stata

Customizable tables

Build tables of

- Summary statistics
- Hypothesis test results
- Regression results
- Postestimation tests
- Marginal means, marginal effects, adjusted predictions
- Results returned by any Stata command
- Customize table look
 - Table layout
 - Row and column header styles
 - Numeric formats, font, shading, color, and alignment
 - Labels

Export tables to

- Word
- Excel
- LATEX
- PDF
- HTML
- Markdown
- More
- Incorporate tables into reports
- Save table styles and apply customizations to future tables

							t Pro (32-b	it)		-	D	×						
						Windo			1	7 0								
	* tablel	- 10	Hor	ne 1	ools		compsum	3.pdf	×	£ ()	@ append	April		× +	`		0	×
łe	Horr Inser Page Form Data	Revir View Help Acro		\$	P	0	۱ ک	71		O.	$\leftrightarrow \rightarrow c$	0	File C/U	oers/Stata/ap	pends.html	00	Guest	1
4	* 1 X V J	6											abetes		d pressure	Prior he		k
	A	8					2	ale	East	nale	Male	No	Yes	No	Yes	No	Yes	
T.	ole 1. Sample characteristics			Diabete			<i>a</i> .	late	res	nae	Male Age group							
N		Summary 10.351			liabetic		4698	95.6%	5152	94.8%	20-29	99.6	0.4	73.9	26.1	100.0		
	e (years)	49.0 (31.0-63.0)		Diabo			217	4.4%	282	5.2%	30-39	99.6	0.4	62.3	37.7	99.7	0.3	
	Hight (kg)	70.4 (60.7-81.2)		Diabe	et le		217	4.4%	282	5.2%	40-49	97.4	2.6	55.1	44.9	98.0	2.0	
	tolic blood pressure	128.0 (114.0-142.0)									50-59	94.7	5.3	42.4	57.6	92.4	7.6	
ŝ				Age, mo			47.4	(17.2)	47.7	(17.3)	60-69 70+	92.0	8.0	41.5 32.8	58.5 67.2	86.6 83.5		
1	ale	4,915 (47,5%)		BMI, m	ean (sd)	25.5	(4.0)	25.6	(5.6)	Female	00.4	11.0	32.5	0/.2	63.3	10.5	
5	male	5,435 (52.5%)									Age group							
P.			E C	Health :	status						20-29	99.1	0.9	91.6	\$.4	99.9	0.1	
	hite	9,065 (87.6%)		Excel			1252	25.5%	1155	21.3%	30-39	97.9	2.1	\$0.6	19.4	99.8	0.2	
	ack	1,085 (10.5%)		Verv			1213	24.7%	1378	25.4%	40-49	96.1	3.9	65.6	34.4	98.8	1.2	
	ther	200 (1.9%)		Good			1340	27.3%	1598	29.5%	50-59	94.2	5.8	48.6	51.4	96.7	3.3	
	dian (interquartile range)			Fair							60-69 70+	91.4 89.0	8.6	41.9	58.1	94.6 92.0	5.4 8.0	
N	. (%)						722	14.7%	948	17.5%	707	47.4	11.0	33.3	00.3	92.0	0.0	-
				Poor			382	7.8%	347	6.4%								
												~						
				Systolic	BP, me	san (sd)	132.9	(21.0)	129.1	(25.1)								
												i						
			_									l→						
				1.50 x 11.0														

With the **table** command, you can create tabulations, tables of summary statistics, tables of regression results, and more.

Cross-tabulations

table can create one-way, two-way, and multiway tables, reporting frequencies, percentages, and proportions. For instance, you can create a two-way tabulation.

view table1	smd 🗙					
+				Dialog 👻	Also see *	Jump to •
. table (sex) (hig	hbp)				
	H	ypertens:				
	No	Yes	Total			
	NO	res	TOCAL			
Sex	NO	Tes	Tocal			I
Sex Male	2,611	2,304	4,915			
Sex Male Female						

And you can add percentages and format the results.

