parser is provided as a convenience to the user, but in

practice only one is ever needed because the s() returned values can be set by either an initializer or a

parser. In fact, it is generally counterproductive to use both an initializer and a parser because the s()
returned values are collected by gsdesign (or by power, in the case of power usermethod) after first

running the parser and then the initializer. This means that if the initializer executes sreturn clear, it
will clear any s() returned values set by the parser.

The difference between the initializer and the parser is that the parser is executedwith all the arguments

and options specified to gsdesign (or to power, in the case of power usermethod), while only options

are passed to the initializer, not arguments. This is done to enable the parser to parse the full command

specification (instead of the evaluator program), should you so desire. A side effect is that a parser can

be more useful than an initializer if your user-defined method accepts arguments as well as options.

Using an initializer and parser

Using our user-defined method superlogrank as an example, we define a parser,

power cmd superlogrank parse, to set s() results and customize the output and graph pro-

duced by gsdesign superlogrank. We choose a parser over an initializer because program

power cmd superlogrank accepts the control-group survival probability as an argument (before the

comma), not an option, so it will only be passed to a parser, not an initializer. We write our parser and

save it as power cmd superlogrank parse.ado.
program power_cmd_superlogrank_parse, sclass

version 19.5 // (or version 19 if you do not have StataNow)

/* parse relevant syntax */
syntax [anything(name=s1)] ///

, [WDProb(string) ///
NRATio(string) ///
SCHoenfeld ///
* /// asterisk (*) captures all other options

]

/* identify parameters to display */
local diparam hratio hr0
local grparam HR{sub:a} HR{sub:0}
if (‘”‘nratio’”’ != ””) {

local diparam ‘diparam’ nratio
local grparam ‘grparam’ N{sub:2}/N{sub:1}

}
if (‘”‘s1’”’ != ””) {

local diparam ‘diparam’ s1 s2 Pr_E
local grparam ‘grparam’ S{sub:1}(T) S{sub:2}(T) p{sub:E}

}
if (‘”‘wdprob’”’ != ””) {

local diparam ‘diparam’ Pr_w
local grparam ‘grparam’ p{sub:w}

}
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/* return stored results */
sreturn clear
local suptest = ”Log-rank test for substantial superiority”
local testtype = cond(”‘schoenfeld’” == ””, ”Freedman”, ”Schoenfeld”)
sreturn local pss_subtitle = ”‘suptest’, ‘testtype’ method”
sreturn local pss_title ”for two-sample comparison of survivor functions”
sreturn local pss_colnames ‘diparam’
sreturn local pss_colgrsymbols ‘grparam’

end

We rerun the same gsdesign superlogrank command specification as before, but this time the

parser sets s-class returned values to customize the output and graph.

. gsdesign superlogrank 0.99, hratio(0.4) hr0(0.7) wdprob(0.1) onesided
> alpha(0.025) power(0.9) efficacy(hsdecani(-4))
> futility(hsdecani(-4)) information(0.4 1) graphbounds
Group sequential design for two-sample comparison of survivor functions
Log-rank test for substantial superiority, Freedman method
Efficacy: Error-spending Hwang--Shih--de Cani, gamma = -4.0000
Futility: Error-spending Hwang--Shih--de Cani, nonbinding, gamma = -4.0000
Study parameters:

alpha = 0.0250 (lower one-sided)
power = 0.9000

hratio = 0.4000
hr0 = 0.7000

Censoring and withdrawal:
s1 = 0.9900
s2 = 0.9960

Pr_E = 0.0070
Pr_w = 0.1000

Expected number of events:
H0 = 113.41
Ha = 126.11

Info. ratio = 1.0142
E fixed = 142
N fixed = 22,404

N max = 22,722
N1 max = 11,361
N2 max = 11,361

Fixed-study crit. value = -1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Futility Events
Look frac. Lower p-value Upper p-value E

1 0.40 -2.9037 0.0018 0.3739 0.6457 58
2 1.00 -1.9753 0.0241 -1.9753 0.0241 144

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.
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Figure 3. Customized graph of log-rank test for substantial superiority

With the addition of the parser, gsdesign superlogrank displays the values of study parameters

hratio and hr0. Also, our additional parameters and their custom symbols now appear in the “Param-

eters:” note on the graph.

Initializer’s s() return settings

The following s() results may be set by the initializer or parser. See [PSS-2] power usermethod for

more details.

Macros

s(pss samples) onesample for a one-sample test or twosample for a two-sample test
s(pss colnames) columns to be added to the default supported columns

s(pss allcolnames) all supported columns

s(pss tabcolnames) columns to be added to the default table

s(pss alltabcolnames) all columns to be displayed in the default table

s(pss collabels) labels for the specified columns

s(pss colformats) formats for the specified columns

s(pss colwidths) widths for the specified columns

s(pss colgrlabels) labels to be used to label columns on the graph

s(pss colgrsymbols) symbols to be used to label columns on the graph

s(pss delta) column name containing the effect-size parameter

s(pss target) column name containing the target parameter

s(pss targetlabel) label for the target parameter

s(pss argnames) column names containing command arguments

s(pss title) method-specific title

s(pss subtitle) subtitle

s(pss hyp lhs) left-hand-side parameter or value for the hypothesis

s(pss hyp rhs) right-hand-side parameter or value for the hypothesis

s(pss grhyp lhs) left-hand-side parameter or value for the hypothesis on the graph

s(pss grhyp rhs) right-hand-side parameter or value for the hypothesis on the graph
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Stored results
Stored results include those stored by the user-defined method and the standard results from

gsdesign; see Stored results in [ADAPT] gsdesign.
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Glossary

2 × 2 contingency table. A 2× 2 contingency table is used to describe the association between a binary

independent variable and a binary response variable. See [ADAPT] gsdesign twoproportions.

acceptance region. In classical hypothesis testing, an acceptance region is the complement of the re-

jection region and is defined as a set of values of a test statistic for which the null hypothesis cannot

be rejected. Group sequential designs further differentiate between the acceptance region, where the

null hypothesis is accepted and the trial is terminated early for futility, and the continuation region,

where the trial is continued due to insufficient evidence to accept or reject the null hypothesis. Also

see rejection region and continuation region.

