
You can automate your work using a do-�le, which is a text �le 
that contains a set of Stata commands.

For reproducible analyses, store all your commands in a do-�le. 
For instance, you might �t a logit model of employment status 
on variables representing education level and participation in a 
training program:

logit employed education i.training

You then compute the population-averaged treatment e�ect of 
the training program:

margins r.training

You then create a classi�cation table comparing observed with 
predicted employment status:

estat classification

Save these commands in your do �le, add version 19.5
to the top of the �le, and rerun them at any time to reproduce 
your results.

Sometimes, your analyses require real programming features. 
You can incorporate those into your do-�le as well. You might 
loop over a variable list:

foreach variable of varlist myvars {
your code

}

You might do computations by groups:
by group: mycommand

Or you might create and use local macros, the variables of Stata 
programs:

local myregressors x1 x2 x3 x4 x5

probit y ʽmyregressors’

logit y ʽmyregressors’

You can also access the results produced by an estimation 
command and use them in subsequent commands. Say you �t 
a model and want to rescale your coe�cient vector. The 
coe�cients are stored in e(b), and you can create a matrix of 
rescaled coe�cients by typing

matrix A = 3*e(b)

Once you have everything in your do-�le, easily rerun all of these 
commands by typing

do mydofile

Automate your work, share your routines with colleagues, generate reproducible research, 
document your research project, or provide the Stata user community with new commands. 
Stata has everything you need to store and execute a sequence of commands, program your 
own command with all the features of an o�cial Stata command, or write routines and commands 
using Stata’s matrix programming language, Mata. And with PyStata, you get comprehensive 
Python integration—harness the power of Python from your Stata code, and harness the power 
of Stata from your Python code. Stata also lets you incorporate C, C++, and Java plugins. You 
can even embed Java code directly in your Stata code!

Programming with Stata

Automating your work using a do-�le



Anyone can write a Stata command using an ado-�le. This 
extensibility allows everyone to share their programs with a 
worldwide community.

To write a command, you �rst need to determine the mandatory 
and optional arguments a user needs to type and parse them. 
This is easily done with Stata’s syntax command. syntax 
examines what is typed and matches it to the accepted syntax 
of the command. The individual components are stored in local 
macros, where you can access them.

Say we are writing a maximum likelihood estimator that is not 
currently available in Stata and that allows time-series operators, 
factor variables, if and in conditions to restrict our estimation 
sample, frequency weights, and all of Stata’s 
variance–covariance estimators. We type

syntax varlist(ts fv) [if] [in] [fweights],
vce(passthru)]*

After your syntax command, how do you write your maximum 
likelihood estimator? Easy:

mlexp (mylikelihood) ..., ʽvce’ ...

You just need to write the expression for mylikelihood, and mlexp 
does the rest for you. It will compute robust, cluster–robust, 
jackknife, and bootstrap standard errors and allow weights and 
much more. 

Want your output to look like that of a Stata command? Easy. 
Post your results using ereturn post, and use ereturn display.

ereturn post b V ...

ereturn display, ...

You have a Stata table that takes Stata’s display and format 
options. Now anyone can type

mycommand y x1 x2 x3, options

You can incorporate the results of matrix manipulations using 
Mata, Stata’s matrix language, into your commands. Mata has 
the advanced matrix operations you need: access to the power 
of LAPACK and built-in solvers and optimizers to make 
implementing your own maximum likelihood, GMM, or other 
estimators easier. Mata makes the possibilities of Stata 
programming boundless.

If you want to enter Mata, type
mata

Get your data into a matrix with name D:
D = st_data(.,.)

Or get only your dependent variable y and your regressors x1 
and x2:

y = st_data(., �y”)

X = st_data(., �x1 x2”)

Compute the product X’X and then its Cholesky decomposition:
XX = quadcross(X,X)

A = cholesky(XX)

Compute (X’X)-1 and regression coe�cients:
INVXX = invsym(quadcross(X,X))

betamata = quadcross(INVXX, quadcross(X,y))

Pass your regression coe�cients stored in betamata from 
Mata to Stata with the name betastata:

st_matrix(�betastata”, betamata)

Close your Mata session:
end

This is just a glimpse of all you can do when programming with Stata and Mata. To 
learn more about programming, please visit

stata.com/programming-features.

stata.com/programming-features
© 2026 StataCorp LLC

Stata is a registered trademark of StataCorp LLC
4905 Lakeway Drive, College Station, TX 77845, USA.

Write your own command using an 
ado-�le

Adding a matrix programming 
component