Viewer - view tal	ble2.smcl				-		×
view table2.smcl	×						
+				Dialog •	Also s	ee *	Jump to •
	tic(frequ		atistic(perc sformat("%s%	/// /// ercent)			
		pertens					- 1
	No	Yes	Total				
Sex							
Sex Male							
	2,611	2,304	4,915				
Male	2,611	2,304 22.3%	4,915 47.5%				
Male Frequency							
Male Frequency Percent							
Frequency Percent Female	25.2%	22.3%	47.5%				
Male Frequency Percent Female Frequency	25.2%	22.3%	47.5% 5,436				
Male Frequency Percent Female Frequency Percent	25.2%	22.3%	47.5% 5,436				

Summary statistics

With **table**'s **statistic()** option, you can create tables of means, standard deviations, percentiles, counts, and much more. For example, you can create a table of means and standard deviations.

Viewer - view table3.smcl				- C	ı x
view table3.smd X					,
+			Dialog 👻	Also see •	Jump to •
. table (var result) (hi > statistic(mean a > statistic(sd a > nformat(%6.3f)	ge weight b		/// /// ///		
	No	Hypertensio Yes	on Total		
Age (years)					
Mean	42.165	54.973	47.580		
Standard deviation Weight (kg)	16.772	14.909	17.215		
	68.266	76.856	71.898		
Mean			15.356		
	13.572	16.241	12.330		
Mean Standard deviation	13.572	16.241	15.550		
Mean Standard deviation	13.572 116.485	16.241 150.539	130.882		
Mean Standard deviation Systolic blood pressure					

Regression results

The **command()** option reports results from any Stata command in your table. You may want to compare regression results across groups.

Viewer - view table	4.smcl				-		×
view table4.smcl ×							
+				Dialog	 Also s 	ee •	Jump to
. table (colname > command(r > style(myr	egress bp		e weight	i.sex i.di	abetes)	///	
	н	/pertensi	on				
	No	Yes	Total				
Age (years)	0.22	0.53	0.63				
	(0.01)	(0.02)	(0.01)				
Weight (kg)	0.20	0.17	0.41				
	(0.01)	(0.02)	(0.01)				
Sex							
Female	-2.32 (0.31)	3.58 (0.60)	0.71 (0.41)				
	(0.31)	(0.60)	(0.41)				
Diabetes status							
Diabetic	-0.45	6.52	5.87				
	(0.82)	(1.11)	(0.91)				
Intercept	94.63	105.99	70.99				
	(0.94)	(2.03)	(1.19)				
						NUN	4 1110

With the **dtable** command, you can create and export a table of descriptive statistics, commonly known as a Table 1.

Create and export your Table 1

You can use **dtable** to easily create a Table 1 with means and standard deviations for continuous variables and with counts and percentages for categorical variables. And with the same command, you can export the table to, say, a PDF.

Viewer - view dtable	e1.smcl		-		×
view dtable1.smcl	(
+		Dialog 🕶	Also se	e 🖌 🗍	ump to
	rural bmi bpsystol, /// export(table1.pdf, replace)				
Table 1					
	Summary				
N	10,351				
Sex					
Male	4,915 (47.5%)				
Female	5,436 (52.5%)				
Rural					
Urban	6,548 (63.3%)				
Rural	3,803 (36.7%)				
Body mass index (
	essure 130.882 (23.333)				
(collection DTabl	e exported to file table1.pdf)				

You could have instead exported the table to Word, Excel, LAT_EX , HTML, or Markdown by specifying the appropriate file extension.

Customize the table contents

You can change formats and select which statistics you want for each variable. For instance, you can report quartiles for **bmi** and **bpsystol**, formatted to display one digit after the decimal.