accrual period or recruitment period or accrual. The accrual period (or recruitment period) is the

period during which participants are being enrolled (recruited) into a study. Also see follow-up period.

active control or active comparator. In a clinical trial of an experimental treatment for a condition

where there is an existing standard of care, there is often an ethical argument against giving study

participants a placebo, so the control group is given the standard of care and the experimental treatment

is compared with the active control. Also see placebo control.

adaptive design. As defined by the US Food and Drug Administration (2019), an adaptive design is a

“clinical trial design that allows for prospectively planned modifications to one or more aspects of the

design based on accumulating data from subjects in the trial.”

administrative censoring. Administrative censoring is the right-censoring that occurs when the study

observation period ends. All participants complete the course of the study and are known to have

experienced one of two outcomes at the end of the study: survival or failure. This type of censoring

should not be confused with withdrawal or loss to follow-up. Also see censored, uncensored, left-

censored, and right-censored.

adverse event. Adverse events are harmful side effects of a treatment and negative medical outcomes

not associated with an underlying disease. Clinical trials must closely track the incidence and severity

of adverse events to ensure that a treatment is safe as well as effective.

allocation ratio. The allocation ratio, 𝑛2/𝑛1, is the number of study participants in the experimental

(treatment) group divided by the number of participants in the control (reference) group.

alpha. Alpha, 𝛼, denotes the significance level. Also see familywise significance level.
alternative hypothesis. In hypothesis testing, the alternative hypothesis represents the counterpoint to

which the null hypothesis is compared. When the parameter being tested is a scalar, the alternative

hypothesis can be either one-sided or two-sided. Also see null hypothesis.

arm. In the context of a clinical trial, groups of study participants given the same treatment are often

called arms. In a classic two-arm randomized controlled trial, the experimental arm is given the

experimental treatment and the control arm is given the control treatment. Also see single-arm trial

and two-arm trial.

attained power. When calculating the required sample size for a specified significance level and power,

the resulting sample size is often fractional and must be rounded up to a whole number. This causes

the attained power to be slightly greater than the requested power. Also see power.

234
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attained sample-size ratio. When specifying a sample-size ratio that results in noninteger sample sizes,

gsdesign will round up the computed sample sizes to the nearest integers. The attained sample-size
ratio is computed using the rounded sample sizes. Also see sample-size ratio.

balanced design. A balanced design represents an experiment in which the numbers of treated and

untreated study participants are equal. For many types of two-sample hypothesis tests, the power of

the test is maximized with balanced designs. Balanced designs may also be called equal-allocation

designs.

Bernoulli trial. A Bernoulli trial is an experiment with only two possible outcomes, “success” or “fail-

ure”, recorded as 0 and 1, respectively. In a clinical trial with a binary outcome, each participant’s re-

sponse is viewed as an independent Bernoulli trial with a fixed probability of success. See [ADAPT] gs-

design oneproportion and [ADAPT] gsdesign twoproportions.

beta. Beta, 𝛽, denotes the probability of committing a type II error, namely, failing to reject the null
hypothesis even though it is false. Also see type II error.

binding futility boundaries or binding futility bounds. In a group sequential clinical trial with binding

futility bounds, if the test statistic at an interim analysis crosses the futility boundary, the trial must be

stopped for futility; otherwise, it risks overrunning the specified significance level. Group sequential

designs with binding futility bounds require smaller efficacy critical values than equivalent group

sequential designs with nonbinding futility boundaries. Also see nonbinding futility boundaries.

binary outcome. When the response of each participant in a clinical trial is either “success” or “failure”,

we say the trial has a binary outcome. Analysis of binary clinical trial data treats each response as

a Bernoulli trial with a fixed probability of success. A test of proportions, such as a binomial test

or Pearson’s 𝜒2 test, is conducted to determine if the data are compatible with the null hypothesis.

See [ADAPT] gsdesign oneproportion and [ADAPT] gsdesign twoproportions. Also see composite

endpoint.

binomial test. A binomial test is a test for which the exact sampling distribution of the test statistic is

binomial. See [R] bitest. Also see [ADAPT] gsdesign oneproportion.

biomarker. A biomarker is a characteristic of the body that can be measured objectively and that serves

as an indicator of healthy biological processes, disease status, or response to a therapeutic treatment.

Response biomarkers are frequently used as surrogate endpoints for clinical trials where the clinical

outcome of interest is too difficult, time consuming, or expensive to measure. For example, instead

of relying on autopsy to diagnose Alzheimer’s disease, we can use medical imaging to measure brain

glucose metabolism as a response biomarker.

Biomarkers can also serve as risk factors used to define a population of interest. For example, the

APOE 𝜖4 gene is a known risk factor for Alzheimer’s disease, and it can be used as a biomarker to
define the target population of a clinical trial.

bisection method. This method finds a root 𝑥 of a function 𝑓(𝑥) such that 𝑓(𝑥) = 0 by repeatedly

subdividing an interval on which 𝑓(𝑥) is defined until the change in successive root estimates is

within the requested tolerance and function 𝑓(⋅) evaluated at the current estimate is sufficiently close
to 0.
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blinding. Blinding refers to clinical trials where the identity of the treatment is hidden. In an open-label

trial, participants are told which treatment they are receiving. In a single-blinded trial, participants do

not know which treatment they receive, but the researchers administering the treatments and the data

analysts are unblinded, meaning they know which treatment each participant receives. If the study

design of a blinded trial calls for the experimental treatment to be compared with no intervention,

then the control group is given a placebo so that they do not know they are members of the control

group. In a double-blinded trial, both the participants and the researchers administering the treatments

are blinded to the identity of the treatments, and in a triple-blinded trial, even the data analysts are

blinded.

boundary or bound. See stopping boundary.

boundary-calculation procedure or boundary-calculation method. In the context of a group sequen-

tial design, the boundary-calculation procedure refers to the method used to create a stopping bound-

ary. Boundary-calculation procedures fall into two broad categories: classical stopping bounds and

error-spending bounds. Classical stopping bounds calculate boundary critical values directly, while

error-spending bounds define an error-spending function that partitions type I or type II error be-

tween the planned looks. Also see classical Wang–Tsiatis bounds, classical Pocock bounds, classical

O’Brien–Fleming bounds, error-spending Pocock bounds, error-spending O’Brien–Fleming bounds,

error-spending Kim–DeMets bounds, and error-spending Hwang–Shih–de Cani bounds.

censored, uncensored, left-censored, and right-censored. An observation is censored when the exact

time of failure is not known, and it is uncensored when the exact time of failure is known.

