stata

Survival analysis

From Kaplan–Meier estimates of the survivor function to the Cox proportional hazards model, from competing-risks regression to multilevel survival models, Stata has everything you need to analyze your survival- or event-time data.

Survival-time data

- Single failure or multiple failures; right-, left-, and interval-censoring; left-truncation; gaps
- Multiple events New
- Support for complex survey designs

Life tables

- Tables and graphs with Cls
- Tests for equality of survivor functions
- Tests for trend

Graph survivor, cumulative hazard, and other functions ^{Updated}

Cox proportional hazards model

- Stratified estimation
- Time-varying covariates
- Shared frailty models
- Harrell's C, Somer's D, Gönen and Heller's K
- Tests for proportional hazards
- Goodness-of-fit plots ^{Updated}

Parametric survival models

- Weibull, exponential, Gompertz, lognormal, loglogistic, and generalized gamma
- Stratified models
- Individual or shared frailty
- Predictions of mean or median time to failure, survival probabilities, and hazards
- Goodness-of-fit plots ^{Updated}
- Bayesian estimation
- Finite mixture models

Competing risks model

- Fine and Gray proportional subhazards model
- Graph cumulative subhazard and cumulative incidence

Multilevel survival models

- Weibull, exponential, lognormal, loglogistic, and gamma
- Marginal predictions and marginal means

Structural equation models

- Weibull, exponential, lognormal, loglogistic, and gamma models
- Survival outcomes with other outcomes
- Path models, growth curve models, and more

Additive models of relative risk

 Cox, parametric survival, interval-censored Cox, and interval-censored parametric survival models

Power analysis

Log-rank test of survival curves, Cox models, exponential regression

Sample-size analysis for group sequential designs (GSDs)

Log-rank test of survival curves

Causal inference (treatment-effects estimation)

- Regression adjustment, inverse-probability weighting (IPW), and doubly robust methods
- Average treatment effects (ATEs) and ATEs on the treated (ATETs)

Lasso and elastic net for Cox model

- Select predictors via cross-validation, adaptive lasso, or BIC
- Penalized and postselection predictions
- Graph survivor and other functions

We begin by specifying that we have survival data using stset. Here studytime records the time of failure or censoring, and the variable died indicates whether the subject died or was censored.

We are now ready to graph the survivor function for each level

Kaplan-Meier survival estimates 1.00 0.75 Control 0.50 5 mg 10 mg 0.25 0.00 30 10 20 40 Analysis time

or to fit a Cox proportional hazards model,

viewer - view :	st2.smcl					_		- ×
view st2.smcl >	र							
ł					Dialog 🔻	Also s	ee *	Jump to
stcox age i	dose							
Failu Analysis ti	ne _d: died me _t: studyt:	ime						
teration 0: teration 1: teration 2: teration 3: teration 4: teration 0: cox regression	Log likelihoo Log likelihoo Log likelihoo Log likelihoo mates: Log likelihoo n with Bresloo	bd = -99.911 bd = -82.331 bd = -81.676 bd = -81.652 bd = -81.652 bd = -81.652 w method for	448 523 487 584 567 567 ties					
No. of subject No. of failur	ts = 48 es = 31 - 744				Number o	f obs	=	48
.og likelihoo	- 744	7			LR chi2(Prob ≻ c	3) hi2	= : = 0	36.52 .0000
_t	Haz. ratio	Std. err.	z	P> z	[95% c	onf. :	inte	rval]
age	1.118334	.0409074	3.06	0.002	1.0409	63	1.2	91455
dose								
	1005000	.0892742	-3.46	0.001	.06852	92	.47	58636

and test for violations of the proportional-hazards assumption.

	5.511101				_		>
view st3.smcl 🗙							
F				Dialog	Also se	e 👻 🚽	ump
estat phtest	, detail						
est of propor	tional-hazard	s assumptio	on				
ime function:	Analvsis tim	e					
	rho	chi2	df	Prob>chi2			
age	-0.06752	0.13	1	0.7199			
1b.dose			1				
	0 12609	0.50	1	0.4796			
2.dose	0.13038						
2.dose 3.dose	-0.07380	0.16	1	0.6921			

We can fit a Weibull model,

. streg age i.dose, distribution(weibull)

and plot the estimated survivor function for each dosage level,

or compute the marginal predictions of mean survival time for each dosage.

view st4.smcl ×						
+					Dialog 👻 Al:	so see 👻 Jum
margins dose	, predict(mea	an time)				
redictive mar	gins				Number o	of obs = 48
Nodel VCE: OIM						
xpression: Pr	edicted mean	_t, predict(mean ti	me)		
xpression: Pro	edicted mean	_t, predict(mean ti	me)		
Expression: Pr	edicted mean (Margin	_ t, predict(Delta-method std. err.	mean ti	me) P> z	[95% conf.	interval]
expression: Pro	edicted mean [Margin	_t, predict(Delta-method std. err.	mean ti	me) P> z	[95% conf.	interval]
Expression: Production dose	edicted mean Margin 9.574003	_t, predict(Delta-method std. err. 1.336857	mean tin z 7.16	me) P> z 0.000	[95% conf.	interval] 12.19419
xpression: Pro dose Control 5 mg	edicted mean Margin 9.574003 26.36447	_t, predict(Delta-method std. err. 1.336857 6.992949	mean tin z 7.16 3.77	me) P> z 0.000 0.000	[95% conf. 6.953812 12.65854	interval] 12.19419 40.0704

And that's just the beginning.

of our treatment, sts graph, by(dose)

•