		Dialog 🔻	Also see	- Ju	Imp to •
psystol, stat(q1 q2 q3))	 				
Summary					
10,351					
4,915 (47.5%)					
5,436 (52.5%)					
6,548 (63.3%)					
3,803 (36.7%)					
47.580 (17.215)					
MI) 22.1 24.8 28.0					
	10,351 4,915 (47.5%) 5,436 (52.5%) 6,548 (63.3%) 3,803 (36.7%) 47.580 (17.215)	psystol, stat(q1 q2 q3)) /// q2 q3) Summary 10,351 4,915 (47.5%) 5,436 (52.5%) 6,548 (63.3%) 3,803 (36.7%) 47.580 (17.215)	psystol, stat(q1 q2 q3)) /// q2 q3) Summary 10,351 4,915 (47.5%) 5,436 (52.5%) 6,548 (63.3%) 3,803 (36.7%) 47.580 (17.215)	psystol, stat(q1 q2 q3)) /// q2 q3) Summary 10,351 4,915 (47.5%) 5,436 (52.5%) 6,548 (63.3%) 3,803 (36.7%) 47.580 (17.215)	psystol, stat(q1 q2 q3)) /// q2 q3) Summary 10,351 4,915 (47.5%) 5,436 (52.5%) 6,548 (63.3%) 3,803 (36.7%) 47.580 (17.215)

Report statistics by group

You can compute statistics separately for each group and test for equality across groups. For instance, you can test for equality of means in rural and urban populations.

view dtable3.smcl 🛛 🗙					
+			Dialog 🔻	Also see	e 🗸 🕴 Jum
. dtable age bpsystol tcr	acult by/nunal t				
<pre>> sformat("(N=%s)" freque</pre>	ace(seplabels)) ency) column(by(hid	/// de))	osystol, an	d tcres	
<pre>> sformat("(N=%s)" freque</pre>	ace(seplabels)) ency) column(by(hid	/// de))		d tcres	
<pre>> sformat("(N=%s)" freque</pre>	ace(seplabels)) ency) column(by(hic across levels of n	/// de)) rural for age, bp		al	ult.
<pre>> sformat("(N=%s)" freque note: using test regress</pre>	ace(seplabels)) ency) column(by(hid across levels of i Urban (N=6,548)	/// de)) rural for age, bp Rural	Tot (N=10,	al 351)	ult. Test
<pre>> sample(, stat(freq) pla > sformat("(N=%s)" freque note: using test regress Age (years) Systolic blood pressure</pre>	ace(seplabels)) ency) column(by(hi across levels of n Urban (N=6,548) 46.835 (17.484)	/// de)) rural for age, bp Rural (N=3,803) 48.862 (16.666)	Tot (N=10, 47.580 (al 351) 17.215)	Test

Survey data

Do you have data from a complex survey design? You can add the **svy** option to compute summary statistics and perform tests that account for the survey design.

Viewer - view dtable	4.smcl		_	
view dtable4.smcl 🗙				
+			Dialog ▼ Also see	• Jump
	tatk, tests) svy iabetes, test(svylr)) svylr across levels of	/// heartatk for high	op and diabetes.	
		Prior heart a	tack	
		Prior nearly a	LIACK	
	No heart attack			Test
N		Had heart attack		
	113,647,835 (97.0%)	Had heart attack	Total	
N High blood pressur No	113,647,835 (97.0%)	Had heart attack	Total	
High blood pressur	113,647,835 (97.0%)	Had heart attack 3,483,276 (3.0%) 1,502,443 (43.1%)	Total 117,131,111 (100.0%) 73,953,609 (63.1%)	<0.001
High blood pressur No Yes	113,647,835 (97.0%) re 72,451,166 (63.8%)	Had heart attack 3,483,276 (3.0%) 1,502,443 (43.1%)	Total 117,131,111 (100.0%) 73,953,609 (63.1%)	<0.001
High blood pressur No	113,647,835 (97.0%) re 72,451,166 (63.8%)	Had heart attack 3,483,276 (3.0%) 1,502,443 (43.1%) 1,980,833 (56.9%)	Total 117,131,111 (100.0%) 73,953,609 (63.1%) 43,177,502 (36.9%)	<0.001

Further customization

dtable allows you to customize how each statistic is reported. You can even build your own composite results made up of multiple statistics so that you can display them combined and with any format you like. And because **dtable** creates a collection, you can customize results even further with the **collect** suite of commands. (See page 4.)

With the **etable** command, you can create and export a table of estimation results in one step.

Create and export a table

You can create a table immediately after fitting a model with any estimation command.