An observation is left-censored when the exact time of failure is not known; it is merely known that

the failure occurred before 𝑡𝑙. Suppose that the event of interest is becoming employed. If a subject

is already employed when first interviewed, his outcome is left-censored.

An observation is right-censored when the time of failure is not known; it is merely known that the

failure occurred after 𝑡𝑟. If a patient survives until the end of a study, the patient’s time of death is

right-censored.

Also see administrative censoring.

clinical trial. A clinical trial is an experiment testing the effect of a treatment or procedure on human

participants.

clinically meaningful difference or clinically meaningful effect or clinically significant difference.

Clinically meaningful difference represents the magnitude of an effect of interest that is of clinical

importance. What is meant by “clinically meaningful” may vary from study to study.

clinical outcome. The clinical outcome is an outcome that confers direct clinical benefit, such as over-

all survival. In practice, clinical outcomes are often expensive or time consuming to measure, so

surrogate endpoints are frequently measured instead. Also see endpoint and target parameter.

composite endpoint. Sometimes, when designing a clinical trial, there are multiple endpoints of interest.

One solution is to combine multiple endpoints into a single composite endpoint. For example, a

clinical trial of a treatment for COVID-19might use a composite endpoint such as “death or intubation”,

where each participant’s response is an indicator of whether they died or were intubated. Also see

binary outcome.

continuation region. In group sequential designs, a continuation region is defined as a set of values

of a test statistic that provide insufficient evidence to accept or reject the null hypothesis. If the test

statistic from an interim analysis of clinical trial data lies within the continuation region, the trial will
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continue as planned (as opposed to stopping early if the test statistic lies within the acceptance region

or the rejection region). There is no continuation region at the final analysis, because at this stage, the

null hypothesis must be either accepted or rejected. Also see acceptance region and rejection region.

control arm. See control group.

control group. A control group (or arm) comprises study participants who are randomly assigned to a

group where they receive the control treatment, which is either no treatment or a standard treatment.

In hypothesis testing, this is usually the reference group. Also see experimental group.

control treatment. In a clinical trial, the control treatment is the reference treatment against which an

experimental treatment is judged. If there are no existing treatments that are comparable with the

experimental treatment, then the control group will typically receive a placebo. When a standard of

care exists, there is often an ethical argument against using a placebo; in this case, an active control is

used, in which control-group participants receive the existing standard of care. Also see experimental

treatment.

critical value. In classical hypothesis testing, a critical value is a boundary of the rejection region. In the

context of a group sequential design, there are two types of critical values: efficacy critical values,

which are boundaries of the rejection region, and futility critical values, which are boundaries of the

acceptance region. Also see efficacy critical values and futility critical values.

Data Monitoring Committee (DMC) or Data and Safety Monitoring Committee (DSMC) or Data

and Safety Monitoring Board (DSMB). In the context of a clinical trial, a DMC is a panel of experts

that is tasked with periodically reviewing data collected by the trial. The DMC will analyze data on

safety concerns, such as adverse events suffered by study participants, and the DMC will advise the

sponsor of the trial if the study is believed to pose unnecessary risk to participants. In adaptive clinical

trials that allow stopping for efficacy or futility, the DMC will perform interim analyses of incomplete

trial data to evaluate the effectiveness of the experimental treatment. Not all clinical trials require the

use of a DMC.

delta. Delta, 𝛿, in the context of power and sample-size calculations, denotes the effect size. In the

context of a Wang–Tsiatis efficacy or futility boundary, capital Greek letter Delta, Δ, represents the

parameter of the boundary calculation. See Classical (Wang–Tsiatis) bounds inMethods and formulas

of [ADAPT] gsbounds for the formula. Also see effect size.

directional test. See one-sided test.

dropout. Dropout is the withdrawal of participants before the end of a study and leads to incomplete or

missing data. Also see withdrawal.

effect size. The effect size is the size of the clinically meaningful difference between the treatments

being compared, typically expressed as a quantity that is independent of the unit of measure. For

example, in a one-sample mean test, the effect size is a standardized difference between the mean and

its reference value. In other cases, the effect size may be measured as an odds ratio or a risk ratio.

Also see delta.

efficacy or clinical efficacy. Efficacy, the capacity to produce a desired result, is an important con-

cept in clinical trials. In the context of a clinical trial, efficacy is quantified by measuring one or

more endpoints. The efficacy of an experimental treatment is most commonly established by demon-

strating that the experimental treatment compares favorably against a control treatment, but in the

case of single-arm clinical trials, the endpoint from the group receiving the experimental treatment is

compared against a prespecified reference value. In a clinical trial designed to demonstrate efficacy,

the null hypothesis is that the experimental treatment lacks efficacy, and efficacy is established by

rejecting 𝐻0. Also see efficacy boundaries, efficacy stopping, and futility.
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efficacy boundaries or efficacy bounds. In the context of group sequential designs for clinical trials,

efficacy bounds are boundaries of the rejection region. If a test statistic is equal to or more extreme

than the efficacy critical value, the test statistic is within the rejection region and the null hypothesis

is rejected, allowing the trial to be terminated for treatment efficacy. Also see futility boundaries,

efficacy, and efficacy critical values.

efficacy critical values. Efficacy critical values define efficacy boundaries in a group sequential de-

sign. At each look, a hypothesis test is conducted. If the test statistic is a 𝑧 statistic, it is compared
directly with the efficacy critical value; if not, the significance level approach is used to compare the

significance level of the test statistic with the significance level of the efficacy critical value. Also see

efficacy boundaries and futility critical values.

efficacy stopping. In the context of group sequential designs for clinical trials, efficacy stopping refers

to the early termination of a clinical trial due to treatment efficacy. This occurs when the test statistic

calculated at an interim analysis lies within the rejection region, so the null hypothesis is rejected.

