STATA Features

Lasso

Variable selection, prediction, inference

- All the tools you expect for lasso machine learning
 - Lasso, square-root lasso, and elastic net
 - Cross-validation
 - Adaptive lasso
 - Knot analysis
 - Coefficient paths
 - Adjustment for clustered data

- Alongside cutting-edge inferential methods
 - Robust to mistakes in variable selection
 - Proper inference for coefficients of interest
 - Double selection
 - Partialing out
 - Cross-fit partialing out
 - Double machine learning
 - Treatment-effects estimation
 - Inference for clustered data

Select predictors for continuous, binary, count, and survival-time New outcomes

Lasso with selection via cross-validation

. lasso linear y x1-x1000 . lasso logit y x1-x1000 . lasso probit y x1-x1000

. lasso poisson y x1-x1000

. lasso cox x1-x1000

Adaptive lasso

. lasso linear y x1-x1000, selection(adaptive)

Selection via BIC

. lasso linear y x1-x1000, selection(bic)

Selection via plugin method

. lasso linear y x1-x1000, selection(plugin)

Elastic net with selection via cross-validation

. elasticnet linear y x1-x1000
. elasticnet logit y x1-x1000
. elasticnet probit y x1-x1000
. elasticnet poisson y x1-x1000
. elasticnet cox x1-x1000

Square-root lasso

. sqrtlasso y x1-x1000

Examine the results

View selected variables

- . lassoknots
- . lassoinfo
- . lassocoef

Plot cross-validation function

. cvplot

Plot coefficient path

. coefpath

Obtain predictions

- . use newdata
- predict yhat

CAP **NUM** INS

Evaluate fit

. lassogof

Lasso for inference

With lasso inferential methods, you can estimate coefficients, standard errors, test statistics, and confidence intervals for variables of interest while using lassos to select from a potentially large number of control variables.

Double-selection method; estimate coefficients for **x1** and categorical **x2**; selection of controls via plugin

. dsregress y x1 i.x2, controls(c1-c1000)

Logit model for binary outcome; estimate odds ratios for $\mathbf{x1}$ and $\mathbf{x2}$

. dslogit y x1 i.x2, controls(c1-c1000)

Poisson model for count outcome; estimate incidence-rate ratios for **x1** and **x2**

. dspoisson y x1 i.x2, controls(c1-c1000)

Selection of controls via cross-validation

Partialing-out method

. poregress y x1 i.x2, controls(c1-c1000)

Cross-fit partialing-out method (double machine learning)

. xporegress y x1 i.x2, controls(c1-c1000)

Treatment-effects estimation; estimate the ATE of **treat**, controlling for **x1-x1000** in the outcome model and **w1-w1000** in the treatment model

. telasso (y x1-x1000) (treat w1-w1000)

Viewer - view lasso2.smcl view lasso2.smcl X . dsregress y x1 i.x2, controls(c1-c8) Double-selection linear model Number of obs 69 Number of controls 8 Number of selected controls = Prob > chi2 0.2835 Robust Coefficient std. err P>|z| [95% conf. interval] .256027 -.3745326 .629075 .1272712 0.619 **x1** 0.50 x2 .2792513 1.270518 0.826 -2.210918 2.76942 0.22 -.2613078 1.358118 -0.19 -2.92317 2.400554 0.847 .7492284 1.427334 0.600 -2.048295 3.546752 0.52 4.082883 1.905783 .3476163 CAP **NUM** IN

Evaluate results using Stata's standard tools

Perform tests on coefficients

. test x1=1

Estimate contrasts such as differences across levels

. contrast ar.x2

Explore underlying lassos

View the selected controls in the lasso for **y**

. lassocoef (.,for(y))

Plot coefficient paths in the lasso for ${\bf y}$

. coefpath, for(y)