- . regress bpsystol age weight i.sex
- . etable

Or you can fit multiple models and store the results. For instance,

- . regress bpsystol age weight i.sex
- . estimates store model1
- . regress bpsystol age weight i.sex i.diabetes
- . estimates store model2

And then you can use **etable** to create, customize, and export a table with results from the stored models.

view etable1.smcl					-
+			Dialog 🔻	Also see 🔻	Jump to •
. etable, estimate	s(model1 mod	12)	///	AISO SEE -	Jump to -
<pre>> title(Models for > column(index) e></pre>	systolic blo	ood pressure	e) ///		
Models for systoli	ic blood press	sure			
	1	2			
Age (years)	0.637	0.625			
	(0.011)	(0.011)			
Weight (kg)	0.417	0.410			
	(0.013)	(0.013)			
Sex					
Female	0.824	0.710			
	(0.414)	(0.414)			
Diabetes status					
Diabetic		5.869			
		(0.908)			
Intercept	70.136	70.986			
	(1.187)	(1.192)			

This table is exported in Word format, but you can also export to Excel, ${\rm IAT}_{E}{\rm X},$ PDF, HTML, or SMCL.

Multiple-equation models

etable can easily report results of a multivariate regression or any other model that includes multiple equations. And you can customize the table to show equation descriptions.

Viewer - view etable2.smcl						Х
view etable2.smcl 🗙						-
+			Dialog 🔻	Also se	e •	lump to 🕶
. quietly mvreg bpsysto	l bpdiast = a	age weight				
. etable, showeq column	(index)					
	1					- 1
Systolic blood pressure						- 1
Age (years)	0.638					
	(0.011)					
Weight (kg)	0.407					
	(0.012)					
Intercept	71.271					
	(1.042)					
Diastolic blood pressur	e					
Age (years)	0.188					
	(0.007)					
Weight (kg)	0.312					
	(0.007)					
Intercept	50.376					
	(0.616)					
Number of observations	10351					

Customize the table contents

With **etable**, you can specify which statistics should be displayed. Select from coefficients, standard errors, *p*-values, confidence intervals, R^2 , AIC, BIC, stars for significance levels, and more. And you can specify how you would like these statistics to be displayed.

Viewer - view etable3.smcl						-		\times
view etable3.smcl ×								
+					Dialog 👻	Also s	ee 🕶 🚽 J	ump to
<pre>. etable, estimates(mo > column(index) mstat(> showstars showstarsn</pre>	r2) mstat				/// ///			
	1		2					
Age (years)	0.637	**	0.625	**				
	(0.011)		(0.011)					
Weight (kg)	0.417	**	0.410	**				
8 (8)	(0.013)		(0.013)					
Sex	. ,		. ,					
Female	0.824	*	0.710					
	(0.414)		(0.414)					
Diabetes status								
Diabetic			5.869	**				
			(0.908)					
Intercept	70.136	**	70.986	**				
·	(1.187)		(1.192)					
R-squared	0.30		0.31					
AIC	90848.72		90791.95					
Number of observations	10351		10349					
						CA	P NUN	

Further customization

etable allows you to customize your table in many ways, including column headers, labels, alignment, formats, fonts, shading, titles, notes, and stars. Beyond this, because **etable** creates a collection, you can use the **collect** suite of commands to further customize your table. (See page 4.)

For example, you can specify the width of a table in a Word document.

```
. collect style putdocx, width(75%)
. collect export table3.docx
```

e <u>Home</u> Insert Draw Design Layout Ref	erences Mailings Review	View Help Acro	bat	ਈ Share ਾ
$\begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$		Styles 5	Create and Share Request Adobe PDF Signatures Adobe Acrobat	
Models for systolic blood pro	essure			
	1	2		
Age (years)	0.637	0.625		
	[0.6, 0.7]	[0.6, 0.6]	
Weight (kg)	0.417	0.410		
	[0.4, 0.4]	[0.4, 0.4	.]	
Sex				
Female	0.824	0.710		
	[0.0, 1.6]	[-0.1, 1.5	5]	
Diabetes status				
Diabetic		5.869		
		[4.1, 7.6		
Intercept	70.136	70.986		
- ·	[67.8,72.5]	[68.6,73.	3]	
R-squared	0.30	0.31	_	
AIC	90848.72	90791.9	5	
Number of observations	10351	10349		

Collect results from multiple commands

You can store three sets of results in a collection.