Also see efficacy and futility stopping.

endpoint. The endpoint of a clinical trial is the target parameter that is used for hypothesis testing. Often,

the clinical outcome of interest is difficult, time consuming, or expensive to measure, so a surrogate

endpoint is measured instead. If there are multiple endpoints of interest, it is common to combine

them into a single composite endpoint or to designate a primary endpoint that is used for sample-size

determination. Also see surrogate endpoint and composite endpoint.

equal-allocation design. See balanced design.

error-spending approach or error-spending function. Instead of calculating boundary critical values

directly, the error-spending approach to group sequential designs defines an error-spending function

that partitions the alpha (for efficacy bounds) or beta (for futility bounds) into per-look probabilities

of committing a type I or type II error. The critical value at each look is calculated based on the error

spent, and the critical value at a look does not depend on critical values of future looks.

error-spending O’Brien–Fleming-style bound. In a group sequential clinical trial, one technique for

calculating efficacy or futility boundaries is to use an error-spending O’Brien–Fleming-style bound.

Boundary critical values from an error-spending O’Brien–Fleming-style bound are very similar to

those of classical O’Brien–Fleming bounds, but they are obtained using an error-spending function.

Also see O’Brien–Fleming bounds and error-spending approach.

error-spending Pocock-style bound. In a group sequential clinical trial, one technique for calculating

efficacy or futility boundaries is to use an error-spending Pocock-style bound. Boundary critical val-

ues from an error-spending Pocock-style bound are very similar to those of classical Pocock bounds,

but they are obtained using an error-spending function. Also see Pocock bounds and error-spending

approach.

ESS. See expected sample size.

exact test. An exact test is one for which the probability of observing the data under the null hypothesis

is calculated directly, often by enumeration. Exact tests do not rely on any asymptotic approxima-

tions and are therefore widely used with small datasets. See [ADAPT] gsdesign oneproportion and

[ADAPT] gsdesign twoproportions.

expected sample size (ESS) or average sample number. In the context of a group sequential design,

the ESS is the average sample size that would be required if the trial were to be repeated many times

with the same design and with a given effect size. The ESSs under the null and alternative hypotheses

are denoted as ESS0 and ESS1, respectively. Also see maximum sample size.
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experimental arm. See experimental group.

experimental group. An experimental group (or arm) is a group of participants that receives a treatment

or procedure of interest defined in a controlled experiment. In hypothesis testing, this is usually a

comparison group. Also see control group.

experimental study. In an experimental study, as opposed to an observational study, the assignment

of participants to treatments is controlled by investigators. For example, a study that compares a

new treatment with a standard treatment by assigning each treatment to a group of participants is an

experimental study. Also see observational study.

experimental treatment. In a clinical trial, an experimental treatment is a new treatment, such as a drug,

medical device, or medical procedure, that is being tested. Typically, the experimental treatment is

compared with a control treatment, but in the case of single-arm clinical trials, the endpoint from the

group receiving the experimental treatment is compared with a prespecified reference value. Also see

control treatment.

failure function. When analyzing time-to-event data, the failure function is the probability of experi-

encing a failure event at or before time 𝑡. If we denote the time of failure as 𝑇, we can define the
failure function as the cumulative distribution function of 𝑇, where 𝐹(𝑡) = Pr(𝑇 ≤ 𝑡). The prob-
ability density function of 𝑇 is the derivative of the failure function with respect to time, written as

𝑓(𝑡) = 𝜕𝐹(𝑡)/𝜕𝑡. Also see hazard function and survivor function.
familywise error rate or familywise type I error. When multiple hypothesis tests are conducted, the

familywise error rate is the probability of committing a type I error during at least one test. Also see

type I error and familywise significance level.

familywise significance level. When multiple hypothesis tests are conducted, the familywise signifi-

cance level is an upper bound to the familywise error rate. Also see significance level and familywise

error rate.

finite population correction. When sampling is performed without replacement from a finite popula-

tion, a finite population correction is applied to the standard error of the estimator to reduce sampling

variance.

Fisher–Irwin exact test. See Fisher’s exact test.

Fisher’s exact test. Fisher’s exact test is an exact small-sample test of independence between rows

and columns in a 2 × 2 contingency table. Conditional on the marginal totals, the test statistic has a

hypergeometric distribution under the null hypothesis. See [ADAPT] gsdesign twoproportions and

[R] tabulate twoway.

Fisher information or information. When estimating parameters from data, the Fisher information for

those parameters is a matrix that quantifies the precision with which the parameters can be estimated

from the data. Technically, the Fisher information is the expected value of the negative Hessian matrix

of the log likelihood. In the context of clinical trials, it is common to conduct a hypothesis test of a

single parameter, in which case the Fisher information is a scalar. In this case, a larger value of the

Fisher information indicates that more is known about the parameter (typically due to a larger sample

size). Also see information ratio.

fixed-sample design (FSD) or fixed study design or fixed-sample study design or fixed design. An FSD

is an experimental design where the sample size is fixed. See [ADAPT] GSD intro for a comparison

of FSDs versus group sequential designs.
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follow-up period or follow-up. The (minimum) follow-up period is the period after the last participant

entered the study until the end of the study. During the follow-up period, existing participants are

under observation and no new participants enter the study. If 𝑇 is the total duration of a study and 𝑟
is the accrual period of the study, then follow-up period 𝑓 is equal to 𝑇 − 𝑟. Also see accrual period.

fractional sample size. Sample-size calculations that compute sample size as a continuous quantity will

often produce noninteger sample sizes. In practice, a fractional sample size must be rounded up to

a whole number of participants. This rounding can cause the attained power to exceed the requested

power. Also see sample size.

futility. Futility, defined as a lack of the ability to produce a desired result, has particular importance in

the context of a clinical trial designed to demonstrate treatment efficacy. In this case, futility refers to

the inability of the clinical trial to reject the null hypothesis and demonstrate efficacy. Clinical trials

allowing for futility stopping may be terminated early for futility if the result of an interim analysis

supports accepting the null hypothesis. Also see futility boundaries, futility stopping, and efficacy.

futility boundaries or futility bounds. In the context of group sequential designs for clinical trials,

futility bounds are boundaries of the acceptance region. If a test statistic is less extreme than the

futility critical value, the test statistic is within the acceptance region and the null hypothesis can be

accepted, allowing the trial to be terminated for treatment futility.

