Stata Resources

Programming with Stata

Automate your work, share your routines with colleagues, generate reproducible research,
document your research project, or provide the Stata user community with new commands.
Stata has everything you need to store and execute a sequence of commands, program your
own command with all the features of an official Stata command, or write routines and commands
using Stata’s matrix programming language, Mata. And with PyStata, you get comprehensive
Python integration—harness the power of Python from your Stata code, and harness the power
of Stata from your Python code. Stata also lets you incorporate C, C++, and Java plugins. You
can even embed Java code directly in your Stata code!

Automating your work using a do-file

You can automate your work using a do-file, which is a text file
that contains a set of Stata commands.

For reproducible analyses, store all your commands in a do-file.
For instance, you might fit a logit model of employment status
on variables representing education level and participationin a
training program:

logit employed education i.training

You then compute the population-averaged treatment effect of
the training program:

margins r.training

You then create a classification table comparing observed with
predicted employment status:

estat classification

Save these commands in your do file, add version 19.5
to the top of the file, and rerun them at any time to reproduce
your results.

Sometimes, your analyses require real programming features.
You can incorporate those into your do-file as well. You might
loop over a variable list:
foreach variable of varlist myvars {
your code

}

You might do computations by groups:

by group: mycommand

Oryou might create and use local macros, the variables of Stata
programs:

local myregressors x1 x2 x3 x4 x5
probit y ‘myregressors’

logit y ‘myregressors’

You can also access the results produced by an estimation
command and use them in subsequent commands. Say you fit
a model and want to rescale your coefficient vector. The
coefficients are stored in e(b), and you can create a matrix of
rescaled coefficients by typing

matrix A = 3*e(b)

Once you have everything in your do-file, easily rerun all of these
commands by typing

do mydofile




Write your own command using an
ado-file

Anyone can write a Stata command using an ado-file. This
extensibility allows everyone to share their programs with a
worldwide community.

To write a command, you first need to determine the mandatory
and optional arguments a user needs to type and parse them.
This is easily done with Stata’'s syntax command. syntax
examines what is typed and matches it to the accepted syntax
of the command. The individual components are stored in local
macros, where you can access them.

Say we are writing a maximum likelihood estimator that is not
currently available in Stata and that allows time-series operators,
factor variables, if and in conditions to restrict our estimation
sample, frequency weights, and all of Stata’s
variance—covariance estimators. We type
syntax varlist(ts fv) [if] [in]
vce (passthru)]*

[fweights],

After your syntax command, how do you write your maximum
likelihood estimator? Easy:

mlexp (mylikelihood) ..., ‘vce’
You just need to write the expression for mylikelihood, and mlexp
does the rest for you. It will compute robust, cluster—robust,
jackknife, and bootstrap standard errors and allow weights and
much more.

Want your output to look like that of a Stata command? Easy.

Post your results using ereturn post, and use ereturn display.

ereturn post b V ...

ereturn display,

You have a Stata table that takes Stata’s display and format
options. Now anyone can type

mycommand y x1 x2 x3, options

Adding a matrix programming
component

You can incorporate the results of matrix manipulations using
Mata, Stata’s matrix language, into your commands. Mata has
the advanced matrix operations you need: access to the power
of LAPACK and built-in solvers and optimizers to make
implementing your own maximum likelihood, GMM, or other
estimators easier. Mata makes the possibilities of Stata
programming boundless.

If you want to enter Mata, type

mata

Get your data into a matrix with name D:
D = st_data(.,.)

Or get only your dependent variable y and your regressors x1
and x2:

Y
X

st_data(., “y”)
st_data(., “xl1 x27)

Compute the product X’X and then its Cholesky decomposition:
XX = quadcross (X,X)
A = cholesky (XX)

Compute (X’X)" and regression coefficients:
INVXX = invsym(quadcross(X,X))
betamata = quadcross(INVXX, quadcross(X,y))

Pass your regression coefficients stored in betamata from
Mata to Stata with the name betastata:

st_matrix(“betastata”, betamata)

Close your Mata session:

end

This is just a glimpse of all you can do when programming with Stata and Mata. To
learn more about programming, please visit
stata.com/programming-features.

stata.com/programming-features

© 2026 StataCorp LLC
Stata is a registered tr: rk of StataCorp LLC
4905 Lakeway Drive, College Station, TX 77845, USA.