- . collect: regress bpsystol age i.sex
- . collect: regress bpsystol age i.sex c.age#i.sex

Lay out the table

Then you define rows and columns—place covariates (**colname**) and results (coefficients, standard errors, and R^2) on the rows, and place models (**cmdset**) on the columns.

Modify the labels

You may specify new labels for your column headers.

Customize the table style

You can modify formats, results for base levels, labels, delimiters for interactions, spacing, alignment, and borders.

- . collect style cell, nformat(%6.2f)
- . collect style cell result[_r_se], sformat((%s))
- . collect style showbase off

```
. collect style header result, level(hide)
```

```
. collect style header result[r2], level(label)
```

```
. collect style row stack, spacer delimiter(" x ")
. collect style column, extraspace(1)
```

Preview the table

Viewer - view table5.smc	1				-		<
view table5.smcl X							
+			D	ialog •	Also see	- Jump t	0 *
. collect preview							
	Model 1	Model 2	Model 3				
Age (years)	0.65 (0.01)	0.47 (0.02)	0.45 (0.02)				I
Female	-4.01 (0.40)	-20.46 (1.17)	-20.56 (1.16)				I
Female x Age (years)		0.35 (0.02)	0.35 (0.02)				I
Diabetic			8.06 (0.93)				I
Intercept	101.92 (0.62)	110.57 (0.84)	111.06 (0.84)				Î
	(0.02)						

Export the table

Once you have customized your table, you can export it to Word, Excel, ${\rm LAT}_{E}{\rm X}$, PDF, HTML, Markdown, and more.

. collect export regtable.docx

2 - Calibri (Body)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$: • 1;: • ⊡: : : = : 1:: • : • 2↓ ¶ Paragraph	View Help Styles Styles Styles	Editing of	Create and Share Re	Reserved to the second	} Share →
Age (years) 0.65 (0.01) Female -4.01 (0.40) Female x Age (years) -4.01 (0.40)	0.47 0.45 (0.02) (0.02) -20.46 -20.56 (1.17) (1.16)	3					
(0.40) Female x Age (years)	(1.17) (1.16)						
	0.35 0.35						
Diabetic	(0.02) (0.02)						
	8.06 (0.93)						
Intercept 101.92 (0.62)	110.57 111.06 (0.84) (0.84)						
R-squared 0.24	0.26 0.26						

Or include your table in a complete report.

. putdocx begin

. . .

- . putdocx collect
- . putdocx save myrpt

Easily create similar tables

Want to use the same style for future tables? Save the style.

. collect style save mystyle

You can then use it again.

. collect style use mystyle

Type commands or use the GUI

Tables Builder		Row	,				-		×
Collection: default	~								
Dimensions	Levels	+	lname#result[_r_b _r	_se] 🗸	result[r2]	×			
Row names (rowname) Covariate names with factors re Command results index (cmdset) Result type (result_type) Result program class (program Table cell type (cell_type) Table border block (border_blo	p-value (_r_p) 95% cl (_r_ci) 95% lower bound (_r_lb) 95% upper bound (_r_ub) df (_r_df) F statistic (F) Number of observations (N)	+ Colu + Tabk	ndset 🗸						
Label and style dialogs									
Use collection s	tyles from disk								
Edit dimen	sion labels	Preview						Expo	ort
Edit leve	labels		Ν		Model 2	Model 3			
Construct sign	ificance stars	Age (y	ears)	0.65	0.47	0.45 (0.02)			
Manage com	posite results			(0.01)	(0.02)	(0.02)			
Remove	results	Female	2	-4.01	-20.46	-20.56			
Custom t	able title			(0.40)	(1.17)	(1.16)			
Table tit	e styles	Female	e x Age (years)		0.35	0.35			
Table	notes				(0.02)	(0.02)			
Table not	es styles	Diabet	ic			8.06			
Compose ro	ow headers					(0.93)			
Compose coli	umn headers	Interce	pt	101.92	110.57	111.06			
Compose ta	ble headers			(0.62)	(0.84)	(0.84)			
Show/hide he	ader content	R-squa	red	0.24	0.26	0.26			
Cell appear	ance styles	oquu							