There are two types of futility boundaries, binding futility boundaries and nonbinding futility bound-

aries. If the test statistic at an interim analysis crosses a binding futility boundary, the trial must be

stopped for futility; otherwise, it risks overrunning the specified significance level. If a nonbinding

futility boundary is used, the familywise type I error is controlled even if the trial continues after

crossing the futility boundary. Also see efficacy boundaries, futility, and futility critical values.

futility critical values. Futility critical values define futility boundaries in a group sequential design.

At each look, a hypothesis test is conducted. If the test statistic is a 𝑧 statistic, it is compared directly
with the futility critical value; if not, the significance level approach is used to compare the signifi-

cance level of the test statistic to the significance level of the futility critical value. Also see futility

boundaries and efficacy critical values.

futility stopping. In the context of group sequential designs for clinical trials, futility stopping refers to

the early termination of a clinical trial due to treatment futility, often described as “abandoning a lost

cause”. This occurs when the test statistic calculated at an interim analysis lies within the acceptance

region and the null hypothesis is accepted. Also see futility and efficacy stopping.

group sequential clinical trial or group sequential trial. A group sequential clinical trial is a clinical

trial that uses a group sequential design. Also see group sequential design (GSD).

group sequential design (GSD). A GSD is an experimental design where the sample size is not fixed in

advance, and preplanned interim analyses of the partial dataset are conducted (typically during the

accrual period) to allow early stopping for efficacy or futility. GSDs are frequently used in clinical

trials.

GSD. See group sequential design (GSD).

hazard function. When analyzing time-to-event data, the hazard function at time 𝑡 is the instantaneous
rate of failure at time 𝑡, conditional on survival until time 𝑡. The hazard function is written as ℎ(𝑡) =
𝑓(𝑡)/𝑆(𝑡), where 𝑓(𝑡) is the derivative of the failure function with respect to time, written as 𝑓(𝑡) =
𝜕𝐹(𝑡)/𝜕𝑡, and 𝑆(𝑡) is the survivor function. Also see failure function and survivor function.
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hazard ratio and log hazard-ratio. The hazard ratio is the ratio of the hazard functions of two different

populations. If the hazard functions are proportional, then ℎ2(𝑡) = Δℎ1(𝑡) for all 𝑡 or, equivalently,
𝑆2(𝑡) = {𝑆1(𝑡)}Δ. Here ℎ1(𝑡) and ℎ2(𝑡) are the hazard functions for the control group and the

experimental group, respectively; Δ is the hazard ratio; and 𝑆1(𝑡) and 𝑆2(𝑡) are the survivor functions
of the control and the experimental groups, respectively.

The log hazard-ratio is the natural logarithm of the hazard ratio. If a log-rank test is used to compare

the survivor functions of the two populations, under the proportional-hazards assumption the null

hypothesis is 𝐻0 ∶ Δ = 1 or, equivalently, 𝐻0 ∶ ln(Δ) = 0. See [ADAPT] gsdesign logrank.

Also see hazard function and time-to-event data.

Hwang–Shih–de Cani bound or error-spending Hwang–Shih–de Cani bound or Hwang–Shih–de

Cani design. In a group sequential clinical trial, one technique for calculating efficacy or futility

boundaries is to use an error-spending Hwang–Shih–de Cani design. Hwang–Shih–de Cani bounds

are defined by an error-spending function indexed by parameter 𝛾, and smaller values of 𝛾 yield

bounds that are more conservative at early looks. Also see error-spending approach.

hypothesis. A hypothesis is a statement about a population parameter of interest.

hypothesis testing or hypothesis test. This method of inference evaluates the validity of a hypoth-

esis based on a sample from the population. See Hypothesis testing in Remarks and examples of

[PSS-2] Intro (power).

information fraction. In a group sequential clinical trial, the information fraction is the proportion of

the maximum information that has been collected at the time of a scheduled look at the clinical trial

data. In most cases, the information fraction is the proportion of the maximum sample size that has

been collected. For time-to-event data, the information fraction is the proportion of the total number

of failure events that have been observed, not the total number of study participants.

information ratio. In the context of a group sequential clinical trial, the information ratio is the ratio of

the maximum information of the group sequential trial to the Fisher information of an equivalent fixed

study design. In most cases, this is the ratio of the maximum sample size of the group sequential trial

to the sample size of the fixed design, but for trials with time-to-event endpoints, the information ratio

corresponds to the ratio of the maximum number of failure events observed in the group sequential

trial to the number of failures observed in a fixed-design trial.

interim analysis or interim look. In the context of an adaptive clinical trial, an interim look is an analysis

of trial data that is conducted while the trial is still under way and before the maximum sample size

has been reached.

Kim–DeMets bound or error-spending Kim–DeMets bound or Kim–DeMets design. In a group

sequential clinical trial, one technique for calculating efficacy or futility boundaries is to use an error-

spending Kim–DeMets design. Kim–DeMets bounds are defined by an error-spending function in-

dexed by parameter 𝜌, and larger values of 𝜌 yield bounds that are more conservative at early looks.

