Panel data

Take full advantage of the extra information that panel data provide while simultaneously handling the peculiarities of panel data.

Study the time-invariant features within each panel, the relationships across panels, and how outcomes of interest change over time.

Fit linear models or nonlinear models for binary, count, ordinal, censored, or survival outcomes with fixed-effects, random-effects, or population-averaged estimators. Even perform Bayesian estimation.

Use difference in differences (DID) to estimate treatment effects.

Fit dynamic models or models with endogeneity.

And much more.

Linear panel-data models

- Fixed effects, random effects, correlated random effects New, and population averaged
- High-dimensional fixed effects (HDFE) New
- Fixed and random effects with AR(1) disturbances
- Random coefficients
- Multiple levels of random effects

Nonlinear panel-data models

- Probit
- Logit
- Ordered logit and probit
- Multinomial logit
- Mixed logit
- Interval regression
- Tobit
- Poisson
- Negative binomial
- Random coefficients
- Multiple levels of random effects

Dynamic panel-data estimators

- Arellano–Bond
- Arellano–Bover
- Blundell–Bond
- Panel-data vector autoregression New
- Build your own dynamic model

Parametric survival models

- Weibull, exponential, lognormal, loglogistic, or gamma

Instrumental-variables models

- Fixed effects
- Random effects
- First-differenced
- Between effects

Extended regression models

Combine endogenous covariates, sample selection, and treatment effects

 $\chi_{it}^{x_{it}\beta} \xi_{it}^{y_{it}} \xi_{\alpha_i}^{z_{it}} \chi_{i,t-1}^{z_{it}} \xi_{\alpha_i}^{z_{it}}$

- Linear, probit, ordered probit, and interval regression
- Random effects

Test and diagnostics

- Panel-data unit-root tests
- Panel-data cointegration tests
- Hausman test
- Mundlak test ^{New}
- Overidentification and autocorrelation tests
- Breusch and Pagan Lagrange multiplier test for random effects

Graphic and tabular analysis

- Summary statistics and tabulations within and between panels
- Patterns of panel participation
- Graphs of marginal effects, elasticities, treatment effects, and marginal means

Bayesian estimation

Before fitting any panel-data model in Stata, we specify the panel and time identifiers, in this case the variables **id** and **year**.

. xtset id year

Now we are ready to fit a model. Let's start by fitting a random-effects linear regression model for **y** on **x1**, **x2**, and **x3** and storing the results.

Viewer - view >	d1.smcl					_		×
view xt1.smcl >	<							
+					Dialo	g 🕶 Also s	ee 🕶 🗌 .	lump to
. xtreg y x1	x2 x3, re							
Random-effect	s GLS regressi	.on		Number	of obs =	18,7	760	
Group variabl	e: id			Number	of groups =	2,3	345	
R-squared:				Obs per	group:			
Within	= 0.6354				min =		8	
Between	Between = 0.5341				avg =	: 8	3.0	
Overall	= 0.5604				max =		8	
				Wald ch	i2(3) =	30754	.84	
<pre>corr(u_i, X)</pre>	= 0 (assumed)			Prob >	chi2 =	0.00	900	
у	Coefficient	Std. err.	z	P> z	[95% conf	. interva	al]	
×1	1.819258	.023037	78.97	0.000	1.774106	1.864	141	
x2	9579329	.005927	-161.62	0.000	9695497	94631	L62	
x3	.9732638	.0227792	42.73	0.000	.9286175	1.017	791	
_cons	1.046447	.0292991	35.72	0.000	.9890223	1.1038	372	
sigma_u	1.2557466							
sigma_e	1.0487969							
rho	.58908237	(fraction	of varia	nce due t	o u_i)			
antimatan a	tono no						_	
. estimates s	Lore re					CAL	NIL IN	A INC
						CAP	NUN	C/III P

Fitting a fixed-effects model is just as easy. We can type

. xtreg y x1 x2 x3, fe

We can now store the results of this model and compare the models using a Hausman test.

Viewer - view xt	2.smcl				_		×
view xt2.smcl 🗙							
+				Dialog 🕶	Also se	e∗ Ju	imp to •
. estimates st	ore fe						
. hausman fe r	e, sigmamore						
	Coeffi	cients ——					- 1
	(b)		(b-B)	sqrt(diag(V	_b-V_B))	- 1
	fe	re	Difference	Std. er	r.	_	- 1
×1	.9706759	1.819258	8485821	.0344145			- 1
x2	9726719	9579329	014739	.0009	57		- 1
×3	.971059	.9732638	0022048	.002394	49		- 1
	b	= Consistent u	under H0 and Ha;	obtained fro	om xtre	g.	- 1
B =	Inconsistent	under Ha, effi	icient under H0;	obtained fro	om xtre	g.	- 1
Test of H0: Di	fference in co	efficients not	: svstematic				- 1
chi2(3) =	(b-B)'[(V_b-V_	B)^(-1)](b-B)					
= 1	632.11						
Prob > ch12 = 1	0.0000						
					CAP	NUM	INS

If the model is correctly specified, the Hausman test indicates that time-invariant unobservables are not modeled correctly using random effects. Commands for more complex models are just as straightforward. For instance, let's fit a dynamic panel-data model using the Arellano–Bond estimator.

Viewer - view x	t3.smcl					— C) X
view xt3.smcl 🗙							-
+					Dialog	- Also see -	Jump to 🕶
. xtabond y x1	. x2 x3, vce(r	obust)					
Arellano-Bond	dynamic panel	-data esti	mation	Number	of obs =	14,070	
Group variable	: id +			Number	of groups =	2,345	
Time variabie.				Obs per	group:		
					min =	6	
					avg =	6	
					max =	6	
Number of inst	ruments =	25		Wald ch	i2(4) =	18908.82	
				Prob >	chi2 =	0.0000	
One-step resul	ts						
			(Std. err.	adjuste	d for cluster	ing on id)	
		Robust					
У	Coefficient	std. err.	z	P> z	[95% conf.	interval]	
У							
L1.	.2079654	.0082763	25.13	0.000	.1917441	.2241866	
x1	1.027679	.0520617	19.74	0.000	.9256398	1.129718	
x2	-1.00502	.0076965	-130.58	0.000	-1.020105	9899356	
x3	.9859454	.0276852	35.61	0.000	.9316833	1.040207	
_cons	1.021141	.0406909	25.10	0.000	.9413881	1.100894	
Instruments fo GMM-ty Standa Instruments fo Standa	or differenced pe: L(2/.).y urd: D.x1 D.x2 or level equat urd: cons	equation D.x3 ion					
	-					CAP N	UM INS

This is just the beginning.

Do you have a binary outcome? You can fit a random-effects probit model.

. xtprobit y x1 x2 x3

Do you have a count outcome?

You can fit a conditional fixed-effects Poisson model.

. xtpoisson y x1 x2 x3, fe

Do you have prior information or want to make probability statements about the results?

- You can perform Bayesian estimation.
- . bayes: xtreg y x1 x2 x3

Do you have random coefficients for x1? You can fit a mixed-effects model.

. mixed y x1 x2 x3 || id: x1

Do you have a panel of individuals nested within companies? You can fit a three-level random-effects model.

. mixed y x1 x2 x3 || company: || id:

Do you want to estimate the average treatment effect on the treated? You can use DID estimation.

. xtdidregress (y x) (treatment), group(company) time(t)

And so much more.