
Lasso

Variable selection, prediction, inference

- All the tools you expect for lasso machine learning
 - Lasso, square-root lasso, and elastic net
 - Cross-validation
 - Adaptive lasso
 - Knot analysis
 - Coefficient paths
 - Adjustment for clustered data

- Alongside cutting-edge inferential methods
 - Robust to mistakes in variable selection
 - Proper inference for coefficients of interest
 - Double selection
 - Partialing out
 - Cross-fit partialing out
 - Double machine learning
 - Treatment-effects estimation
 - Inference for clustered data

Select predictors for continuous, binary, count, and survival-time outcomes

Lasso with selection via cross-validation

. lasso linear y x1-x1000
. lasso logit y x1-x1000
. lasso probit y x1-x1000
. lasso poisson y x1-x1000

. lasso cox
Adaptive lasso

. lasso linear y x1-x1000, selection(adaptive)

x1-x1000

Selection via BIC

. lasso linear y x1-x1000, selection(bic)

Selection via plugin method

. lasso linear y x1-x1000, selection(plugin)

Elastic net with selection via cross-validation

. elasticnet linear y x1-x1000
. elasticnet logit y x1-x1000
. elasticnet probit y x1-x1000
. elasticnet poisson y x1-x1000
. elasticnet cox x1-x1000

Square-root lasso

. sqrtlasso y x1-x1000

Examine the results

View selected variables

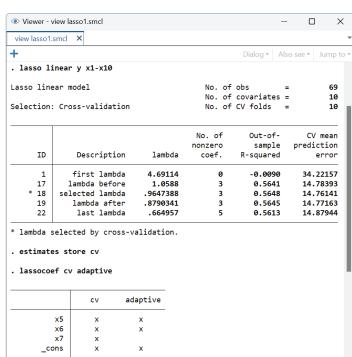
- . lassoknots
- . lassoinfo
- . lassocoef

Plot cross-validation function

. cvplot

Plot coefficient path

. coefpath


Obtain predictions

- . use newdata
- . predict yhat

CAP NUM INS

Evaluate fit

. lassogof

Lasso for inference

With lasso inferential methods, you can estimate coefficients, standard errors, test statistics, and confidence intervals for variables of interest while using lassos to select from a potentially large number of control variables.

Double-selection method; estimate coefficients for **x1** and categorical **x2**; selection of controls via plugin

. dsregress y x1 i.x2, controls(c1-c1000)

Logit model for binary outcome; estimate odds ratios for **x1** and **x2**

. dslogit y x1 i.x2, controls(c1-c1000)

Poisson model for count outcome; estimate incidence-rate ratios for **x1** and **x2**

. dspoisson y x1 i.x2, controls(c1-c1000)

Selection of controls via cross-validation

Partialing-out method

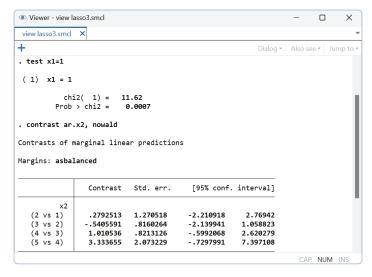
. poregress y x1 i.x2, controls(c1-c1000)

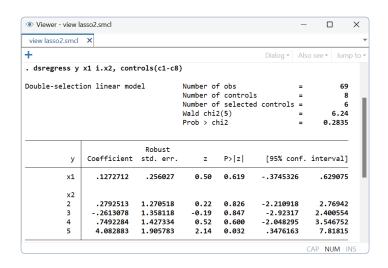
Cross-fit partialing-out method (double machine learning)

. xporegress y x1 i.x2, controls(c1-c1000)

Treatment-effects estimation; estimate the ATE of **treat**, controlling for **x1-x1000** in the outcome model and **w1-w1000** in the treatment model

. telasso (y x1-x1000) (treat w1-w1000)

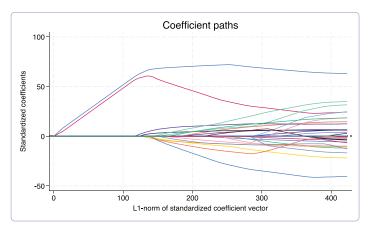

Evaluate results using Stata's standard tools


Perform tests on coefficients

. test x1=1

Estimate contrasts such as differences across levels

. contrast ar.x2


Explore underlying lassos

View the selected controls in the lasso for y

. lassocoef (.,for(y))

Plot coefficient paths in the lasso for y

. coefpath, for(y)