Also see error-spending approach.

likelihood-ratio test. The likelihood-ratio test is one of the three classical testing procedures used to

compare the fit of two models, one of which, the constrained model, is nested within the full (un-

constrained) model. Under the null hypothesis, the constrained model fits the data as well as the full

model. The likelihood-ratio test requires one to determine the maximal value of the log-likelihood

function for both the constrained and the full models. See [ADAPT] gsdesign twoproportions and

[R] lrtest.
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look. In the context of a group sequential clinical trial, a look is an analysis of the clinical trial data that

has been collected up to that point. Looks conducted while the trial is still collecting data are called

interim looks, and the final look is performed when data from the maximum sample size have been

collected. Also see interim analysis.

loss to follow-up. Participants are lost to follow-up if they do not complete the course of the study

for reasons unrelated to the event of interest. For example, loss to follow-up occurs if participants

move to a different area or decide to no longer participate in a study. Loss to follow-up should not be

confused with administrative censoring. If participants are lost to follow-up, the information about

the outcome those participants would have experienced at the end of the study, had they completed

the study, is unavailable. Also see withdrawal, administrative censoring, and follow-up period.

lower one-sided test or lower one-tailed test. A lower one-sided test is a one-sided test of a scalar

parameter in which the alternative hypothesis is lower one-sided, meaning that the alternative hy-

pothesis states that the parameter is less than the value conjectured under the null hypothesis. Also

see One-sided test versus two-sided test in Remarks and examples of [PSS-2] Intro (power).

maximum information. In a group sequential clinical trial, the maximum information is the Fisher

information of the parameter estimated during the hypothesis test, calculated at the maximum sample

size. Also see information fraction.

maximum sample size. In a clinical trial following an adaptive design, the sample size of the trial is

often not fixed in advance. However, in many adaptive designs, such as group sequential designs, the

maximum possible sample size can be calculated before the study begins. Also see expected sample

size and sample size.

nominal alpha or nominal significance level. This is a desired or requested significance level. Also see

familywise significance level.

nonbinding futility boundaries or nonbinding futility bounds. In a group sequential clinical trial with

nonbinding futility bounds, if the test statistic at an interim analysis crosses the futility boundary, the

trial may be stopped for futility or continued without risk of overrunning the specified significance

level. Group sequential designs with nonbinding futility bounds use the same efficacy critical values

as equivalent group sequential designs without futility stopping. Also see binding futility boundaries.

noninferiority trial. A noninferiority trial is a clinical trial where the goal is to determine whether the

experimental treatment is unacceptably inferior to the control (or comparator) treatment, which is al-

most always an active control. If the experimental treatment has some advantageous characteristics

(for example, it produces fewer side effects than the control, is less expensive, or is easier to admin-

ister), practitioners might prefer the experimental treatment even if it is not more efficacious than the

control.

When designing a noninferiority trial, researchers define a noninferiority margin, denoted as 𝛿, to
quantify an acceptable reduction in efficacy. The null hypothesis in a noninferiority trial is that the

effect of the control treatment beats the effect of the experimental treatment by a margin of 𝛿 or more;
the one-sided alternative hypothesis is that the effect of the control treatment does not beat the effect

of the experimental treatment by a margin of at least 𝛿. For example, if the endpoint is a population
mean and an upper one-sided test is desired, 𝛿 will be < 0 and the null and alternative hypotheses

can be written as 𝐻0 ∶ 𝜇𝑒 − 𝜇𝑐 ≤ 𝛿 and 𝐻𝑎 ∶ 𝜇𝑒 − 𝜇𝑐 > 𝛿, where 𝜇𝑒 is the mean response of the

experimental group and 𝜇𝑐 is the mean response of the control group. Also see the related substantial

superiority trial.
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null hypothesis. In hypothesis testing, the null hypothesis typically represents the conjecture that one is

attempting to disprove. Often, the null hypothesis is that a treatment has no effect or that a statistic is

equal across populations.

O’Brien–Fleming bounds or classical O’Brien–Fleming bounds or O’Brien–Fleming design. In a

group sequential clinical trial, one technique for calculating efficacy or futility boundaries is to use an

O’Brien–Fleming design. O’Brien–Fleming efficacy bounds are characterized by being extremely

conservative at early looks. O’Brien–Fleming bounds are a special case of classical Wang–Tsiatis

bounds with parameter Δ = 0. Also see Wang–Tsiatis bounds.

observational study. In an observational study, as opposed to an experimental study, the assignment

of participants to treatments happens naturally and is thus beyond the control of investigators. In-

vestigators can only observe participants and measure their characteristics. For example, a study that

evaluates the effect of exposure of children to household pesticides is an observational study. Also

see experimental study.

observed level of significance. See p-value.

odds and odds ratio. The odds in favor of an event are Odds = 𝑝/(1− 𝑝), where 𝑝 is the probability of
the event. Thus, if 𝑝 = 0.2, the odds are 0.25, and if 𝑝 = 0.8, the odds are 4.

The log of the odds is ln(Odds) = logit(𝑝) = ln{𝑝/(1 − 𝑝)}, and logistic regression models, for
instance, fit ln(Odds) as a linear function of the covariates.
The odds ratio is a ratio of two odds: Odds2/Odds1. The individual odds that appear in the ratio are

usually for an experimental group and a control group or for two different demographic groups.

one-sample test. A one-sample test compares a parameter of interest from one sample to a reference

value. For example, a one-sample mean test compares a mean of the sample against a reference

value.

one-sided test or one-tailed test. A one-sided test is a hypothesis test of a scalar parameter in which the

alternative hypothesis is one-sided, meaning that the alternative hypothesis states that the parameter

is either less than or greater than the value conjectured under the null hypothesis, but not both. Also

see One-sided test versus two-sided test in Remarks and examples of [PSS-2] Intro (power).

overall significance level. See familywise significance level.

Pearson’s𝜒2 test. In the context of a clinical trial, Pearson’s𝜒2 test is commonly used to test whether the

observed event counts in a contingency table are consistent with the null hypothesis. See [ADAPT] gs-

design twoproportions. Also see 2 × 2 contingency tables.

placebo or sham treatment. In a clinical trial, a placebo is an inactive treatment, such as a sugar pill,

that is designed to look like the experimental treatment. In studies of medical procedures, the term

sham treatment is often used. Typically, study participants receiving a placebo are blinded, meaning

that they are not told whether they are receiving the placebo or the experimental treatment. Also see

standard of care.

placebo control. In a clinical trial, a placebo control is a control group that receives a placebo instead

of an active control.

Pocock bounds or classical Pocock bounds or Pocock design. In a group sequential clinical trial, one

technique for calculating efficacy or futility boundaries is to use a Pocock design. Pocock efficacy

bounds are characterized by using the same critical value at all looks. Pocock bounds are a special

case of classical Wang–Tsiatis bounds with parameter Δ = 0.5. Also see Wang–Tsiatis bounds.

population parameter. See target parameter.
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power. The power of a test is the probability of correctly rejecting the null hypothesis when it is false. It

is often denoted as 1−𝛽 in the statistical literature, where 𝛽 is the type-II-error probability. Commonly
used values for power are 80% and 90%. See [PSS-2] Intro (power) for more details about power.

power and sample-size (PSS) analysis. Power and sample-size analysis investigates the optimal alloca-

tion of study resources to increase the likelihood of the successful achievement of a study objective.

