stata

SEM Structural equation modeling

Stata provides an easy-to-use and comprehensive suite of tools for SEM—everything you need for fitting your model, evaluating model fit, and interpreting results. And all of this is integrated in a complete package for statistics, visualization, data manipulation, and reporting.

- Path diagram builder
- Intuitive command syntax

Types of models

- Path analysis
- Mediation analysis
- Confirmatory factor analysis (CFA)
- Multiple indicators and multiple causes (MIMIC) models
- Latent growth curve models
- Hierarchical confirmatory factor models
- Multiple-group models
- Models with binary, ordinal, count, nominal, and survival-time outcomes
- Multilevel models
- Latent class analysis (LCA)
- And many more

Interpretation

- Direct, indirect, and total effects
- Standardized and unstandardized estimates

Model fit

- Model x²
- RMSEA
- CFI
- TLI
- SRMR
- Likelihood-ratio and Wald tests
- Modification indices
- Latent class model statistics

Estimation methods

- Maximum likelihood
- Maximum likelihood with missing values, sometimes called FIML
- Asymptotic distribution free (ADF)

Standard errors

- Satorra–Bentler
- Robust (Huber/White/sandwich estimator)
- Cluster–robust
- Bootstrap
- And more

Survey data support

- Sampling weights
- Stratification and poststratification
- Multistage cluster sampling

Use sem to fit linear models

Here we fit a two-factor CFA model with four measurements of depression and four measurements of posttraumatic stress disorder (PTSD). The results are the same whether we use the straightforward command syntax,

. sem (Depression -> d1 d2 d3 d4) (PTSD -> p1 p2 p3 p4)

or draw the path diagram,

Report model fit statistics

Many commands are available for evaluating the fit of our model. For instance,

```
. estat gof, stats(all)
```

Viewer - view sem2.smcl		– D X			
view sem2.smcl 🗙					
+		Dialog • Also see • Jump to			
Fit statistic	Value	Description			
Likelihood ratio					
chi2_ms(8)	12.648	model vs. saturated			
p > chi2	0.125	baseline vs. saturated			
p > chi2	0.000	Baseline vs. saturated			
Population error	0.052	Dest man squared error of errorsination			
90% CI. lower bound	0.032	Root mean squared error or approximation			
upper bound	0.104				
pclose	0.418	Probability RMSEA <= 0.05			
Information criteria					
AIC	11707.791	Akaike's information criterion			
BIC	11751.669	Bayesian information criterion			
Baseline comparison					
CFI	0.996	Comparative fit index			
TLI	0.992	Tucker-Lewis index			
Size of residuals					
SRMR	0.020	Standardized root mean squared residual			
CD	0.988	Coefficient of determination			
		CAP NUM INS			

Use gsem to fit multilevel models and models with binary, ordinal, count, or survival-time outcomes

More complex models can be fit just as easily. We now fit a multilevel CFA model with binary measurements of mathematical ability for students nested in schools.

. gsem (MathAb SchQual[school] -> q1 q2 q3 q4), logit

Viewer - view sem3.smcl					-	
view sem3.smcl ×						
+					Dialog 🔹 Also	see 👻 Jump to
Log likelihood = -13	48.3644					
(1) [q1]SchQual[s (2) [q2]MathAb =	chool] = 1 1					
	Coefficient	Std. err.	z	P> z	[95% conf.	. interval]
q1 SchQual[school]	1	(constrain	ed)			
MathAb cons	5.277956 .0413352	4.995708 .1770215	1.06 0.23	0.291 0.815	-4.513451 3056206	15.06936 .3882909
q2 SchQual[school]	.600067	.3447607	1.74	0.082	0756516	1.275786
MathAb cons	1 449189	(constrain .1165887	ed) -3.85	0.000	6776987	2206793
q3 SchQual[school]	. 3999959	.3008142	1.33	0.184	1895891	.989581
MathAb _cons	1.788696 .1485335	1.10452 .1070996	1.62 1.39	0.105 0.165	3761236 0613779	3.953516
q4 SchQual[school]	.5925695	. 34909	1.70	0.090	0916343	1.276773
MathAb _cons	1.071626 3203425	.7310121 .1152657	1.47 -2.78	0.143 0.005	3611311 5462592	2.504384 0944258
var(SchQual[school]) var(MathAb)	.2483231 .1050076	.24206 .1133871			.0367523 .0126501	1.677838 .8716606
					C	AP NUM INS