The focus of power and sample-size analysis is on studies that use hypothesis testing for inference.

Power and sample-size analysis provides an estimate of the sample size required to achieve the desired

power of a test in a future study. See [PSS-2] Intro (power).

probability of a type I error. This is the probability of committing a type I error and incorrectly rejecting

the null hypothesis. Also see type I error and significance level.

probability of a type II error. This is the probability of committing a type II error and incorrectly

accepting the null hypothesis. Common values for the probability of a type II error are 0.1 and 0.2 or,

equivalently, 10% and 20%. Also see type II error, beta, and power.

PSS analysis. See power and sample-size (PSS) analysis.

p-value. The 𝑝-value is the probability of obtaining a test statistic as extreme as or more extreme than
the one observed in a sample assuming the null hypothesis is true.

randomized controlled trial (RCT). In this experimental study, treatments are randomly assigned to

two or more groups of participants, one of which is a control group.

recruitment period or recruitment. See accrual period.

rejection region. In hypothesis testing, a rejection region is a set of values of a test statistic for which the

null hypothesis can be rejected. In the context of a group sequential design, a trial can be terminated

early for efficacy if the test statistic falls within the rejection region during an interim analysis. Also

see acceptance region and continuation region.

relative risk. See risk ratio.

risk difference. A risk difference is defined as the probability of an event occurring when a risk factor

is increased by one unit minus the probability of the event occurring without the increase in the risk

factor.

When the risk factor is binary, the risk difference is the probability of the outcome when the risk factor

is present minus the probability when the risk factor is not present.

When one compares two populations, a risk difference is defined as a difference between the prob-

abilities of an event in the two groups. It is typically a difference between the probability in the

comparison group or experimental group and the probability in the reference group or control group.

risk factor. A risk factor is a variable that is associated with an increased or decreased probability of an

outcome.

risk ratio or relative risk. A risk ratio, also called a relative risk, measures the increase in the likelihood

of an event occurring when a risk factor is increased by one unit. It is the ratio of the probability of

the event when the risk factor is increased by one unit over the probability without that increase.

When the risk factor is binary, the risk ratio is the ratio of the probability of the event when the risk

factor occurs over the probability when the risk factor does not occur.

When one compares two populations, a risk ratio is defined as a ratio of the probabilities of an event

in the two groups. It is typically a ratio of the probability in the comparison group or experimental

group to the probability in the reference group or control group.
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sample size. This is the number of participants in a sample. In a clinical trial with time-to-event data,

the effective sample size is the number of events observed. In this case, sample-size calculations will

determine the number of events that must be observed to achieve the specified power. If adminis-

trative censoring, loss to follow-up, or withdrawal are expected, the total required sample size can

be estimated and will be larger than the number of events observed. Also see expected sample size,

fractional sample size, and maximum sample size.

sample-size determination. This pertains to the computation of a sample size given power and effect

size and any other study parameters.

sample-size ratio. The ratio of the experimental-group sample size relative to the control-group sample

size, 𝑛2/𝑛1.

Satterthwaite’s t test. Satterthwaite’s 𝑡 test is a modification of the two-sample 𝑡 test to account for
unequal variances in the two populations. See [ADAPT] gsdesign twomeans for an example and see

Methods and formulas of [PSS-2] power twomeans for formulas.

score test. A score test, also known as a Lagrange multiplier test, is one of the three classical testing pro-

cedures used to compare the fit of two models, one of which, the constrained model, is nested within

the full (unconstrained) model. The null hypothesis is that the constrained model fits the data as well

as the full model. The score test only requires one to fit the constrained model. See [ADAPT] gsdesign

oneproportion and [R] prtest.

sensitivity analysis. Sensitivity analysis investigates the effect of varying study parameters on power,

sample size, and other components of a study. The true values of study parameters are usually un-

known, and analyses of power and sample size use best guesses for these values. It is therefore

important to evaluate the sensitivity of the computed power or sample size in response to changes in

study parameters.

significance level. In hypothesis testing, the significance level 𝛼 is an upper bound for the probability

of a type I error. Also see alpha, probability of a type I error, and familywise significance level.

significance level approach. The efficacy and futility critical values from a group sequential design

are intended to be compared with 𝑧 statistics. If the test statistic used does not follow a standard

normal distribution under the null hypothesis, the significance level approach is used to compare the

significance level of the test statistic against the significance level of the efficacy critical value. This is

done by comparing the 𝑝-value of the test statistic against the 𝑝-value corresponding to the efficacy or
futility critical value. See Significance level approach inMethods and formulas of [ADAPT] gsbounds

for details.

single-arm trial. A single-arm clinical trial is a trial where all study participants receive the experimental

treatment. Because there is no control group, the endpoint is compared with a prespecified reference

value. Also see two-arm trial.

size of test. See significance level.

standard of care. The standard of care is the medically accepted first-line treatment for a disease or

condition. In a clinical trial of a treatment for a condition where there is a recognized standard of care,

it is common to compare the experimental treatment to an active control consisting of participants who

receive the standard of care. Also see active control and placebo.

stopping boundary. A stopping boundary is a set of critical values that define an efficacy or futility

boundary. Also see stopping rule, efficacy boundaries, and futility boundaries.
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stopping rule. In the context of a group sequential clinical trial, a stopping rule refers to an efficacy

or futility boundary that allows the trial to be terminated before data from the maximum sample size

have been collected. This occurs when the test statistic at an interim analysis crosses the efficacy

or futility boundary, leading to the rejection or acceptance of the null hypothesis. Also see efficacy

stopping and futility stopping.

study participant. Human subjects who volunteer to join a clinical trial are known as study participants.

substantial superiority trial or superiority trial. A substantial superiority trial is a clinical trial where

the goal is to determine whether the experimental treatment is substantially superior to the control

treatment. This is done by defining a clinically relevant superiority margin, denoted as 𝛿, before the
trial begins. The one-sided alternative hypothesis is that the effect of the experimental treatment beats

the effect of the control treatment by a margin greater than 𝛿; the null hypothesis is that it does not.
For example, if the endpoint is a population mean and an upper one-sided test is desired, 𝛿will be> 0

and the null and alternative hypotheses can be written as 𝐻0 ∶ 𝜇𝑒 − 𝜇𝑐 ≤ 𝛿 and 𝐻𝑎 ∶ 𝜇𝑒 − 𝜇𝑐 > 𝛿,
where 𝜇𝑒 is the mean response of the experimental group and 𝜇𝑐 is the mean response of the control

(or comparator) group. Also see related concept noninferiority trial.

surrogate endpoint. When the clinical outcome of interest is too difficult, time consuming, or expensive

tomeasure, clinical trials often use a surrogate endpoint as their target parameter. Asurrogate endpoint

is an endpoint that is known to be associated with the clinical outcome of interest but is easier to

measure. Many clinical trials use biomarkers as surrogate endpoints. Also see endpoint.

survivor function. When analyzing time-to-event data, the survivor function is defined as the probability

of surviving beyond time 𝑡. If we denote the time of failure as 𝑇, we can define the survivor function
as 𝑆(𝑡) = Pr(𝑇 > 𝑡) = 1 − 𝐹(𝑡), where 𝐹(𝑡) is the failure function. Also see hazard function and
failure function.

t test. A 𝑡 test is a test for which the sampling distribution of the test statistic is a Student’s 𝑡 distribution.
A one-sample 𝑡 test is used to test whether the mean of a population is equal to a specified value when
the variance must also be estimated. The test statistic follows Student’s 𝑡 distribution with 𝑁 − 1

degrees of freedom, where 𝑁 is the sample size.

A two-sample 𝑡 test is used to test whether the means of two populations are equal when the vari-
ances of the populations must also be estimated. When the two populations’ variances are unequal, a

modification to the standard two-sample 𝑡 test is used; see Satterthwaite’s t test.
target parameter. In power and sample-size analysis, the target parameter is the parameter of interest

or the parameter in the study about which hypothesis tests are conducted. Also see endpoint.

test statistic. In hypothesis testing, a test statistic is a function of the sample that does not depend on

any unknown parameters.

time-to-event data or survival data. Time-to-event data, also known as survival data, are collected

from clinical trials where the endpoint is the amount of time elapsed before a participant experiences

a failure event. See [ADAPT] gsdesign logrank.

two-arm trial. A two-arm clinical trial is a trial where participants are assigned to one of two treatment

groups. Typically, one group is an experimental group and the other is a control group. Also see

single-arm trial.

two-sample test. A two-sample test is used to test whether the parameters of interest of the two indepen-

dent populations are equal, for example, a two-sample test of means, proportions, or hazard ratios. See

[ADAPT] gsdesign twomeans, [ADAPT] gsdesign twoproportions, and [ADAPT] gsdesign logrank.
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two-sided test or two-tailed test. A two-sided test is a hypothesis test of a parameter in which the

alternative hypothesis is the complement of the null hypothesis. In the context of a test of a scalar

parameter, the alternative hypothesis states that the parameter is less than or greater than the value

conjectured under the null hypothesis.

type I error. The type I error of a test is the error of rejecting the null hypothesis when it is true. Also

see probability of a type I error and familywise type I error.

type II error. The type II error of a test is the error of not rejecting the null hypothesis when it is false.

Also see probability of a type II error.

unbalanced design or unequal-allocation design. An unbalanced design indicates an experiment in

which the numbers of treated and untreated participants differ. Also see [PSS-4] Unbalanced designs.

upper one-sided test or upper one-tailed test. An upper one-sided test is a one-sided test of a scalar

parameter in which the alternative hypothesis is upper one-sided, meaning that the alternative hypoth-

esis states that the parameter is greater than the value conjectured under the null hypothesis. Also see

One-sided test versus two-sided test in Remarks and examples of [PSS-2] Intro (power).

Wald test. A Wald test is one of the three classical testing procedures used to compare the fit of two

models, one of which, the constrained model, is nested within the full (unconstrained) model. Under

the null hypothesis, the constrained model fits the data as well as the full model. The Wald test

requires one to fit the full model but does not require one to fit the constrained model. Also see

[ADAPT] gsdesign oneproportion and [R] test.

Wang–Tsiatis bounds or classical Wang–Tsiatis bounds orWang–Tsiatis design. In a group sequen-

tial clinical trial, one technique for calculating efficacy or futility boundaries is to use aWang–Tsiatis

design. Wang–Tsiatis bounds are indexed by parameter Δ, and smaller values of Δ yield bounds

that are more conservative at early looks. Classical Pocock bounds and classical O’Brien–Fleming

bounds are both special cases of the Wang–Tsiatis family of bounds. Also see Pocock bounds and

O’Brien–Fleming bounds.

withdrawal. Withdrawal is the process under which participants withdraw from a study for reasons un-

related to the event of interest. For example, withdrawal occurs if participants move to a different area

or decide to no longer participate in a study. Withdrawal should not be confused with administrative

censoring. If participants withdraw from the study, the information about the outcome those partici-

pants would have experienced at the end of the study, had they completed the study, is unavailable.

Also see loss to follow-up and administrative censoring.

𝑧 statistic. A 𝑧 statistic is a test statistic that follows the standard normal distribution under the null

hypothesis. Also see 𝑧 test.
𝑧 test. A 𝑧 test is a test for which a potentially asymptotic sampling distribution of the test statistic is a

normal distribution. For example, a one-sample 𝑧 test of means is used to test whether the mean of a
population is equal to a specified value when the variance is assumed to be known. The distribution

of its test statistic is normal. See [ADAPT] gsdesign onemean and [ADAPT] gsdesign twomeans.

Reference
US Food and Drug Administration. 2019. Adaptive Designs for Clinical Trials of Drugs and Biologics: Guidance for

Industry. https://www.fda.gov/media/78495/download.

https://www.fda.gov/media/78495/download
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